4670 lines
		
	
	
		
			154 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			4670 lines
		
	
	
		
			154 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* -*- c++ -*- */
 | |
| 
 | |
| /*
 | |
|     Reprap firmware based on Sprinter and grbl.
 | |
|  Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
| 
 | |
|  This program is free software: you can redistribute it and/or modify
 | |
|  it under the terms of the GNU General Public License as published by
 | |
|  the Free Software Foundation, either version 3 of the License, or
 | |
|  (at your option) any later version.
 | |
| 
 | |
|  This program is distributed in the hope that it will be useful,
 | |
|  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  GNU General Public License for more details.
 | |
| 
 | |
|  You should have received a copy of the GNU General Public License
 | |
|  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  This firmware is a mashup between Sprinter and grbl.
 | |
|   (https://github.com/kliment/Sprinter)
 | |
|   (https://github.com/simen/grbl/tree)
 | |
| 
 | |
|  It has preliminary support for Matthew Roberts advance algorithm
 | |
|     http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 | |
|  */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| #include "vector_3.h"
 | |
|   #ifdef AUTO_BED_LEVELING_GRID
 | |
|     #include "qr_solve.h"
 | |
|   #endif
 | |
| #endif // ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
| #include "ultralcd.h"
 | |
| #include "planner.h"
 | |
| #include "stepper.h"
 | |
| #include "temperature.h"
 | |
| #include "motion_control.h"
 | |
| #include "cardreader.h"
 | |
| #include "watchdog.h"
 | |
| #include "ConfigurationStore.h"
 | |
| #include "language.h"
 | |
| #include "pins_arduino.h"
 | |
| #include "math.h"
 | |
| 
 | |
| #ifdef BLINKM
 | |
|   #include "BlinkM.h"
 | |
|   #include "Wire.h"
 | |
| #endif
 | |
| 
 | |
| #if NUM_SERVOS > 0
 | |
|   #include "Servo.h"
 | |
| #endif
 | |
| 
 | |
| #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | |
|   #include <SPI.h>
 | |
| #endif
 | |
| 
 | |
| // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
 | |
| // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
 | |
| 
 | |
| //Implemented Codes
 | |
| //-------------------
 | |
| // G0  -> G1
 | |
| // G1  - Coordinated Movement X Y Z E
 | |
| // G2  - CW ARC
 | |
| // G3  - CCW ARC
 | |
| // G4  - Dwell S<seconds> or P<milliseconds>
 | |
| // G10 - retract filament according to settings of M207
 | |
| // G11 - retract recover filament according to settings of M208
 | |
| // G28 - Home all Axis
 | |
| // G29 - Detailed Z-Probe, probes the bed at 3 or more points.  Will fail if you haven't homed yet.
 | |
| // G30 - Single Z Probe, probes bed at current XY location.
 | |
| // G31 - Dock sled (Z_PROBE_SLED only)
 | |
| // G32 - Undock sled (Z_PROBE_SLED only)
 | |
| // G90 - Use Absolute Coordinates
 | |
| // G91 - Use Relative Coordinates
 | |
| // G92 - Set current position to coordinates given
 | |
| 
 | |
| // M Codes
 | |
| // M0   - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
 | |
| // M1   - Same as M0
 | |
| // M17  - Enable/Power all stepper motors
 | |
| // M18  - Disable all stepper motors; same as M84
 | |
| // M20  - List SD card
 | |
| // M21  - Init SD card
 | |
| // M22  - Release SD card
 | |
| // M23  - Select SD file (M23 filename.g)
 | |
| // M24  - Start/resume SD print
 | |
| // M25  - Pause SD print
 | |
| // M26  - Set SD position in bytes (M26 S12345)
 | |
| // M27  - Report SD print status
 | |
| // M28  - Start SD write (M28 filename.g)
 | |
| // M29  - Stop SD write
 | |
| // M30  - Delete file from SD (M30 filename.g)
 | |
| // M31  - Output time since last M109 or SD card start to serial
 | |
| // M32  - Select file and start SD print (Can be used _while_ printing from SD card files):
 | |
| //        syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
 | |
| //        Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
 | |
| //        The '#' is necessary when calling from within sd files, as it stops buffer prereading
 | |
| // M42  - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
 | |
| // M80  - Turn on Power Supply
 | |
| // M81  - Turn off Power Supply
 | |
| // M82  - Set E codes absolute (default)
 | |
| // M83  - Set E codes relative while in Absolute Coordinates (G90) mode
 | |
| // M84  - Disable steppers until next move,
 | |
| //        or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled.  S0 to disable the timeout.
 | |
| // M85  - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
 | |
| // M92  - Set axis_steps_per_unit - same syntax as G92
 | |
| // M104 - Set extruder target temp
 | |
| // M105 - Read current temp
 | |
| // M106 - Fan on
 | |
| // M107 - Fan off
 | |
| // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
 | |
| //        Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
 | |
| //        IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
 | |
| // M112 - Emergency stop
 | |
| // M114 - Output current position to serial port
 | |
| // M115 - Capabilities string
 | |
| // M117 - display message
 | |
| // M119 - Output Endstop status to serial port
 | |
| // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
 | |
| // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
 | |
| // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
 | |
| // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
 | |
| // M140 - Set bed target temp
 | |
| // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
 | |
| // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
 | |
| //        Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
 | |
| // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
 | |
| // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
 | |
| // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
 | |
| // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
 | |
| // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2  also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
 | |
| // M205 -  advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
 | |
| // M206 - Set additional homing offset
 | |
| // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
 | |
| // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
 | |
| // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | |
| // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
 | |
| // M220 S<factor in percent>- set speed factor override percentage
 | |
| // M221 S<factor in percent>- set extrude factor override percentage
 | |
| // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
 | |
| // M240 - Trigger a camera to take a photograph
 | |
| // M250 - Set LCD contrast C<contrast value> (value 0..63)
 | |
| // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
 | |
| // M300 - Play beep sound S<frequency Hz> P<duration ms>
 | |
| // M301 - Set PID parameters P I and D
 | |
| // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
 | |
| // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
 | |
| // M304 - Set bed PID parameters P I and D
 | |
| // M400 - Finish all moves
 | |
| // M401 - Lower z-probe if present
 | |
| // M402 - Raise z-probe if present
 | |
| // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
 | |
| // M405 - Turn on Filament Sensor extrusion control.  Optional D<delay in cm> to set delay in centimeters between sensor and extruder 
 | |
| // M406 - Turn off Filament Sensor extrusion control 
 | |
| // M407 - Displays measured filament diameter 
 | |
| // M500 - Store parameters in EEPROM
 | |
| // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
 | |
| // M502 - Revert to the default "factory settings".  You still need to store them in EEPROM afterwards if you want to.
 | |
| // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
 | |
| // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
 | |
| // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | |
| // M665 - Set delta configurations
 | |
| // M666 - Set delta endstop adjustment
 | |
| // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
 | |
| // M907 - Set digital trimpot motor current using axis codes.
 | |
| // M908 - Control digital trimpot directly.
 | |
| // M350 - Set microstepping mode.
 | |
| // M351 - Toggle MS1 MS2 pins directly.
 | |
| 
 | |
| // ************ SCARA Specific - This can change to suit future G-code regulations
 | |
| // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
 | |
| // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
 | |
| // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
 | |
| // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
 | |
| // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
 | |
| // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
 | |
| //************* SCARA End ***************
 | |
| 
 | |
| // M928 - Start SD logging (M928 filename.g) - ended by M29
 | |
| // M999 - Restart after being stopped by error
 | |
| 
 | |
| #ifdef SDSUPPORT
 | |
|   CardReader card;
 | |
| #endif
 | |
| 
 | |
| float homing_feedrate[] = HOMING_FEEDRATE;
 | |
| bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
 | |
| int feedmultiply = 100; //100->1 200->2
 | |
| int saved_feedmultiply;
 | |
| int extrudemultiply = 100; //100->1 200->2
 | |
| int extruder_multiply[EXTRUDERS] = { 100
 | |
|   #if EXTRUDERS > 1
 | |
|     , 100
 | |
|     #if EXTRUDERS > 2
 | |
|       , 100
 | |
| 	    #if EXTRUDERS > 3
 | |
|       	, 100
 | |
| 	    #endif
 | |
|     #endif
 | |
|   #endif
 | |
| };
 | |
| bool volumetric_enabled = false;
 | |
| float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
 | |
|   #if EXTRUDERS > 1
 | |
|       , DEFAULT_NOMINAL_FILAMENT_DIA
 | |
|     #if EXTRUDERS > 2
 | |
|        , DEFAULT_NOMINAL_FILAMENT_DIA
 | |
|       #if EXTRUDERS > 3
 | |
|         , DEFAULT_NOMINAL_FILAMENT_DIA
 | |
|       #endif
 | |
|     #endif
 | |
|   #endif
 | |
| };
 | |
| float volumetric_multiplier[EXTRUDERS] = {1.0
 | |
|   #if EXTRUDERS > 1
 | |
|     , 1.0
 | |
|     #if EXTRUDERS > 2
 | |
|       , 1.0
 | |
|       #if EXTRUDERS > 3
 | |
|         , 1.0
 | |
|       #endif
 | |
|     #endif
 | |
|   #endif
 | |
| };
 | |
| float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
 | |
| float add_homing[3] = { 0, 0, 0 };
 | |
| #ifdef DELTA
 | |
|   float endstop_adj[3] = { 0, 0, 0 };
 | |
| #endif
 | |
| 
 | |
| float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
 | |
| float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
 | |
| bool axis_known_position[3] = { false, false, false };
 | |
| float zprobe_zoffset;
 | |
| 
 | |
| // Extruder offset
 | |
| #if EXTRUDERS > 1
 | |
| #ifndef DUAL_X_CARRIAGE
 | |
|   #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
 | |
| #else
 | |
|   #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
 | |
| #endif
 | |
| float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
 | |
|   #if defined(EXTRUDER_OFFSET_X)
 | |
|     EXTRUDER_OFFSET_X
 | |
|   #else
 | |
|     0
 | |
|   #endif
 | |
|   ,
 | |
|   #if defined(EXTRUDER_OFFSET_Y)
 | |
|     EXTRUDER_OFFSET_Y
 | |
|   #else
 | |
|     0
 | |
|   #endif
 | |
| };
 | |
| #endif
 | |
| 
 | |
| uint8_t active_extruder = 0;
 | |
| int fanSpeed = 0;
 | |
| 
 | |
| #ifdef SERVO_ENDSTOPS
 | |
|   int servo_endstops[] = SERVO_ENDSTOPS;
 | |
|   int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
 | |
| #endif
 | |
| 
 | |
| #ifdef BARICUDA
 | |
|   int ValvePressure = 0;
 | |
|   int EtoPPressure = 0;
 | |
| #endif
 | |
| 
 | |
| #ifdef FWRETRACT
 | |
| 
 | |
|   bool autoretract_enabled = false;
