667 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			667 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**
 | |
|  * ConfigurationStore.cpp
 | |
|  *
 | |
|  * Configuration and EEPROM storage
 | |
|  *
 | |
|  * V15 EEPROM Layout:
 | |
|  *
 | |
|  *  ver
 | |
|  *  axis_steps_per_unit (x4)
 | |
|  *  max_feedrate (x4)
 | |
|  *  max_acceleration_units_per_sq_second (x4)
 | |
|  *  acceleration
 | |
|  *  retract_acceleration
 | |
|  *  minimumfeedrate
 | |
|  *  mintravelfeedrate
 | |
|  *  minsegmenttime
 | |
|  *  max_xy_jerk
 | |
|  *  max_z_jerk
 | |
|  *  max_e_jerk
 | |
|  *  add_homing (x3)
 | |
|  *
 | |
|  * DELTA:
 | |
|  *  endstop_adj (x3)
 | |
|  *  delta_radius
 | |
|  *  delta_diagonal_rod
 | |
|  *  delta_segments_per_second
 | |
|  *
 | |
|  * ULTIPANEL:
 | |
|  *  plaPreheatHotendTemp
 | |
|  *  plaPreheatHPBTemp
 | |
|  *  plaPreheatFanSpeed
 | |
|  *  absPreheatHotendTemp
 | |
|  *  absPreheatHPBTemp
 | |
|  *  absPreheatFanSpeed
 | |
|  *  zprobe_zoffset
 | |
|  *
 | |
|  * PIDTEMP:
 | |
|  *  Kp[0], Ki[0], Kd[0], Kc[0]
 | |
|  *  Kp[1], Ki[1], Kd[1], Kc[1]
 | |
|  *  Kp[2], Ki[2], Kd[2], Kc[2]
 | |
|  *  Kp[3], Ki[3], Kd[3], Kc[3]
 | |
|  *
 | |
|  * DOGLCD:
 | |
|  *  lcd_contrast
 | |
|  *
 | |
|  * SCARA:
 | |
|  *  axis_scaling (x3)
 | |
|  *
 | |
|  * FWRETRACT:
 | |
|  *  autoretract_enabled
 | |
|  *  retract_length
 | |
|  *  retract_length_swap
 | |
|  *  retract_feedrate
 | |
|  *  retract_zlift
 | |
|  *  retract_recover_length
 | |
|  *  retract_recover_length_swap
 | |
|  *  retract_recover_feedrate
 | |
|  *
 | |
|  *  volumetric_enabled
 | |
|  *
 | |
|  *  filament_size (x4)
 | |
|  *
 | |
|  */
 | |
| #include "Marlin.h"
 | |
| #include "language.h"
 | |
| #include "planner.h"
 | |
| #include "temperature.h"
 | |
| #include "ultralcd.h"
 | |
| #include "ConfigurationStore.h"
 | |
| 
 | |
| void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
 | |
|   uint8_t c;
 | |
|   while(size--) {
 | |
|     eeprom_write_byte((unsigned char*)pos, *value);
 | |
|     c = eeprom_read_byte((unsigned char*)pos);
 | |
|     if (c != *value) {
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
 | |
|     }
 | |
|     pos++;
 | |
|     value++;
 | |
|   };
 | |
| }
 | |
| void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
 | |
|   do {
 | |
|     *value = eeprom_read_byte((unsigned char*)pos);
 | |
|     pos++;
 | |
|     value++;
 | |
|   } while (--size);
 | |
| }
 | |
| #define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
 | |
| #define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
 | |
| 
 | |
| //======================================================================================
 | |
| 
 | |
| #define DUMMY_PID_VALUE 3000.0f
 | |
| 
 | |
| #define EEPROM_OFFSET 100
 | |
| 
 | |
| 
 | |
| // IMPORTANT:  Whenever there are changes made to the variables stored in EEPROM
 | |
| // in the functions below, also increment the version number. This makes sure that
 | |
| // the default values are used whenever there is a change to the data, to prevent
 | |
| // wrong data being written to the variables.
