Pin status from 0 - 255
 */
inline void gcode_M42() {
  if (!code_seen('S')) return;
  int pin_status = code_value_int();
  if (pin_status < 0 || pin_status > 255) return;
  int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  if (pin_number < 0) return;
  for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
    if (pin_number == sensitive_pins[i]) return;
  pinMode(pin_number, OUTPUT);
  digitalWrite(pin_number, pin_status);
  analogWrite(pin_number, pin_status);
  #if FAN_COUNT > 0
    switch (pin_number) {
      #if HAS_FAN0
        case FAN_PIN: fanSpeeds[0] = pin_status; break;
      #endif
      #if HAS_FAN1
        case FAN1_PIN: fanSpeeds[1] = pin_status; break;
      #endif
      #if HAS_FAN2
        case FAN2_PIN: fanSpeeds[2] = pin_status; break;
      #endif
    }
  #endif
}
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  /**
   * M48: Z probe repeatability measurement function.
   *
   * Usage:
   *   M48      
   *     P = Number of sampled points (4-50, default 10)
   *     X = Sample X position
   *     Y = Sample Y position
   *     V = Verbose level (0-4, default=1)
   *     E = Engage Z probe for each reading
   *     L = Number of legs of movement before probe
   *     S = Schizoid (Or Star if you prefer)
   *
   * This function assumes the bed has been homed.  Specifically, that a G28 command
   * as been issued prior to invoking the M48 Z probe repeatability measurement function.
   * Any information generated by a prior G29 Bed leveling command will be lost and need to be
   * regenerated.
   */
  inline void gcode_M48() {
    if (axis_unhomed_error(true, true, true)) return;
    int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
    if (verbose_level < 0 || verbose_level > 4) {
      SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
      return;
    }
    if (verbose_level > 0)
      SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
    int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
    if (n_samples < 4 || n_samples > 50) {
      SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
      return;
    }
    float  X_current = current_position[X_AXIS],
           Y_current = current_position[Y_AXIS];
    bool stow_probe_after_each = code_seen('E');
    float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
    #if DISABLED(DELTA)
      if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
        out_of_range_error(PSTR("X"));
        return;
      }
    #endif
    float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
    #if DISABLED(DELTA)
      if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
        out_of_range_error(PSTR("Y"));
        return;
      }
    #else
      if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
        SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
        return;
      }
    #endif
    bool seen_L = code_seen('L');
    uint8_t n_legs = seen_L ? code_value_byte() : 0;
    if (n_legs > 15) {
      SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
      return;
    }
    if (n_legs == 1) n_legs = 2;
    bool schizoid_flag = code_seen('S');
    if (schizoid_flag && !seen_L) n_legs = 7;
    /**
     * Now get everything to the specified probe point So we can safely do a
     * probe to get us close to the bed.  If the Z-Axis is far from the bed,
     * we don't want to use that as a starting point for each probe.
     */
    if (verbose_level > 2)
      SERIAL_PROTOCOLLNPGM("Positioning the probe...");
    #if ENABLED(DELTA)
      // we don't do bed level correction in M48 because we want the raw data when we probe
      reset_bed_level();
    #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
      // we don't do bed level correction in M48 because we want the raw data when we probe
      planner.bed_level_matrix.set_to_identity();
    #endif
    setup_for_endstop_or_probe_move();
    // Move to the first point, deploy, and probe
    probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
    randomSeed(millis());
    double mean = 0, sigma = 0, sample_set[n_samples];
    for (uint8_t n = 0; n < n_samples; n++) {
      if (n_legs) {
        int dir = (random(0, 10) > 5.0) ? -1 : 1;  // clockwise or counter clockwise
        float angle = random(0.0, 360.0),
              radius = random(
                #if ENABLED(DELTA)
                  DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
                #else
                  5, X_MAX_LENGTH / 8
                #endif
              );
        if (verbose_level > 3) {
          SERIAL_ECHOPAIR("Starting radius: ", radius);
          SERIAL_ECHOPAIR("   angle: ", angle);
          SERIAL_ECHOPGM(" Direction: ");
          if (dir > 0) SERIAL_ECHOPGM("Counter-");
          SERIAL_ECHOLNPGM("Clockwise");
        }
        for (uint8_t l = 0; l < n_legs - 1; l++) {
          double delta_angle;
          if (schizoid_flag)
            // The points of a 5 point star are 72 degrees apart.  We need to
            // skip a point and go to the next one on the star.
            delta_angle = dir * 2.0 * 72.0;
          else
            // If we do this line, we are just trying to move further
            // around the circle.
            delta_angle = dir * (float) random(25, 45);
          angle += delta_angle;
          while (angle > 360.0)   // We probably do not need to keep the angle between 0 and 2*PI, but the
            angle -= 360.0;       // Arduino documentation says the trig functions should not be given values
          while (angle < 0.0)     // outside of this range.   It looks like they behave correctly with
            angle += 360.0;       // numbers outside of the range, but just to be safe we clamp them.
          X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
          Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
          #if DISABLED(DELTA)
            X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
            Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
          #else
            // If we have gone out too far, we can do a simple fix and scale the numbers
            // back in closer to the origin.
            while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
              X_current /= 1.25;
              Y_current /= 1.25;
              if (verbose_level > 3) {
                SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
                SERIAL_ECHOLNPAIR(", ", Y_current);
              }
            }
          #endif
          if (verbose_level > 3) {
            SERIAL_PROTOCOLPGM("Going to:");
            SERIAL_ECHOPAIR(" X", X_current);
            SERIAL_ECHOPAIR(" Y", Y_current);
            SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
          }
          do_blocking_move_to_xy(X_current, Y_current);
        } // n_legs loop
      } // n_legs
      // Probe a single point
      sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
      /**
       * Get the current mean for the data points we have so far
       */
      double sum = 0.0;
      for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
      mean = sum / (n + 1);
      /**
       * Now, use that mean to calculate the standard deviation for the
       * data points we have so far
       */
      sum = 0.0;
      for (uint8_t j = 0; j <= n; j++)
        sum += sq(sample_set[j] - mean);
      sigma = sqrt(sum / (n + 1));
      if (verbose_level > 0) {
        if (verbose_level > 1) {
          SERIAL_PROTOCOL(n + 1);
          SERIAL_PROTOCOLPGM(" of ");
          SERIAL_PROTOCOL((int)n_samples);
          SERIAL_PROTOCOLPGM("   z: ");
          SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
          if (verbose_level > 2) {
            SERIAL_PROTOCOLPGM(" mean: ");
            SERIAL_PROTOCOL_F(mean, 6);
            SERIAL_PROTOCOLPGM("   sigma: ");
            SERIAL_PROTOCOL_F(sigma, 6);
          }
        }
        SERIAL_EOL;
      }
    } // End of probe loop
    if (STOW_PROBE()) return;
    if (verbose_level > 0) {
      SERIAL_PROTOCOLPGM("Mean: ");
      SERIAL_PROTOCOL_F(mean, 6);
      SERIAL_EOL;
    }
    SERIAL_PROTOCOLPGM("Standard Deviation: ");
    SERIAL_PROTOCOL_F(sigma, 6);
    SERIAL_EOL; SERIAL_EOL;
    clean_up_after_endstop_or_probe_move();
    report_current_position();
  }
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
/**
 * M75: Start print timer
 */
inline void gcode_M75() { print_job_timer.start(); }
/**
 * M76: Pause print timer
 */
inline void gcode_M76() { print_job_timer.pause(); }
/**
 * M77: Stop print timer
 */
inline void gcode_M77() { print_job_timer.stop(); }
#if ENABLED(PRINTCOUNTER)
  /**
   * M78: Show print statistics
   */
  inline void gcode_M78() {
    // "M78 S78" will reset the statistics
    if (code_seen('S') && code_value_int() == 78)
      print_job_timer.initStats();
    else print_job_timer.showStats();
  }
#endif
/**
 * M104: Set hot end temperature
 */
inline void gcode_M104() {
  if (get_target_extruder_from_command(104)) return;
  if (DEBUGGING(DRYRUN)) return;
  #if ENABLED(SINGLENOZZLE)
    if (target_extruder != active_extruder) return;
  #endif
  if (code_seen('S')) {
    thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
    #if ENABLED(DUAL_X_CARRIAGE)
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
        thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
    #endif
    #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
      /**
       * Stop the timer at the end of print, starting is managed by
       * 'heat and wait' M109.
       * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
       * stand by mode, for instance in a dual extruder setup, without affecting
       * the running print timer.
       */
      if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
        print_job_timer.stop();
        LCD_MESSAGEPGM(WELCOME_MSG);
      }
    #endif
    if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  }
}
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
  void print_heaterstates() {
    #if HAS_TEMP_HOTEND
      SERIAL_PROTOCOLPGM(" T:");
      SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
      SERIAL_PROTOCOLPGM(" /");
      SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
      #if ENABLED(SHOW_TEMP_ADC_VALUES)
        SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
        SERIAL_CHAR(')');
      #endif
    #endif
    #if HAS_TEMP_BED
      SERIAL_PROTOCOLPGM(" B:");
      SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
      SERIAL_PROTOCOLPGM(" /");
      SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
      #if ENABLED(SHOW_TEMP_ADC_VALUES)
        SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
        SERIAL_CHAR(')');
      #endif
    #endif
    #if HOTENDS > 1
      HOTEND_LOOP() {
        SERIAL_PROTOCOLPAIR(" T", e);
        SERIAL_PROTOCOLCHAR(':');
        SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
        SERIAL_PROTOCOLPGM(" /");
        SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
        #if ENABLED(SHOW_TEMP_ADC_VALUES)
          SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
          SERIAL_CHAR(')');
        #endif
      }
    #endif
    SERIAL_PROTOCOLPGM(" @:");
    SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
    #if HAS_TEMP_BED
      SERIAL_PROTOCOLPGM(" B@:");
      SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
    #endif
    #if HOTENDS > 1
      HOTEND_LOOP() {
        SERIAL_PROTOCOLPAIR(" @", e);
        SERIAL_PROTOCOLCHAR(':');
        SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
      }
    #endif
  }
#endif
/**
 * M105: Read hot end and bed temperature
 */
inline void gcode_M105() {
  if (get_target_extruder_from_command(105)) return;
  #if HAS_TEMP_HOTEND || HAS_TEMP_BED
    SERIAL_PROTOCOLPGM(MSG_OK);
    print_heaterstates();
  #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
    SERIAL_ERROR_START;
    SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  #endif
  SERIAL_EOL;
}
#if FAN_COUNT > 0
  /**
   * M106: Set Fan Speed
   *
   *  S   Speed between 0-255
   *  P Fan index, if more than one fan
   */
  inline void gcode_M106() {
    uint16_t s = code_seen('S') ? code_value_ushort() : 255,
             p = code_seen('P') ? code_value_ushort() : 0;
    NOMORE(s, 255);
    if (p < FAN_COUNT) fanSpeeds[p] = s;
  }
  /**
   * M107: Fan Off
   */
  inline void gcode_M107() {
    uint16_t p = code_seen('P') ? code_value_ushort() : 0;
    if (p < FAN_COUNT) fanSpeeds[p] = 0;
  }
#endif // FAN_COUNT > 0
#if DISABLED(EMERGENCY_PARSER)
  /**
   * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
   */
  inline void gcode_M108() { wait_for_heatup = false; }
  /**
   * M112: Emergency Stop
   */
  inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  /**
   * M410: Quickstop - Abort all planned moves
   *
   * This will stop the carriages mid-move, so most likely they
   * will be out of sync with the stepper position after this.
   */
  inline void gcode_M410() { quickstop_stepper(); }
#endif
  #ifndef MIN_COOLING_SLOPE_DEG
    #define MIN_COOLING_SLOPE_DEG 1.50
  #endif
  #ifndef MIN_COOLING_SLOPE_TIME
    #define MIN_COOLING_SLOPE_TIME 60
  #endif
/**
 * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
 *       Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
 */
inline void gcode_M109() {
  if (get_target_extruder_from_command(109)) return;
  if (DEBUGGING(DRYRUN)) return;
  #if ENABLED(SINGLENOZZLE)
    if (target_extruder != active_extruder) return;
  #endif
  bool no_wait_for_cooling = code_seen('S');
  if (no_wait_for_cooling || code_seen('R')) {
    thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
    #if ENABLED(DUAL_X_CARRIAGE)
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
        thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
    #endif
    #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
      /**
       * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
       * stand by mode, for instance in a dual extruder setup, without affecting
       * the running print timer.
       */
      if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
        print_job_timer.stop();
        LCD_MESSAGEPGM(WELCOME_MSG);
      }
      /**
       * We do not check if the timer is already running because this check will
       * be done for us inside the Stopwatch::start() method thus a running timer
       * will not restart.
