4647 lines
167 KiB
C++
4647 lines
167 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* stepper.cpp - A singleton object to execute motion plans using stepper motors
|
|
* Marlin Firmware
|
|
*
|
|
* Derived from Grbl
|
|
* Copyright (c) 2009-2011 Simen Svale Skogsrud
|
|
*
|
|
* Grbl is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* Grbl is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with Grbl. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/**
|
|
* Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
|
|
* and Philipp Tiefenbacher.
|
|
*/
|
|
|
|
/**
|
|
* __________________________
|
|
* /| |\ _________________ ^
|
|
* / | | \ /| |\ |
|
|
* / | | \ / | | \ s
|
|
* / | | | | | \ p
|
|
* / | | | | | \ e
|
|
* +-----+------------------------+---+--+---------------+----+ e
|
|
* | BLOCK 1 | BLOCK 2 | d
|
|
*
|
|
* time ----->
|
|
*
|
|
* The speed over time graph forms a TRAPEZOID. The slope of acceleration is calculated by
|
|
* v = u + t
|
|
* where 't' is the accumulated timer values of the steps so far.
|
|
*
|
|
* The Stepper ISR dynamically executes acceleration, deceleration, and cruising according to the block parameters.
|
|
* - Start at block->initial_rate.
|
|
* - Accelerate while step_events_completed < block->accelerate_before.
|
|
* - Cruise while step_events_completed < block->decelerate_start.
|
|
* - Decelerate after that, until all steps are completed.
|
|
* - Reset the trapezoid generator.
|
|
*/
|
|
|
|
/**
|
|
* Marlin uses the Bresenham algorithm. For a detailed explanation of theory and
|
|
* method see https://www.cs.helsinki.fi/group/goa/mallinnus/lines/bresenh.html
|
|
*/
|
|
|
|
/**
|
|
* Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
|
|
* Equations based on Synthethos TinyG2 sources, but the fixed-point
|
|
* implementation is new, as we are running the ISR with a variable period.
|
|
* Also implemented the Bézier velocity curve evaluation in ARM assembler,
|
|
* to avoid impacting ISR speed.
|
|
*/
|
|
|
|
#include "stepper.h"
|
|
|
|
Stepper stepper; // Singleton
|
|
|
|
#define BABYSTEPPING_EXTRA_DIR_WAIT
|
|
|
|
#include "stepper/cycles.h"
|
|
#ifdef __AVR__
|
|
#include "stepper/speed_lookuptable.h"
|
|
#endif
|
|
|
|
#include "endstops.h"
|
|
#include "planner.h"
|
|
#include "motion.h"
|
|
|
|
#if ENABLED(FT_MOTION)
|
|
#include "ft_motion.h"
|
|
#endif
|
|
|
|
#include "../lcd/marlinui.h"
|
|
#include "../gcode/queue.h"
|
|
#include "../sd/cardreader.h"
|
|
#include "../MarlinCore.h"
|
|
#include "../HAL/shared/Delay.h"
|
|
|
|
#if ENABLED(BD_SENSOR)
|
|
#include "../feature/bedlevel/bdl/bdl.h"
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
#include "../feature/babystep.h"
|
|
#endif
|
|
|
|
#if MB(ALLIGATOR)
|
|
#include "../feature/dac/dac_dac084s085.h"
|
|
#endif
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
#include "../feature/mixing.h"
|
|
#endif
|
|
|
|
#if HAS_FILAMENT_RUNOUT_DISTANCE
|
|
#include "../feature/runout.h"
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_POWER_CONTROL)
|
|
#include "../feature/power.h"
|
|
#endif
|
|
|
|
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
#include "../feature/powerloss.h"
|
|
#endif
|
|
|
|
#if HAS_CUTTER
|
|
#include "../feature/spindle_laser.h"
|
|
#endif
|
|
|
|
#if ENABLED(EXTENSIBLE_UI)
|
|
#include "../lcd/extui/ui_api.h"
|
|
#endif
|
|
|
|
#if ENABLED(I2S_STEPPER_STREAM)
|
|
#include "../HAL/ESP32/i2s.h"
|
|
#endif
|
|
|
|
// public:
|
|
|
|
#if ANY(HAS_EXTRA_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
|
|
bool Stepper::separate_multi_axis = false;
|
|
#endif
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
|
bool Stepper::initialized; // = false
|
|
uint32_t Stepper::motor_current_setting[MOTOR_CURRENT_COUNT]; // Initialized by settings.load()
|
|
#if HAS_MOTOR_CURRENT_SPI
|
|
constexpr uint32_t Stepper::digipot_count[];
|
|
#endif
|
|
#endif
|
|
|
|
stepper_flags_t Stepper::axis_enabled; // {0}
|
|
|
|
// private:
|
|
|
|
block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
|
|
|
|
AxisBits Stepper::last_direction_bits, // = 0
|
|
Stepper::axis_did_move; // = 0
|
|
|
|
bool Stepper::abort_current_block;
|
|
|
|
#if DISABLED(MIXING_EXTRUDER) && HAS_MULTI_EXTRUDER
|
|
uint8_t Stepper::last_moved_extruder = 0xFF;
|
|
#endif
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
bool Stepper::locked_X_motor = false, Stepper::locked_X2_motor = false;
|
|
#endif
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
bool Stepper::locked_Y_motor = false, Stepper::locked_Y2_motor = false;
|
|
#endif
|
|
|
|
#if ANY(Z_MULTI_ENDSTOPS, Z_STEPPER_AUTO_ALIGN)
|
|
bool Stepper::locked_Z_motor = false, Stepper::locked_Z2_motor = false
|
|
#if NUM_Z_STEPPERS >= 3
|
|
, Stepper::locked_Z3_motor = false
|
|
#if NUM_Z_STEPPERS >= 4
|
|
, Stepper::locked_Z4_motor = false
|
|
#endif
|
|
#endif
|
|
;
|
|
#endif
|
|
|
|
// In timer_ticks
|
|
uint32_t Stepper::acceleration_time, Stepper::deceleration_time;
|
|
|
|
#if MULTISTEPPING_LIMIT > 1
|
|
uint8_t Stepper::steps_per_isr = 1; // Count of steps to perform per Stepper ISR call
|
|
#endif
|
|
|
|
#if DISABLED(OLD_ADAPTIVE_MULTISTEPPING)
|
|
hal_timer_t Stepper::time_spent_in_isr = 0, Stepper::time_spent_out_isr = 0;
|
|
#endif
|
|
|
|
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
|
|
#if ENABLED(ADAPTIVE_STEP_SMOOTHING_TOGGLE)
|
|
bool Stepper::adaptive_step_smoothing_enabled; // Initialized by settings.load()
|
|
#else
|
|
constexpr bool Stepper::adaptive_step_smoothing_enabled; // = true
|
|
#endif
|
|
// Oversampling factor (log2(multiplier)) to increase temporal resolution of axis
|
|
uint8_t Stepper::oversampling_factor;
|
|
#else
|
|
constexpr uint8_t Stepper::oversampling_factor; // = 0
|
|
#endif
|
|
|
|
#if ENABLED(FREEZE_FEATURE)
|
|
bool Stepper::frozen; // = false
|
|
#endif
|
|
|
|
xyze_long_t Stepper::delta_error{0};
|
|
|
|
xyze_long_t Stepper::advance_dividend{0};
|
|
uint32_t Stepper::advance_divisor = 0,
|
|
Stepper::step_events_completed = 0, // The number of step events executed in the current block
|
|
Stepper::accelerate_before, // The count at which to start cruising
|
|
Stepper::decelerate_start, // The count at which to start decelerating
|
|
Stepper::step_event_count; // The total event count for the current block
|
|
|
|
#if ANY(HAS_MULTI_EXTRUDER, MIXING_EXTRUDER)
|
|
uint8_t Stepper::stepper_extruder;
|
|
#else
|
|
constexpr uint8_t Stepper::stepper_extruder;
|
|
#endif
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
|
|
int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
|
|
int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
|
|
uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
|
|
uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
|
|
#ifdef __AVR__
|
|
bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
|
|
#endif
|
|
bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
hal_timer_t Stepper::nextAdvanceISR = LA_ADV_NEVER,
|
|
Stepper::la_interval = LA_ADV_NEVER;
|
|
int32_t Stepper::la_delta_error = 0,
|
|
Stepper::la_dividend = 0,
|
|
Stepper::la_advance_steps = 0;
|
|
bool Stepper::la_active = false;
|
|
#endif
|
|
|
|
#if ENABLED(NONLINEAR_EXTRUSION)
|
|
ne_coeff_t Stepper::ne;
|
|
ne_fix_t Stepper::ne_fix;
|
|
int32_t Stepper::ne_edividend;
|
|
uint32_t Stepper::ne_scale;
|
|
#endif
|
|
|
|
#if HAS_ZV_SHAPING
|
|
shaping_time_t ShapingQueue::now = 0;
|
|
#if ANY(MCU_LPC1768, MCU_LPC1769) && DISABLED(NO_LPC_ETHERNET_BUFFER)
|
|
// Use the 16K LPC Ethernet buffer: https://github.com/MarlinFirmware/Marlin/issues/25432#issuecomment-1450420638
|
|
#define _ATTR_BUFFER __attribute__((section("AHBSRAM1"),aligned))
|
|
#else
|
|
#define _ATTR_BUFFER
|
|
#endif
|
|
shaping_time_t ShapingQueue::times[shaping_echoes] _ATTR_BUFFER;
|
|
shaping_echo_axis_t ShapingQueue::echo_axes[shaping_echoes];
|
|
uint16_t ShapingQueue::tail = 0;
|
|
|
|
#define SHAPING_VAR_DEFS(AXIS) \
|
|
shaping_time_t ShapingQueue::delay_##AXIS; \
|
|
shaping_time_t ShapingQueue::_peek_##AXIS = shaping_time_t(-1); \
|
|
uint16_t ShapingQueue::head_##AXIS = 0; \
|
|
uint16_t ShapingQueue::_free_count_##AXIS = shaping_echoes - 1; \
|
|
ShapeParams Stepper::shaping_##AXIS;
|
|
|
|
TERN_(INPUT_SHAPING_X, SHAPING_VAR_DEFS(x))
|
|
TERN_(INPUT_SHAPING_Y, SHAPING_VAR_DEFS(y))
|
|
TERN_(INPUT_SHAPING_Z, SHAPING_VAR_DEFS(z))
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
hal_timer_t Stepper::nextBabystepISR = BABYSTEP_NEVER;
|
|
#endif
|
|
|
|
#if ENABLED(DIRECT_STEPPING)
|
|
page_step_state_t Stepper::page_step_state;
|
|
#endif
|
|
|
|
hal_timer_t Stepper::ticks_nominal = 0;
|
|
#if DISABLED(S_CURVE_ACCELERATION)
|
|
uint32_t Stepper::acc_step_rate; // needed for deceleration start point
|
|
#endif
|
|
|
|
xyz_long_t Stepper::endstops_trigsteps;
|
|
xyze_long_t Stepper::count_position{0};
|
|
xyze_int8_t Stepper::count_direction{0};
|
|
|
|
#define MINDIR(A) (count_direction[_AXIS(A)] < 0)
|
|
#define MAXDIR(A) (count_direction[_AXIS(A)] > 0)
|
|
|
|
#define STEPTEST(A,M,I) TERN0(USE_##A##I##_##M, !(TEST(endstops.state(), A##I##_##M) && M## DIR(A)) && !locked_ ##A##I##_motor)
|
|
|
|
#define DUAL_ENDSTOP_APPLY_STEP(A,V) \
|
|
if (separate_multi_axis) { \
|
|
if (ENABLED(A##_HOME_TO_MIN)) { \
|
|
if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
|
|
if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
|
|
} \
|
|
else if (ENABLED(A##_HOME_TO_MAX)) { \
|
|
if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
|
|
if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
|
|
} \
|
|
} \
|
|
else { \
|
|
A##_STEP_WRITE(V); \
|
|
A##2_STEP_WRITE(V); \
|
|
}
|
|
|
|
#define DUAL_SEPARATE_APPLY_STEP(A,V) \
|
|
if (separate_multi_axis) { \
|
|
if (!locked_##A## _motor) A## _STEP_WRITE(V); \
|
|
if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
|
|
} \
|
|
else { \
|
|
A##_STEP_WRITE(V); \
|
|
A##2_STEP_WRITE(V); \
|
|
}
|
|
|
|
#define TRIPLE_ENDSTOP_APPLY_STEP(A,V) \
|
|
if (separate_multi_axis) { \
|
|
if (ENABLED(A##_HOME_TO_MIN)) { \
|
|
if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
|
|
if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
|
|
if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
|
|
} \
|
|
else if (ENABLED(A##_HOME_TO_MAX)) { \
|
|
if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
|
|
if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
|
|
if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
|
|
} \
|
|
} \
|
|
else { \
|
|
A##_STEP_WRITE(V); \
|
|
A##2_STEP_WRITE(V); \
|
|
A##3_STEP_WRITE(V); \
|
|
}
|
|
|
|
#define TRIPLE_SEPARATE_APPLY_STEP(A,V) \
|
|
if (separate_multi_axis) { \
|
|
if (!locked_##A## _motor) A## _STEP_WRITE(V); \
|
|
if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
|
|
if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
|
|
} \
|
|
else { \
|
|
A## _STEP_WRITE(V); \
|
|
A##2_STEP_WRITE(V); \
|
|
A##3_STEP_WRITE(V); \
|
|
}
|
|
|
|
#define QUAD_ENDSTOP_APPLY_STEP(A,V) \
|
|
if (separate_multi_axis) { \
|
|
if (ENABLED(A##_HOME_TO_MIN)) { \
|
|
if (STEPTEST(A,MIN, )) A## _STEP_WRITE(V); \
|
|
if (STEPTEST(A,MIN,2)) A##2_STEP_WRITE(V); \
|
|
if (STEPTEST(A,MIN,3)) A##3_STEP_WRITE(V); \
|
|
if (STEPTEST(A,MIN,4)) A##4_STEP_WRITE(V); \
|
|
} \
|
|
else if (ENABLED(A##_HOME_TO_MAX)) { \
|
|
if (STEPTEST(A,MAX, )) A## _STEP_WRITE(V); \
|
|
if (STEPTEST(A,MAX,2)) A##2_STEP_WRITE(V); \
|
|
if (STEPTEST(A,MAX,3)) A##3_STEP_WRITE(V); \
|
|
if (STEPTEST(A,MAX,4)) A##4_STEP_WRITE(V); \
|
|
} \
|
|
} \
|
|
else { \
|
|
A## _STEP_WRITE(V); \
|
|
A##2_STEP_WRITE(V); \
|
|
A##3_STEP_WRITE(V); \
|
|
A##4_STEP_WRITE(V); \
|
|
}
|
|
|
|
#define QUAD_SEPARATE_APPLY_STEP(A,V) \
|
|
if (separate_multi_axis) { \
|
|
if (!locked_##A## _motor) A## _STEP_WRITE(V); \
|
|
if (!locked_##A##2_motor) A##2_STEP_WRITE(V); \
|
|
if (!locked_##A##3_motor) A##3_STEP_WRITE(V); \
|
|
if (!locked_##A##4_motor) A##4_STEP_WRITE(V); \
|
|
} \
|
|
else { \
|
|
A## _STEP_WRITE(V); \
|
|
A##2_STEP_WRITE(V); \
|
|
A##3_STEP_WRITE(V); \
|
|
A##4_STEP_WRITE(V); \
|
|
}
|
|
|
|
#if HAS_SYNCED_X_STEPPERS
|
|
#define X_APPLY_DIR(FWD,Q) do{ X_DIR_WRITE(FWD); X2_DIR_WRITE(INVERT_DIR(X2_VS_X, FWD)); }while(0)
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
#define X_APPLY_STEP(FWD,Q) DUAL_ENDSTOP_APPLY_STEP(X,FWD)
|
|
#else
|
|
#define X_APPLY_STEP(FWD,Q) do{ X_STEP_WRITE(FWD); X2_STEP_WRITE(FWD); }while(0)
|
|
#endif
|
|
#elif ENABLED(DUAL_X_CARRIAGE)
|
|
#define X_APPLY_DIR(FWD,ALWAYS) do{ \
|
|
if (extruder_duplication_enabled || ALWAYS) { X_DIR_WRITE(FWD); X2_DIR_WRITE((FWD) ^ idex_mirrored_mode); } \
|
|
else if (last_moved_extruder) X2_DIR_WRITE(FWD); else X_DIR_WRITE(FWD); \
|
|
}while(0)
|
|
#define X_APPLY_STEP(FWD,ALWAYS) do{ \
|
|
if (extruder_duplication_enabled || ALWAYS) { X_STEP_WRITE(FWD); X2_STEP_WRITE(FWD); } \
|
|
else if (last_moved_extruder) X2_STEP_WRITE(FWD); else X_STEP_WRITE(FWD); \
|
|
}while(0)
|
|
#elif HAS_X_AXIS
|
|
#define X_APPLY_DIR(FWD,Q) X_DIR_WRITE(FWD)
|
|
#define X_APPLY_STEP(FWD,Q) X_STEP_WRITE(FWD)
|
|
#endif
|
|
|
|
#if HAS_SYNCED_Y_STEPPERS
|
|
#define Y_APPLY_DIR(FWD,Q) do{ Y_DIR_WRITE(FWD); Y2_DIR_WRITE(INVERT_DIR(Y2_VS_Y, FWD)); }while(0)
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
#define Y_APPLY_STEP(FWD,Q) DUAL_ENDSTOP_APPLY_STEP(Y,FWD)
|
|
#else
|
|
#define Y_APPLY_STEP(FWD,Q) do{ Y_STEP_WRITE(FWD); Y2_STEP_WRITE(FWD); }while(0)
|
|
#endif
|
|
#elif HAS_Y_AXIS
|
|
#define Y_APPLY_DIR(FWD,Q) Y_DIR_WRITE(FWD)
|
|
#define Y_APPLY_STEP(FWD,Q) Y_STEP_WRITE(FWD)
|
|
#endif
|
|
|
|
#if NUM_Z_STEPPERS == 4
|
|
#define Z_APPLY_DIR(FWD,Q) do{ \
|
|
Z_DIR_WRITE(FWD); Z2_DIR_WRITE(INVERT_DIR(Z2_VS_Z, FWD)); \
|
|
Z3_DIR_WRITE(INVERT_DIR(Z3_VS_Z, FWD)); Z4_DIR_WRITE(INVERT_DIR(Z4_VS_Z, FWD)); \
|
|
}while(0)
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
#define Z_APPLY_STEP(FWD,Q) QUAD_ENDSTOP_APPLY_STEP(Z,FWD)
|
|
#elif ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
#define Z_APPLY_STEP(FWD,Q) QUAD_SEPARATE_APPLY_STEP(Z,FWD)
|
|
#else
|
|
#define Z_APPLY_STEP(FWD,Q) do{ Z_STEP_WRITE(FWD); Z2_STEP_WRITE(FWD); Z3_STEP_WRITE(FWD); Z4_STEP_WRITE(FWD); }while(0)
|
|
#endif
|
|
#elif NUM_Z_STEPPERS == 3
|
|
#define Z_APPLY_DIR(FWD,Q) do{ \
|
|
Z_DIR_WRITE(FWD); Z2_DIR_WRITE(INVERT_DIR(Z2_VS_Z, FWD)); Z3_DIR_WRITE(INVERT_DIR(Z3_VS_Z, FWD)); \
|
|
}while(0)
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
#define Z_APPLY_STEP(FWD,Q) TRIPLE_ENDSTOP_APPLY_STEP(Z,FWD)
|
|
#elif ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
#define Z_APPLY_STEP(FWD,Q) TRIPLE_SEPARATE_APPLY_STEP(Z,FWD)
|
|
#else
|
|
#define Z_APPLY_STEP(FWD,Q) do{ Z_STEP_WRITE(FWD); Z2_STEP_WRITE(FWD); Z3_STEP_WRITE(FWD); }while(0)
|
|
#endif
|
|
#elif NUM_Z_STEPPERS == 2
|
|
#define Z_APPLY_DIR(FWD,Q) do{ Z_DIR_WRITE(FWD); Z2_DIR_WRITE(INVERT_DIR(Z2_VS_Z, FWD)); }while(0)
|
|
#if ENABLED(Z_MULTI_ENDSTOPS)
|
|
#define Z_APPLY_STEP(FWD,Q) DUAL_ENDSTOP_APPLY_STEP(Z,FWD)
|
|
#elif ENABLED(Z_STEPPER_AUTO_ALIGN)
|
|
#define Z_APPLY_STEP(FWD,Q) DUAL_SEPARATE_APPLY_STEP(Z,FWD)
|
|
#else
|
|
#define Z_APPLY_STEP(FWD,Q) do{ Z_STEP_WRITE(FWD); Z2_STEP_WRITE(FWD); }while(0)
|
|
#endif
|
|
#elif HAS_Z_AXIS
|
|
#define Z_APPLY_DIR(FWD,Q) Z_DIR_WRITE(FWD)
|
|
#define Z_APPLY_STEP(FWD,Q) Z_STEP_WRITE(FWD)
|
|
#endif
|
|
|
|
#if HAS_I_AXIS
|
|
#define I_APPLY_DIR(FWD,Q) I_DIR_WRITE(FWD)
|
|
#define I_APPLY_STEP(FWD,Q) I_STEP_WRITE(FWD)
|
|
#endif
|
|
#if HAS_J_AXIS
|
|
#define J_APPLY_DIR(FWD,Q) J_DIR_WRITE(FWD)
|
|
#define J_APPLY_STEP(FWD,Q) J_STEP_WRITE(FWD)
|
|
#endif
|
|
#if HAS_K_AXIS
|
|
#define K_APPLY_DIR(FWD,Q) K_DIR_WRITE(FWD)
|
|
#define K_APPLY_STEP(FWD,Q) K_STEP_WRITE(FWD)
|
|
#endif
|
|
#if HAS_U_AXIS
|
|
#define U_APPLY_DIR(FWD,Q) U_DIR_WRITE(FWD)
|
|
#define U_APPLY_STEP(FWD,Q) U_STEP_WRITE(FWD)
|
|
#endif
|
|
#if HAS_V_AXIS
|
|
#define V_APPLY_DIR(FWD,Q) V_DIR_WRITE(FWD)
|
|
#define V_APPLY_STEP(FWD,Q) V_STEP_WRITE(FWD)
|
|
#endif
|
|
#if HAS_W_AXIS
|
|
#define W_APPLY_DIR(FWD,Q) W_DIR_WRITE(FWD)
|
|
#define W_APPLY_STEP(FWD,Q) W_STEP_WRITE(FWD)
|
|
#endif
|
|
|
|
//#define E0_APPLY_DIR(FWD) do{ (FWD) ? FWD_E_DIR(0) : REV_E_DIR(0); }while(0)
|
|
//#define E1_APPLY_DIR(FWD) do{ (FWD) ? FWD_E_DIR(1) : REV_E_DIR(1); }while(0)
|
|
//#define E2_APPLY_DIR(FWD) do{ (FWD) ? FWD_E_DIR(2) : REV_E_DIR(2); }while(0)
|
|
//#define E3_APPLY_DIR(FWD) do{ (FWD) ? FWD_E_DIR(3) : REV_E_DIR(3); }while(0)
|
|
//#define E4_APPLY_DIR(FWD) do{ (FWD) ? FWD_E_DIR(4) : REV_E_DIR(4); }while(0)
|
|
//#define E5_APPLY_DIR(FWD) do{ (FWD) ? FWD_E_DIR(5) : REV_E_DIR(5); }while(0)
|
|
//#define E6_APPLY_DIR(FWD) do{ (FWD) ? FWD_E_DIR(6) : REV_E_DIR(6); }while(0)
|
|
//#define E7_APPLY_DIR(FWD) do{ (FWD) ? FWD_E_DIR(7) : REV_E_DIR(7); }while(0)
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
#define E_APPLY_DIR(FWD,Q) do{ if (FWD) { MIXER_STEPPER_LOOP(j) FWD_E_DIR(j); } else { MIXER_STEPPER_LOOP(j) REV_E_DIR(j); } }while(0)
|
|
#else
|
|
#define E_APPLY_STEP(FWD,Q) E_STEP_WRITE(stepper_extruder, FWD)
|
|
#define E_APPLY_DIR(FWD,Q) do{ if (FWD) { FWD_E_DIR(stepper_extruder); } else { REV_E_DIR(stepper_extruder); } }while(0)
|
|
#endif
|
|
|
|
#define CYCLES_TO_NS(CYC) (1000UL * (CYC) / ((F_CPU) / 1000000))
|
|
#define NS_PER_PULSE_TIMER_TICK (1000000000UL / (STEPPER_TIMER_RATE))
|
|
|
|
// Round up when converting from ns to timer ticks
|
|
#define NS_TO_PULSE_TIMER_TICKS(NS) (((NS) + (NS_PER_PULSE_TIMER_TICK) / 2) / (NS_PER_PULSE_TIMER_TICK))
|
|
|
|
#define TIMER_SETUP_NS (CYCLES_TO_NS(TIMER_READ_ADD_AND_STORE_CYCLES))
|
|
|
|
#define PULSE_HIGH_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_HIGH_NS - _MIN(_MIN_PULSE_HIGH_NS, TIMER_SETUP_NS)))
|
|
#define PULSE_LOW_TICK_COUNT hal_timer_t(NS_TO_PULSE_TIMER_TICKS(_MIN_PULSE_LOW_NS - _MIN(_MIN_PULSE_LOW_NS, TIMER_SETUP_NS)))
|
|
|
|
#define USING_TIMED_PULSE() hal_timer_t start_pulse_count = 0
|
|
#define START_TIMED_PULSE() (start_pulse_count = HAL_timer_get_count(MF_TIMER_PULSE))
|
|
#define AWAIT_TIMED_PULSE(DIR) while (PULSE_##DIR##_TICK_COUNT > HAL_timer_get_count(MF_TIMER_PULSE) - start_pulse_count) { /* nada */ }
|
|
#define AWAIT_HIGH_PULSE() AWAIT_TIMED_PULSE(HIGH)
|
|
#define AWAIT_LOW_PULSE() AWAIT_TIMED_PULSE(LOW)
|
|
|
|
#if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
|
|
#define DIR_WAIT_BEFORE() DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY)
|
|
#else
|
|
#define DIR_WAIT_BEFORE()
|
|
#endif
|
|
|
|
#if MINIMUM_STEPPER_POST_DIR_DELAY > 0
|
|
#define DIR_WAIT_AFTER() DELAY_NS(MINIMUM_STEPPER_POST_DIR_DELAY)
|
|
#else
|
|
#define DIR_WAIT_AFTER()
|
|
#endif
|
|
|
|
void Stepper::enable_axis(const AxisEnum axis) {
|
|
#define _CASE_ENABLE(N) case N##_AXIS: ENABLE_AXIS_##N(); break;
|
|
switch (axis) {
|
|
MAIN_AXIS_MAP(_CASE_ENABLE)
|
|
default: break;
|
|
}
|
|
mark_axis_enabled(axis);
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onAxisEnabled(ExtUI::axis_to_axis_t(axis)));
|
|
}
|
|
|
|
/**
|
|
* Mark an axis as disabled and power off its stepper(s).