 | |
| // ALSO:  always make sure the variables in the Store and retrieve sections are in the same order.
 | |
| 
 | |
| #define EEPROM_VERSION "V15"
 | |
| 
 | |
| #ifdef EEPROM_SETTINGS
 | |
| 
 | |
| void Config_StoreSettings()  {
 | |
|   float dummy = 0.0f;
 | |
|   char ver[4] = "000";
 | |
|   int i = EEPROM_OFFSET;
 | |
|   EEPROM_WRITE_VAR(i, ver); // invalidate data first
 | |
|   EEPROM_WRITE_VAR(i, axis_steps_per_unit);
 | |
|   EEPROM_WRITE_VAR(i, max_feedrate);
 | |
|   EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
 | |
|   EEPROM_WRITE_VAR(i, acceleration);
 | |
|   EEPROM_WRITE_VAR(i, retract_acceleration);
 | |
|   EEPROM_WRITE_VAR(i, minimumfeedrate);
 | |
|   EEPROM_WRITE_VAR(i, mintravelfeedrate);
 | |
|   EEPROM_WRITE_VAR(i, minsegmenttime);
 | |
|   EEPROM_WRITE_VAR(i, max_xy_jerk);
 | |
|   EEPROM_WRITE_VAR(i, max_z_jerk);
 | |
|   EEPROM_WRITE_VAR(i, max_e_jerk);
 | |
|   EEPROM_WRITE_VAR(i, add_homing);
 | |
| 
 | |
|   #ifdef DELTA
 | |
|     EEPROM_WRITE_VAR(i, endstop_adj);               // 3 floats
 | |
|     EEPROM_WRITE_VAR(i, delta_radius);              // 1 float
 | |
|     EEPROM_WRITE_VAR(i, delta_diagonal_rod);        // 1 float
 | |
|     EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
 | |
|   #else
 | |
|     dummy = 0.0f;
 | |
|     for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
 | |
|   #endif
 | |
| 
 | |
|   #ifndef ULTIPANEL
 | |
|     int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
 | |
|         absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
 | |
|   #endif // !ULTIPANEL
 | |
| 
 | |
|   EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
 | |
|   EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
 | |
|   EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
 | |
|   EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
 | |
|   EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
 | |
|   EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
 | |
|   EEPROM_WRITE_VAR(i, zprobe_zoffset);
 | |
| 
 | |
|   for (int e = 0; e < 4; e++) {
 | |
| 
 | |
|     #ifdef PIDTEMP
 | |
|       if (e < EXTRUDERS) {
 | |
|         EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
 | |
|         EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
 | |
|         EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
 | |
|         #ifdef PID_ADD_EXTRUSION_RATE
 | |
|           EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
 | |
|         #else
 | |
|           dummy = 1.0f; // 1.0 = default kc
 | |
|           EEPROM_WRITE_VAR(dummmy);
 | |
|         #endif
 | |
|       }
 | |
|       else {
 | |
|     #else // !PIDTEMP
 | |
|       {
 | |
|     #endif // !PIDTEMP
 | |
| 
 | |
|         dummy = DUMMY_PID_VALUE;
 | |
|         EEPROM_WRITE_VAR(i, dummy);
 | |
|         dummy = 0.0f;
 | |
|         for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
 | |
|       }
 | |
| 
 | |
|   } // Extruders Loop
 | |
| 
 | |
|   #ifndef DOGLCD
 | |
|     int lcd_contrast = 32;
 | |
|   #endif
 | |
|   EEPROM_WRITE_VAR(i, lcd_contrast);
 | |
| 
 | |
|   #ifdef SCARA
 | |
|     EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
 | |
|   #else
 | |
|     dummy = 1.0f;
 | |
|     EEPROM_WRITE_VAR(i, dummy);
 | |
|   #endif
 | |
| 
 | |
|   #ifdef FWRETRACT
 | |
|     EEPROM_WRITE_VAR(i, autoretract_enabled);
 | |
|     EEPROM_WRITE_VAR(i, retract_length);
 | |