       */
      else print_job_timer.start();
    #endif
    if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  }
  #if ENABLED(AUTOTEMP)
    planner.autotemp_M109();
  #endif
  #if TEMP_RESIDENCY_TIME > 0
    millis_t residency_start_ms = 0;
    // Loop until the temperature has stabilized
    #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  #else
    // Loop until the temperature is very close target
    #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  #endif //TEMP_RESIDENCY_TIME > 0
  float theTarget = -1.0, old_temp = 9999.0;
  bool wants_to_cool = false;
  wait_for_heatup = true;
  millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  KEEPALIVE_STATE(NOT_BUSY);
  do {
    // Target temperature might be changed during the loop
    if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
      wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
      theTarget = thermalManager.degTargetHotend(target_extruder);
      // Exit if S, continue if S, R, or R
      if (no_wait_for_cooling && wants_to_cool) break;
    }
    now = millis();
    if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
      next_temp_ms = now + 1000UL;
      print_heaterstates();
      #if TEMP_RESIDENCY_TIME > 0
        SERIAL_PROTOCOLPGM(" W:");
        if (residency_start_ms) {
          long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
          SERIAL_PROTOCOLLN(rem);
        }
        else {
          SERIAL_PROTOCOLLNPGM("?");
        }
      #else
        SERIAL_EOL;
      #endif
    }
    idle();
    refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
    float temp = thermalManager.degHotend(target_extruder);
    #if TEMP_RESIDENCY_TIME > 0
      float temp_diff = fabs(theTarget - temp);
      if (!residency_start_ms) {
        // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
        if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
      }
      else if (temp_diff > TEMP_HYSTERESIS) {
        // Restart the timer whenever the temperature falls outside the hysteresis.
        residency_start_ms = now;
      }
    #endif //TEMP_RESIDENCY_TIME > 0
    // Prevent a wait-forever situation if R is misused i.e. M109 R0
    if (wants_to_cool) {
      // break after MIN_COOLING_SLOPE_TIME seconds
      // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
      if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
        if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
        next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
        old_temp = temp;
      }
    }
  } while (wait_for_heatup && TEMP_CONDITIONS);
  LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  KEEPALIVE_STATE(IN_HANDLER);
}
#if HAS_TEMP_BED
  #ifndef MIN_COOLING_SLOPE_DEG_BED
    #define MIN_COOLING_SLOPE_DEG_BED 1.50
  #endif
  #ifndef MIN_COOLING_SLOPE_TIME_BED
    #define MIN_COOLING_SLOPE_TIME_BED 60
  #endif
  /**
   * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
   *       Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
   */
  inline void gcode_M190() {
    if (DEBUGGING(DRYRUN)) return;
    LCD_MESSAGEPGM(MSG_BED_HEATING);
    bool no_wait_for_cooling = code_seen('S');
    if (no_wait_for_cooling || code_seen('R')) {
      thermalManager.setTargetBed(code_value_temp_abs());
      #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
        if (code_value_temp_abs() > BED_MINTEMP) {
          /**
          * We start the timer when 'heating and waiting' command arrives, LCD
          * functions never wait. Cooling down managed by extruders.
          *
          * We do not check if the timer is already running because this check will
          * be done for us inside the Stopwatch::start() method thus a running timer
          * will not restart.
          */
          print_job_timer.start();
        }
      #endif
    }
    #if TEMP_BED_RESIDENCY_TIME > 0
      millis_t residency_start_ms = 0;
      // Loop until the temperature has stabilized
      #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
    #else
      // Loop until the temperature is very close target
      #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
    #endif //TEMP_BED_RESIDENCY_TIME > 0
    float theTarget = -1.0, old_temp = 9999.0;
    bool wants_to_cool = false;
    wait_for_heatup = true;
    millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
    KEEPALIVE_STATE(NOT_BUSY);
    target_extruder = active_extruder; // for print_heaterstates
    do {
      // Target temperature might be changed during the loop
      if (theTarget != thermalManager.degTargetBed()) {
        wants_to_cool = thermalManager.isCoolingBed();
        theTarget = thermalManager.degTargetBed();
        // Exit if S, continue if S, R, or R
        if (no_wait_for_cooling && wants_to_cool) break;
      }
      now = millis();
      if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
        next_temp_ms = now + 1000UL;
        print_heaterstates();
        #if TEMP_BED_RESIDENCY_TIME > 0
          SERIAL_PROTOCOLPGM(" W:");
          if (residency_start_ms) {
            long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
            SERIAL_PROTOCOLLN(rem);
          }
          else {
            SERIAL_PROTOCOLLNPGM("?");
          }
        #else
          SERIAL_EOL;
        #endif
      }
      idle();
      refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
      float temp = thermalManager.degBed();
      #if TEMP_BED_RESIDENCY_TIME > 0
        float temp_diff = fabs(theTarget - temp);
        if (!residency_start_ms) {
          // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
          if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
        }
        else if (temp_diff > TEMP_BED_HYSTERESIS) {
          // Restart the timer whenever the temperature falls outside the hysteresis.
          residency_start_ms = now;
        }
      #endif //TEMP_BED_RESIDENCY_TIME > 0
      // Prevent a wait-forever situation if R is misused i.e. M190 R0
      if (wants_to_cool) {
        // break after MIN_COOLING_SLOPE_TIME_BED seconds
        // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
        if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
          if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
          next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
          old_temp = temp;
        }
      }
    } while (wait_for_heatup && TEMP_BED_CONDITIONS);
    LCD_MESSAGEPGM(MSG_BED_DONE);
    KEEPALIVE_STATE(IN_HANDLER);
  }
#endif // HAS_TEMP_BED
/**
 * M110: Set Current Line Number
 */
inline void gcode_M110() {
  if (code_seen('N')) gcode_N = code_value_long();
}
/**
 * M111: Set the debug level
 */
inline void gcode_M111() {
  marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  #if ENABLED(DEBUG_LEVELING_FEATURE)
    const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  #endif
  const static char* const debug_strings[] PROGMEM = {
    str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
    #if ENABLED(DEBUG_LEVELING_FEATURE)
      str_debug_32
    #endif
  };
  SERIAL_ECHO_START;
  SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  if (marlin_debug_flags) {
    uint8_t comma = 0;
    for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
      if (TEST(marlin_debug_flags, i)) {
        if (comma++) SERIAL_CHAR(',');
        serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
      }
    }
  }
  else {
    SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  }
  SERIAL_EOL;
}
#if ENABLED(HOST_KEEPALIVE_FEATURE)
  /**
   * M113: Get or set Host Keepalive interval (0 to disable)
   *
   *   S Optional. Set the keepalive interval.
   */
  inline void gcode_M113() {
    if (code_seen('S')) {
      host_keepalive_interval = code_value_byte();
      NOMORE(host_keepalive_interval, 60);
    }
    else {
      SERIAL_ECHO_START;
      SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
    }
  }
#endif
#if ENABLED(BARICUDA)
  #if HAS_HEATER_1
    /**
     * M126: Heater 1 valve open
     */
    inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
    /**
     * M127: Heater 1 valve close
     */
    inline void gcode_M127() { baricuda_valve_pressure = 0; }
  #endif
  #if HAS_HEATER_2
    /**
     * M128: Heater 2 valve open
     */
    inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
    /**
     * M129: Heater 2 valve close
     */
    inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  #endif
#endif //BARICUDA
/**
 * M140: Set bed temperature
 */
inline void gcode_M140() {
  if (DEBUGGING(DRYRUN)) return;
  if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
}
#if ENABLED(ULTIPANEL)
  /**
   * M145: Set the heatup state for a material in the LCD menu
   *   S (0=PLA, 1=ABS)
   *   H
   *   B
   *   F
   */
  inline void gcode_M145() {
    int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
    if (material < 0 || material > 1) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
    }
    else {
      int v;
      switch (material) {
        case 0:
          if (code_seen('H')) {
            v = code_value_int();
            preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
          }
          if (code_seen('F')) {
            v = code_value_int();
            preheatFanSpeed1 = constrain(v, 0, 255);
          }
          #if TEMP_SENSOR_BED != 0
            if (code_seen('B')) {
              v = code_value_int();
              preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
            }
          #endif
          break;
        case 1:
          if (code_seen('H')) {
            v = code_value_int();
            preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
          }
          if (code_seen('F')) {
            v = code_value_int();
            preheatFanSpeed2 = constrain(v, 0, 255);
          }
          #if TEMP_SENSOR_BED != 0
            if (code_seen('B')) {
              v = code_value_int();
              preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
            }
          #endif
          break;
      }
    }
  }
#endif
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  /**
   * M149: Set temperature units
   */
  inline void gcode_M149() {
    if (code_seen('C')) {
      set_input_temp_units(TEMPUNIT_C);
    } else if (code_seen('K')) {
      set_input_temp_units(TEMPUNIT_K);
    } else if (code_seen('F')) {
      set_input_temp_units(TEMPUNIT_F);
    }
  }
#endif
#if HAS_POWER_SWITCH
  /**
   * M80: Turn on Power Supply
   */
  inline void gcode_M80() {
    OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
    /**
     * If you have a switch on suicide pin, this is useful
     * if you want to start another print with suicide feature after
     * a print without suicide...
     */
    #if HAS_SUICIDE
      OUT_WRITE(SUICIDE_PIN, HIGH);
    #endif
    #if ENABLED(ULTIPANEL)
      powersupply = true;
      LCD_MESSAGEPGM(WELCOME_MSG);
      lcd_update();
    #endif
  }
#endif // HAS_POWER_SWITCH
/**
 * M81: Turn off Power, including Power Supply, if there is one.
 *
 *      This code should ALWAYS be available for EMERGENCY SHUTDOWN!
 */
inline void gcode_M81() {
  thermalManager.disable_all_heaters();
  stepper.finish_and_disable();
  #if FAN_COUNT > 0
    #if FAN_COUNT > 1
      for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
    #else
      fanSpeeds[0] = 0;
    #endif
  #endif
  delay(1000); // Wait 1 second before switching off
  #if HAS_SUICIDE
    stepper.synchronize();
    suicide();
  #elif HAS_POWER_SWITCH
    OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  #endif
  #if ENABLED(ULTIPANEL)
    #if HAS_POWER_SWITCH
      powersupply = false;
    #endif
    LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
    lcd_update();
  #endif
}
/**
 * M82: Set E codes absolute (default)
 */
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
/**
 * M83: Set E codes relative while in Absolute Coordinates (G90) mode
 */
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
/**
 * M18, M84: Disable all stepper motors
 */
inline void gcode_M18_M84() {
  if (code_seen('S')) {
    stepper_inactive_time = code_value_millis_from_seconds();
  }
  else {
    bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
    if (all_axis) {
      stepper.finish_and_disable();
    }
    else {
      stepper.synchronize();
      if (code_seen('X')) disable_x();
      if (code_seen('Y')) disable_y();
      if (code_seen('Z')) disable_z();
      #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
        if (code_seen('E')) {
          disable_e0();
          disable_e1();
          disable_e2();
          disable_e3();
        }
      #endif
    }
  }
}
/**
 * M85: Set inactivity shutdown timer with parameter S. To disable set zero (default)
 */
inline void gcode_M85() {
  if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
}
/**
 * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
 *      (Follows the same syntax as G92)
 */
inline void gcode_M92() {
  LOOP_XYZE(i) {
    if (code_seen(axis_codes[i])) {
      if (i == E_AXIS) {
        float value = code_value_per_axis_unit(i);
        if (value < 20.0) {
          float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
          planner.max_e_jerk *= factor;
          planner.max_feedrate_mm_s[i] *= factor;
          planner.max_acceleration_steps_per_s2[i] *= factor;
        }
        planner.axis_steps_per_mm[i] = value;
      }
      else {
        planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
      }
    }
  }
  planner.refresh_positioning();
}
/**
 * Output the current position to serial
 */
static void report_current_position() {
  SERIAL_PROTOCOLPGM("X:");
  SERIAL_PROTOCOL(current_position[X_AXIS]);
  SERIAL_PROTOCOLPGM(" Y:");
  SERIAL_PROTOCOL(current_position[Y_AXIS]);
  SERIAL_PROTOCOLPGM(" Z:");
  SERIAL_PROTOCOL(current_position[Z_AXIS]);
  SERIAL_PROTOCOLPGM(" E:");
  SERIAL_PROTOCOL(current_position[E_AXIS]);
  stepper.report_positions();
  #if ENABLED(SCARA)
    SERIAL_PROTOCOLPGM("SCARA Theta:");
    SERIAL_PROTOCOL(delta[X_AXIS]);
    SERIAL_PROTOCOLPGM("   Psi+Theta:");
    SERIAL_PROTOCOL(delta[Y_AXIS]);
    SERIAL_EOL;
    SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
    SERIAL_PROTOCOL(delta[X_AXIS]);
    SERIAL_PROTOCOLPGM("   Psi+Theta (90):");
    SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
    SERIAL_EOL;
    SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
    SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
    SERIAL_PROTOCOLPGM("   Psi+Theta:");
    SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
    SERIAL_EOL; SERIAL_EOL;
  #endif
}
/**
 * M114: Output current position to serial port
 */
inline void gcode_M114() { report_current_position(); }
/**
 * M115: Capabilities string
 */
inline void gcode_M115() {
  SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
}
/**
 * M117: Set LCD Status Message
 */
inline void gcode_M117() {
  lcd_setstatus(current_command_args);
}
/**
 * M119: Output endstop states to serial output
 */
inline void gcode_M119() { endstops.M119(); }
/**
 * M120: Enable endstops and set non-homing endstop state to "enabled"
 */
inline void gcode_M120() { endstops.enable_globally(true); }
/**
 * M121: Disable endstops and set non-homing endstop state to "disabled"
 */
inline void gcode_M121() { endstops.enable_globally(false); }
#if ENABLED(BLINKM)
  /**
   * M150: Set Status LED Color - Use R-U-B for R-G-B
   */
  inline void gcode_M150() {
    SendColors(
      code_seen('R') ? code_value_byte() : 0,
      code_seen('U') ? code_value_byte() : 0,
      code_seen('B') ? code_value_byte() : 0
    );
  }
#endif // BLINKM
#if ENABLED(EXPERIMENTAL_I2CBUS)
  /**
   * M155: Send data to a I2C slave device
   *
   * This is a PoC, the formating and arguments for the GCODE will
   * change to be more compatible, the current proposal is:
   *
   *  M155 A ; Sets the I2C slave address the data will be sent to
   *
   *  M155 B
   *  M155 B
   *  M155 B
   *
   *  M155 S1 ; Send the buffered data and reset the buffer
   *  M155 R1 ; Reset the buffer without sending data
   *
   */
  inline void gcode_M155() {
    // Set the target address
    if (code_seen('A')) i2c.address(code_value_byte());
    // Add a new byte to the buffer
    if (code_seen('B')) i2c.addbyte(code_value_byte());
    // Flush the buffer to the bus
    if (code_seen('S')) i2c.send();
    // Reset and rewind the buffer
    else if (code_seen('R')) i2c.reset();
  }
  /**
   * M156: Request X bytes from I2C slave device
   *
   * Usage: M156 A B
   */
  inline void gcode_M156() {
    if (code_seen('A')) i2c.address(code_value_byte());
    uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
    if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
      i2c.relay(bytes);
    }
    else {
      SERIAL_ERROR_START;
      SERIAL_ERRORLN("Bad i2c request");
    }
  }
#endif // EXPERIMENTAL_I2CBUS
/**
 * M200: Set filament diameter and set E axis units to cubic units
 *
 *    T - Optional extruder number. Current extruder if omitted.