 | |
|   bool retracted[EXTRUDERS] = { false
 | |
|     #if EXTRUDERS > 1
 | |
|       , false
 | |
|       #if EXTRUDERS > 2
 | |
|         , false
 | |
|         #if EXTRUDERS > 3
 | |
|        	  , false
 | |
|       	#endif
 | |
|       #endif
 | |
|     #endif
 | |
|   };
 | |
|   bool retracted_swap[EXTRUDERS] = { false
 | |
|     #if EXTRUDERS > 1
 | |
|       , false
 | |
|       #if EXTRUDERS > 2
 | |
|         , false
 | |
|         #if EXTRUDERS > 3
 | |
|        	  , false
 | |
|       	#endif
 | |
|       #endif
 | |
|     #endif
 | |
|   };
 | |
| 
 | |
|   float retract_length = RETRACT_LENGTH;
 | |
|   float retract_length_swap = RETRACT_LENGTH_SWAP;
 | |
|   float retract_feedrate = RETRACT_FEEDRATE;
 | |
|   float retract_zlift = RETRACT_ZLIFT;
 | |
|   float retract_recover_length = RETRACT_RECOVER_LENGTH;
 | |
|   float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
 | |
|   float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
 | |
| 
 | |
| #endif // FWRETRACT
 | |
| 
 | |
| #ifdef ULTIPANEL
 | |
|   bool powersupply = 
 | |
|     #ifdef PS_DEFAULT_OFF
 | |
|       false
 | |
|     #else
 | |
|   	  true
 | |
|     #endif
 | |
|   ;
 | |
| #endif
 | |
| 
 | |
| #ifdef DELTA
 | |
|   float delta[3] = { 0, 0, 0 };
 | |
|   #define SIN_60 0.8660254037844386
 | |
|   #define COS_60 0.5
 | |
|   // these are the default values, can be overriden with M665
 | |
|   float delta_radius = DELTA_RADIUS;
 | |
|   float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
 | |
|   float delta_tower1_y = -COS_60 * delta_radius;	   
 | |
|   float delta_tower2_x =  SIN_60 * delta_radius; // front right tower
 | |
|   float delta_tower2_y = -COS_60 * delta_radius;	   
 | |
|   float delta_tower3_x = 0;                      // back middle tower
 | |
|   float delta_tower3_y = delta_radius;
 | |
|   float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
 | |
|   float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
 | |
|   float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
 | |
| #endif
 | |
| 
 | |
| #ifdef SCARA
 | |
|   float axis_scaling[3] = { 1, 1, 1 };    // Build size scaling, default to 1
 | |
| #endif				
 | |
| 
 | |
| bool cancel_heatup = false;
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
|   //Variables for Filament Sensor input 
 | |
|   float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA;  //Set nominal filament width, can be changed with M404 
 | |
|   bool filament_sensor=false;  //M405 turns on filament_sensor control, M406 turns it off 
 | |
|   float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter 
 | |
|   signed char measurement_delay[MAX_MEASUREMENT_DELAY+1];  //ring buffer to delay measurement  store extruder factor after subtracting 100 
 | |
|   int delay_index1=0;  //index into ring buffer
 | |
|   int delay_index2=-1;  //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
 | |
|   float delay_dist=0; //delay distance counter  
 | |
|   int meas_delay_cm = MEASUREMENT_DELAY_CM;  //distance delay setting
 | |
| #endif
 | |
| 
 | |
| const char errormagic[] PROGMEM = "Error:";
 | |
| const char echomagic[] PROGMEM = "echo:";
 | |
| 
 | |
| const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
 | |
| static float destination[NUM_AXIS] = { 0, 0, 0, 0 };
 | |
| 
 | |
| #ifndef DELTA
 | |
|   static float delta[3] = { 0, 0, 0 };
 | |
| #endif
 | |
| 
 | |
| static float offset[3] = { 0, 0, 0 };
 | |
| static bool home_all_axis = true;
 | |
| static float feedrate = 1500.0, next_feedrate, saved_feedrate;
 | |
| static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
 | |
| 
 | |
| static bool relative_mode = false;  //Determines Absolute or Relative Coordinates
 | |
| 
 | |
| static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
 | |
| static bool fromsd[BUFSIZE];
 | |
| static int bufindr = 0;
 | |
| static int bufindw = 0;
 | |
| static int buflen = 0;
 | |
| 
 | |
| static char serial_char;
 | |
| static int serial_count = 0;
 | |
| static boolean comment_mode = false;
 | |
| static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
 | |
| 
 | |
| const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
 | |
| 
 | |
| // Inactivity shutdown
 | |
| static unsigned long previous_millis_cmd = 0;
 | |
| static unsigned long max_inactive_time = 0;
 | |
| static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
 | |
| 
 | |
| unsigned long starttime = 0; ///< Print job start time
 | |
| unsigned long stoptime = 0;  ///< Print job stop time
 | |
| 
 | |
| static uint8_t tmp_extruder;
 | |
| 
 | |
| 
 | |
| bool Stopped = false;
 | |
| 
 | |
| #if NUM_SERVOS > 0
 | |
|   Servo servos[NUM_SERVOS];
 | |
| #endif
 | |
| 
 | |
| bool CooldownNoWait = true;
 | |
| bool target_direction;
 | |
| 
 | |
| #ifdef CHDK
 | |
|   unsigned long chdkHigh = 0;
 | |
|   boolean chdkActive = false;
 | |
| #endif
 | |
| 
 | |
| //===========================================================================
 | |
| //=============================Routines======================================
 | |
| //===========================================================================
 | |
| 
 | |
| void get_arc_coordinates();
 | |
| bool setTargetedHotend(int code);
 | |
| 
 | |
| void serial_echopair_P(const char *s_P, float v)
 | |
|     { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | |
| void serial_echopair_P(const char *s_P, double v)
 | |
|     { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | |
| void serial_echopair_P(const char *s_P, unsigned long v)
 | |
|     { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | |
| 
 | |
| #ifdef SDSUPPORT
 | |
|   #include "SdFatUtil.h"
 | |
|   int freeMemory() { return SdFatUtil::FreeRam(); }
 | |
| #else
 | |
|   extern "C" {
 | |
|     extern unsigned int __bss_end;
 | |
|     extern unsigned int __heap_start;
 | |
|     extern void *__brkval;
 | |
| 
 | |
|     int freeMemory() {
 | |
|       int free_memory;
 | |
| 
 | |
|       if ((int)__brkval == 0)
 | |
|         free_memory = ((int)&free_memory) - ((int)&__bss_end);
 | |
|       else
 | |
|         free_memory = ((int)&free_memory) - ((int)__brkval);
 | |
| 
 | |
|       return free_memory;
 | |
|     }
 | |
|   }
 | |
| #endif //!SDSUPPORT
 | |
| 
 | |
| //adds an command to the main command buffer
 | |
| //thats really done in a non-safe way.
 | |
| //needs overworking someday
 | |
| void enquecommand(const char *cmd)
 | |
| {
 | |
|   if(buflen < BUFSIZE)
 | |
|   {
 | |
|     //this is dangerous if a mixing of serial and this happens
 | |
|     strcpy(&(cmdbuffer[bufindw][0]),cmd);
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(MSG_Enqueing);
 | |
|     SERIAL_ECHO(cmdbuffer[bufindw]);
 | |
|     SERIAL_ECHOLNPGM("\"");
 | |
|     bufindw= (bufindw + 1)%BUFSIZE;
 | |
|     buflen += 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void enquecommand_P(const char *cmd)
 | |
| {
 | |
|   if(buflen < BUFSIZE)
 | |
|   {
 | |
|     //this is dangerous if a mixing of serial and this happens
 | |
|     strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(MSG_Enqueing);
 | |
|     SERIAL_ECHO(cmdbuffer[bufindw]);
 | |
|     SERIAL_ECHOLNPGM("\"");
 | |
|     bufindw= (bufindw + 1)%BUFSIZE;
 | |
|     buflen += 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void setup_killpin()
 | |
| {
 | |
|   #if defined(KILL_PIN) && KILL_PIN > -1
 | |
|     SET_INPUT(KILL_PIN);
 | |
|     WRITE(KILL_PIN,HIGH);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| // Set home pin
 | |
| void setup_homepin(void)
 | |
| {
 | |
| #if defined(HOME_PIN) && HOME_PIN > -1
 | |
|    SET_INPUT(HOME_PIN);
 | |
|    WRITE(HOME_PIN,HIGH);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| void setup_photpin()
 | |
| {
 | |
|   #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
 | |
|     SET_OUTPUT(PHOTOGRAPH_PIN);
 | |
|     WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void setup_powerhold()
 | |
| {
 | |
|   #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
 | |
|     SET_OUTPUT(SUICIDE_PIN);
 | |
|     WRITE(SUICIDE_PIN, HIGH);
 | |
|   #endif
 | |
|   #if defined(PS_ON_PIN) && PS_ON_PIN > -1
 | |
|     SET_OUTPUT(PS_ON_PIN);
 | |
| 	#if defined(PS_DEFAULT_OFF)
 | |
| 	  WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | |
|     #else
 | |
| 	  WRITE(PS_ON_PIN, PS_ON_AWAKE);
 | |
| 	#endif
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void suicide()
 | |
| {
 | |
|   #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
 | |
|     SET_OUTPUT(SUICIDE_PIN);
 | |
|     WRITE(SUICIDE_PIN, LOW);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void servo_init()
 | |
| {
 | |
|   #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
 | |
|     servos[0].attach(SERVO0_PIN);
 | |
|   #endif
 | |
|   #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
 | |
|     servos[1].attach(SERVO1_PIN);
 | |
|   #endif
 | |
|   #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
 | |
|     servos[2].attach(SERVO2_PIN);
 | |
|   #endif
 | |
|   #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
 | |
|     servos[3].attach(SERVO3_PIN);
 | |
|   #endif
 | |
|   #if (NUM_SERVOS >= 5)
 | |
|     #error "TODO: enter initalisation code for more servos"
 | |
|   #endif
 | |
| 
 | |
|   // Set position of Servo Endstops that are defined
 | |
|   #ifdef SERVO_ENDSTOPS
 | |
|   for(int8_t i = 0; i < 3; i++)
 | |
|   {
 | |
|     if(servo_endstops[i] > -1) {
 | |
|       servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
 | |
|     }
 | |
|   }
 | |
|   #endif
 | |
| 
 | |
|   #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
|   delay(PROBE_SERVO_DEACTIVATION_DELAY);
 | |
|   servos[servo_endstops[Z_AXIS]].detach();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| void setup()
 | |
| {
 | |
|   setup_killpin();
 | |
|   setup_powerhold();
 | |
|   MYSERIAL.begin(BAUDRATE);
 | |
|   SERIAL_PROTOCOLLNPGM("start");
 | |
|   SERIAL_ECHO_START;
 | |
| 
 | |
|   // Check startup - does nothing if bootloader sets MCUSR to 0
 | |
|   byte mcu = MCUSR;
 | |
|   if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
 | |
|   if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
 | |
|   if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
 | |
|   if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
 | |
|   if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
 | |
|   MCUSR=0;
 | |
| 
 | |
|   SERIAL_ECHOPGM(MSG_MARLIN);
 | |
|   SERIAL_ECHOLNPGM(STRING_VERSION);
 | |
|   #ifdef STRING_VERSION_CONFIG_H
 | |
|     #ifdef STRING_CONFIG_H_AUTHOR
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
 | |
|       SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
 | |
|       SERIAL_ECHOPGM(MSG_AUTHOR);
 | |
|       SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
 | |
|       SERIAL_ECHOPGM("Compiled: ");
 | |
|       SERIAL_ECHOLNPGM(__DATE__);
 | |
|     #endif // STRING_CONFIG_H_AUTHOR
 | |
|   #endif // STRING_VERSION_CONFIG_H
 | |
|   SERIAL_ECHO_START;
 | |
|   SERIAL_ECHOPGM(MSG_FREE_MEMORY);
 | |
|   SERIAL_ECHO(freeMemory());
 | |
|   SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
 | |
|   SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
 | |
|   for(int8_t i = 0; i < BUFSIZE; i++)
 | |
|   {
 | |
|     fromsd[i] = false;
 | |
|   }
 | |
| 
 | |
|   // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
 | |
|   Config_RetrieveSettings();
 | |
| 
 | |
|   tp_init();    // Initialize temperature loop
 | |
|   plan_init();  // Initialize planner;
 | |
|   watchdog_init();
 | |
|   st_init();    // Initialize stepper, this enables interrupts!