|     #if EXTRUDERS > 1
 | |
|       EEPROM_WRITE_VAR(i, retract_length_swap);
 | |
|     #else
 | |
|       dummy = 0.0f;
 | |
|       EEPROM_WRITE_VAR(i, dummy);
 | |
|     #endif
 | |
|     EEPROM_WRITE_VAR(i, retract_feedrate);
 | |
|     EEPROM_WRITE_VAR(i, retract_zlift);
 | |
|     EEPROM_WRITE_VAR(i, retract_recover_length);
 | |
|     #if EXTRUDERS > 1
 | |
|       EEPROM_WRITE_VAR(i, retract_recover_length_swap);
 | |
|     #else
 | |
|       dummy = 0.0f;
 | |
|       EEPROM_WRITE_VAR(i, dummy);
 | |
|     #endif
 | |
|     EEPROM_WRITE_VAR(i, retract_recover_feedrate);
 | |
|   #endif // FWRETRACT
 | |
| 
 | |
|   EEPROM_WRITE_VAR(i, volumetric_enabled);
 | |
| 
 | |
|   // Save filament sizes
 | |
|   for (int q = 0; q < 4; q++) {
 | |
|     if (q < EXTRUDERS) dummy = filament_size[q];
 | |
|     EEPROM_WRITE_VAR(i, dummy);
 | |
|   }
 | |
| 
 | |
|   int storageSize = i;
 | |
| 
 | |
|   char ver2[4] = EEPROM_VERSION;
 | |
|   int j = EEPROM_OFFSET;
 | |
|   EEPROM_WRITE_VAR(j, ver2); // validate data
 | |
| 
 | |
|   // Report storage size
 | |
|   SERIAL_ECHO_START;
 | |
|   SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
 | |
|   SERIAL_ECHOLNPGM(" bytes)");
 | |
| }
 | |
| 
 | |
| void Config_RetrieveSettings() {
 | |
| 
 | |
|   int i = EEPROM_OFFSET;
 | |
|   char stored_ver[4];
 | |
|   char ver[4] = EEPROM_VERSION;
 | |
|   EEPROM_READ_VAR(i, stored_ver); //read stored version
 | |
|   //  SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
 | |
| 
 | |
|   if (strncmp(ver, stored_ver, 3) != 0) {
 | |
|     Config_ResetDefault();
 | |
|   }
 | |
|   else {
 | |
|     float dummy = 0;
 | |
| 
 | |
|     // version number match
 | |
|     EEPROM_READ_VAR(i, axis_steps_per_unit);
 | |
|     EEPROM_READ_VAR(i, max_feedrate);
 | |
|     EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);
 | |
| 
 | |
|         // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
 | |
|     reset_acceleration_rates();
 | |
| 
 | |
|     EEPROM_READ_VAR(i, acceleration);
 | |
|     EEPROM_READ_VAR(i, retract_acceleration);
 | |
|     EEPROM_READ_VAR(i, minimumfeedrate);
 | |
|     EEPROM_READ_VAR(i, mintravelfeedrate);
 | |
|     EEPROM_READ_VAR(i, minsegmenttime);
 | |
|     EEPROM_READ_VAR(i, max_xy_jerk);
 | |
|     EEPROM_READ_VAR(i, max_z_jerk);
 | |
|     EEPROM_READ_VAR(i, max_e_jerk);
 | |
|     EEPROM_READ_VAR(i, add_homing);
 | |
| 
 | |
|     #ifdef DELTA
 | |
|       EEPROM_READ_VAR(i, endstop_adj);                // 3 floats
 | |
|       EEPROM_READ_VAR(i, delta_radius);               // 1 float
 | |
|       EEPROM_READ_VAR(i, delta_diagonal_rod);         // 1 float
 | |
|       EEPROM_READ_VAR(i, delta_segments_per_second);  // 1 float
 | |
|     #else
 | |
|       for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
 | |
|     #endif
 | |
| 
 | |
|     #ifndef ULTIPANEL
 | |
|       int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
 | |
|           absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
 | |
|     #endif
 | |
| 
 | |
|     EEPROM_READ_VAR(i, plaPreheatHotendTemp);
 | |
|     EEPROM_READ_VAR(i, plaPreheatHPBTemp);
 | |
|     EEPROM_READ_VAR(i, plaPreheatFanSpeed);
 | |
|     EEPROM_READ_VAR(i, absPreheatHotendTemp);
 | |
|     EEPROM_READ_VAR(i, absPreheatHPBTemp);
 | |
|     EEPROM_READ_VAR(i, absPreheatFanSpeed);
 | |
|     EEPROM_READ_VAR(i, zprobe_zoffset);
 | |
| 
 | |
|     #ifdef PIDTEMP