 *    D - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
 */
inline void gcode_M200() {
  if (get_target_extruder_from_command(200)) return;
  if (code_seen('D')) {
    // setting any extruder filament size disables volumetric on the assumption that
    // slicers either generate in extruder values as cubic mm or as as filament feeds
    // for all extruders
    volumetric_enabled = (code_value_linear_units() != 0.0);
    if (volumetric_enabled) {
      filament_size[target_extruder] = code_value_linear_units();
      // make sure all extruders have some sane value for the filament size
      for (uint8_t i = 0; i < COUNT(filament_size); i++)
        if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
    }
  }
  else {
    //reserved for setting filament diameter via UFID or filament measuring device
    return;
  }
  calculate_volumetric_multipliers();
}
/**
 * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 */
inline void gcode_M201() {
  LOOP_XYZE(i) {
    if (code_seen(axis_codes[i])) {
      planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
    }
  }
  // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  planner.reset_acceleration_rates();
}
#if 0 // Not used for Sprinter/grbl gen6
  inline void gcode_M202() {
    LOOP_XYZE(i) {
      if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
    }
  }
#endif
/**
 * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
 */
inline void gcode_M203() {
  LOOP_XYZE(i)
    if (code_seen(axis_codes[i]))
      planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
}
/**
 * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
 *
 *    P = Printing moves
 *    R = Retract only (no X, Y, Z) moves
 *    T = Travel (non printing) moves
 *
 *  Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
 */
inline void gcode_M204() {
  if (code_seen('S')) {  // Kept for legacy compatibility. Should NOT BE USED for new developments.
    planner.travel_acceleration = planner.acceleration = code_value_linear_units();
    SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  }
  if (code_seen('P')) {
    planner.acceleration = code_value_linear_units();
    SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  }
  if (code_seen('R')) {
    planner.retract_acceleration = code_value_linear_units();
    SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  }
  if (code_seen('T')) {
    planner.travel_acceleration = code_value_linear_units();
    SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  }
}
/**
 * M205: Set Advanced Settings
 *
 *    S = Min Feed Rate (units/s)
 *    T = Min Travel Feed Rate (units/s)
 *    B = Min Segment Time (µs)
 *    X = Max XY Jerk (units/sec^2)
 *    Z = Max Z Jerk (units/sec^2)
 *    E = Max E Jerk (units/sec^2)
 */
inline void gcode_M205() {
  if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  if (code_seen('B')) planner.min_segment_time = code_value_millis();
  if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
}
/**
 * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
 */
inline void gcode_M206() {
  LOOP_XYZ(i)
    if (code_seen(axis_codes[i]))
      set_home_offset((AxisEnum)i, code_value_axis_units(i));
  #if ENABLED(SCARA)
    if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
    if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  #endif
  SYNC_PLAN_POSITION_KINEMATIC();
  report_current_position();
}
#if ENABLED(DELTA)
  /**
   * M665: Set delta configurations
   *
   *    L = diagonal rod
   *    R = delta radius
   *    S = segments per second
   *    A = Alpha (Tower 1) diagonal rod trim
   *    B = Beta (Tower 2) diagonal rod trim
   *    C = Gamma (Tower 3) diagonal rod trim
   */
  inline void gcode_M665() {
    if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
    if (code_seen('R')) delta_radius = code_value_linear_units();
    if (code_seen('S')) delta_segments_per_second = code_value_float();
    if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
    if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
    if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
    recalc_delta_settings(delta_radius, delta_diagonal_rod);
  }
  /**
   * M666: Set delta endstop adjustment
   */
  inline void gcode_M666() {
    #if ENABLED(DEBUG_LEVELING_FEATURE)
      if (DEBUGGING(LEVELING)) {
        SERIAL_ECHOLNPGM(">>> gcode_M666");
      }
    #endif
    LOOP_XYZ(i) {
      if (code_seen(axis_codes[i])) {
        endstop_adj[i] = code_value_axis_units(i);
        #if ENABLED(DEBUG_LEVELING_FEATURE)
          if (DEBUGGING(LEVELING)) {
            SERIAL_ECHOPGM("endstop_adj[");
            SERIAL_ECHO(axis_codes[i]);
            SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
          }
        #endif
      }
    }
    #if ENABLED(DEBUG_LEVELING_FEATURE)
      if (DEBUGGING(LEVELING)) {
        SERIAL_ECHOLNPGM("<<< gcode_M666");
      }
    #endif
  }
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  /**
   * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
   */
  inline void gcode_M666() {
    if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
    SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  }
#endif // !DELTA && Z_DUAL_ENDSTOPS
#if ENABLED(FWRETRACT)
  /**
   * M207: Set firmware retraction values
   *
   *   S[+units]    retract_length
   *   W[+units]    retract_length_swap (multi-extruder)
   *   F[units/min] retract_feedrate_mm_s
   *   Z[units]     retract_zlift
   */
  inline void gcode_M207() {
    if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
    if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
    if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
    #if EXTRUDERS > 1
      if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
    #endif
  }
  /**
   * M208: Set firmware un-retraction values
   *
   *   S[+units]    retract_recover_length (in addition to M207 S*)
   *   W[+units]    retract_recover_length_swap (multi-extruder)
   *   F[units/min] retract_recover_feedrate_mm_s
   */
  inline void gcode_M208() {
    if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
    if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
    #if EXTRUDERS > 1
      if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
    #endif
  }
  /**
   * M209: Enable automatic retract (M209 S1)
   *       detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
   */
  inline void gcode_M209() {
    if (code_seen('S')) {
      autoretract_enabled = code_value_bool();
      for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
    }
  }
#endif // FWRETRACT
/**
 * M211: Enable, Disable, and/or Report software endstops
 *
 * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
 */
inline void gcode_M211() {
  SERIAL_ECHO_START;
  #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
    if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  #endif
  #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
    SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": ");
    serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  #else
    SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": " MSG_OFF);
  #endif
  SERIAL_ECHOPGM("  " MSG_SOFT_MIN ": ");
  SERIAL_ECHOPAIR(    MSG_X, soft_endstop_min[X_AXIS]);
  SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  SERIAL_ECHOPGM("  " MSG_SOFT_MAX ": ");
  SERIAL_ECHOPAIR(    MSG_X, soft_endstop_max[X_AXIS]);
  SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
}
#if HOTENDS > 1
  /**
   * M218 - set hotend offset (in linear units)
   *
   *   T
   *   X
   *   Y
   *   Z - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
   */
  inline void gcode_M218() {
    if (get_target_extruder_from_command(218)) return;
    if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
    if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
    #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
      if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
    #endif
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
    HOTEND_LOOP() {
      SERIAL_CHAR(' ');
      SERIAL_ECHO(hotend_offset[X_AXIS][e]);
      SERIAL_CHAR(',');
      SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
      #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
        SERIAL_CHAR(',');
        SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
      #endif
    }
    SERIAL_EOL;
  }
#endif // HOTENDS > 1
/**
 * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
 */
inline void gcode_M220() {
  if (code_seen('S')) feedrate_percentage = code_value_int();
}
/**
 * M221: Set extrusion percentage (M221 T0 S95)
 */
inline void gcode_M221() {
  if (get_target_extruder_from_command(221)) return;
  if (code_seen('S'))
    flow_percentage[target_extruder] = code_value_int();
}
/**
 * M226: Wait until the specified pin reaches the state required (M226 P S)
 */
inline void gcode_M226() {
  if (code_seen('P')) {
    int pin_number = code_value_int();
    int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
    if (pin_state >= -1 && pin_state <= 1) {
      for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
        if (sensitive_pins[i] == pin_number) {
          pin_number = -1;
          break;
        }
      }
      if (pin_number > -1) {
        int target = LOW;
        stepper.synchronize();
        pinMode(pin_number, INPUT);
        switch (pin_state) {
          case 1:
            target = HIGH;
            break;
          case 0:
            target = LOW;
            break;
          case -1:
            target = !digitalRead(pin_number);
            break;
        }
        while (digitalRead(pin_number) != target) idle();
      } // pin_number > -1
    } // pin_state -1 0 1
  } // code_seen('P')
}
#if HAS_SERVOS
  /**
   * M280: Get or set servo position. P [S]
   */
  inline void gcode_M280() {
    if (!code_seen('P')) return;
    int servo_index = code_value_int();
    if (servo_index >= 0 && servo_index < NUM_SERVOS) {
      if (code_seen('S'))
        MOVE_SERVO(servo_index, code_value_int());
      else {
        SERIAL_ECHO_START;
        SERIAL_ECHOPGM(" Servo ");
        SERIAL_ECHO(servo_index);
        SERIAL_ECHOPGM(": ");
        SERIAL_ECHOLN(servo[servo_index].read());
      }
    }
    else {
      SERIAL_ERROR_START;
      SERIAL_ERROR("Servo ");
      SERIAL_ERROR(servo_index);
      SERIAL_ERRORLN(" out of range");
    }
  }
#endif // HAS_SERVOS
#if HAS_BUZZER
  /**
   * M300: Play beep sound S P
   */
  inline void gcode_M300() {
    uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
    uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
    // Limits the tone duration to 0-5 seconds.
    NOMORE(duration, 5000);
    BUZZ(duration, frequency);
  }
#endif // HAS_BUZZER
#if ENABLED(PIDTEMP)
  /**
   * M301: Set PID parameters P I D (and optionally C, L)
   *
   *   P[float] Kp term
   *   I[float] Ki term (unscaled)
   *   D[float] Kd term (unscaled)
   *
   * With PID_EXTRUSION_SCALING:
   *
   *   C[float] Kc term
   *   L[float] LPQ length
   */
  inline void gcode_M301() {
    // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
    // default behaviour (omitting E parameter) is to update for extruder 0 only
    int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
    if (e < HOTENDS) { // catch bad input value
      if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
      if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
      if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
      #if ENABLED(PID_EXTRUSION_SCALING)
        if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
        if (code_seen('L')) lpq_len = code_value_float();
        NOMORE(lpq_len, LPQ_MAX_LEN);
      #endif
      thermalManager.updatePID();
      SERIAL_ECHO_START;
      #if ENABLED(PID_PARAMS_PER_HOTEND)
        SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
        SERIAL_ECHO(e);
      #endif // PID_PARAMS_PER_HOTEND
      SERIAL_ECHOPGM(" p:");
      SERIAL_ECHO(PID_PARAM(Kp, e));
      SERIAL_ECHOPGM(" i:");
      SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
      SERIAL_ECHOPGM(" d:");
      SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
      #if ENABLED(PID_EXTRUSION_SCALING)
        SERIAL_ECHOPGM(" c:");
        //Kc does not have scaling applied above, or in resetting defaults
        SERIAL_ECHO(PID_PARAM(Kc, e));
      #endif
      SERIAL_EOL;
    }
    else {
      SERIAL_ERROR_START;
      SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
    }
  }
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
  inline void gcode_M304() {
    if (code_seen('P')) thermalManager.bedKp = code_value_float();
    if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
    if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
    thermalManager.updatePID();
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(" p:");
    SERIAL_ECHO(thermalManager.bedKp);
    SERIAL_ECHOPGM(" i:");
    SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
    SERIAL_ECHOPGM(" d:");
    SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  }
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
  /**
   * M240: Trigger a camera by emulating a Canon RC-1
   *       See http://www.doc-diy.net/photo/rc-1_hacked/
   */
  inline void gcode_M240() {
    #ifdef CHDK
      OUT_WRITE(CHDK, HIGH);
      chdkHigh = millis();
      chdkActive = true;
    #elif HAS_PHOTOGRAPH
      const uint8_t NUM_PULSES = 16;
      const float PULSE_LENGTH = 0.01524;
      for (int i = 0; i < NUM_PULSES; i++) {
        WRITE(PHOTOGRAPH_PIN, HIGH);
        _delay_ms(PULSE_LENGTH);
        WRITE(PHOTOGRAPH_PIN, LOW);
        _delay_ms(PULSE_LENGTH);
      }
      delay(7.33);
      for (int i = 0; i < NUM_PULSES; i++) {
        WRITE(PHOTOGRAPH_PIN, HIGH);
        _delay_ms(PULSE_LENGTH);
        WRITE(PHOTOGRAPH_PIN, LOW);
        _delay_ms(PULSE_LENGTH);
      }
    #endif // !CHDK && HAS_PHOTOGRAPH
  }
#endif // CHDK || PHOTOGRAPH_PIN
#if HAS_LCD_CONTRAST
  /**
   * M250: Read and optionally set the LCD contrast
   */
  inline void gcode_M250() {
    if (code_seen('C')) set_lcd_contrast(code_value_int());
    SERIAL_PROTOCOLPGM("lcd contrast value: ");
    SERIAL_PROTOCOL(lcd_contrast);
    SERIAL_EOL;
  }
#endif // HAS_LCD_CONTRAST
#if ENABLED(PREVENT_COLD_EXTRUSION)
  /**
   * M302: Allow cold extrudes, or set the minimum extrude temperature
   *
   *       S sets the minimum extrude temperature
   *       P enables (1) or disables (0) cold extrusion
   *
   *  Examples:
   *
   *       M302         ; report current cold extrusion state
   *       M302 P0      ; enable cold extrusion checking
   *       M302 P1      ; disables cold extrusion checking
   *       M302 S0      ; always allow extrusion (disables checking)
   *       M302 S170    ; only allow extrusion above 170
   *       M302 S170 P1 ; set min extrude temp to 170 but leave disabled
   */
  inline void gcode_M302() {
    bool seen_S = code_seen('S');
    if (seen_S) {
      thermalManager.extrude_min_temp = code_value_temp_abs();
      thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
    }
    if (code_seen('P'))
      thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
    else if (!seen_S) {
      // Report current state
      SERIAL_ECHO_START;
      SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
      SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
      SERIAL_ECHOLNPGM("C)");
    }
  }
#endif // PREVENT_COLD_EXTRUSION
/**
 * M303: PID relay autotune
 *
 *       S sets the target temperature. (default 150C)
 *       E (-1 for the bed) (default 0)
 *       C
 *       U with a non-zero value will apply the result to current settings
 */
inline void gcode_M303() {
  #if HAS_PID_HEATING
    int e = code_seen('E') ? code_value_int() : 0;
    int c = code_seen('C') ? code_value_int() : 5;
    bool u = code_seen('U') && code_value_bool();
    float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
    if (e >= 0 && e < HOTENDS)
      target_extruder = e;
    KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
    thermalManager.PID_autotune(temp, e, c, u);
    KEEPALIVE_STATE(IN_HANDLER);
  #else
    SERIAL_ERROR_START;
    SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  #endif
}
#if ENABLED(SCARA)
  bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
    //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
    //SERIAL_ECHOLNPGM(" Soft endstops disabled");
    if (IsRunning()) {
      //gcode_get_destination(); // For X Y Z E F
      delta[X_AXIS] = delta_x;
      delta[Y_AXIS] = delta_y;
      forward_kinematics_SCARA(delta);
      destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
      destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
      prepare_move_to_destination();
      //ok_to_send();
      return true;
    }
    return false;
  }
  /**
   * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
   */
  inline bool gcode_M360() {
    SERIAL_ECHOLNPGM(" Cal: Theta 0");
    return SCARA_move_to_cal(0, 120);
  }
  /**
   * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
   */
  inline bool gcode_M361() {
    SERIAL_ECHOLNPGM(" Cal: Theta 90");
    return SCARA_move_to_cal(90, 130);
  }
  /**
   * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
   */
  inline bool gcode_M362() {
    SERIAL_ECHOLNPGM(" Cal: Psi 0");
    return SCARA_move_to_cal(60, 180);
  }
  /**
   * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
   */
  inline bool gcode_M363() {
    SERIAL_ECHOLNPGM(" Cal: Psi 90");
    return SCARA_move_to_cal(50, 90);
  }
  /**
   * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
   */
  inline bool gcode_M364() {
    SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
    return SCARA_move_to_cal(45, 135);
  }
  /**
   * M365: SCARA calibration: Scaling factor, X, Y, Z axis
   */
  inline void gcode_M365() {
    LOOP_XYZ(i)
      if (code_seen(axis_codes[i]))
        axis_scaling[i] = code_value_float();
  }
#endif // SCARA
#if ENABLED(EXT_SOLENOID)
  void enable_solenoid(uint8_t num) {
    switch (num) {
      case 0:
        OUT_WRITE(SOL0_PIN, HIGH);
        break;
        #if HAS_SOLENOID_1
          case 1:
            OUT_WRITE(SOL1_PIN, HIGH);
            break;
        #endif
        #if HAS_SOLENOID_2
          case 2:
            OUT_WRITE(SOL2_PIN, HIGH);
            break;
        #endif
        #if HAS_SOLENOID_3
          case 3:
            OUT_WRITE(SOL3_PIN, HIGH);
            break;
        #endif
      default:
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
        break;
    }
  }
  void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  void disable_all_solenoids() {
    OUT_WRITE(SOL0_PIN, LOW);
    OUT_WRITE(SOL1_PIN, LOW);
    OUT_WRITE(SOL2_PIN, LOW);
    OUT_WRITE(SOL3_PIN, LOW);
  }
  /**
   * M380: Enable solenoid on the active extruder
   */
  inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  /**
   * M381: Disable all solenoids
   */
  inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
/**
 * M400: Finish all moves
 */
inline void gcode_M400() { stepper.synchronize(); }
#if HAS_BED_PROBE
  /**
   * M401: Engage Z Servo endstop if available
   */
  inline void gcode_M401() { DEPLOY_PROBE(); }
  /**
   * M402: Retract Z Servo endstop if enabled
   */
  inline void gcode_M402() { STOW_PROBE(); }
#endif // HAS_BED_PROBE
#if ENABLED(FILAMENT_WIDTH_SENSOR)
  /**
   * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
   */
  inline void gcode_M404() {
    if (code_seen('W')) {
      filament_width_nominal = code_value_linear_units();
    }
    else {
      SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
      SERIAL_PROTOCOLLN(filament_width_nominal);
    }
  }
  /**
   * M405: Turn on filament sensor for control
   */
  inline void gcode_M405() {
    // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
    // everything else, it uses code_value_int() instead of code_value_linear_units().
