995 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			995 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
  temperature.c - temperature control
 | 
						|
  Part of Marlin
 | 
						|
  
 | 
						|
 Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 
 | 
						|
 This program is free software: you can redistribute it and/or modify
 | 
						|
 it under the terms of the GNU General Public License as published by
 | 
						|
 the Free Software Foundation, either version 3 of the License, or
 | 
						|
 (at your option) any later version.
 | 
						|
 
 | 
						|
 This program is distributed in the hope that it will be useful,
 | 
						|
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 GNU General Public License for more details.
 | 
						|
 
 | 
						|
 You should have received a copy of the GNU General Public License
 | 
						|
 along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 This firmware is a mashup between Sprinter and grbl.
 | 
						|
  (https://github.com/kliment/Sprinter)
 | 
						|
  (https://github.com/simen/grbl/tree)
 | 
						|
 
 | 
						|
 It has preliminary support for Matthew Roberts advance algorithm 
 | 
						|
    http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 | 
						|
 | 
						|
 */
 | 
						|
 | 
						|
 | 
						|
#include "Marlin.h"
 | 
						|
#include "ultralcd.h"
 | 
						|
#include "temperature.h"
 | 
						|
#include "watchdog.h"
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================public variables============================
 | 
						|
//===========================================================================
 | 
						|
int target_raw[EXTRUDERS] = { 0 };
 | 
						|
int target_raw_bed = 0;
 | 
						|
#ifdef BED_LIMIT_SWITCHING
 | 
						|
int target_bed_low_temp =0;  
 | 
						|
int target_bed_high_temp =0;
 | 
						|
#endif
 | 
						|
int current_raw[EXTRUDERS] = { 0 };
 | 
						|
int current_raw_bed = 0;
 | 
						|
 | 
						|
#ifdef PIDTEMP
 | 
						|
  // used external
 | 
						|
  float pid_setpoint[EXTRUDERS] = { 0.0 };
 | 
						|
  
 | 
						|
  float Kp=DEFAULT_Kp;
 | 
						|
  float Ki=(DEFAULT_Ki*PID_dT);
 | 
						|
  float Kd=(DEFAULT_Kd/PID_dT);
 | 
						|
  #ifdef PID_ADD_EXTRUSION_RATE
 | 
						|
    float Kc=DEFAULT_Kc;
 | 
						|
  #endif
 | 
						|
#endif //PIDTEMP
 | 
						|
  
 | 
						|
  
 | 
						|
//===========================================================================
 | 
						|
//=============================private variables============================
 | 
						|
//===========================================================================
 | 
						|
static volatile bool temp_meas_ready = false;
 | 
						|
 | 
						|
static unsigned long  previous_millis_bed_heater;
 | 
						|
//static unsigned long previous_millis_heater;
 | 
						|
 | 
						|
#ifdef PIDTEMP
 | 
						|
  //static cannot be external:
 | 
						|
  static float temp_iState[EXTRUDERS] = { 0 };
 | 
						|
  static float temp_dState[EXTRUDERS] = { 0 };
 | 
						|
  static float pTerm[EXTRUDERS];
 | 
						|
  static float iTerm[EXTRUDERS];
 | 
						|
  static float dTerm[EXTRUDERS];
 | 
						|
  //int output;
 | 
						|
  static float pid_error[EXTRUDERS];
 | 
						|
  static float temp_iState_min[EXTRUDERS];
 | 
						|
  static float temp_iState_max[EXTRUDERS];
 | 
						|
  // static float pid_input[EXTRUDERS];
 | 
						|
  // static float pid_output[EXTRUDERS];
 | 
						|
  static bool pid_reset[EXTRUDERS];
 | 
						|
#endif //PIDTEMP
 | 
						|
  static unsigned char soft_pwm[EXTRUDERS];
 | 
						|
  
 | 
						|
#ifdef WATCHPERIOD
 | 
						|
  int watch_raw[EXTRUDERS] = { -1000 }; // the first value used for all
 | 
						|
  int watch_oldtemp[3] = {0,0,0};
 | 
						|
  unsigned long watchmillis = 0;
 | 
						|
#endif //WATCHPERIOD
 | 
						|
 | 
						|
// Init min and max temp with extreme values to prevent false errors during startup
 | 
						|
  static int minttemp[EXTRUDERS] = { 0 };
 | 
						|
  static int maxttemp[EXTRUDERS] = { 16383 }; // the first value used for all
 | 
						|
  static int bed_minttemp = 0;
 | 
						|
  static int bed_maxttemp = 16383;
 | 
						|
  static void *heater_ttbl_map[EXTRUDERS] = { (void *)heater_0_temptable
 | 
						|
#if EXTRUDERS > 1
 | 
						|
                                            , (void *)heater_1_temptable
 | 
						|
#endif
 | 
						|
#if EXTRUDERS > 2
 | 
						|
                                            , (void *)heater_2_temptable
 | 
						|
#endif
 | 
						|
#if EXTRUDERS > 3
 | 
						|
  #error Unsupported number of extruders
 | 
						|
#endif
 | 
						|
  };
 | 
						|
  static int heater_ttbllen_map[EXTRUDERS] = { heater_0_temptable_len
 | 
						|
#if EXTRUDERS > 1
 | 
						|
                                             , heater_1_temptable_len
 | 
						|
#endif
 | 
						|
#if EXTRUDERS > 2
 | 
						|
                                             , heater_2_temptable_len
 | 
						|
#endif
 | 
						|
#if EXTRUDERS > 3
 | 
						|
  #error Unsupported number of extruders
 | 
						|
#endif
 | 
						|
  };
 | 
						|
 | 
						|
//===========================================================================
 | 
						|
//=============================   functions      ============================
 | 
						|
//===========================================================================
 | 
						|
 | 
						|
void PID_autotune(float temp)
 | 
						|
{
 | 
						|
  float input;
 | 
						|
  int cycles=0;
 | 
						|
  bool heating = true;
 | 
						|
 | 
						|
  unsigned long temp_millis = millis();
 | 
						|
  unsigned long t1=temp_millis;
 | 
						|
  unsigned long t2=temp_millis;
 | 
						|
  long t_high;
 | 
						|
  long t_low;
 | 
						|
 | 
						|
  long bias=127;
 | 
						|
  long d = 127;
 | 
						|
  float Ku, Tu;
 | 
						|
  float Kp, Ki, Kd;
 | 
						|
  float max, min;
 | 
						|
  