|
|
* If one of the axis steppers is still in use by a non-disabled axis the axis will remain powered.
|
|
* DISCUSSION: It's basically just stepper ENA pins that are shared across axes, not whole steppers.
|
|
* Used on MCUs with a shortage of pins. We already track the overlap of ENA pins, so now
|
|
* we just need stronger logic to track which ENA pins are being set more than once.
|
|
*
|
|
* It would be better to use a bit mask (i.e., Flags<NUM_DISTINCT_AXIS_ENUMS>).
|
|
* While the method try_to_disable in gcode/control/M17_M18_M84.cpp does use the
|
|
* bit mask, it is still only at the axis level.
|
|
* TODO: Power off steppers that don't share another axis. Currently axis-based steppers turn off as a unit.
|
|
* So we'd need to power off the off axis, then power on the on axis (for a microsecond).
|
|
* A global solution would keep a usage count when enabling or disabling a stepper, but this partially
|
|
* defeats the purpose of an on/off mask.
|
|
*/
|
|
bool Stepper::disable_axis(const AxisEnum axis) {
|
|
mark_axis_disabled(axis);
|
|
|
|
// This scheme prevents shared steppers being disabled. It should consider several axes at once
|
|
// and keep a count of how many times each ENA pin has been set.
|
|
|
|
// If all the axes that share the enabled bit are disabled
|
|
const bool can_disable = can_axis_disable(axis);
|
|
if (can_disable) {
|
|
#define _CASE_DISABLE(N) case N##_AXIS: DISABLE_AXIS_##N(); break;
|
|
switch (axis) {
|
|
MAIN_AXIS_MAP(_CASE_DISABLE)
|
|
default: break;
|
|
}
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onAxisDisabled(ExtUI::axis_to_axis_t(axis)));
|
|
}
|
|
|
|
return can_disable;
|
|
}
|
|
|
|
#if HAS_EXTRUDERS
|
|
|
|
void Stepper::enable_extruder(E_TERN_(const uint8_t eindex)) {
|
|
IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
|
|
#define _CASE_ENA_E(N) case N: ENABLE_AXIS_E##N(); mark_axis_enabled(E_AXIS E_OPTARG(eindex)); break;
|
|
switch (eindex) {
|
|
REPEAT(E_STEPPERS, _CASE_ENA_E)
|
|
}
|
|
}
|
|
|
|
bool Stepper::disable_extruder(E_TERN_(const uint8_t eindex/*=0*/)) {
|
|
IF_DISABLED(HAS_MULTI_EXTRUDER, constexpr uint8_t eindex = 0);
|
|
mark_axis_disabled(E_AXIS E_OPTARG(eindex));
|
|
const bool can_disable = can_axis_disable(E_AXIS E_OPTARG(eindex));
|
|
if (can_disable) {
|
|
#define _CASE_DIS_E(N) case N: DISABLE_AXIS_E##N(); break;
|
|
switch (eindex) { REPEAT(E_STEPPERS, _CASE_DIS_E) }
|
|
}
|
|
return can_disable;
|
|
}
|
|
|
|
void Stepper::enable_e_steppers() {
|
|
#define _ENA_E(N) ENABLE_EXTRUDER(N);
|
|
REPEAT(EXTRUDERS, _ENA_E)
|
|
}
|
|
|
|
void Stepper::disable_e_steppers() {
|
|
#define _DIS_E(N) DISABLE_EXTRUDER(N);
|
|
REPEAT(EXTRUDERS, _DIS_E)
|
|
}
|
|
|
|
#endif
|
|
|
|
void Stepper::enable_all_steppers() {
|
|
TERN_(AUTO_POWER_CONTROL, powerManager.power_on());
|
|
NUM_AXIS_CODE(
|
|
enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
|
|
enable_axis(I_AXIS), enable_axis(J_AXIS), enable_axis(K_AXIS),
|
|
enable_axis(U_AXIS), enable_axis(V_AXIS), enable_axis(W_AXIS)
|
|
);
|
|
enable_e_steppers();
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersEnabled());
|
|
}
|
|
|
|
void Stepper::disable_all_steppers() {
|
|
NUM_AXIS_CODE(
|
|
disable_axis(X_AXIS), disable_axis(Y_AXIS), disable_axis(Z_AXIS),
|
|
disable_axis(I_AXIS), disable_axis(J_AXIS), disable_axis(K_AXIS),
|
|
disable_axis(U_AXIS), disable_axis(V_AXIS), disable_axis(W_AXIS)
|
|
);
|
|
disable_e_steppers();
|
|
|
|
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
|
|
}
|
|
|
|
#if ENABLED(FTM_OPTIMIZE_DIR_STATES)
|
|
// We'll compare the updated DIR bits to the last set state
|
|
static AxisBits last_set_direction;
|
|
#endif
|
|
|
|
// Set a single axis direction based on the last set flags.
|
|
// A direction bit of "1" indicates forward or positive motion.
|
|
#define SET_STEP_DIR(A) do{ \
|
|
const bool fwd = motor_direction(_AXIS(A)); \
|
|
A##_APPLY_DIR(fwd, false); \
|
|
count_direction[_AXIS(A)] = fwd ? 1 : -1; \
|
|
}while(0)
|
|
|
|
/**
|
|
* Set the stepper direction of each axis
|
|
*
|
|
* COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
|
|
* COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
|
|
* COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
|
|
*/
|
|
void Stepper::apply_directions() {
|
|
DIR_WAIT_BEFORE();
|
|
|
|
LOGICAL_AXIS_CODE(
|
|
SET_STEP_DIR(E),
|
|
SET_STEP_DIR(X), SET_STEP_DIR(Y), SET_STEP_DIR(Z), // ABC
|
|
SET_STEP_DIR(I), SET_STEP_DIR(J), SET_STEP_DIR(K),
|
|
SET_STEP_DIR(U), SET_STEP_DIR(V), SET_STEP_DIR(W)
|
|
);
|
|
|
|
TERN_(FTM_OPTIMIZE_DIR_STATES, last_set_direction = last_direction_bits);
|
|
|
|
DIR_WAIT_AFTER();
|
|
}
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
/**
|
|
* This uses a quintic (fifth-degree) Bézier polynomial for the velocity curve, giving
|
|
* a "linear pop" velocity curve; with pop being the sixth derivative of position:
|
|
* velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
|
|
*
|
|
* The Bézier curve takes the form:
|
|
*
|
|
* V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
|
|
*
|
|
* Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
|
|
* through B_5(t) are the Bernstein basis as follows:
|
|
*
|
|
* B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
|
|
* B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
|
|
* B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
|
|
* B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
|
|
* B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
|
|
* B_5(t) = t^5 = t^5
|
|
* ^ ^ ^ ^ ^ ^
|
|
* | | | | | |
|
|
* A B C D E F
|
|
*
|
|
* Unfortunately, we cannot use forward-differencing to calculate each position through
|
|
* the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
|
|
*
|
|
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
|
|
*
|
|
* Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
|
|
* through t of the Bézier form of V(t), we can determine that:
|
|
*
|
|
* A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
|
|
* B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
|
|
* C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
|
|
* D = 10*P_0 - 20*P_1 + 10*P_2
|
|
* E = - 5*P_0 + 5*P_1
|
|
* F = P_0
|
|
*
|
|
* Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
|
|
* We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
|
|
* which, after simplification, resolves to:
|
|
*
|
|
* A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
|
|
* B = 15*P_i - 15*P_t = 15*(P_i - P_t)
|
|
* C = -10*P_i + 10*P_t = 10*(P_t - P_i)
|
|
* D = 0
|
|
* E = 0
|
|
* F = P_i
|
|
*
|
|
* As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
|
|
* the Bézier curve at each point:
|
|
*
|
|
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
|
|
*
|
|
* Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
|
|
* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
|
|
* per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid
|
|
* overflows on the evaluation of the Bézier curve, means we can use
|
|
*
|
|
* t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
|
|
* A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
|
|
* B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
|
|
* C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
|
|
* F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
|
|
*
|
|
* The trapezoid generator state contains the following information, that we will use to create and evaluate
|
|
* the Bézier curve:
|
|
*
|
|
* blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
|
|
* blk->initial_rate [VI] = The initial steps per second (=velocity)
|
|
* blk->final_rate [VF] = The ending steps per second (=velocity)
|
|
* and the count of events completed (step_events_completed) [CS] (=distance until now)
|
|
*
|
|
* Note the abbreviations we use in the following formulae are between []s
|
|
*
|
|
* For Any 32bit CPU:
|
|
*
|
|
* At the start of each trapezoid, calculate the coefficients A,B,C,F and Advance [AV], as follows:
|
|
*
|
|
* A = 6*128*(VF - VI) = 768*(VF - VI)
|
|
* B = 15*128*(VI - VF) = 1920*(VI - VF)
|
|
* C = 10*128*(VF - VI) = 1280*(VF - VI)
|
|
* F = 128*VI = 128*VI
|
|
* AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
|
|
*
|
|
* And for each point, evaluate the curve with the following sequence:
|
|
*
|
|
* void lsrs(uint32_t& d, uint32_t s, int cnt) {
|
|
* d = s >> cnt;
|
|
* }
|
|
* void lsls(uint32_t& d, uint32_t s, int cnt) {
|
|
* d = s << cnt;
|
|
* }
|
|
* void lsrs(int32_t& d, uint32_t s, int cnt) {
|
|
* d = uint32_t(s) >> cnt;
|
|
* }
|
|
* void lsls(int32_t& d, uint32_t s, int cnt) {
|
|
* d = uint32_t(s) << cnt;
|
|
* }
|
|
* void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
|
|
* uint64_t res = uint64_t(op1) * op2;
|
|
* rlo = uint32_t(res & 0xFFFFFFFF);
|
|
* rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
|
|
* }
|
|
* void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
|
|
* int64_t mul = int64_t(op1) * op2;
|
|
* int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
|
|
* mul += s;
|
|
* rlo = int32_t(mul & 0xFFFFFFFF);
|
|
* rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
|
|
* }
|
|
* int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
|
|
* uint32_t flo = 0;
|
|
* uint32_t fhi = bezier_AV * curr_step;
|
|
* uint32_t t = fhi;
|
|
* int32_t alo = bezier_F;
|
|
* int32_t ahi = 0;
|
|
* int32_t A = bezier_A;
|
|
* int32_t B = bezier_B;
|
|
* int32_t C = bezier_C;
|
|
*
|
|
* lsrs(ahi, alo, 1); // a = F << 31
|
|
* lsls(alo, alo, 31); //
|
|
* umull(flo, fhi, fhi, t); // f *= t
|
|
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
* lsrs(flo, fhi, 1); //
|
|
* smlal(alo, ahi, flo, C); // a+=(f>>33)*C
|
|
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
* lsrs(flo, fhi, 1); //
|
|
* smlal(alo, ahi, flo, B); // a+=(f>>33)*B
|
|
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
|
|
* lsrs(flo, fhi, 1); // f>>=33;
|
|
* smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
|
|
* lsrs(alo, ahi, 6); // a>>=38
|
|
*
|
|
* return alo;
|
|
* }
|
|
*
|
|
* This is rewritten in ARM assembly for optimal performance (43 cycles to execute).
|
|
*
|
|
* For AVR, the precision of coefficients is scaled so the Bézier curve can be evaluated in real-time:
|
|
* Let's reduce precision as much as possible. After some experimentation we found that:
|
|
*
|
|
* Assume t and AV with 24 bits is enough
|
|
* A = 6*(VF - VI)
|
|
* B = 15*(VI - VF)
|
|
* C = 10*(VF - VI)
|
|
* F = VI
|
|
* AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
|
|
*
|
|
* Instead of storing sign for each coefficient, we will store its absolute value,
|
|
* and flag the sign of the A coefficient, so we can save to store the sign bit.
|
|
* It always holds that sign(A) = - sign(B) = sign(C)
|
|
*
|
|
* So, the resulting range of the coefficients are:
|
|
*
|
|
* t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
|
|
* A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
|
|
* B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
|
|
* C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
|
|
* F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
|
|
*
|
|
* And for each curve, estimate its coefficients with:
|
|
*
|
|
* void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
|
|
* // Calculate the Bézier coefficients
|
|
* if (v1 < v0) {
|
|
* A_negative = true;
|
|
* bezier_A = 6 * (v0 - v1);
|
|
* bezier_B = 15 * (v0 - v1);
|
|
* bezier_C = 10 * (v0 - v1);
|
|
* }
|
|
* else {
|
|
* A_negative = false;
|
|
* bezier_A = 6 * (v1 - v0);
|
|
* bezier_B = 15 * (v1 - v0);
|
|
* bezier_C = 10 * (v1 - v0);
|
|
* }
|
|
* bezier_F = v0;
|
|
* }
|
|
*
|
|
* And for each point, evaluate the curve with the following sequence:
|
|
*
|
|
* // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
|
|
* void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
|
|
* r = (uint64_t(op1) * op2) >> 8;
|
|
* }
|
|
* // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
|
|
* void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
|
|
* r = (uint32_t(op1) * op2) >> 16;
|
|
* }
|
|
* // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
|
|
* void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
|
|
* r = uint24_t((uint64_t(op1) * op2) >> 16);
|
|
* }
|
|
*
|
|
* int32_t _eval_bezier_curve(uint32_t curr_step) {
|
|
* // To save computing, the first step is always the initial speed
|
|
* if (!curr_step)
|
|
* return bezier_F;
|
|
*
|
|
* uint16_t t;
|
|
* umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
|
|
* uint16_t f = t;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
|
|
* uint24_t acc = bezier_F; // Range 20 bits (unsigned)
|
|
* if (A_negative) {
|
|
* uint24_t v;
|
|
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
|
|
* acc -= v;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
|
|
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
|
|
* acc += v;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
|
|
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
|
|
* acc -= v;
|
|
* }
|
|
* else {
|
|
* uint24_t v;
|
|
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
|
|
* acc += v;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
|
|
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
|
|
* acc -= v;
|
|
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
|
|
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
|
|
* acc += v;
|
|
* }
|
|
* return acc;
|
|
* }
|
|
* These functions are translated to assembler for optimal performance.
|
|
* Coefficient calculation takes 70 cycles. Bezier point evaluation takes 150 cycles.
|
|
*/
|
|
|
|
#ifdef __AVR__
|
|
|
|
// For AVR we use assembly to maximize speed
|
|
void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
|
|
|
|
// Store advance
|
|
bezier_AV = av;
|
|
|
|
// Calculate the rest of the coefficients
|
|
uint8_t r2 = v0 & 0xFF;
|
|
uint8_t r3 = (v0 >> 8) & 0xFF;
|
|
uint8_t r12 = (v0 >> 16) & 0xFF;
|
|
uint8_t r5 = v1 & 0xFF;
|
|
uint8_t r6 = (v1 >> 8) & 0xFF;
|
|
uint8_t r7 = (v1 >> 16) & 0xFF;
|
|
uint8_t r4,r8,r9,r10,r11;
|
|
|
|
__asm__ __volatile__(
|
|
/* Calculate the Bézier coefficients */
|
|
/* %10:%1:%0 = v0*/
|
|
/* %5:%4:%3 = v1*/
|
|
/* %7:%6:%10 = temporary*/
|
|
/* %9 = val (must be high register!)*/
|
|
/* %10 (must be high register!)*/
|
|
|
|
/* Store initial velocity*/
|
|
A("sts bezier_F, %0")
|
|
A("sts bezier_F+1, %1")
|
|
A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
|
|
|
|
/* Get delta speed */
|
|
A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
|
|
A("clr %8") /* %8 = 0 */
|
|
A("sub %0,%3")
|
|
A("sbc %1,%4")
|
|
A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
|
|
A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
|
|
|
|
/* Result was negative, get the absolute value*/
|
|
A("com %10")
|
|
A("com %1")
|
|
A("neg %0")
|
|
A("sbc %1,%2")
|
|
A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
|
|
A("clr %2") /* %2 = 0, means A_negative = false */
|
|
|
|
/* Store negative flag*/
|
|
L("1")
|
|
A("sts A_negative, %2") /* Store negative flag */
|
|
|
|
/* Compute coefficients A,B and C [20 cycles worst case]*/
|
|
A("ldi %9,6") /* %9 = 6 */
|
|
A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
|
|
A("sts bezier_A, r0")
|
|
A("mov %6,r1")
|
|
A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
|
|
A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
|
|
A("add %6,r0")
|
|
A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
|
|
A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
|
|
A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
|
|
A("sts bezier_A+1, %6")
|
|
A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
|
|
|
|
A("ldi %9,15") /* %9 = 15 */
|
|
A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
|
|
A("sts bezier_B, r0")
|
|
A("mov %6,r1")
|
|
A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
|
|
A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
|
|
A("add %6,r0")
|
|
A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
|
|
A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
|
|
A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
|
|
A("sts bezier_B+1, %6")
|
|
A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
|
|
|
|
A("ldi %9,10") /* %9 = 10 */
|
|
A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
|
|
A("sts bezier_C, r0")
|
|
A("mov %6,r1")
|
|
A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
|
|
A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
|
|
A("add %6,r0")
|
|
A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
|
|
A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
|
|
A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
|
|
A("sts bezier_C+1, %6")
|
|
" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
|
|
: "+r" (r2),
|
|
"+d" (r3),
|
|
"=r" (r4),
|
|
"+r" (r5),
|
|
"+r" (r6),
|
|
"+r" (r7),
|
|
"=r" (r8),
|
|
"=r" (r9),
|
|
"=r" (r10),
|
|
"=d" (r11),
|
|
"+r" (r12)
|
|
:
|
|
: "r0", "r1", "cc", "memory"
|
|
);
|
|
}
|
|
|
|
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
|
|
|
|
// If dealing with the first step, save expensive computing and return the initial speed
|
|
if (!curr_step)
|
|
return bezier_F;
|
|
|
|
uint8_t r0 = 0; /* Zero register */
|
|
uint8_t r2 = (curr_step) & 0xFF;
|
|
uint8_t r3 = (curr_step >> 8) & 0xFF;
|
|
uint8_t r4 = (curr_step >> 16) & 0xFF;
|
|
uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
|
|
|
|
__asm__ __volatile(
|
|
/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
|
|
A("lds %9,bezier_AV") /* %9 = LO(AV)*/
|
|
A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
|
|
A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
|
|
A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
|
|
A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
|
|
A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
|
|
A("add %7,r0")
|
|
A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
|
|
A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
|
|
A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
|
|
A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
|
|
A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
|
|
A("add %7,r0")
|
|
A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
|
|
A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
|
|
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
|
|
A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
|
|
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
|
|
/* %8:%7 = t*/
|
|
|
|
/* uint16_t f = t;*/
|
|
A("mov %5,%7") /* %6:%5 = f*/
|
|
A("mov %6,%8")
|
|
/* %6:%5 = f*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 = */
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
/* [15 +17*2] = [49]*/
|
|
|
|
/* %4:%3:%2 will be acc from now on*/
|
|
|
|
/* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
|
|
A("clr %9") /* "decimal place we get for free"*/
|
|
A("lds %2,bezier_F")
|
|
A("lds %3,bezier_F+1")
|
|
A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
|
|
|
|
/* if (A_negative) {*/
|
|
A("lds r0,A_negative")
|
|
A("or r0,%0") /* Is flag signalling negative? */
|
|
A("brne 3f") /* If yes, Skip next instruction if A was negative*/
|
|
A("rjmp 1f") /* Otherwise, jump */
|
|
|
|
/* uint24_t v; */
|
|
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
|
|
/* acc -= v; */
|
|
L("3")
|
|
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
|
|
A("sub %9,r1")
|
|
A("sbc %2,%0")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
|
|
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
|
|
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
|
|
A("sub %3,r0")
|
|
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
|
|
/* acc += v; */
|
|
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
|
|
A("add %9,r1")
|
|
A("adc %2,%0")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
|
|
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
|
|
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
|
|
A("add %3,r0")
|
|
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
|
|
/* acc -= v; */
|
|
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
|
|
A("sub %9,r1")
|
|
A("sbc %2,%0")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
|
|
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
|
|
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
|
|
A("sub %3,r0")
|
|
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
|
|
A("jmp 2f") /* Done!*/
|
|
|
|
L("1")
|
|
|
|
/* uint24_t v; */
|
|
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
|
|
/* acc += v; */
|
|
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
|
|
A("add %9,r1")
|
|
A("adc %2,%0")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
|
|
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
|
|
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
|
|
A("add %3,r0")
|
|
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
|
|
/* acc -= v;*/
|
|
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
|
|
A("sub %9,r1")
|
|
A("sbc %2,%0")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
|
|
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
|
|
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
|
|
A("sub %9,r0")
|
|
A("sbc %2,r1")
|
|
A("sbc %3,%0")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
|
|
A("sub %2,r0")
|
|
A("sbc %3,r1")
|
|
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
|
|
A("sub %3,r0")
|
|
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
|
|
|
|
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
|
|
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
|
|
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
|
|
A("clr %10") /* %10 = 0*/
|
|
A("clr %11") /* %11 = 0*/
|
|
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
|
|
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
|
|
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
|
|
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
|
|
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
|
|
A("adc %11,%0") /* %11 += carry*/
|
|
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
|
|
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
|
|
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
|
|
A("mov %5,%10") /* %6:%5 =*/
|
|
A("mov %6,%11") /* f = %10:%11*/
|
|
|
|
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
|
|
/* acc += v; */
|
|
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
|
|
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
|
|
A("add %9,r1")
|
|
A("adc %2,%0")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
|
|
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
|
|
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
|
|
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
|
|
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
|
|
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
|
|
A("add %9,r0")
|
|
A("adc %2,r1")
|
|
A("adc %3,%0")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
|
|
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
|
|
A("add %2,r0")
|
|
A("adc %3,r1")
|
|
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
|
|
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
|
|
A("add %3,r0")
|
|
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
|
|
L("2")
|
|
" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
|
|
: "+r"(r0),
|
|
"+r"(r1),
|
|
"+r"(r2),
|
|
"+r"(r3),
|
|
"+r"(r4),
|
|
"+r"(r5),
|
|
"+r"(r6),
|
|
"+r"(r7),
|
|
"+r"(r8),
|
|
"+r"(r9),
|
|
"+r"(r10),
|
|
"+r"(r11)
|
|
:
|
|
:"cc","r0","r1"
|
|
);
|
|
return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
|
|
}
|
|
|
|
#else
|
|
|
|
// For all the other 32bit CPUs
|
|
FORCE_INLINE void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
|
|
// Calculate the Bézier coefficients
|
|
bezier_A = 768 * (v1 - v0);
|
|
bezier_B = 1920 * (v0 - v1);
|
|
bezier_C = 1280 * (v1 - v0);
|
|
bezier_F = 128 * v0;
|
|
bezier_AV = av;
|
|
}
|
|
|
|
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
|
|
#if (defined(__arm__) || defined(__thumb__)) && __ARM_ARCH >= 6 && !defined(STM32G0B1xx) // TODO: Test define STM32G0xx versus STM32G0B1xx
|
|
|
|
// For ARM Cortex M3/M4 CPUs, we have the optimized assembler version, that takes 43 cycles to execute
|
|
uint32_t flo = 0;
|
|
uint32_t fhi = bezier_AV * curr_step;
|
|
uint32_t t = fhi;
|
|
int32_t alo = bezier_F;
|
|
int32_t ahi = 0;
|
|
int32_t A = bezier_A;
|
|
int32_t B = bezier_B;
|
|
int32_t C = bezier_C;
|
|
|
|
__asm__ __volatile__(
|
|
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
|
|
A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
|
|
A("lsls %[alo],%[alo],#31") // 1 cycles
|
|
A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
|
|
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
|
|
A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
|
|
A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
|
|
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
|
|
A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
|
|
A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
|
|
A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
|
|
A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
|
|
A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
|
|
A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
|
|
: [alo]"+r"( alo ) ,
|
|
[flo]"+r"( flo ) ,
|
|
[fhi]"+r"( fhi ) ,
|
|
[ahi]"+r"( ahi ) ,
|
|
[A]"+r"( A ) , // <== Note: Even if A, B, C, and t registers are INPUT ONLY
|
|
[B]"+r"( B ) , // GCC does bad optimizations on the code if we list them as
|
|
[C]"+r"( C ) , // such, breaking this function. So, to avoid that problem,
|
|
[t]"+r"( t ) // we list all registers as input-outputs.