    if (code_seen('D')) meas_delay_cm = code_value_int();
    NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
    if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
      int temp_ratio = thermalManager.widthFil_to_size_ratio();
      for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
        measurement_delay[i] = temp_ratio - 100;  // Subtract 100 to scale within a signed byte
      filwidth_delay_index1 = filwidth_delay_index2 = 0;
    }
    filament_sensor = true;
    //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
    //SERIAL_PROTOCOL(filament_width_meas);
    //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
    //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  }
  /**
   * M406: Turn off filament sensor for control
   */
  inline void gcode_M406() { filament_sensor = false; }
  /**
   * M407: Get measured filament diameter on serial output
   */
  inline void gcode_M407() {
    SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
    SERIAL_PROTOCOLLN(filament_width_meas);
  }
#endif // FILAMENT_WIDTH_SENSOR
void quickstop_stepper() {
  stepper.quick_stop();
  #if DISABLED(SCARA)
    stepper.synchronize();
    LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
    SYNC_PLAN_POSITION_KINEMATIC();
  #endif
}
#if ENABLED(MESH_BED_LEVELING)
  /**
   * M420: Enable/Disable Mesh Bed Leveling
   */
  inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  /**
   * M421: Set a single Mesh Bed Leveling Z coordinate
   * Use either 'M421 X Y Z' or 'M421 I J Z'
   */
  inline void gcode_M421() {
    int8_t px = 0, py = 0;
    float z = 0;
    bool hasX, hasY, hasZ, hasI, hasJ;
    if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
    if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
    if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
    if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
    if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
    if (hasX && hasY && hasZ) {
      if (px >= 0 && py >= 0)
        mbl.set_z(px, py, z);
      else {
        SERIAL_ERROR_START;
        SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
      }
    }
    else if (hasI && hasJ && hasZ) {
      if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
        mbl.set_z(px, py, z);
      else {
        SERIAL_ERROR_START;
        SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
      }
    }
    else {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
    }
  }
#endif
/**
 * M428: Set home_offset based on the distance between the
 *       current_position and the nearest "reference point."
 *       If an axis is past center its endstop position
 *       is the reference-point. Otherwise it uses 0. This allows
 *       the Z offset to be set near the bed when using a max endstop.
 *
 *       M428 can't be used more than 2cm away from 0 or an endstop.
 *
 *       Use M206 to set these values directly.
 */
inline void gcode_M428() {
  bool err = false;
  LOOP_XYZ(i) {
    if (axis_homed[i]) {
      float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
            diff = current_position[i] - LOGICAL_POSITION(base, i);
      if (diff > -20 && diff < 20) {
        set_home_offset((AxisEnum)i, home_offset[i] - diff);
      }
      else {
        SERIAL_ERROR_START;
        SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
        LCD_ALERTMESSAGEPGM("Err: Too far!");
        BUZZ(200, 40);
        err = true;
        break;
      }
    }
  }
  if (!err) {
    SYNC_PLAN_POSITION_KINEMATIC();
    report_current_position();
    LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
    BUZZ(200, 659);
    BUZZ(200, 698);
  }
}
/**
 * M500: Store settings in EEPROM
 */
inline void gcode_M500() {
  Config_StoreSettings();
}
/**
 * M501: Read settings from EEPROM
 */
inline void gcode_M501() {
  Config_RetrieveSettings();
}
/**
 * M502: Revert to default settings
 */
inline void gcode_M502() {
  Config_ResetDefault();
}
/**
 * M503: print settings currently in memory
 */
inline void gcode_M503() {
  Config_PrintSettings(code_seen('S') && !code_value_bool());
}
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  /**
   * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
   */
  inline void gcode_M540() {
    if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  }
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#if HAS_BED_PROBE
  inline void gcode_M851() {
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
    SERIAL_CHAR(' ');
    if (code_seen('Z')) {
      float value = code_value_axis_units(Z_AXIS);
      if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
        zprobe_zoffset = value;
        SERIAL_ECHO(zprobe_zoffset);
      }
      else {
        SERIAL_ECHOPGM(MSG_Z_MIN);
        SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
        SERIAL_CHAR(' ');
        SERIAL_ECHOPGM(MSG_Z_MAX);
        SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
      }
    }
    else {
      SERIAL_ECHOPAIR(": ", zprobe_zoffset);
    }
    SERIAL_EOL;
  }
#endif // HAS_BED_PROBE
#if ENABLED(FILAMENT_CHANGE_FEATURE)
  /**
   * M600: Pause for filament change
   *
   *  E[distance] - Retract the filament this far (negative value)
   *  Z[distance] - Move the Z axis by this distance
   *  X[position] - Move to this X position, with Y
   *  Y[position] - Move to this Y position, with X
   *  L[distance] - Retract distance for removal (manual reload)
   *
   *  Default values are used for omitted arguments.
   *
   */
  inline void gcode_M600() {
    if (thermalManager.tooColdToExtrude(active_extruder)) {
      SERIAL_ERROR_START;
      SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
      return;
    }
    // Show initial message and wait for synchronize steppers
    lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
    stepper.synchronize();
    float lastpos[NUM_AXIS];
    // Save current position of all axes
    LOOP_XYZE(i)
      lastpos[i] = destination[i] = current_position[i];
    // Define runplan for move axes
    #if ENABLED(DELTA)
      #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
                                 planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
    #else
      #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
    #endif
    KEEPALIVE_STATE(IN_HANDLER);
    // Initial retract before move to filament change position
    if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
    #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
      else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
    #endif
    RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
    // Lift Z axis
    float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
      #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
        FILAMENT_CHANGE_Z_ADD
      #else
        0
      #endif
    ;
    if (z_lift > 0) {
      destination[Z_AXIS] += z_lift;
      NOMORE(destination[Z_AXIS], Z_MAX_POS);
      RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
    }
    // Move XY axes to filament exchange position
    if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
    #ifdef FILAMENT_CHANGE_X_POS
      else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
    #endif
    if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
    #ifdef FILAMENT_CHANGE_Y_POS
      else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
    #endif
    RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
    stepper.synchronize();
    lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
    // Unload filament
    if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
    #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
      else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
    #endif
    RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
    // Synchronize steppers and then disable extruders steppers for manual filament changing
    stepper.synchronize();
    disable_e0();
    disable_e1();
    disable_e2();
    disable_e3();
    delay(100);
    #if HAS_BUZZER
      millis_t next_tick = 0;
    #endif
    // Wait for filament insert by user and press button
    lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
    while (!lcd_clicked()) {
      #if HAS_BUZZER
        millis_t ms = millis();
        if (ms >= next_tick) {
          BUZZ(300, 2000);
          next_tick = ms + 2500; // Beep every 2.5s while waiting
        }
      #endif
      idle(true);
    }
    delay(100);
    while (lcd_clicked()) idle(true);
    delay(100);
    // Show load message
    lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
    // Load filament
    if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
    #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
      else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
    #endif
    RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
    stepper.synchronize();
    #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
      do {
        // Extrude filament to get into hotend
        lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
        destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
        RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
        stepper.synchronize();
        // Ask user if more filament should be extruded
        KEEPALIVE_STATE(PAUSED_FOR_USER);
        lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
        while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
        KEEPALIVE_STATE(IN_HANDLER);
      } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
    #endif
    lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
    KEEPALIVE_STATE(IN_HANDLER);
    // Set extruder to saved position
    current_position[E_AXIS] = lastpos[E_AXIS];
    destination[E_AXIS] = lastpos[E_AXIS];
    planner.set_e_position_mm(current_position[E_AXIS]);
    #if ENABLED(DELTA)
      // Move XYZ to starting position, then E
      inverse_kinematics(lastpos);
      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
    #else
      // Move XY to starting position, then Z, then E
      destination[X_AXIS] = lastpos[X_AXIS];
      destination[Y_AXIS] = lastpos[Y_AXIS];
      RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
      destination[Z_AXIS] = lastpos[Z_AXIS];
      RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
    #endif
    stepper.synchronize();
    #if ENABLED(FILAMENT_RUNOUT_SENSOR)
      filament_ran_out = false;
    #endif
    // Show status screen
    lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  }
#endif // FILAMENT_CHANGE_FEATURE
#if ENABLED(DUAL_X_CARRIAGE)
  /**
   * M605: Set dual x-carriage movement mode
   *
   *    M605 S0: Full control mode. The slicer has full control over x-carriage movement
   *    M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
   *    M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
   *                         units x-offset and an optional differential hotend temperature of
   *                         mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
   *                         the first with a spacing of 100mm in the x direction and 2 degrees hotter.
   *
   *    Note: the X axis should be homed after changing dual x-carriage mode.
   */
  inline void gcode_M605() {
    stepper.synchronize();
    if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
    switch (dual_x_carriage_mode) {
      case DXC_DUPLICATION_MODE:
        if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
        if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
        SERIAL_ECHO_START;
        SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
        SERIAL_CHAR(' ');
        SERIAL_ECHO(hotend_offset[X_AXIS][0]);
        SERIAL_CHAR(',');
        SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
        SERIAL_CHAR(' ');
        SERIAL_ECHO(duplicate_extruder_x_offset);
        SERIAL_CHAR(',');
        SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
        break;
      case DXC_FULL_CONTROL_MODE:
      case DXC_AUTO_PARK_MODE:
        break;
      default:
        dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
        break;
    }
    active_extruder_parked = false;
    extruder_duplication_enabled = false;
    delayed_move_time = 0;
  }
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  inline void gcode_M605() {
    stepper.synchronize();
    extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
    SERIAL_ECHO_START;
    SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  }
#endif // M605
#if ENABLED(LIN_ADVANCE)
  /**
   * M905: Set advance factor
   */
  inline void gcode_M905() {
    stepper.synchronize();
    stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  }
#endif
/**
 * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
 */
inline void gcode_M907() {
  #if HAS_DIGIPOTSS
    LOOP_XYZE(i)
      if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
    if (code_seen('B')) stepper.digipot_current(4, code_value_int());
    if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  #endif
  #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
    if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  #endif
  #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
    if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  #endif
  #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
    if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  #endif
  #if ENABLED(DIGIPOT_I2C)
    // this one uses actual amps in floating point
    LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
    // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
    for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  #endif
  #if ENABLED(DAC_STEPPER_CURRENT)
    if (code_seen('S')) {
      float dac_percent = code_value_float();
      for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
    }
    LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  #endif
}
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  /**
   * M908: Control digital trimpot directly (M908 P S)
   */
  inline void gcode_M908() {
    #if HAS_DIGIPOTSS
      stepper.digitalPotWrite(
        code_seen('P') ? code_value_int() : 0,
        code_seen('S') ? code_value_int() : 0
      );
    #endif
    #ifdef DAC_STEPPER_CURRENT
      dac_current_raw(
        code_seen('P') ? code_value_byte() : -1,
        code_seen('S') ? code_value_ushort() : 0
      );
    #endif
  }
  #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
    inline void gcode_M909() { dac_print_values(); }
    inline void gcode_M910() { dac_commit_eeprom(); }
  #endif
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
#if HAS_MICROSTEPS
  // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  inline void gcode_M350() {
    if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
    LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
    if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
    stepper.microstep_readings();
  }
  /**
   * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
   *       S# determines MS1 or MS2, X# sets the pin high/low.