 | 
						|
  SERIAL_ECHOLN("PID Autotune start");
 | 
						|
  
 | 
						|
  disable_heater(); // switch off all heaters.
 | 
						|
  
 | 
						|
  soft_pwm[0] = 255>>1;
 | 
						|
    
 | 
						|
  for(;;) {
 | 
						|
 | 
						|
    if(temp_meas_ready == true) { // temp sample ready
 | 
						|
      CRITICAL_SECTION_START;
 | 
						|
      temp_meas_ready = false;
 | 
						|
      CRITICAL_SECTION_END;
 | 
						|
      input = analog2temp(current_raw[0], 0);
 | 
						|
      
 | 
						|
      max=max(max,input);
 | 
						|
      min=min(min,input);
 | 
						|
      if(heating == true && input > temp) {
 | 
						|
        if(millis() - t2 > 5000) { 
 | 
						|
          heating=false;
 | 
						|
          soft_pwm[0] = (bias - d) >> 1;
 | 
						|
          t1=millis();
 | 
						|
          t_high=t1 - t2;
 | 
						|
          max=temp;
 | 
						|
        }
 | 
						|
      }
 | 
						|
      if(heating == false && input < temp) {
 | 
						|
        if(millis() - t1 > 5000) {
 | 
						|
          heating=true;
 | 
						|
          t2=millis();
 | 
						|
          t_low=t2 - t1;
 | 
						|
          if(cycles > 0) {
 | 
						|
            bias += (d*(t_high - t_low))/(t_low + t_high);
 | 
						|
            bias = constrain(bias, 20 ,235);
 | 
						|
            if(bias > 127) d = 254 - bias;
 | 
						|
            else d = bias;
 | 
						|
 | 
						|
            SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
 | 
						|
            SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
 | 
						|
            SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
 | 
						|
            SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
 | 
						|
            if(cycles > 2) {
 | 
						|
              Ku = (4.0*d)/(3.14159*(max-min)/2.0);
 | 
						|
              Tu = ((float)(t_low + t_high)/1000.0);
 | 
						|
              SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
 | 
						|
              SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
 | 
						|
              Kp = 0.6*Ku;
 | 
						|
              Ki = 2*Kp/Tu;
 | 
						|
              Kd = Kp*Tu/8;
 | 
						|
              SERIAL_PROTOCOLLNPGM(" Clasic PID ")
 | 
						|
              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | 
						|
              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | 
						|
              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | 
						|
              /*
 | 
						|
              Kp = 0.33*Ku;
 | 
						|
              Ki = Kp/Tu;
 | 
						|
              Kd = Kp*Tu/3;
 | 
						|
              SERIAL_PROTOCOLLNPGM(" Some overshoot ")
 | 
						|
              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | 
						|
              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | 
						|
              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | 
						|
              Kp = 0.2*Ku;
 | 
						|
              Ki = 2*Kp/Tu;
 | 
						|
              Kd = Kp*Tu/3;
 | 
						|
              SERIAL_PROTOCOLLNPGM(" No overshoot ")
 | 
						|
              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | 
						|
              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | 
						|
              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | 
						|
              */
 | 
						|
            }
 | 
						|
          }
 | 
						|
          soft_pwm[0] = (bias + d) >> 1;
 | 
						|
          cycles++;
 | 
						|
          min=temp;
 | 
						|
        }
 | 
						|
      } 
 | 
						|
    }
 | 
						|
    if(input > (temp + 20)) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature to high");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if(millis() - temp_millis > 2000) {
 | 
						|
      temp_millis = millis();
 | 
						|
      SERIAL_PROTOCOLPGM("ok T:");
 | 
						|
      SERIAL_PROTOCOL(degHotend(0));   
 | 
						|
      SERIAL_PROTOCOLPGM(" @:");
 | 
						|
      SERIAL_PROTOCOLLN(getHeaterPower(0));       
 | 
						|
    }
 | 
						|
    if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    if(cycles > 5) {
 | 
						|
      SERIAL_PROTOCOLLNPGM("PID Autotune finished ! Place the Kp, Ki and Kd constants in the configuration.h");
 | 
						|
      return;
 | 
						|
    }
 | 
						|
    LCD_STATUS;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void updatePID()
 | 
						|
{
 | 
						|
#ifdef PIDTEMP
 | 
						|
  for(int e = 0; e < EXTRUDERS; e++) { 
 | 
						|
     temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;  
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
  
