Scott Lahteine 4aff10785e 🧑‍💻 Use "enum class"
2024-07-05 18:48:41 -05:00

3343 lines
134 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
/**
* planner.cpp
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*
* Ring buffer gleaned from wiring_serial library by David A. Mellis.
*
* Fast inverse function needed for Bézier interpolation for AVR
* was designed, written and tested by Eduardo José Tagle, April 2018.
*
* Planner mathematics (Mathematica-style):
*
* Where: s == speed, a == acceleration, t == time, d == distance
*
* Basic definitions:
* Speed[s_, a_, t_] := s + (a*t)
* Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
*
* Distance to reach a specific speed with a constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
* d -> (m^2 - s^2) / (2 a)
*
* Speed after a given distance of travel with constant acceleration:
* Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
* m -> Sqrt[2 a d + s^2]
*
* DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
*
* When to start braking (di) to reach a specified destination speed (s2) after
* acceleration from initial speed s1 without ever reaching a plateau:
* Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
* di -> (2 a d - s1^2 + s2^2)/(4 a)
*
* We note, as an optimization, that if we have already calculated an
* acceleration distance d1 from s1 to m and a deceration distance d2
* from m to s2 then
*
* d1 -> (m^2 - s1^2) / (2 a)
* d2 -> (m^2 - s2^2) / (2 a)
* di -> (d + d1 - d2) / 2
*/
#include "planner.h"
#include "stepper.h"
#include "motion.h"
#include "temperature.h"
#if ENABLED(FT_MOTION)
#include "ft_motion.h"
#endif
#include "../lcd/marlinui.h"
#include "../gcode/parser.h"
#include "../MarlinCore.h"
#if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h"
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#include "../feature/filwidth.h"
#endif
#if ENABLED(BARICUDA)
#include "../feature/baricuda.h"
#endif
#if ENABLED(MIXING_EXTRUDER)
#include "../feature/mixing.h"
#endif
#if ENABLED(AUTO_POWER_CONTROL)
#include "../feature/power.h"
#endif
#if ENABLED(BACKLASH_COMPENSATION)
#include "../feature/backlash.h"
#endif
#if ENABLED(CANCEL_OBJECTS)
#include "../feature/cancel_object.h"
#endif
#if ENABLED(POWER_LOSS_RECOVERY)
#include "../feature/powerloss.h"
#endif
#if HAS_CUTTER
#include "../feature/spindle_laser.h"
#endif
// Delay for delivery of first block to the stepper ISR, if the queue contains 2 or
// fewer movements. The delay is measured in milliseconds, and must be less than 250ms
#define BLOCK_DELAY_NONE 0U
#define BLOCK_DELAY_FOR_1ST_MOVE 100U
Planner planner;
// public:
/**
* A ring buffer of moves described in steps
*/
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed
Planner::block_buffer_nonbusy, // Index of the first non-busy block
Planner::block_buffer_tail; // Index of the busy block, if any
uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks
uint8_t Planner::delay_before_delivering; // Delay block delivery so initial blocks in an empty queue may merge
#if ENABLED(EDITABLE_STEPS_PER_UNIT)
float Planner::mm_per_step[DISTINCT_AXES]; // (mm) Millimeters per step
#else
constexpr float PlannerSettings::axis_steps_per_mm[DISTINCT_AXES];
constexpr float Planner::mm_per_step[DISTINCT_AXES];
#endif
planner_settings_t Planner::settings; // Initialized by settings.load()
/**
* Set up inline block variables
* Set laser_power_floor based on SPEED_POWER_MIN to pevent a zero power output state with LASER_POWER_TRAP
*/
#if ENABLED(LASER_FEATURE)
laser_state_t Planner::laser_inline; // Current state for blocks
const uint8_t laser_power_floor = cutter.pct_to_ocr(SPEED_POWER_MIN);
#endif
uint32_t Planner::max_acceleration_steps_per_s2[DISTINCT_AXES]; // (steps/s^2) Derived from mm_per_s2
#if HAS_JUNCTION_DEVIATION
float Planner::junction_deviation_mm; // (mm) M205 J
#if HAS_LINEAR_E_JERK
float Planner::max_e_jerk[DISTINCT_E]; // Calculated from junction_deviation_mm
#endif
#else // CLASSIC_JERK
TERN(HAS_LINEAR_E_JERK, xyz_pos_t, xyze_pos_t) Planner::max_jerk;
#endif
#if ENABLED(SD_ABORT_ON_ENDSTOP_HIT)
bool Planner::abort_on_endstop_hit = false;
#endif
#if ENABLED(DISTINCT_E_FACTORS)
uint8_t Planner::last_extruder = 0; // Respond to extruder change
#endif
#if ENABLED(DIRECT_STEPPING)
uint32_t Planner::last_page_step_rate = 0;
AxisBits Planner::last_page_dir; // = 0
#endif
#if HAS_EXTRUDERS
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow percentage and volumetric multiplier combine to scale E movement
#endif
#if DISABLED(NO_VOLUMETRICS)
float Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
#endif
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
float Planner::volumetric_extruder_limit[EXTRUDERS], // max mm^3/sec the extruder is able to handle
Planner::volumetric_extruder_feedrate_limit[EXTRUDERS]; // pre calculated extruder feedrate limit based on volumetric_extruder_limit; pre-calculated to reduce computation in the planner
#endif
#ifdef MAX7219_DEBUG_SLOWDOWN
uint8_t Planner::slowdown_count = 0;
#endif
#if HAS_LEVELING
bool Planner::leveling_active = false; // Flag that auto bed leveling is enabled
#if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float Planner::z_fade_height, // Initialized by settings.load()
Planner::inverse_z_fade_height,
Planner::last_fade_z;
#endif
#else
constexpr bool Planner::leveling_active;
#endif
#if ENABLED(SKEW_CORRECTION)
skew_factor_t Planner::skew_factor; // Initialized by settings.load()
#endif
#if ENABLED(AUTOTEMP)
autotemp_t Planner::autotemp = { AUTOTEMP_MIN, AUTOTEMP_MAX, AUTOTEMP_FACTOR, false };
#endif
// private:
xyze_long_t Planner::position{0};
uint32_t Planner::acceleration_long_cutoff;
xyze_float_t Planner::previous_speed;
float Planner::previous_nominal_speed;
#if ENABLED(DISABLE_OTHER_EXTRUDERS)
last_move_t Planner::extruder_last_move[E_STEPPERS] = { 0 };
#endif
#ifdef XY_FREQUENCY_LIMIT
int8_t Planner::xy_freq_limit_hz = XY_FREQUENCY_LIMIT;
float Planner::xy_freq_min_speed_factor = (XY_FREQUENCY_MIN_PERCENT) * 0.01f;
int32_t Planner::xy_freq_min_interval_us = LROUND(1000000.0f / (XY_FREQUENCY_LIMIT));
#endif
#if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_K[DISTINCT_E]; // Initialized by settings.load()
#endif
#if HAS_POSITION_FLOAT
xyze_pos_t Planner::position_float; // Needed for accurate maths. Steps cannot be used!
#endif
#if IS_KINEMATIC
xyze_pos_t Planner::position_cart;
#endif
#if HAS_WIRED_LCD
volatile uint32_t Planner::block_buffer_runtime_us = 0;
#endif
/**
* Class and Instance Methods
*/
Planner::Planner() { init(); }
void Planner::init() {
position.reset();
TERN_(HAS_POSITION_FLOAT, position_float.reset());
TERN_(IS_KINEMATIC, position_cart.reset());
previous_speed.reset();
previous_nominal_speed = 0;
TERN_(ABL_PLANAR, bed_level_matrix.set_to_identity());
clear_block_buffer();
delay_before_delivering = 0;
#if ENABLED(DIRECT_STEPPING)
last_page_step_rate = 0;
last_page_dir.reset();
#endif
}
#if ENABLED(S_CURVE_ACCELERATION)
#ifdef __AVR__
/**
* This routine returns 0x1000000 / d, getting the inverse as fast as possible.
* A fast-converging iterative Newton-Raphson method can reach full precision in
* just 1 iteration, and takes 211 cycles (worst case; the mean case is less, up
* to 30 cycles for small divisors), instead of the 500 cycles a normal division
* would take.
*
* Inspired by the following page:
* https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
*
* Suppose we want to calculate floor(2 ^ k / B) where B is a positive integer
* Then, B must be <= 2^k, otherwise, the quotient is 0.
*
* The Newton - Raphson iteration for x = B / 2 ^ k yields:
* q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
*
* This can be rearranged to:
* q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
*
* Each iteration requires only integer multiplications and bit shifts.
* It doesn't necessarily converge to floor(2 ^ k / B) but in the worst case
* it eventually alternates between floor(2 ^ k / B) and ceil(2 ^ k / B).
* So it checks for this case and extracts floor(2 ^ k / B).
*
* A simple but important optimization for this approach is to truncate
* multiplications (i.e., calculate only the higher bits of the product) in the
* early iterations of the Newton - Raphson method. This is done so the results
* of the early iterations are far from the quotient. Then it doesn't matter if
* they are done inaccurately.
* It's important to pick a good starting value for x. Knowing how many
* digits the divisor has, it can be estimated:
*
* 2^k / x = 2 ^ log2(2^k / x)
* 2^k / x = 2 ^(log2(2^k)-log2(x))
* 2^k / x = 2 ^(k*log2(2)-log2(x))
* 2^k / x = 2 ^ (k-log2(x))
* 2^k / x >= 2 ^ (k-floor(log2(x)))
* floor(log2(x)) is simply the index of the most significant bit set.
*
* If this estimation can be improved even further the number of iterations can be
* reduced a lot, saving valuable execution time.
* The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
* Research, Silicon Valley,August 26, 2008, available at
* https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
* suggests, for its integer division algorithm, using a table to supply the first
* 8 bits of precision, then, due to the quadratic convergence nature of the
* Newton-Raphon iteration, just 2 iterations should be enough to get maximum
* precision of the division.
* By precomputing values of inverses for small denominator values, just one
* Newton-Raphson iteration is enough to reach full precision.
* This code uses the top 9 bits of the denominator as index.
*
* The AVR assembly function implements this C code using the data below:
*
* // For small divisors, it is best to directly retrieve the results
* if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
*
* // Compute initial estimation of 0x1000000/x -
* // Get most significant bit set on divider
* uint8_t idx = 0;
* uint32_t nr = d;
* if (!(nr & 0xFF0000)) {
* nr <<= 8; idx += 8;
* if (!(nr & 0xFF0000)) { nr <<= 8; idx += 8; }
* }
* if (!(nr & 0xF00000)) { nr <<= 4; idx += 4; }
* if (!(nr & 0xC00000)) { nr <<= 2; idx += 2; }
* if (!(nr & 0x800000)) { nr <<= 1; idx += 1; }
*
* // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
* uint32_t tidx = nr >> 15, // top 9 bits. bit8 is always set
* ie = inv_tab[tidx & 0xFF] + 256, // Get the table value. bit9 is always set
* x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
*
* x = uint32_t((x * uint64_t(_BV(25) - x * d)) >> 24); // Refine estimation by newton-raphson. 1 iteration is enough
* const uint32_t r = _BV(24) - x * d; // Estimate remainder
* if (r >= d) x++; // Check whether to adjust result
* return uint32_t(x); // x holds the proper estimation
*/
static uint32_t get_period_inverse(uint32_t d) {
static const uint8_t inv_tab[256] PROGMEM = {
255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
};
// For small denominators, it is cheaper to directly store the result.
// For bigger ones, just ONE Newton-Raphson iteration is enough to get
// maximum precision we need
static const uint32_t small_inv_tab[111] PROGMEM = {
16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
};
// For small divisors, it is best to directly retrieve the results
if (d <= 110) return pgm_read_dword(&small_inv_tab[d]);
uint8_t r8 = d & 0xFF,
r9 = (d >> 8) & 0xFF,
r10 = (d >> 16) & 0xFF,
r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
const uint8_t *ptab = inv_tab;
__asm__ __volatile__(
// %8:%7:%6 = interval
// r31:r30: MUST be those registers, and they must point to the inv_tab
A("clr %13") // %13 = 0
// Now we must compute
// result = 0xFFFFFF / d
// %8:%7:%6 = interval
// %16:%15:%14 = nr
// %13 = 0
// A plain division of 24x24 bits should take 388 cycles to complete. We will
// use Newton-Raphson for the calculation, and will strive to get way less cycles
// for the same result - Using C division, it takes 500cycles to complete .
A("clr %3") // idx = 0
A("mov %14,%6")
A("mov %15,%7")
A("mov %16,%8") // nr = interval
A("tst %16") // nr & 0xFF0000 == 0 ?
A("brne 2f") // No, skip this
A("mov %16,%15")
A("mov %15,%14") // nr <<= 8, %14 not needed
A("subi %3,-8") // idx += 8
A("tst %16") // nr & 0xFF0000 == 0 ?
A("brne 2f") // No, skip this
A("mov %16,%15") // nr <<= 8, %14 not needed
A("clr %15") // We clear %14
A("subi %3,-8") // idx += 8
// here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
L("2")
A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
A("brcc 3f") // No, skip this
A("swap %15") // Swap nybbles
A("swap %16") // Swap nybbles. Low nybble is 0
A("mov %14, %15")
A("andi %14,0x0F") // Isolate low nybble
A("andi %15,0xF0") // Keep proper nybble in %15
A("or %16, %14") // %16:%15 <<= 4
A("subi %3,-4") // idx += 4
L("3")
A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
A("brcc 4f") // No, skip this
A("add %15,%15")
A("adc %16,%16")
A("add %15,%15")
A("adc %16,%16") // %16:%15 <<= 2
A("subi %3,-2") // idx += 2
L("4")
A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
A("brcc 5f") // No, skip this
A("add %15,%15")
A("adc %16,%16") // %16:%15 <<= 1
A("inc %3") // idx += 1
// Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
// we have at least 9 MSBits available to enter the initial estimation table
L("5")
A("add %15,%15")
A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
A("add r30,%16") // Only use top 8 bits
A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
A("lpm %14, Z") // %14 = inv_tab[tidx]
A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
// We must scale the approximation to the proper place
A("clr %16") // %16 will always be 0 here
A("subi %3,8") // idx == 8 ?
A("breq 6f") // yes, no need to scale
A("brcs 7f") // If C=1, means idx < 8, result was negative!
// idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
A("sbrs %3,0") // shift by 1bit position?
A("rjmp 8f") // No
A("add %14,%14")
A("adc %15,%15") // %15:16 <<= 1
L("8")
A("sbrs %3,1") // shift by 2bit position?
A("rjmp 9f") // No
A("add %14,%14")
A("adc %15,%15")
A("add %14,%14")
A("adc %15,%15") // %15:16 <<= 1
L("9")
A("sbrs %3,2") // shift by 4bits position?
A("rjmp 16f") // No
A("swap %15") // Swap nybbles. lo nybble of %15 will always be 0
A("swap %14") // Swap nybbles
A("mov %12,%14")
A("andi %12,0x0F") // isolate low nybble
A("andi %14,0xF0") // and clear it
A("or %15,%12") // %15:%16 <<= 4
L("16")
A("sbrs %3,3") // shift by 8bits position?
A("rjmp 6f") // No, we are done
A("mov %16,%15")
A("mov %15,%14")
A("clr %14")
A("jmp 6f")
// idx < 8, now %3 = idx - 8. Get the count of bits
L("7")
A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
A("sbrs %3,0") // shift by 1 bit position ?
A("rjmp 10f") // No, skip it
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
L("10")
A("sbrs %3,1") // shift by 2 bit position ?
A("rjmp 11f") // No, skip it
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
L("11")
A("sbrs %3,2") // shift by 4 bit position ?