   */
  inline void gcode_M351() {
    if (code_seen('S')) switch (code_value_byte()) {
      case 1:
        LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
        if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
        break;
      case 2:
        LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
        if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
        break;
    }
    stepper.microstep_readings();
  }
#endif // HAS_MICROSTEPS
#if ENABLED(MIXING_EXTRUDER)
  /**
   * M163: Set a single mix factor for a mixing extruder
   *       This is called "weight" by some systems.
   *
   *   S[index]   The channel index to set
   *   P[float]   The mix value
   *
   */
  inline void gcode_M163() {
    int mix_index = code_seen('S') ? code_value_int() : 0;
    float mix_value = code_seen('P') ? code_value_float() : 0.0;
    if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  }
  #if MIXING_VIRTUAL_TOOLS > 1
    /**
     * M164: Store the current mix factors as a virtual tool.
     *
     *   S[index]   The virtual tool to store
     *
     */
    inline void gcode_M164() {
      int tool_index = code_seen('S') ? code_value_int() : 0;
      if (tool_index < MIXING_VIRTUAL_TOOLS) {
        normalize_mix();
        for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
          mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
      }
    }
  #endif
  #if ENABLED(DIRECT_MIXING_IN_G1)
    /**
     * M165: Set multiple mix factors for a mixing extruder.
     *       Factors that are left out will be set to 0.
     *       All factors together must add up to 1.0.
     *
     *   A[factor] Mix factor for extruder stepper 1
     *   B[factor] Mix factor for extruder stepper 2
     *   C[factor] Mix factor for extruder stepper 3
     *   D[factor] Mix factor for extruder stepper 4
     *   H[factor] Mix factor for extruder stepper 5
     *   I[factor] Mix factor for extruder stepper 6
     *
     */
    inline void gcode_M165() { gcode_get_mix(); }
  #endif
#endif // MIXING_EXTRUDER
/**
 * M999: Restart after being stopped
 *
 * Default behaviour is to flush the serial buffer and request
 * a resend to the host starting on the last N line received.
 *
 * Sending "M999 S1" will resume printing without flushing the
 * existing command buffer.
 *
 */
inline void gcode_M999() {
  Running = true;
  lcd_reset_alert_level();
  if (code_seen('S') && code_value_bool()) return;
  // gcode_LastN = Stopped_gcode_LastN;
  FlushSerialRequestResend();
}
#if ENABLED(SWITCHING_EXTRUDER)
  inline void move_extruder_servo(uint8_t e) {
    const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
    MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  }
#endif
inline void invalid_extruder_error(const uint8_t &e) {
  SERIAL_ECHO_START;
  SERIAL_CHAR('T');
  SERIAL_PROTOCOL_F(e, DEC);
  SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
    if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
      invalid_extruder_error(tmp_extruder);
      return;
    }
    // T0-Tnnn: Switch virtual tool by changing the mix
    for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
      mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
    #if HOTENDS > 1
      if (tmp_extruder >= EXTRUDERS) {
        invalid_extruder_error(tmp_extruder);
        return;
      }
      float old_feedrate_mm_s = feedrate_mm_s;
      feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
      if (tmp_extruder != active_extruder) {
        if (!no_move && axis_unhomed_error(true, true, true)) {
          SERIAL_ECHOLNPGM("No move on toolchange");
          no_move = true;
        }
        // Save current position to destination, for use later
        set_destination_to_current();
        #if ENABLED(DUAL_X_CARRIAGE)
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) {
              SERIAL_ECHOPGM("Dual X Carriage Mode ");
              switch (dual_x_carriage_mode) {
                case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
                case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
                case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
              }
            }
          #endif
          if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
              (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
          ) {
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) {
                SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
                SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
                SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
              }
            #endif
            // Park old head: 1) raise 2) move to park position 3) lower
            for (uint8_t i = 0; i < 3; i++)
              planner.buffer_line(
                i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
                current_position[Y_AXIS],
                current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
                current_position[E_AXIS],
                planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
                active_extruder
              );
            stepper.synchronize();
          }
          // apply Y & Z extruder offset (x offset is already used in determining home pos)
          current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
          current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
          active_extruder = tmp_extruder;
          // This function resets the max/min values - the current position may be overwritten below.
          set_axis_is_at_home(X_AXIS);
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
          #endif
          switch (dual_x_carriage_mode) {
            case DXC_FULL_CONTROL_MODE:
              current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
              inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
              break;
            case DXC_DUPLICATION_MODE:
              active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
              if (active_extruder_parked)
                current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
              else
                current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
              inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
              extruder_duplication_enabled = false;
              break;
            default:
              // record raised toolhead position for use by unpark
              memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
              raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
              active_extruder_parked = true;
              delayed_move_time = 0;
              break;
          }
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) {
              SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
              DEBUG_POS("New extruder (parked)", current_position);
            }
          #endif
          // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
        #else // !DUAL_X_CARRIAGE
          #if ENABLED(SWITCHING_EXTRUDER)
            // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
            float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
                  z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
            // Always raise by some amount
            planner.buffer_line(
              current_position[X_AXIS],
              current_position[Y_AXIS],
              current_position[Z_AXIS] + z_raise,
              current_position[E_AXIS],
              planner.max_feedrate_mm_s[Z_AXIS],
              active_extruder
            );
            stepper.synchronize();
            move_extruder_servo(active_extruder);
            delay(500);
            // Move back down, if needed
            if (z_raise != z_diff) {
              planner.buffer_line(
                current_position[X_AXIS],
                current_position[Y_AXIS],
                current_position[Z_AXIS] + z_diff,
                current_position[E_AXIS],
                planner.max_feedrate_mm_s[Z_AXIS],
                active_extruder
              );
              stepper.synchronize();
            }
          #endif
          /**
           * Set current_position to the position of the new nozzle.
           * Offsets are based on linear distance, so we need to get
           * the resulting position in coordinate space.
           *
           * - With grid or 3-point leveling, offset XYZ by a tilted vector
           * - With mesh leveling, update Z for the new position
           * - Otherwise, just use the raw linear distance
           *
           * Software endstops are altered here too. Consider a case where:
           *   E0 at X=0 ... E1 at X=10
           * When we switch to E1 now X=10, but E1 can't move left.
           * To express this we apply the change in XY to the software endstops.
           * E1 can move farther right than E0, so the right limit is extended.
           *
           * Note that we don't adjust the Z software endstops. Why not?
           * Consider a case where Z=0 (here) and switching to E1 makes Z=1
           * because the bed is 1mm lower at the new position. As long as
           * the first nozzle is out of the way, the carriage should be
           * allowed to move 1mm lower. This technically "breaks" the
           * Z software endstop. But this is technically correct (and
           * there is no viable alternative).
           */
          #if ENABLED(AUTO_BED_LEVELING_FEATURE)
            // Offset extruder, make sure to apply the bed level rotation matrix
            vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
                                               hotend_offset[Y_AXIS][tmp_extruder],
                                               0),
                     act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
                                               hotend_offset[Y_AXIS][active_extruder],
                                               0),
                     offset_vec = tmp_offset_vec - act_offset_vec;
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) {
                tmp_offset_vec.debug("tmp_offset_vec");
                act_offset_vec.debug("act_offset_vec");
                offset_vec.debug("offset_vec (BEFORE)");
              }
            #endif
            offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
            #if ENABLED(DEBUG_LEVELING_FEATURE)
              if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
            #endif
            // Adjustments to the current position
            float xydiff[2] = { offset_vec.x, offset_vec.y };
            current_position[Z_AXIS] += offset_vec.z;
          #else // !AUTO_BED_LEVELING_FEATURE
            float xydiff[2] = {
              hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
              hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
            };
            #if ENABLED(MESH_BED_LEVELING)
              if (mbl.active()) {
                #if ENABLED(DEBUG_LEVELING_FEATURE)
                  if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
                #endif
                float xpos = RAW_CURRENT_POSITION(X_AXIS),
                      ypos = RAW_CURRENT_POSITION(Y_AXIS);
                current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
                #if ENABLED(DEBUG_LEVELING_FEATURE)
                  if (DEBUGGING(LEVELING))
                    SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
                #endif
              }
            #endif // MESH_BED_LEVELING
          #endif // !AUTO_BED_LEVELING_FEATURE
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) {
              SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
              SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
              SERIAL_ECHOLNPGM(" }");
            }
          #endif
          // The newly-selected extruder XY is actually at...
          current_position[X_AXIS] += xydiff[X_AXIS];
          current_position[Y_AXIS] += xydiff[Y_AXIS];
          for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
            position_shift[i] += xydiff[i];
            update_software_endstops((AxisEnum)i);
          }
          // Set the new active extruder
          active_extruder = tmp_extruder;
        #endif // !DUAL_X_CARRIAGE
        #if ENABLED(DEBUG_LEVELING_FEATURE)
          if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
        #endif
        // Tell the planner the new "current position"
        SYNC_PLAN_POSITION_KINEMATIC();
        // Move to the "old position" (move the extruder into place)
        if (!no_move && IsRunning()) {
          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
          #endif
          prepare_move_to_destination();
        }
      } // (tmp_extruder != active_extruder)
      stepper.synchronize();
      #if ENABLED(EXT_SOLENOID)
        disable_all_solenoids();
        enable_solenoid_on_active_extruder();
      #endif // EXT_SOLENOID
      feedrate_mm_s = old_feedrate_mm_s;
    #else // HOTENDS <= 1
      // Set the new active extruder
      active_extruder = tmp_extruder;
      UNUSED(fr_mm_s);
      UNUSED(no_move);
    #endif // HOTENDS <= 1
    SERIAL_ECHO_START;
    SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
    SERIAL_PROTOCOLLN((int)active_extruder);
  #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
}
/**
 * T0-T3: Switch tool, usually switching extruders
 *
 *   F[units/min] Set the movement feedrate
 *   S1           Don't move the tool in XY after change
 */
inline void gcode_T(uint8_t tmp_extruder) {
  #if ENABLED(DEBUG_LEVELING_FEATURE)
    if (DEBUGGING(LEVELING)) {
      SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
      SERIAL_ECHOLNPGM(")");
      DEBUG_POS("BEFORE", current_position);
    }
  #endif
  #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
    tool_change(tmp_extruder);
  #elif HOTENDS > 1
    tool_change(
      tmp_extruder,
      code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
      (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
    );
  #endif
  #if ENABLED(DEBUG_LEVELING_FEATURE)
    if (DEBUGGING(LEVELING)) {
      DEBUG_POS("AFTER", current_position);
      SERIAL_ECHOLNPGM("<<< gcode_T");
    }
  #endif
}
/**
 * Process a single command and dispatch it to its handler
 * This is called from the main loop()
 */
void process_next_command() {
  current_command = command_queue[cmd_queue_index_r];
  if (DEBUGGING(ECHO)) {
    SERIAL_ECHO_START;
    SERIAL_ECHOLN(current_command);
  }
  // Sanitize the current command:
  //  - Skip leading spaces
  //  - Bypass N[-0-9][0-9]*[ ]*
  //  - Overwrite * with nul to mark the end
  while (*current_command == ' ') ++current_command;
  if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
    current_command += 2; // skip N[-0-9]
    while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
    while (*current_command == ' ') ++current_command; // skip [ ]*
  }
  char* starpos = strchr(current_command, '*');  // * should always be the last parameter
  if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  char *cmd_ptr = current_command;
  // Get the command code, which must be G, M, or T
  char command_code = *cmd_ptr++;
  // Skip spaces to get the numeric part
  while (*cmd_ptr == ' ') cmd_ptr++;
  uint16_t codenum = 0; // define ahead of goto
  // Bail early if there's no code
  bool code_is_good = NUMERIC(*cmd_ptr);
  if (!code_is_good) goto ExitUnknownCommand;
  // Get and skip the code number
  do {
    codenum = (codenum * 10) + (*cmd_ptr - '0');
    cmd_ptr++;
  } while (NUMERIC(*cmd_ptr));
  // Skip all spaces to get to the first argument, or nul
  while (*cmd_ptr == ' ') cmd_ptr++;
  // The command's arguments (if any) start here, for sure!