 | 
						|
int getHeaterPower(int heater) {
 | 
						|
  return soft_pwm[heater];
 | 
						|
}
 | 
						|
 | 
						|
void manage_heater()
 | 
						|
{
 | 
						|
  #ifdef USE_WATCHDOG
 | 
						|
    wd_reset();
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  float pid_input;
 | 
						|
  float pid_output;
 | 
						|
 | 
						|
  if(temp_meas_ready != true)   //better readability
 | 
						|
    return; 
 | 
						|
 | 
						|
  CRITICAL_SECTION_START;
 | 
						|
  temp_meas_ready = false;
 | 
						|
  CRITICAL_SECTION_END;
 | 
						|
 | 
						|
  for(int e = 0; e < EXTRUDERS; e++) 
 | 
						|
  {
 | 
						|
 | 
						|
  #ifdef PIDTEMP
 | 
						|
    pid_input = analog2temp(current_raw[e], e);
 | 
						|
 | 
						|
    #ifndef PID_OPENLOOP
 | 
						|
        pid_error[e] = pid_setpoint[e] - pid_input;
 | 
						|
        if(pid_error[e] > 10) {
 | 
						|
          pid_output = PID_MAX;
 | 
						|
          pid_reset[e] = true;
 | 
						|
        }
 | 
						|
        else if(pid_error[e] < -10) {
 | 
						|
          pid_output = 0;
 | 
						|
          pid_reset[e] = true;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
          if(pid_reset[e] == true) {
 | 
						|
            temp_iState[e] = 0.0;
 | 
						|
            pid_reset[e] = false;
 | 
						|
          }
 | 
						|
          pTerm[e] = Kp * pid_error[e];
 | 
						|
          temp_iState[e] += pid_error[e];
 | 
						|
          temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
 | 
						|
          iTerm[e] = Ki * temp_iState[e];
 | 
						|
          //K1 defined in Configuration.h in the PID settings
 | 
						|
          #define K2 (1.0-K1)
 | 
						|
          dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
 | 
						|
          temp_dState[e] = pid_input;
 | 
						|
          pid_output = constrain(pTerm[e] + iTerm[e] - dTerm[e], 0, PID_MAX);
 | 
						|
        }
 | 
						|
    #endif //PID_OPENLOOP
 | 
						|
    #ifdef PID_DEBUG
 | 
						|
    SERIAL_ECHOLN(" PIDDEBUG "<<e<<": Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm[e]<<" iTerm "<<iTerm[e]<<" dTerm "<<dTerm[e]);  
 | 
						|
    #endif //PID_DEBUG
 | 
						|
  #else /* PID off */
 | 
						|
    pid_output = 0;
 | 
						|
    if(current_raw[e] < target_raw[e]) {
 | 
						|
      pid_output = PID_MAX;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
    // Check if temperature is within the correct range
 | 
						|
    if((current_raw[e] > minttemp[e]) && (current_raw[e] < maxttemp[e])) 
 | 
						|
    {
 | 
						|
      soft_pwm[e] = (int)pid_output >> 1;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      soft_pwm[e] = 0;
 | 
						|
    }
 | 
						|
  } // End extruder for loop
 | 
						|
  
 | 
						|
  #ifdef WATCHPERIOD
 | 
						|
    if(watchmillis && millis() - watchmillis > WATCHPERIOD){
 | 
						|
        if(watch_oldtemp[0] >= degHotend(active_extruder)){
 | 
						|
            setTargetHotend(0,active_extruder);
 | 
						|
            LCD_MESSAGEPGM("Heating failed");
 | 
						|
            SERIAL_ECHO_START;
 | 
						|
            SERIAL_ECHOLN("Heating failed");
 | 
						|
        }else{
 | 
						|
            watchmillis = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
 | 
						|
    return;
 | 
						|
  previous_millis_bed_heater = millis();
 | 
						|
  