A("rjmp 12f") // No, skip it
A("swap %15") // Swap nybbles
A("andi %14, 0xF0") // Lose the lowest nybble
A("swap %14") // Swap nybbles. Upper nybble is 0
A("or %14,%15") // Pass nybble from upper byte
A("andi %15, 0x0F") // And get rid of that nybble
L("12")
A("sbrs %3,3") // shift by 8 bit position ?
A("rjmp 6f") // No, skip it
A("mov %14,%15")
A("clr %15")
L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
// Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
// of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
// to get more than 18bits of precision (the initial table lookup gives 9 bits of
// precision to start from). 18bits of precision is all what is needed here for result
// %8:%7:%6 = d = interval
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
// %13 = 0
// %3:%2:%1:%0 = working accumulator
// Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
A("clr %0")
A("clr %1")
A("clr %2")
A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
A("sub %1,r0")
A("sbc %2,r1" )
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = (1<<25) - x*d [169]
// We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
// %3:%2:%1:%0 = (1<<25) - x*d = acc
// %13 = 0
// result = %11:%10:%9:%5:%4
A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
A("mov %4,r1")
A("clr %5")
A("clr %9")
A("clr %10")
A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
A("add %10,r0")
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
A("add %10,r0")
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
// At this point, %11:%10:%9 contains the new estimation of x.
// Finally, we must correct the result. Estimate remainder as
// (1<<24) - x*d
// %11:%10:%9 = x
// %8:%7:%6 = d = interval" "\n\t"
A("ldi %3,1")
A("clr %2")
A("clr %1")
A("clr %0") // %3:%2:%1:%0 = 0x1000000
A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = r = (1<<24) - x*d
// %8:%7:%6 = d = interval
// Perform the final correction
A("sub %0,%6")
A("sbc %1,%7")
A("sbc %2,%8") // r -= d
A("brcs 14f") // if ( r >= d)
// %11:%10:%9 = x
A("ldi %3,1")
A("add %9,%3")
A("adc %10,%13")
A("adc %11,%13") // x++
L("14")
// Estimation is done. %11:%10:%9 = x
A("clr __zero_reg__") // Make C runtime happy
// [211 cycles total]
: "=r" (r2),
"=r" (r3),
"=r" (r4),
"=d" (r5),
"=r" (r6),
"=r" (r7),
"+r" (r8),
"+r" (r9),
"+r" (r10),
"=d" (r11),
"=r" (r12),
"=r" (r13),
"=d" (r14),
"=d" (r15),
"=d" (r16),
"=d" (r17),
"=d" (r18),
"+z" (ptab)
:
: "r0", "r1", "cc"
);
// Return the result
return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
}
#else
// All other 32-bit MPUs can easily do inverse using hardware division,
// so we don't need to reduce precision or to use assembly language at all.
// This routine, for all other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d
FORCE_INLINE static uint32_t get_period_inverse(const uint32_t d) {
return d ? 0xFFFFFFFF / d : 0xFFFFFFFF;
}
#endif
#endif
#define MINIMAL_STEP_RATE 120
/**
* Get the current block for processing
* and mark the block as busy.
* Return nullptr if the buffer is empty
* or if there is a first-block delay.
*
* WARNING: Called from Stepper ISR context!
*/
block_t* Planner::get_current_block() {
// Get the number of moves in the planner queue so far
const uint8_t nr_moves = movesplanned();
// If there are any moves queued ...
if (nr_moves) {
// If there is still delay of delivery of blocks running, decrement it
if (delay_before_delivering) {
--delay_before_delivering;
// If the number of movements queued is less than 3, and there is still time
// to wait, do not deliver anything
if (nr_moves < 3 && delay_before_delivering) return nullptr;
delay_before_delivering = 0;
}
// If we are here, there is no excuse to deliver the block
block_t * const block = &block_buffer[block_buffer_tail];
// No trapezoid calculated? Don't execute yet.
if (block->flag.recalculate) return nullptr;
// We can't be sure how long an active block will take, so don't count it.
TERN_(HAS_WIRED_LCD, block_buffer_runtime_us -= block->segment_time_us);
// As this block is busy, advance the nonbusy block pointer
block_buffer_nonbusy = next_block_index(block_buffer_tail);
// Return the block
return block;
}
// The queue became empty
TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // paranoia. Buffer is empty now - so reset accumulated time to zero.
return nullptr;
}
/**
* Calculate trapezoid parameters, multiplying the entry- and exit-speeds
* by the provided factors. If entry_factor is 0 don't change the initial_rate.
* Assumes that the implied initial_rate and final_rate are no less than
* sqrt(block->acceleration_steps_per_s2 / 2). This is ensured through
* minimum_planner_speed_sqr / min_entry_speed_sqr though note there's one
* exception in recalculate_trapezoids().
**
* ############ VERY IMPORTANT ############
* NOTE that the PRECONDITION to call this function is that the block is
* NOT BUSY and it is marked as RECALCULATE. That WARRANTIES the Stepper ISR
* is not and will not use the block while we modify it.
*/
void Planner::calculate_trapezoid_for_block(block_t * const block, const_float_t entry_speed, const_float_t exit_speed) {
const float spmm = block->steps_per_mm;
uint32_t initial_rate = entry_speed ? LROUND(entry_speed * spmm) : block->initial_rate,
final_rate = LROUND(exit_speed * spmm);
// Removing code to constrain values produces judder in direction-switching moves because the
// current discrete stepping math diverges from physical motion under constant acceleration
// when acceleration_steps_per_s2 is large compared to initial/final_rate.
NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE));
NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE));
NOMORE(initial_rate, block->nominal_rate); // NOTE: The nominal rate may be less than MINIMAL_STEP_RATE!
NOMORE(final_rate, block->nominal_rate);
#if ANY(S_CURVE_ACCELERATION, LIN_ADVANCE)
// If we have some plateau time, the cruise rate will be the nominal rate
uint32_t cruise_rate = block->nominal_rate;
#endif
// Steps for acceleration, plateau and deceleration
int32_t plateau_steps = block->step_event_count,
accelerate_steps = 0,
decelerate_steps = 0;
const int32_t accel = block->acceleration_steps_per_s2;
float inverse_accel = 0.0f;
if (accel != 0) {
inverse_accel = 1.0f / accel;
const float half_inverse_accel = 0.5f * inverse_accel,
nominal_rate_sq = FLOAT_SQ(block->nominal_rate),
// Steps required for acceleration, deceleration to/from nominal rate
decelerate_steps_float = half_inverse_accel * (nominal_rate_sq - FLOAT_SQ(final_rate)),
accelerate_steps_float = half_inverse_accel * (nominal_rate_sq - FLOAT_SQ(initial_rate));
// Aims to fully reach nominal and final rates
accelerate_steps = CEIL(accelerate_steps_float);
decelerate_steps = CEIL(decelerate_steps_float);
// Steps between acceleration and deceleration, if any
plateau_steps -= accelerate_steps + decelerate_steps;
// Does accelerate_steps + decelerate_steps exceed step_event_count?
// Then we can't possibly reach the nominal rate, there will be no cruising.
// Calculate accel / braking time in order to reach the final_rate exactly
// at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = LROUND((block->step_event_count + accelerate_steps_float - decelerate_steps_float) * 0.5f);
LIMIT(accelerate_steps, 0, int32_t(block->step_event_count));
decelerate_steps = block->step_event_count - accelerate_steps;
#if ANY(S_CURVE_ACCELERATION, LIN_ADVANCE)
// We won't reach the cruising rate. Let's calculate the speed we will reach
NOMORE(cruise_rate, final_speed(initial_rate, accel, accelerate_steps));
#endif
}
}
#if ENABLED(S_CURVE_ACCELERATION)
const float rate_factor = inverse_accel * (STEPPER_TIMER_RATE);
// Jerk controlled speed requires to express speed versus time, NOT steps
uint32_t acceleration_time = rate_factor * float(cruise_rate - initial_rate),
deceleration_time = rate_factor * float(cruise_rate - final_rate),
// And to offload calculations from the ISR, we also calculate the inverse of those times here
acceleration_time_inverse = get_period_inverse(acceleration_time),
deceleration_time_inverse = get_period_inverse(deceleration_time);
#endif
// Store new block parameters
block->accelerate_before = accelerate_steps;
block->decelerate_start = block->step_event_count - decelerate_steps;
block->initial_rate = initial_rate;
#if ENABLED(S_CURVE_ACCELERATION)
block->acceleration_time = acceleration_time;
block->deceleration_time = deceleration_time;
block->acceleration_time_inverse = acceleration_time_inverse;
block->deceleration_time_inverse = deceleration_time_inverse;
block->cruise_rate = cruise_rate;
#endif
block->final_rate = final_rate;
#if ENABLED(LIN_ADVANCE)
if (block->la_advance_rate) {
const float comp = extruder_advance_K[E_INDEX_N(block->extruder)] * block->steps.e / block->step_event_count;
block->max_adv_steps = cruise_rate * comp;
block->final_adv_steps = final_rate * comp;
}
#endif
#if ENABLED(LASER_POWER_TRAP)
/**
* Laser Trapezoid Calculations
*
* Approximate the trapezoid with the laser, incrementing the power every `trap_ramp_entry_incr`
* steps while accelerating, and decrementing the power every `trap_ramp_exit_decr` while decelerating,
* to keep power proportional to feedrate. Laser power trap will reduce the initial power to no less
* than the laser_power_floor value. Based on the number of calculated accel/decel steps the power is
* distributed over the trapezoid entry- and exit-ramp steps.
*
* trap_ramp_active_pwr - The active power is initially set at a reduced level factor of initial
* power / accel steps and will be additively incremented using a trap_ramp_entry_incr value for each
* accel step processed later in the stepper code. The trap_ramp_exit_decr value is calculated as
* power / decel steps and is also adjusted to no less than the power floor.
*
* If the power == 0 the inline mode variables need to be set to zero to prevent stepper processing.
* The method allows for simpler non-powered moves like G0 or G28.
*
* Laser Trap Power works for all Jerk and Curve modes; however Arc-based moves will have issues since
* the segments are usually too small.
*/
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
if (block->laser.power > 0) {
NOLESS(block->laser.power, laser_power_floor);
block->laser.trap_ramp_active_pwr = (block->laser.power - laser_power_floor) * (initial_rate / float(block->nominal_rate)) + laser_power_floor;
block->laser.trap_ramp_entry_incr = (block->laser.power - block->laser.trap_ramp_active_pwr) / accelerate_steps;
float laser_pwr = block->laser.power * (final_rate / float(block->nominal_rate));
NOLESS(laser_pwr, laser_power_floor);
block->laser.trap_ramp_exit_decr = (block->laser.power - laser_pwr) / decelerate_steps;
#if ENABLED(DEBUG_LASER_TRAP)
SERIAL_ECHO_MSG("lp:",block->laser.power);
SERIAL_ECHO_MSG("as:",accelerate_steps);
SERIAL_ECHO_MSG("ds:",decelerate_steps);
SERIAL_ECHO_MSG("p.trap:",block->laser.trap_ramp_active_pwr);
SERIAL_ECHO_MSG("p.incr:",block->laser.trap_ramp_entry_incr);
SERIAL_ECHO_MSG("p.decr:",block->laser.trap_ramp_exit_decr);
#endif
}
else {
block->laser.trap_ramp_active_pwr = 0;
block->laser.trap_ramp_entry_incr = 0;
block->laser.trap_ramp_exit_decr = 0;
}
}
}
#endif // LASER_POWER_TRAP
}
/**
* PLANNER SPEED DEFINITION
* +--------+ <- current->nominal_speed
* / \
* current->entry_speed -> + \
* | + <- next->entry_speed (aka exit speed)
* +-------------+
* time -->
*
* Recalculates the motion plan according to the following basic guidelines:
*
* 1. Go over blocks sequentially in reverse order and maximize the entry junction speed:
* a. Entry speed should stay below/at the pre-computed maximum junction speed limit
* b. Aim for the maximum entry speed which is the one reverse-computed from its exit speed
* (next->entry_speed) if assuming maximum deceleration over the full block travel distance
* c. The last (newest appended) block uses safe_exit_speed exit speed (there's no 'next')
* 2. Go over blocks in chronological (forward) order and fix the exit junction speed:
* a. Exit speed (next->entry_speed) must be below/at the maximum exit speed forward-computed
* from its entry speed if assuming maximum acceleration over the full block travel distance
* b. Exit speed should stay above/at the pre-computed minimum junction speed limit
* 3. Convert entry / exit speeds (mm/s) into final/initial steps/s
*
* When these stages are complete, the planner will have maximized the velocity profiles throughout the all
* of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In
* other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements
* are possible. If a new block is added to the buffer, the plan is recomputed according to the said
* guidelines for a new optimal plan.
*
* To increase computational efficiency of these guidelines:
* 1. We keep track of which blocks need calculation (block->flag.recalculate)
* 2. We stop the reverse pass on the first block whose entry_speed == max_entry_speed. As soon
* as that happens, there can be no further increases (ensured by the previous recalculate)
* 3. On the forward pass we skip through to the first block with a modified exit speed
* (next->entry_speed)
* 4. On the forward pass if we encounter a full acceleration block that limits its exit speed
* (next->entry_speed) we also update the maximum for that junction (next->max_entry_speed)
* so it's never updated again
* 5. We use speed squared (ex: entry_speed_sqr in mm^2/s^2) in acceleration limit computations
* 6. We don't recompute sqrt(entry_speed_sqr) if the block's entry speed didn't change
*
* Planner buffer index mapping:
* - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed.
* - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether
* the buffer is full or empty. As described for standard ring buffers, this block is always empty.
*
* NOTE: Since the planner only computes on what's in the planner buffer, some motions with many short
* segments (e.g., complex curves) may seem to move slowly. This is because there simply isn't
* enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and
* then decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this
* happens and becomes an annoyance, there are a few simple solutions:
*
* - Maximize the machine acceleration. The planner will be able to compute higher velocity profiles
* within the same combined distance.
*
* - Maximize line motion(s) distance per block to a desired tolerance. The more combined distance the
* planner has to use, the faster it can go.
*
* - Maximize the planner buffer size. This also will increase the combined distance for the planner to
* compute over. It also increases the number of computations the planner has to perform to compute an
* optimal plan, so select carefully.
*
* - Use G2/G3 arcs instead of many short segments. Arcs inform the planner of a safe exit speed at the
* end of the last segment, which alleviates this problem.
*/
// The kernel called by recalculate() when scanning the plan from last to first entry.
// Returns true if it could increase the current block's entry speed.
bool Planner::reverse_pass_kernel(block_t * const current, const block_t * const next, const_float_t safe_exit_speed_sqr) {
// We need to recalculate only for the last block added or if next->entry_speed_sqr changed.
if (!next || next->flag.recalculate) {
// And only if we're not already at max entry speed.
if (current->entry_speed_sqr != current->max_entry_speed_sqr) {
const float next_entry_speed_sqr = next ? next->entry_speed_sqr : safe_exit_speed_sqr;
float new_entry_speed_sqr = max_allowable_speed_sqr(-current->acceleration, next_entry_speed_sqr, current->millimeters);
NOMORE(new_entry_speed_sqr, current->max_entry_speed_sqr);
if (current->entry_speed_sqr != new_entry_speed_sqr) {
// Need to recalculate the block speed - Mark it now, so the stepper
// ISR does not consume the block before being recalculated
current->flag.recalculate = true;
// But there is an inherent race condition here, as the block may have
// become BUSY just before being marked RECALCULATE, so check for that!
if (stepper.is_block_busy(current)) {
// Block became busy. Clear the RECALCULATE flag (no point in
// recalculating BUSY blocks).
current->flag.recalculate = false;
}
else {
// Block is not BUSY so this is ahead of the Stepper ISR:
current->entry_speed_sqr = new_entry_speed_sqr;
return true;
}
}
}
}
return false;
}
/**
* recalculate() needs to go over the current plan twice.