|
|
:
|
|
: "cc"
|
|
);
|
|
return alo;
|
|
|
|
#else
|
|
|
|
// For non ARM targets, we provide a fallback implementation. Really doubt it
|
|
// will be useful, unless the processor is fast and 32bit
|
|
|
|
uint32_t t = bezier_AV * curr_step; // t: Range 0 - 1^32 = 32 bits
|
|
uint64_t f = t;
|
|
f *= t; // Range 32*2 = 64 bits (unsigned)
|
|
f >>= 32; // Range 32 bits (unsigned)
|
|
f *= t; // Range 32*2 = 64 bits (unsigned)
|
|
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
|
|
int64_t acc = (int64_t) bezier_F << 31; // Range 63 bits (signed)
|
|
acc += ((uint32_t) f >> 1) * (int64_t) bezier_C; // Range 29bits + 31 = 60bits (plus sign)
|
|
f *= t; // Range 32*2 = 64 bits
|
|
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
|
|
acc += ((uint32_t) f >> 1) * (int64_t) bezier_B; // Range 29bits + 31 = 60bits (plus sign)
|
|
f *= t; // Range 32*2 = 64 bits
|
|
f >>= 32; // Range 32 bits : f = t^3 (unsigned)
|
|
acc += ((uint32_t) f >> 1) * (int64_t) bezier_A; // Range 28bits + 31 = 59bits (plus sign)
|
|
acc >>= (31 + 7); // Range 24bits (plus sign)
|
|
return (int32_t) acc;
|
|
|
|
#endif
|
|
}
|
|
#endif
|
|
#endif // S_CURVE_ACCELERATION
|
|
|
|
/**
|
|
* Stepper Driver Interrupt
|
|
*
|
|
* Directly pulses the stepper motors at high frequency.
|
|
*/
|
|
|
|
HAL_STEP_TIMER_ISR() {
|
|
HAL_timer_isr_prologue(MF_TIMER_STEP);
|
|
|
|
Stepper::isr();
|
|
|
|
HAL_timer_isr_epilogue(MF_TIMER_STEP);
|
|
}
|
|
|
|
#ifdef CPU_32_BIT
|
|
#define STEP_MULTIPLY(A,B) MultiU32X24toH32(A, B)
|
|
#else
|
|
#define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B)
|
|
#endif
|
|
|
|
void Stepper::isr() {
|
|
|
|
static hal_timer_t nextMainISR = 0; // Interval until the next main Stepper Pulse phase (0 = Now)
|
|
|
|
#ifndef __AVR__
|
|
// Disable interrupts, to avoid ISR preemption while we reprogram the period
|
|
// (AVR enters the ISR with global interrupts disabled, so no need to do it here)
|
|
hal.isr_off();
|
|
#endif
|
|
|
|
// Program timer compare for the maximum period, so it does NOT
|
|
// flag an interrupt while this ISR is running - So changes from small
|
|
// periods to big periods are respected and the timer does not reset to 0
|
|
HAL_timer_set_compare(MF_TIMER_STEP, hal_timer_t(HAL_TIMER_TYPE_MAX));
|
|
|
|
// Count of ticks for the next ISR
|
|
hal_timer_t next_isr_ticks = 0;
|
|
|
|
// Limit the amount of iterations
|
|
uint8_t max_loops = 10;
|
|
|
|
#if ENABLED(FT_MOTION)
|
|
const bool using_ftMotion = ftMotion.cfg.mode;
|
|
#else
|
|
constexpr bool using_ftMotion = false;
|
|
#endif
|
|
|
|
// We need this variable here to be able to use it in the following loop
|
|
hal_timer_t min_ticks;
|
|
do {
|
|
// Enable ISRs to reduce USART processing latency
|
|
hal.isr_on();
|
|
|
|
hal_timer_t interval = 0;
|
|
|
|
#if ENABLED(FT_MOTION)
|
|
|
|
if (using_ftMotion) {
|
|
if (!nextMainISR) { // Main ISR is ready to fire during this iteration?
|
|
nextMainISR = FTM_MIN_TICKS; // Set to minimum interval (a limit on the top speed)
|
|
ftMotion_stepper(); // Run FTM Stepping
|
|
}
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
if (nextBabystepISR == 0) { // Avoid ANY stepping too soon after baby-stepping
|
|
nextBabystepISR = babystepping_isr();
|
|
NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
|
|
}
|
|
if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
|
|
NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
|
|
#endif
|
|
|
|
interval = nextMainISR; // Interval is either some old nextMainISR or FTM_MIN_TICKS
|
|
TERN_(BABYSTEPPING, NOMORE(interval, nextBabystepISR)); // Come back early for Babystepping?
|
|
|
|
nextMainISR = 0; // For FT Motion fire again ASAP
|
|
}
|
|
|
|
#endif
|
|
|
|
if (!using_ftMotion) {
|
|
|
|
TERN_(HAS_ZV_SHAPING, shaping_isr()); // Do Shaper stepping, if needed
|
|
|
|
if (!nextMainISR) pulse_phase_isr(); // 0 = Do coordinated axes Stepper pulses
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (!nextAdvanceISR) { // 0 = Do Linear Advance E Stepper pulses
|
|
advance_isr();
|
|
nextAdvanceISR = la_interval;
|
|
}
|
|
else if (nextAdvanceISR > la_interval) // Start/accelerate LA steps if necessary
|
|
nextAdvanceISR = la_interval;
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
const bool is_babystep = (nextBabystepISR == 0); // 0 = Do Babystepping (XY)Z pulses
|
|
if (is_babystep) nextBabystepISR = babystepping_isr();
|
|
#endif
|
|
|
|
// ^== Time critical. NOTHING besides pulse generation should be above here!!!
|
|
|
|
if (!nextMainISR) nextMainISR = block_phase_isr(); // Manage acc/deceleration, get next block
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
if (is_babystep) // Avoid ANY stepping too soon after baby-stepping
|
|
NOLESS(nextMainISR, (BABYSTEP_TICKS) / 8); // FULL STOP for 125µs after a baby-step
|
|
|
|
if (nextBabystepISR != BABYSTEP_NEVER) // Avoid baby-stepping too close to axis Stepping
|
|
NOLESS(nextBabystepISR, nextMainISR / 2); // TODO: Only look at axes enabled for baby-stepping
|
|
#endif
|
|
|
|
// Get the interval to the next ISR call
|
|
interval = _MIN(nextMainISR, uint32_t(HAL_TIMER_TYPE_MAX)); // Time until the next Pulse / Block phase
|
|
TERN_(INPUT_SHAPING_X, NOMORE(interval, ShapingQueue::peek_x())); // Time until next input shaping echo for X
|
|
TERN_(INPUT_SHAPING_Y, NOMORE(interval, ShapingQueue::peek_y())); // Time until next input shaping echo for Y
|
|
TERN_(INPUT_SHAPING_Z, NOMORE(interval, ShapingQueue::peek_z())); // Time until next input shaping echo for Z
|
|
TERN_(LIN_ADVANCE, NOMORE(interval, nextAdvanceISR)); // Come back early for Linear Advance?
|
|
TERN_(BABYSTEPPING, NOMORE(interval, nextBabystepISR)); // Come back early for Babystepping?
|
|
|
|
//
|
|
// Compute remaining time for each ISR phase
|
|
// NEVER : The phase is idle
|
|
// Zero : The phase will occur on the next ISR call
|
|
// Non-zero : The phase will occur on a future ISR call
|
|
//
|
|
|
|
nextMainISR -= interval;
|
|
TERN_(HAS_ZV_SHAPING, ShapingQueue::decrement_delays(interval));
|
|
TERN_(LIN_ADVANCE, if (nextAdvanceISR != LA_ADV_NEVER) nextAdvanceISR -= interval);
|
|
TERN_(BABYSTEPPING, if (nextBabystepISR != BABYSTEP_NEVER) nextBabystepISR -= interval);
|
|
|
|
} // standard motion control
|
|
|
|
/**
|
|
* This needs to avoid a race-condition caused by interleaving
|
|
* of interrupts required by both the LA and Stepper algorithms.
|
|
*
|
|
* Assume the following tick times for stepper pulses:
|
|
* Stepper ISR (S): 1 1000 2000 3000 4000
|
|
* Linear Adv. (E): 10 1010 2010 3010 4010
|
|
*
|
|
* The current algorithm tries to interleave them, giving:
|
|
* 1:S 10:E 1000:S 1010:E 2000:S 2010:E 3000:S 3010:E 4000:S 4010:E
|
|
*
|
|
* Ideal timing would yield these delta periods:
|
|
* 1:S 9:E 990:S 10:E 990:S 10:E 990:S 10:E 990:S 10:E
|
|
*
|
|
* But, since each event must fire an ISR with a minimum duration, the
|
|
* minimum delta might be 900, so deltas under 900 get rounded up:
|
|
* 900:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E d990:S d900:E
|
|
*
|
|
* It works, but divides the speed of all motors by half, leading to a sudden
|
|
* reduction to 1/2 speed! Such jumps in speed lead to lost steps (not even
|
|
* accounting for double/quad stepping, which makes it even worse).
|
|
*/
|
|
|
|
// Compute the tick count for the next ISR
|
|
next_isr_ticks += interval;
|
|
|
|
/**
|
|
* The following section must be done with global interrupts disabled.
|
|
* We want nothing to interrupt it, as that could mess the calculations
|
|
* we do for the next value to program in the period register of the
|
|
* stepper timer and lead to skipped ISRs (if the value we happen to program
|
|
* is less than the current count due to something preempting between the
|
|
* read and the write of the new period value).
|
|
*/
|
|
hal.isr_off();
|
|
|
|
/**
|
|
* Get the current tick value + margin
|
|
* Assuming at least 6µs between calls to this ISR...
|
|
* On AVR the ISR epilogue+prologue is estimated at 100 instructions - Give 8µs as margin
|
|
* On ARM the ISR epilogue+prologue is estimated at 20 instructions - Give 1µs as margin
|
|
*/
|
|
min_ticks = HAL_timer_get_count(MF_TIMER_STEP) + hal_timer_t(TERN(__AVR__, 8, 1) * (STEPPER_TIMER_TICKS_PER_US));
|
|
|
|
#if ENABLED(OLD_ADAPTIVE_MULTISTEPPING)
|
|
/**
|
|
* NB: If for some reason the stepper monopolizes the MPU, eventually the
|
|
* timer will wrap around (and so will 'next_isr_ticks'). So, limit the
|
|
* loop to 10 iterations. Beyond that, there's no way to ensure correct pulse
|
|
* timing, since the MCU isn't fast enough.
|
|
*/
|
|
if (!--max_loops) next_isr_ticks = min_ticks;
|
|
#endif
|
|
|
|
// Advance pulses if not enough time to wait for the next ISR
|
|
} while (TERN(OLD_ADAPTIVE_MULTISTEPPING, true, --max_loops) && next_isr_ticks < min_ticks);
|
|
|
|
#if DISABLED(OLD_ADAPTIVE_MULTISTEPPING)
|
|
|
|
// Track the time spent in the ISR
|
|
const hal_timer_t time_spent = HAL_timer_get_count(MF_TIMER_STEP);
|
|
time_spent_in_isr += time_spent;
|
|
|
|
if (next_isr_ticks < min_ticks) {
|
|
next_isr_ticks = min_ticks;
|
|
|
|
// When forced out of the ISR, increase multi-stepping
|
|
#if MULTISTEPPING_LIMIT > 1
|
|
if (steps_per_isr < MULTISTEPPING_LIMIT) {
|
|
steps_per_isr <<= 1;
|
|
// ticks_nominal will need to be recalculated if we are in cruise phase
|
|
ticks_nominal = 0;
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
// Track the time spent voluntarily outside the ISR
|
|
time_spent_out_isr += next_isr_ticks;
|
|
time_spent_out_isr -= time_spent;
|
|
}
|
|
|
|
#endif // !OLD_ADAPTIVE_MULTISTEPPING
|
|
|
|
// Now 'next_isr_ticks' contains the period to the next Stepper ISR - And we are
|
|
// sure that the time has not arrived yet - Warrantied by the scheduler
|
|
|
|
// Set the next ISR to fire at the proper time
|
|
HAL_timer_set_compare(MF_TIMER_STEP, next_isr_ticks);
|
|
|
|
// Don't forget to finally reenable interrupts on non-AVR.
|
|
// AVR automatically calls sei() for us on Return-from-Interrupt.
|
|
#ifndef __AVR__
|
|
hal.isr_on();
|
|
#endif
|
|
}
|
|
|
|
#if MINIMUM_STEPPER_PULSE || MAXIMUM_STEPPER_RATE
|
|
#define ISR_PULSE_CONTROL 1
|
|
#endif
|
|
#if ISR_PULSE_CONTROL && DISABLED(I2S_STEPPER_STREAM)
|
|
#define ISR_MULTI_STEPS 1
|
|
#endif
|
|
|
|
/**
|
|
* This phase of the ISR should ONLY create the pulses for the steppers.
|
|
* This prevents jitter caused by the interval between the start of the
|
|
* interrupt and the start of the pulses. DON'T add any logic ahead of the
|
|
* call to this method that might cause variation in the timing. The aim
|
|
* is to keep pulse timing as regular as possible.
|
|
*/
|
|
void Stepper::pulse_phase_isr() {
|
|
|
|
// If we must abort the current block, do so!
|
|
if (abort_current_block) {
|
|
abort_current_block = false;
|
|
if (current_block) {
|
|
discard_current_block();
|
|
#if HAS_ZV_SHAPING
|
|
ShapingQueue::purge();
|
|
#if ENABLED(INPUT_SHAPING_X)
|
|
shaping_x.delta_error = 0;
|
|
shaping_x.last_block_end_pos = count_position.x;
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Y)
|
|
shaping_y.delta_error = 0;
|
|
shaping_y.last_block_end_pos = count_position.y;
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Z)
|
|
shaping_z.delta_error = 0;
|
|
shaping_z.last_block_end_pos = count_position.z;
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// If there is no current block, do nothing
|
|
if (!current_block || step_events_completed >= step_event_count) return;
|
|
|
|
// Skipping step processing causes motion to freeze
|
|
if (TERN0(FREEZE_FEATURE, frozen)) return;
|
|
|
|
// Count of pending loops and events for this iteration
|
|
const uint32_t pending_events = step_event_count - step_events_completed;
|
|
uint8_t events_to_do = _MIN(pending_events, steps_per_isr);
|
|
|
|
// Just update the value we will get at the end of the loop
|
|
step_events_completed += events_to_do;
|
|
|
|
// Take multiple steps per interrupt (For high speed moves)
|
|
#if ISR_MULTI_STEPS
|
|
bool firstStep = true;
|
|
USING_TIMED_PULSE();
|
|
#endif
|
|
|
|
// Direct Stepping page?
|
|
const bool is_page = current_block->is_page();
|
|
|
|
do {
|
|
AxisFlags step_needed{0};
|
|
|
|
#define _APPLY_STEP(AXIS, INV, ALWAYS) AXIS ##_APPLY_STEP(INV, ALWAYS)
|
|
#define _STEP_STATE(AXIS) STEP_STATE_## AXIS
|
|
|
|
// Determine if a pulse is needed using Bresenham
|
|
#define PULSE_PREP(AXIS) do{ \
|
|
int32_t de = delta_error[_AXIS(AXIS)] + advance_dividend[_AXIS(AXIS)]; \
|
|
if (de >= 0) { \
|
|
step_needed.set(_AXIS(AXIS)); \
|
|
de -= advance_divisor_cached; \
|
|
} \
|
|
delta_error[_AXIS(AXIS)] = de; \
|
|
}while(0)
|
|
|
|
// With input shaping, direction changes can happen with almost only
|
|
// AWAIT_LOW_PULSE() and DIR_WAIT_BEFORE() between steps. To work around
|
|
// the TMC2208 / TMC2225 shutdown bug (#16076), add a half step hysteresis
|
|
// in each direction. This results in the position being off by half an
|
|
// average half step during travel but correct at the end of each segment.