 | |
|   setup_photpin();
 | |
|   servo_init();
 | |
|   
 | |
| 
 | |
|   lcd_init();
 | |
|   _delay_ms(1000);	// wait 1sec to display the splash screen
 | |
| 
 | |
|   #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
 | |
|     SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
 | |
|   #endif
 | |
| 
 | |
|   #ifdef DIGIPOT_I2C
 | |
|     digipot_i2c_init();
 | |
|   #endif
 | |
| #ifdef Z_PROBE_SLED
 | |
|   pinMode(SERVO0_PIN, OUTPUT);
 | |
|   digitalWrite(SERVO0_PIN, LOW); // turn it off
 | |
| #endif // Z_PROBE_SLED
 | |
|   setup_homepin();
 | |
| }
 | |
| 
 | |
| 
 | |
| void loop()
 | |
| {
 | |
|   if(buflen < (BUFSIZE-1))
 | |
|     get_command();
 | |
|   #ifdef SDSUPPORT
 | |
|   card.checkautostart(false);
 | |
|   #endif
 | |
|   if(buflen)
 | |
|   {
 | |
|     #ifdef SDSUPPORT
 | |
|       if(card.saving)
 | |
|       {
 | |
|         if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
 | |
|         {
 | |
|           card.write_command(cmdbuffer[bufindr]);
 | |
|           if(card.logging)
 | |
|           {
 | |
|             process_commands();
 | |
|           }
 | |
|           else
 | |
|           {
 | |
|             SERIAL_PROTOCOLLNPGM(MSG_OK);
 | |
|           }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           card.closefile();
 | |
|           SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         process_commands();
 | |
|       }
 | |
|     #else
 | |
|       process_commands();
 | |
|     #endif //SDSUPPORT
 | |
|     buflen = (buflen-1);
 | |
|     bufindr = (bufindr + 1)%BUFSIZE;
 | |
|   }
 | |
|   //check heater every n milliseconds
 | |
|   manage_heater();
 | |
|   manage_inactivity();
 | |
|   checkHitEndstops();
 | |
|   lcd_update();
 | |
| }
 | |
| 
 | |
| void get_command()
 | |
| {
 | |
|   while( MYSERIAL.available() > 0  && buflen < BUFSIZE) {
 | |
|     serial_char = MYSERIAL.read();
 | |
|     if(serial_char == '\n' ||
 | |
|        serial_char == '\r' ||
 | |
|        (serial_char == ':' && comment_mode == false) ||
 | |
|        serial_count >= (MAX_CMD_SIZE - 1) )
 | |
|     {
 | |
|       if(!serial_count) { //if empty line
 | |
|         comment_mode = false; //for new command
 | |
|         return;
 | |
|       }
 | |
|       cmdbuffer[bufindw][serial_count] = 0; //terminate string
 | |
|       if(!comment_mode){
 | |
|         comment_mode = false; //for new command
 | |
|         fromsd[bufindw] = false;
 | |
|         if(strchr(cmdbuffer[bufindw], 'N') != NULL)
 | |
|         {
 | |
|           strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
 | |
|           gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
 | |
|           if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
 | |
|             SERIAL_ERROR_START;
 | |
|             SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
 | |
|             SERIAL_ERRORLN(gcode_LastN);
 | |
|             //Serial.println(gcode_N);
 | |
|             FlushSerialRequestResend();
 | |
|             serial_count = 0;
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           if(strchr(cmdbuffer[bufindw], '*') != NULL)
 | |
|           {
 | |
|             byte checksum = 0;
 | |
|             byte count = 0;
 | |
|             while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
 | |
|             strchr_pointer = strchr(cmdbuffer[bufindw], '*');
 | |
| 
 | |
|             if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
 | |
|               SERIAL_ERROR_START;
 | |
|               SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
 | |
|               SERIAL_ERRORLN(gcode_LastN);
 | |
|               FlushSerialRequestResend();
 | |
|               serial_count = 0;
 | |
|               return;
 | |
|             }
 | |
|             //if no errors, continue parsing
 | |
|           }
 | |
|           else
 | |
|           {
 | |
|             SERIAL_ERROR_START;
 | |
|             SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
 | |
|             SERIAL_ERRORLN(gcode_LastN);
 | |
|             FlushSerialRequestResend();
 | |
|             serial_count = 0;
 | |
|             return;
 | |
|           }
 | |
| 
 | |
|           gcode_LastN = gcode_N;
 | |
|           //if no errors, continue parsing
 | |
|         }
 | |
|         else  // if we don't receive 'N' but still see '*'
 | |
|         {
 | |
|           if((strchr(cmdbuffer[bufindw], '*') != NULL))
 | |
|           {
 | |
|             SERIAL_ERROR_START;
 | |
|             SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
 | |
|             SERIAL_ERRORLN(gcode_LastN);
 | |
|             serial_count = 0;
 | |
|             return;
 | |
|           }
 | |
|         }
 | |
|         if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
 | |
|           strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
 | |
|           switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
 | |
|           case 0:
 | |
|           case 1:
 | |
|           case 2:
 | |
|           case 3:
 | |
|             if (Stopped == true) {
 | |
|               SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | |
|               LCD_MESSAGEPGM(MSG_STOPPED);
 | |
|             }
 | |
|             break;
 | |
|           default:
 | |
|             break;
 | |
|           }
 | |
| 
 | |
|         }
 | |
| 
 | |
|         //If command was e-stop process now
 | |
|         if(strcmp(cmdbuffer[bufindw], "M112") == 0)
 | |
|           kill();
 | |
|         
 | |
|         bufindw = (bufindw + 1)%BUFSIZE;
 | |
|         buflen += 1;
 | |
|       }
 | |
|       serial_count = 0; //clear buffer
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if(serial_char == ';') comment_mode = true;
 | |
|       if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
 | |
|     }
 | |
|   }
 | |
|   #ifdef SDSUPPORT
 | |
|   if(!card.sdprinting || serial_count!=0){
 | |
|     return;
 | |
|   }
 | |
| 
 | |
|   //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
 | |
|   // if it occurs, stop_buffering is triggered and the buffer is ran dry.
 | |
|   // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
 | |
| 
 | |
|   static bool stop_buffering=false;
 | |
|   if(buflen==0) stop_buffering=false;
 | |
| 
 | |
|   while( !card.eof()  && buflen < BUFSIZE && !stop_buffering) {
 | |
|     int16_t n=card.get();
 | |
|     serial_char = (char)n;
 | |
|     if(serial_char == '\n' ||
 | |
|        serial_char == '\r' ||
 | |
|        (serial_char == '#' && comment_mode == false) ||
 | |
|        (serial_char == ':' && comment_mode == false) ||
 | |
|        serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
 | |
|     {
 | |
|       if(card.eof()){
 | |
|         SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
 | |
|         stoptime=millis();
 | |
|         char time[30];
 | |
|         unsigned long t=(stoptime-starttime)/1000;
 | |
|         int hours, minutes;
 | |
|         minutes=(t/60)%60;
 | |
|         hours=t/60/60;
 | |
|         sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
 | |
|         SERIAL_ECHO_START;
 | |
|         SERIAL_ECHOLN(time);
 | |
|         lcd_setstatus(time);
 | |
|         card.printingHasFinished();
 | |
|         card.checkautostart(true);
 | |
| 
 | |
|       }
 | |
|       if(serial_char=='#')
 | |
|         stop_buffering=true;
 | |
| 
 | |
|       if(!serial_count)
 | |
|       {
 | |
|         comment_mode = false; //for new command
 | |
|         return; //if empty line
 | |
|       }
 | |
|       cmdbuffer[bufindw][serial_count] = 0; //terminate string
 | |
| //      if(!comment_mode){
 | |
|         fromsd[bufindw] = true;
 | |
|         buflen += 1;
 | |
|         bufindw = (bufindw + 1)%BUFSIZE;
 | |
| //      }
 | |
|       comment_mode = false; //for new command
 | |
|       serial_count = 0; //clear buffer
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       if(serial_char == ';') comment_mode = true;
 | |
|       if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   #endif //SDSUPPORT
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| float code_value()
 | |
| {
 | |
|   return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
 | |
| }
 | |
| 
 | |
| long code_value_long()
 | |
| {
 | |
|   return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
 | |
| }
 | |
| 
 | |
| bool code_seen(char code)
 | |
| {
 | |
|   strchr_pointer = strchr(cmdbuffer[bufindr], code);
 | |
|   return (strchr_pointer != NULL);  //Return True if a character was found
 | |
| }
 | |
| 
 | |
| #define DEFINE_PGM_READ_ANY(type, reader)       \
 | |
|     static inline type pgm_read_any(const type *p)  \
 | |
|     { return pgm_read_##reader##_near(p); }
 | |
| 
 | |
| DEFINE_PGM_READ_ANY(float,       float);
 | |
| DEFINE_PGM_READ_ANY(signed char, byte);
 | |
| 
 | |
| #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
 | |
| static const PROGMEM type array##_P[3] =        \
 | |
|     { X_##CONFIG, Y_##CONFIG, Z_##CONFIG };     \
 | |
| static inline type array(int axis)          \
 | |
|     { return pgm_read_any(&array##_P[axis]); }
 | |
| 
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_min_pos,    MIN_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_max_pos,    MAX_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, base_home_pos,   HOME_POS);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, max_length,      MAX_LENGTH);
 | |
| XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
 | |
| XYZ_CONSTS_FROM_CONFIG(signed char, home_dir,  HOME_DIR);
 | |
| 
 | |
| #ifdef DUAL_X_CARRIAGE
 | |
|   #if EXTRUDERS == 1 || defined(COREXY) \
 | |
|       || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
 | |
|       || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
 | |
|       || !defined(X_MAX_PIN) || X_MAX_PIN < 0
 | |
|     #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
 | |
|   #endif
 | |
|   #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
 | |
|     #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
 | |
|   #endif
 | |
| 
 | |
| #define DXC_FULL_CONTROL_MODE 0
 | |
| #define DXC_AUTO_PARK_MODE    1
 | |
| #define DXC_DUPLICATION_MODE  2
 | |
| static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | |
| 
 | |
| static float x_home_pos(int extruder) {
 | |
|   if (extruder == 0)
 | |
|     return base_home_pos(X_AXIS) + add_homing[X_AXIS];
 | |
|   else
 | |
|     // In dual carriage mode the extruder offset provides an override of the
 | |
|     // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
 | |
|     // This allow soft recalibration of the second extruder offset position without firmware reflash
 | |
|     // (through the M218 command).