 | 
						|
  #if TEMP_BED_PIN > -1
 | 
						|
  
 | 
						|
    #ifndef BED_LIMIT_SWITCHING
 | 
						|
      // Check if temperature is within the correct range
 | 
						|
      if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
 | 
						|
        if(current_raw_bed >= target_raw_bed)
 | 
						|
        {
 | 
						|
          WRITE(HEATER_BED_PIN,LOW);
 | 
						|
        }
 | 
						|
        else 
 | 
						|
        {
 | 
						|
          WRITE(HEATER_BED_PIN,HIGH);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        WRITE(HEATER_BED_PIN,LOW);
 | 
						|
      }
 | 
						|
    #else //#ifdef BED_LIMIT_SWITCHING
 | 
						|
      // Check if temperature is within the correct band
 | 
						|
      if((current_raw_bed > bed_minttemp) && (current_raw_bed < bed_maxttemp)) {
 | 
						|
        if(current_raw_bed > target_bed_high_temp)
 | 
						|
        {
 | 
						|
          WRITE(HEATER_BED_PIN,LOW);
 | 
						|
        }
 | 
						|
        else 
 | 
						|
          if(current_raw_bed <= target_bed_low_temp)
 | 
						|
        {
 | 
						|
          WRITE(HEATER_BED_PIN,HIGH);
 | 
						|
        }
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        WRITE(HEATER_BED_PIN,LOW);
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
#define PGM_RD_W(x)   (short)pgm_read_word(&x)
 | 
						|
// Takes hot end temperature value as input and returns corresponding raw value. 
 | 
						|
// For a thermistor, it uses the RepRap thermistor temp table.
 | 
						|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
 | 
						|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
 | 
						|
int temp2analog(int celsius, uint8_t e) {
 | 
						|
  if(e >= EXTRUDERS)
 | 
						|
  {
 | 
						|
      SERIAL_ERROR_START;
 | 
						|
      SERIAL_ERROR((int)e);
 | 
						|
      SERIAL_ERRORLNPGM(" - Invalid extruder number!");
 | 
						|
      kill();
 | 
						|
  }
 | 
						|
  #ifdef HEATER_0_USES_MAX6675
 | 
						|
    if (e == 0)
 | 
						|
    {
 | 
						|
      return celsius * 4;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
  if(heater_ttbl_map[e] != 0)
 | 
						|
  {
 | 
						|
    int raw = 0;
 | 
						|
    byte i;
 | 
						|
    short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
 | 
						|
 | 
						|
    for (i=1; i<heater_ttbllen_map[e]; i++)
 | 
						|
    {
 | 
						|
      if (PGM_RD_W((*tt)[i][1]) < celsius)
 | 
						|
      {
 | 
						|
        raw = PGM_RD_W((*tt)[i-1][0]) + 
 | 
						|
          (celsius - PGM_RD_W((*tt)[i-1][1])) * 
 | 
						|
          (PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0])) /
 | 
						|
          (PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1]));  
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Overflow: Set to last value in the table
 | 
						|
    if (i == heater_ttbllen_map[e]) raw = PGM_RD_W((*tt)[i-1][0]);
 | 
						|
 | 
						|
    return (1023 * OVERSAMPLENR) - raw;
 | 
						|
  }
 | 
						|
  return ((celsius-TEMP_SENSOR_AD595_OFFSET)/TEMP_SENSOR_AD595_GAIN) * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
 | 
						|
}
 | 
						|
 | 
						|
// Takes bed temperature value as input and returns corresponding raw value. 
 | 
						|
// For a thermistor, it uses the RepRap thermistor temp table.
 | 
						|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
 | 
						|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
 | 
						|
int temp2analogBed(int celsius) {
 | 
						|
#ifdef BED_USES_THERMISTOR
 | 
						|
    int raw = 0;
 | 
						|
    byte i;
 | 
						|
    
 | 
						|
    for (i=1; i<bedtemptable_len; i++)
 | 
						|
    {
 | 
						|
      if (PGM_RD_W(bedtemptable[i][1]) < celsius)
 | 
						|
      {
 | 
						|
        raw = PGM_RD_W(bedtemptable[i-1][0]) + 
 | 
						|
          (celsius - PGM_RD_W(bedtemptable[i-1][1])) * 
 | 
						|
          (PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])) /
 | 
						|
          (PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1]));
 | 
						|
      