 | |
|       for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
 | |
|         EEPROM_READ_VAR(i, dummy);
 | |
|         if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
 | |
|           // do not need to scale PID values as the values in EEPROM are already scaled
 | |
|           PID_PARAM(Kp, e) = dummy;
 | |
|           EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
 | |
|           EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
 | |
|           #ifdef PID_ADD_EXTRUSION_RATE
 | |
|             EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
 | |
|           #else
 | |
|             EEPROM_READ_VAR(i, dummy);
 | |
|           #endif
 | |
|         }
 | |
|         else {
 | |
|           for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
 | |
|         }
 | |
|       }
 | |
|     #else // !PIDTEMP
 | |
|       // 4 x 4 = 16 slots for PID parameters
 | |
|       for (int q=16; q--;) EEPROM_READ_VAR(i, dummy);  // 4x Kp, Ki, Kd, Kc
 | |
|     #endif // !PIDTEMP
 | |
| 
 | |
|     #ifndef DOGLCD
 | |
|       int lcd_contrast;
 | |
|     #endif
 | |
|     EEPROM_READ_VAR(i, lcd_contrast);
 | |
| 
 | |
|     #ifdef SCARA
 | |
|       EEPROM_READ_VAR(i, axis_scaling);  // 3 floats
 | |
|     #else
 | |
|       EEPROM_READ_VAR(i, dummy);
 | |
|     #endif
 | |
| 
 | |
|     #ifdef FWRETRACT
 | |
|       EEPROM_READ_VAR(i, autoretract_enabled);
 | |
|       EEPROM_READ_VAR(i, retract_length);
 | |
|       #if EXTRUDERS > 1
 | |
|         EEPROM_READ_VAR(i, retract_length_swap);
 | |
|       #else
 | |
|         EEPROM_READ_VAR(i, dummy);
 | |
|       #endif
 | |
|       EEPROM_READ_VAR(i, retract_feedrate);
 | |
|       EEPROM_READ_VAR(i, retract_zlift);
 | |
|       EEPROM_READ_VAR(i, retract_recover_length);
 | |
|       #if EXTRUDERS > 1
 | |
|         EEPROM_READ_VAR(i, retract_recover_length_swap);
 | |
|       #else
 | |
|         EEPROM_READ_VAR(i, dummy);
 | |
|       #endif
 | |
|       EEPROM_READ_VAR(i, retract_recover_feedrate);
 | |
|     #endif // FWRETRACT
 | |
| 
 | |
|     EEPROM_READ_VAR(i, volumetric_enabled);
 | |
| 
 | |
|     for (int q = 0; q < 4; q++) {
 | |
|       EEPROM_READ_VAR(i, dummy);
 | |
|       if (q < EXTRUDERS) filament_size[q] = dummy;
 | |
|     }
 | |
| 
 | |
|     calculate_volumetric_multipliers();
 | |
|     // Call updatePID (similar to when we have processed M301)
 | |
|     updatePID();
 | |
| 
 | |
|     // Report settings retrieved and length
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHO(ver);
 | |
|     SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
 | |
|     SERIAL_ECHOLNPGM(" bytes)");
 | |
|   }
 | |
| 
 | |
|   #ifdef EEPROM_CHITCHAT
 | |
|     Config_PrintSettings();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #endif // EEPROM_SETTINGS
 | |
| 
 | |
| void Config_ResetDefault() {
 | |
|   float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
 | |
|   float tmp2[] = DEFAULT_MAX_FEEDRATE;
 | |
|   long tmp3[] = DEFAULT_MAX_ACCELERATION;
 | |
|   for (int i = 0; i < NUM_AXIS; i++) {
 | |
|     axis_steps_per_unit[i] = tmp1[i];
 | |
|     max_feedrate[i] = tmp2[i];
 | |
|     max_acceleration_units_per_sq_second[i] = tmp3[i];
 | |
|     #ifdef SCARA
 | |
|       if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
 | |
|         axis_scaling[i] = 1;
 | |
|     #endif
 | |
|   }
 | |
| 
 | |
