/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * motion.cpp */ #include "motion.h" #include "endstops.h" #include "stepper.h" #include "planner.h" #include "temperature.h" #include "../gcode/gcode.h" #include "../lcd/marlinui.h" #include "../inc/MarlinConfig.h" #if IS_SCARA #include "../libs/buzzer.h" #include "../lcd/marlinui.h" #endif #if ENABLED(POLAR) #include "polar.h" #endif #if HAS_BED_PROBE #include "probe.h" #endif #if HAS_LEVELING #include "../feature/bedlevel/bedlevel.h" #endif #if ENABLED(BLTOUCH) #include "../feature/bltouch.h" #endif #if HAS_FILAMENT_SENSOR #include "../feature/runout.h" #endif #if ENABLED(SENSORLESS_HOMING) #include "../feature/tmc_util.h" #endif #if ENABLED(FWRETRACT) #include "../feature/fwretract.h" #endif #if ENABLED(BABYSTEP_DISPLAY_TOTAL) #include "../feature/babystep.h" #endif #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #include "../core/debug_out.h" #if ENABLED(BD_SENSOR) #include "../feature/bedlevel/bdl/bdl.h" #endif // Relative Mode. Enable with G91, disable with G90. bool relative_mode; // = false; /** * Cartesian Current Position * Used to track the native machine position as moves are queued. * Used by 'line_to_current_position' to do a move after changing it. * Used by 'sync_plan_position' to update 'planner.position'. */ #ifdef Z_IDLE_HEIGHT #define Z_INIT_POS Z_IDLE_HEIGHT #else #define Z_INIT_POS Z_HOME_POS #endif xyze_pos_t current_position = LOGICAL_AXIS_ARRAY(0, X_HOME_POS, Y_HOME_POS, Z_INIT_POS, I_HOME_POS, J_HOME_POS, K_HOME_POS, U_HOME_POS, V_HOME_POS, W_HOME_POS); /** * Cartesian Destination * The destination for a move, filled in by G-code movement commands, * and expected by functions like 'prepare_line_to_destination'. * G-codes can set destination using 'get_destination_from_command' */ xyze_pos_t destination; // {0} // G60/G61 Position Save and Return #if SAVED_POSITIONS uint8_t saved_slots[(SAVED_POSITIONS + 7) >> 3]; xyze_pos_t stored_position[SAVED_POSITIONS]; #endif // The active extruder (tool). Set with T command. #if HAS_MULTI_EXTRUDER uint8_t active_extruder = 0; // = 0 #endif #if ENABLED(LCD_SHOW_E_TOTAL) float e_move_accumulator; // = 0 #endif // Extruder offsets #if HAS_HOTEND_OFFSET xyz_pos_t hotend_offset[HOTENDS]; // Initialized by settings.load() void reset_hotend_offsets() { constexpr float tmp[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z }; static_assert( !tmp[X_AXIS][0] && !tmp[Y_AXIS][0] && !tmp[Z_AXIS][0], "Offsets for the first hotend must be 0.0." ); // Transpose from [XYZ][HOTENDS] to [HOTENDS][XYZ] HOTEND_LOOP() LOOP_ABC(a) hotend_offset[e][a] = tmp[a][e]; TERN_(DUAL_X_CARRIAGE, hotend_offset[1].x = _MAX(X2_HOME_POS, X2_MAX_POS)); } #endif // The feedrate for the current move, often used as the default if // no other feedrate is specified. Overridden for special moves. // Set by the last G0 through G5 command's "F" parameter. // Functions that override this for custom moves *must always* restore it! #ifndef DEFAULT_FEEDRATE_MM_M #define DEFAULT_FEEDRATE_MM_M 4000 #endif feedRate_t feedrate_mm_s = MMM_TO_MMS(DEFAULT_FEEDRATE_MM_M); int16_t feedrate_percentage = 100; // Cartesian conversion result goes here: xyz_pos_t cartes; #if IS_KINEMATIC abce_pos_t delta; #if HAS_SCARA_OFFSET abc_pos_t scara_home_offset; #endif #if HAS_SOFTWARE_ENDSTOPS float delta_max_radius, delta_max_radius_2; #elif IS_SCARA constexpr float delta_max_radius = PRINTABLE_RADIUS, delta_max_radius_2 = sq(PRINTABLE_RADIUS); #elif ENABLED(POLAR) constexpr float delta_max_radius = PRINTABLE_RADIUS, delta_max_radius_2 = sq(PRINTABLE_RADIUS); #else // DELTA constexpr float delta_max_radius = PRINTABLE_RADIUS, delta_max_radius_2 = sq(PRINTABLE_RADIUS); #endif #endif /** * The workspace can be offset by some commands, or * these offsets may be omitted to save on computation. */ #if HAS_HOME_OFFSET // This offset is added to the configured home position. // Set by M206, M428, or menu item. Saved to EEPROM. xyz_pos_t home_offset{0}; #endif #if HAS_WORKSPACE_OFFSET // The above two are combined to save on computes xyz_pos_t workspace_offset{0}; #endif #if HAS_ABL_NOT_UBL feedRate_t xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_FEEDRATE); #endif /** * Output the current position to serial */ inline void report_more_positions() { stepper.report_positions(); TERN_(IS_SCARA, scara_report_positions()); TERN_(POLAR, polar_report_positions()); } // Report the logical position for a given machine position inline void report_logical_position(const xyze_pos_t &rpos) { const xyze_pos_t lpos = rpos.asLogical(); #if NUM_AXES SERIAL_ECHOPGM_P( LIST_N(DOUBLE(NUM_AXES), X_LBL, lpos.x, SP_Y_LBL, lpos.y, SP_Z_LBL, lpos.z, SP_I_LBL, lpos.i, SP_J_LBL, lpos.j, SP_K_LBL, lpos.k, SP_U_LBL, lpos.u, SP_V_LBL, lpos.v, SP_W_LBL, lpos.w ) ); #endif #if HAS_EXTRUDERS SERIAL_ECHOPGM_P(SP_E_LBL, lpos.e); #endif } // Report the real current position according to the steppers. // Forward kinematics and un-leveling are applied. void report_real_position() { get_cartesian_from_steppers(); xyze_pos_t npos = LOGICAL_AXIS_ARRAY( planner.get_axis_position_mm(E_AXIS), cartes.x, cartes.y, cartes.z, cartes.i, cartes.j, cartes.k, cartes.u, cartes.v, cartes.w ); TERN_(HAS_POSITION_MODIFIERS, planner.unapply_modifiers(npos, true)); report_logical_position(npos); report_more_positions(); } // Report the logical current position according to the most recent G-code command void report_current_position() { report_logical_position(current_position); report_more_positions(); } /** * Report the logical current position according to the most recent G-code command. * The planner.position always corresponds to the last G-code too. This makes M114 * suitable for debugging kinematics and leveling while avoiding planner sync that * definitively interrupts the printing flow. */ void report_current_position_projected() { report_logical_position(current_position); stepper.report_a_position(planner.position); } #if ENABLED(AUTO_REPORT_POSITION) AutoReporter position_auto_reporter; #endif #if ANY(FULL_REPORT_TO_HOST_FEATURE, REALTIME_REPORTING_COMMANDS) M_StateEnum M_State_grbl = M_INIT; /** * Output the current grbl compatible state to serial while moving */ void report_current_grblstate_moving() { SERIAL_ECHOLNPGM("S_XYZ:", int(M_State_grbl)); } /** * Output the current position (processed) to serial while moving */ void report_current_position_moving() { get_cartesian_from_steppers(); const xyz_pos_t lpos = cartes.asLogical(); SERIAL_ECHOPGM_P( LIST_N(DOUBLE(NUM_AXES), X_LBL, lpos.x, SP_Y_LBL, lpos.y, SP_Z_LBL, lpos.z, SP_I_LBL, lpos.i, SP_J_LBL, lpos.j, SP_K_LBL, lpos.k, SP_U_LBL, lpos.u, SP_V_LBL, lpos.v, SP_W_LBL, lpos.w ) #if HAS_EXTRUDERS , SP_E_LBL, current_position.e #endif ); report_more_positions(); report_current_grblstate_moving(); } /** * Set a Grbl-compatible state from the current marlin_state */ M_StateEnum grbl_state_for_marlin_state() { switch (marlin_state) { case MF_INITIALIZING: return M_INIT; case MF_SD_COMPLETE: return M_ALARM; case MF_WAITING: return M_IDLE; case MF_STOPPED: return M_END; case MF_RUNNING: return M_RUNNING; case MF_PAUSED: return M_HOLD; case MF_KILLED: return M_ERROR; default: return M_IDLE; } } #endif #if IS_KINEMATIC bool position_is_reachable(const_float_t rx, const_float_t ry, const float inset/*=0*/) { bool can_reach; #if ENABLED(DELTA) can_reach = HYPOT2(rx, ry) <= sq(PRINTABLE_RADIUS - inset + fslop); #elif ENABLED(AXEL_TPARA) const float R2 = HYPOT2(rx - TPARA_OFFSET_X, ry - TPARA_OFFSET_Y); can_reach = ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= FLOAT_SQ(MIDDLE_DEAD_ZONE_R) #endif ); #elif IS_SCARA const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y); can_reach = ( R2 <= sq(L1 + L2) - inset #if MIDDLE_DEAD_ZONE_R > 0 && R2 >= FLOAT_SQ(MIDDLE_DEAD_ZONE_R) #endif ); #elif ENABLED(POLARGRAPH) const float d1 = rx - (draw_area_min.x), d2 = (draw_area_max.x) - rx, y = ry - (draw_area_max.y), a = HYPOT(d1, y), b = HYPOT(d2, y); can_reach = ( a < polargraph_max_belt_len + 1 && b < polargraph_max_belt_len + 1 ); #elif ENABLED(POLAR) can_reach = HYPOT(rx, ry) <= PRINTABLE_RADIUS; #endif return can_reach; } #else // CARTESIAN // Return true if the given position is within the machine bounds. bool position_is_reachable(TERN_(HAS_X_AXIS, const_float_t rx) OPTARG(HAS_Y_AXIS, const_float_t ry)) { if (TERN0(HAS_Y_AXIS, !COORDINATE_OKAY(ry, Y_MIN_POS - fslop, Y_MAX_POS + fslop))) return false; #if ENABLED(DUAL_X_CARRIAGE) if (active_extruder) return COORDINATE_OKAY(rx, X2_MIN_POS - fslop, X2_MAX_POS + fslop); else return COORDINATE_OKAY(rx, X1_MIN_POS - fslop, X1_MAX_POS + fslop); #else if (TERN0(HAS_X_AXIS, !COORDINATE_OKAY(rx, X_MIN_POS - fslop, X_MAX_POS + fslop))) return false; return true; #endif } #endif // CARTESIAN void home_if_needed(const bool keeplev/*=false*/) { if (!all_axes_trusted()) gcode.home_all_axes(keeplev); } /** * Run out the planner buffer and re-sync the current * position from the last-updated stepper positions. */ void quickstop_stepper() { planner.quick_stop(); planner.synchronize(); set_current_from_steppers_for_axis(ALL_AXES_ENUM); sync_plan_position(); } #if ENABLED(REALTIME_REPORTING_COMMANDS) void quickpause_stepper() { planner.quick_pause(); //planner.synchronize(); } void quickresume_stepper() { planner.quick_resume(); //planner.synchronize(); } #endif /** * Set the planner/stepper positions directly from current_position with * no