  current_command_args = cmd_ptr;
  KEEPALIVE_STATE(IN_HANDLER);
  // Handle a known G, M, or T
  switch (command_code) {
    case 'G': switch (codenum) {
      // G0, G1
      case 0:
      case 1:
        gcode_G0_G1();
        break;
      // G2, G3
      #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
        case 2: // G2  - CW ARC
        case 3: // G3  - CCW ARC
          gcode_G2_G3(codenum == 2);
          break;
      #endif
      // G4 Dwell
      case 4:
        gcode_G4();
        break;
      #if ENABLED(BEZIER_CURVE_SUPPORT)
        // G5
        case 5: // G5  - Cubic B_spline
          gcode_G5();
          break;
      #endif // BEZIER_CURVE_SUPPORT
      #if ENABLED(FWRETRACT)
        case 10: // G10: retract
        case 11: // G11: retract_recover
          gcode_G10_G11(codenum == 10);
          break;
      #endif // FWRETRACT
      #if ENABLED(NOZZLE_CLEAN_FEATURE)
        case 12:
          gcode_G12(); // G12: Nozzle Clean
          break;
      #endif // NOZZLE_CLEAN_FEATURE
      #if ENABLED(INCH_MODE_SUPPORT)
        case 20: //G20: Inch Mode
          gcode_G20();
          break;
        case 21: //G21: MM Mode
          gcode_G21();
          break;
      #endif // INCH_MODE_SUPPORT
      #if ENABLED(NOZZLE_PARK_FEATURE)
        case 27: // G27: Nozzle Park
          gcode_G27();
          break;
      #endif // NOZZLE_PARK_FEATURE
      case 28: // G28: Home all axes, one at a time
        gcode_G28();
        break;
      #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
        case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
          gcode_G29();
          break;
      #endif // AUTO_BED_LEVELING_FEATURE
      #if HAS_BED_PROBE
        case 30: // G30 Single Z probe
          gcode_G30();
          break;
        #if ENABLED(Z_PROBE_SLED)
            case 31: // G31: dock the sled
              gcode_G31();
              break;
            case 32: // G32: undock the sled
              gcode_G32();
              break;
        #endif // Z_PROBE_SLED
      #endif // HAS_BED_PROBE
      case 90: // G90
        relative_mode = false;
        break;
      case 91: // G91
        relative_mode = true;
        break;
      case 92: // G92
        gcode_G92();
        break;
    }
    break;
    case 'M': switch (codenum) {
      #if ENABLED(ULTIPANEL)
        case 0: // M0 - Unconditional stop - Wait for user button press on LCD
        case 1: // M1 - Conditional stop - Wait for user button press on LCD
          gcode_M0_M1();
          break;
      #endif // ULTIPANEL
      case 17:
        gcode_M17();
        break;
      #if ENABLED(SDSUPPORT)
        case 20: // M20 - list SD card
          gcode_M20(); break;
        case 21: // M21 - init SD card
          gcode_M21(); break;
        case 22: //M22 - release SD card
          gcode_M22(); break;
        case 23: //M23 - Select file
          gcode_M23(); break;
        case 24: //M24 - Start SD print
          gcode_M24(); break;
        case 25: //M25 - Pause SD print
          gcode_M25(); break;
        case 26: //M26 - Set SD index
          gcode_M26(); break;
        case 27: //M27 - Get SD status
          gcode_M27(); break;
        case 28: //M28 - Start SD write
          gcode_M28(); break;
        case 29: //M29 - Stop SD write
          gcode_M29(); break;
        case 30: //M30  Delete File
          gcode_M30(); break;
        case 32: //M32 - Select file and start SD print
          gcode_M32(); break;
        #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
          case 33: //M33 - Get the long full path to a file or folder
            gcode_M33(); break;
        #endif // LONG_FILENAME_HOST_SUPPORT
        case 928: //M928 - Start SD write
          gcode_M928(); break;
      #endif //SDSUPPORT
      case 31: //M31 take time since the start of the SD print or an M109 command
        gcode_M31();
        break;
      case 42: //M42 -Change pin status via gcode
        gcode_M42();
        break;
      #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
        case 48: // M48 Z probe repeatability
          gcode_M48();
          break;
      #endif // Z_MIN_PROBE_REPEATABILITY_TEST
      case 75: // Start print timer
        gcode_M75();
        break;
      case 76: // Pause print timer
        gcode_M76();
        break;
      case 77: // Stop print timer
        gcode_M77();
        break;
      #if ENABLED(PRINTCOUNTER)
        case 78: // Show print statistics
          gcode_M78();
          break;
      #endif
      #if ENABLED(M100_FREE_MEMORY_WATCHER)
        case 100:
          gcode_M100();
          break;
      #endif
      case 104: // M104
        gcode_M104();
        break;
      case 110: // M110: Set Current Line Number
        gcode_M110();
        break;
      case 111: // M111: Set debug level
        gcode_M111();
        break;
      #if DISABLED(EMERGENCY_PARSER)
        case 108: // M108: Cancel Waiting
          gcode_M108();
          break;
        case 112: // M112: Emergency Stop
          gcode_M112();
          break;
        case 410: // M410 quickstop - Abort all the planned moves.
          gcode_M410();
          break;
      #endif
      #if ENABLED(HOST_KEEPALIVE_FEATURE)
        case 113: // M113: Set Host Keepalive interval
          gcode_M113();
          break;
      #endif
      case 140: // M140: Set bed temp
        gcode_M140();
        break;
      case 105: // M105: Read current temperature
        gcode_M105();
        KEEPALIVE_STATE(NOT_BUSY);
        return; // "ok" already printed
      case 109: // M109: Wait for temperature
        gcode_M109();
        break;
      #if HAS_TEMP_BED
        case 190: // M190: Wait for bed heater to reach target
          gcode_M190();
          break;
      #endif // HAS_TEMP_BED
      #if FAN_COUNT > 0
        case 106: // M106: Fan On
          gcode_M106();
          break;
        case 107: // M107: Fan Off
          gcode_M107();
          break;
      #endif // FAN_COUNT > 0
      #if ENABLED(BARICUDA)
        // PWM for HEATER_1_PIN
        #if HAS_HEATER_1
          case 126: // M126: valve open
            gcode_M126();
            break;
          case 127: // M127: valve closed
            gcode_M127();
            break;
        #endif // HAS_HEATER_1
        // PWM for HEATER_2_PIN
        #if HAS_HEATER_2
          case 128: // M128: valve open
            gcode_M128();
            break;
          case 129: // M129: valve closed
            gcode_M129();
            break;
        #endif // HAS_HEATER_2
      #endif // BARICUDA
      #if HAS_POWER_SWITCH
        case 80: // M80: Turn on Power Supply
          gcode_M80();
          break;
      #endif // HAS_POWER_SWITCH
      case 81: // M81: Turn off Power, including Power Supply, if possible
        gcode_M81();
        break;
      case 82:
        gcode_M82();
        break;
      case 83:
        gcode_M83();
        break;
      case 18: // (for compatibility)
      case 84: // M84
        gcode_M18_M84();
        break;
      case 85: // M85
        gcode_M85();
        break;
      case 92: // M92: Set the steps-per-unit for one or more axes
        gcode_M92();
        break;
      case 115: // M115: Report capabilities
        gcode_M115();
        break;
      case 117: // M117: Set LCD message text, if possible
        gcode_M117();
        break;
      case 114: // M114: Report current position
        gcode_M114();
        break;
      case 120: // M120: Enable endstops
        gcode_M120();
        break;
      case 121: // M121: Disable endstops
        gcode_M121();
        break;
      case 119: // M119: Report endstop states
        gcode_M119();
        break;
      #if ENABLED(ULTIPANEL)
        case 145: // M145: Set material heatup parameters
          gcode_M145();
          break;
      #endif
      #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
        case 149:
          gcode_M149();
          break;
      #endif
      #if ENABLED(BLINKM)
        case 150: // M150
          gcode_M150();
          break;
      #endif //BLINKM
      #if ENABLED(EXPERIMENTAL_I2CBUS)
        case 155:
          gcode_M155();
          break;
        case 156:
          gcode_M156();
          break;
      #endif //EXPERIMENTAL_I2CBUS
      #if ENABLED(MIXING_EXTRUDER)
        case 163: // M163 S P set weight for a mixing extruder
          gcode_M163();
          break;
        #if MIXING_VIRTUAL_TOOLS > 1
          case 164: // M164 S save current mix as a virtual extruder
            gcode_M164();
            break;
        #endif
        #if ENABLED(DIRECT_MIXING_IN_G1)
          case 165: // M165 [ABCDHI] set multiple mix weights
            gcode_M165();
            break;
        #endif
      #endif
      case 200: // M200 D Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
        gcode_M200();
        break;
      case 201: // M201
        gcode_M201();
        break;
      #if 0 // Not used for Sprinter/grbl gen6
        case 202: // M202
          gcode_M202();
          break;
      #endif
      case 203: // M203 max feedrate units/sec
        gcode_M203();
        break;
      case 204: // M204 acclereration S normal moves T filmanent only moves
        gcode_M204();
        break;
      case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
        gcode_M205();
        break;
      case 206: // M206 additional homing offset
        gcode_M206();
        break;
      #if ENABLED(DELTA)
        case 665: // M665 set delta configurations L R S
          gcode_M665();
          break;
      #endif
      #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
        case 666: // M666 set delta / dual endstop adjustment
          gcode_M666();
          break;
      #endif
      #if ENABLED(FWRETRACT)
        case 207: // M207 - Set Retract Length: S, Feedrate: F, and Z lift: Z
          gcode_M207();
          break;
        case 208: // M208 - Set Recover (unretract) Additional (!) Length: S and Feedrate: F
          gcode_M208();
          break;
        case 209: // M209 - Turn Automatic Retract Detection on/off: S (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
          gcode_M209();
          break;
      #endif // FWRETRACT
      case 211: // M211 - Enable, Disable, and/or Report software endstops
        gcode_M211();
        break;
      #if HOTENDS > 1
        case 218: // M218 - Set a tool offset: T X Y
          gcode_M218();
          break;
      #endif
      case 220: // M220 - Set Feedrate Percentage: S ("FR" on your LCD)
        gcode_M220();
        break;
      case 221: // M221 - Set Flow Percentage: S
        gcode_M221();
        break;
      case 226: // M226 P S- Wait until the specified pin reaches the state required
        gcode_M226();
        break;
      #if HAS_SERVOS
        case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
          gcode_M280();
          break;
      #endif // HAS_SERVOS
      #if HAS_BUZZER
        case 300: // M300 - Play beep tone
          gcode_M300();
          break;
      #endif // HAS_BUZZER
      #if ENABLED(PIDTEMP)
        case 301: // M301
          gcode_M301();
          break;
      #endif // PIDTEMP
      #if ENABLED(PIDTEMPBED)
        case 304: // M304
          gcode_M304();
          break;
      #endif // PIDTEMPBED
      #if defined(CHDK) || HAS_PHOTOGRAPH
        case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
          gcode_M240();
          break;
      #endif // CHDK || PHOTOGRAPH_PIN
      #if HAS_LCD_CONTRAST
        case 250: // M250  Set LCD contrast value: C (value 0..63)
          gcode_M250();
          break;
      #endif // HAS_LCD_CONTRAST
      #if ENABLED(PREVENT_COLD_EXTRUSION)
        case 302: // allow cold extrudes, or set the minimum extrude temperature
          gcode_M302();
          break;
      #endif // PREVENT_COLD_EXTRUSION
      case 303: // M303 PID autotune
        gcode_M303();
        break;
      #if ENABLED(SCARA)
        case 360:  // M360 SCARA Theta pos1
          if (gcode_M360()) return;
          break;
        case 361:  // M361 SCARA Theta pos2
          if (gcode_M361()) return;
          break;
        case 362:  // M362 SCARA Psi pos1
          if (gcode_M362()) return;
          break;
        case 363:  // M363 SCARA Psi pos2
          if (gcode_M363()) return;
          break;
        case 364:  // M364 SCARA Psi pos3 (90 deg to Theta)
          if (gcode_M364()) return;
          break;
        case 365: // M365 Set SCARA scaling for X Y Z
          gcode_M365();
          break;
      #endif // SCARA
      case 400: // M400 finish all moves
        gcode_M400();
        break;
      #if HAS_BED_PROBE
        case 401:
          gcode_M401();
          break;
        case 402:
          gcode_M402();
          break;
      #endif // HAS_BED_PROBE
      #if ENABLED(FILAMENT_WIDTH_SENSOR)
        case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
          gcode_M404();
          break;
        case 405:  //M405 Turn on filament sensor for control
          gcode_M405();
          break;
        case 406:  //M406 Turn off filament sensor for control
          gcode_M406();
          break;
        case 407:   //M407 Display measured filament diameter
          gcode_M407();
          break;
      #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
      #if ENABLED(MESH_BED_LEVELING)
        case 420: // M420 Enable/Disable Mesh Bed Leveling
          gcode_M420();
          break;
        case 421: // M421 Set a Mesh Bed Leveling Z coordinate
          gcode_M421();
          break;
      #endif
      case 428: // M428 Apply current_position to home_offset
        gcode_M428();
        break;
      case 500: // M500 Store settings in EEPROM
        gcode_M500();
        break;
      case 501: // M501 Read settings from EEPROM
        gcode_M501();
        break;
      case 502: // M502 Revert to default settings
        gcode_M502();
        break;
      case 503: // M503 print settings currently in memory
        gcode_M503();
        break;
      #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
        case 540:
          gcode_M540();
          break;
      #endif
      #if HAS_BED_PROBE
        case 851:
          gcode_M851();
          break;
      #endif // HAS_BED_PROBE
      #if ENABLED(FILAMENT_CHANGE_FEATURE)
        case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
          gcode_M600();
          break;
      #endif // FILAMENT_CHANGE_FEATURE
      #if ENABLED(DUAL_X_CARRIAGE)
        case 605:
          gcode_M605();
          break;
      #endif // DUAL_X_CARRIAGE
      #if ENABLED(LIN_ADVANCE)
        case 905: // M905 Set advance factor.
          gcode_M905();
          break;
      #endif
      case 907: // M907 Set digital trimpot motor current using axis codes.
        gcode_M907();
        break;
      #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
        case 908: // M908 Control digital trimpot directly.