 | |
|     return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
 | |
| }
 | |
| 
 | |
| static int x_home_dir(int extruder) {
 | |
|   return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
 | |
| }
 | |
| 
 | |
| static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
 | |
| static bool active_extruder_parked = false; // used in mode 1 & 2
 | |
| static float raised_parked_position[NUM_AXIS]; // used in mode 1
 | |
| static unsigned long delayed_move_time = 0; // used in mode 1
 | |
| static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
 | |
| static float duplicate_extruder_temp_offset = 0; // used in mode 2
 | |
| bool extruder_duplication_enabled = false; // used in mode 2
 | |
| #endif //DUAL_X_CARRIAGE
 | |
| 
 | |
| static void axis_is_at_home(int axis) {
 | |
| #ifdef DUAL_X_CARRIAGE
 | |
|   if (axis == X_AXIS) {
 | |
|     if (active_extruder != 0) {
 | |
|       current_position[X_AXIS] = x_home_pos(active_extruder);
 | |
|       min_pos[X_AXIS] =          X2_MIN_POS;
 | |
|       max_pos[X_AXIS] =          max(extruder_offset[X_AXIS][1], X2_MAX_POS);
 | |
|       return;
 | |
|     }
 | |
|     else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
 | |
|       current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
 | |
|       min_pos[X_AXIS] =          base_min_pos(X_AXIS) + add_homing[X_AXIS];
 | |
|       max_pos[X_AXIS] =          min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
 | |
|                                   max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
 | |
|       return;
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| #ifdef SCARA
 | |
|    float homeposition[3];
 | |
|    char i;
 | |
|    
 | |
|    if (axis < 2)
 | |
|    {
 | |
|    
 | |
|      for (i=0; i<3; i++)
 | |
|      {
 | |
|         homeposition[i] = base_home_pos(i); 
 | |
|      }  
 | |
| 	// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
 | |
|    //  SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
 | |
|    // Works out real Homeposition angles using inverse kinematics, 
 | |
|    // and calculates homing offset using forward kinematics
 | |
|      calculate_delta(homeposition);
 | |
|      
 | |
|     // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
 | |
|     // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | |
|      
 | |
|      for (i=0; i<2; i++)
 | |
|      {
 | |
|         delta[i] -= add_homing[i];
 | |
|      } 
 | |
|      
 | |
|     // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
 | |
| 	// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
 | |
|     // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
 | |
|     // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | |
|       
 | |
|      calculate_SCARA_forward_Transform(delta);
 | |
|      
 | |
|     // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
 | |
|     // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | |
|      
 | |
|     current_position[axis] = delta[axis];
 | |
|     
 | |
|     // SCARA home positions are based on configuration since the actual limits are determined by the 
 | |
|     // inverse kinematic transform.
 | |
|     min_pos[axis] =          base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | |
|     max_pos[axis] =          base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
 | |
|    } 
 | |
|    else
 | |
|    {
 | |
|       current_position[axis] = base_home_pos(axis) + add_homing[axis];
 | |
|       min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
 | |
|       max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
 | |
|    }
 | |
| #else
 | |
|   current_position[axis] = base_home_pos(axis) + add_homing[axis];
 | |
|   min_pos[axis] =          base_min_pos(axis) + add_homing[axis];
 | |
|   max_pos[axis] =          base_max_pos(axis) + add_homing[axis];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| #ifdef AUTO_BED_LEVELING_GRID
 | |
| static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
 | |
| {
 | |
|     vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
 | |
|     planeNormal.debug("planeNormal");
 | |
|     plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | |
|     //bedLevel.debug("bedLevel");
 | |
| 
 | |
|     //plan_bed_level_matrix.debug("bed level before");
 | |
|     //vector_3 uncorrected_position = plan_get_position_mm();
 | |
|     //uncorrected_position.debug("position before");
 | |
| 
 | |
|     vector_3 corrected_position = plan_get_position();
 | |
| //    corrected_position.debug("position after");
 | |
|     current_position[X_AXIS] = corrected_position.x;
 | |
|     current_position[Y_AXIS] = corrected_position.y;
 | |
|     current_position[Z_AXIS] = corrected_position.z;
 | |
| 
 | |
|     // put the bed at 0 so we don't go below it.
 | |
|     current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
 | |
| 
 | |
|     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| }
 | |
| 
 | |
| #else // not AUTO_BED_LEVELING_GRID
 | |
| 
 | |
| static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
 | |
| 
 | |
|     plan_bed_level_matrix.set_to_identity();
 | |
| 
 | |
|     vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
 | |
|     vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
 | |
|     vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
 | |
| 
 | |
|     vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
 | |
|     vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
 | |
|     vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
 | |
|     planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
 | |
| 
 | |
|     plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
 | |
| 
 | |
|     vector_3 corrected_position = plan_get_position();
 | |
|     current_position[X_AXIS] = corrected_position.x;
 | |
|     current_position[Y_AXIS] = corrected_position.y;
 | |
|     current_position[Z_AXIS] = corrected_position.z;
 | |
| 
 | |
|     // put the bed at 0 so we don't go below it.
 | |
|     current_position[Z_AXIS] = zprobe_zoffset;
 | |
| 
 | |
|     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_GRID
 | |
| 
 | |
| static void run_z_probe() {
 | |
|     plan_bed_level_matrix.set_to_identity();
 | |
|     feedrate = homing_feedrate[Z_AXIS];
 | |
| 
 | |
|     // move down until you find the bed
 | |
|     float zPosition = -10;
 | |
|     plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
 | |
|     st_synchronize();
 | |
| 
 | |
|         // we have to let the planner know where we are right now as it is not where we said to go.
 | |
|     zPosition = st_get_position_mm(Z_AXIS);
 | |
|     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
 | |
| 
 | |
|     // move up the retract distance
 | |
|     zPosition += home_retract_mm(Z_AXIS);
 | |
|     plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
 | |
|     st_synchronize();
 | |
| 
 | |
|     // move back down slowly to find bed
 | |
|     feedrate = homing_feedrate[Z_AXIS]/4;
 | |
|     zPosition -= home_retract_mm(Z_AXIS) * 2;
 | |
|     plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
 | |
|     st_synchronize();
 | |
| 
 | |
|     current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
 | |
|     // make sure the planner knows where we are as it may be a bit different than we last said to move to
 | |
|     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| }
 | |
| 
 | |
| static void do_blocking_move_to(float x, float y, float z) {
 | |
|     float oldFeedRate = feedrate;
 | |
| 
 | |
|     feedrate = homing_feedrate[Z_AXIS];
 | |
| 
 | |
|     current_position[Z_AXIS] = z;
 | |
|     plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
 | |
|     st_synchronize();
 | |
| 
 | |
|     feedrate = XY_TRAVEL_SPEED;
 | |
| 
 | |
|     current_position[X_AXIS] = x;
 | |
|     current_position[Y_AXIS] = y;
 | |
|     plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
 | |
|     st_synchronize();
 | |
| 
 | |
|     feedrate = oldFeedRate;
 | |
| }
 | |
| 
 | |
| static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
 | |
|     do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
 | |
| }
 | |
| 
 | |
| static void setup_for_endstop_move() {
 | |
|     saved_feedrate = feedrate;
 | |
|     saved_feedmultiply = feedmultiply;
 | |
|     feedmultiply = 100;
 | |
|     previous_millis_cmd = millis();
 | |
| 
 | |
|     enable_endstops(true);
 | |
| }
 | |
| 
 | |
| static void clean_up_after_endstop_move() {
 | |
| #ifdef ENDSTOPS_ONLY_FOR_HOMING
 | |
|     enable_endstops(false);
 | |
| #endif
 | |
| 
 | |
|     feedrate = saved_feedrate;
 | |
|     feedmultiply = saved_feedmultiply;
 | |
|     previous_millis_cmd = millis();
 | |
| }
 | |
| 
 | |
| static void engage_z_probe() {
 | |
|     // Engage Z Servo endstop if enabled
 | |
|     #ifdef SERVO_ENDSTOPS
 | |
|     if (servo_endstops[Z_AXIS] > -1) {
 | |
| #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
|         servos[servo_endstops[Z_AXIS]].attach(0);
 | |
| #endif
 | |
|         servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
 | |
| #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
|         delay(PROBE_SERVO_DEACTIVATION_DELAY);
 | |
|         servos[servo_endstops[Z_AXIS]].detach();
 | |
| #endif
 | |
|     }
 | |
|     #endif
 | |
| }
 | |
| 
 | |
| static void retract_z_probe() {
 | |
|     // Retract Z Servo endstop if enabled
 | |
|     #ifdef SERVO_ENDSTOPS
 | |
|     if (servo_endstops[Z_AXIS] > -1) {
 | |
| #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
|         servos[servo_endstops[Z_AXIS]].attach(0);
 | |
| #endif
 | |
|         servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
 | |
| #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
|         delay(PROBE_SERVO_DEACTIVATION_DELAY);
 | |
|         servos[servo_endstops[Z_AXIS]].detach();
 | |
| #endif
 | |
|     }
 | |
|     #endif
 | |
| }
 | |
| 
 | |
| /// Probe bed height at position (x,y), returns the measured z value
 | |
| static float probe_pt(float x, float y, float z_before, int retract_action=0) {
 | |
|   // move to right place
 | |
|   do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
 | |
|   do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
 | |
| 
 | |
| #ifndef Z_PROBE_SLED
 | |
|    if ((retract_action==0) || (retract_action==1)) 
 | |
|      engage_z_probe();   // Engage Z Servo endstop if available
 | |
| #endif // Z_PROBE_SLED
 | |
|   run_z_probe();
 | |
|   float measured_z = current_position[Z_AXIS];
 | |
| #ifndef Z_PROBE_SLED
 | |
|   if ((retract_action==0) || (retract_action==3)) 
 | |
|      retract_z_probe();
 | |
| #endif // Z_PROBE_SLED
 | |
| 
 | |
|   SERIAL_PROTOCOLPGM(MSG_BED);
 | |
|   SERIAL_PROTOCOLPGM(" x: ");
 | |
|   SERIAL_PROTOCOL(x);
 | |
|   SERIAL_PROTOCOLPGM(" y: ");
 | |
|   SERIAL_PROTOCOL(y);
 | |
|   SERIAL_PROTOCOLPGM(" z: ");
 | |
|   SERIAL_PROTOCOL(measured_z);
 | |
|   SERIAL_PROTOCOLPGM("\n");
 | |
|   return measured_z;
 | |
| }
 | |
| 
 | |
| #endif // #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
| static void homeaxis(int axis) {
 | |
| #define HOMEAXIS_DO(LETTER) \
 | |
|   ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
 | |
| 
 | |
|   if (axis==X_AXIS ? HOMEAXIS_DO(X) :
 | |
|       axis==Y_AXIS ? HOMEAXIS_DO(Y) :
 | |
|       axis==Z_AXIS ? HOMEAXIS_DO(Z) :
 | |
|       0) {
 | |
|     int axis_home_dir = home_dir(axis);
 | |
| #ifdef DUAL_X_CARRIAGE
 | |
|     if (axis == X_AXIS)
 | |
|       axis_home_dir = x_home_dir(active_extruder);
 | |
| #endif
 | |
| 
 | |
|     current_position[axis] = 0;
 | |
|     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| 
 | |
| 
 | |
| #ifndef Z_PROBE_SLED
 | |
|     // Engage Servo endstop if enabled
 | |
|     #ifdef SERVO_ENDSTOPS
 | |
|       #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
|         if (axis==Z_AXIS) {
 | |
|           engage_z_probe();
 | |
|         }
 | |
| 	    else
 | |
|       #endif
 | |
|       if (servo_endstops[axis] > -1) {
 | |
|         servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
 | |
|       }
 | |
|     #endif
 | |
| #endif // Z_PROBE_SLED
 | |
|     destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
 | |
|     feedrate = homing_feedrate[axis];
 | |
|     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | |
|     st_synchronize();
 | |
| 
 | |
|     current_position[axis] = 0;
 | |
|     plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|     destination[axis] = -home_retract_mm(axis) * axis_home_dir;
 | |
|     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | |
|     st_synchronize();
 | |
| 
 | |
|     destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
 | |
| #ifdef DELTA
 | |
|     feedrate = homing_feedrate[axis]/10;
 | |
| #else
 | |
|     feedrate = homing_feedrate[axis]/2 ;
 | |
| #endif
 | |
|     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | |
|     st_synchronize();
 | |
| #ifdef DELTA
 | |
|     // retrace by the amount specified in endstop_adj
 | |
|     if (endstop_adj[axis] * axis_home_dir < 0) {
 | |
|       plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|       destination[axis] = endstop_adj[axis];
 | |
|       plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | |
|       st_synchronize();
 | |
|     }
 | |
| #endif
 | |
|     axis_is_at_home(axis);
 | |
|     destination[axis] = current_position[axis];
 | |
|     feedrate = 0.0;
 | |
|     endstops_hit_on_purpose();
 | |
|     axis_known_position[axis] = true;
 | |
| 
 | |
|     // Retract Servo endstop if enabled
 | |
|     #ifdef SERVO_ENDSTOPS
 | |
|       if (servo_endstops[axis] > -1) {
 | |