kinematic translation. Used for homing axes and cartesian/core syncing. */ void sync_plan_position() { if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); planner.set_position_mm(current_position); } #if HAS_EXTRUDERS void sync_plan_position_e() { planner.set_e_position_mm(current_position.e); } #endif /** * Get the stepper positions in the cartes[] array. * Forward kinematics are applied for DELTA and SCARA. * * The result is in the current coordinate space with * leveling applied. The coordinates need to be run through * unapply_leveling to obtain the "ideal" coordinates * suitable for current_position, etc. */ void get_cartesian_from_steppers() { #if ENABLED(DELTA) forward_kinematics(planner.get_axis_positions_mm()); #elif IS_SCARA forward_kinematics( planner.get_axis_position_degrees(A_AXIS), planner.get_axis_position_degrees(B_AXIS) OPTARG(AXEL_TPARA, planner.get_axis_position_degrees(C_AXIS)) ); cartes.z = planner.get_axis_position_mm(Z_AXIS); #elif ENABLED(POLAR) forward_kinematics(planner.get_axis_position_mm(X_AXIS), planner.get_axis_position_degrees(B_AXIS)); cartes.z = planner.get_axis_position_mm(Z_AXIS); #else NUM_AXIS_CODE( cartes.x = planner.get_axis_position_mm(X_AXIS), cartes.y = planner.get_axis_position_mm(Y_AXIS), cartes.z = planner.get_axis_position_mm(Z_AXIS), cartes.i = planner.get_axis_position_mm(I_AXIS), cartes.j = planner.get_axis_position_mm(J_AXIS), cartes.k = planner.get_axis_position_mm(K_AXIS), cartes.u = planner.get_axis_position_mm(U_AXIS), cartes.v = planner.get_axis_position_mm(V_AXIS), cartes.w = planner.get_axis_position_mm(W_AXIS) ); #endif } /** * Set the current_position for an axis based on * the stepper positions, removing any leveling that * may have been applied. * * To prevent small shifts in axis position always call * sync_plan_position after updating axes with this. * * To keep hosts in sync, always call report_current_position * after updating the current_position. */ void set_current_from_steppers_for_axis(const AxisEnum axis) { get_cartesian_from_steppers(); xyze_pos_t pos = cartes; TERN_(HAS_EXTRUDERS, pos.e = planner.get_axis_position_mm(E_AXIS)); TERN_(HAS_POSITION_MODIFIERS, planner.unapply_modifiers(pos, true)); if (axis == ALL_AXES_ENUM) current_position = pos; else current_position[axis] = pos[axis]; } /** * Move the planner to the current position from wherever it last moved * (or from wherever it has been told it is located). */ void line_to_current_position(const_feedRate_t fr_mm_s/*=feedrate_mm_s*/) { planner.buffer_line(current_position, fr_mm_s); } #if HAS_EXTRUDERS void unscaled_e_move(const_float_t length, const_feedRate_t fr_mm_s) { TERN_(HAS_FILAMENT_SENSOR, runout.reset()); current_position.e += length / planner.e_factor[active_extruder]; line_to_current_position(fr_mm_s); planner.synchronize(); } #endif #if IS_KINEMATIC /** * Buffer a fast move without interpolation. Set current_position to destination */ void prepare_fast_move_to_destination(const_feedRate_t scaled_fr_mm_s/*=MMS_SCALED(feedrate_mm_s)*/) { if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_fast_move_to_destination", destination); #if UBL_SEGMENTED // UBL segmented line will do Z-only moves in single segment bedlevel.line_to_destination_segmented(scaled_fr_mm_s); #else if (current_position == destination) return; planner.buffer_line(destination, scaled_fr_mm_s); #endif current_position = destination; } #endif // IS_KINEMATIC /** * Do a fast or normal move to 'destination' with an optional FR. * - Move at normal speed regardless of feedrate percentage. * - Extrude the specified length regardless of flow percentage. */ void _internal_move_to_destination(const_feedRate_t fr_mm_s/*=0.0f*/ OPTARG(IS_KINEMATIC, const bool is_fast/*=false*/) ) { REMEMBER(fr, feedrate_mm_s); REMEMBER(pct, feedrate_percentage, 100); TERN_(HAS_EXTRUDERS, REMEMBER(fac, planner.e_factor[active_extruder], 1.0f)); if (fr_mm_s) feedrate_mm_s = fr_mm_s; if (TERN0(IS_KINEMATIC, is_fast)) TERN(IS_KINEMATIC, prepare_fast_move_to_destination(), NOOP); else prepare_line_to_destination(); } #if SECONDARY_AXES void secondary_axis_moves(SECONDARY_AXIS_ARGS(const_float_t), const_feedRate_t fr_mm_s) { auto move_one = [&](const AxisEnum a, const_float_t p) { const feedRate_t fr = fr_mm_s ?: homing_feedrate(a); current_position[a] = p; line_to_current_position(fr); }; SECONDARY_AXIS_CODE( move_one(I_AXIS, i), move_one(J_AXIS, j), move_one(K_AXIS, k), move_one(U_AXIS, u), move_one(V_AXIS, v), move_one(W_AXIS, w) ); } #endif /** * Plan a move to (X, Y, Z, [I, [J, [K...]]]) and set the current_position * Plan a move to (X, Y, Z, [I, [J, [K...]]]) with separation of Z from other components. * * - If Z is moving up, the Z move is done before XY, etc. * - If Z is moving down, the Z move is done after XY, etc. * - Delta may lower Z first to get into the free motion zone. * - Before returning, wait for the planner buffer to empty. */ void do_blocking_move_to(NUM_AXIS_ARGS_(const_float_t) const_feedRate_t fr_mm_s/*=0.0f*/) { DEBUG_SECTION(log_move, "do_blocking_move_to", DEBUGGING(LEVELING)); #if NUM_AXES if (DEBUGGING(LEVELING)) DEBUG_XYZ("> ", NUM_AXIS_ARGS()); #endif const feedRate_t xy_feedrate = fr_mm_s ?: feedRate_t(XY_PROBE_FEEDRATE_MM_S); #if HAS_Z_AXIS const feedRate_t z_feedrate = fr_mm_s ?: homing_feedrate(Z_AXIS); #endif #if IS_KINEMATIC && DISABLED(POLARGRAPH) // kinematic machines are expected to home to a point 1.5x their range? never reachable. if (!position_is_reachable(x, y)) return; destination = current_position; // sync destination at the start #endif #if ENABLED(DELTA) REMEMBER(fr, feedrate_mm_s, xy_feedrate); if (DEBUGGING(LEVELING)) DEBUG_POS("destination = current_position", destination); // when in the danger zone if (current_position.z > delta_clip_start_height) { if (z > delta_clip_start_height) { // staying in the danger zone destination.set(x, y, z); // move directly (uninterpolated) prepare_internal_fast_move_to_destination(); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position); return; } destination.z = delta_clip_start_height; prepare_internal_fast_move_to_destination(); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position); } if (z > current_position.z) { // raising? destination.z = z; prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position); } destination.set(x, y); prepare_internal_move_to_destination(); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position); if (z < current_position.z) { // lowering? destination.z = z; prepare_internal_fast_move_to_destination(z_feedrate); // set current_position from destination if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position); } #if SECONDARY_AXES secondary_axis_moves(SECONDARY_AXIS_LIST(i, j, k, u, v, w), fr_mm_s); #endif #elif IS_SCARA // If Z needs to raise, do it before moving XY if (destination.z < z) { destination.z = z; prepare_internal_fast_move_to_destination(z_feedrate); } destination.set(x, y); prepare_internal_fast_move_to_destination(xy_feedrate); #if SECONDARY_AXES secondary_axis_moves(SECONDARY_AXIS_LIST(i, j, k, u, v, w), fr_mm_s); #endif // If Z needs to lower, do it after moving XY if (destination.z > z) { destination.z = z; prepare_internal_fast_move_to_destination(z_feedrate); } #else #if HAS_Z_AXIS // If Z needs to raise, do it before moving XY if (current_position.z < z) { current_position.z = z; line_to_current_position(z_feedrate); } #endif current_position.set(TERN_(HAS_X_AXIS, x) OPTARG(HAS_Y_AXIS, y)); line_to_current_position(xy_feedrate); #if SECONDARY_AXES secondary_axis_moves(SECONDARY_AXIS_LIST(i, j, k, u, v, w), fr_mm_s); #endif #if HAS_Z_AXIS // If Z needs to lower, do it after moving XY if (current_position.z > z) { current_position.z = z; line_to_current_position(z_feedrate); } #endif #endif planner.synchronize(); } void do_blocking_move_to(const xy_pos_t &raw, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to(NUM_AXIS_LIST_(raw.x, raw.y, current_position.z, current_position.i, current_position.j, current_position.k, current_position.u, current_position.v, current_position.w) fr_mm_s); } void do_blocking_move_to(const xyz_pos_t &raw, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to(NUM_AXIS_ELEM_(raw) fr_mm_s); } void do_blocking_move_to(const xyze_pos_t &raw, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to(NUM_AXIS_ELEM_(raw) fr_mm_s); } #if HAS_X_AXIS void do_blocking_move_to_x(const_float_t rx, const_feedRate_t fr_mm_s/*=0.0*/) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("do_blocking_move_to_x(", rx, ", ", fr_mm_s, ")"); do_blocking_move_to( NUM_AXIS_LIST_(rx, current_position.y, current_position.z, current_position.i, current_position.j, current_position.k, current_position.u, current_position.v, current_position.w) fr_mm_s ); } #endif #if HAS_Y_AXIS void do_blocking_move_to_y(const_float_t ry, const_feedRate_t fr_mm_s/*=0.0*/) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("do_blocking_move_to_y(", ry, ", ", fr_mm_s, ")"); do_blocking_move_to( NUM_AXIS_LIST_(current_position.x, ry, current_position.z, current_position.i, current_position.j, current_position.k, current_position.u, current_position.v, current_position.w) fr_mm_s ); } void do_blocking_move_to_xy(const_float_t rx, const_float_t ry, const_feedRate_t