|   // steps per sq second need to be updated to agree with the units per sq second
 | |
|   reset_acceleration_rates();
 | |
| 
 | |
|   acceleration = DEFAULT_ACCELERATION;
 | |
|   retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
 | |
|   minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
 | |
|   minsegmenttime = DEFAULT_MINSEGMENTTIME;
 | |
|   mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
 | |
|   max_xy_jerk = DEFAULT_XYJERK;
 | |
|   max_z_jerk = DEFAULT_ZJERK;
 | |
|   max_e_jerk = DEFAULT_EJERK;
 | |
|   add_homing[X_AXIS] = add_homing[Y_AXIS] = add_homing[Z_AXIS] = 0;
 | |
| 
 | |
|   #ifdef DELTA
 | |
|     endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
 | |
|     delta_radius =  DELTA_RADIUS;
 | |
|     delta_diagonal_rod =  DELTA_DIAGONAL_ROD;
 | |
|     delta_segments_per_second =  DELTA_SEGMENTS_PER_SECOND;
 | |
|     recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | |
|   #endif
 | |
| 
 | |
|   #ifdef ULTIPANEL
 | |
|     plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
 | |
|     plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
 | |
|     plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
 | |
|     absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
 | |
|     absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
 | |
|     absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
 | |
|   #endif
 | |
| 
 | |
|   #ifdef ENABLE_AUTO_BED_LEVELING
 | |
|     zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|   #endif
 | |
| 
 | |
|   #ifdef DOGLCD
 | |
|     lcd_contrast = DEFAULT_LCD_CONTRAST;
 | |
|   #endif
 | |
| 
 | |
|   #ifdef PIDTEMP
 | |
|     #ifdef PID_PARAMS_PER_EXTRUDER
 | |
|       for (int e = 0; e < EXTRUDERS; e++)
 | |
|     #else
 | |
|       int e = 0; // only need to write once
 | |
|     #endif
 | |
|     {
 | |
|       PID_PARAM(Kp, e) = DEFAULT_Kp;
 | |
|       PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
 | |
|       PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
 | |
|       #ifdef PID_ADD_EXTRUSION_RATE
 | |
|         PID_PARAM(Kc, e) = DEFAULT_Kc;
 | |
|       #endif
 | |
|     }
 | |
|     // call updatePID (similar to when we have processed M301)
 | |
|     updatePID();
 | |
|   #endif // PIDTEMP
 | |
| 
 | |
|   #ifdef FWRETRACT
 | |
|     autoretract_enabled = false;
 | |
|     retract_length = RETRACT_LENGTH;
 | |
|     #if EXTRUDERS > 1
 | |
|       retract_length_swap = RETRACT_LENGTH_SWAP;
 | |
|     #endif
 | |
|     retract_feedrate = RETRACT_FEEDRATE;
 | |
|     retract_zlift = RETRACT_ZLIFT;
 | |
|     retract_recover_length = RETRACT_RECOVER_LENGTH;
 | |
|     #if EXTRUDERS > 1
 | |
|       retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
 | |
|     #endif
 | |
|     retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
 | |
|   #endif
 | |
| 
 | |
|   volumetric_enabled = false;
 | |
|   filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | |
|   #if EXTRUDERS > 1
 | |
|     filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | |
|     #if EXTRUDERS > 2
 | |
|       filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | |
|       #if EXTRUDERS > 3
 | |
|         filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | |
|       #endif
 | |
|     #endif
 | |
|   #endif
 | |
|   calculate_volumetric_multipliers();
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
|   SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