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Overflow: Set to last value in the table
 | 
						|
    if (i == bedtemptable_len) raw = PGM_RD_W(bedtemptable[i-1][0]);
 | 
						|
 | 
						|
    return (1023 * OVERSAMPLENR) - raw;
 | 
						|
#elif defined BED_USES_AD595
 | 
						|
    return lround(((celsius-TEMP_SENSOR_AD595_OFFSET)/TEMP_SENSOR_AD595_GAIN) * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) );
 | 
						|
#else
 | 
						|
    #warning No heater-type defined for the bed.
 | 
						|
    return 0;
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
// Derived from RepRap FiveD extruder::getTemperature()
 | 
						|
// For hot end temperature measurement.
 | 
						|
float analog2temp(int raw, uint8_t e) {
 | 
						|
  if(e >= EXTRUDERS)
 | 
						|
  {
 | 
						|
      SERIAL_ERROR_START;
 | 
						|
      SERIAL_ERROR((int)e);
 | 
						|
      SERIAL_ERRORLNPGM(" - Invalid extruder number !");
 | 
						|
      kill();
 | 
						|
  } 
 | 
						|
  #ifdef HEATER_0_USES_MAX6675
 | 
						|
    if (e == 0)
 | 
						|
    {
 | 
						|
      return 0.25 * raw;
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  if(heater_ttbl_map[e] != 0)
 | 
						|
  {
 | 
						|
    float celsius = 0;
 | 
						|
    byte i;  
 | 
						|
    short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
 | 
						|
 | 
						|
    raw = (1023 * OVERSAMPLENR) - raw;
 | 
						|
    for (i=1; i<heater_ttbllen_map[e]; i++)
 | 
						|
    {
 | 
						|
      if (PGM_RD_W((*tt)[i][0]) > raw)
 | 
						|
      {
 | 
						|
        celsius = PGM_RD_W((*tt)[i-1][1]) + 
 | 
						|
          (raw - PGM_RD_W((*tt)[i-1][0])) * 
 | 
						|
          (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
 | 
						|
          (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Overflow: Set to last value in the table
 | 
						|
    if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
 | 
						|
 | 
						|
    return celsius;
 | 
						|
  }
 | 
						|
  return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
 | 
						|
}
 | 
						|
 | 
						|
// Derived from RepRap FiveD extruder::getTemperature()
 | 
						|
// For bed temperature measurement.
 | 
						|
float analog2tempBed(int raw) {
 | 
						|
  #ifdef BED_USES_THERMISTOR
 | 
						|
    float celsius = 0;
 | 
						|
    byte i;
 | 
						|
 | 
						|
    raw = (1023 * OVERSAMPLENR) - raw;
 | 
						|
 | 
						|
    for (i=1; i<bedtemptable_len; i++)
 | 
						|
    {
 | 
						|
      if (PGM_RD_W(bedtemptable[i][0]) > raw)
 | 
						|
      {
 | 
						|
        celsius  = PGM_RD_W(bedtemptable[i-1][1]) + 
 | 
						|
          (raw - PGM_RD_W(bedtemptable[i-1][0])) * 
 | 
						|
          (float)(PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])) /
 | 
						|
          (float)(PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0]));
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Overflow: Set to last value in the table
 | 
						|
    if (i == bedtemptable_len) celsius = PGM_RD_W(bedtemptable[i-1][1]);
 | 
						|
 | 
						|
    return celsius;
 | 
						|
  #elif defined BED_USES_AD595
 | 
						|
    return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
 | 
						|
  #else
 | 
						|
    #warning No heater-type defined for the bed.
 | 
						|
    return 0;
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
void tp_init()
 | 
						|
{
 | 
						|
  // Finish init of mult extruder arrays 
 | 
						|
  for(int e = 0; e < EXTRUDERS; e++) {
 | 
						|
    // populate with the first value 
 | 
						|
#ifdef WATCHPERIOD
 | 
						|
    watch_raw[e] = watch_raw[0];
 | 
						|
#endif
 | 
						|
    maxttemp[e] = maxttemp[0];
 | 
						|
#ifdef PIDTEMP
 | 
						|
    temp_iState_min[e] = 0.0;
 | 
						|
    temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
 | 
						|
#endif //PIDTEMP
 | 
						|
  }
 | 
						|
 | 
						|
  #if (HEATER_0_PIN > -1) 
 | 
						|
    SET_OUTPUT(HEATER_0_PIN);
 | 
						|
  #endif  
 | 
						|
  #if (HEATER_1_PIN > -1) 
 | 
						|
    SET_OUTPUT(HEATER_1_PIN);
 | 
						|
  #endif  
 | 
						|
  #if (HEATER_2_PIN > -1) 
 | 
						|
    SET_OUTPUT(HEATER_2_PIN);
 | 
						|
  #endif  
 | 
						|
  #if (HEATER_BED_PIN > -1) 
 | 
						|
    SET_OUTPUT(HEATER_BED_PIN);
 | 
						|
  #endif  
 | 
						|
  #if (FAN_PIN > -1) 
 | 
						|
    SET_OUTPUT(FAN_PIN);
 | 
						|
    #ifdef FAST_PWM_FAN
 | 
						|
    setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
 | 
						|
    #endif
 | 
						|
  #endif  
 | 
						|
 | 
						|
  #ifdef HEATER_0_USES_MAX6675
 | 
						|
    #ifndef SDSUPPORT
 | 
						|
      SET_OUTPUT(MAX_SCK_PIN);
 | 
						|
      WRITE(MAX_SCK_PIN,0);
 | 
						|
    
 | 
						|
      SET_OUTPUT(MAX_MOSI_PIN);
 | 
						|
      WRITE(MAX_MOSI_PIN,1);
 | 
						|
    
 | 
						|
      SET_INPUT(MAX_MISO_PIN);
 | 
						|
      WRITE(MAX_MISO_PIN,1);
 | 
						|
    #endif
 | 
						|
    
 | 
						|
    SET_OUTPUT(MAX6675_SS);
 | 
						|
    WRITE(MAX6675_SS,1);
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Set analog inputs
 | 
						|
  ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
 | 
						|
  DIDR0 = 0;
 | 
						|
  #ifdef DIDR2
 | 
						|
    DIDR2 = 0;
 | 
						|
  #endif
 | 
						|
  #if (TEMP_0_PIN > -1)
 | 
						|
    #if TEMP_0_PIN < 8
 | 
						|
       DIDR0 |= 1 << TEMP_0_PIN; 
 | 
						|
    #else
 | 
						|
       DIDR2 |= 1<<(TEMP_0_PIN - 8); 
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  #if (TEMP_1_PIN > -1)
 | 
						|
    #if TEMP_1_PIN < 8
 | 
						|
       DIDR0 |= 1<<TEMP_1_PIN; 
 | 
						|
    #else
 | 
						|
       DIDR2 |= 1<<(TEMP_1_PIN - 8); 
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  #if (TEMP_2_PIN > -1)
 | 
						|
    #if TEMP_2_PIN < 8
 | 
						|
       DIDR0 |= 1 << TEMP_2_PIN; 
 | 
						|
    #else
 | 
						|
       DIDR2 = 1<<(TEMP_2_PIN - 8); 
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  #if (TEMP_BED_PIN > -1)
 | 
						|
    #if TEMP_BED_PIN < 8
 | 
						|
       DIDR0 |= 1<<TEMP_BED_PIN; 
 | 
						|
    #else
 | 
						|
       DIDR2 |= 1<<(TEMP_BED_PIN - 8); 
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  // Use timer0 for temperature measurement
 | 
						|
  // Interleave temperature interrupt with millies interrupt
 | 
						|
  OCR0B = 128;
 | 
						|
  TIMSK0 |= (1<<OCIE0B);  
 | 
						|
  