fr_mm_s/*=0.0*/) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("do_blocking_move_to_xy(", rx, ", ", ry, ", ", fr_mm_s, ")"); do_blocking_move_to( NUM_AXIS_LIST_(rx, ry, current_position.z, current_position.i, current_position.j, current_position.k, current_position.u, current_position.v, current_position.w) fr_mm_s ); } void do_blocking_move_to_xy(const xy_pos_t &raw, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to_xy(raw.x, raw.y, fr_mm_s); } #endif #if HAS_Z_AXIS void do_blocking_move_to_z(const_float_t rz, const_feedRate_t fr_mm_s/*=0.0*/) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("do_blocking_move_to_z(", rz, ", ", fr_mm_s, ")"); do_blocking_move_to_xy_z(current_position, rz, fr_mm_s); } void do_blocking_move_to_xy_z(const xy_pos_t &raw, const_float_t z, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to( NUM_AXIS_LIST_(raw.x, raw.y, z, current_position.i, current_position.j, current_position.k, current_position.u, current_position.v, current_position.w) fr_mm_s ); } /** * Move Z to a particular height so the nozzle or deployed probe clears the bed. * (Use do_z_clearance_by for clearance over the current position.) * - For a probe, add clearance for the probe distance * - Constrain to the Z max physical position * - If lowering is not allowed then skip a downward move * - Execute the move at the probing (or homing) feedrate */ void do_z_clearance(const_float_t zclear, const bool with_probe/*=true*/, const bool lower_allowed/*=false*/) { UNUSED(with_probe); float zdest = zclear; TERN_(HAS_BED_PROBE, if (with_probe && probe.offset.z < 0) zdest -= probe.offset.z); NOMORE(zdest, Z_MAX_POS); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("do_z_clearance(", zclear, " [", current_position.z, " to ", zdest, "], ", lower_allowed, ")"); if ((!lower_allowed && zdest < current_position.z) || zdest == current_position.z) return; do_blocking_move_to_z(zdest, TERN(HAS_BED_PROBE, z_probe_fast_mm_s, homing_feedrate(Z_AXIS))); } void do_z_clearance_by(const_float_t zclear) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("do_z_clearance_by(", zclear, ")"); do_z_clearance(current_position.z + zclear, false); } /** * Move Z to Z_POST_CLEARANCE, * The axis is allowed to move down. */ void do_move_after_z_homing() { DEBUG_SECTION(mzah, "do_move_after_z_homing", DEBUGGING(LEVELING)); #ifdef Z_POST_CLEARANCE do_z_clearance(Z_POST_CLEARANCE, true, true); #elif ENABLED(USE_PROBE_FOR_Z_HOMING) probe.move_z_after_probing(); #endif } #endif #if HAS_I_AXIS void do_blocking_move_to_xyz_i(const xyze_pos_t &raw, const_float_t i, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to( NUM_AXIS_LIST_(raw.x, raw.y, raw.z, i, raw.j, raw.k, raw.u, raw.v, raw.w) fr_mm_s ); } void do_blocking_move_to_i(const_float_t ri, const_feedRate_t fr_mm_s/*=0.0*/) { do_blocking_move_to_xyz_i(current_position, ri, fr_mm_s); } #endif #if HAS_J_AXIS void do_blocking_move_to_xyzi_j(const xyze_pos_t &raw, const_float_t j, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to( NUM_AXIS_LIST_(raw.x, raw.y, raw.z, raw.i, j, raw.k, raw.u, raw.v, raw.w) fr_mm_s ); } void do_blocking_move_to_j(const_float_t rj, const_feedRate_t fr_mm_s/*=0.0*/) { do_blocking_move_to_xyzi_j(current_position, rj, fr_mm_s); } #endif #if HAS_K_AXIS void do_blocking_move_to_xyzij_k(const xyze_pos_t &raw, const_float_t k, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to( NUM_AXIS_LIST_(raw.x, raw.y, raw.z, raw.i, raw.j, k, raw.u, raw.v, raw.w) fr_mm_s ); } void do_blocking_move_to_k(const_float_t rk, const_feedRate_t fr_mm_s/*=0.0*/) { do_blocking_move_to_xyzij_k(current_position, rk, fr_mm_s); } #endif #if HAS_U_AXIS void do_blocking_move_to_xyzijk_u(const xyze_pos_t &raw, const_float_t u, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to( NUM_AXIS_LIST_(raw.x, raw.y, raw.z, raw.i, raw.j, raw.k, u, raw.v, raw.w) fr_mm_s ); } void do_blocking_move_to_u(const_float_t ru, const_feedRate_t fr_mm_s/*=0.0*/) { do_blocking_move_to_xyzijk_u(current_position, ru, fr_mm_s); } #endif #if HAS_V_AXIS void do_blocking_move_to_xyzijku_v(const xyze_pos_t &raw, const_float_t v, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to( NUM_AXIS_LIST_(raw.x, raw.y, raw.z, raw.i, raw.j, raw.k, raw.u, v, raw.w) fr_mm_s ); } void do_blocking_move_to_v(const_float_t rv, const_feedRate_t fr_mm_s/*=0.0*/) { do_blocking_move_to_xyzijku_v(current_position, rv, fr_mm_s); } #endif #if HAS_W_AXIS void do_blocking_move_to_xyzijkuv_w(const xyze_pos_t &raw, const_float_t w, const_feedRate_t fr_mm_s/*=0.0f*/) { do_blocking_move_to( NUM_AXIS_LIST_(raw.x, raw.y, raw.z, raw.i, raw.j, raw.k, raw.u, raw.v, w) fr_mm_s ); } void do_blocking_move_to_w(const_float_t rw, const_feedRate_t fr_mm_s/*=0.0*/) { do_blocking_move_to_xyzijkuv_w(current_position, rw, fr_mm_s); } #endif // // Prepare to do endstop or probe moves with custom feedrates. // - Save / restore current feedrate and multiplier // static float saved_feedrate_mm_s; static int16_t saved_feedrate_percentage; void remember_feedrate_scaling_off() { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("remember_feedrate_scaling_off: fr=", feedrate_mm_s, " ", feedrate_percentage, "%"); saved_feedrate_mm_s = feedrate_mm_s; saved_feedrate_percentage = feedrate_percentage; feedrate_percentage = 100; } void restore_feedrate_and_scaling() { feedrate_mm_s = saved_feedrate_mm_s; feedrate_percentage = saved_feedrate_percentage; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("restore_feedrate_and_scaling: fr=", feedrate_mm_s, " ", feedrate_percentage, "%"); } #if HAS_SOFTWARE_ENDSTOPS // Software Endstops are based on the configured limits. #define _AMIN(A) A##_MIN_POS #define _AMAX(A) A##_MAX_POS soft_endstops_t soft_endstop = { true, false, { MAPLIST(_AMIN, MAIN_AXIS_NAMES) }, { MAPLIST(_AMAX, MAIN_AXIS_NAMES) }, }; /** * Software endstops can be used to monitor the open end of * an axis that has a hardware endstop on the other end. Or * they can prevent axes from moving past endstops and grinding. * * To keep doing their job as the coordinate system changes, * the software endstop positions must be refreshed to remain * at the same positions relative to the machine. */ void update_software_endstops(const AxisEnum axis OPTARG(HAS_HOTEND_OFFSET, const uint8_t old_tool_index/*=0*/, const uint8_t new_tool_index/*=0*/) ) { #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { // In Dual X mode hotend_offset[X] is T1's home position const float dual_max_x = _MAX(hotend_offset[1].x, X2_MAX_POS); if (new_tool_index != 0) { // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger) soft_endstop.min.x = X2_MIN_POS; soft_endstop.max.x = dual_max_x; } else if (idex_is_duplicating()) { // In Duplication Mode, T0 can move as far left as X1_MIN_POS // but not so far to the right that T1 would move past the end soft_endstop.min.x = X1_MIN_POS; soft_endstop.max.x = _MIN(X1_MAX_POS, dual_max_x - duplicate_extruder_x_offset); } else { // In other modes, T0 can move from X1_MIN_POS to X1_MAX_POS soft_endstop.min.x = X1_MIN_POS; soft_endstop.max.x = X1_MAX_POS; } } #elif ENABLED(DELTA) soft_endstop.min[axis] = base_min_pos(axis); soft_endstop.max[axis] = (axis == Z_AXIS) ? DIFF_TERN(USE_PROBE_FOR_Z_HOMING, delta_height, probe.offset.z) : base_home_pos(axis); switch (axis) { case X_AXIS: case Y_AXIS: // Get a minimum radius for clamping delta_max_radius = _MIN(ABS(_MAX(soft_endstop.min.x, soft_endstop.min.y)), soft_endstop.max.x, soft_endstop.max.y); delta_max_radius_2 = sq(delta_max_radius); break; case Z_AXIS: refresh_delta_clip_start_height(); default: break; } #elif HAS_HOTEND_OFFSET // Software endstops are relative to the tool 0 workspace, so // the movement limits must be shifted by the tool offset to // retain the same physical limit when other tools are selected. if (new_tool_index == old_tool_index || axis == Z_AXIS) { // The Z axis is "special" and shouldn't be modified const float offs = (axis == Z_AXIS) ? 0 : hotend_offset[active_extruder][axis]; soft_endstop.min[axis] = base_min_pos(axis) + offs; soft_endstop.max[axis] = base_max_pos(axis) + offs; } else { const float diff = hotend_offset[new_tool_index][axis] - hotend_offset[old_tool_index][axis]; soft_endstop.min[axis] += diff; soft_endstop.max[axis] += diff; } #else soft_endstop.min[axis] = base_min_pos(axis); soft_endstop.max[axis] = base_max_pos(axis); #endif if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Axis ", C(AXIS_CHAR(axis)), " min:", soft_endstop.min[axis], " max:", soft_endstop.max[axis]); } /** * Constrain the given coordinates to the software endstops. * * For DELTA/SCARA the XY constraint is based on the smallest * radius within the set software endstops. */ void apply_motion_limits(xyz_pos_t &target) { if (!soft_endstop._enabled) return; #if IS_KINEMATIC if (TERN0(DELTA, !all_axes_homed())) return; #if ALL(HAS_HOTEND_OFFSET, DELTA) // The effector center position will be the target minus the hotend offset. const xy_pos_t offs = hotend_offset[active_extruder]; #elif ENABLED(POLARGRAPH) // POLARGRAPH uses draw_area_* below... #elif ENABLED(POLAR) // For now, we don't limit POLAR #else // SCARA needs to consider the angle of the arm through the entire move, so for now use no tool offset. constexpr xy_pos_t offs{0}; #endif #if ENABLED(POLARGRAPH) LIMIT(target.x, draw_area_min.x, draw_area_max.x); LIMIT(target.y, draw_area_min.y, draw_area_max.y); #elif ENABLED(POLAR) // Motion limits are as same as cartesian limits. #else if (TERN1(IS_SCARA, axis_was_homed(X_AXIS) && axis_was_homed(Y_AXIS))) { const float dist_2 = HYPOT2(target.x - offs.x, target.y - offs.y); if (dist_2 > delta_max_radius_2) target *= float(delta_max_radius / SQRT(dist_2)); // 200 / 300 = 0.66 } #endif #else #if HAS_X_AXIS if (axis_was_homed(X_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_X) NOLESS(target.x, soft_endstop.min.x); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_X) NOMORE(target.x, soft_endstop.max.x); #endif } #endif #if HAS_Y_AXIS if (axis_was_homed(Y_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Y) NOLESS(target.y, soft_endstop.min.y); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Y) NOMORE(target.y, soft_endstop.max.y); #endif } #endif #endif #if HAS_Z_AXIS if (axis_was_homed(Z_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_Z) NOLESS(target.z, soft_endstop.min.z); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_Z) NOMORE(target.z, soft_endstop.max.z); #endif } #endif #if HAS_I_AXIS if (axis_was_homed(I_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_I) NOLESS(target.i, soft_endstop.min.i); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_I) NOMORE(target.i, soft_endstop.max.i); #endif } #endif #if HAS_J_AXIS if (axis_was_homed(J_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_J) NOLESS(target.j, soft_endstop.min.j); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_J) NOMORE(target.j, soft_endstop.max.j); #endif } #endif #if HAS_K_AXIS if (axis_was_homed(K_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_K) NOLESS(target.k, soft_endstop.min.k); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_K) NOMORE(target.k, soft_endstop.max.k); #endif } #endif #if HAS_U_AXIS if (axis_was_homed(U_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_U) NOLESS(target.u, soft_endstop.min.u); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_U) NOMORE(target.u, soft_endstop.max.u); #endif } #endif #if HAS_V_AXIS if (axis_was_homed(V_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_V) NOLESS(target.v, soft_endstop.min.v); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_V) NOMORE(target.v, soft_endstop.max.v); #endif } #endif #if HAS_W_AXIS if (axis_was_homed(W_AXIS)) { #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MIN_SOFTWARE_ENDSTOP_W) NOLESS(target.w, soft_endstop.min.w); #endif #if !HAS_SOFTWARE_ENDSTOPS || ENABLED(MAX_SOFTWARE_ENDSTOP_W) NOMORE(target.w, soft_endstop.max.w); #endif } #endif } #else // !HAS_SOFTWARE_ENDSTOPS soft_endstops_t soft_endstop; #endif // !HAS_SOFTWARE_ENDSTOPS FORCE_INLINE void segment_idle(millis_t &next_idle_ms) { const millis_t ms = millis(); if (ELAPSED(ms, next_idle_ms)) { next_idle_ms = ms + 200UL; return idle(); } thermalManager.task(); // Returns immediately on most calls } /** * Get distance from displacements along axes and, if required, update move type. */ float get_move_distance(const xyze_pos_t &diff OPTARG(HAS_ROTATIONAL_AXES, bool &is_cartesian_move)) { #if NUM_AXES if (!(NUM_AXIS_GANG(diff.x, || diff.y, /* skip z */, || diff.i, || diff.j, || diff.k, || diff.u, || diff.v, || diff.w))) return TERN0(HAS_Z_AXIS, ABS(diff.z)); #if ENABLED(ARTICULATED_ROBOT_ARM) // For articulated robots, interpreting feedrate like LinuxCNC would require inverse kinematics. As a workaround, pretend that motors sit on n mutually orthogonal // axes and assume that we could think of distance as magnitude of an n-vector in an n-dimensional Euclidian space. const float distance_sqr = NUM_AXIS_GANG( sq(diff.x), + sq(diff.y), + sq(diff.z), + sq(diff.i), + sq(diff.j), + sq(diff.k), + sq(diff.u), + sq(diff.v), + sq(diff.w) ); #elif ENABLED(FOAMCUTTER_XYUV) const float distance_sqr = ( #if HAS_J_AXIS _MAX(sq(diff.x) + sq(diff.y), sq(diff.i) + sq(diff.j)) // Special 5 axis kinematics. Return the larger of plane X/Y or I/J #else sq(diff.x) + sq(diff.y) // Foamcutter with only two axes (XY) #endif ); #else /** * Calculate distance for feedrate interpretation in accordance with NIST RS274NGC interpreter - version 3) and its default CANON_XYZ feed reference mode. * Assume: * - X, Y, Z are the primary linear axes; * - U, V, W are secondary linear axes; * - A, B, C are rotational axes. * * Then: * - dX, dY, dZ are the displacements of the primary linear axes; * - dU, dV, dW are the displacements of linear axes; * - dA, dB, dC are the displacements of rotational axes. * * The time it takes to execute a move command with feedrate F is t = D/F, * plus any time for acceleration and deceleration. * Here, D is the total distance, calculated as follows: * * D^2 = dX^2 + dY^2 + dZ^2 * if D^2 == 0 (none of XYZ move but any secondary linear axes move, whether other axes are moved or not): * D^2 = dU^2 + dV^2 + dW^2 * if D^2 == 0 (only rotational axes are moved): * D^2 = dA^2 + dB^2 + dC^2 */ float distance_sqr = XYZ_GANG(sq(diff.x), + sq(diff.y), + sq(diff.z)); #if SECONDARY_LINEAR_AXES if (UNEAR_ZERO(distance_sqr)) { // Move does not involve any primary linear axes (xyz) but might involve secondary linear axes distance_sqr = ( SECONDARY_AXIS_GANG( IF_DISABLED(AXIS4_ROTATES, + sq(diff.i)), IF_DISABLED(AXIS5_ROTATES, + sq(diff.j)), IF_DISABLED(AXIS6_ROTATES, + sq(diff.k)), IF_DISABLED(AXIS7_ROTATES, + sq(diff.u)), IF_DISABLED(AXIS8_ROTATES, + sq(diff.v)), IF_DISABLED(AXIS9_ROTATES, + sq(diff.w)) ) ); } #endif #if HAS_ROTATIONAL_AXES if (UNEAR_ZERO(distance_sqr)) { // Move involves no linear axes. Calculate angular distance in accordance with LinuxCNC distance_sqr = ROTATIONAL_AXIS_GANG(sq(diff.i), + sq(diff.j), + sq(diff.k), + sq(diff.u), + sq(diff.v), + sq(diff.w)); } if (!UNEAR_ZERO(distance_sqr)) { // Move involves rotational axes, not just the extruder is_cartesian_move = false; } #endif #endif return SQRT(distance_sqr); #else return 0; #endif } #if IS_KINEMATIC #if IS_SCARA /** * Before raising this value, use M665 S[seg_per_sec] to decrease * the number of segments-per-second. Default is 200. Some deltas * do better with 160 or lower. It would be good to know how many * segments-per-second are actually possible for SCARA on AVR. * * Longer segments result in less kinematic overhead * but may produce jagged lines. Try 0.5mm, 1.0mm, and 2.0mm * and compare the difference. */ #define SCARA_MIN_SEGMENT_LENGTH 0.5f #elif ENABLED(POLAR) #define POLAR_MIN_SEGMENT_LENGTH 0.5f #endif /** * Prepare a linear move in a DELTA or SCARA setup. * * Called from prepare_line_to_destination as the * default Delta/SCARA segmenter. * * This calls planner.buffer_line several times, adding * small incremental moves for DELTA or SCARA. * * For Unified Bed Leveling (Delta or Segmented Cartesian) * the bedlevel.line_to_destination_segmented method replaces this. * * For Auto Bed Leveling (Bilinear) with SEGMENT_LEVELED_MOVES * this is replaced by segmented_line_to_destination below. */ inline bool line_to_destination_kinematic() { // Get the top feedrate of the move in the XY plane const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s); const xyze_float_t diff = destination - current_position; // If the move is only in Z/E don't split up the move if (!diff.x && !diff.y) { planner.buffer_line(destination, scaled_fr_mm_s); return false; // caller will update current_position } // Fail if attempting move outside printable radius if (!position_is_reachable(destination)) return true; // Get the linear distance in XYZ #if HAS_ROTATIONAL_AXES bool cartes_move = true; #endif float cartesian_mm = get_move_distance(diff OPTARG(HAS_ROTATIONAL_AXES, cartes_move)); // If the move is very short, check the E move distance TERN_(HAS_EXTRUDERS, if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e)); // No E move either? Game over. if (UNEAR_ZERO(cartesian_mm)) return true; // Minimum number of seconds to move the given distance const float seconds = cartesian_mm / ( #if ALL(HAS_ROTATIONAL_AXES, INCH_MODE_SUPPORT) cartes_move ? scaled_fr_mm_s : LINEAR_UNIT(scaled_fr_mm_s) #else scaled_fr_mm_s #endif ); // The number of segments-per-second times the duration // gives the number of segments uint16_t segments = segments_per_second * seconds; // For SCARA enforce a minimum segment size #if IS_SCARA NOMORE(segments, cartesian_mm * RECIPROCAL(SCARA_MIN_SEGMENT_LENGTH)); #elif ENABLED(POLAR) NOMORE(segments, cartesian_mm * RECIPROCAL(POLAR_MIN_SEGMENT_LENGTH)); #endif // At least one segment is required NOLESS(segments, 1U); // The approximate length of each segment const float inv_segments = 1.0f / float(segments); const xyze_float_t segment_distance = diff * inv_segments; // Add hints to help optimize the move PlannerHints hints(cartesian_mm * inv_segments); TERN_(HAS_ROTATIONAL_AXES, hints.cartesian_move = cartes_move); TERN_(FEEDRATE_SCALING, hints.inv_duration = scaled_fr_mm_s / hints.millimeters); /* SERIAL_ECHOPGM("mm=", cartesian_mm); SERIAL_ECHOPGM(" seconds=", seconds); SERIAL_ECHOPGM(" segments=", segments); SERIAL_ECHOPGM(" segment_mm=", hints.millimeters); SERIAL_EOL(); //*/ // Get the current position as starting point xyze_pos_t raw = current_position; // Calculate and execute the segments millis_t next_idle_ms = millis() + 200UL; while (--segments) { segment_idle(next_idle_ms); raw += segment_distance; if (!planner.buffer_line(raw, scaled_fr_mm_s, active_extruder, hints)) break; } // Ensure last segment arrives at target location. planner.buffer_line(destination, scaled_fr_mm_s, active_extruder, hints); return false; // caller will update current_position } #else // !IS_KINEMATIC #if