* Once in reverse and once forward. This implements the reverse pass that
* coarsely maximizes the entry speeds starting from last block.
* Requires there's at least one block with flag.recalculate in the buffer.
*/
void Planner::reverse_pass(const_float_t safe_exit_speed_sqr) {
// Initialize block index to the last block in the planner buffer.
// This last block will have flag.recalculate set.
uint8_t block_index = prev_block_index(block_buffer_head);
// The ISR may change block_buffer_nonbusy so get a stable local copy.
uint8_t nonbusy_block_index = block_buffer_nonbusy;
const block_t *next = nullptr;
// Don't try to change the entry speed of the first non-busy block.
while (block_index != nonbusy_block_index) {
block_t *current = &block_buffer[block_index];
// Only process movement blocks
if (current->is_move()) {
// If no entry speed increase was possible we end the reverse pass.
if (!reverse_pass_kernel(current, next, safe_exit_speed_sqr)) return;
next = current;
}
block_index = prev_block_index(block_index);
// The ISR could advance block_buffer_nonbusy while we were doing the reverse pass.
// We must try to avoid using an already consumed block as the last one - So follow
// changes to the pointer and make sure to limit the loop to the currently busy block
while (nonbusy_block_index != block_buffer_nonbusy) {
// If we reached the busy block or an already processed block, break the loop now
if (block_index == nonbusy_block_index) return;
// Advance the pointer, following the busy block
nonbusy_block_index = next_block_index(nonbusy_block_index);
}
}
}
// The kernel called during the forward pass. Assumes current->flag.recalculate.
void Planner::forward_pass_kernel(const block_t * const previous, block_t * const current) {
// Check if the previous block is accelerating.
if (previous->entry_speed_sqr < current->entry_speed_sqr) {
// Compute the maximum achievable speed if the previous block was fully accelerating.
float new_exit_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters);
if (new_exit_speed_sqr < current->entry_speed_sqr) {
// Current entry speed limited by full acceleration from previous entry speed.
// Make sure entry speed not lower than minimum_planner_speed_sqr.
NOLESS(new_exit_speed_sqr, current->min_entry_speed_sqr);
current->entry_speed_sqr = new_exit_speed_sqr;
// Ensure we don't try updating entry_speed_sqr again.
current->max_entry_speed_sqr = new_exit_speed_sqr;
}
}
// The fully optimized entry speed is our new minimum speed.
current->min_entry_speed_sqr = current->entry_speed_sqr;
}
/**
* Do the forward pass and recalculate the trapezoid speed profiles for all blocks in the plan
* according to entry/exit speeds.
*/
void Planner::recalculate_trapezoids(const_float_t safe_exit_speed_sqr) {
// Start with the block that's about to execute or is executing.
uint8_t block_index = block_buffer_tail,
head_block_index = block_buffer_head;
block_t *block = nullptr, *next = nullptr;
float next_entry_speed = 0.0f;
while (block_index != head_block_index) {
next = &block_buffer[block_index];
if (next->is_move()) {
// Check if the next block's entry speed changed
if (next->flag.recalculate) {
if (!block) {
// 'next' is the first move due to either being the first added move or due to the planner
// having completely fallen behind. Revert any reverse pass change.
next->entry_speed_sqr = next->min_entry_speed_sqr;
next_entry_speed = SQRT(next->min_entry_speed_sqr);
}
else {
// Try to fix exit speed which requires trapezoid recalculation
block->flag.recalculate = true;
// But there is an inherent race condition here, as the block may have
// become BUSY just before being marked RECALCULATE, so check for that!
if (stepper.is_block_busy(block)) {
// Block is BUSY so we can't change the exit speed. Revert any reverse pass change.
next->entry_speed_sqr = next->min_entry_speed_sqr;
if (!next->initial_rate) {
// 'next' was never calculated. Planner is falling behind so for maximum efficiency
// set next's stepping speed directly and forgo checking against min_entry_speed_sqr.
// calculate_trapezoid_for_block() can handle it, albeit sub-optimally.
next->initial_rate = block->final_rate;
}
// Note that at this point next_entry_speed is (still) 0.
}
else {
// Block is not BUSY: we won the race against the ISR or recalculate was already set
if (next->entry_speed_sqr != next->min_entry_speed_sqr)
forward_pass_kernel(block, next);
const float current_entry_speed = next_entry_speed;
next_entry_speed = SQRT(next->entry_speed_sqr);
calculate_trapezoid_for_block(block, current_entry_speed, next_entry_speed);
}
// Reset current only to ensure next trapezoid is computed - The
// stepper is free to use the block from now on.
block->flag.recalculate = false;
}
}
block = next;
}
block_index = next_block_index(block_index);
}
// Last/newest block in buffer. The above guarantees it's a move block.
if (block && block->flag.recalculate) {
const float current_entry_speed = next_entry_speed;
next_entry_speed = SQRT(safe_exit_speed_sqr);
calculate_trapezoid_for_block(block, current_entry_speed, next_entry_speed);
// Reset block to ensure its trapezoid is computed - The stepper is free to use
// the block from now on.
block->flag.recalculate = false;
}
}
// Requires there's at least one block with flag.recalculate in the buffer
void Planner::recalculate(const_float_t safe_exit_speed_sqr) {
reverse_pass(safe_exit_speed_sqr);
// The forward pass is done as part of recalculate_trapezoids()
recalculate_trapezoids(safe_exit_speed_sqr);
}
/**
* Apply fan speeds
*/
#if HAS_FAN
void Planner::sync_fan_speeds(uint8_t (&fan_speed)[FAN_COUNT]) {
#if ENABLED(FAN_SOFT_PWM)
#define _FAN_SET(F) thermalManager.soft_pwm_amount_fan[F] = CALC_FAN_SPEED(fan_speed[F]);
#else
#define _FAN_SET(F) hal.set_pwm_duty(pin_t(FAN##F##_PIN), CALC_FAN_SPEED(fan_speed[F]));
#endif
#define FAN_SET(F) do{ kickstart_fan(fan_speed, ms, F); _FAN_SET(F); }while(0)
const millis_t ms = millis();
TERN_(HAS_FAN0, FAN_SET(0)); TERN_(HAS_FAN1, FAN_SET(1));
TERN_(HAS_FAN2, FAN_SET(2)); TERN_(HAS_FAN3, FAN_SET(3));
TERN_(HAS_FAN4, FAN_SET(4)); TERN_(HAS_FAN5, FAN_SET(5));
TERN_(HAS_FAN6, FAN_SET(6)); TERN_(HAS_FAN7, FAN_SET(7));
}
#if FAN_KICKSTART_TIME
void Planner::kickstart_fan(uint8_t (&fan_speed)[FAN_COUNT], const millis_t &ms, const uint8_t f) {
static millis_t fan_kick_end[FAN_COUNT] = { 0 };
#if ENABLED(FAN_KICKSTART_LINEAR)
static uint8_t set_fan_speed[FAN_COUNT] = { 0 };
#endif
if (fan_speed[f] > FAN_OFF_PWM) {
const bool first_kick = fan_kick_end[f] == 0 && TERN1(FAN_KICKSTART_LINEAR, fan_speed[f] > set_fan_speed[f]);
if (first_kick)
fan_kick_end[f] = ms + (FAN_KICKSTART_TIME) TERN_(FAN_KICKSTART_LINEAR, * (fan_speed[f] - set_fan_speed[f]) / 255);
if (first_kick || PENDING(ms, fan_kick_end[f])) {
fan_speed[f] = FAN_KICKSTART_POWER;
return;
}
}
fan_kick_end[f] = 0;
TERN_(FAN_KICKSTART_LINEAR, set_fan_speed[f] = fan_speed[f]);
}
#endif
#endif // HAS_FAN
/**
* Maintain fans, paste extruder pressure, spindle/laser power
*/
void Planner::check_axes_activity() {
#if HAS_DISABLE_AXES
xyze_bool_t axis_active = { false };
#endif
#if HAS_FAN && DISABLED(LASER_SYNCHRONOUS_M106_M107)
#define HAS_TAIL_FAN_SPEED 1
static uint8_t tail_fan_speed[FAN_COUNT] = ARRAY_N_1(FAN_COUNT, 13);
bool fans_need_update = false;
#endif
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
uint8_t tail_valve_pressure;
#endif
#if HAS_HEATER_2
uint8_t tail_e_to_p_pressure;
#endif
#endif
if (has_blocks_queued()) {
#if ANY(HAS_TAIL_FAN_SPEED, BARICUDA)
block_t *block = &block_buffer[block_buffer_tail];
#endif
#if HAS_TAIL_FAN_SPEED
FANS_LOOP(i) {
const uint8_t spd = thermalManager.scaledFanSpeed(i, block->fan_speed[i]);
if (tail_fan_speed[i] != spd) {
fans_need_update = true;
tail_fan_speed[i] = spd;
}
}
#endif
#if ENABLED(BARICUDA)
TERN_(HAS_HEATER_1, tail_valve_pressure = block->valve_pressure);
TERN_(HAS_HEATER_2, tail_e_to_p_pressure = block->e_to_p_pressure);
#endif
#if HAS_DISABLE_AXES
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
block_t * const bnext = &block_buffer[b];
LOGICAL_AXIS_CODE(
if (TERN0(DISABLE_E, bnext->steps.e)) axis_active.e = true,
if (TERN0(DISABLE_X, bnext->steps.x)) axis_active.x = true,
if (TERN0(DISABLE_Y, bnext->steps.y)) axis_active.y = true,
if (TERN0(DISABLE_Z, bnext->steps.z)) axis_active.z = true,
if (TERN0(DISABLE_I, bnext->steps.i)) axis_active.i = true,
if (TERN0(DISABLE_J, bnext->steps.j)) axis_active.j = true,
if (TERN0(DISABLE_K, bnext->steps.k)) axis_active.k = true,
if (TERN0(DISABLE_U, bnext->steps.u)) axis_active.u = true,
if (TERN0(DISABLE_V, bnext->steps.v)) axis_active.v = true,
if (TERN0(DISABLE_W, bnext->steps.w)) axis_active.w = true
);
}
#endif
}
else {
TERN_(HAS_CUTTER, if (cutter.cutter_mode == CUTTER_MODE_STANDARD) cutter.refresh());
#if HAS_TAIL_FAN_SPEED
FANS_LOOP(i) {
const uint8_t spd = thermalManager.scaledFanSpeed(i);
if (tail_fan_speed[i] != spd) {
fans_need_update = true;
tail_fan_speed[i] = spd;
}
}
#endif
#if ENABLED(BARICUDA)
TERN_(HAS_HEATER_1, tail_valve_pressure = baricuda_valve_pressure);
TERN_(HAS_HEATER_2, tail_e_to_p_pressure = baricuda_e_to_p_pressure);
#endif
}
//
// Disable inactive axes
//
#if HAS_DISABLE_AXES
LOGICAL_AXIS_CODE(
if (TERN0(DISABLE_E, !axis_active.e)) stepper.disable_e_steppers(),
if (TERN0(DISABLE_X, !axis_active.x)) stepper.disable_axis(X_AXIS),
if (TERN0(DISABLE_Y, !axis_active.y)) stepper.disable_axis(Y_AXIS),
if (TERN0(DISABLE_Z, !axis_active.z)) stepper.disable_axis(Z_AXIS),
if (TERN0(DISABLE_I, !axis_active.i)) stepper.disable_axis(I_AXIS),
if (TERN0(DISABLE_J, !axis_active.j)) stepper.disable_axis(J_AXIS),
if (TERN0(DISABLE_K, !axis_active.k)) stepper.disable_axis(K_AXIS),
if (TERN0(DISABLE_U, !axis_active.u)) stepper.disable_axis(U_AXIS),
if (TERN0(DISABLE_V, !axis_active.v)) stepper.disable_axis(V_AXIS),
if (TERN0(DISABLE_W, !axis_active.w)) stepper.disable_axis(W_AXIS)
);
#endif
//
// Update Fan speeds
// Only if synchronous M106/M107 is disabled
//
TERN_(HAS_TAIL_FAN_SPEED, if (fans_need_update) sync_fan_speeds(tail_fan_speed));
TERN_(AUTOTEMP, autotemp_task());
#if ENABLED(BARICUDA)
TERN_(HAS_HEATER_1, hal.set_pwm_duty(pin_t(HEATER_1_PIN), tail_valve_pressure));
TERN_(HAS_HEATER_2, hal.set_pwm_duty(pin_t(HEATER_2_PIN), tail_e_to_p_pressure));
#endif
}
#if ENABLED(AUTOTEMP)
#if ENABLED(AUTOTEMP_PROPORTIONAL)
void Planner::_autotemp_update_from_hotend() {
const celsius_t target = thermalManager.degTargetHotend(active_extruder);
autotemp.min = target + AUTOTEMP_MIN_P;
autotemp.max = target + AUTOTEMP_MAX_P;
}
#endif
/**
* Called after changing tools to:
* - Reset or re-apply the default proportional autotemp factor.
* - Enable autotemp if the factor is non-zero.
*/
void Planner::autotemp_update() {
_autotemp_update_from_hotend();
autotemp.factor = TERN0(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P);
autotemp.enabled = autotemp.factor != 0;
}
/**
* Called by the M104/M109 commands after setting Hotend Temperature
*
*/
void Planner::autotemp_M104_M109() {
_autotemp_update_from_hotend();
if (parser.seenval('S')) autotemp.min = parser.value_celsius();
if (parser.seenval('B')) autotemp.max = parser.value_celsius();
// When AUTOTEMP_PROPORTIONAL is enabled, F0 disables autotemp.
// Normally, leaving off F also disables autotemp.
autotemp.factor = parser.seen('F') ? parser.value_float() : TERN0(AUTOTEMP_PROPORTIONAL, AUTOTEMP_FACTOR_P);
autotemp.enabled = autotemp.factor != 0;
}
/**
* Called every so often to adjust the hotend target temperature
* based on the extrusion speed, which is calculated from the blocks
* currently in the planner.
*/
void Planner::autotemp_task() {
static float oldt = 0.0f;
if (!autotemp.enabled) return;
if (thermalManager.degTargetHotend(active_extruder) < autotemp.min - 2) return; // Below the min?
float high = 0.0f;
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
const block_t * const block = &block_buffer[b];
if (NUM_AXIS_GANG(block->steps.x, || block->steps.y, || block->steps.z, || block->steps.i, || block->steps.j, || block->steps.k, || block->steps.u, || block->steps.v, || block->steps.w)) {
const float se = float(block->steps.e) / block->step_event_count * block->nominal_speed; // mm/sec
NOLESS(high, se);
}
}
float t = autotemp.min + high * autotemp.factor;
LIMIT(t, autotemp.min, autotemp.max);
if (t < oldt) t = t * (1.0f - (AUTOTEMP_OLDWEIGHT)) + oldt * (AUTOTEMP_OLDWEIGHT);
oldt = t;
thermalManager.setTargetHotend(t, active_extruder);
}
#endif // AUTOTEMP
#if DISABLED(NO_VOLUMETRICS)
/**
* Get a volumetric multiplier from a filament diameter.
* This is the reciprocal of the circular cross-section area.
* Return 1.0 with volumetric off or a diameter of 0.0.
*/
inline float calculate_volumetric_multiplier(const_float_t diameter) {
return (parser.volumetric_enabled && diameter) ? 1.0f / CIRCLE_AREA(diameter * 0.5f) : 1;
}
/**
* Convert the filament sizes into volumetric multipliers.