|         servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
 | |
|       }
 | |
|     #endif
 | |
| #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
|   #ifndef Z_PROBE_SLED
 | |
|     if (axis==Z_AXIS) retract_z_probe();
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
|   }
 | |
| }
 | |
| #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
 | |
| 
 | |
| void refresh_cmd_timeout(void)
 | |
| {
 | |
|   previous_millis_cmd = millis();
 | |
| }
 | |
| 
 | |
| #ifdef FWRETRACT
 | |
|   void retract(bool retracting, bool swapretract = false) {
 | |
|     if(retracting && !retracted[active_extruder]) {
 | |
|       destination[X_AXIS]=current_position[X_AXIS];
 | |
|       destination[Y_AXIS]=current_position[Y_AXIS];
 | |
|       destination[Z_AXIS]=current_position[Z_AXIS];
 | |
|       destination[E_AXIS]=current_position[E_AXIS];
 | |
|       if (swapretract) {
 | |
|         current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
 | |
|       } else {
 | |
|         current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
 | |
|       }
 | |
|       plan_set_e_position(current_position[E_AXIS]);
 | |
|       float oldFeedrate = feedrate;
 | |
|       feedrate=retract_feedrate*60;
 | |
|       retracted[active_extruder]=true;
 | |
|       prepare_move();
 | |
|       if(retract_zlift > 0.01) {
 | |
|          current_position[Z_AXIS]-=retract_zlift;
 | |
| #ifdef DELTA
 | |
|          calculate_delta(current_position); // change cartesian kinematic to  delta kinematic;
 | |
|          plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | |
| #else
 | |
|          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| #endif
 | |
|          prepare_move();
 | |
|       }
 | |
|       feedrate = oldFeedrate;
 | |
|     } else if(!retracting && retracted[active_extruder]) {
 | |
|       destination[X_AXIS]=current_position[X_AXIS];
 | |
|       destination[Y_AXIS]=current_position[Y_AXIS];
 | |
|       destination[Z_AXIS]=current_position[Z_AXIS];
 | |
|       destination[E_AXIS]=current_position[E_AXIS];
 | |
|       if(retract_zlift > 0.01) {
 | |
|          current_position[Z_AXIS]+=retract_zlift;
 | |
| #ifdef DELTA
 | |
|          calculate_delta(current_position); // change cartesian kinematic  to  delta kinematic;
 | |
|          plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | |
| #else
 | |
|          plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| #endif
 | |
|          //prepare_move();
 | |
|       }
 | |
|       if (swapretract) {
 | |
|         current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder]; 
 | |
|       } else {
 | |
|         current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder]; 
 | |
|       }
 | |
|       plan_set_e_position(current_position[E_AXIS]);
 | |
|       float oldFeedrate = feedrate;
 | |
|       feedrate=retract_recover_feedrate*60;
 | |
|       retracted[active_extruder]=false;
 | |
|       prepare_move();
 | |
|       feedrate = oldFeedrate;
 | |
|     }
 | |
|   } //retract
 | |
| #endif //FWRETRACT
 | |
| 
 | |
| #ifdef Z_PROBE_SLED
 | |
| //
 | |
| // Method to dock/undock a sled designed by Charles Bell.
 | |
| //
 | |
| // dock[in]     If true, move to MAX_X and engage the electromagnet
 | |
| // offset[in]   The additional distance to move to adjust docking location
 | |
| //
 | |
| static void dock_sled(bool dock, int offset=0) {
 | |
|  int z_loc;
 | |
|  
 | |
|  if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
 | |
|    LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | |
|    SERIAL_ECHO_START;
 | |
|    SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | |
|    return;
 | |
|  }
 | |
| 
 | |
|  if (dock) {
 | |
|    do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
 | |
|                        current_position[Y_AXIS],
 | |
|                        current_position[Z_AXIS]);
 | |
|    // turn off magnet
 | |
|    digitalWrite(SERVO0_PIN, LOW);
 | |
|  } else {
 | |
|    if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
 | |
|      z_loc = Z_RAISE_BEFORE_PROBING;
 | |
|    else
 | |
|      z_loc = current_position[Z_AXIS];
 | |
|    do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
 | |
|                        Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
 | |
|    // turn on magnet
 | |
|    digitalWrite(SERVO0_PIN, HIGH);
 | |
|  }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void process_commands()
 | |
| {
 | |
|   unsigned long codenum; //throw away variable
 | |
|   char *starpos = NULL;
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
|   float x_tmp, y_tmp, z_tmp, real_z;
 | |
| #endif
 | |
|   if(code_seen('G'))
 | |
|   {
 | |
|     switch((int)code_value())
 | |
|     {
 | |
|     case 0: // G0 -> G1
 | |
|     case 1: // G1
 | |
|       if(Stopped == false) {
 | |
|         get_coordinates(); // For X Y Z E F
 | |
|           #ifdef FWRETRACT
 | |
|             if(autoretract_enabled)
 | |
|             if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
 | |
|               float echange=destination[E_AXIS]-current_position[E_AXIS];
 | |
|               if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
 | |
|                   current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
 | |
|                   plan_set_e_position(current_position[E_AXIS]); //AND from the planner
 | |
|                   retract(!retracted);
 | |
|                   return;
 | |
|               }
 | |
|             }
 | |
|           #endif //FWRETRACT
 | |
|         prepare_move();
 | |
|         //ClearToSend();
 | |
|       }
 | |
|       break;
 | |
| #ifndef SCARA //disable arc support
 | |
|     case 2: // G2  - CW ARC
 | |
|       if(Stopped == false) {
 | |
|         get_arc_coordinates();
 | |
|         prepare_arc_move(true);
 | |
|       }
 | |
|       break;
 | |
|     case 3: // G3  - CCW ARC
 | |
|       if(Stopped == false) {
 | |
|         get_arc_coordinates();
 | |
|         prepare_arc_move(false);
 | |
|       }
 | |
|       break;
 | |
| #endif
 | |
|     case 4: // G4 dwell
 | |
|       LCD_MESSAGEPGM(MSG_DWELL);
 | |
|       codenum = 0;
 | |
|       if(code_seen('P')) codenum = code_value(); // milliseconds to wait
 | |
|       if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
 | |
| 
 | |
|       st_synchronize();
 | |
|       codenum += millis();  // keep track of when we started waiting
 | |
|       previous_millis_cmd = millis();
 | |
|       while(millis() < codenum) {
 | |
|         manage_heater();
 | |
|         manage_inactivity();
 | |
|         lcd_update();
 | |
|       }
 | |
|       break;
 | |
|       #ifdef FWRETRACT
 | |
|       case 10: // G10 retract
 | |
|        #if EXTRUDERS > 1
 | |
|         retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
 | |
|         retract(true,retracted_swap[active_extruder]);
 | |
|        #else
 | |
|         retract(true);
 | |
|        #endif
 | |
|       break;
 | |
|       case 11: // G11 retract_recover
 | |
|        #if EXTRUDERS > 1
 | |
|         retract(false,retracted_swap[active_extruder]);
 | |
|        #else
 | |
|         retract(false);
 | |
|        #endif 
 | |
|       break;
 | |
|       #endif //FWRETRACT
 | |
|     case 28: //G28 Home all Axis one at a time
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
|       plan_bed_level_matrix.set_to_identity();  //Reset the plane ("erase" all leveling data)
 | |
| #endif //ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
|       saved_feedrate = feedrate;
 | |
|       saved_feedmultiply = feedmultiply;
 | |
|       feedmultiply = 100;
 | |
|       previous_millis_cmd = millis();
 | |
| 
 | |
|       enable_endstops(true);
 | |
| 
 | |
|       for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
|         destination[i] = current_position[i];
 | |
|       }
 | |
|       feedrate = 0.0;
 | |
| 
 | |
| #ifdef DELTA
 | |
|           // A delta can only safely home all axis at the same time
 | |
|           // all axis have to home at the same time
 | |
| 
 | |
|           // Move all carriages up together until the first endstop is hit.
 | |
|           current_position[X_AXIS] = 0;
 | |
|           current_position[Y_AXIS] = 0;
 | |
|           current_position[Z_AXIS] = 0;
 | |
|           plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| 
 | |
|           destination[X_AXIS] = 3 * Z_MAX_LENGTH;
 | |
|           destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
 | |
|           destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
 | |
|           feedrate = 1.732 * homing_feedrate[X_AXIS];
 | |
|           plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | |
|           st_synchronize();
 | |
|           endstops_hit_on_purpose();
 | |
| 
 | |
|           current_position[X_AXIS] = destination[X_AXIS];
 | |
|           current_position[Y_AXIS] = destination[Y_AXIS];
 | |
|           current_position[Z_AXIS] = destination[Z_AXIS];
 | |
| 
 | |
|           // take care of back off and rehome now we are all at the top
 | |
|           HOMEAXIS(X);
 | |
|           HOMEAXIS(Y);
 | |
|           HOMEAXIS(Z);
 | |
| 
 | |
|           calculate_delta(current_position);
 | |
|           plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | |
| 
 | |
| #else // NOT DELTA
 | |
| 
 | |
|       home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
 | |
| 
 | |
|       #if Z_HOME_DIR > 0                      // If homing away from BED do Z first
 | |
|       if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
 | |
|         HOMEAXIS(Z);
 | |
|       }
 | |
|       #endif
 | |
| 
 | |
|       #ifdef QUICK_HOME
 | |
|       if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) )  //first diagonal move
 | |
|       {
 | |
|         current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
 | |
| 
 | |
|        #ifndef DUAL_X_CARRIAGE
 | |
|         int x_axis_home_dir = home_dir(X_AXIS);
 | |
|        #else
 | |
|         int x_axis_home_dir = x_home_dir(active_extruder);
 | |
|         extruder_duplication_enabled = false;
 | |
|        #endif
 | |
| 
 | |
|         plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|         destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
 | |
|         feedrate = homing_feedrate[X_AXIS];
 | |
|         if(homing_feedrate[Y_AXIS]<feedrate)
 | |
|           feedrate = homing_feedrate[Y_AXIS];
 | |
|         if (max_length(X_AXIS) > max_length(Y_AXIS)) {
 | |
|           feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
 | |
|         } else {
 | |
|           feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
 | |
|         }
 | |
|         plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | |
|         st_synchronize();
 | |
| 
 | |
|         axis_is_at_home(X_AXIS);
 | |
|         axis_is_at_home(Y_AXIS);
 | |
|         plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|         destination[X_AXIS] = current_position[X_AXIS];
 | |
|         destination[Y_AXIS] = current_position[Y_AXIS];
 | |
|         plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | |
|         feedrate = 0.0;
 | |
|         st_synchronize();
 | |
|         endstops_hit_on_purpose();
 | |
| 
 | |
|         current_position[X_AXIS] = destination[X_AXIS];
 | |
|         current_position[Y_AXIS] = destination[Y_AXIS];
 | |
| 		#ifndef SCARA
 | |
|         current_position[Z_AXIS] = destination[Z_AXIS];
 | |
| 		#endif
 | |
|       }
 | |
|       #endif
 | |
| 
 | |
|       if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
 | |
|       {
 | |
|       #ifdef DUAL_X_CARRIAGE
 | |
|         int tmp_extruder = active_extruder;
 | |
|         extruder_duplication_enabled = false;
 | |
|         active_extruder = !active_extruder;
 | |
|         HOMEAXIS(X);
 | |
|         inactive_extruder_x_pos = current_position[X_AXIS];
 | |
|         active_extruder = tmp_extruder;
 | |
|         HOMEAXIS(X);
 | |
|         // reset state used by the different modes
 | |
|         memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
 | |
|         delayed_move_time = 0;
 | |
|         active_extruder_parked = true;
 | |
|       #else
 | |
|         HOMEAXIS(X);
 | |
|       #endif
 | |
|       }
 | |
| 
 | |
|       if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
 | |
|         HOMEAXIS(Y);
 | |
|       }
 | |
| 
 | |
|       if(code_seen(axis_codes[X_AXIS]))
 | |
|       {
 | |
|         if(code_value_long() != 0) {
 | |
| 		#ifdef SCARA
 | |
| 		   current_position[X_AXIS]=code_value();
 | |
| 		#else
 | |
| 		   current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
 | |
| 		#endif
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       if(code_seen(axis_codes[Y_AXIS])) {
 | |
|         if(code_value_long() != 0) {
 | |
|          #ifdef SCARA
 | |
| 		   current_position[Y_AXIS]=code_value();
 | |
| 		#else
 | |
| 		   current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
 | |
| 		#endif
 | |
|         }
 | |
|       }
 | |
| 
 | |
|       #if Z_HOME_DIR < 0                      // If homing towards BED do Z last
 | |
|         #ifndef Z_SAFE_HOMING
 | |
|           if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
 | |
|             #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
 | |
|               destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
 | |
|               feedrate = max_feedrate[Z_AXIS];
 | |
|               plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
 | |
|               st_synchronize();
 | |
|             #endif
 | |
|             HOMEAXIS(Z);
 | |
|           }
 | |
|         #else                      // Z Safe mode activated.