 | 
						|
  // Wait for temperature measurement to settle
 | 
						|
  delay(250);
 | 
						|
 | 
						|
#ifdef HEATER_0_MINTEMP
 | 
						|
  minttemp[0] = temp2analog(HEATER_0_MINTEMP, 0);
 | 
						|
#endif //MINTEMP
 | 
						|
#ifdef HEATER_0_MAXTEMP
 | 
						|
  maxttemp[0] = temp2analog(HEATER_0_MAXTEMP, 0);
 | 
						|
#endif //MAXTEMP
 | 
						|
 | 
						|
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
 | 
						|
  minttemp[1] = temp2analog(HEATER_1_MINTEMP, 1);
 | 
						|
#endif // MINTEMP 1
 | 
						|
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
 | 
						|
  maxttemp[1] = temp2analog(HEATER_1_MAXTEMP, 1);
 | 
						|
#endif //MAXTEMP 1
 | 
						|
 | 
						|
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
 | 
						|
  minttemp[2] = temp2analog(HEATER_2_MINTEMP, 2);
 | 
						|
#endif //MINTEMP 2
 | 
						|
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
 | 
						|
  maxttemp[2] = temp2analog(HEATER_2_MAXTEMP, 2);
 | 
						|
#endif //MAXTEMP 2
 | 
						|
 | 
						|
#ifdef BED_MINTEMP
 | 
						|
  bed_minttemp = temp2analogBed(BED_MINTEMP);
 | 
						|
#endif //BED_MINTEMP
 | 
						|
#ifdef BED_MAXTEMP
 | 
						|
  bed_maxttemp = temp2analogBed(BED_MAXTEMP);
 | 
						|
#endif //BED_MAXTEMP
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
void setWatch() 
 | 
						|
{  
 | 
						|
#ifdef WATCHPERIOD
 | 
						|
  int t = 0;
 | 
						|
  for (int e = 0; e < EXTRUDERS; e++)
 | 
						|
  {
 | 
						|
    if(isHeatingHotend(e))
 | 
						|
    watch_oldtemp[0] = degHotend(0);
 | 
						|
    {
 | 
						|
      t = max(t,millis());
 | 
						|
      watch_raw[e] = current_raw[e];
 | 
						|
    } 
 | 
						|
  }
 | 
						|
  watchmillis = t;
 | 
						|
#endif 
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void disable_heater()
 | 
						|
{
 | 
						|
  for(int i=0;i<EXTRUDERS;i++)
 | 
						|
    setTargetHotend(0,i);
 | 
						|
  setTargetBed(0);
 | 
						|
  #if TEMP_0_PIN > -1
 | 
						|
  target_raw[0]=0;
 | 
						|
  soft_pwm[0]=0;
 | 
						|
   #if HEATER_0_PIN > -1  
 | 
						|
     WRITE(HEATER_0_PIN,LOW);
 | 
						|
   #endif
 | 
						|
  #endif
 | 
						|
     
 | 
						|
  #if TEMP_1_PIN > -1
 | 
						|
    target_raw[1]=0;
 | 
						|
    soft_pwm[1]=0;
 | 
						|
    #if HEATER_1_PIN > -1 
 | 
						|
      WRITE(HEATER_1_PIN,LOW);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
      
 | 
						|
  #if TEMP_2_PIN > -1
 | 
						|
    target_raw[2]=0;
 | 
						|
    soft_pwm[2]=0;
 | 
						|
    #if HEATER_2_PIN > -1  
 | 
						|
      WRITE(HEATER_2_PIN,LOW);
 | 
						|
    #endif
 | 
						|
  #endif 
 | 
						|
 | 
						|
  #if TEMP_BED_PIN > -1
 | 
						|
    target_raw_bed=0;
 | 
						|
    #if HEATER_BED_PIN > -1  
 | 
						|
      WRITE(HEATER_BED_PIN,LOW);
 | 
						|
    #endif
 | 
						|
  #endif 
 | 
						|
}
 | 
						|
 | 
						|
void max_temp_error(uint8_t e) {
 | 
						|
  disable_heater();
 | 
						|
  if(IsStopped() == false) {
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLN((int)e);
 | 
						|
    SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void min_temp_error(uint8_t e) {
 | 
						|
  disable_heater();
 | 
						|
  if(IsStopped() == false) {
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLN((int)e);
 | 
						|
    SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void bed_max_temp_error(void) {
 | 
						|
#if HEATER_BED_PIN > -1
 | 
						|
  WRITE(HEATER_BED_PIN, 0);
 | 
						|
#endif
 | 
						|
  if(IsStopped() == false) {
 | 
						|
    SERIAL_ERROR_START;
 | 
						|
    SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#define HEAT_INTERVAL 250
 | 
						|
#ifdef HEATER_0_USES_MAX6675
 | 
						|
long max6675_previous_millis = -HEAT_INTERVAL;
 | 
						|
int max6675_temp = 2000;
 | 
						|
 | 
						|
int read_max6675()
 | 
						|
{
 | 
						|
  if (millis() - max6675_previous_millis < HEAT_INTERVAL) 
 | 
						|
    return max6675_temp;
 | 
						|
  
 | 
						|
  max6675_previous_millis = millis();
 | 
						|
  max6675_temp = 0;
 | 
						|
    
 | 
						|
  #ifdef	PRR
 | 
						|
    PRR &= ~(1<<PRSPI);
 | 
						|
  #elif defined PRR0
 | 
						|
    PRR0 &= ~(1<<PRSPI);
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
 | 
						|
  