ENABLED(SEGMENT_LEVELED_MOVES) && DISABLED(AUTO_BED_LEVELING_UBL) /** * Prepare a segmented move on a CARTESIAN setup. * * This calls planner.buffer_line several times, adding * small incremental moves. This allows the planner to * apply more detailed bed leveling to the full move. */ inline void segmented_line_to_destination(const_feedRate_t fr_mm_s, const float segment_size=LEVELED_SEGMENT_LENGTH) { const xyze_float_t diff = destination - current_position; // If the move is only in Z/E don't split up the move if (!diff.x && !diff.y) { planner.buffer_line(destination, fr_mm_s); return; } // Get the linear distance in XYZ #if HAS_ROTATIONAL_AXES bool cartes_move = true; #endif float cartesian_mm = get_move_distance(diff OPTARG(HAS_ROTATIONAL_AXES, cartes_move)); // If the move is very short, check the E move distance TERN_(HAS_EXTRUDERS, if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = ABS(diff.e)); // No E move either? Game over. if (UNEAR_ZERO(cartesian_mm)) return; // The length divided by the segment size // At least one segment is required uint16_t segments = cartesian_mm / segment_size; NOLESS(segments, 1U); // The approximate length of each segment const float inv_segments = 1.0f / float(segments); const xyze_float_t segment_distance = diff * inv_segments; // Add hints to help optimize the move PlannerHints hints(cartesian_mm * inv_segments); TERN_(HAS_ROTATIONAL_AXES, hints.cartesian_move = cartes_move); TERN_(FEEDRATE_SCALING, hints.inv_duration = scaled_fr_mm_s / hints.millimeters); //SERIAL_ECHOPGM("mm=", cartesian_mm); //SERIAL_ECHOLNPGM(" segments=", segments); //SERIAL_ECHOLNPGM(" segment_mm=", hints.millimeters); // Get the raw current position as starting point xyze_pos_t raw = current_position; // Calculate and execute the segments millis_t next_idle_ms = millis() + 200UL; while (--segments) { segment_idle(next_idle_ms); raw += segment_distance; if (!planner.buffer_line(raw, fr_mm_s, active_extruder, hints)) break; } // Since segment_distance is only approximate, // the final move must be to the exact destination. planner.buffer_line(destination, fr_mm_s, active_extruder, hints); } #endif // SEGMENT_LEVELED_MOVES && !AUTO_BED_LEVELING_UBL /** * Prepare a linear move in a Cartesian setup. * * When a mesh-based leveling system is active, moves are segmented * according to the configuration of the leveling system. * * Return true if 'current_position' was set to 'destination' */ inline bool line_to_destination_cartesian() { const float scaled_fr_mm_s = MMS_SCALED(feedrate_mm_s); #if HAS_MESH if (planner.leveling_active && planner.leveling_active_at_z(destination.z)) { #if ENABLED(AUTO_BED_LEVELING_UBL) #if UBL_SEGMENTED return bedlevel.line_to_destination_segmented(scaled_fr_mm_s); #else bedlevel.line_to_destination_cartesian(scaled_fr_mm_s, active_extruder); // UBL's motion routine needs to know about return true; // all moves, including Z-only moves. #endif #elif ENABLED(SEGMENT_LEVELED_MOVES) segmented_line_to_destination(scaled_fr_mm_s); return false; // caller will update current_position #else /** * For MBL and ABL-BILINEAR only segment moves when X or Y are involved. * Otherwise fall through to do a direct single move. */ if (xy_pos_t(current_position) != xy_pos_t(destination)) { #if ENABLED(MESH_BED_LEVELING) bedlevel.line_to_destination(scaled_fr_mm_s); #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) bedlevel.line_to_destination(scaled_fr_mm_s); #endif return true; } #endif } #endif // HAS_MESH planner.buffer_line(destination, scaled_fr_mm_s); return false; // caller will update current_position } #endif // !IS_KINEMATIC #if HAS_DUPLICATION_MODE bool extruder_duplication_enabled; #if ENABLED(MULTI_NOZZLE_DUPLICATION) uint8_t duplication_e_mask; // = 0 #endif #endif #if ENABLED(DUAL_X_CARRIAGE) DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; float inactive_extruder_x = X2_MAX_POS, // Used in mode 0 & 1 duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // Used in mode 2 & 3 xyz_pos_t raised_parked_position; // Used in mode 1 bool active_extruder_parked = false; // Used in mode 1, 2 & 3 millis_t delayed_move_time = 0; // Used in mode 1 celsius_t duplicate_extruder_temp_offset = 0; // Used in mode 2 & 3 bool idex_mirrored_mode = false; // Used in mode 3 float x_home_pos(const uint8_t extruder) { if (extruder == 0) return X_HOME_POS; /** * In dual carriage mode the extruder offset provides an override of the * second X-carriage position when homed - otherwise X2_HOME_POS is used. * This allows soft recalibration of the second extruder home position * (with M218 T1 Xn) without firmware reflash. */ return hotend_offset[1].x > 0 ? hotend_offset[1].x : X2_HOME_POS; } void idex_set_mirrored_mode(const bool mirr) { idex_mirrored_mode = mirr; stepper.apply_directions(); } void set_duplication_enabled(const bool dupe, const int8_t tool_index/*=-1*/) { extruder_duplication_enabled = dupe; if (tool_index >= 0) active_extruder = tool_index; stepper.apply_directions(); } void idex_set_parked(const bool park/*=true*/) { delayed_move_time = 0; active_extruder_parked = park; if (park) raised_parked_position = current_position; // Remember current raised toolhead position for use by unpark } /** * Prepare a linear move in a dual X axis setup * * Return true if current_position[] was set to destination[] */ inline bool dual_x_carriage_unpark() { if (active_extruder_parked) { switch (dual_x_carriage_mode) { case DXC_FULL_CONTROL_MODE: break; case DXC_AUTO_PARK_MODE: { if (current_position.e == destination.e) { // This is a travel move (with no extrusion) // Skip it, but keep track of the current position // (so it can be used as the start of the next non-travel move) if (delayed_move_time != 0xFFFFFFFFUL) { current_position = destination; NOLESS(raised_parked_position.z, destination.z); delayed_move_time = millis() + 1000UL; return true; } } // // Un-park the active extruder // const feedRate_t fr_zfast = planner.settings.max_feedrate_mm_s[Z_AXIS]; // 1. Move to the raised parked XYZ. Presumably the tool is already at XY. xyze_pos_t raised = raised_parked_position; raised.e = current_position.e; if (planner.buffer_line(raised, fr_zfast)) { // 2. Move to the current native XY and raised Z. Presumably this is a null move. xyze_pos_t curpos = current_position; curpos.z = raised_parked_position.z; if (planner.buffer_line(curpos, PLANNER_XY_FEEDRATE())) { // 3. Lower Z back down line_to_current_position(fr_zfast); } } stepper.apply_directions(); idex_set_parked(false); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("idex_set_parked(false)"); } break; case DXC_MIRRORED_MODE: case DXC_DUPLICATION_MODE: if (active_extruder == 0) { set_duplication_enabled(false); // Clear stale duplication state // Restore planner to parked head (T1) X position float x0_pos = current_position.x; xyze_pos_t pos_now = current_position; pos_now.x = inactive_extruder_x; planner.set_position_mm(pos_now); // Keep the same X or add the duplication X offset xyze_pos_t new_pos = pos_now; if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) new_pos.x = x0_pos + duplicate_extruder_x_offset; else new_pos.x = _MIN(X_BED_SIZE - x0_pos, X_MAX_POS); // Move duplicate extruder into the correct position if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Set planner X", inactive_extruder_x, " ... Line to X", new_pos.x); if (!planner.buffer_line(new_pos, planner.settings.max_feedrate_mm_s[X_AXIS], 1)) break; planner.synchronize(); sync_plan_position(); // Extra sync for good measure set_duplication_enabled(true); // Enable Duplication idex_set_parked(false); // No longer parked if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("set_duplication_enabled(true)\nidex_set_parked(false)"); } else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Active extruder not 0"); break; } } return false; } #endif // DUAL_X_CARRIAGE /** * Prepare a single move and get ready for the next one * * This may result in several calls to planner.buffer_line to * do smaller moves for DELTA, SCARA, mesh moves, etc. * * Make sure current_position.e and destination.e are good * before calling or cold/lengthy extrusion may get missed. * * Before exit, current_position is set to destination. */ void prepare_line_to_destination() { apply_motion_limits(destination); #if ANY(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE) if (!DEBUGGING(DRYRUN) && destination.e != current_position.e) { bool ignore_e = thermalManager.tooColdToExtrude(active_extruder); if (ignore_e) SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP); #if ENABLED(PREVENT_LENGTHY_EXTRUDE) const float e_delta = ABS(destination.e - current_position.e) * planner.e_factor[active_extruder]; if (e_delta > (EXTRUDE_MAXLENGTH)) { #if ENABLED(MIXING_EXTRUDER) float collector[MIXING_STEPPERS]; mixer.refresh_collector(1.0, mixer.get_current_vtool(), collector); MIXER_STEPPER_LOOP(e) { if (e_delta * collector[e] > (EXTRUDE_MAXLENGTH)) { ignore_e = true; SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP); break; } } #else ignore_e = true; SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP); #endif } #endif if (ignore_e) { current_position.e = destination.e; // Behave as if the E move really took place planner.set_e_position_mm(destination.e); // Prevent the planner from complaining too } } #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE if (TERN0(DUAL_X_CARRIAGE, dual_x_carriage_unpark())) return; if ( #if UBL_SEGMENTED #if IS_KINEMATIC // UBL using Kinematic / Cartesian cases as a workaround for now. bedlevel.line_to_destination_segmented(MMS_SCALED(feedrate_mm_s)) #else line_to_destination_cartesian() #endif #elif IS_KINEMATIC line_to_destination_kinematic() #else line_to_destination_cartesian() #endif ) return; current_position = destination; } #if HAS_ENDSTOPS main_axes_bits_t axes_homed, axes_trusted; // = 0 main_axes_bits_t axes_should_home(main_axes_bits_t axis_bits/*=main_axes_mask*/) { auto set_should = [](main_axes_bits_t &b, AxisEnum a) { if (TEST(b, a) && TERN(HOME_AFTER_DEACTIVATE, axis_is_trusted, axis_was_homed)(a)) CBI(b, a); }; // Clear test bits that are trusted NUM_AXIS_CODE( set_should(axis_bits, X_AXIS), set_should(axis_bits, Y_AXIS), set_should(axis_bits, Z_AXIS), set_should(axis_bits, I_AXIS), set_should(axis_bits, J_AXIS), set_should(axis_bits, K_AXIS), set_should(axis_bits, U_AXIS), set_should(axis_bits, V_AXIS), set_should(axis_bits, W_AXIS) ); return axis_bits; } bool homing_needed_error(main_axes_bits_t axis_bits/*=main_axes_mask*/) { if (!