* The multiplier converts a given E value into a length.
*/
void Planner::calculate_volumetric_multipliers() {
for (uint8_t i = 0; i < COUNT(filament_size); ++i) {
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
refresh_e_factor(i);
}
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
calculate_volumetric_extruder_limits(); // update volumetric_extruder_limits as well.
#endif
}
#endif // !NO_VOLUMETRICS
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
/**
* Convert volumetric based limits into pre calculated extruder feedrate limits.
*/
void Planner::calculate_volumetric_extruder_limit(const uint8_t e) {
const float &lim = volumetric_extruder_limit[e], &siz = filament_size[e];
volumetric_extruder_feedrate_limit[e] = (lim && siz) ? lim / CIRCLE_AREA(siz * 0.5f) : 0;
}
void Planner::calculate_volumetric_extruder_limits() {
EXTRUDER_LOOP() calculate_volumetric_extruder_limit(e);
}
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
/**
* Convert the ratio value given by the filament width sensor
* into a volumetric multiplier. Conversion differs when using
* linear extrusion vs volumetric extrusion.
*/
void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) {
// Reconstitute the nominal/measured ratio
const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
ratio_2 = sq(nom_meas_ratio);
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier
: ratio_2; // Linear squares the ratio, which scales the volume
refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
}
#endif
#if ENABLED(IMPROVE_HOMING_RELIABILITY)
void Planner::enable_stall_prevention(const bool onoff) {
static motion_state_t saved_motion_state;
if (onoff) {
saved_motion_state.acceleration.x = settings.max_acceleration_mm_per_s2[X_AXIS];
saved_motion_state.acceleration.y = settings.max_acceleration_mm_per_s2[Y_AXIS];
settings.max_acceleration_mm_per_s2[X_AXIS] = settings.max_acceleration_mm_per_s2[Y_AXIS] = 100;
#if ENABLED(DELTA)
saved_motion_state.acceleration.z = settings.max_acceleration_mm_per_s2[Z_AXIS];
settings.max_acceleration_mm_per_s2[Z_AXIS] = 100;
#endif
#if ENABLED(CLASSIC_JERK)
saved_motion_state.jerk_state = max_jerk;
max_jerk.set(0, 0 OPTARG(DELTA, 0));
#endif
}
else {
settings.max_acceleration_mm_per_s2[X_AXIS] = saved_motion_state.acceleration.x;
settings.max_acceleration_mm_per_s2[Y_AXIS] = saved_motion_state.acceleration.y;
TERN_(DELTA, settings.max_acceleration_mm_per_s2[Z_AXIS] = saved_motion_state.acceleration.z);
TERN_(CLASSIC_JERK, max_jerk = saved_motion_state.jerk_state);
}
refresh_acceleration_rates();
}
#endif
#if HAS_LEVELING
constexpr xy_pos_t level_fulcrum = {
TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_X_POINT, X_HOME_POS),
TERN(Z_SAFE_HOMING, Z_SAFE_HOMING_Y_POINT, Y_HOME_POS)
};
/**
* rx, ry, rz - Cartesian positions in mm
* Leveled XYZ on completion
*/
void Planner::apply_leveling(xyz_pos_t &raw) {
if (!leveling_active) return;
#if ABL_PLANAR
xy_pos_t d = raw - level_fulcrum;
bed_level_matrix.apply_rotation_xyz(d.x, d.y, raw.z);
raw = d + level_fulcrum;
#elif HAS_MESH
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = fade_scaling_factor_for_z(raw.z);
if (fade_scaling_factor) raw.z += fade_scaling_factor * bedlevel.get_z_correction(raw);
#else
raw.z += bedlevel.get_z_correction(raw);
#endif
TERN_(MESH_BED_LEVELING, raw.z += bedlevel.get_z_offset());
#endif
}
void Planner::unapply_leveling(xyz_pos_t &raw) {
if (!leveling_active) return;
#if ABL_PLANAR
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
xy_pos_t d = raw - level_fulcrum;
inverse.apply_rotation_xyz(d.x, d.y, raw.z);
raw = d + level_fulcrum;
#elif HAS_MESH
const float z_correction = bedlevel.get_z_correction(raw),
z_full_fade = DIFF_TERN(MESH_BED_LEVELING, raw.z, bedlevel.get_z_offset()),
z_no_fade = z_full_fade - z_correction;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (!z_fade_height || z_no_fade <= 0.0f) // Not fading or at bed level?
raw.z = z_no_fade; // Unapply full mesh Z.
else if (z_full_fade >= z_fade_height) // Above the fade height?
raw.z = z_full_fade; // Nothing more to unapply.
else // Within the fade zone?
raw.z = z_no_fade / (1.0f - z_correction * inverse_z_fade_height); // Unapply the faded Z offset
#else
raw.z = z_no_fade;
#endif
#endif
}
#endif // HAS_LEVELING
#if ENABLED(FWRETRACT)
/**
* rz, e - Cartesian positions in mm
*/
void Planner::apply_retract(float &rz, float &e) {
rz += fwretract.current_hop;
e -= fwretract.current_retract[active_extruder];
}
void Planner::unapply_retract(float &rz, float &e) {
rz -= fwretract.current_hop;
e += fwretract.current_retract[active_extruder];
}
#endif
void Planner::quick_stop() {
// Remove all the queued blocks. Note that this function is NOT
// called from the Stepper ISR, so we must consider tail as readonly!
// that is why we set head to tail - But there is a race condition that
// must be handled: The tail could change between the read and the assignment
// so this must be enclosed in a critical section
const bool was_enabled = stepper.suspend();
// Drop all queue entries
block_buffer_nonbusy = block_buffer_head = block_buffer_tail;
// Restart the block delay for the first movement - As the queue was
// forced to empty, there's no risk the ISR will touch this.
delay_before_delivering = TERN_(FT_MOTION, ftMotion.cfg.mode ? BLOCK_DELAY_NONE :) BLOCK_DELAY_FOR_1ST_MOVE;
TERN_(HAS_WIRED_LCD, clear_block_buffer_runtime()); // Clear the accumulated runtime
// Make sure to drop any attempt of queuing moves for 1 second
cleaning_buffer_counter = TEMP_TIMER_FREQUENCY;
// Reenable Stepper ISR
if (was_enabled) stepper.wake_up();
// And stop the stepper ISR
stepper.quick_stop();
}
#if ENABLED(REALTIME_REPORTING_COMMANDS)
void Planner::quick_pause() {
// Suspend until quick_resume is called
// Don't empty buffers or queues
const bool did_suspend = stepper.suspend();
if (did_suspend)
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(M_HOLD));
}
// Resume if suspended
void Planner::quick_resume() {
TERN_(FULL_REPORT_TO_HOST_FEATURE, set_and_report_grblstate(grbl_state_for_marlin_state()));
stepper.wake_up();
}
#endif
void Planner::endstop_triggered(const AxisEnum axis) {
// Record stepper position and discard the current block
stepper.endstop_triggered(axis);
}
float Planner::triggered_position_mm(const AxisEnum axis) {
const float result = DIFF_TERN(BACKLASH_COMPENSATION, stepper.triggered_position(axis), backlash.get_applied_steps(axis));
return result * mm_per_step[axis];
}
bool Planner::busy() {
return (has_blocks_queued() || cleaning_buffer_counter
|| TERN0(EXTERNAL_CLOSED_LOOP_CONTROLLER, CLOSED_LOOP_WAITING())
|| TERN0(HAS_ZV_SHAPING, stepper.input_shaping_busy())
|| TERN0(FT_MOTION, ftMotion.busy)
);
}
void Planner::finish_and_disable() {
while (has_blocks_queued() || cleaning_buffer_counter) idle();
stepper.disable_all_steppers();
}
/**
* Get an axis position according to stepper position(s)
* For CORE machines apply translation from ABC to XYZ.
*/
float Planner::get_axis_position_mm(const AxisEnum axis) {
float axis_steps;
#if IS_CORE
// Requesting one of the "core" axes?
if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
// Protect the access to the position.
const bool was_enabled = stepper.suspend();
const int32_t p1 = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(CORE_AXIS_1), backlash.get_applied_steps(CORE_AXIS_1)),
p2 = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(CORE_AXIS_2), backlash.get_applied_steps(CORE_AXIS_2));
if (was_enabled) stepper.wake_up();
// ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
// ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
axis_steps = (axis == CORE_AXIS_2 ? CORESIGN(p1 - p2) : p1 + p2) * 0.5f;
}
else
axis_steps = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(axis), backlash.get_applied_steps(axis));
#elif ANY(MARKFORGED_XY, MARKFORGED_YX)
// Requesting one of the joined axes?
if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
// Protect the access to the position.
const bool was_enabled = stepper.suspend();
const int32_t p1 = stepper.position(CORE_AXIS_1),
p2 = stepper.position(CORE_AXIS_2);
if (was_enabled) stepper.wake_up();
axis_steps = ((axis == CORE_AXIS_1) ? p1 - p2 : p2);
}
else
axis_steps = DIFF_TERN(BACKLASH_COMPENSATION, stepper.position(axis), backlash.get_applied_steps(axis));
#else
axis_steps = stepper.position(axis);
TERN_(BACKLASH_COMPENSATION, axis_steps -= backlash.get_applied_steps(axis));
#endif
return axis_steps * mm_per_step[axis];
}
/**
* Block until the planner is finished processing
*/
void Planner::synchronize() { while (busy()) idle(); }
/**
* @brief Add a new linear movement to the planner queue (in terms of steps).
*
* @param target Target position in steps units
* @param target_float Target position in direct (mm, degrees) units.
* @param cart_dist_mm The pre-calculated move lengths for all axes, in mm
* @param fr_mm_s (target) speed of the move
* @param extruder target extruder
* @param hints parameters to aid planner calculations
*
* @return true if movement was properly queued, false otherwise (if cleaning)
*/
bool Planner::_buffer_steps(const xyze_long_t &target
OPTARG(HAS_POSITION_FLOAT, const xyze_pos_t &target_float)
OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm)
, feedRate_t fr_mm_s, const uint8_t extruder, const PlannerHints &hints
) {
// Wait for the next available block
uint8_t next_buffer_head;
block_t * const block = get_next_free_block(next_buffer_head);
// If we are cleaning, do not accept queuing of movements
// This must be after get_next_free_block() because it calls idle()
// where cleaning_buffer_counter can be changed
if (cleaning_buffer_counter) return false;
// Fill the block with the specified movement
float minimum_planner_speed_sqr;
if (!_populate_block(block, target
OPTARG(HAS_POSITION_FLOAT, target_float)
OPTARG(HAS_DIST_MM_ARG, cart_dist_mm)
, fr_mm_s, extruder, hints
, minimum_planner_speed_sqr
)
) {
// Movement was not queued, probably because it was too short.
// Simply accept that as movement queued and done
return true;
}
// If this is the first added movement, reload the delay, otherwise, cancel it.
if (block_buffer_head == block_buffer_tail) {
// If it was the first queued block, restart the 1st block delivery delay, to
// give the planner an opportunity to queue more movements and plan them
// As there are no queued movements, the Stepper ISR will not touch this
// variable, so there is no risk setting this here (but it MUST be done
// before the following line!!)
delay_before_delivering = TERN_(FT_MOTION, ftMotion.cfg.mode ? BLOCK_DELAY_NONE :) BLOCK_DELAY_FOR_1ST_MOVE;
}
// Move buffer head
block_buffer_head = next_buffer_head;
// find a speed from which the new block can stop safely
const float safe_exit_speed_sqr = _MAX(
TERN0(HINTS_SAFE_EXIT_SPEED, hints.safe_exit_speed_sqr),
minimum_planner_speed_sqr
);
// Recalculate and optimize trapezoidal speed profiles
recalculate(safe_exit_speed_sqr);
// Movement successfully queued!
return true;
}
/**
* @brief Populate a block in preparation for insertion
* @details Populate the fields of a new linear movement block
* that will be added to the queue and processed soon
* by the Stepper ISR.
*
* @param block A block to populate
* @param target Target position in steps units
* @param target_float Target position in native mm
* @param cart_dist_mm The pre-calculated move lengths for all axes, in mm
* @param fr_mm_s (target) speed of the move
* @param extruder target extruder
* @param hints parameters to aid planner calculations
*
* @return true if movement is acceptable, false otherwise
*/
bool Planner::_populate_block(
block_t * const block,
const abce_long_t &target
OPTARG(HAS_POSITION_FLOAT, const xyze_pos_t &target_float)
OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm)
, feedRate_t fr_mm_s, const uint8_t extruder, const PlannerHints &hints
, float &minimum_planner_speed_sqr
) {
xyze_long_t dist = target - position;
/* <-- add a slash to enable
SERIAL_ECHOLNPGM(
" _populate_block FR:", fr_mm_s,
#if HAS_X_AXIS
" " STR_A ":", target.a, " (", dist.a, " steps)"
#endif
#if HAS_Y_AXIS
" " STR_B ":", target.b, " (", dist.b, " steps)"
#endif
#if HAS_Z_AXIS
" " STR_C ":", target.c, " (", dist.c, " steps)"
#endif
#if HAS_I_AXIS
" " STR_I ":", target.i, " (", dist.i, " steps)"
#endif
#if HAS_J_AXIS
" " STR_J ":", target.j, " (", dist.j, " steps)"
#endif
#if HAS_K_AXIS
" " STR_K ":", target.k, " (", dist.k, " steps)"
#endif
#if HAS_U_AXIS
" " STR_U ":", target.u, " (", dist.u, " steps)"
#endif
#if HAS_V_AXIS
" " STR_V ":", target.v, " (", dist.v, " steps)"
#endif
#if HAS_W_AXIS
" " STR_W ":", target.w, " (", dist.w, " steps)"
#endif
#if HAS_EXTRUDERS
" E:", target.e, " (", dist.e, " steps)"
#endif
);
//*/
#if ANY(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
if (dist.e) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(extruder)) {
position.e = target.e; // Behave as if the move really took place, but ignore E part
TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e);
dist.e = 0; // no difference
SERIAL_ECHO_MSG(STR_ERR_COLD_EXTRUDE_STOP);
}
#endif // PREVENT_COLD_EXTRUSION
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
const float e_steps = ABS(dist.e * e_factor[extruder]);
const float max_e_steps = settings.axis_steps_per_mm[E_AXIS_N(extruder)] * (EXTRUDE_MAXLENGTH);
if (e_steps > max_e_steps) {
#if ENABLED(MIXING_EXTRUDER)
bool ignore_e = false;
float collector[MIXING_STEPPERS];
mixer.refresh_collector(1.0f, mixer.get_current_vtool(), collector);
MIXER_STEPPER_LOOP(e)
if (e_steps * collector[e] > max_e_steps) { ignore_e = true; break; }
#else
constexpr bool ignore_e = true;
#endif
if (ignore_e) {
position.e = target.e; // Behave as if the move really took place, but ignore E part
TERN_(HAS_POSITION_FLOAT, position_float.e = target_float.e);
dist.e = 0; // no difference
SERIAL_ECHO_MSG(STR_ERR_LONG_EXTRUDE_STOP);
}
}
#endif // PREVENT_LENGTHY_EXTRUDE
}
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
// Compute direction bit-mask for this block
AxisBits dm;
#if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX)
dm.hx = (dist.a > 0); // True direction in X
#endif
#if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX)
dm.hy = (dist.b > 0); // True direction in Y
#endif
#if ANY(CORE_IS_XZ, CORE_IS_YZ)
dm.hz = (dist.c > 0); // True direction in Z
#endif
#if CORE_IS_XY
dm.a = (dist.a + dist.b > 0); // Motor A direction
dm.b = (CORESIGN(dist.a - dist.b) > 0); // Motor B direction
TERN_(HAS_Z_AXIS, dm.z = (dist.c > 0)); // Axis Z direction
#elif CORE_IS_XZ
dm.a = (dist.a + dist.c > 0); // Motor A direction
dm.y = (dist.b > 0); // Axis Y direction
dm.c = (CORESIGN(dist.a - dist.c) > 0); // Motor C direction
#elif CORE_IS_YZ
dm.x = (dist.a > 0); // Axis X direction
dm.b = (dist.b + dist.c > 0); // Motor B direction
dm.c = (CORESIGN(dist.b - dist.c) > 0); // Motor C direction
#elif ENABLED(MARKFORGED_XY)
dm.a = (dist.a TERN(MARKFORGED_INVERSE, -, +) dist.b > 0); // Motor A direction
dm.b = (dist.b > 0); // Motor B direction
TERN_(HAS_Z_AXIS, dm.z = (dist.c > 0)); // Axis Z direction
#elif ENABLED(MARKFORGED_YX)
dm.a = (dist.a > 0); // Motor A direction
dm.b = (dist.b TERN(MARKFORGED_INVERSE, -, +) dist.a > 0); // Motor B direction
TERN_(HAS_Z_AXIS, dm.z = (dist.c > 0)); // Axis Z direction
#else
XYZ_CODE(
dm.x = (dist.a > 0),
dm.y = (dist.b > 0),
dm.z = (dist.c > 0)
);
#endif
SECONDARY_AXIS_CODE(
dm.i = (dist.i > 0), dm.j = (dist.j > 0), dm.k = (dist.k > 0),
dm.u = (dist.u > 0), dm.v = (dist.v > 0), dm.w = (dist.w > 0)
);
#if HAS_EXTRUDERS
dm.e = (dist.e > 0);
const float esteps_float = dist.e * e_factor[extruder];
const uint32_t esteps = ABS(esteps_float);
#else
constexpr uint32_t esteps = 0;
#endif
// Clear all flags, including the "busy" bit
block->flag.clear();
// Set direction bits
block->direction_bits = dm;
/**
* Update block laser power
* For standard mode get the cutter.power value for processing, since it's
* only set by apply_power().