|
|
#if AXIS_DRIVER_TYPE_X(TMC2208) || AXIS_DRIVER_TYPE_X(TMC2208_STANDALONE) || \
|
|
AXIS_DRIVER_TYPE_X(TMC5160) || AXIS_DRIVER_TYPE_X(TMC5160_STANDALONE)
|
|
#define HYSTERESIS_X 64
|
|
#else
|
|
#define HYSTERESIS_X 0
|
|
#endif
|
|
#if AXIS_DRIVER_TYPE_Y(TMC2208) || AXIS_DRIVER_TYPE_Y(TMC2208_STANDALONE) || \
|
|
AXIS_DRIVER_TYPE_Y(TMC5160) || AXIS_DRIVER_TYPE_Y(TMC5160_STANDALONE)
|
|
#define HYSTERESIS_Y 64
|
|
#else
|
|
#define HYSTERESIS_Y 0
|
|
#endif
|
|
#if AXIS_DRIVER_TYPE_Z(TMC2208) || AXIS_DRIVER_TYPE_Z(TMC2208_STANDALONE) || \
|
|
AXIS_DRIVER_TYPE_Z(TMC5160) || AXIS_DRIVER_TYPE_Z(TMC5160_STANDALONE)
|
|
#define HYSTERESIS_Z 64
|
|
#else
|
|
#define HYSTERESIS_Z 0
|
|
#endif
|
|
#define _HYSTERESIS(AXIS) HYSTERESIS_##AXIS
|
|
#define HYSTERESIS(AXIS) _HYSTERESIS(AXIS)
|
|
|
|
#define PULSE_PREP_SHAPING(AXIS, DELTA_ERROR, DIVIDEND) do{ \
|
|
int16_t de = DELTA_ERROR + (DIVIDEND); \
|
|
const bool step_fwd = de >= (64 + HYSTERESIS(AXIS)), \
|
|
step_bak = de <= -(64 + HYSTERESIS(AXIS)); \
|
|
if (step_fwd || step_bak) { \
|
|
de += step_fwd ? -128 : 128; \
|
|
if ((MAXDIR(AXIS) && step_bak) || (MINDIR(AXIS) && step_fwd)) { \
|
|
{ USING_TIMED_PULSE(); START_TIMED_PULSE(); AWAIT_LOW_PULSE(); } \
|
|
last_direction_bits.toggle(_AXIS(AXIS)); \
|
|
DIR_WAIT_BEFORE(); \
|
|
SET_STEP_DIR(AXIS); \
|
|
TERN_(FTM_OPTIMIZE_DIR_STATES, last_set_direction = last_direction_bits); \
|
|
DIR_WAIT_AFTER(); \
|
|
} \
|
|
} \
|
|
else \
|
|
step_needed.clear(_AXIS(AXIS)); \
|
|
DELTA_ERROR = de; \
|
|
}while(0)
|
|
|
|
// Start an active pulse if needed
|
|
#define PULSE_START(AXIS) do{ \
|
|
if (step_needed.test(_AXIS(AXIS))) { \
|
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
|
_APPLY_STEP(AXIS, _STEP_STATE(AXIS), 0); \
|
|
} \
|
|
}while(0)
|
|
|
|
// Stop an active pulse if needed
|
|
#define PULSE_STOP(AXIS) do { \
|
|
if (step_needed.test(_AXIS(AXIS))) { \
|
|
_APPLY_STEP(AXIS, !_STEP_STATE(AXIS), 0); \
|
|
} \
|
|
}while(0)
|
|
|
|
#if ENABLED(DIRECT_STEPPING)
|
|
// Direct stepping is currently not ready for HAS_I_AXIS
|
|
if (is_page) {
|
|
|
|
#if STEPPER_PAGE_FORMAT == SP_4x4D_128
|
|
|
|
#define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
|
|
if ((VALUE) < 7) dm[_AXIS(AXIS)] = false; \
|
|
else if ((VALUE) > 7) dm[_AXIS(AXIS)] = true; \
|
|
page_step_state.sd[_AXIS(AXIS)] = VALUE; \
|
|
page_step_state.bd[_AXIS(AXIS)] += VALUE; \
|
|
}while(0)
|
|
|
|
#define PAGE_PULSE_PREP(AXIS) do{ \
|
|
step_needed.set(_AXIS(AXIS), \
|
|
pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x7])); \
|
|
}while(0)
|
|
|
|
switch (page_step_state.segment_steps) {
|
|
case DirectStepping::Config::SEGMENT_STEPS:
|
|
page_step_state.segment_idx += 2;
|
|
page_step_state.segment_steps = 0;
|
|
// fallthru
|
|
case 0: {
|
|
const uint8_t low = page_step_state.page[page_step_state.segment_idx],
|
|
high = page_step_state.page[page_step_state.segment_idx + 1];
|
|
const AxisBits dm = last_direction_bits;
|
|
|
|
PAGE_SEGMENT_UPDATE(X, low >> 4);
|
|
PAGE_SEGMENT_UPDATE(Y, low & 0xF);
|
|
PAGE_SEGMENT_UPDATE(Z, high >> 4);
|
|
PAGE_SEGMENT_UPDATE(E, high & 0xF);
|
|
|
|
if (dm != last_direction_bits) set_directions(dm);
|
|
|
|
} break;
|
|
|
|
default: break;
|
|
}
|
|
|
|
PAGE_PULSE_PREP(X);
|
|
PAGE_PULSE_PREP(Y);
|
|
PAGE_PULSE_PREP(Z);
|
|
TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
|
|
|
|
page_step_state.segment_steps++;
|
|
|
|
#elif STEPPER_PAGE_FORMAT == SP_4x2_256
|
|
|
|
#define PAGE_SEGMENT_UPDATE(AXIS, VALUE) \
|
|
page_step_state.sd[_AXIS(AXIS)] = VALUE; \
|
|
page_step_state.bd[_AXIS(AXIS)] += VALUE;
|
|
|
|
#define PAGE_PULSE_PREP(AXIS) do{ \
|
|
step_needed.set(_AXIS(AXIS), \
|
|
pgm_read_byte(&segment_table[page_step_state.sd[_AXIS(AXIS)]][page_step_state.segment_steps & 0x3])); \
|
|
}while(0)
|
|
|
|
switch (page_step_state.segment_steps) {
|
|
case DirectStepping::Config::SEGMENT_STEPS:
|
|
page_step_state.segment_idx++;
|
|
page_step_state.segment_steps = 0;
|
|
// fallthru
|
|
case 0: {
|
|
const uint8_t b = page_step_state.page[page_step_state.segment_idx];
|
|
PAGE_SEGMENT_UPDATE(X, (b >> 6) & 0x3);
|
|
PAGE_SEGMENT_UPDATE(Y, (b >> 4) & 0x3);
|
|
PAGE_SEGMENT_UPDATE(Z, (b >> 2) & 0x3);
|
|
PAGE_SEGMENT_UPDATE(E, (b >> 0) & 0x3);
|
|
} break;
|
|
default: break;
|
|
}
|
|
|
|
PAGE_PULSE_PREP(X);
|
|
PAGE_PULSE_PREP(Y);
|
|
PAGE_PULSE_PREP(Z);
|
|
TERN_(HAS_EXTRUDERS, PAGE_PULSE_PREP(E));
|
|
|
|
page_step_state.segment_steps++;
|
|
|
|
#elif STEPPER_PAGE_FORMAT == SP_4x1_512
|
|
|
|
#define PAGE_PULSE_PREP(AXIS, NBIT) do{ \
|
|
step_needed.set(_AXIS(AXIS), TEST(steps, NBIT)); \
|
|
if (step_needed.test(_AXIS(AXIS))) \
|
|
page_step_state.bd[_AXIS(AXIS)]++; \
|
|
}while(0)
|
|
|
|
uint8_t steps = page_step_state.page[page_step_state.segment_idx >> 1];
|
|
if (page_step_state.segment_idx & 0x1) steps >>= 4;
|
|
|
|
PAGE_PULSE_PREP(X, 3);
|
|
PAGE_PULSE_PREP(Y, 2);
|
|
PAGE_PULSE_PREP(Z, 1);
|
|
PAGE_PULSE_PREP(E, 0);
|
|
|
|
page_step_state.segment_idx++;
|
|
|
|
#else
|
|
#error "Unknown direct stepping page format!"
|
|
#endif
|
|
}
|
|
|
|
#endif // DIRECT_STEPPING
|
|
|
|
if (!is_page) {
|
|
// Give the compiler a clue to store advance_divisor in registers for what follows
|
|
const uint32_t advance_divisor_cached = advance_divisor;
|
|
|
|
// Determine if pulses are needed
|
|
#if HAS_X_STEP
|
|
PULSE_PREP(X);
|
|
#endif
|
|
#if HAS_Y_STEP
|
|
PULSE_PREP(Y);
|
|
#endif
|
|
#if HAS_Z_STEP
|
|
PULSE_PREP(Z);
|
|
#endif
|
|
#if HAS_I_STEP
|
|
PULSE_PREP(I);
|
|
#endif
|
|
#if HAS_J_STEP
|
|
PULSE_PREP(J);
|
|
#endif
|
|
#if HAS_K_STEP
|
|
PULSE_PREP(K);
|
|
#endif
|
|
#if HAS_U_STEP
|
|
PULSE_PREP(U);
|
|
#endif
|
|
#if HAS_V_STEP
|
|
PULSE_PREP(V);
|
|
#endif
|
|
#if HAS_W_STEP
|
|
PULSE_PREP(W);
|
|
#endif
|
|
|
|
#if ANY(HAS_E0_STEP, MIXING_EXTRUDER)
|
|
PULSE_PREP(E);
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (la_active && step_needed.e) {
|
|
// don't actually step here, but do subtract movements steps
|
|
// from the linear advance step count
|
|
step_needed.e = false;
|
|
la_advance_steps--;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_ZV_SHAPING
|
|
// record an echo if a step is needed in the primary bresenham
|
|
const bool x_step = TERN0(INPUT_SHAPING_X, step_needed.x && shaping_x.enabled),
|
|
y_step = TERN0(INPUT_SHAPING_Y, step_needed.y && shaping_y.enabled),
|
|
z_step = TERN0(INPUT_SHAPING_Z, step_needed.z && shaping_z.enabled);
|
|
if (x_step || y_step || z_step)
|
|
ShapingQueue::enqueue(x_step, TERN0(INPUT_SHAPING_X, shaping_x.forward), y_step, TERN0(INPUT_SHAPING_Y, shaping_y.forward), z_step, TERN0(INPUT_SHAPING_Z, shaping_z.forward));
|
|
|
|
// do the first part of the secondary bresenham
|
|
#if ENABLED(INPUT_SHAPING_X)
|
|
if (x_step)
|
|
PULSE_PREP_SHAPING(X, shaping_x.delta_error, shaping_x.forward ? shaping_x.factor1 : -shaping_x.factor1);
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Y)
|
|
if (y_step)
|
|
PULSE_PREP_SHAPING(Y, shaping_y.delta_error, shaping_y.forward ? shaping_y.factor1 : -shaping_y.factor1);
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Z)
|
|
if (z_step)
|
|
PULSE_PREP_SHAPING(Z, shaping_z.delta_error, shaping_z.forward ? shaping_z.factor1 : -shaping_z.factor1);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if ISR_MULTI_STEPS
|
|
if (firstStep)
|
|
firstStep = false;
|
|
else
|
|
AWAIT_LOW_PULSE();
|
|
#endif
|
|
|
|
// Pulse start
|
|
#if HAS_X_STEP
|
|
PULSE_START(X);
|
|
#endif
|
|
#if HAS_Y_STEP
|
|
PULSE_START(Y);
|
|
#endif
|
|
#if HAS_Z_STEP
|
|
PULSE_START(Z);
|
|
#endif
|
|
#if HAS_I_STEP
|
|
PULSE_START(I);
|
|
#endif
|
|
#if HAS_J_STEP
|
|
PULSE_START(J);
|
|
#endif
|
|
#if HAS_K_STEP
|
|
PULSE_START(K);
|
|
#endif
|
|
#if HAS_U_STEP
|
|
PULSE_START(U);
|
|
#endif
|
|
#if HAS_V_STEP
|
|
PULSE_START(V);
|
|
#endif
|
|
#if HAS_W_STEP
|
|
PULSE_START(W);
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
if (step_needed.e) {
|
|
count_position.e += count_direction.e;
|
|
E_STEP_WRITE(mixer.get_next_stepper(), STEP_STATE_E);
|
|
}
|
|
#elif HAS_E0_STEP
|
|
PULSE_START(E);
|
|
#endif
|
|
|
|
TERN_(I2S_STEPPER_STREAM, i2s_push_sample());
|
|
|
|
// TODO: need to deal with MINIMUM_STEPPER_PULSE over i2s
|
|
#if ISR_MULTI_STEPS
|
|
START_TIMED_PULSE();
|
|
AWAIT_HIGH_PULSE();
|
|
#endif
|
|
|
|
// Pulse stop
|
|
#if HAS_X_STEP
|
|
PULSE_STOP(X);
|
|
#endif
|
|
#if HAS_Y_STEP
|
|
PULSE_STOP(Y);
|
|
#endif
|
|
#if HAS_Z_STEP
|
|
PULSE_STOP(Z);
|
|
#endif
|
|
#if HAS_I_STEP
|
|
PULSE_STOP(I);
|
|
#endif
|
|
#if HAS_J_STEP
|
|
PULSE_STOP(J);
|
|
#endif
|
|
#if HAS_K_STEP
|
|
PULSE_STOP(K);
|
|
#endif
|
|
#if HAS_U_STEP
|
|
PULSE_STOP(U);
|
|
#endif
|
|
#if HAS_V_STEP
|
|
PULSE_STOP(V);
|
|
#endif
|
|
#if HAS_W_STEP
|
|
PULSE_STOP(W);
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
if (step_needed.e) E_STEP_WRITE(mixer.get_stepper(), !STEP_STATE_E);
|
|
#elif HAS_E0_STEP
|
|
PULSE_STOP(E);
|
|
#endif
|
|
|
|
#if ISR_MULTI_STEPS
|
|
if (events_to_do) START_TIMED_PULSE();
|
|
#endif
|
|
|
|
} while (--events_to_do);
|
|
}
|
|
|
|
#if HAS_ZV_SHAPING
|
|
|
|
void Stepper::shaping_isr() {
|
|
AxisFlags step_needed{0};
|
|
|
|
// Clear the echoes that are ready to process. If the buffers are too full and risk overflow, also apply echoes early.
|
|
TERN_(INPUT_SHAPING_X, step_needed.x = !ShapingQueue::peek_x() || ShapingQueue::free_count_x() < steps_per_isr);
|
|
TERN_(INPUT_SHAPING_Y, step_needed.y = !ShapingQueue::peek_y() || ShapingQueue::free_count_y() < steps_per_isr);
|
|
TERN_(INPUT_SHAPING_Z, step_needed.z = !ShapingQueue::peek_z() || ShapingQueue::free_count_z() < steps_per_isr);
|
|
|
|
if (bool(step_needed)) while (true) {
|
|
#if ENABLED(INPUT_SHAPING_X)
|
|
if (step_needed.x) {
|
|
const bool forward = ShapingQueue::dequeue_x();
|
|
PULSE_PREP_SHAPING(X, shaping_x.delta_error, (forward ? shaping_x.factor2 : -shaping_x.factor2));
|
|
PULSE_START(X);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(INPUT_SHAPING_Y)
|
|
if (step_needed.y) {
|
|
const bool forward = ShapingQueue::dequeue_y();
|
|
PULSE_PREP_SHAPING(Y, shaping_y.delta_error, (forward ? shaping_y.factor2 : -shaping_y.factor2));
|
|
PULSE_START(Y);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(INPUT_SHAPING_Z)
|
|
if (step_needed.z) {
|
|
const bool forward = ShapingQueue::dequeue_z();
|
|
PULSE_PREP_SHAPING(Z, shaping_z.delta_error, (forward ? shaping_z.factor2 : -shaping_z.factor2));
|
|
PULSE_START(Z);
|
|
}
|
|
#endif
|
|
|
|
TERN_(I2S_STEPPER_STREAM, i2s_push_sample());
|
|
|
|
USING_TIMED_PULSE();
|
|
if (bool(step_needed)) {
|
|
#if ISR_MULTI_STEPS
|
|
START_TIMED_PULSE();
|
|
AWAIT_HIGH_PULSE();
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_X)
|
|
PULSE_STOP(X);
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Y)
|
|
PULSE_STOP(Y);
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Z)
|
|
PULSE_STOP(Z);
|
|
#endif
|
|
}
|
|
|
|
TERN_(INPUT_SHAPING_X, step_needed.x = !ShapingQueue::peek_x() || ShapingQueue::free_count_x() < steps_per_isr);
|
|
TERN_(INPUT_SHAPING_Y, step_needed.y = !ShapingQueue::peek_y() || ShapingQueue::free_count_y() < steps_per_isr);
|
|
TERN_(INPUT_SHAPING_Z, step_needed.z = !ShapingQueue::peek_z() || ShapingQueue::free_count_z() < steps_per_isr);
|
|
|
|
if (!bool(step_needed)) break;
|
|
|
|
START_TIMED_PULSE();
|
|
AWAIT_LOW_PULSE();
|
|
}
|
|
}
|
|
|
|
#endif // HAS_ZV_SHAPING
|
|
|
|
// Calculate timer interval, with all limits applied.
|
|
hal_timer_t Stepper::calc_timer_interval(uint32_t step_rate) {
|
|
|
|
#ifdef CPU_32_BIT
|
|
|
|
// A fast processor can just do integer division
|
|
constexpr uint32_t min_step_rate = uint32_t(STEPPER_TIMER_RATE) / HAL_TIMER_TYPE_MAX;
|
|
return step_rate > min_step_rate ? uint32_t(STEPPER_TIMER_RATE) / step_rate : HAL_TIMER_TYPE_MAX;
|
|
|
|
#else
|
|
|
|
constexpr uint32_t min_step_rate = (F_CPU) / 500000U; // i.e., 32 or 40
|
|
if (step_rate >= 0x0800) { // higher step rate
|
|
// AVR is able to keep up at around 65kHz Stepping ISR rate at most.
|
|
// So values for step_rate > 65535 might as well be truncated.
|
|
// Handle it as quickly as possible. i.e., assume highest byte is zero
|
|
// because non-zero would represent a step rate far beyond AVR capabilities.
|
|
if (uint8_t(step_rate >> 16))
|
|
return uint32_t(STEPPER_TIMER_RATE) / 0x10000;
|
|
|
|
const uintptr_t table_address = uintptr_t(&speed_lookuptable_fast[uint8_t(step_rate >> 8)]);
|
|
const uint16_t base = uint16_t(pgm_read_word(table_address));
|
|
const uint8_t gain = uint8_t(pgm_read_byte(table_address + 2));
|
|
return base - MultiU8X8toH8(uint8_t(step_rate & 0x00FF), gain);
|
|
}
|
|
else if (step_rate > min_step_rate) { // lower step rates
|
|
step_rate -= min_step_rate; // Correct for minimal speed
|
|
const uintptr_t table_address = uintptr_t(&speed_lookuptable_slow[uint8_t(step_rate >> 3)]);
|
|
return uint16_t(pgm_read_word(table_address))
|
|
- ((uint16_t(pgm_read_word(table_address + 2)) * uint8_t(step_rate & 0x0007)) >> 3);
|
|
}
|
|
|
|
return uint16_t(pgm_read_word(uintptr_t(speed_lookuptable_slow)));
|
|
|
|
#endif // !CPU_32_BIT
|
|
}
|
|
|
|
#if ENABLED(NONLINEAR_EXTRUSION)
|
|
void Stepper::calc_nonlinear_e(uint32_t step_rate) {
|
|
const uint32_t velocity = ne_scale * step_rate; // Scale step_rate first so all intermediate values stay in range of 8.24 fixed point math
|
|
int32_t vd = (((int64_t)ne_fix.A * velocity) >> 24) + (((((int64_t)ne_fix.B * velocity) >> 24) * velocity) >> 24);
|
|
NOLESS(vd, 0);
|
|
|
|
advance_dividend.e = (uint64_t(ne_fix.C + vd) * ne_edividend) >> 24;
|
|
}
|
|
#endif
|
|
|
|
// Get the timer interval and the number of loops to perform per tick
|
|
hal_timer_t Stepper::calc_multistep_timer_interval(uint32_t step_rate) {
|
|
|
|
#if ENABLED(OLD_ADAPTIVE_MULTISTEPPING)
|
|
|
|
#if MULTISTEPPING_LIMIT == 1
|
|
|
|
// Just make sure the step rate is doable
|
|
NOMORE(step_rate, uint32_t(MAX_STEP_ISR_FREQUENCY_1X));
|
|
|
|
#else
|
|
|
|
// The stepping frequency limits for each multistepping rate
|
|
static const uint32_t limit[] PROGMEM = {
|
|
( MAX_STEP_ISR_FREQUENCY_1X )
|
|
, (((F_CPU) / ISR_EXECUTION_CYCLES(1)) >> 1)
|
|
#if MULTISTEPPING_LIMIT >= 4
|
|
, (((F_CPU) / ISR_EXECUTION_CYCLES(2)) >> 2)
|
|
#endif
|
|
#if MULTISTEPPING_LIMIT >= 8
|
|
, (((F_CPU) / ISR_EXECUTION_CYCLES(3)) >> 3)
|
|
#endif
|
|
#if MULTISTEPPING_LIMIT >= 16
|
|
, (((F_CPU) / ISR_EXECUTION_CYCLES(4)) >> 4)
|
|
#endif
|
|
#if MULTISTEPPING_LIMIT >= 32
|
|
, (((F_CPU) / ISR_EXECUTION_CYCLES(5)) >> 5)
|
|
#endif
|
|
#if MULTISTEPPING_LIMIT >= 64
|
|
, (((F_CPU) / ISR_EXECUTION_CYCLES(6)) >> 6)
|
|
#endif
|
|
#if MULTISTEPPING_LIMIT >= 128
|
|
, (((F_CPU) / ISR_EXECUTION_CYCLES(7)) >> 7)
|
|
#endif
|
|
};
|
|
|
|
// Find a doable step rate using multistepping
|
|
uint8_t multistep = 1;
|
|
for (uint8_t i = 0; i < COUNT(limit) && step_rate > uint32_t(pgm_read_dword(&limit[i])); ++i) {
|
|
step_rate >>= 1;
|
|
multistep <<= 1;
|
|
}
|
|
steps_per_isr = multistep;
|
|
|
|
#endif
|
|
|
|
#elif MULTISTEPPING_LIMIT > 1
|
|
|
|
uint8_t loops = steps_per_isr;
|
|
if (MULTISTEPPING_LIMIT >= 16 && loops >= 16) { step_rate >>= 4; loops >>= 4; }
|
|
if (MULTISTEPPING_LIMIT >= 4 && loops >= 4) { step_rate >>= 2; loops >>= 2; }
|
|
if (MULTISTEPPING_LIMIT >= 2 && loops >= 2) { step_rate >>= 1; }
|
|
|
|
#endif
|
|
|
|
return calc_timer_interval(step_rate);
|
|
}
|
|
|
|
// Method to get all moving axes (for proper endstop handling)
|
|
void Stepper::set_axis_moved_for_current_block() {
|
|
|
|
#if IS_CORE
|
|
// Define conditions for checking endstops
|
|
#define S_(N) current_block->steps[CORE_AXIS_##N]
|
|
#define D_(N) current_block->direction_bits[CORE_AXIS_##N]
|
|
#endif
|
|
|
|
#if CORE_IS_XY || CORE_IS_XZ
|
|
/**
|
|
* Head direction in -X axis for CoreXY and CoreXZ bots.
|
|
*
|
|
* If steps differ, both axes are moving.
|
|
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below)
|
|
* If DeltaA == DeltaB, the movement is only in the 1st axis (X)
|
|
*/
|
|
#if ANY(COREXY, COREXZ)
|
|
#define X_CMP(A,B) ((A)==(B))
|
|
#else
|
|
#define X_CMP(A,B) ((A)!=(B))
|
|
#endif
|
|
#define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && X_CMP(D_(1),D_(2))) )
|
|
#elif ENABLED(MARKFORGED_XY)
|
|
#define X_MOVE_TEST (current_block->steps.a != current_block->steps.b)
|
|
#else
|
|
#define X_MOVE_TEST !!current_block->steps.a
|
|
#endif
|
|
|
|
#if CORE_IS_XY || CORE_IS_YZ
|
|
/**
|
|
* Head direction in -Y axis for CoreXY / CoreYZ bots.
|
|
*
|
|
* If steps differ, both axes are moving
|
|
* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y)
|
|
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z)
|
|
*/
|
|
#if ANY(COREYX, COREYZ)
|
|
#define Y_CMP(A,B) ((A)==(B))
|
|
#else
|
|
#define Y_CMP(A,B) ((A)!=(B))
|
|
#endif
|
|
#define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Y_CMP(D_(1),D_(2))) )
|
|
#elif ENABLED(MARKFORGED_YX)
|
|
#define Y_MOVE_TEST (current_block->steps.a != current_block->steps.b)
|
|
#else
|
|
#define Y_MOVE_TEST !!current_block->steps.b
|
|
#endif
|
|
|
|
#if CORE_IS_XZ || CORE_IS_YZ
|
|
/**
|
|
* Head direction in -Z axis for CoreXZ or CoreYZ bots.
|
|
*
|
|
* If steps differ, both axes are moving
|
|
* If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above)
|
|
* If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z)
|
|
*/
|
|
#if ANY(COREZX, COREZY)
|
|
#define Z_CMP(A,B) ((A)==(B))
|
|
#else
|
|
#define Z_CMP(A,B) ((A)!=(B))
|
|
#endif
|
|
#define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && Z_CMP(D_(1),D_(2))) )
|
|
#else
|
|
#define Z_MOVE_TEST !!current_block->steps.c
|
|
#endif
|
|
|
|
// Set flags for all axes that move in this block
|
|
// These are set per-axis, not per-stepper
|
|
AxisBits didmove;
|
|
NUM_AXIS_CODE(
|
|
if (X_MOVE_TEST) didmove.a = true, // Cartesian X or Kinematic A
|
|
if (Y_MOVE_TEST) didmove.b = true, // Cartesian Y or Kinematic B
|
|
if (Z_MOVE_TEST) didmove.c = true, // Cartesian Z or Kinematic C
|
|
if (!!current_block->steps.i) didmove.i = true,
|
|
if (!!current_block->steps.j) didmove.j = true,
|
|
if (!!current_block->steps.k) didmove.k = true,
|
|
if (!!current_block->steps.u) didmove.u = true,
|
|
if (!!current_block->steps.v) didmove.v = true,
|
|
if (!!current_block->steps.w) didmove.w = true
|
|
);
|
|
axis_did_move = didmove;
|
|
}
|
|
|
|
/**
|
|
* This last phase of the stepper interrupt processes and properly
|
|
* schedules planner blocks. This is executed after the step pulses
|
|
* have been done, so it is less time critical.