(axis_bits &= axes_should_home(axis_bits))) return false; char all_axes[] = STR_AXES_MAIN, need[NUM_AXES + 1]; uint8_t n = 0; LOOP_NUM_AXES(i) if (TEST(axis_bits, i)) need[n++] = all_axes[i]; need[n] = '\0'; SString<30> msg; msg.setf(GET_EN_TEXT_F(MSG_HOME_FIRST), need); SERIAL_ECHO_START(); msg.echoln(); msg.setf(GET_TEXT_F(MSG_HOME_FIRST), need); ui.set_status(msg); return true; } /** * Homing bump feedrate (mm/s) */ feedRate_t get_homing_bump_feedrate(const AxisEnum axis) { #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS) return MMM_TO_MMS(Z_PROBE_FEEDRATE_SLOW); #endif static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR; uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]); if (hbd < 1) { hbd = 10; SERIAL_ECHO_MSG("Warning: Homing Bump Divisor < 1"); } return homing_feedrate(axis) / float(hbd); } #if ENABLED(SENSORLESS_HOMING) /** * Set sensorless homing if the axis has it, accounting for Core Kinematics. */ sensorless_t start_sensorless_homing_per_axis(const AxisEnum axis) { sensorless_t stealth_states { false }; switch (axis) { default: break; #if X_SENSORLESS case X_AXIS: stealth_states.x = tmc_enable_stallguard(stepperX); TERN_(X2_SENSORLESS, stealth_states.x2 = tmc_enable_stallguard(stepperX2)); #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) && Y_SENSORLESS stealth_states.y = tmc_enable_stallguard(stepperY); #elif CORE_IS_XZ && Z_SENSORLESS stealth_states.z = tmc_enable_stallguard(stepperZ); #endif break; #endif #if Y_SENSORLESS case Y_AXIS: stealth_states.y = tmc_enable_stallguard(stepperY); TERN_(Y2_SENSORLESS, stealth_states.y2 = tmc_enable_stallguard(stepperY2)); #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) && X_SENSORLESS stealth_states.x = tmc_enable_stallguard(stepperX); #elif CORE_IS_YZ && Z_SENSORLESS stealth_states.z = tmc_enable_stallguard(stepperZ); #endif break; #endif #if Z_SENSORLESS case Z_AXIS: stealth_states.z = tmc_enable_stallguard(stepperZ); TERN_(Z2_SENSORLESS, stealth_states.z2 = tmc_enable_stallguard(stepperZ2)); TERN_(Z3_SENSORLESS, stealth_states.z3 = tmc_enable_stallguard(stepperZ3)); TERN_(Z4_SENSORLESS, stealth_states.z4 = tmc_enable_stallguard(stepperZ4)); #if CORE_IS_XZ && X_SENSORLESS stealth_states.x = tmc_enable_stallguard(stepperX); #elif CORE_IS_YZ && Y_SENSORLESS stealth_states.y = tmc_enable_stallguard(stepperY); #endif break; #endif #if I_SENSORLESS case I_AXIS: stealth_states.i = tmc_enable_stallguard(stepperI); break; #endif #if J_SENSORLESS case J_AXIS: stealth_states.j = tmc_enable_stallguard(stepperJ); break; #endif #if K_SENSORLESS case K_AXIS: stealth_states.k = tmc_enable_stallguard(stepperK); break; #endif #if U_SENSORLESS case U_AXIS: stealth_states.u = tmc_enable_stallguard(stepperU); break; #endif #if V_SENSORLESS case V_AXIS: stealth_states.v = tmc_enable_stallguard(stepperV); break; #endif #if W_SENSORLESS case W_AXIS: stealth_states.w = tmc_enable_stallguard(stepperW); break; #endif } switch (axis) { #if X_SPI_SENSORLESS case X_AXIS: endstops.tmc_spi_homing.x = true; break; #endif #if Y_SPI_SENSORLESS case Y_AXIS: endstops.tmc_spi_homing.y = true; break; #endif #if Z_SPI_SENSORLESS case Z_AXIS: endstops.tmc_spi_homing.z = true; break; #endif #if I_SPI_SENSORLESS case I_AXIS: endstops.tmc_spi_homing.i = true; break; #endif #if J_SPI_SENSORLESS case J_AXIS: endstops.tmc_spi_homing.j = true; break; #endif #if K_SPI_SENSORLESS case K_AXIS: endstops.tmc_spi_homing.k = true; break; #endif #if U_SPI_SENSORLESS case U_AXIS: endstops.tmc_spi_homing.u = true; break; #endif #if V_SPI_SENSORLESS case V_AXIS: endstops.tmc_spi_homing.v = true; break; #endif #if W_SPI_SENSORLESS case W_AXIS: endstops.tmc_spi_homing.w = true; break; #endif default: break; } TERN_(IMPROVE_HOMING_RELIABILITY, sg_guard_period = millis() + default_sg_guard_duration); return stealth_states; } void end_sensorless_homing_per_axis(const AxisEnum axis, sensorless_t enable_stealth) { switch (axis) { default: break; #if X_SENSORLESS case X_AXIS: tmc_disable_stallguard(stepperX, enable_stealth.x); TERN_(X2_SENSORLESS, tmc_disable_stallguard(stepperX2, enable_stealth.x2)); #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) && Y_SENSORLESS tmc_disable_stallguard(stepperY, enable_stealth.y); #elif CORE_IS_XZ && Z_SENSORLESS tmc_disable_stallguard(stepperZ, enable_stealth.z); #endif break; #endif #if Y_SENSORLESS case Y_AXIS: tmc_disable_stallguard(stepperY, enable_stealth.y); TERN_(Y2_SENSORLESS, tmc_disable_stallguard(stepperY2, enable_stealth.y2)); #if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX) && X_SENSORLESS tmc_disable_stallguard(stepperX, enable_stealth.x); #elif CORE_IS_YZ && Z_SENSORLESS tmc_disable_stallguard(stepperZ, enable_stealth.z); #endif break; #endif #if Z_SENSORLESS case Z_AXIS: tmc_disable_stallguard(stepperZ, enable_stealth.z); TERN_(Z2_SENSORLESS, tmc_disable_stallguard(stepperZ2, enable_stealth.z2)); TERN_(Z3_SENSORLESS, tmc_disable_stallguard(stepperZ3, enable_stealth.z3)); TERN_(Z4_SENSORLESS, tmc_disable_stallguard(stepperZ4, enable_stealth.z4)); #if CORE_IS_XZ && X_SENSORLESS tmc_disable_stallguard(stepperX, enable_stealth.x); #elif CORE_IS_YZ && Y_SENSORLESS tmc_disable_stallguard(stepperY, enable_stealth.y); #endif break; #endif #if I_SENSORLESS case I_AXIS: tmc_disable_stallguard(stepperI, enable_stealth.i); break; #endif #if J_SENSORLESS case J_AXIS: tmc_disable_stallguard(stepperJ, enable_stealth.j); break; #endif #if K_SENSORLESS case K_AXIS: tmc_disable_stallguard(stepperK, enable_stealth.k); break; #endif #if U_SENSORLESS case U_AXIS: tmc_disable_stallguard(stepperU, enable_stealth.u); break; #endif #if V_SENSORLESS case V_AXIS: tmc_disable_stallguard(stepperV, enable_stealth.v); break; #endif #if W_SENSORLESS case W_AXIS: tmc_disable_stallguard(stepperW, enable_stealth.w); break; #endif } switch (axis) { #if X_SPI_SENSORLESS case X_AXIS: endstops.tmc_spi_homing.x = false; break; #endif #if Y_SPI_SENSORLESS case Y_AXIS: endstops.tmc_spi_homing.y = false; break; #endif #if Z_SPI_SENSORLESS case Z_AXIS: endstops.tmc_spi_homing.z = false; break; #endif #if I_SPI_SENSORLESS case I_AXIS: endstops.tmc_spi_homing.i = false; break; #endif #if J_SPI_SENSORLESS case J_AXIS: endstops.tmc_spi_homing.j = false; break; #endif #if K_SPI_SENSORLESS case K_AXIS: endstops.tmc_spi_homing.k = false; break; #endif #if U_SPI_SENSORLESS case U_AXIS: endstops.tmc_spi_homing.u = false; break; #endif #if V_SPI_SENSORLESS case V_AXIS: endstops.tmc_spi_homing.v = false; break; #endif #if W_SPI_SENSORLESS case W_AXIS: endstops.tmc_spi_homing.w = false; break; #endif default: break; } } #endif // SENSORLESS_HOMING /** * Home an individual linear axis */ void do_homing_move(const AxisEnum axis, const float distance, const feedRate_t fr_mm_s=0.0, const bool final_approach=true) { DEBUG_SECTION(log_move, "do_homing_move", DEBUGGING(LEVELING)); const feedRate_t home_fr_mm_s = fr_mm_s ?: homing_feedrate(axis); if (DEBUGGING(LEVELING)) { DEBUG_ECHOPGM("...