*/
#if HAS_CUTTER
switch (cutter.cutter_mode) {
default: break;
case CUTTER_MODE_STANDARD: block->cutter_power = cutter.power; break;
#if ENABLED(LASER_FEATURE)
/**
* For inline mode get the laser_inline variables, including power and status.
* Dynamic mode only needs to update if the feedrate has changed, since it's
* calculated from the current feedrate and power level.
*/
case CUTTER_MODE_CONTINUOUS:
block->laser.power = laser_inline.power;
block->laser.status = laser_inline.status;
break;
case CUTTER_MODE_DYNAMIC:
if (cutter.laser_feedrate_changed()) // Only process changes in rate
block->laser.power = laser_inline.power = cutter.calc_dynamic_power();
break;
#endif
}
#endif
// Number of steps for each axis
// See https://www.corexy.com/theory.html
block->steps.set(NUM_AXIS_LIST(
#if CORE_IS_XY
ABS(dist.a + dist.b), ABS(dist.a - dist.b), ABS(dist.c)
#elif CORE_IS_XZ
ABS(dist.a + dist.c), ABS(dist.b), ABS(dist.a - dist.c)
#elif CORE_IS_YZ
ABS(dist.a), ABS(dist.b + dist.c), ABS(dist.b - dist.c)
#elif ENABLED(MARKFORGED_XY)
ABS(dist.a TERN(MARKFORGED_INVERSE, -, +) dist.b), ABS(dist.b), ABS(dist.c)
#elif ENABLED(MARKFORGED_YX)
ABS(dist.a), ABS(dist.b TERN(MARKFORGED_INVERSE, -, +) dist.a), ABS(dist.c)
#elif IS_SCARA
ABS(dist.a), ABS(dist.b), ABS(dist.c)
#else // default non-h-bot planning
ABS(dist.a), ABS(dist.b), ABS(dist.c)
#endif
, ABS(dist.i), ABS(dist.j), ABS(dist.k), ABS(dist.u), ABS(dist.v), ABS(dist.w)
));
/**
* This part of the code calculates the total length of the movement.
* For cartesian bots, the distance along the X axis equals the X_AXIS joint displacement and same holds true for Y_AXIS.
* But for geometries like CORE_XY that is not true. For these machines we need to create 2 additional variables, named X_HEAD and Y_HEAD, to store the displacent of the head along the X and Y axes in a cartesian coordinate system.
* The displacement of the head along the axes of the cartesian coordinate system has to be calculated from "X_AXIS" and "Y_AXIS" (should be renamed to A_JOINT and B_JOINT)
* displacements in joints space using forward kinematics (A=X+Y and B=X-Y in the case of CORE_XY).
* Next we can calculate the total movement length and apply the desired speed.
*/
struct DistanceMM : abce_float_t {
#if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
struct { float x, y, z; } head;
#endif
} dist_mm;
#if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
dist_mm.head.x = dist.a * mm_per_step[A_AXIS];
dist_mm.head.y = dist.b * mm_per_step[B_AXIS];
TERN_(HAS_Z_AXIS, dist_mm.z = dist.c * mm_per_step[Z_AXIS]);
#endif
#if CORE_IS_XY
dist_mm.a = (dist.a + dist.b) * mm_per_step[A_AXIS];
dist_mm.b = CORESIGN(dist.a - dist.b) * mm_per_step[B_AXIS];
#elif CORE_IS_XZ
dist_mm.head.x = dist.a * mm_per_step[A_AXIS];
dist_mm.y = dist.b * mm_per_step[Y_AXIS];
dist_mm.head.z = dist.c * mm_per_step[C_AXIS];
dist_mm.a = (dist.a + dist.c) * mm_per_step[A_AXIS];
dist_mm.c = CORESIGN(dist.a - dist.c) * mm_per_step[C_AXIS];
#elif CORE_IS_YZ
dist_mm.x = dist.a * mm_per_step[X_AXIS];
dist_mm.head.y = dist.b * mm_per_step[B_AXIS];
dist_mm.head.z = dist.c * mm_per_step[C_AXIS];
dist_mm.b = (dist.b + dist.c) * mm_per_step[B_AXIS];
dist_mm.c = CORESIGN(dist.b - dist.c) * mm_per_step[C_AXIS];
#elif ENABLED(MARKFORGED_XY)
dist_mm.a = (dist.a TERN(MARKFORGED_INVERSE, +, -) dist.b) * mm_per_step[A_AXIS];
dist_mm.b = dist.b * mm_per_step[B_AXIS];
#elif ENABLED(MARKFORGED_YX)
dist_mm.a = dist.a * mm_per_step[A_AXIS];
dist_mm.b = (dist.b TERN(MARKFORGED_INVERSE, +, -) dist.a) * mm_per_step[B_AXIS];
#else
XYZ_CODE(
dist_mm.a = dist.a * mm_per_step[A_AXIS],
dist_mm.b = dist.b * mm_per_step[B_AXIS],
dist_mm.c = dist.c * mm_per_step[C_AXIS]
);
#endif
SECONDARY_AXIS_CODE(
dist_mm.i = dist.i * mm_per_step[I_AXIS], dist_mm.j = dist.j * mm_per_step[J_AXIS], dist_mm.k = dist.k * mm_per_step[K_AXIS],
dist_mm.u = dist.u * mm_per_step[U_AXIS], dist_mm.v = dist.v * mm_per_step[V_AXIS], dist_mm.w = dist.w * mm_per_step[W_AXIS]
);
TERN_(HAS_EXTRUDERS, dist_mm.e = esteps_float * mm_per_step[E_AXIS_N(extruder)]);
TERN_(LCD_SHOW_E_TOTAL, e_move_accumulator += dist_mm.e);
#if HAS_ROTATIONAL_AXES
bool cartesian_move = hints.cartesian_move;
#endif
if (true NUM_AXIS_GANG(
&& block->steps.a < MIN_STEPS_PER_SEGMENT, && block->steps.b < MIN_STEPS_PER_SEGMENT, && block->steps.c < MIN_STEPS_PER_SEGMENT,
&& block->steps.i < MIN_STEPS_PER_SEGMENT, && block->steps.j < MIN_STEPS_PER_SEGMENT, && block->steps.k < MIN_STEPS_PER_SEGMENT,
&& block->steps.u < MIN_STEPS_PER_SEGMENT, && block->steps.v < MIN_STEPS_PER_SEGMENT, && block->steps.w < MIN_STEPS_PER_SEGMENT
)
) {
block->millimeters = TERN0(HAS_EXTRUDERS, ABS(dist_mm.e));
}
else {
if (hints.millimeters)
block->millimeters = hints.millimeters;
else {
const xyze_pos_t displacement = LOGICAL_AXIS_ARRAY(
dist_mm.e,
#if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
dist_mm.head.x, dist_mm.head.y, dist_mm.z,
#elif CORE_IS_XZ
dist_mm.head.x, dist_mm.y, dist_mm.head.z,
#elif CORE_IS_YZ
dist_mm.x, dist_mm.head.y, dist_mm.head.z,
#else
dist_mm.x, dist_mm.y, dist_mm.z,
#endif
dist_mm.i, dist_mm.j, dist_mm.k,
dist_mm.u, dist_mm.v, dist_mm.w
);
block->millimeters = get_move_distance(displacement OPTARG(HAS_ROTATIONAL_AXES, cartesian_move));
}
/**
* At this point at least one of the axes has more steps than
* MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as
* zero-length. It's important to not apply corrections
* to blocks that would get dropped!
*
* A correction function is permitted to add steps to an axis, it
* should *never* remove steps!
*/
TERN_(BACKLASH_COMPENSATION, backlash.add_correction_steps(dist, dm, block));
}
TERN_(HAS_EXTRUDERS, block->steps.e = esteps);
block->step_event_count = (
#if NUM_AXES
_MAX(LOGICAL_AXIS_LIST(esteps,
block->steps.a, block->steps.b, block->steps.c,
block->steps.i, block->steps.j, block->steps.k,
block->steps.u, block->steps.v, block->steps.w
))
#elif HAS_EXTRUDERS
esteps
#endif
);
// Bail if this is a zero-length block
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false;
TERN_(MIXING_EXTRUDER, mixer.populate_block(block->b_color));
#if HAS_FAN
FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
#endif
#if ENABLED(BARICUDA)
block->valve_pressure = baricuda_valve_pressure;
block->e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
E_TERN_(block->extruder = extruder);
#if ENABLED(AUTO_POWER_CONTROL)
if (NUM_AXIS_GANG(
block->steps.x, || block->steps.y, || block->steps.z,
|| block->steps.i, || block->steps.j, || block->steps.k,
|| block->steps.u, || block->steps.v, || block->steps.w
)) powerManager.power_on();
#endif
// Enable active axes
#if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
if (block->steps.a || block->steps.b) {
stepper.enable_axis(X_AXIS);
stepper.enable_axis(Y_AXIS);
}
#if HAS_Z_AXIS && DISABLED(Z_LATE_ENABLE)
if (block->steps.z) stepper.enable_axis(Z_AXIS);
#endif
#elif CORE_IS_XZ
if (block->steps.a || block->steps.c) {
stepper.enable_axis(X_AXIS);
stepper.enable_axis(Z_AXIS);
}
if (block->steps.y) stepper.enable_axis(Y_AXIS);
#elif CORE_IS_YZ
if (block->steps.b || block->steps.c) {
stepper.enable_axis(Y_AXIS);
stepper.enable_axis(Z_AXIS);
}
if (block->steps.x) stepper.enable_axis(X_AXIS);
#else
NUM_AXIS_CODE(
if (block->steps.x) stepper.enable_axis(X_AXIS),
if (block->steps.y) stepper.enable_axis(Y_AXIS),
if (TERN(Z_LATE_ENABLE, 0, block->steps.z)) stepper.enable_axis(Z_AXIS),
if (block->steps.i) stepper.enable_axis(I_AXIS),
if (block->steps.j) stepper.enable_axis(J_AXIS),
if (block->steps.k) stepper.enable_axis(K_AXIS),
if (block->steps.u) stepper.enable_axis(U_AXIS),
if (block->steps.v) stepper.enable_axis(V_AXIS),
if (block->steps.w) stepper.enable_axis(W_AXIS)
);
#endif
#if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
SECONDARY_AXIS_CODE(
if (block->steps.i) stepper.enable_axis(I_AXIS), if (block->steps.j) stepper.enable_axis(J_AXIS),
if (block->steps.k) stepper.enable_axis(K_AXIS), if (block->steps.u) stepper.enable_axis(U_AXIS),
if (block->steps.v) stepper.enable_axis(V_AXIS), if (block->steps.w) stepper.enable_axis(W_AXIS)
);
#endif
// Enable extruder(s)
#if HAS_EXTRUDERS
if (esteps) {
TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
#if ENABLED(DISABLE_OTHER_EXTRUDERS) // Enable only the selected extruder
// Count down all steppers that were recently moved
for (uint8_t i = 0; i < E_STEPPERS; ++i)
if (extruder_last_move[i]) extruder_last_move[i]--;
// Switching Extruder uses one E stepper motor per two nozzles
#define E_STEPPER_INDEX(E) TERN(HAS_SWITCHING_EXTRUDER, (E) / 2, E)
// Enable all (i.e., both) E steppers for IDEX-style duplication, but only active E steppers for multi-nozzle (i.e., single wide X carriage) duplication
#define _IS_DUPE(N) TERN0(HAS_DUPLICATION_MODE, (extruder_duplication_enabled && TERN1(MULTI_NOZZLE_DUPLICATION, TEST(duplication_e_mask, N))))
#define ENABLE_ONE_E(N) do{ \
if (N == E_STEPPER_INDEX(extruder) || _IS_DUPE(N)) { /* N is 'extruder', or N is duplicating */ \
stepper.ENABLE_EXTRUDER(N); /* Enable the relevant E stepper... */ \
extruder_last_move[N] = (BLOCK_BUFFER_SIZE) * 2; /* ...and reset its counter */ \
} \
else if (!extruder_last_move[N]) /* Counter expired since last E stepper enable */ \
stepper.DISABLE_EXTRUDER(N); /* Disable the E stepper */ \
}while(0);
#else
#define ENABLE_ONE_E(N) stepper.ENABLE_EXTRUDER(N);
#endif
REPEAT(E_STEPPERS, ENABLE_ONE_E); // (ENABLE_ONE_E must end with semicolon)
}
#endif // HAS_EXTRUDERS
if (esteps)
NOLESS(fr_mm_s, settings.min_feedrate_mm_s);
else
NOLESS(fr_mm_s, settings.min_travel_feedrate_mm_s);
const float inverse_millimeters = 1.0f / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate inverse time for this move. No divide by zero due to previous checks.
// Example: At 120mm/s a 60mm move involving XYZ axes takes 0.5s. So this will give 2.0.
// Example 2: At 120°/s a 60° move involving only rotational axes takes 0.5s. So this will give 2.0.
float inverse_secs = inverse_millimeters * (
#if ALL(HAS_ROTATIONAL_AXES, INCH_MODE_SUPPORT)
/**
* Workaround for premature feedrate conversion
* from in/s to mm/s by get_distance_from_command.