|
|
*/
|
|
hal_timer_t Stepper::block_phase_isr() {
|
|
#if DISABLED(OLD_ADAPTIVE_MULTISTEPPING)
|
|
// If the ISR uses < 50% of MPU time, halve multi-stepping
|
|
const hal_timer_t time_spent = HAL_timer_get_count(MF_TIMER_STEP);
|
|
#if MULTISTEPPING_LIMIT > 1
|
|
if (steps_per_isr > 1 && time_spent_out_isr >= time_spent_in_isr + time_spent) {
|
|
steps_per_isr >>= 1;
|
|
// ticks_nominal will need to be recalculated if we are in cruise phase
|
|
ticks_nominal = 0;
|
|
}
|
|
#endif
|
|
time_spent_in_isr = -time_spent; // unsigned but guaranteed to be +ve when needed
|
|
time_spent_out_isr = 0;
|
|
#endif
|
|
|
|
// If no queued movements, just wait 1ms for the next block
|
|
hal_timer_t interval = (STEPPER_TIMER_RATE) / 1000UL;
|
|
|
|
// If there is a current block
|
|
if (current_block) {
|
|
// If current block is finished, reset pointer and finalize state
|
|
if (step_events_completed >= step_event_count) {
|
|
#if ENABLED(DIRECT_STEPPING)
|
|
// Direct stepping is currently not ready for HAS_I_AXIS
|
|
#if STEPPER_PAGE_FORMAT == SP_4x4D_128
|
|
#define PAGE_SEGMENT_UPDATE_POS(AXIS) \
|
|
count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] - 128 * 7;
|
|
#elif STEPPER_PAGE_FORMAT == SP_4x1_512 || STEPPER_PAGE_FORMAT == SP_4x2_256
|
|
#define PAGE_SEGMENT_UPDATE_POS(AXIS) \
|
|
count_position[_AXIS(AXIS)] += page_step_state.bd[_AXIS(AXIS)] * count_direction[_AXIS(AXIS)];
|
|
#endif
|
|
|
|
if (current_block->is_page()) {
|
|
PAGE_SEGMENT_UPDATE_POS(X);
|
|
PAGE_SEGMENT_UPDATE_POS(Y);
|
|
PAGE_SEGMENT_UPDATE_POS(Z);
|
|
PAGE_SEGMENT_UPDATE_POS(E);
|
|
}
|
|
#endif
|
|
TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.block_completed(current_block));
|
|
discard_current_block();
|
|
}
|
|
else {
|
|
// Step events not completed yet...
|
|
|
|
// Are we in acceleration phase ?
|
|
if (step_events_completed < accelerate_before) { // Calculate new timer value
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
// Get the next speed to use (Jerk limited!)
|
|
uint32_t acc_step_rate = acceleration_time < current_block->acceleration_time
|
|
? _eval_bezier_curve(acceleration_time)
|
|
: current_block->cruise_rate;
|
|
#else
|
|
acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate;
|
|
NOMORE(acc_step_rate, current_block->nominal_rate);
|
|
#endif
|
|
|
|
// acc_step_rate is in steps/second
|
|
|
|
// step_rate to timer interval and steps per stepper isr
|
|
interval = calc_multistep_timer_interval(acc_step_rate << oversampling_factor);
|
|
acceleration_time += interval;
|
|
deceleration_time = 0; // Reset since we're doing acceleration first.
|
|
|
|
#if ENABLED(NONLINEAR_EXTRUSION)
|
|
calc_nonlinear_e(acc_step_rate << oversampling_factor);
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (la_active) {
|
|
const uint32_t la_step_rate = la_advance_steps < current_block->max_adv_steps ? current_block->la_advance_rate : 0;
|
|
la_interval = calc_timer_interval((acc_step_rate + la_step_rate) >> current_block->la_scaling);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Adjust Laser Power - Accelerating
|
|
*
|
|
* isPowered - True when a move is powered.
|
|
* isEnabled - laser power is active.
|
|
*
|
|
* Laser power variables are calulated and stored in this block by the planner code.
|
|
* trap_ramp_active_pwr - the active power in this block across accel or decel trap steps.
|
|
* trap_ramp_entry_incr - holds the precalculated value to increase the current power per accel step.
|
|
*/
|
|
#if ENABLED(LASER_POWER_TRAP)
|
|
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
|
|
if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
|
|
if (current_block->laser.trap_ramp_entry_incr > 0) {
|
|
cutter.apply_power(current_block->laser.trap_ramp_active_pwr);
|
|
current_block->laser.trap_ramp_active_pwr += current_block->laser.trap_ramp_entry_incr * steps_per_isr;
|
|
}
|
|
}
|
|
// Not a powered move.
|
|
else cutter.apply_power(0);
|
|
}
|
|
#endif
|
|
}
|
|
// Are we in Deceleration phase ?
|
|
else if (step_events_completed >= decelerate_start) {
|
|
uint32_t step_rate;
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
// If this is the 1st time we process the 2nd half of the trapezoid...
|
|
if (!bezier_2nd_half) {
|
|
// Initialize the Bézier speed curve
|
|
_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
|
|
bezier_2nd_half = true;
|
|
}
|
|
// Calculate the next speed to use
|
|
step_rate = deceleration_time < current_block->deceleration_time
|
|
? _eval_bezier_curve(deceleration_time)
|
|
: current_block->final_rate;
|
|
#else
|
|
// Using the old trapezoidal control
|
|
step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate);
|
|
if (step_rate < acc_step_rate) {
|
|
step_rate = acc_step_rate - step_rate;
|
|
NOLESS(step_rate, current_block->final_rate);
|
|
}
|
|
else
|
|
step_rate = current_block->final_rate;
|
|
|
|
#endif
|
|
|
|
// step_rate to timer interval and steps per stepper isr
|
|
interval = calc_multistep_timer_interval(step_rate << oversampling_factor);
|
|
deceleration_time += interval;
|
|
|
|
#if ENABLED(NONLINEAR_EXTRUSION)
|
|
calc_nonlinear_e(step_rate << oversampling_factor);
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (la_active) {
|
|
const uint32_t la_step_rate = la_advance_steps > current_block->final_adv_steps ? current_block->la_advance_rate : 0;
|
|
if (la_step_rate != step_rate) {
|
|
const bool forward_e = la_step_rate < step_rate;
|
|
la_interval = calc_timer_interval((forward_e ? step_rate - la_step_rate : la_step_rate - step_rate) >> current_block->la_scaling);
|
|
|
|
if (forward_e != motor_direction(E_AXIS)) {
|
|
last_direction_bits.toggle(E_AXIS);
|
|
count_direction.e = -count_direction.e;
|
|
|
|
DIR_WAIT_BEFORE();
|
|
|
|
E_APPLY_DIR(forward_e, false);
|
|
|
|
TERN_(FTM_OPTIMIZE_DIR_STATES, last_set_direction = last_direction_bits);
|
|
|
|
DIR_WAIT_AFTER();
|
|
}
|
|
}
|
|
else
|
|
la_interval = LA_ADV_NEVER;
|
|
}
|
|
#endif // LIN_ADVANCE
|
|
|
|
// Adjust Laser Power - Decelerating
|
|
#if ENABLED(LASER_POWER_TRAP)
|
|
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
|
|
if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
|
|
if (current_block->laser.trap_ramp_exit_decr > 0) {
|
|
current_block->laser.trap_ramp_active_pwr -= current_block->laser.trap_ramp_exit_decr * steps_per_isr;
|
|
cutter.apply_power(current_block->laser.trap_ramp_active_pwr);
|
|
}
|
|
// Not a powered move.
|
|
else cutter.apply_power(0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
}
|
|
else { // Must be in cruise phase otherwise
|
|
|
|
// Calculate the ticks_nominal for this nominal speed, if not done yet
|
|
if (ticks_nominal == 0) {
|
|
// step_rate to timer interval and loops for the nominal speed
|
|
ticks_nominal = calc_multistep_timer_interval(current_block->nominal_rate << oversampling_factor);
|
|
// Prepare for deceleration
|
|
IF_DISABLED(S_CURVE_ACCELERATION, acc_step_rate = current_block->nominal_rate);
|
|
deceleration_time = ticks_nominal / 2;
|
|
|
|
#if ENABLED(NONLINEAR_EXTRUSION)
|
|
calc_nonlinear_e(current_block->nominal_rate << oversampling_factor);
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (la_active)
|
|
la_interval = calc_timer_interval(current_block->nominal_rate >> current_block->la_scaling);
|
|
#endif
|
|
|
|
// Adjust Laser Power - Cruise
|
|
#if ENABLED(LASER_POWER_TRAP)
|
|
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
|
|
if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
|
|
if (current_block->laser.trap_ramp_entry_incr > 0) {
|
|
current_block->laser.trap_ramp_active_pwr = current_block->laser.power;
|
|
cutter.apply_power(current_block->laser.power);
|
|
}
|
|
}
|
|
// Not a powered move.
|
|
else cutter.apply_power(0);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// The timer interval is just the nominal value for the nominal speed
|
|
interval = ticks_nominal;
|
|
}
|
|
}
|
|
|
|
#if ENABLED(LASER_FEATURE)
|
|
/**
|
|
* CUTTER_MODE_DYNAMIC is experimental and developing.
|
|
* Super-fast method to dynamically adjust the laser power OCR value based on the input feedrate in mm-per-minute.
|
|
* TODO: Set up Min/Max OCR offsets to allow tuning and scaling of various lasers.
|
|
* TODO: Integrate accel/decel +-rate into the dynamic laser power calc.
|
|
*/
|
|
if (cutter.cutter_mode == CUTTER_MODE_DYNAMIC
|
|
&& planner.laser_inline.status.isPowered // isPowered flag set on any parsed G1, G2, G3, or G5 move; cleared on any others.
|
|
&& current_block // Block may not be available if steps completed (see discard_current_block() above)
|
|
&& cutter.last_block_power != current_block->laser.power // Only update if the power changed
|
|
) {
|
|
cutter.apply_power(current_block->laser.power);
|
|
cutter.last_block_power = current_block->laser.power;
|
|
}
|
|
#endif
|
|
}
|
|
else { // !current_block
|
|
#if ENABLED(LASER_FEATURE)
|
|
if (cutter.cutter_mode == CUTTER_MODE_DYNAMIC)
|
|
cutter.apply_power(0); // No movement in dynamic mode so turn Laser off
|
|
#endif
|
|
}
|
|
|
|
// If there is no current block at this point, attempt to pop one from the buffer
|
|
// and prepare its movement
|
|
if (!current_block) {
|
|
|
|
// Anything in the buffer?
|
|
if ((current_block = planner.get_current_block())) {
|
|
|
|
// Run through all sync blocks
|
|
while (current_block->is_sync()) {
|
|
|
|
// Set laser power
|
|
#if ENABLED(LASER_POWER_SYNC)
|
|
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
|
|
if (current_block->is_sync_pwr()) {
|
|
planner.laser_inline.status.isSyncPower = true;
|
|
cutter.apply_power(current_block->laser.power);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Set "fan speeds" for a laser module
|
|
#if ENABLED(LASER_SYNCHRONOUS_M106_M107)
|
|
if (current_block->is_sync_fan()) planner.sync_fan_speeds(current_block->fan_speed);
|
|
#endif
|
|
|
|
// Set position
|
|
if (current_block->is_sync_pos()) _set_position(current_block->position);
|
|
|
|
// Done with this block
|
|
discard_current_block();
|
|
|
|
// Try to get a new block. Exit if there are no more.
|
|
if (!(current_block = planner.get_current_block()))
|
|
return interval; // No more queued movements!
|
|
}
|
|
|
|
// For non-inline cutter, grossly apply power
|
|
#if HAS_CUTTER
|
|
if (cutter.cutter_mode == CUTTER_MODE_STANDARD) {
|
|
cutter.apply_power(current_block->cutter_power);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(POWER_LOSS_RECOVERY)
|
|
recovery.info.sdpos = current_block->sdpos;
|
|
recovery.info.current_position = current_block->start_position;
|
|
#endif
|
|
|
|
#if ENABLED(DIRECT_STEPPING)
|
|
if (current_block->is_page()) {
|
|
page_step_state.segment_steps = 0;
|
|
page_step_state.segment_idx = 0;
|
|
page_step_state.page = page_manager.get_page(current_block->page_idx);
|
|
page_step_state.bd.reset();
|
|
|
|
if (DirectStepping::Config::DIRECTIONAL)
|
|
current_block->direction_bits = last_direction_bits;
|
|
|
|
if (!page_step_state.page) {
|
|
discard_current_block();
|
|
return interval;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Set flags for all moving axes, accounting for kinematics
|
|
set_axis_moved_for_current_block();
|
|
|
|
#if ENABLED(ADAPTIVE_STEP_SMOOTHING)
|
|
// Nonlinear Extrusion needs at least 2x oversampling to permit increase of E step rate
|
|
// Otherwise assume no axis smoothing (via oversampling)
|
|
oversampling_factor = TERN0(NONLINEAR_EXTRUSION, 1);
|
|
|
|
// Decide if axis smoothing is possible
|
|
if (stepper.adaptive_step_smoothing_enabled) {
|
|
uint32_t max_rate = current_block->nominal_rate; // Get the step event rate
|
|
while (max_rate < MIN_STEP_ISR_FREQUENCY) { // As long as more ISRs are possible...
|
|
max_rate <<= 1; // Try to double the rate
|
|
if (max_rate < MIN_STEP_ISR_FREQUENCY) // Don't exceed the estimated ISR limit
|
|
++oversampling_factor; // Increase the oversampling (used for left-shift)
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Based on the oversampling factor, do the calculations
|
|
step_event_count = current_block->step_event_count << oversampling_factor;
|
|
|
|
// Initialize Bresenham delta errors to 1/2
|
|
delta_error = TERN_(LIN_ADVANCE, la_delta_error =) -int32_t(step_event_count);
|
|
|
|
// Calculate Bresenham dividends and divisors
|
|
advance_dividend = (current_block->steps << 1).asLong();
|
|
advance_divisor = step_event_count << 1;
|
|
|
|
#if ENABLED(INPUT_SHAPING_X)
|
|
if (shaping_x.enabled) {
|
|
const int64_t steps = current_block->direction_bits.x ? int64_t(current_block->steps.x) : -int64_t(current_block->steps.x);
|
|
shaping_x.last_block_end_pos += steps;
|
|
|
|
// If there are any remaining echos unprocessed, then direction change must
|
|
// be delayed and processed in PULSE_PREP_SHAPING. This will cause half a step
|
|
// to be missed, which will need recovering and this can be done through shaping_x.remainder.
|
|
shaping_x.forward = current_block->direction_bits.x;
|
|
if (!ShapingQueue::empty_x()) current_block->direction_bits.x = last_direction_bits.x;
|
|
}
|
|
#endif
|
|
|
|
// Y and Z follow the same logic as X (but the comments aren't repeated)
|
|
#if ENABLED(INPUT_SHAPING_Y)
|
|
if (shaping_y.enabled) {
|
|
const int64_t steps = current_block->direction_bits.y ? int64_t(current_block->steps.y) : -int64_t(current_block->steps.y);
|
|
shaping_y.last_block_end_pos += steps;
|
|
shaping_y.forward = current_block->direction_bits.y;
|
|
if (!ShapingQueue::empty_y()) current_block->direction_bits.y = last_direction_bits.y;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(INPUT_SHAPING_Z)
|
|
if (shaping_z.enabled) {
|
|
const int64_t steps = current_block->direction_bits.z ? int64_t(current_block->steps.z) : -int64_t(current_block->steps.z);
|
|
shaping_z.last_block_end_pos += steps;
|
|
shaping_z.forward = current_block->direction_bits.z;
|
|
if (!ShapingQueue::empty_z()) current_block->direction_bits.z = last_direction_bits.z;
|
|
}
|
|
#endif
|
|
|
|
// No step events completed so far
|
|
step_events_completed = 0;
|
|
|
|
// Compute the acceleration and deceleration points
|
|
accelerate_before = current_block->accelerate_before << oversampling_factor;
|
|
decelerate_start = current_block->decelerate_start << oversampling_factor;
|
|
|
|
TERN_(MIXING_EXTRUDER, mixer.stepper_setup(current_block->b_color));
|
|
|
|
E_TERN_(stepper_extruder = current_block->extruder);
|
|
|
|
// Initialize the trapezoid generator from the current block.
|
|
#if ENABLED(LIN_ADVANCE)
|
|
la_active = (current_block->la_advance_rate != 0);
|
|
#if DISABLED(MIXING_EXTRUDER) && E_STEPPERS > 1
|
|
// If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
|
|
if (stepper_extruder != last_moved_extruder) la_advance_steps = 0;
|
|
#endif
|
|
if (la_active) {
|
|
// Apply LA scaling and discount the effect of frequency scaling
|
|
la_dividend = (advance_dividend.e << current_block->la_scaling) << oversampling_factor;
|
|
}
|
|
#endif
|
|
|
|
if ( ENABLED(DUAL_X_CARRIAGE) // TODO: Find out why this fixes "jittery" small circles
|
|
|| current_block->direction_bits != last_direction_bits
|
|
|| TERN(MIXING_EXTRUDER, false, stepper_extruder != last_moved_extruder)
|
|
) {
|
|
E_TERN_(last_moved_extruder = stepper_extruder);
|
|
set_directions(current_block->direction_bits);
|
|
}
|
|
|
|
#if ENABLED(LASER_FEATURE)
|
|
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) { // Planner controls the laser
|
|
if (planner.laser_inline.status.isSyncPower)
|
|
// If the previous block was a M3 sync power then skip the trap power init otherwise it will 0 the sync power.
|
|
planner.laser_inline.status.isSyncPower = false; // Clear the flag to process subsequent trap calc's.
|
|
else if (current_block->laser.status.isEnabled) {
|
|
#if ENABLED(LASER_POWER_TRAP)
|
|
TERN_(DEBUG_LASER_TRAP, SERIAL_ECHO_MSG("InitTrapPwr:",current_block->laser.trap_ramp_active_pwr));
|
|
cutter.apply_power(current_block->laser.status.isPowered ? current_block->laser.trap_ramp_active_pwr : 0);
|
|
#else
|
|
TERN_(DEBUG_CUTTER_POWER, SERIAL_ECHO_MSG("InlinePwr:",current_block->laser.power));
|
|
cutter.apply_power(current_block->laser.status.isPowered ? current_block->laser.power : 0);
|
|
#endif
|
|
}
|
|
}
|
|
#endif // LASER_FEATURE
|
|
|
|
// If the endstop is already pressed, endstop interrupts won't invoke
|
|
// endstop_triggered and the move will grind. So check here for a
|
|
// triggered endstop, which marks the block for discard on the next ISR.
|
|
endstops.update();
|
|
|
|
#if ENABLED(Z_LATE_ENABLE)
|
|
// If delayed Z enable, enable it now. This option will severely interfere with
|
|
// timing between pulses when chaining motion between blocks, and it could lead
|
|
// to lost steps in both X and Y axis, so avoid using it unless strictly necessary!!
|
|
if (current_block->steps.z) enable_axis(Z_AXIS);
|
|
#endif
|
|
|
|
// Mark ticks_nominal as not-yet-calculated
|
|
ticks_nominal = 0;
|
|
|
|
#if ENABLED(S_CURVE_ACCELERATION)
|
|
// Initialize the Bézier speed curve
|
|
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
|
|
// We haven't started the 2nd half of the trapezoid
|
|
bezier_2nd_half = false;
|
|
#else
|
|
// Set as deceleration point the initial rate of the block
|
|
acc_step_rate = current_block->initial_rate;
|
|
#endif
|
|
|
|
#if ENABLED(NONLINEAR_EXTRUSION)
|
|
ne_edividend = advance_dividend.e;
|
|
const float scale = (float(ne_edividend) / advance_divisor) * planner.mm_per_step[E_AXIS_N(current_block->extruder)];
|
|
ne_scale = (1L << 24) * scale;
|
|
if (current_block->direction_bits.e && ANY_AXIS_MOVES(current_block)) {
|
|
ne_fix.A = (1L << 24) * ne.A;
|
|
ne_fix.B = (1L << 24) * ne.B;
|
|
ne_fix.C = (1L << 24) * ne.C;
|
|
}
|
|
else {
|
|
ne_fix.A = ne_fix.B = 0;
|
|
ne_fix.C = (1L << 24);
|
|
}
|
|
#endif
|
|
|
|
// Calculate the initial timer interval
|
|
interval = calc_multistep_timer_interval(current_block->initial_rate << oversampling_factor);
|
|
// Initialize ac/deceleration time as if half the time passed.
|
|
acceleration_time = deceleration_time = interval / 2;
|
|
|
|
#if ENABLED(NONLINEAR_EXTRUSION)
|
|
calc_nonlinear_e(current_block->initial_rate << oversampling_factor);
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (la_active) {
|
|
const uint32_t la_step_rate = la_advance_steps < current_block->max_adv_steps ? current_block->la_advance_rate : 0;
|
|
la_interval = calc_timer_interval((current_block->initial_rate + la_step_rate) >> current_block->la_scaling);
|
|
}
|
|
#endif
|
|
}
|
|
} // !current_block
|
|
|
|
// Return the interval to wait
|
|
return interval;
|
|
}
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
|
|
// Timer interrupt for E. LA_steps is set in the main routine
|
|
void Stepper::advance_isr() {
|
|
// Apply Bresenham algorithm so that linear advance can piggy back on
|
|
// the acceleration and speed values calculated in block_phase_isr().
|
|
// This helps keep LA in sync with, for example, S_CURVE_ACCELERATION.
|
|
la_delta_error += la_dividend;
|
|
const bool e_step_needed = la_delta_error >= 0;
|
|
if (e_step_needed) {
|
|
count_position.e += count_direction.e;
|
|
la_advance_steps += count_direction.e;
|
|
la_delta_error -= advance_divisor;
|
|
|
|
// Set the STEP pulse ON
|
|
E_STEP_WRITE(TERN(MIXING_EXTRUDER, mixer.get_next_stepper(), stepper_extruder), STEP_STATE_E);
|
|
}
|
|
|
|
TERN_(I2S_STEPPER_STREAM, i2s_push_sample());
|
|
|
|
if (e_step_needed) {
|
|
// Enforce a minimum duration for STEP pulse ON
|
|
#if ISR_PULSE_CONTROL
|
|
USING_TIMED_PULSE();
|
|
START_TIMED_PULSE();
|
|
AWAIT_HIGH_PULSE();
|
|
#endif
|
|
|
|
// Set the STEP pulse OFF
|
|
E_STEP_WRITE(TERN(MIXING_EXTRUDER, mixer.get_stepper(), stepper_extruder), !STEP_STATE_E);
|
|
}
|
|
}
|
|
|
|
#endif // LIN_ADVANCE
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
|
|
// Timer interrupt for baby-stepping
|
|
hal_timer_t Stepper::babystepping_isr() {
|
|
babystep.task();
|
|
return babystep.has_steps() ? BABYSTEP_TICKS : BABYSTEP_NEVER;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Check if the given block is busy or not - Must not be called from ISR contexts
|
|
// The current_block could change in the middle of the read by an Stepper ISR, so
|
|
// we must explicitly prevent that!
|
|
bool Stepper::is_block_busy(const block_t * const block) {
|
|
#ifdef __AVR__
|
|
// A SW memory barrier, to ensure GCC does not overoptimize loops
|
|
#define sw_barrier() asm volatile("": : :"memory");
|
|
|
|
// Keep reading until 2 consecutive reads return the same value,
|
|
// meaning there was no update in-between caused by an interrupt.
|
|
// This works because stepper ISRs happen at a slower rate than
|
|
// successive reads of a variable, so 2 consecutive reads with
|
|
// the same value means no interrupt updated it.