 | |
|           if(home_all_axis) {
 | |
|             destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
 | |
|             destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
 | |
|             destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
 | |
|             feedrate = XY_TRAVEL_SPEED/60;
 | |
|             current_position[Z_AXIS] = 0;
 | |
| 
 | |
|             plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|             plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
 | |
|             st_synchronize();
 | |
|             current_position[X_AXIS] = destination[X_AXIS];
 | |
|             current_position[Y_AXIS] = destination[Y_AXIS];
 | |
| 
 | |
|             HOMEAXIS(Z);
 | |
|           }
 | |
|                                                 // Let's see if X and Y are homed and probe is inside bed area.
 | |
|           if(code_seen(axis_codes[Z_AXIS])) {
 | |
|             if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
 | |
|               && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
 | |
|               && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
 | |
|               && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
 | |
|               && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
 | |
| 
 | |
|               current_position[Z_AXIS] = 0;
 | |
|               plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|               destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1);    // Set destination away from bed
 | |
|               feedrate = max_feedrate[Z_AXIS];
 | |
|               plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
 | |
|               st_synchronize();
 | |
| 
 | |
|               HOMEAXIS(Z);
 | |
|             } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
 | |
|                 LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | |
|                 SERIAL_ECHO_START;
 | |
|                 SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | |
|             } else {
 | |
|                 LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
 | |
|                 SERIAL_ECHO_START;
 | |
|                 SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
 | |
|             }
 | |
|           }
 | |
|         #endif
 | |
|       #endif
 | |
| 
 | |
| 
 | |
| 
 | |
|       if(code_seen(axis_codes[Z_AXIS])) {
 | |
|         if(code_value_long() != 0) {
 | |
|           current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
 | |
|         }
 | |
|       }
 | |
|       #ifdef ENABLE_AUTO_BED_LEVELING
 | |
|         if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
 | |
|           current_position[Z_AXIS] += zprobe_zoffset;  //Add Z_Probe offset (the distance is negative)
 | |
|         }
 | |
|       #endif
 | |
|       plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| #endif // else DELTA
 | |
| 
 | |
| #ifdef SCARA
 | |
| 	  calculate_delta(current_position);
 | |
|       plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
 | |
| #endif // SCARA
 | |
| 
 | |
|       #ifdef ENDSTOPS_ONLY_FOR_HOMING
 | |
|         enable_endstops(false);
 | |
|       #endif
 | |
| 
 | |
|       feedrate = saved_feedrate;
 | |
|       feedmultiply = saved_feedmultiply;
 | |
|       previous_millis_cmd = millis();
 | |
|       endstops_hit_on_purpose();
 | |
|       break;
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
|     case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
 | |
|         {
 | |
|             #if Z_MIN_PIN == -1
 | |
|             #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
 | |
|             #endif
 | |
| 
 | |
|             // Prevent user from running a G29 without first homing in X and Y
 | |
|             if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
 | |
|             {
 | |
|                 LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | |
|                 SERIAL_ECHO_START;
 | |
|                 SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | |
|                 break; // abort G29, since we don't know where we are
 | |
|             }
 | |
| 
 | |
| #ifdef Z_PROBE_SLED
 | |
|             dock_sled(false);
 | |
| #endif // Z_PROBE_SLED
 | |
|             st_synchronize();
 | |
|             // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
 | |
|             //vector_3 corrected_position = plan_get_position_mm();
 | |
|             //corrected_position.debug("position before G29");
 | |
|             plan_bed_level_matrix.set_to_identity();
 | |
|             vector_3 uncorrected_position = plan_get_position();
 | |
|             //uncorrected_position.debug("position durring G29");
 | |
|             current_position[X_AXIS] = uncorrected_position.x;
 | |
|             current_position[Y_AXIS] = uncorrected_position.y;
 | |
|             current_position[Z_AXIS] = uncorrected_position.z;
 | |
|             plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|             setup_for_endstop_move();
 | |
| 
 | |
|             feedrate = homing_feedrate[Z_AXIS];
 | |
| #ifdef AUTO_BED_LEVELING_GRID
 | |
|             // probe at the points of a lattice grid
 | |
| 
 | |
|             int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
 | |
|             int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
 | |
| 
 | |
| 
 | |
|             // solve the plane equation ax + by + d = z
 | |
|             // A is the matrix with rows [x y 1] for all the probed points
 | |
|             // B is the vector of the Z positions
 | |
|             // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
 | |
|             // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
 | |
| 
 | |
|             // "A" matrix of the linear system of equations
 | |
|             double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
 | |
|             // "B" vector of Z points
 | |
|             double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
 | |
| 
 | |
| 
 | |
|             int probePointCounter = 0;
 | |
|             bool zig = true;
 | |
| 
 | |
|             for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
 | |
|             {
 | |
|               int xProbe, xInc;
 | |
|               if (zig)
 | |
|               {
 | |
|                 xProbe = LEFT_PROBE_BED_POSITION;
 | |
|                 //xEnd = RIGHT_PROBE_BED_POSITION;
 | |
|                 xInc = xGridSpacing;
 | |
|                 zig = false;
 | |
|               } else // zag
 | |
|               {
 | |
|                 xProbe = RIGHT_PROBE_BED_POSITION;
 | |
|                 //xEnd = LEFT_PROBE_BED_POSITION;
 | |
|                 xInc = -xGridSpacing;
 | |
|                 zig = true;
 | |
|               }
 | |
| 
 | |
|               for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
 | |
|               {
 | |
|                 float z_before;
 | |
|                 if (probePointCounter == 0)
 | |
|                 {
 | |
|                   // raise before probing
 | |
|                   z_before = Z_RAISE_BEFORE_PROBING;
 | |
|                 } else
 | |
|                 {
 | |
|                   // raise extruder
 | |
|                   z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
 | |
|                 }
 | |
| 
 | |
|                 float measured_z;
 | |
|                 //Enhanced G29 - Do not retract servo between probes
 | |
|                 if (code_seen('E') || code_seen('e') )
 | |
|                    {
 | |
|                    if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
 | |
|                        {
 | |
|                         measured_z = probe_pt(xProbe, yProbe, z_before,1);
 | |
|                        } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
 | |
|                          {
 | |
|                          measured_z = probe_pt(xProbe, yProbe, z_before,3);
 | |
|                          } else {
 | |
|                            measured_z = probe_pt(xProbe, yProbe, z_before,2);
 | |
|                          }
 | |
|                     } else {
 | |
|                     measured_z = probe_pt(xProbe, yProbe, z_before);
 | |
|                     }
 | |
| 
 | |
|                 eqnBVector[probePointCounter] = measured_z;
 | |
| 
 | |
|                 eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
 | |
|                 eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
 | |
|                 eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
 | |
|                 probePointCounter++;
 | |
|                 xProbe += xInc;
 | |
|               }
 | |
|             }
 | |
|             clean_up_after_endstop_move();
 | |
| 
 | |
|             // solve lsq problem
 | |
|             double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
 | |
| 
 | |
|             SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
 | |
|             SERIAL_PROTOCOL(plane_equation_coefficients[0]);
 | |
|             SERIAL_PROTOCOLPGM(" b: ");
 | |
|             SERIAL_PROTOCOL(plane_equation_coefficients[1]);
 | |
|             SERIAL_PROTOCOLPGM(" d: ");
 | |
|             SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
 | |
| 
 | |
| 
 | |
|             set_bed_level_equation_lsq(plane_equation_coefficients);
 | |
| 
 | |
|             free(plane_equation_coefficients);
 | |
| 
 | |
| #else // AUTO_BED_LEVELING_GRID not defined
 | |
| 
 | |
|             // Probe at 3 arbitrary points
 | |
|             // Enhanced G29
 | |
|             
 | |
|             float z_at_pt_1,z_at_pt_2,z_at_pt_3;
 | |
|             
 | |
|             if (code_seen('E') || code_seen('e') )
 | |
|                {
 | |
|                // probe 1               
 | |
|                 z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
 | |
|                // probe 2
 | |
|                 z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
 | |
|                // probe 3
 | |
|                 z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3); 
 | |
|                }
 | |
|                else 
 | |
|                {
 | |
| 	        // probe 1
 | |
| 	        float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
 | |
| 
 | |
|                 // probe 2
 | |
|                 float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
 | |
| 
 | |
|                 // probe 3
 | |
|                 float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
 | |
|                }
 | |
|             clean_up_after_endstop_move();
 | |
| 
 | |
|             set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
 | |
| 
 | |
| 
 | |
| #endif // AUTO_BED_LEVELING_GRID
 | |
|             st_synchronize();
 | |
| 
 | |
|             // The following code correct the Z height difference from z-probe position and hotend tip position.
 | |
|             // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
 | |
|             // When the bed is uneven, this height must be corrected.