          gcode_M908();
          break;
        #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
          case 909: // M909 Print digipot/DAC current value
            gcode_M909();
            break;
          case 910: // M910 Commit digipot/DAC value to external EEPROM
            gcode_M910();
            break;
        #endif
      #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
      #if HAS_MICROSTEPS
        case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
          gcode_M350();
          break;
        case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
          gcode_M351();
          break;
      #endif // HAS_MICROSTEPS
      case 999: // M999: Restart after being Stopped
        gcode_M999();
        break;
    }
    break;
    case 'T':
      gcode_T(codenum);
      break;
    default: code_is_good = false;
  }
  KEEPALIVE_STATE(NOT_BUSY);
ExitUnknownCommand:
  // Still unknown command? Throw an error
  if (!code_is_good) unknown_command_error();
  ok_to_send();
}
void FlushSerialRequestResend() {
  //char command_queue[cmd_queue_index_r][100]="Resend:";
  MYSERIAL.flush();
  SERIAL_PROTOCOLPGM(MSG_RESEND);
  SERIAL_PROTOCOLLN(gcode_LastN + 1);
  ok_to_send();
}
void ok_to_send() {
  refresh_cmd_timeout();
  if (!send_ok[cmd_queue_index_r]) return;
  SERIAL_PROTOCOLPGM(MSG_OK);
  #if ENABLED(ADVANCED_OK)
    char* p = command_queue[cmd_queue_index_r];
    if (*p == 'N') {
      SERIAL_PROTOCOL(' ');
      SERIAL_ECHO(*p++);
      while (NUMERIC_SIGNED(*p))
        SERIAL_ECHO(*p++);
    }
    SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
    SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  #endif
  SERIAL_EOL;
}
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  void clamp_to_software_endstops(float target[XYZ]) {
    #if ENABLED(min_software_endstops)
      NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
      NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
      NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
    #endif
    #if ENABLED(max_software_endstops)
      NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
      NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
      NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
    #endif
  }
#endif
#if ENABLED(DELTA)
  void recalc_delta_settings(float radius, float diagonal_rod) {
    delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);  // front left tower
    delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
    delta_tower2_x =  SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);  // front right tower
    delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
    delta_tower3_x = 0.0;                                             // back middle tower
    delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
    delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
    delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
    delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  }
  void inverse_kinematics(const float in_cartesian[XYZ]) {
    const float cartesian[XYZ] = {
      RAW_X_POSITION(in_cartesian[X_AXIS]),
      RAW_Y_POSITION(in_cartesian[Y_AXIS]),
      RAW_Z_POSITION(in_cartesian[Z_AXIS])
    };
    delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
                          - sq(delta_tower1_x - cartesian[X_AXIS])
                          - sq(delta_tower1_y - cartesian[Y_AXIS])
                         ) + cartesian[Z_AXIS];
    delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
                          - sq(delta_tower2_x - cartesian[X_AXIS])
                          - sq(delta_tower2_y - cartesian[Y_AXIS])
                         ) + cartesian[Z_AXIS];
    delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
                          - sq(delta_tower3_x - cartesian[X_AXIS])
                          - sq(delta_tower3_y - cartesian[Y_AXIS])
                         ) + cartesian[Z_AXIS];
    /**
    SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
    SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
    SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
    SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
    */
  }
  float delta_safe_distance_from_top() {
    float cartesian[XYZ] = {
      LOGICAL_X_POSITION(0),
      LOGICAL_Y_POSITION(0),
      LOGICAL_Z_POSITION(0)
    };
    inverse_kinematics(cartesian);
    float distance = delta[TOWER_3];
    cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
    inverse_kinematics(cartesian);
    return abs(distance - delta[TOWER_3]);
  }
  void forward_kinematics_DELTA(float z1, float z2, float z3) {
    //As discussed in Wikipedia "Trilateration"
    //we are establishing a new coordinate
    //system in the plane of the three carriage points.
    //This system will have the origin at tower1 and
    //tower2 is on the x axis. tower3 is in the X-Y
    //plane with a Z component of zero. We will define unit
    //vectors in this coordinate system in our original
    //coordinate system. Then when we calculate the
    //Xnew, Ynew and Znew values, we can translate back into
    //the original system by moving along those unit vectors
    //by the corresponding values.
    // https://en.wikipedia.org/wiki/Trilateration
    // Variable names matched to Marlin, c-version
    // and avoiding a vector library
    // by Andreas Hardtung 2016-06-7
    // based on a Java function from
    // "Delta Robot Kinematics by Steve Graves" V3
    // Result is in cartesian_position[].
    //Create a vector in old coordinates along x axis of new coordinate
    float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
    //Get the Magnitude of vector.
    float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
    //Create unit vector by dividing by magnitude.
    float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
    //Now find vector from the origin of the new system to the third point.
    float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
    //Now use dot product to find the component of this vector on the X axis.
    float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
    //Now create a vector along the x axis that represents the x component of p13.
    float iex[3] = { ex[0]*i,  ex[1]*i,  ex[2]*i  };
    //Now subtract the X component away from the original vector leaving only the Y component. We use the
    //variable that will be the unit vector after we scale it.
    float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
    //The magnitude of Y component
    float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
    //Now make vector a unit vector
    ey[0] /= j; ey[1] /= j;  ey[2] /= j;
    //The cross product of the unit x and y is the unit z
    //float[] ez = vectorCrossProd(ex, ey);
    float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
    //Now we have the d, i and j values defined in Wikipedia.
    //We can plug them into the equations defined in
    //Wikipedia for Xnew, Ynew and Znew
    float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
    float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
    float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
    //Now we can start from the origin in the old coords and
    //add vectors in the old coords that represent the
    //Xnew, Ynew and Znew to find the point in the old system
    cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
    cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
    cartesian_position[Z_AXIS] = z1             + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  };
  void forward_kinematics_DELTA(float point[ABC]) {
    forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  }
  void set_cartesian_from_steppers() {
    forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
                             stepper.get_axis_position_mm(B_AXIS),
                             stepper.get_axis_position_mm(C_AXIS));
  }
  #if ENABLED(AUTO_BED_LEVELING_FEATURE)
    // Adjust print surface height by linear interpolation over the bed_level array.
    void adjust_delta(float cartesian[XYZ]) {
      if (delta_grid_spacing[X_AXIS] == 0 || delta_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
      int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
      float h1 = 0.001 - half, h2 = half - 0.001,
            grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / delta_grid_spacing[X_AXIS])),
            grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / delta_grid_spacing[Y_AXIS]));
      int floor_x = floor(grid_x), floor_y = floor(grid_y);
      float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
            z1 = bed_level[floor_x + half][floor_y + half],
            z2 = bed_level[floor_x + half][floor_y + half + 1],
            z3 = bed_level[floor_x + half + 1][floor_y + half],
            z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
            left = (1 - ratio_y) * z1 + ratio_y * z2,
            right = (1 - ratio_y) * z3 + ratio_y * z4,
            offset = (1 - ratio_x) * left + ratio_x * right;
      delta[X_AXIS] += offset;
      delta[Y_AXIS] += offset;
      delta[Z_AXIS] += offset;
      /**
      SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
      SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
      SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
      SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
      SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
      SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
      SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
      SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
      SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
      SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
      SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
      SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
      SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
      */
    }
  #endif // AUTO_BED_LEVELING_FEATURE
#endif // DELTA
void set_current_from_steppers_for_axis(AxisEnum axis) {
  #if ENABLED(DELTA)
    set_cartesian_from_steppers();
    current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
    vector_3 pos = planner.adjusted_position();
    current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  #else
    current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  #endif
}
#if ENABLED(MESH_BED_LEVELING)
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
      cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
      cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
      cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  if (cx1 == cx2 && cy1 == cy2) {
    // Start and end on same mesh square
    line_to_destination(fr_mm_s);
    set_current_to_destination();
    return;
  }
  #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  float normalized_dist, end[NUM_AXIS];
  // Split at the left/front border of the right/top square
  int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  if (cx2 != cx1 && TEST(x_splits, gcx)) {
    memcpy(end, destination, sizeof(end));
    destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
    normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
    destination[Y_AXIS] = MBL_SEGMENT_END(Y);
    CBI(x_splits, gcx);
  }
  else if (cy2 != cy1 && TEST(y_splits, gcy)) {
    memcpy(end, destination, sizeof(end));
    destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
    normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
    destination[X_AXIS] = MBL_SEGMENT_END(X);
    CBI(y_splits, gcy);
  }
  else {
    // Already split on a border
    line_to_destination(fr_mm_s);
    set_current_to_destination();
    return;
  }
  destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  destination[E_AXIS] = MBL_SEGMENT_END(E);
  // Do the split and look for more borders
  mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  // Restore destination from stack
  memcpy(destination, end, sizeof(end));
  mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
}
#endif  // MESH_BED_LEVELING
#if ENABLED(DELTA) || ENABLED(SCARA)
  inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
    float difference[NUM_AXIS];
    LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
    float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
    if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
    if (cartesian_mm < 0.000001) return false;
    float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
    float seconds = cartesian_mm / _feedrate_mm_s;
    int steps = max(1, int(delta_segments_per_second * seconds));
    float inv_steps = 1.0/steps;
    // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
    // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
    // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
    for (int s = 1; s <= steps; s++) {
      float fraction = float(s) * inv_steps;
      LOOP_XYZE(i)
        target[i] = current_position[i] + difference[i] * fraction;
      inverse_kinematics(target);
      #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
        if (!bed_leveling_in_progress) adjust_delta(target);
      #endif
      //DEBUG_POS("prepare_kinematic_move_to", target);
      //DEBUG_POS("prepare_kinematic_move_to", delta);
      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
    }
    return true;
  }
#endif // DELTA || SCARA
#if ENABLED(DUAL_X_CARRIAGE)
  inline bool prepare_move_to_destination_dualx() {
    if (active_extruder_parked) {
      if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
        // move duplicate extruder into correct duplication position.
        planner.set_position_mm(
          LOGICAL_X_POSITION(inactive_extruder_x_pos),
          current_position[Y_AXIS],
          current_position[Z_AXIS],
          current_position[E_AXIS]
        );
        planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
                         current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
        SYNC_PLAN_POSITION_KINEMATIC();
        stepper.synchronize();
        extruder_duplication_enabled = true;
        active_extruder_parked = false;
      }
      else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
        if (current_position[E_AXIS] == destination[E_AXIS]) {
          // This is a travel move (with no extrusion)
          // Skip it, but keep track of the current position
          // (so it can be used as the start of the next non-travel move)
          if (delayed_move_time != 0xFFFFFFFFUL) {
            set_current_to_destination();
            NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
            delayed_move_time = millis();
            return false;
          }
        }
        delayed_move_time = 0;
        // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
        planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
        active_extruder_parked = false;
      }
    }
    return true;
  }
#endif // DUAL_X_CARRIAGE
#if DISABLED(DELTA) && DISABLED(SCARA)
  inline bool prepare_move_to_destination_cartesian() {
    // Do not use feedrate_percentage for E or Z only moves
    if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
      line_to_destination();
    }
    else {
      #if ENABLED(MESH_BED_LEVELING)
        if (mbl.active()) {
          mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
          return false;
        }
        else
      #endif
          line_to_destination(MMS_SCALED(feedrate_mm_s));
    }
    return true;
  }
#endif // !DELTA && !SCARA
#if ENABLED(PREVENT_COLD_EXTRUSION)
  inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
    if (DEBUGGING(DRYRUN)) return;
    float de = dest_e - curr_e;
    if (de) {
      if (thermalManager.tooColdToExtrude(active_extruder)) {
        curr_e = dest_e; // Behave as if the move really took place, but ignore E part
        SERIAL_ECHO_START;
        SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
      }
      #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
        if (labs(de) > EXTRUDE_MAXLENGTH) {
          curr_e = dest_e; // Behave as if the move really took place, but ignore E part
          SERIAL_ECHO_START;
          SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
        }
      #endif
    }
  }
#endif // PREVENT_COLD_EXTRUSION
/**
 * Prepare a single move and get ready for the next one
 *
 * (This may call planner.buffer_line several times to put
 *  smaller moves into the planner for DELTA or SCARA.)
 */
void prepare_move_to_destination() {
  clamp_to_software_endstops(destination);
  refresh_cmd_timeout();
  #if ENABLED(PREVENT_COLD_EXTRUSION)
    prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  #endif
  #if ENABLED(DELTA) || ENABLED(SCARA)
    if (!prepare_kinematic_move_to(destination)) return;
  #else
    #if ENABLED(DUAL_X_CARRIAGE)
      if (!prepare_move_to_destination_dualx()) return;
    #endif
    if (!prepare_move_to_destination_cartesian()) return;
  #endif
  set_current_to_destination();
}
#if ENABLED(ARC_SUPPORT)
  /**
   * Plan an arc in 2 dimensions
   *
   * The arc is approximated by generating many small linear segments.
   * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
   * Arcs should only be made relatively large (over 5mm), as larger arcs with
   * larger segments will tend to be more efficient. Your slicer should have
   * options for G2/G3 arc generation. In future these options may be GCode tunable.
   */
  void plan_arc(
    float target[NUM_AXIS], // Destination position
    float* offset,          // Center of rotation relative to current_position
    uint8_t clockwise       // Clockwise?
  ) {
    float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
          center_X = current_position[X_AXIS] + offset[X_AXIS],
          center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
          linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
          extruder_travel = target[E_AXIS] - current_position[E_AXIS],
          r_X = -offset[X_AXIS],  // Radius vector from center to current location
          r_Y = -offset[Y_AXIS],
          rt_X = target[X_AXIS] - center_X,
          rt_Y = target[Y_AXIS] - center_Y;
    // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
    float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
    if (angular_travel < 0) angular_travel += RADIANS(360);
    if (clockwise) angular_travel -= RADIANS(360);
    // Make a circle if the angular rotation is 0
    if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
      angular_travel += RADIANS(360);
    float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
    if (mm_of_travel < 0.001) return;
    uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
    if (segments == 0) segments = 1;
    float theta_per_segment = angular_travel / segments;
    float linear_per_segment = linear_travel / segments;
    float extruder_per_segment = extruder_travel / segments;
    /**
     * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
     * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
     *     r_T = [cos(phi) -sin(phi);
     *            sin(phi)  cos(phi] * r ;
     *
     * For arc generation, the center of the circle is the axis of rotation and the radius vector is
     * defined from the circle center to the initial position. Each line segment is formed by successive
     * vector rotations. This requires only two cos() and sin() computations to form the rotation
     * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
     * all double numbers are single precision on the Arduino. (True double precision will not have
     * round off issues for CNC applications.) Single precision error can accumulate to be greater than
     * tool precision in some cases. Therefore, arc path correction is implemented.
     *
     * Small angle approximation may be used to reduce computation overhead further. This approximation
     * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
     * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
     * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
     * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
     * issue for CNC machines with the single precision Arduino calculations.