(", C(AXIS_CHAR(axis)), ", ", distance, ", "); if (fr_mm_s) DEBUG_ECHO(fr_mm_s); else DEBUG_ECHOPGM("[", home_fr_mm_s, "]"); DEBUG_ECHOLNPGM(")"); } // Only do some things when moving towards an endstop const int8_t axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS) ? TOOL_X_HOME_DIR(active_extruder) : home_dir(axis); const bool is_home_dir = (axis_home_dir > 0) == (distance > 0); #if ENABLED(SENSORLESS_HOMING) sensorless_t stealth_states; #endif if (is_home_dir) { if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS)) { #if ALL(HAS_HEATED_BED, WAIT_FOR_BED_HEATER) // Wait for bed to heat back up between probing points thermalManager.wait_for_bed_heating(); #endif #if ALL(HAS_HOTEND, WAIT_FOR_HOTEND) // Wait for the hotend to heat back up between probing points thermalManager.wait_for_hotend_heating(active_extruder); #endif TERN_(HAS_QUIET_PROBING, if (final_approach) probe.set_probing_paused(true)); } // Disable stealthChop if used. Enable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) stealth_states = start_sensorless_homing_per_axis(axis); #if SENSORLESS_STALLGUARD_DELAY safe_delay(SENSORLESS_STALLGUARD_DELAY); // Short delay needed to settle #endif #endif } #if ANY(MORGAN_SCARA, MP_SCARA) // Tell the planner the axis is at 0 current_position[axis] = 0; sync_plan_position(); current_position[axis] = distance; line_to_current_position(home_fr_mm_s); #else // Get the ABC or XYZ positions in mm abce_pos_t target = planner.get_axis_positions_mm(); target[axis] = 0; // Set the single homing axis to 0 planner.set_machine_position_mm(target); // Update the machine position #if HAS_DIST_MM_ARG const xyze_float_t cart_dist_mm{0}; #endif // Set delta/cartesian axes directly target[axis] = distance; // The move will be towards the endstop planner.buffer_segment(target OPTARG(HAS_DIST_MM_ARG, cart_dist_mm), home_fr_mm_s, active_extruder); #endif planner.synchronize(); if (is_home_dir) { #if HOMING_Z_WITH_PROBE && HAS_QUIET_PROBING if (axis == Z_AXIS && final_approach) probe.set_probing_paused(false); #endif endstops.validate_homing_move(); // Re-enable stealthChop if used. Disable diag1 pin on driver. #if ENABLED(SENSORLESS_HOMING) end_sensorless_homing_per_axis(axis, stealth_states); #if SENSORLESS_STALLGUARD_DELAY safe_delay(SENSORLESS_STALLGUARD_DELAY); // Short delay needed to settle #endif #endif } } /** * Set an axis to be unhomed. (Unless we are on a machine - e.g. a cheap Chinese CNC machine - * that has no endstops. Such machines should always be considered to be in a "known" and * "trusted" position). */ void set_axis_never_homed(const AxisEnum axis) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM(">>> set_axis_never_homed(", C(AXIS_CHAR(axis)), ")"); set_axis_untrusted(axis); set_axis_unhomed(axis); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< set_axis_never_homed(", C(AXIS_CHAR(axis)), ")"); TERN_(I2C_POSITION_ENCODERS, I2CPEM.unhomed(axis)); } #ifdef TMC_HOME_PHASE /** * Move the axis back to its home_phase if set and driver is capable (TMC) * * Improves homing repeatability by homing to stepper coil's nearest absolute * phase position. Trinamic drivers use a stepper phase table with 1024 values * spanning 4 full steps with 256 positions each (ergo, 1024 positions). */ void backout_to_tmc_homing_phase(const AxisEnum axis) { const xyz_long_t home_phase = TMC_HOME_PHASE; // check if home phase is disabled for this axis. if (home_phase[axis] < 0) return; int16_t phasePerUStep, // TMC µsteps(phase) per Marlin µsteps phaseCurrent, // The TMC µsteps(phase) count of the current position effectorBackoutDir, // Direction in which the effector mm coordinates move away from endstop. stepperBackoutDir; // Direction in which the TMC µstep count(phase) move away from endstop. #define PHASE_PER_MICROSTEP(N) (256 / _MAX(1, N##_MICROSTEPS)) switch (axis) { #ifdef X_MICROSTEPS case X_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(X); phaseCurrent = stepperX.get_microstep_counter(); effectorBackoutDir = -(X_HOME_DIR); stepperBackoutDir = TERN_(INVERT_X_DIR, -)(-effectorBackoutDir); break; #endif #ifdef Y_MICROSTEPS case Y_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(Y); phaseCurrent = stepperY.get_microstep_counter(); effectorBackoutDir = -(Y_HOME_DIR); stepperBackoutDir = TERN_(INVERT_Y_DIR, -)(-effectorBackoutDir); break; #endif #ifdef Z_MICROSTEPS case Z_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(Z); phaseCurrent = stepperZ.get_microstep_counter(); effectorBackoutDir = -(Z_HOME_DIR); stepperBackoutDir = TERN_(INVERT_Z_DIR, -)(-effectorBackoutDir); break; #endif #ifdef I_MICROSTEPS case I_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(I); phaseCurrent = stepperI.get_microstep_counter(); effectorBackoutDir = -(I_HOME_DIR); stepperBackoutDir = TERN_(INVERT_I_DIR, -)(-effectorBackoutDir); break; #endif #ifdef J_MICROSTEPS case J_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(J); phaseCurrent = stepperJ.get_microstep_counter(); effectorBackoutDir = -(J_HOME_DIR); stepperBackoutDir = TERN_(INVERT_J_DIR, -)(-effectorBackoutDir); break; #endif #ifdef K_MICROSTEPS case K_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(K); phaseCurrent = stepperK.get_microstep_counter(); effectorBackoutDir = -(K_HOME_DIR); stepperBackoutDir = TERN_(INVERT_K_DIR, -)(-effectorBackoutDir); break; #endif #ifdef U_MICROSTEPS case U_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(U); phaseCurrent = stepperU.get_microstep_counter(); effectorBackoutDir = -(U_HOME_DIR); stepperBackoutDir = TERN_(INVERT_U_DIR, -)(-effectorBackoutDir); break; #endif #ifdef V_MICROSTEPS case V_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(V); phaseCurrent = stepperV.get_microstep_counter(); effectorBackoutDir = -(V_HOME_DIR); stepperBackoutDir = TERN_(INVERT_V_DIR, -)(-effectorBackoutDir); break; #endif #ifdef W_MICROSTEPS case W_AXIS: phasePerUStep = PHASE_PER_MICROSTEP(W); phaseCurrent = stepperW.get_microstep_counter(); effectorBackoutDir = -(W_HOME_DIR); stepperBackoutDir = TERN_(INVERT_W_DIR, -)(-effectorBackoutDir); break; #endif default: return; } // Phase distance to nearest home phase position when moving in the backout direction from endstop(may be negative). int16_t phaseDelta = (home_phase[axis] - phaseCurrent) * stepperBackoutDir; // Check if home distance within endstop assumed repeatability noise of .05mm and warn. if (ABS(phaseDelta) * planner.mm_per_step[axis] / phasePerUStep < 0.05f) SERIAL_ECHOLNPGM("Selected home phase ", home_phase[axis], " too close to endstop trigger phase ", phaseCurrent, ". Pick a different phase for ", C(AXIS_CHAR(axis))); // Skip to next if target position is behind current. So it only moves away from endstop. if (phaseDelta < 0) phaseDelta += 1024; // Convert TMC µsteps(phase) to whole Marlin µsteps to effector backout direction to mm const float mmDelta = int16_t(phaseDelta / phasePerUStep) * effectorBackoutDir * planner.mm_per_step[axis]; // Optional debug messages if (DEBUGGING(LEVELING)) { DEBUG_ECHOLNPGM( "Endstop ", C(AXIS_CHAR(axis)), " hit at Phase:", phaseCurrent, " Delta:", phaseDelta, " Distance:", mmDelta ); } if (mmDelta != 0) { // Retrace by the amount computed in mmDelta. do_homing_move(axis, mmDelta, get_homing_bump_feedrate(axis)); } } #endif /** * Home an individual "raw axis" to its endstop. * This applies to XYZ on Cartesian and Core robots, and * to the individual ABC steppers on DELTA and SCARA. * * At the end of the procedure the axis is marked as * homed and the current position of that axis is updated. * Kinematic robots should wait till all axes are homed * before updating the current position. */ void homeaxis(const AxisEnum axis) { #if ANY(MORGAN_SCARA, MP_SCARA) // Only Z homing (with probe) is permitted if (axis != Z_AXIS) { BUZZ(100, 880); return; } #else #define _CAN_HOME(A) (axis == _AXIS(A) && (ANY(A##_SPI_SENSORLESS, HAS_##A##_STATE) || TERN0(HOMING_Z_WITH_PROBE, _AXIS(A) == Z_AXIS))) #define _ANDCANT(N) && !_CAN_HOME(N) if (true MAIN_AXIS_MAP(_ANDCANT)) return; #endif if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM(">>> homeaxis(", C(AXIS_CHAR(axis)), ")"); const int axis_home_dir = TERN0(DUAL_X_CARRIAGE, axis == X_AXIS) ? TOOL_X_HOME_DIR(active_extruder) : home_dir(axis); // // Homing Z with a probe? Raise Z (maybe) and deploy the Z probe. // if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && probe.deploy())) return; // Set flags for X, Y, Z motor locking #if HAS_EXTRA_ENDSTOPS switch (axis) { TERN_(X_DUAL_ENDSTOPS, case X_AXIS:) TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:) TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:) stepper.set_separate_multi_axis(true); default: break; } #endif // // Deploy BLTouch or tare the probe just before probing // #if HOMING_Z_WITH_PROBE if (axis == Z_AXIS) { if (TERN0(BLTOUCH, bltouch.deploy())) return; // BLTouch was deployed above, but get the alarm state. if (TERN0(PROBE_TARE, probe.tare())) return; TERN_(BD_SENSOR, bdl.config_state = BDS_HOMING_Z); } #endif // // Back away to prevent an early sensorless trigger // #if DISABLED(DELTA) && defined(SENSORLESS_BACKOFF_MM) const xyz_float_t backoff = SENSORLESS_BACKOFF_MM; if ((TERN0(X_SENSORLESS, axis == X_AXIS) || TERN0(Y_SENSORLESS, axis == Y_AXIS) || TERN0(Z_SENSORLESS, axis == Z_AXIS) || TERN0(I_SENSORLESS, axis == I_AXIS) || TERN0(J_SENSORLESS, axis == J_AXIS) || TERN0(K_SENSORLESS, axis == K_AXIS)) && backoff[axis]) { const float backoff_length = -ABS(backoff[axis]) * axis_home_dir; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Sensorless backoff: ", backoff_length, "mm"); do_homing_move(axis, backoff_length, homing_feedrate(axis)); } #endif // // Back away to prevent opposite endstop damage // #if !defined(SENSORLESS_BACKOFF_MM) && XY_COUNTERPART_BACKOFF_MM if (!