 | 
						|
  // enable TT_MAX6675
 | 
						|
  WRITE(MAX6675_SS, 0);
 | 
						|
  
 | 
						|
  // ensure 100ns delay - a bit extra is fine
 | 
						|
  delay(1);
 | 
						|
  
 | 
						|
  // read MSB
 | 
						|
  SPDR = 0;
 | 
						|
  for (;(SPSR & (1<<SPIF)) == 0;);
 | 
						|
  max6675_temp = SPDR;
 | 
						|
  max6675_temp <<= 8;
 | 
						|
  
 | 
						|
  // read LSB
 | 
						|
  SPDR = 0;
 | 
						|
  for (;(SPSR & (1<<SPIF)) == 0;);
 | 
						|
  max6675_temp |= SPDR;
 | 
						|
  
 | 
						|
  // disable TT_MAX6675
 | 
						|
  WRITE(MAX6675_SS, 1);
 | 
						|
 | 
						|
  if (max6675_temp & 4) 
 | 
						|
  {
 | 
						|
    // thermocouple open
 | 
						|
    max6675_temp = 2000;
 | 
						|
  }
 | 
						|
  else 
 | 
						|
  {
 | 
						|
    max6675_temp = max6675_temp >> 3;
 | 
						|
  }
 | 
						|
 | 
						|
  return max6675_temp;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
// Timer 0 is shared with millies
 | 
						|
ISR(TIMER0_COMPB_vect)
 | 
						|
{
 | 
						|
  //these variables are only accesible from the ISR, but static, so they don't loose their value
 | 
						|
  static unsigned char temp_count = 0;
 | 
						|
  static unsigned long raw_temp_0_value = 0;
 | 
						|
  static unsigned long raw_temp_1_value = 0;
 | 
						|
  static unsigned long raw_temp_2_value = 0;
 | 
						|
  static unsigned long raw_temp_bed_value = 0;
 | 
						|
  static unsigned char temp_state = 0;
 | 
						|
  static unsigned char pwm_count = 1;
 | 
						|
  static unsigned char soft_pwm_0;
 | 
						|
  static unsigned char soft_pwm_1;
 | 
						|
  static unsigned char soft_pwm_2;
 | 
						|
  
 | 
						|
  if(pwm_count == 0){
 | 
						|
    soft_pwm_0 = soft_pwm[0];
 | 
						|
    if(soft_pwm_0 > 0) WRITE(HEATER_0_PIN,1);
 | 
						|
    #if EXTRUDERS > 1
 | 
						|
    soft_pwm_1 = soft_pwm[1];
 | 
						|
    if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1);
 | 
						|
    #endif
 | 
						|
    #if EXTRUDERS > 2
 | 
						|
    soft_pwm_2 = soft_pwm[2];
 | 
						|
    if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1);
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
  if(soft_pwm_0 <= pwm_count) WRITE(HEATER_0_PIN,0);
 | 
						|
  #if EXTRUDERS > 1
 | 
						|
  if(soft_pwm_1 <= pwm_count) WRITE(HEATER_1_PIN,0);
 | 
						|
  #endif
 | 
						|
  #if EXTRUDERS > 2
 | 
						|
  if(soft_pwm_2 <= pwm_count) WRITE(HEATER_2_PIN,0);
 | 
						|
  #endif
 | 
						|
  