     *
     * This approximation also allows plan_arc to immediately insert a line segment into the planner
     * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
     * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
     * This is important when there are successive arc motions.
     */
    // Vector rotation matrix values
    float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
    float sin_T = theta_per_segment;
    float arc_target[NUM_AXIS];
    float sin_Ti, cos_Ti, r_new_Y;
    uint16_t i;
    int8_t count = 0;
    // Initialize the linear axis
    arc_target[Z_AXIS] = current_position[Z_AXIS];
    // Initialize the extruder axis
    arc_target[E_AXIS] = current_position[E_AXIS];
    float fr_mm_s = MMS_SCALED(feedrate_mm_s);
    millis_t next_idle_ms = millis() + 200UL;
    for (i = 1; i < segments; i++) { // Iterate (segments-1) times
      thermalManager.manage_heater();
      millis_t now = millis();
      if (ELAPSED(now, next_idle_ms)) {
        next_idle_ms = now + 200UL;
        idle();
      }
      if (++count < N_ARC_CORRECTION) {
        // Apply vector rotation matrix to previous r_X / 1
        r_new_Y = r_X * sin_T + r_Y * cos_T;
        r_X = r_X * cos_T - r_Y * sin_T;
        r_Y = r_new_Y;
      }
      else {
        // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
        // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
        // To reduce stuttering, the sin and cos could be computed at different times.
        // For now, compute both at the same time.
        cos_Ti = cos(i * theta_per_segment);
        sin_Ti = sin(i * theta_per_segment);
        r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
        r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
        count = 0;
      }
      // Update arc_target location
      arc_target[X_AXIS] = center_X + r_X;
      arc_target[Y_AXIS] = center_Y + r_Y;
      arc_target[Z_AXIS] += linear_per_segment;
      arc_target[E_AXIS] += extruder_per_segment;
      clamp_to_software_endstops(arc_target);
      #if ENABLED(DELTA) || ENABLED(SCARA)
        inverse_kinematics(arc_target);
        #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
          adjust_delta(arc_target);
        #endif
        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
      #else
        planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
      #endif
    }
    // Ensure last segment arrives at target location.
    #if ENABLED(DELTA) || ENABLED(SCARA)
      inverse_kinematics(target);
      #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_FEATURE)
        adjust_delta(target);
      #endif
      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
    #else
      planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
    #endif
    // As far as the parser is concerned, the position is now == target. In reality the
    // motion control system might still be processing the action and the real tool position
    // in any intermediate location.
    set_current_to_destination();
  }
#endif
#if ENABLED(BEZIER_CURVE_SUPPORT)
  void plan_cubic_move(const float offset[4]) {
    cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
    // As far as the parser is concerned, the position is now == target. In reality the
    // motion control system might still be processing the action and the real tool position
    // in any intermediate location.
    set_current_to_destination();
  }
#endif // BEZIER_CURVE_SUPPORT
#if HAS_CONTROLLERFAN
  void controllerFan() {
    static millis_t lastMotorOn = 0; // Last time a motor was turned on
    static millis_t nextMotorCheck = 0; // Last time the state was checked
    millis_t ms = millis();
    if (ELAPSED(ms, nextMotorCheck)) {
      nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
      if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
          || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
          #if E_STEPPERS > 1
            || E1_ENABLE_READ == E_ENABLE_ON
            #if HAS_X2_ENABLE
              || X2_ENABLE_READ == X_ENABLE_ON
            #endif
            #if E_STEPPERS > 2
              || E2_ENABLE_READ == E_ENABLE_ON
              #if E_STEPPERS > 3
                || E3_ENABLE_READ == E_ENABLE_ON
              #endif
            #endif
          #endif
      ) {
        lastMotorOn = ms; //... set time to NOW so the fan will turn on
      }
      // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
      uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
      // allows digital or PWM fan output to be used (see M42 handling)
      digitalWrite(CONTROLLERFAN_PIN, speed);
      analogWrite(CONTROLLERFAN_PIN, speed);
    }
  }
#endif // HAS_CONTROLLERFAN
#if ENABLED(SCARA)
  void forward_kinematics_SCARA(float f_scara[ABC]) {
    // Perform forward kinematics, and place results in delta[]
    // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
    float x_sin, x_cos, y_sin, y_cos;
    //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
    //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
    x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
    x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
    y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
    y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
    //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
    //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
    //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
    //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
    delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x;  //theta
    delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y;  //theta+phi
    //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
    //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  }
  void inverse_kinematics(const float cartesian[XYZ]) {
    // Inverse kinematics.
    // Perform SCARA IK and place results in delta[].
    // The maths and first version were done by QHARLEY.
    // Integrated, tweaked by Joachim Cerny in June 2014.
    float SCARA_pos[2];
    static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
    SCARA_pos[X_AXIS] = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
    SCARA_pos[Y_AXIS] = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
    #if (Linkage_1 == Linkage_2)
      SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
    #else
      SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
    #endif
    SCARA_S2 = sqrt(1 - sq(SCARA_C2));
    SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
    SCARA_K2 = Linkage_2 * SCARA_S2;
    SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
    SCARA_psi = atan2(SCARA_S2, SCARA_C2);
    delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
    delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
    delta[Z_AXIS] = RAW_Z_POSITION(cartesian[Z_AXIS]);
    /**
    SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
    SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
    SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
    SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
    SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
    SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
    SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
    SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
    SERIAL_EOL;
    */
  }
#endif // SCARA
#if ENABLED(TEMP_STAT_LEDS)
  static bool red_led = false;
  static millis_t next_status_led_update_ms = 0;
  void handle_status_leds(void) {
    if (ELAPSED(millis(), next_status_led_update_ms)) {
      next_status_led_update_ms += 500; // Update every 0.5s
      float max_temp = 0.0;
      #if HAS_TEMP_BED
        max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
      #endif
      HOTEND_LOOP() {
        max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
      }
      bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
      if (new_led != red_led) {
        red_led = new_led;
        digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
        digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
      }
    }
  }
#endif
void enable_all_steppers() {
  enable_x();
  enable_y();
  enable_z();
  enable_e0();
  enable_e1();
  enable_e2();
  enable_e3();
}
void disable_all_steppers() {
  disable_x();
  disable_y();
  disable_z();
  disable_e0();
  disable_e1();
  disable_e2();
  disable_e3();
}
/**
 * Standard idle routine keeps the machine alive
 */
void idle(
  #if ENABLED(FILAMENT_CHANGE_FEATURE)
    bool no_stepper_sleep/*=false*/
  #endif
) {
  lcd_update();
  host_keepalive();
  manage_inactivity(
    #if ENABLED(FILAMENT_CHANGE_FEATURE)
      no_stepper_sleep
    #endif
  );
  thermalManager.manage_heater();
  #if ENABLED(PRINTCOUNTER)
    print_job_timer.tick();
  #endif
  #if HAS_BUZZER && PIN_EXISTS(BEEPER)
    buzzer.tick();
  #endif
}
/**
 * Manage several activities:
 *  - Check for Filament Runout
 *  - Keep the command buffer full
 *  - Check for maximum inactive time between commands
 *  - Check for maximum inactive time between stepper commands
 *  - Check if pin CHDK needs to go LOW
 *  - Check for KILL button held down
 *  - Check for HOME button held down
 *  - Check if cooling fan needs to be switched on
 *  - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
 */
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  #if ENABLED(FILAMENT_RUNOUT_SENSOR)
    if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
      handle_filament_runout();
  #endif
  if (commands_in_queue < BUFSIZE) get_available_commands();
  millis_t ms = millis();
  if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
      && !ignore_stepper_queue && !planner.blocks_queued()) {
    #if ENABLED(DISABLE_INACTIVE_X)
      disable_x();
    #endif
    #if ENABLED(DISABLE_INACTIVE_Y)
      disable_y();
    #endif
    #if ENABLED(DISABLE_INACTIVE_Z)
      disable_z();
    #endif
    #if ENABLED(DISABLE_INACTIVE_E)
      disable_e0();
      disable_e1();
      disable_e2();
      disable_e3();
    #endif
  }
  #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
    if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
      chdkActive = false;
      WRITE(CHDK, LOW);
    }
  #endif
  #if HAS_KILL
    // Check if the kill button was pressed and wait just in case it was an accidental
    // key kill key press
    // -------------------------------------------------------------------------------
    static int killCount = 0;   // make the inactivity button a bit less responsive
    const int KILL_DELAY = 750;
    if (!READ(KILL_PIN))
      killCount++;
    else if (killCount > 0)
      killCount--;
    // Exceeded threshold and we can confirm that it was not accidental
    // KILL the machine
    // ----------------------------------------------------------------
    if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  #endif
  #if HAS_HOME
    // Check to see if we have to home, use poor man's debouncer
    // ---------------------------------------------------------
    static int homeDebounceCount = 0;   // poor man's debouncing count
    const int HOME_DEBOUNCE_DELAY = 2500;
    if (!READ(HOME_PIN)) {
      if (!homeDebounceCount) {
        enqueue_and_echo_commands_P(PSTR("G28"));
        LCD_MESSAGEPGM(MSG_AUTO_HOME);
      }
      if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
        homeDebounceCount++;
      else
        homeDebounceCount = 0;
    }
  #endif
  #if HAS_CONTROLLERFAN
    controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  #endif
  #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
    if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
      && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
      #if ENABLED(SWITCHING_EXTRUDER)
        bool oldstatus = E0_ENABLE_READ;
        enable_e0();
      #else // !SWITCHING_EXTRUDER
        bool oldstatus;
        switch (active_extruder) {
          case 0:
            oldstatus = E0_ENABLE_READ;
            enable_e0();
            break;
          #if E_STEPPERS > 1
            case 1:
              oldstatus = E1_ENABLE_READ;
              enable_e1();
              break;
            #if E_STEPPERS > 2
              case 2:
                oldstatus = E2_ENABLE_READ;
                enable_e2();
                break;
              #if E_STEPPERS > 3
                case 3:
                  oldstatus = E3_ENABLE_READ;
                  enable_e3();
                  break;
              #endif
            #endif
          #endif
        }
      #endif // !SWITCHING_EXTRUDER
      float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
      planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
                       destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
                       MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
      current_position[E_AXIS] = oldepos;
      destination[E_AXIS] = oldedes;
      planner.set_e_position_mm(oldepos);
      previous_cmd_ms = ms; // refresh_cmd_timeout()
      stepper.synchronize();
      #if ENABLED(SWITCHING_EXTRUDER)
        E0_ENABLE_WRITE(oldstatus);
      #else
        switch (active_extruder) {
          case 0:
            E0_ENABLE_WRITE(oldstatus);
            break;
          #if E_STEPPERS > 1
            case 1:
              E1_ENABLE_WRITE(oldstatus);
              break;
            #if E_STEPPERS > 2
              case 2:
                E2_ENABLE_WRITE(oldstatus);
                break;
              #if E_STEPPERS > 3
                case 3:
                  E3_ENABLE_WRITE(oldstatus);
                  break;
              #endif
            #endif
          #endif
        }
      #endif // !SWITCHING_EXTRUDER
    }
  #endif // EXTRUDER_RUNOUT_PREVENT
  #if ENABLED(DUAL_X_CARRIAGE)
    // handle delayed move timeout
    if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
      // travel moves have been received so enact them
      delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
      set_destination_to_current();
      prepare_move_to_destination();
    }
  #endif
  #if ENABLED(TEMP_STAT_LEDS)
    handle_status_leds();
  #endif
  planner.check_axes_activity();
}
void kill(const char* lcd_msg) {
  SERIAL_ERROR_START;
  SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  #if ENABLED(ULTRA_LCD)
    kill_screen(lcd_msg);
  #else
    UNUSED(lcd_msg);
  #endif
  delay(500); // Wait a short time
  cli(); // Stop interrupts
  thermalManager.disable_all_heaters();
  disable_all_steppers();
  #if HAS_POWER_SWITCH
    pinMode(PS_ON_PIN, INPUT);
  #endif
  suicide();
  while (1) {
    #if ENABLED(USE_WATCHDOG)
      watchdog_reset();
    #endif
  } // Wait for reset
}
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
  void handle_filament_runout() {
    if (!filament_ran_out) {
      filament_ran_out = true;
      enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
      stepper.synchronize();
    }
  }
#endif // FILAMENT_RUNOUT_SENSOR
#if ENABLED(FAST_PWM_FAN)
  void setPwmFrequency(uint8_t pin, int val) {
    val &= 0x07;
    switch (digitalPinToTimer(pin)) {
      #if defined(TCCR0A)
        case TIMER0A:
        case TIMER0B:
          // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
          // TCCR0B |= val;
          break;
      #endif
      #if defined(TCCR1A)
        case TIMER1A:
        case TIMER1B:
          // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
          // TCCR1B |= val;
          break;
      #endif
      #if defined(TCCR2)
        case TIMER2:
        case TIMER2:
          TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
          TCCR2 |= val;
          break;
      #endif
      #if defined(TCCR2A)
        case TIMER2A:
        case TIMER2B:
          TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
          TCCR2B |= val;
          break;
      #endif
      #if defined(TCCR3A)
        case TIMER3A:
        case TIMER3B:
        case TIMER3C:
          TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
          TCCR3B |= val;
          break;
      #endif
      #if defined(TCCR4A)
        case TIMER4A:
        case TIMER4B:
        case TIMER4C:
          TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
          TCCR4B |= val;
          break;
      #endif
      #if defined(TCCR5A)
        case TIMER5A:
        case TIMER5B:
        case TIMER5C:
          TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
          TCCR5B |= val;
          break;
      #endif
    }
  }
#endif // FAST_PWM_FAN
void stop() {
  thermalManager.disable_all_heaters();
  if (IsRunning()) {
    Running = false;
    Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
    SERIAL_ERROR_START;
    SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
    LCD_MESSAGEPGM(MSG_STOPPED);
  }
}
float calculate_volumetric_multiplier(float diameter) {
  if (!volumetric_enabled || diameter == 0) return 1.0;
  float d2 = diameter * 0.5;
  return 1.0 / (M_PI * d2 * d2);
}
void calculate_volumetric_multipliers() {
  for (uint8_t i = 0; i < COUNT(filament_size); i++)
    volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
}