*/
cartesian_move ? fr_mm_s : LINEAR_UNIT(fr_mm_s)
#else
fr_mm_s
#endif
);
// Get the number of non busy movements in queue (non busy means that they can be altered)
const uint8_t moves_queued = nonbusy_movesplanned();
// Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
#if ANY(SLOWDOWN, HAS_WIRED_LCD) || defined(XY_FREQUENCY_LIMIT)
// Segment time in microseconds
int32_t segment_time_us = LROUND(1000000.0f / inverse_secs);
#endif
#if ENABLED(SLOWDOWN)
#ifndef SLOWDOWN_DIVISOR
#define SLOWDOWN_DIVISOR 2
#endif
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / (SLOWDOWN_DIVISOR) - 1)) {
#ifdef MAX7219_DEBUG_SLOWDOWN
slowdown_count = (slowdown_count + 1) & 0x0F;
#endif
const int32_t time_diff = settings.min_segment_time_us - segment_time_us;
if (time_diff > 0) {
// Buffer is draining so add extra time. The amount of time added increases if the buffer is still emptied more.
const int32_t nst = segment_time_us + LROUND(2 * time_diff / moves_queued);
inverse_secs = 1000000.0f / nst;
#if defined(XY_FREQUENCY_LIMIT) || HAS_WIRED_LCD
segment_time_us = nst;
#endif
}
}
#endif
#if HAS_WIRED_LCD
// Protect the access to the position.
const bool was_enabled = stepper.suspend();
block_buffer_runtime_us += segment_time_us;
block->segment_time_us = segment_time_us;
if (was_enabled) stepper.wake_up();
#endif
block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
#if ENABLED(FILAMENT_WIDTH_SENSOR)
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM) // Only for extruder with filament sensor
filwidth.advance_e(dist_mm.e);
#endif
// Calculate and limit speed in mm/sec (linear) or degrees/sec (rotational)
xyze_float_t current_speed;
float speed_factor = 1.0f; // factor <1 decreases speed
// Linear axes first with less logic
LOOP_NUM_AXES(i) {
current_speed[i] = dist_mm[i] * inverse_secs;
const feedRate_t cs = ABS(current_speed[i]),
max_fr = settings.max_feedrate_mm_s[i];
if (cs > max_fr) NOMORE(speed_factor, max_fr / cs);
}
// Limit speed on extruders, if any
#if HAS_EXTRUDERS
{
current_speed.e = dist_mm.e * inverse_secs;
#if HAS_MIXER_SYNC_CHANNEL
// Move all mixing extruders at the specified rate
if (mixer.get_current_vtool() == MIXER_AUTORETRACT_TOOL)
current_speed.e *= MIXING_STEPPERS;
#endif
const feedRate_t cs = ABS(current_speed.e),
max_fr = MUL_TERN(HAS_MIXER_SYNC_CHANNEL, settings.max_feedrate_mm_s[E_AXIS_N(extruder)], MIXING_STEPPERS);
if (cs > max_fr) NOMORE(speed_factor, max_fr / cs); // Respect max feedrate on any move (travel and print)
#if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
const feedRate_t max_vfr = MUL_TERN(HAS_MIXER_SYNC_CHANNEL, volumetric_extruder_feedrate_limit[extruder], MIXING_STEPPERS);
// TODO: Doesn't work properly for joined segments. Set MIN_STEPS_PER_SEGMENT 1 as workaround.
if (block->steps.a || block->steps.b || block->steps.c) {
if (max_vfr > 0 && cs > max_vfr) {
NOMORE(speed_factor, max_vfr / cs); // respect volumetric extruder limit (if any)
/* <-- add a slash to enable
SERIAL_ECHOPGM("volumetric extruder limit enforced: ", (cs * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
SERIAL_ECHOPGM(" mm^3/s (", cs);
SERIAL_ECHOPGM(" mm/s) limited to ", (max_vfr * CIRCLE_AREA(filament_size[extruder] * 0.5f)));
SERIAL_ECHOPGM(" mm^3/s (", max_vfr);
SERIAL_ECHOLNPGM(" mm/s)");
//*/
}
}
#endif
}
#endif // HAS_EXTRUDERS
#ifdef XY_FREQUENCY_LIMIT
static AxisBits old_direction_bits; // = 0
if (xy_freq_limit_hz) {
// Check and limit the xy direction change frequency
const AxisBits direction_change = block->direction_bits ^ old_direction_bits;
old_direction_bits = block->direction_bits;
segment_time_us = LROUND(float(segment_time_us) / speed_factor);
static int32_t xs0, xs1, xs2, ys0, ys1, ys2;
if (segment_time_us > xy_freq_min_interval_us)
xs2 = xs1 = ys2 = ys1 = xy_freq_min_interval_us;
else {
xs2 = xs1; xs1 = xs0;
ys2 = ys1; ys1 = ys0;
}
xs0 = direction_change.x ? segment_time_us : xy_freq_min_interval_us;
ys0 = direction_change.y ? segment_time_us : xy_freq_min_interval_us;
if (segment_time_us < xy_freq_min_interval_us) {
const int32_t least_xy_segment_time = _MIN(_MAX(xs0, xs1, xs2), _MAX(ys0, ys1, ys2));
if (least_xy_segment_time < xy_freq_min_interval_us) {
float freq_xy_feedrate = (speed_factor * least_xy_segment_time) / xy_freq_min_interval_us;
NOLESS(freq_xy_feedrate, xy_freq_min_speed_factor);
NOMORE(speed_factor, freq_xy_feedrate);
}
}
}
#endif // XY_FREQUENCY_LIMIT
// Correct the speed
if (speed_factor < 1.0f) {
current_speed *= speed_factor;
block->nominal_rate *= speed_factor;
block->nominal_speed *= speed_factor;
}
// Compute and limit the acceleration rate for the trapezoid generator.
const float steps_per_mm = block->step_event_count * inverse_millimeters;
block->steps_per_mm = steps_per_mm;
uint32_t accel;
#if ENABLED(LIN_ADVANCE)
bool use_advance_lead = false;
#endif
if (!ANY_AXIS_MOVES(block)) { // Is this a retract / recover move?
accel = CEIL(settings.retract_acceleration * steps_per_mm); // Convert to: acceleration steps/sec^2
}
else {
#define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
const uint32_t max_possible = max_acceleration_steps_per_s2[AXIS+INDX] * block->step_event_count / block->steps[AXIS]; \
NOMORE(accel, max_possible); \
} \
}while(0)
#define LIMIT_ACCEL_FLOAT(AXIS,INDX) do{ \
if (block->steps[AXIS] && max_acceleration_steps_per_s2[AXIS+INDX] < accel) { \
const float max_possible = float(max_acceleration_steps_per_s2[AXIS+INDX]) * float(block->step_event_count) / float(block->steps[AXIS]); \
NOMORE(accel, max_possible); \
} \
}while(0)
// Start with print or travel acceleration
accel = CEIL((esteps ? settings.acceleration : settings.travel_acceleration) * steps_per_mm);
#if ENABLED(LIN_ADVANCE)
// Linear advance is currently not ready for HAS_I_AXIS
#define MAX_E_JERK(N) TERN(HAS_LINEAR_E_JERK, max_e_jerk[E_INDEX_N(N)], max_jerk.e)
/**
* Use LIN_ADVANCE for blocks if all these are true:
*
* esteps : This is a print move, because we checked for A, B, C steps before.
*
* extruder_advance_K[extruder] : There is an advance factor set for this extruder.
*
* dm.e : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
*/
use_advance_lead = esteps && extruder_advance_K[E_INDEX_N(extruder)] && dm.e;
if (use_advance_lead) {
float e_D_ratio = (target_float.e - position_float.e) /
TERN(IS_KINEMATIC, block->millimeters,
SQRT(sq(target_float.x - position_float.x)
+ sq(target_float.y - position_float.y)
+ sq(target_float.z - position_float.z))
);
// Check for unusual high e_D ratio to detect if a retract move was combined with the last print move due to min. steps per segment. Never execute this with advance!
// This assumes no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
if (e_D_ratio > 3.0f)
use_advance_lead = false;
else {
// Scale E acceleration so that it will be possible to jump to the advance speed.
const uint32_t max_accel_steps_per_s2 = MAX_E_JERK(extruder) / (extruder_advance_K[E_INDEX_N(extruder)] * e_D_ratio) * steps_per_mm;
if (accel > max_accel_steps_per_s2) {
accel = max_accel_steps_per_s2;
if (ENABLED(LA_DEBUG)) SERIAL_ECHOLNPGM("Acceleration limited.");
}
}
}
#endif
// Limit acceleration per axis
if (block->step_event_count <= acceleration_long_cutoff) {
LOGICAL_AXIS_CODE(
LIMIT_ACCEL_LONG(E_AXIS, E_INDEX_N(extruder)),
LIMIT_ACCEL_LONG(A_AXIS, 0), LIMIT_ACCEL_LONG(B_AXIS, 0), LIMIT_ACCEL_LONG(C_AXIS, 0),
LIMIT_ACCEL_LONG(I_AXIS, 0), LIMIT_ACCEL_LONG(J_AXIS, 0), LIMIT_ACCEL_LONG(K_AXIS, 0),
LIMIT_ACCEL_LONG(U_AXIS, 0), LIMIT_ACCEL_LONG(V_AXIS, 0), LIMIT_ACCEL_LONG(W_AXIS, 0)
);
}
else {
LOGICAL_AXIS_CODE(
LIMIT_ACCEL_FLOAT(E_AXIS, E_INDEX_N(extruder)),
LIMIT_ACCEL_FLOAT(A_AXIS, 0), LIMIT_ACCEL_FLOAT(B_AXIS, 0), LIMIT_ACCEL_FLOAT(C_AXIS, 0),
LIMIT_ACCEL_FLOAT(I_AXIS, 0), LIMIT_ACCEL_FLOAT(J_AXIS, 0), LIMIT_ACCEL_FLOAT(K_AXIS, 0),
LIMIT_ACCEL_FLOAT(U_AXIS, 0), LIMIT_ACCEL_FLOAT(V_AXIS, 0), LIMIT_ACCEL_FLOAT(W_AXIS, 0)
);
}
}
block->acceleration_steps_per_s2 = accel;
block->acceleration = accel / steps_per_mm;
#if DISABLED(S_CURVE_ACCELERATION)
block->acceleration_rate = (uint32_t)(accel * (float(1UL << 24) / (STEPPER_TIMER_RATE)));
#endif
#if ENABLED(LIN_ADVANCE)
block->la_advance_rate = 0;
block->la_scaling = 0;
if (use_advance_lead) {
// the Bresenham algorithm will convert this step rate into extruder steps
block->la_advance_rate = extruder_advance_K[E_INDEX_N(extruder)] * block->acceleration_steps_per_s2;
// reduce LA ISR frequency by calling it only often enough to ensure that there will
// never be more than four extruder steps per call
for (uint32_t dividend = block->steps.e << 1; dividend <= (block->step_event_count >> 2); dividend <<= 1)
block->la_scaling++;
#if ENABLED(LA_DEBUG)
if (block->la_advance_rate >> block->la_scaling > 10000)
SERIAL_ECHOLNPGM("eISR running at > 10kHz: ", block->la_advance_rate);
#endif
}
#endif
// Formula for the average speed over a 1 step worth of distance if starting from zero and
// accelerating at the current limit. Since we can only change the speed every step this is a
// good lower limit for the entry and exit speeds. Note that for calculate_trapezoid_for_block()
// to work correctly, this must be accurately set and propagated.
minimum_planner_speed_sqr = 0.5f * block->acceleration / steps_per_mm;
// Go straight to/from nominal speed if block->acceleration is too high for it.
NOMORE(minimum_planner_speed_sqr, sq(block->nominal_speed));
float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2
#if HAS_JUNCTION_DEVIATION
/**
* Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
* Let a circle be tangent to both previous and current path line segments, where the junction
* deviation is defined as the distance from the junction to the closest edge of the circle,
* colinear with the circle center. The circular segment joining the two paths represents the
* path of centripetal acceleration. Solve for max velocity based on max acceleration about the
* radius of the circle, defined indirectly by junction deviation. This may be also viewed as
* path width or max_jerk in the previous Grbl version. This approach does not actually deviate
* from path, but used as a robust way to compute cornering speeds, as it takes into account the
* nonlinearities of both the junction angle and junction velocity.
*
* NOTE: If the junction deviation value is finite, Grbl executes the motions in an exact path
* mode (G61). If the junction deviation value is zero, Grbl will execute the motion in an exact
* stop mode (G61.1) manner. In the future, if continuous mode (G64) is desired, the math here
* is exactly the same. Instead of motioning all the way to junction point, the machine will
* just follow the arc circle defined here. The Arduino doesn't have the CPU cycles to perform
* a continuous mode path, but ARM-based microcontrollers most certainly do.
*
* NOTE: The max junction speed is a fixed value, since machine acceleration limits cannot be
* changed dynamically during operation nor can the line move geometry. This must be kept in
* memory in the event of a feedrate override changing the nominal speeds of blocks, which can
* change the overall maximum entry speed conditions of all blocks.
*
* #######
* https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754
*
* hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin:
Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm
on then on anything with less sides than an octagon. With this, and the
reverse pass actually recalculating things, a corner acceleration value
of 1000 junction deviation of .05 are pretty reasonable. If the cycles
can be spared, a better acos could be used. For all I know, it may be
already calculated in a different place. */
// Unit vector of previous path line segment
static xyze_float_t prev_unit_vec;
xyze_float_t unit_vec =
#if HAS_DIST_MM_ARG
cart_dist_mm
#else
LOGICAL_AXIS_ARRAY(dist_mm.e,
dist_mm.x, dist_mm.y, dist_mm.z,
dist_mm.i, dist_mm.j, dist_mm.k,
dist_mm.u, dist_mm.v, dist_mm.w)
#endif
;
/**
* On CoreXY the length of the vector [A,B] is SQRT(2) times the length of the head movement vector [X,Y].
* So taking Z and E into account, we cannot scale to a unit vector with "inverse_millimeters".
* => normalize the complete junction vector.
* Elsewise, when needed JD will factor-in the E component
*/
if (ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX) || esteps > 0)
normalize_junction_vector(unit_vec); // Normalize with XYZE components
else
unit_vec *= inverse_millimeters; // Use pre-calculated (1 / SQRT(x^2 + y^2 + z^2))
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
float junction_cos_theta = LOGICAL_AXIS_GANG(
+ (-prev_unit_vec.e * unit_vec.e),
+ (-prev_unit_vec.x * unit_vec.x),
+ (-prev_unit_vec.y * unit_vec.y),
+ (-prev_unit_vec.z * unit_vec.z),
+ (-prev_unit_vec.i * unit_vec.i),
+ (-prev_unit_vec.j * unit_vec.j),
+ (-prev_unit_vec.k * unit_vec.k),
+ (-prev_unit_vec.u * unit_vec.u),
+ (-prev_unit_vec.v * unit_vec.v),
+ (-prev_unit_vec.w * unit_vec.w)
);
// NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta).
if (junction_cos_theta > 0.999999f) {
// For a 0 degree acute junction, just set minimum junction speed.
vmax_junction_sqr = minimum_planner_speed_sqr;
}
else {
// Convert delta vector to unit vector
xyze_float_t junction_unit_vec = unit_vec - prev_unit_vec;
normalize_junction_vector(junction_unit_vec);
const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec);
if (TERN0(HINTS_CURVE_RADIUS, hints.curve_radius)) {
TERN_(HINTS_CURVE_RADIUS, vmax_junction_sqr = junction_acceleration * hints.curve_radius);
}
else {
NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
const float sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
vmax_junction_sqr = junction_acceleration * junction_deviation_mm * sin_theta_d2 / (1.0f - sin_theta_d2);
#if ENABLED(JD_HANDLE_SMALL_SEGMENTS)
// For small moves with >135° junction (octagon) find speed for approximate arc
if (block->millimeters < 1 && junction_cos_theta < -0.7071067812f) {
#if ENABLED(JD_USE_MATH_ACOS)
#error "TODO: Inline maths with the MCU / FPU."