|
|
block_t *vold, *vnew = current_block;
|
|
sw_barrier();
|
|
do {
|
|
vold = vnew;
|
|
vnew = current_block;
|
|
sw_barrier();
|
|
} while (vold != vnew);
|
|
#else
|
|
block_t *vnew = current_block;
|
|
#endif
|
|
|
|
// Return if the block is busy or not
|
|
return block == vnew;
|
|
}
|
|
|
|
void Stepper::init() {
|
|
|
|
#if MB(ALLIGATOR)
|
|
const float motor_current[] = MOTOR_CURRENT;
|
|
unsigned int digipot_motor = 0;
|
|
for (uint8_t i = 0; i < 3 + EXTRUDERS; ++i) {
|
|
digipot_motor = 255 * (motor_current[i] / 2.5);
|
|
dac084s085::setValue(i, digipot_motor);
|
|
}
|
|
#endif
|
|
|
|
// Init Microstepping Pins
|
|
TERN_(HAS_MICROSTEPS, microstep_init());
|
|
|
|
// Init Dir Pins
|
|
TERN_(HAS_X_DIR, X_DIR_INIT());
|
|
TERN_(HAS_X2_DIR, X2_DIR_INIT());
|
|
#if HAS_Y_DIR
|
|
Y_DIR_INIT();
|
|
#if ALL(HAS_Y2_STEPPER, HAS_Y2_DIR)
|
|
Y2_DIR_INIT();
|
|
#endif
|
|
#endif
|
|
#if HAS_Z_DIR
|
|
Z_DIR_INIT();
|
|
#if NUM_Z_STEPPERS >= 2 && HAS_Z2_DIR
|
|
Z2_DIR_INIT();
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 3 && HAS_Z3_DIR
|
|
Z3_DIR_INIT();
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 4 && HAS_Z4_DIR
|
|
Z4_DIR_INIT();
|
|
#endif
|
|
#endif
|
|
SECONDARY_AXIS_CODE(
|
|
I_DIR_INIT(), J_DIR_INIT(), K_DIR_INIT(),
|
|
U_DIR_INIT(), V_DIR_INIT(), W_DIR_INIT()
|
|
);
|
|
#if HAS_E0_DIR
|
|
E0_DIR_INIT();
|
|
#endif
|
|
#if HAS_E1_DIR
|
|
E1_DIR_INIT();
|
|
#endif
|
|
#if HAS_E2_DIR
|
|
E2_DIR_INIT();
|
|
#endif
|
|
#if HAS_E3_DIR
|
|
E3_DIR_INIT();
|
|
#endif
|
|
#if HAS_E4_DIR
|
|
E4_DIR_INIT();
|
|
#endif
|
|
#if HAS_E5_DIR
|
|
E5_DIR_INIT();
|
|
#endif
|
|
#if HAS_E6_DIR
|
|
E6_DIR_INIT();
|
|
#endif
|
|
#if HAS_E7_DIR
|
|
E7_DIR_INIT();
|
|
#endif
|
|
|
|
// Init Enable Pins - steppers default to disabled.
|
|
#if HAS_X_ENABLE
|
|
#ifndef X_ENABLE_INIT_STATE
|
|
#define X_ENABLE_INIT_STATE !X_ENABLE_ON
|
|
#endif
|
|
X_ENABLE_INIT();
|
|
if (X_ENABLE_INIT_STATE) X_ENABLE_WRITE(X_ENABLE_INIT_STATE);
|
|
#if ALL(HAS_X2_STEPPER, HAS_X2_ENABLE)
|
|
X2_ENABLE_INIT();
|
|
if (X_ENABLE_INIT_STATE) X2_ENABLE_WRITE(X_ENABLE_INIT_STATE);
|
|
#endif
|
|
#endif
|
|
#if HAS_Y_ENABLE
|
|
#ifndef Y_ENABLE_INIT_STATE
|
|
#define Y_ENABLE_INIT_STATE !Y_ENABLE_ON
|
|
#endif
|
|
Y_ENABLE_INIT();
|
|
if (Y_ENABLE_INIT_STATE) Y_ENABLE_WRITE(Y_ENABLE_INIT_STATE);
|
|
#if ALL(HAS_Y2_STEPPER, HAS_Y2_ENABLE)
|
|
Y2_ENABLE_INIT();
|
|
if (Y_ENABLE_INIT_STATE) Y2_ENABLE_WRITE(Y_ENABLE_INIT_STATE);
|
|
#endif
|
|
#endif
|
|
#if HAS_Z_ENABLE
|
|
#ifndef Z_ENABLE_INIT_STATE
|
|
#define Z_ENABLE_INIT_STATE !Z_ENABLE_ON
|
|
#endif
|
|
Z_ENABLE_INIT();
|
|
if (Z_ENABLE_INIT_STATE) Z_ENABLE_WRITE(Z_ENABLE_INIT_STATE);
|
|
#if NUM_Z_STEPPERS >= 2 && HAS_Z2_ENABLE
|
|
Z2_ENABLE_INIT();
|
|
if (Z_ENABLE_INIT_STATE) Z2_ENABLE_WRITE(Z_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 3 && HAS_Z3_ENABLE
|
|
Z3_ENABLE_INIT();
|
|
if (Z_ENABLE_INIT_STATE) Z3_ENABLE_WRITE(Z_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 4 && HAS_Z4_ENABLE
|
|
Z4_ENABLE_INIT();
|
|
if (Z_ENABLE_INIT_STATE) Z4_ENABLE_WRITE(Z_ENABLE_INIT_STATE);
|
|
#endif
|
|
#endif
|
|
#if HAS_I_ENABLE
|
|
I_ENABLE_INIT();
|
|
if (!I_ENABLE_ON) I_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_J_ENABLE
|
|
J_ENABLE_INIT();
|
|
if (!J_ENABLE_ON) J_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_K_ENABLE
|
|
K_ENABLE_INIT();
|
|
if (!K_ENABLE_ON) K_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_U_ENABLE
|
|
U_ENABLE_INIT();
|
|
if (!U_ENABLE_ON) U_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_V_ENABLE
|
|
V_ENABLE_INIT();
|
|
if (!V_ENABLE_ON) V_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_W_ENABLE
|
|
W_ENABLE_INIT();
|
|
if (!W_ENABLE_ON) W_ENABLE_WRITE(HIGH);
|
|
#endif
|
|
#if HAS_E0_ENABLE
|
|
#ifndef E_ENABLE_INIT_STATE
|
|
#define E_ENABLE_INIT_STATE !E_ENABLE_ON
|
|
#endif
|
|
#ifndef E0_ENABLE_INIT_STATE
|
|
#define E0_ENABLE_INIT_STATE E_ENABLE_INIT_STATE
|
|
#endif
|
|
E0_ENABLE_INIT();
|
|
if (E0_ENABLE_INIT_STATE) E0_ENABLE_WRITE(E0_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if HAS_E1_ENABLE
|
|
#ifndef E1_ENABLE_INIT_STATE
|
|
#define E1_ENABLE_INIT_STATE E_ENABLE_INIT_STATE
|
|
#endif
|
|
E1_ENABLE_INIT();
|
|
if (E1_ENABLE_INIT_STATE) E1_ENABLE_WRITE(E1_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if HAS_E2_ENABLE
|
|
#ifndef E2_ENABLE_INIT_STATE
|
|
#define E2_ENABLE_INIT_STATE E_ENABLE_INIT_STATE
|
|
#endif
|
|
E2_ENABLE_INIT();
|
|
if (E2_ENABLE_INIT_STATE) E2_ENABLE_WRITE(E2_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if HAS_E3_ENABLE
|
|
#ifndef E3_ENABLE_INIT_STATE
|
|
#define E3_ENABLE_INIT_STATE E_ENABLE_INIT_STATE
|
|
#endif
|
|
E3_ENABLE_INIT();
|
|
if (E3_ENABLE_INIT_STATE) E3_ENABLE_WRITE(E3_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if HAS_E4_ENABLE
|
|
#ifndef E4_ENABLE_INIT_STATE
|
|
#define E4_ENABLE_INIT_STATE E_ENABLE_INIT_STATE
|
|
#endif
|
|
E4_ENABLE_INIT();
|
|
if (E4_ENABLE_INIT_STATE) E4_ENABLE_WRITE(E4_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if HAS_E5_ENABLE
|
|
#ifndef E5_ENABLE_INIT_STATE
|
|
#define E5_ENABLE_INIT_STATE E_ENABLE_INIT_STATE
|
|
#endif
|
|
E5_ENABLE_INIT();
|
|
if (E5_ENABLE_INIT_STATE) E5_ENABLE_WRITE(E5_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if HAS_E6_ENABLE
|
|
#ifndef E6_ENABLE_INIT_STATE
|
|
#define E6_ENABLE_INIT_STATE E_ENABLE_INIT_STATE
|
|
#endif
|
|
E6_ENABLE_INIT();
|
|
if (E6_ENABLE_INIT_STATE) E6_ENABLE_WRITE(E6_ENABLE_INIT_STATE);
|
|
#endif
|
|
#if HAS_E7_ENABLE
|
|
#ifndef E7_ENABLE_INIT_STATE
|
|
#define E7_ENABLE_INIT_STATE E_ENABLE_INIT_STATE
|
|
#endif
|
|
E7_ENABLE_INIT();
|
|
if (E7_ENABLE_INIT_STATE) E7_ENABLE_WRITE(E7_ENABLE_INIT_STATE);
|
|
#endif
|
|
|
|
#define _STEP_INIT(AXIS) AXIS ##_STEP_INIT()
|
|
#define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
|
|
#define _DISABLE_AXIS(AXIS) DISABLE_AXIS_## AXIS()
|
|
|
|
#define AXIS_INIT(AXIS, PIN) \
|
|
_STEP_INIT(AXIS); \
|
|
_WRITE_STEP(AXIS, !_STEP_STATE(PIN)); \
|
|
_DISABLE_AXIS(AXIS)
|
|
|
|
#define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
|
|
|
|
// Init Step Pins
|
|
#if HAS_X_STEP
|
|
#if HAS_X2_STEPPER
|
|
X2_STEP_INIT();
|
|
X2_STEP_WRITE(!STEP_STATE_X);
|
|
#endif
|
|
AXIS_INIT(X, X);
|
|
#endif
|
|
|
|
#if HAS_Y_STEP
|
|
#if HAS_Y2_STEPPER
|
|
Y2_STEP_INIT();
|
|
Y2_STEP_WRITE(!STEP_STATE_Y);
|
|
#endif
|
|
AXIS_INIT(Y, Y);
|
|
#endif
|
|
|
|
#if HAS_Z_STEP
|
|
#if NUM_Z_STEPPERS >= 2
|
|
Z2_STEP_INIT();
|
|
Z2_STEP_WRITE(!STEP_STATE_Z);
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 3
|
|
Z3_STEP_INIT();
|
|
Z3_STEP_WRITE(!STEP_STATE_Z);
|
|
#endif
|
|
#if NUM_Z_STEPPERS >= 4
|
|
Z4_STEP_INIT();
|
|
Z4_STEP_WRITE(!STEP_STATE_Z);
|
|
#endif
|
|
AXIS_INIT(Z, Z);
|
|
#endif
|
|
#if HAS_I_STEP
|
|
AXIS_INIT(I, I);
|
|
#endif
|
|
#if HAS_J_STEP
|
|
AXIS_INIT(J, J);
|
|
#endif
|
|
#if HAS_K_STEP
|
|
AXIS_INIT(K, K);
|
|
#endif
|
|
#if HAS_U_STEP
|
|
AXIS_INIT(U, U);
|
|
#endif
|
|
#if HAS_V_STEP
|
|
AXIS_INIT(V, V);
|
|
#endif
|
|
#if HAS_W_STEP
|
|
AXIS_INIT(W, W);
|
|
#endif
|
|
|
|
#if E_STEPPERS && HAS_E0_STEP
|
|
E_AXIS_INIT(0);
|
|
#endif
|
|
#if (E_STEPPERS > 1 || ENABLED(E_DUAL_STEPPER_DRIVERS)) && HAS_E1_STEP
|
|
E_AXIS_INIT(1);
|
|
#endif
|
|
#if E_STEPPERS > 2 && HAS_E2_STEP
|
|
E_AXIS_INIT(2);
|
|
#endif
|
|
#if E_STEPPERS > 3 && HAS_E3_STEP
|
|
E_AXIS_INIT(3);
|
|
#endif
|
|
#if E_STEPPERS > 4 && HAS_E4_STEP
|
|
E_AXIS_INIT(4);
|
|
#endif
|
|
#if E_STEPPERS > 5 && HAS_E5_STEP
|
|
E_AXIS_INIT(5);
|
|
#endif
|
|
#if E_STEPPERS > 6 && HAS_E6_STEP
|
|
E_AXIS_INIT(6);
|
|
#endif
|
|
#if E_STEPPERS > 7 && HAS_E7_STEP
|
|
E_AXIS_INIT(7);
|
|
#endif
|
|
|
|
#if DISABLED(I2S_STEPPER_STREAM)
|
|
HAL_timer_start(MF_TIMER_STEP, 122); // Init Stepper ISR to 122 Hz for quick starting
|
|
wake_up();
|
|
sei();
|
|
#endif
|
|
|
|
// Init direction states
|
|
apply_directions();
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
|
initialized = true;
|
|
digipot_init();
|
|
#endif
|
|
}
|
|
|
|
#if HAS_ZV_SHAPING
|
|
|
|
/**
|
|
* Calculate a fixed point factor to apply to the signal and its echo
|
|
* when shaping an axis.
|
|
*/
|
|
void Stepper::set_shaping_damping_ratio(const AxisEnum axis, const_float_t zeta) {
|
|
// From the damping ratio, get a factor that can be applied to advance_dividend for fixed-point maths.
|
|
// For ZV, we use amplitudes 1/(1+K) and K/(1+K) where K = exp(-zeta * π / sqrt(1.0f - zeta * zeta))
|
|
// which can be converted to 1:7 fixed point with an excellent fit with a 3rd-order polynomial.
|
|
float factor2;
|
|
if (zeta <= 0.0f) factor2 = 64.0f;
|
|
else if (zeta >= 1.0f) factor2 = 0.0f;
|
|
else {
|
|
factor2 = 64.44056192 + -99.02008832 * zeta;
|
|
const float zeta2 = sq(zeta);
|
|
factor2 += -7.58095488 * zeta2;
|
|
const float zeta3 = zeta2 * zeta;
|
|
factor2 += 43.073216 * zeta3;
|
|
factor2 = FLOOR(factor2);
|
|
}
|
|
|
|
const bool was_on = hal.isr_state();
|
|
hal.isr_off();
|
|
TERN_(INPUT_SHAPING_X, if (axis == X_AXIS) { shaping_x.factor2 = factor2; shaping_x.factor1 = 128 - factor2; shaping_x.zeta = zeta; })
|
|
TERN_(INPUT_SHAPING_Y, if (axis == Y_AXIS) { shaping_y.factor2 = factor2; shaping_y.factor1 = 128 - factor2; shaping_y.zeta = zeta; })
|
|
TERN_(INPUT_SHAPING_Z, if (axis == Z_AXIS) { shaping_z.factor2 = factor2; shaping_z.factor1 = 128 - factor2; shaping_z.zeta = zeta; })
|
|
if (was_on) hal.isr_on();
|
|
}
|
|
|
|
float Stepper::get_shaping_damping_ratio(const AxisEnum axis) {
|
|
TERN_(INPUT_SHAPING_X, if (axis == X_AXIS) return shaping_x.zeta);
|
|
TERN_(INPUT_SHAPING_Y, if (axis == Y_AXIS) return shaping_y.zeta);
|
|
TERN_(INPUT_SHAPING_Z, if (axis == Z_AXIS) return shaping_z.zeta);
|
|
return -1;
|
|
}
|
|
|
|
void Stepper::set_shaping_frequency(const AxisEnum axis, const_float_t freq) {
|
|
// enabling or disabling shaping whilst moving can result in lost steps
|
|
planner.synchronize();
|
|
|
|
const bool was_on = hal.isr_state();
|
|
hal.isr_off();
|
|
|
|
const shaping_time_t delay = freq ? float(uint32_t(STEPPER_TIMER_RATE) / 2) / freq : shaping_time_t(-1);
|
|
#define SHAPING_SET_FREQ_FOR_AXIS(AXISN, AXISL) \
|
|
if (axis == AXISN) { \
|
|
ShapingQueue::set_delay(AXISN, delay); \
|
|
shaping_##AXISL.frequency = freq; \
|
|
shaping_##AXISL.enabled = !!freq; \
|
|
shaping_##AXISL.delta_error = 0; \
|
|
shaping_##AXISL.last_block_end_pos = count_position.AXISL; \
|
|
}
|
|
|
|
TERN_(INPUT_SHAPING_X, SHAPING_SET_FREQ_FOR_AXIS(X_AXIS, x))
|
|
TERN_(INPUT_SHAPING_Y, SHAPING_SET_FREQ_FOR_AXIS(Y_AXIS, y))
|
|
TERN_(INPUT_SHAPING_Z, SHAPING_SET_FREQ_FOR_AXIS(Z_AXIS, z))
|
|
|
|
if (was_on) hal.isr_on();
|
|
}
|
|
|
|
float Stepper::get_shaping_frequency(const AxisEnum axis) {
|
|
TERN_(INPUT_SHAPING_X, if (axis == X_AXIS) return shaping_x.frequency);
|
|
TERN_(INPUT_SHAPING_Y, if (axis == Y_AXIS) return shaping_y.frequency);
|
|
TERN_(INPUT_SHAPING_Z, if (axis == Z_AXIS) return shaping_z.frequency);
|
|
return -1;
|
|
}
|
|
|
|
#endif // HAS_ZV_SHAPING
|
|
|
|
/**
|
|
* Set the stepper positions directly in steps
|
|
*
|
|
* The input is based on the typical per-axis XYZE steps.
|
|
* For CORE machines XYZ needs to be translated to ABC.
|
|
*
|
|
* This allows get_axis_position_mm to correctly
|
|
* derive the current XYZE position later on.
|
|
*/
|
|
void Stepper::_set_position(const abce_long_t &spos) {
|
|
#if ENABLED(INPUT_SHAPING_X)
|
|
const int32_t x_shaping_delta = count_position.x - shaping_x.last_block_end_pos;
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Y)
|
|
const int32_t y_shaping_delta = count_position.y - shaping_y.last_block_end_pos;
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Z)
|
|
const int32_t z_shaping_delta = count_position.z - shaping_z.last_block_end_pos;
|
|
#endif
|
|
|
|
#if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
|
|
// Core equations follow the form of the dA and dB equations at https://www.corexy.com/theory.html
|
|
#if CORE_IS_XY
|
|
count_position.set(spos.a + spos.b, CORESIGN(spos.a - spos.b) OPTARG(HAS_Z_AXIS, spos.c));
|
|
#elif CORE_IS_XZ
|
|
count_position.set(spos.a + spos.c, spos.b, CORESIGN(spos.a - spos.c));
|
|
#elif CORE_IS_YZ
|
|
count_position.set(spos.a, spos.b + spos.c, CORESIGN(spos.b - spos.c));
|
|
#elif ENABLED(MARKFORGED_XY)
|
|
count_position.set(spos.a TERN(MARKFORGED_INVERSE, +, -) spos.b, spos.b, spos.c);
|
|
#elif ENABLED(MARKFORGED_YX)
|
|
count_position.set(spos.a, spos.b TERN(MARKFORGED_INVERSE, +, -) spos.a, spos.c);
|
|
#endif
|
|
SECONDARY_AXIS_CODE(
|
|
count_position.i = spos.i,
|
|
count_position.j = spos.j,
|
|
count_position.k = spos.k,
|
|
count_position.u = spos.u,
|
|
count_position.v = spos.v,
|
|
count_position.w = spos.w
|
|
);
|
|
TERN_(HAS_EXTRUDERS, count_position.e = spos.e);
|
|
#else
|
|
// default non-h-bot planning
|
|
count_position = spos;
|
|
#endif
|
|
|
|
#if ENABLED(INPUT_SHAPING_X)
|
|
if (shaping_x.enabled) {
|
|
count_position.x += x_shaping_delta;
|
|
shaping_x.last_block_end_pos = spos.x;
|
|
}
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Y)
|
|
if (shaping_y.enabled) {
|
|
count_position.y += y_shaping_delta;
|
|
shaping_y.last_block_end_pos = spos.y;
|
|
}
|
|
#endif
|
|
#if ENABLED(INPUT_SHAPING_Z)
|
|
if (shaping_z.enabled) {
|
|
count_position.z += z_shaping_delta;
|
|
shaping_z.last_block_end_pos = spos.z;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Get a stepper's position in steps.
|
|
*/
|
|
int32_t Stepper::position(const AxisEnum axis) {
|
|
#ifdef __AVR__
|
|
// Protect the access to the position. Only required for AVR, as
|
|
// any 32bit CPU offers atomic access to 32bit variables
|
|
const bool was_enabled = suspend();
|
|
#endif
|
|
|
|
const int32_t v = count_position[axis];
|
|
|
|
#ifdef __AVR__
|
|
// Reenable Stepper ISR
|
|
if (was_enabled) wake_up();
|
|
#endif
|
|
return v;
|
|
}
|
|
|
|
// Set the current position in steps
|
|
void Stepper::set_position(const xyze_long_t &spos) {
|
|
planner.synchronize();
|
|
const bool was_enabled = suspend();
|
|
_set_position(spos);
|
|
if (was_enabled) wake_up();
|
|
}
|
|
|
|
void Stepper::set_axis_position(const AxisEnum a, const int32_t &v) {
|
|
planner.synchronize();
|
|
|
|
#ifdef __AVR__
|
|
// Protect the access to the position. Only required for AVR, as
|
|
// any 32bit CPU offers atomic access to 32bit variables
|
|
const bool was_enabled = suspend();
|
|
#endif
|
|
|
|
count_position[a] = v;
|
|
TERN_(INPUT_SHAPING_X, if (a == X_AXIS) shaping_x.last_block_end_pos = v);
|
|
TERN_(INPUT_SHAPING_Y, if (a == Y_AXIS) shaping_y.last_block_end_pos = v);
|
|
TERN_(INPUT_SHAPING_Z, if (a == Z_AXIS) shaping_z.last_block_end_pos = v);
|
|
|
|
#ifdef __AVR__
|
|
// Reenable Stepper ISR
|
|
if (was_enabled) wake_up();
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(FT_MOTION)
|
|
|
|
void Stepper::ftMotion_syncPosition() {
|
|
//planner.synchronize(); planner already synchronized in M493
|
|
|
|
#ifdef __AVR__
|
|
// Protect the access to the position. Only required for AVR, as
|
|
// any 32bit CPU offers atomic access to 32bit variables
|
|
const bool was_enabled = suspend();
|
|
#endif
|
|
|
|
// Update stepper positions from the planner
|
|
count_position = planner.position;
|
|
|
|
#ifdef __AVR__
|
|
// Reenable Stepper ISR
|
|
if (was_enabled) wake_up();
|
|
#endif
|
|
}
|
|
|
|
#endif // FT_MOTION
|
|
|
|
// Signal endstops were triggered - This function can be called from
|
|
// an ISR context (Temperature, Stepper or limits ISR), so we must
|
|
// be very careful here. If the interrupt being preempted was the
|
|
// Stepper ISR (this CAN happen with the endstop limits ISR) then
|
|
// when the stepper ISR resumes, we must be very sure that the movement
|
|
// is properly canceled
|
|
void Stepper::endstop_triggered(const AxisEnum axis) {
|
|
|
|
const bool was_enabled = suspend();
|
|
endstops_trigsteps[axis] = (
|
|
#if IS_CORE
|
|
(axis == CORE_AXIS_2
|
|
? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
|
|
: count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
|
|
) * double(0.5)
|
|
#elif ENABLED(MARKFORGED_XY)
|
|
axis == CORE_AXIS_1
|
|
? count_position[CORE_AXIS_1] TERN(MARKFORGED_INVERSE, +, -) count_position[CORE_AXIS_2]
|
|
: count_position[CORE_AXIS_2]
|
|
#elif ENABLED(MARKFORGED_YX)
|
|
axis == CORE_AXIS_1
|
|
? count_position[CORE_AXIS_1]
|
|
: count_position[CORE_AXIS_2] TERN(MARKFORGED_INVERSE, +, -) count_position[CORE_AXIS_1]
|
|
#else // !IS_CORE
|
|
count_position[axis]
|
|
#endif
|
|
);
|
|
|
|
// Discard the rest of the move if there is a current block
|
|
quick_stop();
|
|
|
|
if (was_enabled) wake_up();
|
|
}
|
|
|
|
int32_t Stepper::triggered_position(const AxisEnum axis) {
|
|
#ifdef __AVR__
|
|
// Protect the access to the position. Only required for AVR, as
|
|
// any 32bit CPU offers atomic access to 32bit variables
|
|
const bool was_enabled = suspend();
|
|
#endif
|
|
|
|
const int32_t v = endstops_trigsteps[axis];
|
|
|
|
#ifdef __AVR__
|
|
// Reenable Stepper ISR
|
|
if (was_enabled) wake_up();
|
|
#endif
|
|
|
|
return v;
|
|
}
|
|
|
|
#if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA)
|
|
#define SAYS_A 1
|
|
#endif
|
|
#if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX, IS_SCARA, DELTA, POLAR)
|
|
#define SAYS_B 1
|
|
#endif
|
|
#if ANY(CORE_IS_XZ, CORE_IS_YZ, DELTA)
|
|
#define SAYS_C 1
|
|
#endif
|
|
|
|
void Stepper::report_a_position(const xyz_long_t &pos) {
|
|
#if NUM_AXES
|
|
SERIAL_ECHOLNPGM_P(
|
|
LIST_N(DOUBLE(NUM_AXES),
|
|
TERN(SAYS_A, PSTR(STR_COUNT_A), PSTR(STR_COUNT_X)), pos.x,
|
|
TERN(SAYS_B, PSTR("B:"), SP_Y_LBL), pos.y,
|
|
TERN(SAYS_C, PSTR("C:"), SP_Z_LBL), pos.z,
|
|
SP_I_LBL, pos.i, SP_J_LBL, pos.j, SP_K_LBL, pos.k,
|
|
SP_U_LBL, pos.u, SP_V_LBL, pos.v, SP_W_LBL, pos.w
|
|
)
|
|
);
|
|
#endif
|
|
}
|
|
|
|
void Stepper::report_positions() {
|
|
|
|
#ifdef __AVR__
|
|
// Protect the access to the position.