 | |
|             real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS];  //get the real Z (since the auto bed leveling is already correcting the plane)
 | |
|             x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|             y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|             z_tmp = current_position[Z_AXIS];
 | |
| 
 | |
|             apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
 | |
|             current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
 | |
|             plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| #ifdef Z_PROBE_SLED
 | |
|             dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
 | |
| #endif // Z_PROBE_SLED
 | |
|         }
 | |
|         break;
 | |
| #ifndef Z_PROBE_SLED
 | |
|     case 30: // G30 Single Z Probe
 | |
|         {
 | |
|             engage_z_probe(); // Engage Z Servo endstop if available
 | |
|             st_synchronize();
 | |
|             // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
 | |
|             setup_for_endstop_move();
 | |
| 
 | |
|             feedrate = homing_feedrate[Z_AXIS];
 | |
| 
 | |
|             run_z_probe();
 | |
|             SERIAL_PROTOCOLPGM(MSG_BED);
 | |
|             SERIAL_PROTOCOLPGM(" X: ");
 | |
|             SERIAL_PROTOCOL(current_position[X_AXIS]);
 | |
|             SERIAL_PROTOCOLPGM(" Y: ");
 | |
|             SERIAL_PROTOCOL(current_position[Y_AXIS]);
 | |
|             SERIAL_PROTOCOLPGM(" Z: ");
 | |
|             SERIAL_PROTOCOL(current_position[Z_AXIS]);
 | |
|             SERIAL_PROTOCOLPGM("\n");
 | |
| 
 | |
|             clean_up_after_endstop_move();
 | |
|             retract_z_probe(); // Retract Z Servo endstop if available
 | |
|         }
 | |
|         break;
 | |
| #else
 | |
|     case 31: // dock the sled
 | |
|         dock_sled(true);
 | |
|         break;
 | |
|     case 32: // undock the sled
 | |
|         dock_sled(false);
 | |
|         break;
 | |
| #endif // Z_PROBE_SLED
 | |
| #endif // ENABLE_AUTO_BED_LEVELING
 | |
|     case 90: // G90
 | |
|       relative_mode = false;
 | |
|       break;
 | |
|     case 91: // G91
 | |
|       relative_mode = true;
 | |
|       break;
 | |
|     case 92: // G92
 | |
|       if(!code_seen(axis_codes[E_AXIS]))
 | |
|         st_synchronize();
 | |
|       for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
|         if(code_seen(axis_codes[i])) {
 | |
|            if(i == E_AXIS) {
 | |
|              current_position[i] = code_value();
 | |
|              plan_set_e_position(current_position[E_AXIS]);
 | |
|            }
 | |
|            else {
 | |
| #ifdef SCARA
 | |
| 		if (i == X_AXIS || i == Y_AXIS) {
 | |
|                 	current_position[i] = code_value();  
 | |
| 		}
 | |
| 		else {
 | |
|                 current_position[i] = code_value()+add_homing[i];  
 | |
|             	}  
 | |
| #else
 | |
| 		current_position[i] = code_value()+add_homing[i];
 | |
| #endif
 | |
|             plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|            }
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   else if(code_seen('M'))
 | |
|   {
 | |
|     switch( (int)code_value() )
 | |
|     {
 | |
| #ifdef ULTIPANEL
 | |
|     case 0: // M0 - Unconditional stop - Wait for user button press on LCD
 | |
|     case 1: // M1 - Conditional stop - Wait for user button press on LCD
 | |
|     {
 | |
|       char *src = strchr_pointer + 2;
 | |
| 
 | |
|       codenum = 0;
 | |
| 
 | |
|       bool hasP = false, hasS = false;
 | |
|       if (code_seen('P')) {
 | |
|         codenum = code_value(); // milliseconds to wait
 | |
|         hasP = codenum > 0;
 | |
|       }
 | |
|       if (code_seen('S')) {
 | |
|         codenum = code_value() * 1000; // seconds to wait
 | |
|         hasS = codenum > 0;
 | |
|       }
 | |
|       starpos = strchr(src, '*');
 | |
|       if (starpos != NULL) *(starpos) = '\0';
 | |
|       while (*src == ' ') ++src;
 | |
|       if (!hasP && !hasS && *src != '\0') {
 | |
|         lcd_setstatus(src);
 | |
|       } else {
 | |
|         LCD_MESSAGEPGM(MSG_USERWAIT);
 | |
|       }
 | |
| 
 | |
|       lcd_ignore_click();
 | |
|       st_synchronize();
 | |
|       previous_millis_cmd = millis();
 | |
|       if (codenum > 0){
 | |
|         codenum += millis();  // keep track of when we started waiting
 | |
|         while(millis() < codenum && !lcd_clicked()){
 | |
|           manage_heater();
 | |
|           manage_inactivity();
 | |
|           lcd_update();
 | |
|         }
 | |
|         lcd_ignore_click(false);
 | |
|       }else{
 | |
|           if (!lcd_detected())
 | |
|             break;
 | |
|         while(!lcd_clicked()){
 | |
|           manage_heater();
 | |
|           manage_inactivity();
 | |
|           lcd_update();
 | |
|         }
 | |
|       }
 | |
|       if (IS_SD_PRINTING)
 | |
|         LCD_MESSAGEPGM(MSG_RESUMING);
 | |
|       else
 | |
|         LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|     }
 | |
|     break;
 | |
| #endif
 | |
|     case 17:
 | |
|         LCD_MESSAGEPGM(MSG_NO_MOVE);
 | |
|         enable_x();
 | |
|         enable_y();
 | |
|         enable_z();
 | |
|         enable_e0();
 | |
|         enable_e1();
 | |
|         enable_e2();
 | |
|       break;
 | |
| 
 | |
| #ifdef SDSUPPORT
 | |
|     case 20: // M20 - list SD card
 | |
|       SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
 | |
|       card.ls();
 | |
|       SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
 | |
|       break;
 | |
|     case 21: // M21 - init SD card
 | |
| 
 | |
|       card.initsd();
 | |
| 
 | |
|       break;
 | |
|     case 22: //M22 - release SD card
 | |
|       card.release();
 | |
| 
 | |
|       break;
 | |
|     case 23: //M23 - Select file
 | |
|       starpos = (strchr(strchr_pointer + 4,'*'));
 | |
|       if(starpos!=NULL)
 | |
|         *(starpos)='\0';
 | |
|       card.openFile(strchr_pointer + 4,true);
 | |
|       break;
 | |
|     case 24: //M24 - Start SD print
 | |
|       card.startFileprint();
 | |
|       starttime=millis();
 | |
|       break;
 | |
|     case 25: //M25 - Pause SD print
 | |
|       card.pauseSDPrint();
 | |
|       break;
 | |
|     case 26: //M26 - Set SD index
 | |
|       if(card.cardOK && code_seen('S')) {
 | |
|         card.setIndex(code_value_long());
 | |
|       }
 | |
|       break;
 | |
|     case 27: //M27 - Get SD status
 | |
|       card.getStatus();
 | |
|       break;
 | |
|     case 28: //M28 - Start SD write
 | |
|       starpos = (strchr(strchr_pointer + 4,'*'));
 | |
|       if(starpos != NULL){
 | |
|         char* npos = strchr(cmdbuffer[bufindr], 'N');
 | |
|         strchr_pointer = strchr(npos,' ') + 1;
 | |
|         *(starpos) = '\0';
 | |
|       }
 | |
|       card.openFile(strchr_pointer+4,false);
 | |
|       break;
 | |
|     case 29: //M29 - Stop SD write
 | |
|       //processed in write to file routine above
 | |
|       //card,saving = false;
 | |
|       break;
 | |
|     case 30: //M30 <filename> Delete File
 | |
|       if (card.cardOK){
 | |
|         card.closefile();
 | |
|         starpos = (strchr(strchr_pointer + 4,'*'));
 | |
|         if(starpos != NULL){
 | |
|           char* npos = strchr(cmdbuffer[bufindr], 'N');
 | |
|           strchr_pointer = strchr(npos,' ') + 1;
 | |
|           *(starpos) = '\0';
 | |
|         }
 | |
|         card.removeFile(strchr_pointer + 4);
 | |
|       }
 | |
|       break;
 | |
|     case 32: //M32 - Select file and start SD print
 | |
|     {
 | |
|       if(card.sdprinting) {
 | |
|         st_synchronize();
 | |
| 
 | |
|       }
 | |
|       starpos = (strchr(strchr_pointer + 4,'*'));
 | |
| 
 | |
|       char* namestartpos = (strchr(strchr_pointer + 4,'!'));   //find ! to indicate filename string start.
 | |
|       if(namestartpos==NULL)
 | |
|       {
 | |
|         namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
 | |
|       }
 | |
|       else
 | |
|         namestartpos++; //to skip the '!'
 | |
| 
 | |
|       if(starpos!=NULL)
 | |
|         *(starpos)='\0';
 | |
| 
 | |
|       bool call_procedure=(code_seen('P'));
 | |
| 
 | |
|       if(strchr_pointer>namestartpos)
 | |
|         call_procedure=false;  //false alert, 'P' found within filename
 | |
| 
 | |
|       if( card.cardOK )
 | |
|       {
 | |
|         card.openFile(namestartpos,true,!call_procedure);
 | |
|         if(code_seen('S'))
 | |
|           if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
 | |
|             card.setIndex(code_value_long());
 | |
|         card.startFileprint();
 | |
|         if(!call_procedure)
 | |
|           starttime=millis(); //procedure calls count as normal print time.
 | |
|       }
 | |
|     } break;
 | |
|     case 928: //M928 - Start SD write
 | |
|       starpos = (strchr(strchr_pointer + 5,'*'));
 | |
|       if(starpos != NULL){
 | |
|         char* npos = strchr(cmdbuffer[bufindr], 'N');
 | |
|         strchr_pointer = strchr(npos,' ') + 1;
 | |
|         *(starpos) = '\0';
 | |
|       }
 | |
|       card.openLogFile(strchr_pointer+5);
 | |
|       break;
 | |
| 
 | |
| #endif //SDSUPPORT
 | |
| 
 | |
|     case 31: //M31 take time since the start of the SD print or an M109 command
 | |
|       {
 | |
|       stoptime=millis();
 | |
|       char time[30];
 | |
|       unsigned long t=(stoptime-starttime)/1000;
 | |
|       int sec,min;
 | |
|       min=t/60;
 | |
|       sec=t%60;
 | |
|       sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOLN(time);
 | |
|       lcd_setstatus(time);
 | |
|       autotempShutdown();
 | |
|       }
 | |
|       break;
 | |
|     case 42: //M42 -Change pin status via gcode
 | |
|       if (code_seen('S'))
 | |
|       {
 | |
|         int pin_status = code_value();
 | |
|         int pin_number = LED_PIN;
 | |
|         if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
 | |
|           pin_number = code_value();
 | |
|         for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
 | |
|         {
 | |
|           if (sensitive_pins[i] == pin_number)
 | |
|           {
 | |
|             pin_number = -1;
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
|       #if defined(FAN_PIN) && FAN_PIN > -1
 | |
|         if (pin_number == FAN_PIN)
 | |
|           fanSpeed = pin_status;
 | |
|       #endif
 | |
|         if (pin_number > -1)
 | |
|         {
 | |
|           pinMode(pin_number, OUTPUT);
 | |
|           digitalWrite(pin_number, pin_status);
 | |
|           analogWrite(pin_number, pin_status);
 | |
|         }
 | |
|       }
 | |
|      break;
 | |
| 
 | |
| // M48 Z-Probe repeatability measurement function.
 | |
| //
 | |
| // Usage:   M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
 | |
| //	
 | |
| // This function assumes the bed has been homed.  Specificaly, that a G28 command
 | |
| // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
 | |
| // Any information generated by a prior G29 Bed leveling command will be lost and need to be
 | |
| // regenerated.
 | |
| //
 | |
| // The number of samples will default to 10 if not specified.  You can use upper or lower case
 | |
| // letters for any of the options EXCEPT n.  n must be in lower case because Marlin uses a capital
 | |
| // N for its communication protocol and will get horribly confused if you send it a capital N.