#elif ENABLED(JD_USE_LOOKUP_TABLE)
// Fast acos approximation (max. error +-0.01 rads)
// Based on LUT table and linear interpolation
/**
* // Generate the JD Lookup Table
* constexpr float c = 1.00751495f; // Correction factor to center error around 0
* for (int i = 0; i < jd_lut_count - 1; ++i) {
* const float x0 = (sq(i) - 1) / sq(i),
* y0 = acos(x0) * (i == 0 ? 1 : c),
* x1 = i < jd_lut_count - 1 ? 0.5 * x0 + 0.5 : 0.999999f,
* y1 = acos(x1) * (i < jd_lut_count - 1 ? c : 1);
* jd_lut_k[i] = (y0 - y1) / (x0 - x1);
* jd_lut_b[i] = (y1 * x0 - y0 * x1) / (x0 - x1);
* }
*
* // Compute correction factor (Set c to 1.0f first!)
* float min = INFINITY, max = -min;
* for (float t = 0; t <= 1; t += 0.0003f) {
* const float e = acos(t) / approx(t);
* if (isfinite(e)) {
* if (e < min) min = e;
* if (e > max) max = e;
* }
* }
* fprintf(stderr, "%.9gf, ", (min + max) / 2);
*/
static constexpr int16_t jd_lut_count = 16;
static constexpr uint16_t jd_lut_tll = _BV(jd_lut_count - 1);
static constexpr int16_t jd_lut_tll0 = __builtin_clz(jd_lut_tll) + 1; // i.e., 16 - jd_lut_count + 1
static constexpr float jd_lut_k[jd_lut_count] PROGMEM = {
-1.03145837f, -1.30760646f, -1.75205851f, -2.41705704f,
-3.37769222f, -4.74888992f, -6.69649887f, -9.45661736f,
-13.3640480f, -18.8928222f, -26.7136841f, -37.7754593f,
-53.4201813f, -75.5458374f, -106.836761f, -218.532821f };
static constexpr float jd_lut_b[jd_lut_count] PROGMEM = {
1.57079637f, 1.70887053f, 2.04220939f, 2.62408352f,
3.52467871f, 4.85302639f, 6.77020454f, 9.50875854f,
13.4009285f, 18.9188995f, 26.7321243f, 37.7885055f,
53.4293975f, 75.5523529f, 106.841369f, 218.534011f };
const float neg = junction_cos_theta < 0 ? -1 : 1,
t = neg * junction_cos_theta;
const int16_t idx = (t < 0.00000003f) ? 0 : __builtin_clz(uint16_t((1.0f - t) * jd_lut_tll)) - jd_lut_tll0;
float junction_theta = t * pgm_read_float(&jd_lut_k[idx]) + pgm_read_float(&jd_lut_b[idx]);
if (neg > 0) junction_theta = RADIANS(180) - junction_theta; // acos(-t)
#else
// Fast acos(-t) approximation (max. error +-0.033rad = 1.89°)
// Based on MinMax polynomial published by W. Randolph Franklin, see
// https://wrf.ecse.rpi.edu/Research/Short_Notes/arcsin/onlyelem.html
// acos( t) = pi / 2 - asin(x)
// acos(-t) = pi - acos(t) ... pi / 2 + asin(x)
const float neg = junction_cos_theta < 0 ? -1 : 1,
t = neg * junction_cos_theta,
asinx = 0.032843707f
+ t * (-1.451838349f
+ t * ( 29.66153956f
+ t * (-131.1123477f
+ t * ( 262.8130562f
+ t * (-242.7199627f
+ t * ( 84.31466202f ) ))))),
junction_theta = RADIANS(90) + neg * asinx; // acos(-t)
// NOTE: junction_theta bottoms out at 0.033 which avoids divide by 0.
#endif
const float limit_sqr = (block->millimeters * junction_acceleration) / junction_theta;
NOMORE(vmax_junction_sqr, limit_sqr);
}
#endif // JD_HANDLE_SMALL_SEGMENTS
}
}
// Get the lowest speed
vmax_junction_sqr = _MIN(vmax_junction_sqr, sq(block->nominal_speed), sq(previous_nominal_speed));
}
else vmax_junction_sqr = minimum_planner_speed_sqr;
prev_unit_vec = unit_vec;
#else // CLASSIC_JERK
/**
* Heavily modified. Originally adapted from Průša firmware.
* https://github.com/prusa3d/Prusa-Firmware
*/
#if defined(TRAVEL_EXTRA_XYJERK) || ENABLED(LIN_ADVANCE)
xyze_float_t max_j = max_jerk;
#else
const xyze_float_t &max_j = max_jerk;
#endif
#ifdef TRAVEL_EXTRA_XYJERK
if (dist.e <= 0) {
max_j.x += TRAVEL_EXTRA_XYJERK;
max_j.y += TRAVEL_EXTRA_XYJERK;
}
#endif
#if ENABLED(LIN_ADVANCE)
// Advance affects E_AXIS speed and therefore jerk. Add a speed correction whenever
// LA is turned OFF. No correction is applied when LA is turned ON (because it didn't
// perform well; it takes more time/effort to push/melt filament than the reverse).
static uint32_t previous_advance_rate;
static float previous_e_mm_per_step;
if (dist.e < 0 && previous_advance_rate) {
// Retract move after a segment with LA that ended with an E speed decrease.
// Correct for this to allow a faster junction speed. Since the decrease always helps to
// get E to nominal retract speed, the equation simplifies to an increase in max jerk.
max_j.e += previous_advance_rate * previous_e_mm_per_step;
}
// Prepare for next segment.
previous_advance_rate = block->la_advance_rate;
previous_e_mm_per_step = mm_per_step[E_AXIS_N(extruder)];
#endif
xyze_float_t speed_diff = current_speed;
float vmax_junction;
if (!moves_queued || UNEAR_ZERO(previous_nominal_speed)) {
// Limited by a jerk to/from full halt.
vmax_junction = block->nominal_speed;
}
else {
// Compute the maximum velocity allowed at a joint of two successive segments.
// The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
// Scale per-axis velocities for the same vmax_junction.
if (block->nominal_speed < previous_nominal_speed) {
vmax_junction = block->nominal_speed;
const float previous_scale = vmax_junction / previous_nominal_speed;
LOOP_LOGICAL_AXES(i) speed_diff[i] -= previous_speed[i] * previous_scale;
}
else {
vmax_junction = previous_nominal_speed;
const float current_scale = vmax_junction / block->nominal_speed;
LOOP_LOGICAL_AXES(i) speed_diff[i] = speed_diff[i] * current_scale - previous_speed[i];
}
}
// Now limit the jerk in all axes.
float v_factor = 1.0f;
LOOP_LOGICAL_AXES(i) {
// Jerk is the per-axis velocity difference.
const float jerk = ABS(speed_diff[i]), maxj = max_j[i];
if (jerk * v_factor > maxj) v_factor = maxj / jerk;
}
vmax_junction_sqr = sq(vmax_junction * v_factor);
#endif // CLASSIC_JERK
// High acceleration limits override low jerk/junction deviation limits (as fixing trapezoids
// or reducing acceleration introduces too much complexity and/or too much compute)
NOLESS(vmax_junction_sqr, minimum_planner_speed_sqr);
// Max entry speed of this block equals the max exit speed of the previous block.
block->max_entry_speed_sqr = vmax_junction_sqr;
// Set entry speed. The reverse and forward passes will optimize it later.
block->entry_speed_sqr = minimum_planner_speed_sqr;
// Set min entry speed. Rarely it could be higher than the previous nominal speed but that's ok.
block->min_entry_speed_sqr = minimum_planner_speed_sqr;
// Zero the initial_rate to indicate that calculate_trapezoid_for_block() hasn't been called yet.
block->initial_rate = 0;
block->flag.recalculate = true;
// Update previous path unit_vector and nominal speed
previous_speed = current_speed;
previous_nominal_speed = block->nominal_speed;
position = target; // Update the position
#if ENABLED(POWER_LOSS_RECOVERY)
block->sdpos = recovery.command_sdpos();
block->start_position = position_float.asLogical();
#endif
TERN_(HAS_POSITION_FLOAT, position_float = target_float);
TERN_(GRADIENT_MIX, mixer.gradient_control(target_float.z));
return true; // Movement was accepted
} // _populate_block()
/**
* @brief Add a block to the buffer that just updates the position
* Supports LASER_SYNCHRONOUS_M106_M107 and LASER_POWER_SYNC power sync block buffer queueing.
*
* @param sync_flag The sync flag to set, determining the type of sync the block will do
*/
void Planner::buffer_sync_block(const BlockFlagBit sync_flag/*=BLOCK_BIT_SYNC_POSITION*/) {
// Wait for the next available block
uint8_t next_buffer_head;
block_t * const block = get_next_free_block(next_buffer_head);
// Clear block
block->reset();
block->flag.apply(sync_flag);
block->position = position;
#if ENABLED(BACKLASH_COMPENSATION)
LOOP_NUM_AXES(axis) block->position[axis] += backlash.get_applied_steps((AxisEnum)axis);
#endif
#if ENABLED(LASER_SYNCHRONOUS_M106_M107)
FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
#endif
/**
* M3-based power setting can be processed inline with a laser power sync block.
* During active moves cutter.power is processed immediately, otherwise on the next move.
*/
TERN_(LASER_POWER_SYNC, block->laser.power = cutter.power);
// If this is the first added movement, reload the delay, otherwise, cancel it.
if (block_buffer_head == block_buffer_tail) {
// If it was the first queued block, restart the 1st block delivery delay, to
// give the planner an opportunity to queue more movements and plan them
// As there are no queued movements, the Stepper ISR will not touch this
// variable, so there is no risk setting this here (but it MUST be done
// before the following line!!)
delay_before_delivering = TERN_(FT_MOTION, ftMotion.cfg.mode ? BLOCK_DELAY_NONE :) BLOCK_DELAY_FOR_1ST_MOVE;
}
block_buffer_head = next_buffer_head;
stepper.wake_up();
} // buffer_sync_block()
/**
* @brief Add a single linear movement
*
* @description Add a new linear movement to the buffer in axis units.
* Leveling and kinematics should be applied before calling this.
*
* @param abce Target position in mm and/or degrees
* @param cart_dist_mm The pre-calculated move lengths for all axes, in mm
* @param fr_mm_s (target) speed of the move
* @param extruder optional target extruder (otherwise active_extruder)
* @param hints optional parameters to aid planner calculations
*
* @return false if no segment was queued due to cleaning, cold extrusion, full queue, etc.
*/
bool Planner::buffer_segment(const abce_pos_t &abce
OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm)
, const_feedRate_t fr_mm_s
, const uint8_t extruder/*=active_extruder*/
, const PlannerHints &hints/*=PlannerHints()*/
) {
// If we are cleaning, do not accept queuing of movements
if (cleaning_buffer_counter) return false;
// When changing extruders recalculate steps corresponding to the E position
#if ENABLED(DISTINCT_E_FACTORS)
if (last_extruder != extruder && settings.axis_steps_per_mm[E_AXIS_N(extruder)] != settings.axis_steps_per_mm[E_AXIS_N(last_extruder)]) {
position.e = LROUND(position.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)] * mm_per_step[E_AXIS_N(last_extruder)]);
last_extruder = extruder;
}
#endif
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
const abce_long_t target = {
LOGICAL_AXIS_LIST(
int32_t(LROUND(abce.e * settings.axis_steps_per_mm[E_AXIS_N(extruder)])),
int32_t(LROUND(abce.a * settings.axis_steps_per_mm[A_AXIS])),
int32_t(LROUND(abce.b * settings.axis_steps_per_mm[B_AXIS])),
int32_t(LROUND(abce.c * settings.axis_steps_per_mm[C_AXIS])),
int32_t(LROUND(abce.i * settings.axis_steps_per_mm[I_AXIS])),
int32_t(LROUND(abce.j * settings.axis_steps_per_mm[J_AXIS])),
int32_t(LROUND(abce.k * settings.axis_steps_per_mm[K_AXIS])),
int32_t(LROUND(abce.u * settings.axis_steps_per_mm[U_AXIS])),
int32_t(LROUND(abce.v * settings.axis_steps_per_mm[V_AXIS])),
int32_t(LROUND(abce.w * settings.axis_steps_per_mm[W_AXIS]))
)
};
#if HAS_POSITION_FLOAT
const xyze_pos_t target_float = abce;
#endif
#if HAS_EXTRUDERS
// DRYRUN prevents E moves from taking place
if (DEBUGGING(DRYRUN) || TERN0(CANCEL_OBJECTS, cancelable.skipping)) {
position.e = target.e;
TERN_(HAS_POSITION_FLOAT, position_float.e = abce.e);
}
#endif
/* <-- add a slash to enable
SERIAL_ECHOPGM(" buffer_segment FR:", fr_mm_s);
#if IS_KINEMATIC
SERIAL_ECHOPGM(" A:", abce.a, " (", position.a, "->", target.a, ") B:", abce.b);
#else
SERIAL_ECHOPGM_P(SP_X_LBL, abce.a);
SERIAL_ECHOPGM(" (", position.x, "->", target.x);
SERIAL_CHAR(')');
SERIAL_ECHOPGM_P(SP_Y_LBL, abce.b);
#endif
SERIAL_ECHOPGM(" (", position.y, "->", target.y);
#if HAS_Z_AXIS
#if ENABLED(DELTA)
SERIAL_ECHOPGM(") C:", abce.c);
#else
SERIAL_CHAR(')');
SERIAL_ECHOPGM_P(SP_Z_LBL, abce.c);
#endif
SERIAL_ECHOPGM(" (", position.z, "->", target.z);
SERIAL_CHAR(')');
#endif
#if HAS_I_AXIS
SERIAL_ECHOPGM_P(SP_I_LBL, abce.i);
SERIAL_ECHOPGM(" (", position.i, "->", target.i);
SERIAL_CHAR(')');
#endif
#if HAS_J_AXIS
SERIAL_ECHOPGM_P(SP_J_LBL, abce.j);
SERIAL_ECHOPGM(" (", position.j, "->", target.j);
SERIAL_CHAR(')');
#endif
#if HAS_K_AXIS
SERIAL_ECHOPGM_P(SP_K_LBL, abce.k);
SERIAL_ECHOPGM(" (", position.k, "->", target.k);
SERIAL_CHAR(')');
#endif
#if HAS_U_AXIS
SERIAL_ECHOPGM_P(SP_U_LBL, abce.u);
SERIAL_ECHOPGM(" (", position.u, "->", target.u);
SERIAL_CHAR(')');
#endif
#if HAS_V_AXIS
SERIAL_ECHOPGM_P(SP_V_LBL, abce.v);
SERIAL_ECHOPGM(" (", position.v, "->", target.v);
SERIAL_CHAR(')');
#endif
#if HAS_W_AXIS
SERIAL_ECHOPGM_P(SP_W_LBL, abce.w);
SERIAL_ECHOPGM(" (", position.w, "->", target.w);
SERIAL_CHAR(')');
#endif
#if HAS_EXTRUDERS
SERIAL_ECHOPGM_P(SP_E_LBL, abce.e);
SERIAL_ECHOLNPGM(" (", position.e, "->", target.e, ")");
#else
SERIAL_EOL();
#endif
//*/
// Queue the movement. Return 'false' if the move was not queued.
if (!_buffer_steps(target
OPTARG(HAS_POSITION_FLOAT, target_float)
OPTARG(HAS_DIST_MM_ARG, cart_dist_mm)
, fr_mm_s, extruder, hints
)) return false;
stepper.wake_up();
return true;
} // buffer_segment()
/**
* Add a new linear movement to the buffer.