(axis_was_homed(X_AXIS) || axis_was_homed(Y_AXIS)) && (axis == X_AXIS || axis == Y_AXIS)) { const AxisEnum opposite_axis = axis == X_AXIS ? Y_AXIS : X_AXIS; const float backoff_length = -ABS(XY_COUNTERPART_BACKOFF_MM) * home_dir(opposite_axis); do_homing_move(opposite_axis, backoff_length, homing_feedrate(opposite_axis)); } #endif // Determine if a homing bump will be done and the bumps distance // When homing Z with probe respect probe clearance const bool use_probe_bump = TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && home_bump_mm(axis)); const float bump = axis_home_dir * ( use_probe_bump ? _MAX(TERN0(HOMING_Z_WITH_PROBE, Z_CLEARANCE_BETWEEN_PROBES), home_bump_mm(axis)) : home_bump_mm(axis) ); // // Fast move towards endstop until triggered // const float move_length = 1.5f * max_length(TERN(DELTA, Z_AXIS, axis)) * axis_home_dir; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Home Fast: ", move_length, "mm"); do_homing_move(axis, move_length, 0.0, !use_probe_bump); // If a second homing move is configured... if (bump) { #if ALL(HOMING_Z_WITH_PROBE, BLTOUCH) if (axis == Z_AXIS && !bltouch.high_speed_mode) bltouch.stow(); // Intermediate STOW (in LOW SPEED MODE) #endif // Move away from the endstop by the axis HOMING_BUMP_MM if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Move Away: ", -bump, "mm"); do_homing_move(axis, -bump, TERN(HOMING_Z_WITH_PROBE, (axis == Z_AXIS ? z_probe_fast_mm_s : 0), 0), false); #if ENABLED(DETECT_BROKEN_ENDSTOP) // Check for a broken endstop EndstopEnum es; switch (axis) { #define _ESCASE(A) case A##_AXIS: es = A##_ENDSTOP; break; MAIN_AXIS_MAP(_ESCASE) default: break; } #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS && axis_home_dir > 0) { es = X_MAX; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("DUAL_X_CARRIAGE: Homing to X_MAX"); } #endif if (TEST(endstops.state(), es)) { SERIAL_ECHO_MSG("Bad ", C(AXIS_CHAR(axis)), " Endstop?"); kill(GET_TEXT_F(MSG_KILL_HOMING_FAILED)); } #endif // DETECT_BROKEN_ENDSTOP #if ALL(HOMING_Z_WITH_PROBE, BLTOUCH) if (axis == Z_AXIS && !bltouch.high_speed_mode && bltouch.deploy()) return; // Intermediate DEPLOY (in LOW SPEED MODE) #endif // Slow move towards endstop until triggered const float rebump = bump * 2; if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("Re-bump: ", rebump, "mm"); do_homing_move(axis, rebump, get_homing_bump_feedrate(axis), true); } #if ALL(HOMING_Z_WITH_PROBE, BLTOUCH) if (axis == Z_AXIS) bltouch.stow(); // The final STOW #endif #if HAS_EXTRA_ENDSTOPS const bool pos_dir = axis_home_dir > 0; #if ENABLED(X_DUAL_ENDSTOPS) if (axis == X_AXIS) { const float adj = ABS(endstops.x2_endstop_adj); if (adj) { if (pos_dir ? (endstops.x2_endstop_adj > 0) : (endstops.x2_endstop_adj < 0)) stepper.set_x_lock(true); else stepper.set_x2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_x_lock(false); stepper.set_x2_lock(false); } } #endif #if ENABLED(Y_DUAL_ENDSTOPS) if (axis == Y_AXIS) { const float adj = ABS(endstops.y2_endstop_adj); if (adj) { if (pos_dir ? (endstops.y2_endstop_adj > 0) : (endstops.y2_endstop_adj < 0)) stepper.set_y_lock(true); else stepper.set_y2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_y_lock(false); stepper.set_y2_lock(false); } } #endif #if ENABLED(Z_MULTI_ENDSTOPS) if (axis == Z_AXIS) { #if NUM_Z_STEPPERS == 2 const float adj = ABS(endstops.z2_endstop_adj); if (adj) { if (pos_dir ? (endstops.z2_endstop_adj > 0) : (endstops.z2_endstop_adj < 0)) stepper.set_z1_lock(true); else stepper.set_z2_lock(true); do_homing_move(axis, pos_dir ? -adj : adj); stepper.set_z1_lock(false); stepper.set_z2_lock(false); } #else // Handy arrays of stepper lock function pointers typedef void (*adjustFunc_t)(const bool); adjustFunc_t lock[] = { stepper.set_z1_lock, stepper.set_z2_lock, stepper.set_z3_lock #if NUM_Z_STEPPERS >= 4 , stepper.set_z4_lock #endif }; float adj[] = { 0, endstops.z2_endstop_adj, endstops.z3_endstop_adj #if NUM_Z_STEPPERS >= 4 , endstops.z4_endstop_adj #endif }; adjustFunc_t tempLock; float tempAdj; // Manual bubble sort by adjust value if (adj[1] < adj[0]) { tempLock = lock[0], tempAdj = adj[0]; lock[0] = lock[1], adj[0] = adj[1]; lock[1] = tempLock, adj[1] = tempAdj; } if (adj[2] < adj[1]) { tempLock = lock[1], tempAdj = adj[1]; lock[1] = lock[2], adj[1] = adj[2]; lock[2] = tempLock, adj[2] = tempAdj; } #if NUM_Z_STEPPERS >= 4 if (adj[3] < adj[2]) { tempLock = lock[2], tempAdj = adj[2]; lock[2] = lock[3], adj[2] = adj[3]; lock[3] = tempLock, adj[3] = tempAdj; } if (adj[2] < adj[1]) { tempLock = lock[1], tempAdj = adj[1]; lock[1] = lock[2], adj[1] = adj[2]; lock[2] = tempLock, adj[2] = tempAdj; } #endif if (adj[1] < adj[0]) { tempLock = lock[0], tempAdj = adj[0]; lock[0] = lock[1], adj[0] = adj[1]; lock[1] = tempLock, adj[1] = tempAdj; } if (pos_dir) { // normalize adj to smallest value and do the first move (*lock[0])(true); do_homing_move(axis, adj[1] - adj[0]); // lock the second stepper for the final correction (*lock[1])(true); do_homing_move(axis, adj[2] - adj[1]); #if NUM_Z_STEPPERS >= 4 // lock the third stepper for the final correction (*lock[2])(true); do_homing_move(axis, adj[3] - adj[2]); #endif } else { #if NUM_Z_STEPPERS >= 4 (*lock[3])(true); do_homing_move(axis, adj[2] - adj[3]); #endif (*lock[2])(true); do_homing_move(axis, adj[1] - adj[2]); (*lock[1])(true); do_homing_move(axis, adj[0] - adj[1]); } stepper.set_z1_lock(false); stepper.set_z2_lock(false); stepper.set_z3_lock(false); #if NUM_Z_STEPPERS >= 4 stepper.set_z4_lock(false); #endif #endif } #endif // Reset flags for X, Y, Z motor locking switch (axis) { default: break; TERN_(X_DUAL_ENDSTOPS, case X_AXIS:) TERN_(Y_DUAL_ENDSTOPS, case Y_AXIS:) TERN_(Z_MULTI_ENDSTOPS, case Z_AXIS:) stepper.set_separate_multi_axis(false); } #endif // HAS_EXTRA_ENDSTOPS #ifdef TMC_HOME_PHASE // move back to homing phase if configured and capable backout_to_tmc_homing_phase(axis); #endif #if IS_SCARA set_axis_is_at_home(axis); sync_plan_position(); #elif ENABLED(DELTA) // Delta has already moved all three towers up in G28 // so here it re-homes each tower in turn. // Delta homing treats the axes as normal linear axes. const float adjDistance = delta_endstop_adj[axis], minDistance = (MIN_STEPS_PER_SEGMENT) * planner.mm_per_step[axis]; // Retrace by the amount specified in delta_endstop_adj if more than min steps. if (adjDistance * (Z_HOME_DIR) < 0 && ABS(adjDistance) > minDistance) { // away from endstop, more than min distance if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("adjDistance:", adjDistance); do_homing_move(axis, adjDistance, get_homing_bump_feedrate(axis)); } #else // CARTESIAN / CORE / MARKFORGED_XY / MARKFORGED_YX set_axis_is_at_home(axis); sync_plan_position(); destination[axis] = current_position[axis]; if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); #endif #if ALL(BD_SENSOR, HOMING_Z_WITH_PROBE) if (axis == Z_AXIS) bdl.config_state = BDS_IDLE; #endif // Put away the Z probe if (TERN0(HOMING_Z_WITH_PROBE, axis == Z_AXIS && probe.stow())) return; #if DISABLED(DELTA) && defined(HOMING_BACKOFF_POST_MM) const xyz_float_t endstop_backoff = HOMING_BACKOFF_POST_MM; if (endstop_backoff[axis]) { current_position[axis] -= ABS(endstop_backoff[axis]) * axis_home_dir; line_to_current_position(TERN_(HOMING_Z_WITH_PROBE, (axis == Z_AXIS) ? z_probe_fast_mm_s :) homing_feedrate(axis)); #if ENABLED(SENSORLESS_HOMING) planner.synchronize(); if (false #ifdef NORMAL_AXIS || axis != NORMAL_AXIS #endif ) safe_delay(200); // Short delay to allow belts to spring back #endif } #endif // Clear retracted status if homing the Z axis #if ENABLED(FWRETRACT) if (axis == Z_AXIS) fwretract.current_hop = 0.0; #endif if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< homeaxis(", C(AXIS_CHAR(axis)), ")"); } // homeaxis() #endif // HAS_ENDSTOPS /** * Set an axis' current position to its home position (after homing). * * For Core and Cartesian robots this applies one-to-one when an * individual axis has been homed. * * DELTA should wait until all homing is done before setting the XYZ * current_position to home, because homing is a single operation. * In the case where the axis positions are trusted and previously * homed, DELTA could home to X or Y individually by moving either one * to the center. However, homing Z always homes XY and Z. * * SCARA should wait until all XY homing is done before setting the XY * current_position to home, because neither X nor Y is at home until * both are at home. Z can however be homed individually. * * Callers must sync the planner position after calling this! */ void set_axis_is_at_home(const AxisEnum axis) { if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM(">>> set_axis_is_at_home(", C(AXIS_CHAR(axis)), ")"); set_axis_trusted(axis); set_axis_homed(axis); #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { current_position.x = SUM_TERN(HAS_HOME_OFFSET, x_home_pos(active_extruder), home_offset.x); return; } #endif #if ANY(MORGAN_SCARA, AXEL_TPARA) scara_set_axis_is_at_home(axis); #elif ENABLED(DELTA) current_position[axis] = (axis == Z_AXIS) ? DIFF_TERN(USE_PROBE_FOR_Z_HOMING, delta_height, probe.offset.z) : base_home_pos(axis); #else current_position[axis] = SUM_TERN(HAS_HOME_OFFSET, base_home_pos(axis), home_offset[axis]); #endif /** * Z Probe Z Homing? Account for the probe's Z offset. */ #if HAS_BED_PROBE && Z_HOME_TO_MIN if (axis == Z_AXIS) { #if HOMING_Z_WITH_PROBE #if ENABLED(BD_SENSOR) safe_delay(100); current_position.z = bdl.read(); #else current_position.z -= probe.offset.z; #endif if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z homed with PROBE" TERN_(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN, " (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)") " ***\n> (M851 Z", probe.offset.z, ")"); #else if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("*** Z homed to ENDSTOP ***"); #endif } #endif TERN_(I2C_POSITION_ENCODERS, I2CPEM.homed(axis)); TERN_(BABYSTEP_DISPLAY_TOTAL, babystep.reset_total(axis)); TERN_(HAS_WORKSPACE_OFFSET, workspace_offset[axis] = 0); if (DEBUGGING(LEVELING)) { #if HAS_HOME_OFFSET DEBUG_ECHOLNPGM("> home_offset[", C(AXIS_CHAR(axis)), "] = ", home_offset[axis]); #endif DEBUG_POS("", current_position); DEBUG_ECHOLNPGM("<<< set_axis_is_at_home(", C(AXIS_CHAR(axis)), ")"); } } #if HAS_HOME_OFFSET /** * Set the home offset for an axis. */ void set_home_offset(const AxisEnum axis, const_float_t v) { home_offset[axis] = v; } #endif