|
|
const bool was_enabled = suspend();
|
|
#endif
|
|
|
|
const xyz_long_t pos = count_position;
|
|
|
|
#ifdef __AVR__
|
|
if (was_enabled) wake_up();
|
|
#endif
|
|
|
|
report_a_position(pos);
|
|
}
|
|
|
|
#if ENABLED(FT_MOTION)
|
|
|
|
/**
|
|
* Run stepping from the Stepper ISR at regular short intervals.
|
|
*
|
|
* - Set ftMotion.sts_stepperBusy state to reflect whether there are any commands in the circular buffer.
|
|
* - If there are no commands in the buffer, return.
|
|
* - Get the next command from the circular buffer ftMotion.stepperCmdBuff[].
|
|
* - If the block is being aborted, return without processing the command.
|
|
* - Apply STEP/DIR along with any delays required. A command may be empty, with no STEP/DIR.
|
|
*/
|
|
void Stepper::ftMotion_stepper() {
|
|
|
|
static AxisBits direction_bits{0};
|
|
|
|
// Check if the buffer is empty.
|
|
ftMotion.sts_stepperBusy = (ftMotion.stepperCmdBuff_produceIdx != ftMotion.stepperCmdBuff_consumeIdx);
|
|
if (!ftMotion.sts_stepperBusy) return;
|
|
|
|
// "Pop" one command from current motion buffer
|
|
const ft_command_t command = ftMotion.stepperCmdBuff[ftMotion.stepperCmdBuff_consumeIdx];
|
|
if (++ftMotion.stepperCmdBuff_consumeIdx == (FTM_STEPPERCMD_BUFF_SIZE))
|
|
ftMotion.stepperCmdBuff_consumeIdx = 0;
|
|
|
|
if (abort_current_block) return;
|
|
|
|
USING_TIMED_PULSE();
|
|
|
|
// Get FT Motion command flags for axis STEP / DIR
|
|
#define _FTM_STEP(AXIS) TEST(command, FT_BIT_STEP_##AXIS)
|
|
#define _FTM_DIR(AXIS) TEST(command, FT_BIT_DIR_##AXIS)
|
|
|
|
AxisBits axis_step;
|
|
axis_step = LOGICAL_AXIS_ARRAY(
|
|
TEST(command, FT_BIT_STEP_E),
|
|
TEST(command, FT_BIT_STEP_X), TEST(command, FT_BIT_STEP_Y), TEST(command, FT_BIT_STEP_Z),
|
|
TEST(command, FT_BIT_STEP_I), TEST(command, FT_BIT_STEP_J), TEST(command, FT_BIT_STEP_K),
|
|
TEST(command, FT_BIT_STEP_U), TEST(command, FT_BIT_STEP_V), TEST(command, FT_BIT_STEP_W)
|
|
);
|
|
|
|
direction_bits = LOGICAL_AXIS_ARRAY(
|
|
axis_step.e ? TEST(command, FT_BIT_DIR_E) : direction_bits.e,
|
|
axis_step.x ? TEST(command, FT_BIT_DIR_X) : direction_bits.x,
|
|
axis_step.y ? TEST(command, FT_BIT_DIR_Y) : direction_bits.y,
|
|
axis_step.z ? TEST(command, FT_BIT_DIR_Z) : direction_bits.z,
|
|
axis_step.i ? TEST(command, FT_BIT_DIR_I) : direction_bits.i,
|
|
axis_step.j ? TEST(command, FT_BIT_DIR_J) : direction_bits.j,
|
|
axis_step.k ? TEST(command, FT_BIT_DIR_K) : direction_bits.k,
|
|
axis_step.u ? TEST(command, FT_BIT_DIR_U) : direction_bits.u,
|
|
axis_step.v ? TEST(command, FT_BIT_DIR_V) : direction_bits.v,
|
|
axis_step.w ? TEST(command, FT_BIT_DIR_W) : direction_bits.w
|
|
);
|
|
|
|
// Apply directions (which will apply to the entire linear move)
|
|
LOGICAL_AXIS_CODE(
|
|
E_APPLY_DIR(direction_bits.e, false),
|
|
X_APPLY_DIR(direction_bits.x, false), Y_APPLY_DIR(direction_bits.y, false), Z_APPLY_DIR(direction_bits.z, false),
|
|
I_APPLY_DIR(direction_bits.i, false), J_APPLY_DIR(direction_bits.j, false), K_APPLY_DIR(direction_bits.k, false),
|
|
U_APPLY_DIR(direction_bits.u, false), V_APPLY_DIR(direction_bits.v, false), W_APPLY_DIR(direction_bits.w, false)
|
|
);
|
|
|
|
/**
|
|
* Update direction bits for steppers that were stepped by this command.
|
|
* HX, HY, HZ direction bits were set for Core kinematics
|
|
* when the block was fetched and are not overwritten here.
|
|
*/
|
|
|
|
// Start a step pulse
|
|
LOGICAL_AXIS_CODE(
|
|
E_APPLY_STEP(axis_step.e, false),
|
|
X_APPLY_STEP(axis_step.x, false), Y_APPLY_STEP(axis_step.y, false), Z_APPLY_STEP(axis_step.z, false),
|
|
I_APPLY_STEP(axis_step.i, false), J_APPLY_STEP(axis_step.j, false), K_APPLY_STEP(axis_step.k, false),
|
|
U_APPLY_STEP(axis_step.u, false), V_APPLY_STEP(axis_step.v, false), W_APPLY_STEP(axis_step.w, false)
|
|
);
|
|
|
|
if (TERN1(FTM_OPTIMIZE_DIR_STATES, last_set_direction != last_direction_bits)) {
|
|
// Apply directions (generally applying to the entire linear move)
|
|
#define _FTM_APPLY_DIR(AXIS) if (TERN1(FTM_OPTIMIZE_DIR_STATES, last_direction_bits[_AXIS(A)] != last_set_direction[_AXIS(AXIS)])) \
|
|
SET_STEP_DIR(AXIS);
|
|
LOGICAL_AXIS_MAP(_FTM_APPLY_DIR);
|
|
|
|
TERN_(FTM_OPTIMIZE_DIR_STATES, last_set_direction = last_direction_bits);
|
|
|
|
// Any DIR change requires a wait period
|
|
DIR_WAIT_AFTER();
|
|
}
|
|
|
|
// Start step pulses. Edge stepping will toggle the STEP pin.
|
|
#define _FTM_STEP_START(AXIS) AXIS##_APPLY_STEP(_FTM_STEP(AXIS), false);
|
|
LOGICAL_AXIS_MAP(_FTM_STEP_START);
|
|
|
|
// Apply steps via I2S
|
|
TERN_(I2S_STEPPER_STREAM, i2s_push_sample());
|
|
|
|
// Begin waiting for the minimum pulse duration
|
|
START_TIMED_PULSE();
|
|
|
|
// Update step counts
|
|
#define _FTM_STEP_COUNT(AXIS) if (axis_step[_AXIS(AXIS)]) count_position[_AXIS(AXIS)] += direction_bits[_AXIS(AXIS)] ? 1 : -1;
|
|
LOGICAL_AXIS_MAP(_FTM_STEP_COUNT);
|
|
|
|
// Provide EDGE flags for E stepper(s)
|
|
#if HAS_EXTRUDERS
|
|
#if ENABLED(E_DUAL_STEPPER_DRIVERS)
|
|
constexpr bool e_axis_has_dedge = AXIS_HAS_DEDGE(E0) && AXIS_HAS_DEDGE(E1);
|
|
#else
|
|
#define _EDGE_BIT(N) | (AXIS_HAS_DEDGE(E##N) << TOOL_ESTEPPER(N))
|
|
constexpr Flags<E_STEPPERS> e_stepper_dedge { 0 REPEAT(EXTRUDERS, _EDGE_BIT) };
|
|
const bool e_axis_has_dedge = e_stepper_dedge[stepper_extruder];
|
|
#endif
|
|
#endif
|
|
|
|
// Only wait for axes without edge stepping
|
|
const bool any_wait = false LOGICAL_AXIS_GANG(
|
|
|| (!e_axis_has_dedge && axis_step.e),
|
|
|| (!AXIS_HAS_DEDGE(X) && axis_step.x), || (!AXIS_HAS_DEDGE(Y) && axis_step.y), || (!AXIS_HAS_DEDGE(Z) && axis_step.z),
|
|
|| (!AXIS_HAS_DEDGE(I) && axis_step.i), || (!AXIS_HAS_DEDGE(J) && axis_step.j), || (!AXIS_HAS_DEDGE(K) && axis_step.k),
|
|
|| (!AXIS_HAS_DEDGE(U) && axis_step.u), || (!AXIS_HAS_DEDGE(V) && axis_step.v), || (!AXIS_HAS_DEDGE(W) && axis_step.w)
|
|
);
|
|
|
|
// Allow pulses to be registered by stepper drivers
|
|
if (any_wait) AWAIT_HIGH_PULSE();
|
|
|
|
// Stop pulses. Axes with DEDGE will do nothing, assuming STEP_STATE_* is HIGH
|
|
#define _FTM_STEP_STOP(AXIS) AXIS##_APPLY_STEP(!STEP_STATE_##AXIS, false);
|
|
LOGICAL_AXIS_MAP(_FTM_STEP_STOP);
|
|
|
|
// Also handle babystepping here
|
|
TERN_(BABYSTEPPING, if (babystep.has_steps()) babystepping_isr());
|
|
|
|
} // Stepper::ftMotion_stepper
|
|
|
|
// Called from FTMotion::loop (when !blockProcRdy) which is called from Marlin idle()
|
|
void Stepper::ftMotion_blockQueueUpdate() {
|
|
|
|
if (current_block) {
|
|
// If the current block is not done processing, return right away.
|
|
// A block is done processing when the command buffer has been
|
|
// filled, not necessarily when it's done running.
|
|
if (!ftMotion.getBlockProcDn()) return;
|
|
planner.release_current_block();
|
|
}
|
|
|
|
// Check the buffer for a new block
|
|
current_block = planner.get_current_block();
|
|
|
|
if (current_block) {
|
|
|
|
// Sync position, fan power, laser power?
|
|
while (current_block->is_sync()) {
|
|
|
|
#if 0
|
|
|
|
// TODO: Implement compatible sync blocks with FT Motion commands,
|
|
// perhaps by setting a FT_BIT_SYNC flag that holds the current block
|
|
// until it is processed by ftMotion_stepper
|
|
|
|
// Set laser power
|
|
#if ENABLED(LASER_POWER_SYNC)
|
|
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
|
|
if (current_block->is_sync_pwr()) {
|
|
planner.laser_inline.status.isSyncPower = true;
|
|
cutter.apply_power(current_block->laser.power);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Set "fan speeds" for a laser module
|
|
#if ENABLED(LASER_SYNCHRONOUS_M106_M107)
|
|
if (current_block->is_sync_fan()) planner.sync_fan_speeds(current_block->fan_speed);
|
|
#endif
|
|
|
|
// Set position
|
|
if (current_block->is_sync_pos()) _set_position(current_block->position);
|
|
|
|
#endif
|
|
|
|
// Done with this block
|
|
planner.release_current_block();
|
|
|
|
// Try to get a new block
|
|
if (!(current_block = planner.get_current_block()))
|
|
return; // No queued blocks.
|
|
}
|
|
|
|
// Some kinematics track axis motion in HX, HY, HZ
|
|
#if ANY(CORE_IS_XY, CORE_IS_XZ, MARKFORGED_XY, MARKFORGED_YX)
|
|
last_direction_bits.hx = current_block->direction_bits.hx;
|
|
#endif
|
|
#if ANY(CORE_IS_XY, CORE_IS_YZ, MARKFORGED_XY, MARKFORGED_YX)
|
|
last_direction_bits.hy = current_block->direction_bits.hy;
|
|
#endif
|
|
#if ANY(CORE_IS_XZ, CORE_IS_YZ)
|
|
last_direction_bits.hz = current_block->direction_bits.hz;
|
|
#endif
|
|
|
|
ftMotion.startBlockProc();
|
|
return;
|
|
}
|
|
|
|
ftMotion.runoutBlock();
|
|
|
|
} // Stepper::ftMotion_blockQueueUpdate()
|
|
|
|
#endif // FT_MOTION
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
|
|
#define _ENABLE_AXIS(A) enable_axis(_AXIS(A))
|
|
#define _READ_DIR(AXIS) AXIS ##_DIR_READ()
|
|
#define _APPLY_DIR(AXIS, FWD) AXIS ##_APPLY_DIR(FWD, true)
|
|
|
|
#if MINIMUM_STEPPER_PULSE
|
|
#define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
|
|
#else
|
|
#define STEP_PULSE_CYCLES 0
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
#define CYCLES_EATEN_BABYSTEP (2 * 15)
|
|
#else
|
|
#define CYCLES_EATEN_BABYSTEP 0
|
|
#endif
|
|
|
|
#if CYCLES_EATEN_BABYSTEP < STEP_PULSE_CYCLES
|
|
#define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
|
|
#else
|
|
#define EXTRA_CYCLES_BABYSTEP 0
|
|
#endif
|
|
|
|
#if EXTRA_CYCLES_BABYSTEP > 20
|
|
#define _SAVE_START() const hal_timer_t pulse_start = HAL_timer_get_count(MF_TIMER_PULSE)
|
|
#define _PULSE_WAIT() while (EXTRA_CYCLES_BABYSTEP > uint32_t(HAL_timer_get_count(MF_TIMER_PULSE) - pulse_start) * (PULSE_TIMER_PRESCALE)) { /* nada */ }
|
|
#else
|
|
#define _SAVE_START() NOOP
|
|
#if EXTRA_CYCLES_BABYSTEP > 0
|
|
#define _PULSE_WAIT() DELAY_NS(EXTRA_CYCLES_BABYSTEP * NANOSECONDS_PER_CYCLE)
|
|
#elif ENABLED(DELTA)
|
|
#define _PULSE_WAIT() DELAY_US(2);
|
|
#elif STEP_PULSE_CYCLES > 0
|
|
#define _PULSE_WAIT() NOOP
|
|
#else
|
|
#define _PULSE_WAIT() DELAY_US(4);
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING_EXTRA_DIR_WAIT)
|
|
#define EXTRA_DIR_WAIT_BEFORE DIR_WAIT_BEFORE
|
|
#define EXTRA_DIR_WAIT_AFTER DIR_WAIT_AFTER
|
|
#else
|
|
#define EXTRA_DIR_WAIT_BEFORE()
|
|
#define EXTRA_DIR_WAIT_AFTER()
|
|
#endif
|
|
|
|
#if DISABLED(DELTA)
|
|
|
|
#define BABYSTEP_AXIS(AXIS, FWD, INV) do{ \
|
|
const bool old_fwd = _READ_DIR(AXIS); \
|
|
_ENABLE_AXIS(AXIS); \
|
|
DIR_WAIT_BEFORE(); \
|
|
_APPLY_DIR(AXIS, (FWD)^(INV)); \
|
|
DIR_WAIT_AFTER(); \
|
|
_SAVE_START(); \
|
|
_APPLY_STEP(AXIS, _STEP_STATE(AXIS), true); \
|
|
_PULSE_WAIT(); \
|
|
_APPLY_STEP(AXIS, !_STEP_STATE(AXIS), true); \
|
|
EXTRA_DIR_WAIT_BEFORE(); \
|
|
_APPLY_DIR(AXIS, old_fwd); \
|
|
EXTRA_DIR_WAIT_AFTER(); \
|
|
}while(0)
|
|
|
|
#endif
|
|
|
|
#if IS_CORE
|
|
|
|
#define BABYSTEP_CORE(A, B, FWD, INV, ALT) do{ \
|
|
const xy_byte_t old_fwd = { _READ_DIR(A), _READ_DIR(B) }; \
|
|
_ENABLE_AXIS(A); _ENABLE_AXIS(B); \
|
|
DIR_WAIT_BEFORE(); \
|
|
_APPLY_DIR(A, (FWD)^(INV)); \
|
|
_APPLY_DIR(B, (FWD)^(INV)^(ALT)); \
|
|
DIR_WAIT_AFTER(); \
|
|
_SAVE_START(); \
|
|
_APPLY_STEP(A, _STEP_STATE(A), true); \
|
|
_APPLY_STEP(B, _STEP_STATE(B), true); \
|
|
_PULSE_WAIT(); \
|
|
_APPLY_STEP(A, !_STEP_STATE(A), true); \
|
|
_APPLY_STEP(B, !_STEP_STATE(B), true); \
|
|
EXTRA_DIR_WAIT_BEFORE(); \
|
|
_APPLY_DIR(A, old_fwd.a); _APPLY_DIR(B, old_fwd.b); \
|
|
EXTRA_DIR_WAIT_AFTER(); \
|
|
}while(0)
|
|
|
|
#endif
|
|
|
|
// MUST ONLY BE CALLED BY AN ISR,
|
|
// No other ISR should ever interrupt this!