 | 
						|
  pwm_count++;
 | 
						|
  pwm_count &= 0x7f;
 | 
						|
  
 | 
						|
  switch(temp_state) {
 | 
						|
    case 0: // Prepare TEMP_0
 | 
						|
      #if (TEMP_0_PIN > -1)
 | 
						|
        #if TEMP_0_PIN > 7
 | 
						|
          ADCSRB = 1<<MUX5;
 | 
						|
        #else
 | 
						|
          ADCSRB = 0;
 | 
						|
        #endif
 | 
						|
        ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
 | 
						|
        ADCSRA |= 1<<ADSC; // Start conversion
 | 
						|
      #endif
 | 
						|
      #ifdef ULTIPANEL
 | 
						|
        buttons_check();
 | 
						|
      #endif
 | 
						|
      temp_state = 1;
 | 
						|
      break;
 | 
						|
    case 1: // Measure TEMP_0
 | 
						|
      #if (TEMP_0_PIN > -1)
 | 
						|
        raw_temp_0_value += ADC;
 | 
						|
      #endif
 | 
						|
      #ifdef HEATER_0_USES_MAX6675 // TODO remove the blocking
 | 
						|
        raw_temp_0_value = read_max6675();
 | 
						|
      #endif
 | 
						|
      temp_state = 2;
 | 
						|
      break;
 | 
						|
    case 2: // Prepare TEMP_BED
 | 
						|
      #if (TEMP_BED_PIN > -1)
 | 
						|
        #if TEMP_BED_PIN > 7
 | 
						|
          ADCSRB = 1<<MUX5;
 | 
						|
        #endif
 | 
						|
        ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
 | 
						|
        ADCSRA |= 1<<ADSC; // Start conversion
 | 
						|
      #endif
 | 
						|
      #ifdef ULTIPANEL
 | 
						|
        buttons_check();
 | 
						|
      #endif
 | 
						|
      temp_state = 3;
 | 
						|
      break;
 | 
						|
    case 3: // Measure TEMP_BED
 | 
						|
      #if (TEMP_BED_PIN > -1)
 | 
						|
        raw_temp_bed_value += ADC;
 | 
						|
      #endif
 | 
						|
      temp_state = 4;
 | 
						|
      break;
 | 
						|
    case 4: // Prepare TEMP_1
 | 
						|
      #if (TEMP_1_PIN > -1)
 | 
						|
        #if TEMP_1_PIN > 7
 | 
						|
          ADCSRB = 1<<MUX5;
 | 
						|
        #else
 | 
						|
          ADCSRB = 0;
 | 
						|
        #endif
 | 
						|
        ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
 | 
						|
        ADCSRA |= 1<<ADSC; // Start conversion
 | 
						|
      #endif
 | 
						|
      #ifdef ULTIPANEL
 | 
						|
        buttons_check();
 | 
						|
      #endif
 | 
						|
      temp_state = 5;
 | 
						|
      break;
 | 
						|
    case 5: // Measure TEMP_1
 | 
						|
      #if (TEMP_1_PIN > -1)
 | 
						|
        raw_temp_1_value += ADC;
 | 
						|
      #endif
 | 
						|
      temp_state = 6;
 | 
						|
      break;
 | 
						|
    case 6: // Prepare TEMP_2
 | 
						|
      #if (TEMP_2_PIN > -1)
 | 
						|
        #if TEMP_2_PIN > 7
 | 
						|
          ADCSRB = 1<<MUX5;
 | 
						|
        #else
 | 
						|
          ADCSRB = 0;
 | 
						|
        #endif
 | 
						|
        ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
 | 
						|
        ADCSRA |= 1<<ADSC; // Start conversion
 | 
						|
      #endif
 | 
						|
      #ifdef ULTIPANEL
 | 
						|
        buttons_check();
 | 
						|
      #endif
 | 
						|
      temp_state = 7;
 | 
						|
      break;
 | 
						|
    case 7: // Measure TEMP_2
 | 
						|
      #if (TEMP_2_PIN > -1)
 | 
						|
        raw_temp_2_value += ADC;
 | 
						|
      #endif
 | 
						|
      temp_state = 0;
 | 
						|
      temp_count++;
 | 
						|
      break;
 | 
						|
//    default:
 | 
						|
//      SERIAL_ERROR_START;
 | 
						|
//      SERIAL_ERRORLNPGM("Temp measurement error!");
 | 
						|
//      break;
 | 
						|
  }
 | 
						|
    
 | 
						|
  if(temp_count >= 16) // 8 ms * 16 = 128ms.
 | 
						|
  {
 | 
						|
    #if defined(HEATER_0_USES_AD595) || defined(HEATER_0_USES_MAX6675)
 | 
						|
      current_raw[0] = raw_temp_0_value;
 | 
						|
    #else
 | 
						|
      current_raw[0] = 16383 - raw_temp_0_value;
 | 
						|
    #endif
 | 
						|
 | 
						|
#if EXTRUDERS > 1    
 | 
						|
    #ifdef HEATER_1_USES_AD595
 | 
						|
      current_raw[1] = raw_temp_1_value;
 | 
						|
    #else
 | 
						|
      current_raw[1] = 16383 - raw_temp_1_value;
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
    
 | 
						|
#if EXTRUDERS > 2
 | 
						|
    #ifdef HEATER_2_USES_AD595
 | 
						|
      current_raw[2] = raw_temp_2_value;
 | 
						|
    #else
 | 
						|
      current_raw[2] = 16383 - raw_temp_2_value;
 | 
						|
    #endif
 | 
						|
#endif
 | 
						|
    
 | 
						|
    #ifdef BED_USES_AD595
 | 
						|
      current_raw_bed = raw_temp_bed_value;
 | 
						|
    #else
 | 
						|
      current_raw_bed = 16383 - raw_temp_bed_value;
 | 
						|
    #endif
 | 
						|
    
 | 
						|
    temp_meas_ready = true;
 | 
						|
    temp_count = 0;
 | 
						|
    raw_temp_0_value = 0;
 | 
						|
    raw_temp_1_value = 0;
 | 
						|
    raw_temp_2_value = 0;
 | 
						|
    raw_temp_bed_value = 0;
 | 
						|
 | 
						|
    for(unsigned char e = 0; e < EXTRUDERS; e++) {
 | 
						|
       if(current_raw[e] >= maxttemp[e]) {
 | 
						|
          target_raw[e] = 0;
 | 
						|
          max_temp_error(e);
 | 
						|
          #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | 
						|
          {
 | 
						|
            Stop();;
 | 
						|
          }
 | 
						|
          #endif
 | 
						|
       }
 | 
						|
       if(current_raw[e] <= minttemp[e]) {
 | 
						|
          target_raw[e] = 0;
 | 
						|
          min_temp_error(e);
 | 
						|
          #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | 
						|
          {
 | 
						|
            Stop();
 | 
						|
          }
 | 
						|
          #endif
 | 
						|
       }
 | 
						|
    }
 | 
						|
  
 | 
						|
#if defined(BED_MAXTEMP) && (HEATER_BED_PIN > -1)
 | 
						|
    if(current_raw_bed >= bed_maxttemp) {
 | 
						|
       target_raw_bed = 0;
 | 
						|
       bed_max_temp_error();
 | 
						|
       Stop();
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
}
 | 
						|
 |