 | |
| }
 | |
| 
 | |
| #ifndef DISABLE_M503
 | |
| 
 | |
| void Config_PrintSettings(bool forReplay) {
 | |
|   // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
| 
 | |
|   if (!forReplay) {
 | |
|     SERIAL_ECHOLNPGM("Steps per unit:");
 | |
|     SERIAL_ECHO_START;
 | |
|   }
 | |
|   SERIAL_ECHOPAIR("  M92 X", axis_steps_per_unit[X_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
 | |
|   SERIAL_EOL;
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
| 
 | |
|   #ifdef SCARA
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("Scaling factors:");
 | |
|       SERIAL_ECHO_START;
 | |
|     }
 | |
|     SERIAL_ECHOPAIR("  M365 X", axis_scaling[X_AXIS]);
 | |
|     SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
 | |
|     SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
 | |
|     SERIAL_EOL;
 | |
|     SERIAL_ECHO_START;
 | |
|   #endif // SCARA
 | |
| 
 | |
|   if (!forReplay) {
 | |
|     SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
 | |
|     SERIAL_ECHO_START;
 | |
|   }
 | |
|   SERIAL_ECHOPAIR("  M203 X", max_feedrate[X_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
 | |
|   SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
 | |
|   SERIAL_EOL;
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
|   if (!forReplay) {
 | |
|     SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
 | |
|     SERIAL_ECHO_START;
 | |
|   }
 | |
|   SERIAL_ECHOPAIR("  M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
 | |
|   SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
 | |
|   SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
 | |
|   SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
 | |
|   SERIAL_EOL;
 | |
|   SERIAL_ECHO_START;
 | |
|   if (!forReplay) {
 | |
|     SERIAL_ECHOLNPGM("Acceleration: S=acceleration, T=retract acceleration");
 | |
|     SERIAL_ECHO_START;
 | |
|   }
 | |
|   SERIAL_ECHOPAIR("  M204 S", acceleration );
 | |
|   SERIAL_ECHOPAIR(" T", retract_acceleration);
 | |
|   SERIAL_EOL;
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
|   if (!forReplay) {
 | |
|     SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
 | |
|     SERIAL_ECHO_START;
 | |
|   }
 | |
|   SERIAL_ECHOPAIR("  M205 S", minimumfeedrate );
 | |
|   SERIAL_ECHOPAIR(" T", mintravelfeedrate );
 | |
|   SERIAL_ECHOPAIR(" B", minsegmenttime );
 | |
|   SERIAL_ECHOPAIR(" X", max_xy_jerk );
 | |
|   SERIAL_ECHOPAIR(" Z", max_z_jerk);
 | |
|   SERIAL_ECHOPAIR(" E", max_e_jerk);
 | |
|   SERIAL_EOL;
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
|   if (!forReplay) {
 | |
|     SERIAL_ECHOLNPGM("Home offset (mm):");
 | |
|     SERIAL_ECHO_START;
 | |
|   }
 | |
|   SERIAL_ECHOPAIR("  M206 X", add_homing[X_AXIS] );
 | |
|   SERIAL_ECHOPAIR(" Y", add_homing[Y_AXIS] );
 | |
|   SERIAL_ECHOPAIR(" Z", add_homing[Z_AXIS] );
 | |
|   SERIAL_EOL;
 | |
| 
 | |
|   #ifdef DELTA
 | |
|     SERIAL_ECHO_START;
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("Endstop adjustement (mm):");
 | |
|       SERIAL_ECHO_START;
 | |
|     }
 | |
|     SERIAL_ECHOPAIR("  M666 X", endstop_adj[X_AXIS] );
 | |
|     SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] );
 | |
|     SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] );
 | |
|     SERIAL_EOL;
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPAIR("  M665 L", delta_diagonal_rod );
 | |
|     SERIAL_ECHOPAIR(" R", delta_radius );