|
|
void Stepper::do_babystep(const AxisEnum axis, const bool direction) {
|
|
|
|
IF_DISABLED(BABYSTEPPING, cli());
|
|
|
|
switch (axis) {
|
|
|
|
#if ENABLED(BABYSTEP_XY)
|
|
|
|
case X_AXIS:
|
|
#if CORE_IS_XY
|
|
BABYSTEP_CORE(X, Y, direction, 0, 0);
|
|
#elif CORE_IS_XZ
|
|
BABYSTEP_CORE(X, Z, direction, 0, 0);
|
|
#else
|
|
BABYSTEP_AXIS(X, direction, 0);
|
|
#endif
|
|
break;
|
|
|
|
case Y_AXIS:
|
|
#if CORE_IS_XY
|
|
BABYSTEP_CORE(X, Y, direction, 0, (CORESIGN(1)>0));
|
|
#elif CORE_IS_YZ
|
|
BABYSTEP_CORE(Y, Z, direction, 0, (CORESIGN(1)<0));
|
|
#else
|
|
BABYSTEP_AXIS(Y, direction, 0);
|
|
#endif
|
|
break;
|
|
|
|
#endif
|
|
|
|
case Z_AXIS: {
|
|
|
|
#if CORE_IS_XZ
|
|
BABYSTEP_CORE(X, Z, direction, ENABLED(BABYSTEP_INVERT_Z), (CORESIGN(1)>0));
|
|
#elif CORE_IS_YZ
|
|
BABYSTEP_CORE(Y, Z, direction, ENABLED(BABYSTEP_INVERT_Z), (CORESIGN(1)<0));
|
|
#elif DISABLED(DELTA)
|
|
BABYSTEP_AXIS(Z, direction, ENABLED(BABYSTEP_INVERT_Z));
|
|
|
|
#else // DELTA
|
|
|
|
const bool z_direction = TERN_(BABYSTEP_INVERT_Z, !) direction;
|
|
|
|
enable_axis(A_AXIS); enable_axis(B_AXIS); enable_axis(C_AXIS);
|
|
|
|
DIR_WAIT_BEFORE();
|
|
|
|
const bool old_fwd[3] = { X_DIR_READ(), Y_DIR_READ(), Z_DIR_READ() };
|
|
|
|
X_DIR_WRITE(z_direction);
|
|
Y_DIR_WRITE(z_direction);
|
|
Z_DIR_WRITE(z_direction);
|
|
|
|
DIR_WAIT_AFTER();
|
|
|
|
_SAVE_START();
|
|
|
|
X_STEP_WRITE(STEP_STATE_X);
|
|
Y_STEP_WRITE(STEP_STATE_Y);
|
|
Z_STEP_WRITE(STEP_STATE_Z);
|
|
|
|
_PULSE_WAIT();
|
|
|
|
X_STEP_WRITE(!STEP_STATE_X);
|
|
Y_STEP_WRITE(!STEP_STATE_Y);
|
|
Z_STEP_WRITE(!STEP_STATE_Z);
|
|
|
|
// Restore direction bits
|
|
EXTRA_DIR_WAIT_BEFORE();
|
|
|
|
X_DIR_WRITE(old_fwd[A_AXIS]);
|
|
Y_DIR_WRITE(old_fwd[B_AXIS]);
|
|
Z_DIR_WRITE(old_fwd[C_AXIS]);
|
|
|
|
EXTRA_DIR_WAIT_AFTER();
|
|
|
|
#endif
|
|
|
|
} break;
|
|
|
|
default: break;
|
|
}
|
|
|
|
IF_DISABLED(BABYSTEPPING, sei());
|
|
}
|
|
|
|
#endif // BABYSTEPPING
|
|
|
|
/**
|
|
* Software-controlled Stepper Motor Current
|
|
*/
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI
|
|
|
|
// From Arduino DigitalPotControl example
|
|
void Stepper::set_digipot_value_spi(const int16_t address, const int16_t value) {
|
|
WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
|
|
SPI.transfer(address); // Send the address and value via SPI
|
|
SPI.transfer(value);
|
|
WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
|
|
//delay(10);
|
|
}
|
|
|
|
#endif // HAS_MOTOR_CURRENT_SPI
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
|
|
void Stepper::refresh_motor_power() {
|
|
if (!initialized) return;
|
|
for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
|
|
switch (i) {
|
|
#if ANY_PIN(MOTOR_CURRENT_PWM_XY, MOTOR_CURRENT_PWM_X, MOTOR_CURRENT_PWM_Y, MOTOR_CURRENT_PWM_I, MOTOR_CURRENT_PWM_J, MOTOR_CURRENT_PWM_K, MOTOR_CURRENT_PWM_U, MOTOR_CURRENT_PWM_V, MOTOR_CURRENT_PWM_W)
|
|
case 0:
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
case 1:
|
|
#endif
|
|
#if HAS_MOTOR_CURRENT_PWM_E
|
|
case 2:
|
|
#endif
|
|
set_digipot_current(i, motor_current_setting[i]);
|
|
default: break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // HAS_MOTOR_CURRENT_PWM
|
|
|
|
#if !MB(PRINTRBOARD_G2)
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
|
|
|
|
void Stepper::set_digipot_current(const uint8_t driver, const int16_t current) {
|
|
if (WITHIN(driver, 0, MOTOR_CURRENT_COUNT - 1))
|
|
motor_current_setting[driver] = current; // update motor_current_setting
|
|
|
|
if (!initialized) return;
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI
|
|
|
|
//SERIAL_ECHOLNPGM("Digipotss current ", current);
|
|
|
|
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
|
|
set_digipot_value_spi(digipot_ch[driver], current);
|
|
|
|
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
|
#define _WRITE_CURRENT_PWM(P) hal.set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
|
|
switch (driver) {
|
|
case 0:
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
|
|
_WRITE_CURRENT_PWM(X);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
|
|
_WRITE_CURRENT_PWM(Y);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
_WRITE_CURRENT_PWM(XY);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_I)
|
|
_WRITE_CURRENT_PWM(I);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_J)
|
|
_WRITE_CURRENT_PWM(J);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_K)
|
|
_WRITE_CURRENT_PWM(K);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_U)
|
|
_WRITE_CURRENT_PWM(U);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_V)
|
|
_WRITE_CURRENT_PWM(V);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_W)
|
|
_WRITE_CURRENT_PWM(W);
|
|
#endif
|
|
break;
|
|
case 1:
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
_WRITE_CURRENT_PWM(Z);
|
|
#endif
|
|
break;
|
|
case 2:
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
_WRITE_CURRENT_PWM(E);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
|
|
_WRITE_CURRENT_PWM(E0);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
|
|
_WRITE_CURRENT_PWM(E1);
|
|
#endif
|
|
break;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Stepper::digipot_init() {
|
|
|
|
#if HAS_MOTOR_CURRENT_SPI
|
|
|
|
SPI.begin();
|
|
SET_OUTPUT(DIGIPOTSS_PIN);
|
|
|
|
for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i)
|
|
set_digipot_current(i, motor_current_setting[i]);
|
|
|
|
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
|
#ifdef __SAM3X8E__
|
|
#define _RESET_CURRENT_PWM_FREQ(P) NOOP
|
|
#else
|
|
#define _RESET_CURRENT_PWM_FREQ(P) hal.set_pwm_frequency(pin_t(P), MOTOR_CURRENT_PWM_FREQUENCY)
|
|
#endif
|
|
#define INIT_CURRENT_PWM(P) do{ SET_PWM(MOTOR_CURRENT_PWM_## P ##_PIN); _RESET_CURRENT_PWM_FREQ(MOTOR_CURRENT_PWM_## P ##_PIN); }while(0)
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
|
|
INIT_CURRENT_PWM(X);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
|
|
INIT_CURRENT_PWM(Y);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
INIT_CURRENT_PWM(XY);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_I)
|
|
INIT_CURRENT_PWM(I);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_J)
|
|
INIT_CURRENT_PWM(J);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_K)
|
|
INIT_CURRENT_PWM(K);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_U)
|
|
INIT_CURRENT_PWM(U);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_V)
|
|
INIT_CURRENT_PWM(V);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_W)
|
|
INIT_CURRENT_PWM(W);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
INIT_CURRENT_PWM(Z);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
INIT_CURRENT_PWM(E);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
|
|
INIT_CURRENT_PWM(E0);
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
|
|
INIT_CURRENT_PWM(E1);
|
|
#endif
|
|
|
|
refresh_motor_power();
|
|
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#else // PRINTRBOARD_G2
|
|
|
|
#include HAL_PATH(.., fastio/G2_PWM.h)
|
|
|
|
#endif
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
/**
|
|
* Software-controlled Microstepping
|
|
*/
|
|
|
|
void Stepper::microstep_init() {
|
|
#if HAS_X_MS_PINS
|
|
SET_OUTPUT(X_MS1_PIN); SET_OUTPUT(X_MS2_PIN);
|
|
#if PIN_EXISTS(X_MS3)
|
|
SET_OUTPUT(X_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_X2_MS_PINS
|
|
SET_OUTPUT(X2_MS1_PIN); SET_OUTPUT(X2_MS2_PIN);
|
|
#if PIN_EXISTS(X2_MS3)
|
|
SET_OUTPUT(X2_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_Y_MS_PINS
|
|
SET_OUTPUT(Y_MS1_PIN); SET_OUTPUT(Y_MS2_PIN);
|
|
#if PIN_EXISTS(Y_MS3)
|
|
SET_OUTPUT(Y_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_Y2_MS_PINS
|
|
SET_OUTPUT(Y2_MS1_PIN); SET_OUTPUT(Y2_MS2_PIN);
|
|
#if PIN_EXISTS(Y2_MS3)
|
|
SET_OUTPUT(Y2_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_Z_MS_PINS
|
|
SET_OUTPUT(Z_MS1_PIN); SET_OUTPUT(Z_MS2_PIN);
|
|
#if PIN_EXISTS(Z_MS3)
|
|
SET_OUTPUT(Z_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_Z2_MS_PINS
|
|
SET_OUTPUT(Z2_MS1_PIN); SET_OUTPUT(Z2_MS2_PIN);
|
|
#if PIN_EXISTS(Z2_MS3)
|
|
SET_OUTPUT(Z2_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_Z3_MS_PINS
|
|
SET_OUTPUT(Z3_MS1_PIN); SET_OUTPUT(Z3_MS2_PIN);
|
|
#if PIN_EXISTS(Z3_MS3)
|
|
SET_OUTPUT(Z3_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_Z4_MS_PINS
|
|
SET_OUTPUT(Z4_MS1_PIN); SET_OUTPUT(Z4_MS2_PIN);
|
|
#if PIN_EXISTS(Z4_MS3)
|
|
SET_OUTPUT(Z4_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_I_MS_PINS
|
|
SET_OUTPUT(I_MS1_PIN); SET_OUTPUT(I_MS2_PIN);
|
|
#if PIN_EXISTS(I_MS3)
|
|
SET_OUTPUT(I_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_J_MS_PINS
|
|
SET_OUTPUT(J_MS1_PIN); SET_OUTPUT(J_MS2_PIN);
|
|
#if PIN_EXISTS(J_MS3)
|
|
SET_OUTPUT(J_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_K_MS_PINS
|
|
SET_OUTPUT(K_MS1_PIN); SET_OUTPUT(K_MS2_PIN);
|
|
#if PIN_EXISTS(K_MS3)
|
|
SET_OUTPUT(K_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_U_MS_PINS
|
|
SET_OUTPUT(U_MS1_PIN); SET_OUTPUT(U_MS2_PIN);
|
|
#if PIN_EXISTS(U_MS3)
|
|
SET_OUTPUT(U_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_V_MS_PINS
|
|
SET_OUTPUT(V_MS1_PIN); SET_OUTPUT(V_MS2_PIN);
|
|
#if PIN_EXISTS(V_MS3)
|
|
SET_OUTPUT(V_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_W_MS_PINS
|
|
SET_OUTPUT(W_MS1_PIN); SET_OUTPUT(W_MS2_PIN);
|
|
#if PIN_EXISTS(W_MS3)
|
|
SET_OUTPUT(W_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_E0_MS_PINS
|
|
SET_OUTPUT(E0_MS1_PIN); SET_OUTPUT(E0_MS2_PIN);
|
|
#if PIN_EXISTS(E0_MS3)
|
|
SET_OUTPUT(E0_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_E1_MS_PINS
|
|
SET_OUTPUT(E1_MS1_PIN); SET_OUTPUT(E1_MS2_PIN);
|
|
#if PIN_EXISTS(E1_MS3)
|
|
SET_OUTPUT(E1_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_E2_MS_PINS
|
|
SET_OUTPUT(E2_MS1_PIN); SET_OUTPUT(E2_MS2_PIN);
|
|
#if PIN_EXISTS(E2_MS3)
|
|
SET_OUTPUT(E2_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_E3_MS_PINS
|
|
SET_OUTPUT(E3_MS1_PIN); SET_OUTPUT(E3_MS2_PIN);
|
|
#if PIN_EXISTS(E3_MS3)
|
|
SET_OUTPUT(E3_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_E4_MS_PINS
|
|
SET_OUTPUT(E4_MS1_PIN); SET_OUTPUT(E4_MS2_PIN);
|
|
#if PIN_EXISTS(E4_MS3)
|
|
SET_OUTPUT(E4_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_E5_MS_PINS
|
|
SET_OUTPUT(E5_MS1_PIN); SET_OUTPUT(E5_MS2_PIN);
|
|
#if PIN_EXISTS(E5_MS3)
|
|
SET_OUTPUT(E5_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_E6_MS_PINS
|
|
SET_OUTPUT(E6_MS1_PIN); SET_OUTPUT(E6_MS2_PIN);
|
|
#if PIN_EXISTS(E6_MS3)
|
|
SET_OUTPUT(E6_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
#if HAS_E7_MS_PINS
|
|
SET_OUTPUT(E7_MS1_PIN); SET_OUTPUT(E7_MS2_PIN);
|
|
#if PIN_EXISTS(E7_MS3)
|
|
SET_OUTPUT(E7_MS3_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
static const uint8_t microstep_modes[] = MICROSTEP_MODES;
|
|
for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
|
|
microstep_mode(i, microstep_modes[i]);
|
|
}
|
|
|
|
void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2, const int8_t ms3) {
|
|
if (ms1 >= 0) switch (driver) {
|
|
#if HAS_X_MS_PINS || HAS_X2_MS_PINS
|
|
case X_AXIS:
|
|
#if HAS_X_MS_PINS
|
|
WRITE(X_MS1_PIN, ms1);
|
|
#endif
|
|
#if HAS_X2_MS_PINS
|
|
WRITE(X2_MS1_PIN, ms1);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
|
|
case Y_AXIS:
|
|
#if HAS_Y_MS_PINS
|
|
WRITE(Y_MS1_PIN, ms1);
|
|
#endif
|
|
#if HAS_Y2_MS_PINS
|
|
WRITE(Y2_MS1_PIN, ms1);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_SOME_Z_MS_PINS
|
|
case Z_AXIS:
|
|
#if HAS_Z_MS_PINS
|
|
WRITE(Z_MS1_PIN, ms1);
|
|
#endif
|
|
#if HAS_Z2_MS_PINS
|
|
WRITE(Z2_MS1_PIN, ms1);
|
|
#endif
|
|
#if HAS_Z3_MS_PINS
|
|
WRITE(Z3_MS1_PIN, ms1);
|
|
#endif
|
|
#if HAS_Z4_MS_PINS
|
|
WRITE(Z4_MS1_PIN, ms1);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_I_MS_PINS
|
|
case I_AXIS: WRITE(I_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_J_MS_PINS
|
|
case J_AXIS: WRITE(J_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_K_MS_PINS
|
|
case K_AXIS: WRITE(K_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_U_MS_PINS
|
|
case U_AXIS: WRITE(U_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_V_MS_PINS
|
|
case V_AXIS: WRITE(V_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_W_MS_PINS
|
|
case W_AXIS: WRITE(W_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E0_MS_PINS
|
|
case E_AXIS: WRITE(E0_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E1_MS_PINS
|
|
case (E_AXIS + 1): WRITE(E1_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E2_MS_PINS
|
|
case (E_AXIS + 2): WRITE(E2_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E3_MS_PINS
|
|
case (E_AXIS + 3): WRITE(E3_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E4_MS_PINS
|
|
case (E_AXIS + 4): WRITE(E4_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E5_MS_PINS
|
|
case (E_AXIS + 5): WRITE(E5_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E6_MS_PINS
|
|
case (E_AXIS + 6): WRITE(E6_MS1_PIN, ms1); break;
|
|
#endif
|
|
#if HAS_E7_MS_PINS
|
|
case (E_AXIS + 7): WRITE(E7_MS1_PIN, ms1); break;
|
|
#endif
|
|
}
|
|
if (ms2 >= 0) switch (driver) {
|
|
#if HAS_X_MS_PINS || HAS_X2_MS_PINS
|
|
case X_AXIS:
|
|
#if HAS_X_MS_PINS
|
|
WRITE(X_MS2_PIN, ms2);
|
|
#endif
|
|
#if HAS_X2_MS_PINS
|
|
WRITE(X2_MS2_PIN, ms2);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
|
|
case Y_AXIS:
|
|
#if HAS_Y_MS_PINS
|
|
WRITE(Y_MS2_PIN, ms2);
|
|
#endif
|
|
#if HAS_Y2_MS_PINS
|
|
WRITE(Y2_MS2_PIN, ms2);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_SOME_Z_MS_PINS
|
|
case Z_AXIS:
|
|
#if HAS_Z_MS_PINS
|
|
WRITE(Z_MS2_PIN, ms2);
|
|
#endif
|
|
#if HAS_Z2_MS_PINS
|
|
WRITE(Z2_MS2_PIN, ms2);
|
|
#endif
|
|
#if HAS_Z3_MS_PINS
|
|
WRITE(Z3_MS2_PIN, ms2);
|
|
#endif
|
|
#if HAS_Z4_MS_PINS
|
|
WRITE(Z4_MS2_PIN, ms2);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_I_MS_PINS
|
|
case I_AXIS: WRITE(I_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_J_MS_PINS
|
|
case J_AXIS: WRITE(J_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_K_MS_PINS
|
|
case K_AXIS: WRITE(K_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_U_MS_PINS
|
|
case U_AXIS: WRITE(U_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_V_MS_PINS
|
|
case V_AXIS: WRITE(V_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_W_MS_PINS
|
|
case W_AXIS: WRITE(W_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E0_MS_PINS
|
|
case E_AXIS: WRITE(E0_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E1_MS_PINS
|
|
case (E_AXIS + 1): WRITE(E1_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E2_MS_PINS
|
|
case (E_AXIS + 2): WRITE(E2_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E3_MS_PINS
|
|
case (E_AXIS + 3): WRITE(E3_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E4_MS_PINS
|
|
case (E_AXIS + 4): WRITE(E4_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E5_MS_PINS
|
|
case (E_AXIS + 5): WRITE(E5_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E6_MS_PINS
|
|
case (E_AXIS + 6): WRITE(E6_MS2_PIN, ms2); break;
|
|
#endif
|
|
#if HAS_E7_MS_PINS
|
|
case (E_AXIS + 7): WRITE(E7_MS2_PIN, ms2); break;
|
|
#endif
|
|
}
|
|
if (ms3 >= 0) switch (driver) {
|
|
#if HAS_X_MS_PINS || HAS_X2_MS_PINS
|
|
case X_AXIS:
|
|
#if HAS_X_MS_PINS && PIN_EXISTS(X_MS3)
|
|
WRITE(X_MS3_PIN, ms3);
|
|
#endif
|
|
#if HAS_X2_MS_PINS && PIN_EXISTS(X2_MS3)
|
|
WRITE(X2_MS3_PIN, ms3);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_Y_MS_PINS || HAS_Y2_MS_PINS
|
|
case Y_AXIS:
|
|
#if HAS_Y_MS_PINS && PIN_EXISTS(Y_MS3)
|
|
WRITE(Y_MS3_PIN, ms3);
|
|
#endif
|
|
#if HAS_Y2_MS_PINS && PIN_EXISTS(Y2_MS3)
|
|
WRITE(Y2_MS3_PIN, ms3);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_SOME_Z_MS_PINS
|
|
case Z_AXIS:
|
|
#if HAS_Z_MS_PINS && PIN_EXISTS(Z_MS3)
|
|
WRITE(Z_MS3_PIN, ms3);
|
|
#endif
|
|
#if HAS_Z2_MS_PINS && PIN_EXISTS(Z2_MS3)
|
|
WRITE(Z2_MS3_PIN, ms3);
|
|
#endif
|
|
#if HAS_Z3_MS_PINS && PIN_EXISTS(Z3_MS3)
|
|
WRITE(Z3_MS3_PIN, ms3);
|
|
#endif
|
|
#if HAS_Z4_MS_PINS && PIN_EXISTS(Z4_MS3)
|
|
WRITE(Z4_MS3_PIN, ms3);
|
|
#endif
|
|
break;
|
|
#endif
|
|
#if HAS_I_MS_PINS && PIN_EXISTS(I_MS3)
|
|
case I_AXIS: WRITE(I_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_J_MS_PINS && PIN_EXISTS(J_MS3)
|
|
case J_AXIS: WRITE(J_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_K_MS_PINS && PIN_EXISTS(K_MS3)
|
|
case K_AXIS: WRITE(K_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_U_MS_PINS && PIN_EXISTS(U_MS3)
|
|
case U_AXIS: WRITE(U_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_V_MS_PINS && PIN_EXISTS(V_MS3)
|
|
case V_AXIS: WRITE(V_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_W_MS_PINS && PIN_EXISTS(W_MS3)
|
|
case W_AXIS: WRITE(W_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_E0_MS_PINS && PIN_EXISTS(E0_MS3)
|
|
case E_AXIS: WRITE(E0_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_E1_MS_PINS && PIN_EXISTS(E1_MS3)
|
|
case (E_AXIS + 1): WRITE(E1_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_E2_MS_PINS && PIN_EXISTS(E2_MS3)
|
|
case (E_AXIS + 2): WRITE(E2_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_E3_MS_PINS && PIN_EXISTS(E3_MS3)
|
|
case (E_AXIS + 3): WRITE(E3_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_E4_MS_PINS && PIN_EXISTS(E4_MS3)
|
|
case (E_AXIS + 4): WRITE(E4_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_E5_MS_PINS && PIN_EXISTS(E5_MS3)
|
|
case (E_AXIS + 5): WRITE(E5_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_E6_MS_PINS && PIN_EXISTS(E6_MS3)
|
|
case (E_AXIS + 6): WRITE(E6_MS3_PIN, ms3); break;
|
|
#endif
|
|
#if HAS_E7_MS_PINS && PIN_EXISTS(E7_MS3)
|
|
case (E_AXIS + 7): WRITE(E7_MS3_PIN, ms3); break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
// MS1 MS2 MS3 Stepper Driver Microstepping mode table
|
|
#ifndef MICROSTEP1
|
|
#define MICROSTEP1 LOW,LOW,LOW
|
|
#endif
|
|
#if ENABLED(HEROIC_STEPPER_DRIVERS)
|
|
#ifndef MICROSTEP128
|
|
#define MICROSTEP128 LOW,HIGH,LOW
|
|
#endif
|
|
#else
|
|
#ifndef MICROSTEP2
|
|
#define MICROSTEP2 HIGH,LOW,LOW
|
|
#endif
|
|
#ifndef MICROSTEP4
|
|
#define MICROSTEP4 LOW,HIGH,LOW
|
|
#endif
|
|
#endif
|
|
#ifndef MICROSTEP8
|
|
#define MICROSTEP8 HIGH,HIGH,LOW
|
|
#endif
|
|
#ifndef MICROSTEP16
|
|
#define MICROSTEP16 HIGH,HIGH,LOW
|
|
#endif
|
|
|
|
void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
|
|
switch (stepping_mode) {
|
|
#ifdef MICROSTEP1
|
|
case 1: microstep_ms(driver, MICROSTEP1); break;
|
|
#endif
|
|
#ifdef MICROSTEP2
|
|
case 2: microstep_ms(driver, MICROSTEP2); break;
|
|
#endif
|
|
#ifdef MICROSTEP4
|
|
case 4: microstep_ms(driver, MICROSTEP4); break;
|
|
#endif
|
|
#ifdef MICROSTEP8
|
|
case 8: microstep_ms(driver, MICROSTEP8); break;
|
|
#endif
|
|
#ifdef MICROSTEP16
|
|
case 16: microstep_ms(driver, MICROSTEP16); break;
|
|
#endif
|
|
#ifdef MICROSTEP32
|
|
case 32: microstep_ms(driver, MICROSTEP32); break;
|
|
#endif
|
|
#ifdef MICROSTEP64
|
|
case 64: microstep_ms(driver, MICROSTEP64); break;
|
|
#endif
|
|
#ifdef MICROSTEP128
|
|
case 128: microstep_ms(driver, MICROSTEP128); break;
|
|
#endif
|
|
|
|
default: SERIAL_ERROR_MSG("Microsteps unavailable"); break;
|
|
}
|
|
}
|
|
|
|
void Stepper::microstep_readings() {
|
|
#define PIN_CHAR(P) SERIAL_CHAR('0' + READ(P##_PIN))
|
|
#define MS_LINE(A) do{ SERIAL_ECHOPGM(" " STRINGIFY(A) ":"); PIN_CHAR(A##_MS1); PIN_CHAR(A##_MS2); }while(0)
|
|
SERIAL_ECHOPGM("MS1|2|3 Pins");
|
|
#if HAS_X_MS_PINS
|
|
MS_LINE(X);
|
|
#if PIN_EXISTS(X_MS3)
|
|
PIN_CHAR(X_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_Y_MS_PINS
|
|
MS_LINE(Y);
|
|
#if PIN_EXISTS(Y_MS3)
|
|
PIN_CHAR(Y_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_Z_MS_PINS
|
|
MS_LINE(Z);
|
|
#if PIN_EXISTS(Z_MS3)
|
|
PIN_CHAR(Z_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_I_MS_PINS
|
|
MS_LINE(I);
|
|
#if PIN_EXISTS(I_MS3)
|
|
PIN_CHAR(I_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_J_MS_PINS
|
|
MS_LINE(J);
|
|
#if PIN_EXISTS(J_MS3)
|
|
PIN_CHAR(J_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_K_MS_PINS
|
|
MS_LINE(K);
|
|
#if PIN_EXISTS(K_MS3)
|
|
PIN_CHAR(K_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_U_MS_PINS
|
|
MS_LINE(U);
|
|
#if PIN_EXISTS(U_MS3)
|
|
PIN_CHAR(U_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_V_MS_PINS
|
|
MS_LINE(V);
|
|
#if PIN_EXISTS(V_MS3)
|
|
PIN_CHAR(V_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_W_MS_PINS
|
|
MS_LINE(W);
|
|
#if PIN_EXISTS(W_MS3)
|
|
PIN_CHAR(W_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_E0_MS_PINS
|
|
MS_LINE(E0);
|
|
#if PIN_EXISTS(E0_MS3)
|
|
PIN_CHAR(E0_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_E1_MS_PINS
|
|
MS_LINE(E1);
|
|
#if PIN_EXISTS(E1_MS3)
|
|
PIN_CHAR(E1_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_E2_MS_PINS
|
|
MS_LINE(E2);
|
|
#if PIN_EXISTS(E2_MS3)
|
|
PIN_CHAR(E2_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_E3_MS_PINS
|
|
MS_LINE(E3);
|
|
#if PIN_EXISTS(E3_MS3)
|
|
PIN_CHAR(E3_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_E4_MS_PINS
|
|
MS_LINE(E4);
|
|
#if PIN_EXISTS(E4_MS3)
|
|
PIN_CHAR(E4_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_E5_MS_PINS
|
|
MS_LINE(E5);
|
|
#if PIN_EXISTS(E5_MS3)
|
|
PIN_CHAR(E5_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_E6_MS_PINS
|
|
MS_LINE(E6);
|
|
#if PIN_EXISTS(E6_MS3)
|
|
PIN_CHAR(E6_MS3);
|
|
#endif
|
|
#endif
|
|
#if HAS_E7_MS_PINS
|
|
MS_LINE(E7);
|
|
#if PIN_EXISTS(E7_MS3)
|
|
PIN_CHAR(E7_MS3);
|
|
#endif
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#endif // HAS_MICROSTEPS
|