* The target is cartesian. It's translated to
* delta/scara if needed.
*
* cart - target position in mm or degrees
* fr_mm_s - (target) speed of the move (mm/s)
* extruder - optional target extruder (otherwise active_extruder)
* hints - optional parameters to aid planner calculations
*/
bool Planner::buffer_line(const xyze_pos_t &cart, const_feedRate_t fr_mm_s
, const uint8_t extruder/*=active_extruder*/
, const PlannerHints &hints/*=PlannerHints()*/
) {
xyze_pos_t machine = cart;
TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine));
#if IS_KINEMATIC
#if HAS_JUNCTION_DEVIATION
const xyze_pos_t cart_dist_mm = LOGICAL_AXIS_ARRAY(
cart.e - position_cart.e,
cart.x - position_cart.x, cart.y - position_cart.y, cart.z - position_cart.z,
cart.i - position_cart.i, cart.j - position_cart.j, cart.k - position_cart.k,
cart.u - position_cart.u, cart.v - position_cart.v, cart.w - position_cart.w
);
#else
const xyz_pos_t cart_dist_mm = NUM_AXIS_ARRAY(
cart.x - position_cart.x, cart.y - position_cart.y, cart.z - position_cart.z,
cart.i - position_cart.i, cart.j - position_cart.j, cart.k - position_cart.k,
cart.u - position_cart.u, cart.v - position_cart.v, cart.w - position_cart.w
);
#endif
// Cartesian XYZ to kinematic ABC, stored in global 'delta'
inverse_kinematics(machine);
PlannerHints ph = hints;
if (!hints.millimeters)
ph.millimeters = get_move_distance(xyze_pos_t(cart_dist_mm) OPTARG(HAS_ROTATIONAL_AXES, ph.cartesian_move));
#if DISABLED(FEEDRATE_SCALING)
const feedRate_t feedrate = fr_mm_s;
#elif IS_SCARA
// For SCARA scale the feedrate from mm/s to degrees/s
// i.e., Complete the angular vector in the given time.
const float duration_recip = hints.inv_duration ?: fr_mm_s / ph.millimeters;
const xyz_pos_t diff = delta - position_float;
const feedRate_t feedrate = diff.magnitude() * duration_recip;
#elif ENABLED(POLAR)
/**
* Motion problem for Polar axis near center / origin:
*
* 3D printing:
* Movements very close to the center of the polar axis take more time than others.
* This brief delay results in more material deposition due to the pressure in the nozzle.
*
* Current Kinematics and feedrate scaling deals with this by making the movement as fast
* as possible. It works for slow movements but doesn't work well with fast ones. A more
* complicated extrusion compensation must be implemented.
*
* Ideally, it should estimate that a long rotation near the center is ahead and will cause
* unwanted deposition. Therefore it can compensate the extrusion beforehand.
*
* Laser cutting:
* Same thing would be a problem for laser engraving too. As it spends time rotating at the
* center point, more likely it will burn more material than it should. Therefore similar
* compensation would be implemented for laser-cutting operations.
*
* Milling:
* This shouldn't be a problem for cutting/milling operations.
*/
feedRate_t calculated_feedrate = fr_mm_s;
const xyz_pos_t diff = delta - position_float;
if (!NEAR_ZERO(diff.b)) {
if (delta.a <= POLAR_FAST_RADIUS )
calculated_feedrate = settings.max_feedrate_mm_s[Y_AXIS];
else {
// Normalized vector of movement
const float diffBLength = ABS((2.0f * M_PI * diff.a) * (diff.b / 360.0f)),
diffTheta = DEGREES(ATAN2(diff.a, diffBLength)),
normalizedTheta = 1.0f - (ABS(diffTheta > 90.0f ? 180.0f - diffTheta : diffTheta) / 90.0f);
// Normalized position along the radius
const float radiusRatio = (PRINTABLE_RADIUS) / delta.a;
calculated_feedrate += (fr_mm_s * radiusRatio * normalizedTheta);
}
}
const feedRate_t feedrate = calculated_feedrate;
#endif // POLAR && FEEDRATE_SCALING
TERN_(HAS_EXTRUDERS, delta.e = machine.e);
if (buffer_segment(delta OPTARG(HAS_DIST_MM_ARG, cart_dist_mm), feedrate, extruder, ph)) {
position_cart = cart;
return true;
}
return false;
#else // !IS_KINEMATIC
return buffer_segment(machine, fr_mm_s, extruder, hints);
#endif
} // buffer_line()
#if ENABLED(DIRECT_STEPPING)
void Planner::buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps) {
if (!last_page_step_rate) {
kill(GET_TEXT_F(MSG_BAD_PAGE_SPEED));
return;
}
uint8_t next_buffer_head;
block_t * const block = get_next_free_block(next_buffer_head);
block->flag.reset(BLOCK_BIT_PAGE);
#if HAS_FAN
FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
#endif
E_TERN_(block->extruder = extruder);
block->page_idx = page_idx;
block->step_event_count = num_steps;
block->initial_rate = block->final_rate = block->nominal_rate = last_page_step_rate; // steps/s
block->accelerate_before = 0;
block->decelerate_start = block->step_event_count;
// Will be set to last direction later if directional format.
block->direction_bits.reset();
if (!DirectStepping::Config::DIRECTIONAL) {
#define PAGE_UPDATE_DIR(AXIS) do{ if (last_page_dir.AXIS) block->direction_bits.AXIS = true; }while(0);
LOGICAL_AXIS_MAP(PAGE_UPDATE_DIR);
}
// If this is the first added movement, reload the delay, otherwise, cancel it.
if (block_buffer_head == block_buffer_tail) {
// If it was the first queued block, restart the 1st block delivery delay, to
// give the planner an opportunity to queue more movements and plan them
// As there are no queued movements, the Stepper ISR will not touch this
// variable, so there is no risk setting this here (but it MUST be done
// before the following line!!)
delay_before_delivering = TERN_(FT_MOTION, ftMotion.cfg.mode ? BLOCK_DELAY_NONE :) BLOCK_DELAY_FOR_1ST_MOVE;
}
// Move buffer head
block_buffer_head = next_buffer_head;
stepper.enable_all_steppers();
stepper.wake_up();
}
#endif // DIRECT_STEPPING
/**
* Directly set the planner ABCE position (and stepper positions)
* converting mm (or angles for SCARA) into steps.
*
* The provided ABCE position is in machine units.
*/
void Planner::set_machine_position_mm(const abce_pos_t &abce) {
// When FT Motion is enabled, call synchronize() here instead of generating a sync block
if (TERN0(FT_MOTION, ftMotion.cfg.mode)) synchronize();
TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder);
TERN_(HAS_POSITION_FLOAT, position_float = abce);
position.set(
LOGICAL_AXIS_LIST(
LROUND(abce.e * settings.axis_steps_per_mm[E_AXIS_N(active_extruder)]),
LROUND(abce.a * settings.axis_steps_per_mm[A_AXIS]),
LROUND(abce.b * settings.axis_steps_per_mm[B_AXIS]),
LROUND(abce.c * settings.axis_steps_per_mm[C_AXIS]),
LROUND(abce.i * settings.axis_steps_per_mm[I_AXIS]),
LROUND(abce.j * settings.axis_steps_per_mm[J_AXIS]),
LROUND(abce.k * settings.axis_steps_per_mm[K_AXIS]),
LROUND(abce.u * settings.axis_steps_per_mm[U_AXIS]),
LROUND(abce.v * settings.axis_steps_per_mm[V_AXIS]),
LROUND(abce.w * settings.axis_steps_per_mm[W_AXIS])
)
);
if (has_blocks_queued()) {
//previous_nominal_speed = 0.0f; // Reset planner junction speeds. Assume start from rest.
//previous_speed.reset();
buffer_sync_block(BLOCK_BIT_SYNC_POSITION);
}
else {
#if ENABLED(BACKLASH_COMPENSATION)
abce_long_t stepper_pos = position;
LOOP_NUM_AXES(axis) stepper_pos[axis] += backlash.get_applied_steps((AxisEnum)axis);
stepper.set_position(stepper_pos);
#else
stepper.set_position(position);
#endif
}
}
void Planner::set_position_mm(const xyze_pos_t &xyze) {
xyze_pos_t machine = xyze;
TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine, true));
#if IS_KINEMATIC
position_cart = xyze;
inverse_kinematics(machine);
TERN_(HAS_EXTRUDERS, delta.e = machine.e);
set_machine_position_mm(delta);
#else
set_machine_position_mm(machine);
#endif
}
#if HAS_EXTRUDERS
/**
* Setters for planner position (also setting stepper position).
*/
void Planner::set_e_position_mm(const_float_t e) {
const uint8_t axis_index = E_AXIS_N(active_extruder);
TERN_(DISTINCT_E_FACTORS, last_extruder = active_extruder);
const float e_new = DIFF_TERN(FWRETRACT, e, fwretract.current_retract[active_extruder]);
position.e = LROUND(settings.axis_steps_per_mm[axis_index] * e_new);
TERN_(HAS_POSITION_FLOAT, position_float.e = e_new);
TERN_(IS_KINEMATIC, TERN_(HAS_EXTRUDERS, position_cart.e = e));
if (has_blocks_queued())
buffer_sync_block(BLOCK_BIT_SYNC_POSITION);
else
stepper.set_axis_position(E_AXIS, position.e);
}
#endif
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
void Planner::refresh_acceleration_rates() {
uint32_t highest_rate = 1;
LOOP_DISTINCT_AXES(i) {
max_acceleration_steps_per_s2[i] = settings.max_acceleration_mm_per_s2[i] * settings.axis_steps_per_mm[i];
if (TERN1(DISTINCT_E_FACTORS, i < E_AXIS || i == E_AXIS_N(active_extruder)))
NOLESS(highest_rate, max_acceleration_steps_per_s2[i]);
}
acceleration_long_cutoff = 4294967295UL / highest_rate; // 0xFFFFFFFFUL
TERN_(HAS_LINEAR_E_JERK, recalculate_max_e_jerk());
}
/**
* Recalculate 'position' and 'mm_per_step'.
* Must be called whenever settings.axis_steps_per_mm changes!
*/
void Planner::refresh_positioning() {
#if ENABLED(EDITABLE_STEPS_PER_UNIT)
LOOP_DISTINCT_AXES(i) mm_per_step[i] = 1.0f / settings.axis_steps_per_mm[i];
#endif
set_position_mm(current_position);
refresh_acceleration_rates();
}
// Apply limits to a variable and give a warning if the value was out of range
inline void limit_and_warn(float &val, const AxisEnum axis, FSTR_P const setting_name, const xyze_float_t &max_limit) {
const uint8_t lim_axis = TERN_(HAS_EXTRUDERS, axis > E_AXIS ? E_AXIS :) axis;
const float before = val;
LIMIT(val, 0.1f, max_limit[lim_axis]);
if (before != val)
SERIAL_ECHOLN(C(AXIS_CHAR(lim_axis)), F(" Max "), setting_name, F(" limited to "), val);
}
/**
* For the specified 'axis' set the Maximum Acceleration to the given value (mm/s^2)
* The value may be limited with warning feedback, if configured.
* Calls refresh_acceleration_rates to precalculate planner terms in steps.
*
* This hard limit is applied as a block is being added to the planner queue.
*/
void Planner::set_max_acceleration(const AxisEnum axis, float inMaxAccelMMS2) {
#if ENABLED(LIMITED_MAX_ACCEL_EDITING)
#ifdef MAX_ACCEL_EDIT_VALUES
constexpr xyze_float_t max_accel_edit = MAX_ACCEL_EDIT_VALUES;
const xyze_float_t &max_acc_edit_scaled = max_accel_edit;
#else
constexpr xyze_float_t max_accel_edit = DEFAULT_MAX_ACCELERATION;
const xyze_float_t max_acc_edit_scaled = max_accel_edit * 2;
#endif
limit_and_warn(inMaxAccelMMS2, axis, F("Acceleration"), max_acc_edit_scaled);
#endif
settings.max_acceleration_mm_per_s2[axis] = inMaxAccelMMS2;
// Update steps per s2 to agree with the units per s2 (since they are used in the planner)
refresh_acceleration_rates();
}
/**
* For the specified 'axis' set the Maximum Feedrate to the given value (mm/s)
* The value may be limited with warning feedback, if configured.
*
* This hard limit is applied as a block is being added to the planner queue.
*/
void Planner::set_max_feedrate(const AxisEnum axis, float inMaxFeedrateMMS) {
#if ENABLED(LIMITED_MAX_FR_EDITING)
#ifdef MAX_FEEDRATE_EDIT_VALUES
constexpr xyze_float_t max_fr_edit = MAX_FEEDRATE_EDIT_VALUES;
const xyze_float_t &max_fr_edit_scaled = max_fr_edit;
#else
constexpr xyze_float_t max_fr_edit = DEFAULT_MAX_FEEDRATE;
const xyze_float_t max_fr_edit_scaled = max_fr_edit * 2;
#endif
limit_and_warn(inMaxFeedrateMMS, axis, F("Feedrate"), max_fr_edit_scaled);
#endif
settings.max_feedrate_mm_s[axis] = inMaxFeedrateMMS;
}
#if ENABLED(CLASSIC_JERK)
/**
* For the specified 'axis' set the Maximum Jerk (instant change) to the given value (mm/s)
* The value may be limited with warning feedback, if configured.
*
* This hard limit is applied (to the block start speed) as the block is being added to the planner queue.
*/
void Planner::set_max_jerk(const AxisEnum axis, float inMaxJerkMMS) {
#if ENABLED(LIMITED_JERK_EDITING)
constexpr xyze_float_t max_jerk_edit =
#ifdef MAX_JERK_EDIT_VALUES
MAX_JERK_EDIT_VALUES
#else
LOGICAL_AXIS_ARRAY(
(DEFAULT_EJERK) * 2,
(DEFAULT_XJERK) * 2, (DEFAULT_YJERK) * 2, (DEFAULT_ZJERK) * 2,
(DEFAULT_IJERK) * 2, (DEFAULT_JJERK) * 2, (DEFAULT_KJERK) * 2,
(DEFAULT_UJERK) * 2, (DEFAULT_VJERK) * 2, (DEFAULT_WJERK) * 2
)
#endif
;
limit_and_warn(inMaxJerkMMS, axis, F("Jerk"), max_jerk_edit);
#endif
max_jerk[axis] = inMaxJerkMMS;
}
#endif
#if HAS_WIRED_LCD
uint16_t Planner::block_buffer_runtime() {
#ifdef __AVR__
// Protect the access to the variable. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
const bool was_enabled = stepper.suspend();
#endif
uint32_t bbru = block_buffer_runtime_us;
#ifdef __AVR__
// Reenable Stepper ISR
if (was_enabled) stepper.wake_up();
#endif
// To translate µs to ms a division by 1000 would be required.
// We introduce 2.4% error here by dividing by 1024.
// Doesn't matter because block_buffer_runtime_us is already too small an estimation.
bbru >>= 10;
// limit to about a minute.
return _MIN(bbru, 0x0000FFFFUL);
}
void Planner::clear_block_buffer_runtime() {
#ifdef __AVR__
// Protect the access to the variable. Only required for AVR, as
// any 32bit CPU offers atomic access to 32bit variables
const bool was_enabled = stepper.suspend();
#endif
block_buffer_runtime_us = 0;
#ifdef __AVR__
// Reenable Stepper ISR
if (was_enabled) stepper.wake_up();
#endif
}
#endif