 | |
|     SERIAL_ECHOPAIR(" S", delta_segments_per_second );
 | |
|     SERIAL_EOL;
 | |
|   #endif // DELTA
 | |
| 
 | |
|   #ifdef PIDTEMP
 | |
|     SERIAL_ECHO_START;
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("PID settings:");
 | |
|       SERIAL_ECHO_START;
 | |
|     }
 | |
|     SERIAL_ECHOPAIR("   M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
 | |
|     SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
 | |
|     SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
 | |
|     SERIAL_EOL;
 | |
|   #endif // PIDTEMP
 | |
| 
 | |
|   #ifdef FWRETRACT
 | |
| 
 | |
|     SERIAL_ECHO_START;
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
 | |
|       SERIAL_ECHO_START;
 | |
|     }
 | |
|     SERIAL_ECHOPAIR("   M207 S", retract_length);
 | |
|     SERIAL_ECHOPAIR(" F", retract_feedrate*60);
 | |
|     SERIAL_ECHOPAIR(" Z", retract_zlift);
 | |
|     SERIAL_EOL;
 | |
|     SERIAL_ECHO_START;
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
 | |
|       SERIAL_ECHO_START;
 | |
|     }
 | |
|     SERIAL_ECHOPAIR("   M208 S", retract_recover_length);
 | |
|     SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
 | |
|     SERIAL_EOL;
 | |
|     SERIAL_ECHO_START;
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
 | |
|       SERIAL_ECHO_START;
 | |
|     }
 | |
|     SERIAL_ECHOPAIR("   M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
 | |
|     SERIAL_EOL;
 | |
| 
 | |
|     #if EXTRUDERS > 1
 | |
|       if (!forReplay) {
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOLNPGM("Multi-extruder settings:");
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOPAIR("   Swap retract length (mm):    ", retract_length_swap);
 | |
|         SERIAL_EOL;
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOPAIR("   Swap rec. addl. length (mm): ", retract_recover_length_swap);
 | |
|         SERIAL_EOL;
 | |
|       }
 | |
|     #endif // EXTRUDERS > 1
 | |
| 
 | |
|   #endif // FWRETRACT
 | |
| 
 | |
|   SERIAL_ECHO_START;
 | |
|   if (volumetric_enabled) {
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("Filament settings:");
 | |
|       SERIAL_ECHO_START;
 | |
|     }
 | |
|     SERIAL_ECHOPAIR("   M200 D", filament_size[0]);
 | |
|     SERIAL_EOL;
 | |
| 
 | |
|     #if EXTRUDERS > 1
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOPAIR("   M200 T1 D", filament_size[1]);
 | |
|       SERIAL_EOL;
 | |
|       #if EXTRUDERS > 2
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOPAIR("   M200 T2 D", filament_size[2]);
 | |
|         SERIAL_EOL;
 | |
|         #if EXTRUDERS > 3
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOPAIR("   M200 T3 D", filament_size[3]);
 | |
|           SERIAL_EOL;
 | |
|         #endif
 | |
|       #endif
 | |
|     #endif
 | |
| 
 | |
|   } else {
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("Filament settings: Disabled");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #ifdef CUSTOM_M_CODES
 | |
|     SERIAL_ECHO_START;
 | |
|     if (!forReplay) {
 | |
|       SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
 | |
|       SERIAL_ECHO_START;
 | |
|     }
 | |
|     SERIAL_ECHO("   M");
 | |
|     SERIAL_ECHO(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
 | |
|     SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
 | |
|     SERIAL_EOL;
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #endif // !DISABLE_M503
 |