 | |
| //
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| #ifdef Z_PROBE_REPEATABILITY_TEST 
 | |
| 
 | |
|     case 48: // M48 Z-Probe repeatability
 | |
|         {
 | |
|             #if Z_MIN_PIN == -1
 | |
|             #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
 | |
|             #endif
 | |
| 
 | |
| 	double sum=0.0; 
 | |
| 	double mean=0.0; 
 | |
| 	double sigma=0.0;
 | |
| 	double sample_set[50];
 | |
| 	int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
 | |
| 	double X_current, Y_current, Z_current;
 | |
| 	double X_probe_location, Y_probe_location, Z_start_location, ext_position;
 | |
| 	
 | |
| 	if (code_seen('V') || code_seen('v')) {
 | |
|         	verbose_level = code_value();
 | |
| 		if (verbose_level<0 || verbose_level>4 ) {
 | |
| 			SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
 | |
| 			goto Sigma_Exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (verbose_level > 0)   {
 | |
| 		SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test.   Version 2.00\n");
 | |
| 		SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
 | |
| 	}
 | |
| 
 | |
| 	if (code_seen('n')) {
 | |
|         	n_samples = code_value();
 | |
| 		if (n_samples<4 || n_samples>50 ) {
 | |
| 			SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
 | |
| 			goto Sigma_Exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	X_current = X_probe_location = st_get_position_mm(X_AXIS);
 | |
| 	Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
 | |
| 	Z_current = st_get_position_mm(Z_AXIS);
 | |
| 	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
 | |
| 	ext_position	 = st_get_position_mm(E_AXIS);
 | |
| 
 | |
| 	if (code_seen('E') || code_seen('e') ) 
 | |
| 		engage_probe_for_each_reading++;
 | |
| 
 | |
| 	if (code_seen('X') || code_seen('x') ) {
 | |
|         	X_probe_location = code_value() -  X_PROBE_OFFSET_FROM_EXTRUDER;
 | |
| 		if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
 | |
| 			SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
 | |
| 			goto Sigma_Exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (code_seen('Y') || code_seen('y') ) {
 | |
|         	Y_probe_location = code_value() -  Y_PROBE_OFFSET_FROM_EXTRUDER;
 | |
| 		if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
 | |
| 			SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
 | |
| 			goto Sigma_Exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (code_seen('L') || code_seen('l') ) {
 | |
|         	n_legs = code_value();
 | |
| 		if ( n_legs==1 ) 
 | |
| 			n_legs = 2;
 | |
| 		if ( n_legs<0 || n_legs>15 ) {
 | |
| 			SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
 | |
| 			goto Sigma_Exit;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| //
 | |
| // Do all the preliminary setup work.   First raise the probe.
 | |
| //
 | |
| 
 | |
|         st_synchronize();
 | |
|         plan_bed_level_matrix.set_to_identity();
 | |
| 	plan_buffer_line( X_current, Y_current, Z_start_location,
 | |
| 			ext_position,
 | |
|     			homing_feedrate[Z_AXIS]/60,
 | |
| 			active_extruder);
 | |
|         st_synchronize();
 | |
| 
 | |
| //
 | |
| // Now get everything to the specified probe point So we can safely do a probe to
 | |
| // get us close to the bed.  If the Z-Axis is far from the bed, we don't want to 
 | |
| // use that as a starting point for each probe.
 | |
| //
 | |
| 	if (verbose_level > 2) 
 | |
| 		SERIAL_PROTOCOL("Positioning probe for the test.\n");
 | |
| 
 | |
| 	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
 | |
| 			ext_position,
 | |
|     			homing_feedrate[X_AXIS]/60,
 | |
| 			active_extruder);
 | |
|         st_synchronize();
 | |
| 
 | |
| 	current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
 | |
| 	current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
 | |
| 	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | |
| 	current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
 | |
| 
 | |
| // 
 | |
| // OK, do the inital probe to get us close to the bed.
 | |
| // Then retrace the right amount and use that in subsequent probes
 | |
| //
 | |
| 
 | |
|         engage_z_probe();	
 | |
| 
 | |
| 	setup_for_endstop_move();
 | |
| 	run_z_probe();
 | |
| 
 | |
| 	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | |
| 	Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
 | |
| 
 | |
| 	plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
 | |
| 			ext_position,
 | |
|     			homing_feedrate[X_AXIS]/60,
 | |
| 			active_extruder);
 | |
|         st_synchronize();
 | |
| 	current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
 | |
| 
 | |
| 	if (engage_probe_for_each_reading)
 | |
|         	retract_z_probe();
 | |
| 
 | |
|         for( n=0; n<n_samples; n++) {
 | |
| 
 | |
| 		do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
 | |
| 
 | |
| 		if ( n_legs)  {
 | |
| 		double radius=0.0, theta=0.0, x_sweep, y_sweep;
 | |
| 		int rotational_direction, l;
 | |
| 
 | |
| 			rotational_direction = (unsigned long) millis() & 0x0001;			// clockwise or counter clockwise
 | |
| 			radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); 			// limit how far out to go 
 | |
| 			theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926));	// turn into radians
 | |
| 
 | |
| //SERIAL_ECHOPAIR("starting radius: ",radius);
 | |
| //SERIAL_ECHOPAIR("   theta: ",theta);
 | |
| //SERIAL_ECHOPAIR("   direction: ",rotational_direction);
 | |
| //SERIAL_PROTOCOLLNPGM("");
 | |
| 
 | |
| 			for( l=0; l<n_legs-1; l++) {
 | |
| 				if (rotational_direction==1)
 | |
| 					theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
 | |
| 				else
 | |
| 					theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
 | |
| 
 | |
| 				radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
 | |
| 				if ( radius<0.0 )
 | |
| 					radius = -radius;
 | |
| 
 | |
| 				X_current = X_probe_location + cos(theta) * radius;
 | |
| 				Y_current = Y_probe_location + sin(theta) * radius;
 | |
| 
 | |
| 				if ( X_current<X_MIN_POS)		// Make sure our X & Y are sane
 | |
| 					 X_current = X_MIN_POS;
 | |
| 				if ( X_current>X_MAX_POS)
 | |
| 					 X_current = X_MAX_POS;
 | |
| 
 | |
| 				if ( Y_current<Y_MIN_POS)		// Make sure our X & Y are sane
 | |
| 					 Y_current = Y_MIN_POS;
 | |
| 				if ( Y_current>Y_MAX_POS)
 | |
| 					 Y_current = Y_MAX_POS;
 | |
| 
 | |
| 				if (verbose_level>3 ) {
 | |
| 					SERIAL_ECHOPAIR("x: ", X_current);
 | |
| 					SERIAL_ECHOPAIR("y: ", Y_current);
 | |
| 					SERIAL_PROTOCOLLNPGM("");
 | |
| 				}
 | |
| 
 | |
| 				do_blocking_move_to( X_current, Y_current, Z_current );
 | |
| 			}
 | |
| 			do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
 | |
| 		}
 | |
| 
 | |
| 		if (engage_probe_for_each_reading)  {
 | |
|         		engage_z_probe();	
 | |
|           		delay(1000);
 | |
| 		}
 | |
| 
 | |
| 		setup_for_endstop_move();
 | |
|                 run_z_probe();
 | |
| 
 | |
| 		sample_set[n] = current_position[Z_AXIS];
 | |
| 
 | |
| //
 | |
| // Get the current mean for the data points we have so far
 | |
| //
 | |
| 		sum=0.0; 
 | |
| 		for( j=0; j<=n; j++) {
 | |
| 			sum = sum + sample_set[j];
 | |
| 		}
 | |
| 		mean = sum / (double (n+1));
 | |
| //
 | |
| // Now, use that mean to calculate the standard deviation for the
 | |
| // data points we have so far
 | |
| //
 | |
| 
 | |
| 		sum=0.0; 
 | |
| 		for( j=0; j<=n; j++) {
 | |
| 			sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
 | |
| 		}
 | |
| 		sigma = sqrt( sum / (double (n+1)) );
 | |
| 
 | |
| 		if (verbose_level > 1) {
 | |
| 			SERIAL_PROTOCOL(n+1);
 | |
| 			SERIAL_PROTOCOL(" of ");
 | |
| 			SERIAL_PROTOCOL(n_samples);
 | |
| 			SERIAL_PROTOCOLPGM("   z: ");
 | |
| 			SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
 | |
| 		}
 | |
| 
 | |
| 		if (verbose_level > 2) {
 | |
| 			SERIAL_PROTOCOL(" mean: ");
 | |
| 			SERIAL_PROTOCOL_F(mean,6);
 | |
| 
 | |
| 			SERIAL_PROTOCOL("   sigma: ");
 | |
| 			SERIAL_PROTOCOL_F(sigma,6);
 | |
| 		}
 | |
| 
 | |
| 		if (verbose_level > 0) 
 | |
| 			SERIAL_PROTOCOLPGM("\n");
 | |
| 
 | |
| 		plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, 
 | |
| 				  current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
 | |
|         	st_synchronize();
 | |
| 
 | |
| 		if (engage_probe_for_each_reading)  {
 | |
|         		retract_z_probe();	
 | |
|           		delay(1000);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
|         retract_z_probe();
 | |
| 	delay(1000);
 | |
| 
 | |
|         clean_up_after_endstop_move();
 | |
| 
 | |
| //      enable_endstops(true);
 | |
| 
 | |
| 	if (verbose_level > 0) {
 | |
| 		SERIAL_PROTOCOLPGM("Mean: ");
 | |
| 		SERIAL_PROTOCOL_F(mean, 6);
 | |
| 		SERIAL_PROTOCOLPGM("\n");
 | |
| 	}
 | |
| 
 | |
| SERIAL_PROTOCOLPGM("Standard Deviation: ");
 | |
| SERIAL_PROTOCOL_F(sigma, 6);
 | |
| SERIAL_PROTOCOLPGM("\n\n");
 | |
| 
 | |
| Sigma_Exit:
 | |
|         break;
 | |
| 	}
 | |
| #endif		// Z_PROBE_REPEATABILITY_TEST 
 | |
| #endif		// ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
|     case 104: // M104
 | |
|       if(setTargetedHotend(104)){
 | |
|         break;
 | |
|       }
 | |
|       if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
 | |
| #ifdef DUAL_X_CARRIAGE
 | |
|       if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
 | |
|         setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
 | |
| #endif
 | |
|       setWatch();
 | |
|       break;
 | |
|     case 112: //  M112 -Emergency Stop
 | |
|       kill();
 | |
|       break;
 | |
|     case 140: // M140 set bed temp
 | |
|       if (code_seen('S')) setTargetBed(code_value());
 | |
|       break;
 | |
|     case 105 : // M105
 | |
|       if(setTargetedHotend(105)){
 | |
|         break;
 | |
|         }
 | |
|       #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
 | |
|         SERIAL_PROTOCOLPGM("ok T:");
 | |
|         SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
 | |
|         SERIAL_PROTOCOLPGM(" /");
 | |
|         SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
 | |
|         #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | |
|           SERIAL_PROTOCOLPGM(" B:");
 | |
|           SERIAL_PROTOCOL_F(degBed(),1);
 | |
|           SERIAL_PROTOCOLPGM(" /");
 | |
|           SERIAL_PROTOCOL_F(degTargetBed(),1);
 | |
|         #endif //TEMP_BED_PIN
 | |
|         for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
 | |
|           SERIAL_PROTOCOLPGM(" T");
 | |
|           SERIAL_PROTOCOL(cur_extruder);
 | |
|           SERIAL_PROTOCOLPGM(":");
 | |
|           SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
 | |
|           SERIAL_PROTOCOLPGM(" /");
 | |
|           SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
 | |
|         }
 | |
|       #else
 | |
|         SERIAL_ERROR_START;
 | |
|         SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
 | |
|       #endif
 | |
| 
 | |
|         SERIAL_PROTOCOLPGM(" @:");
 | |
|       #ifdef EXTRUDER_WATTS
 | |
|         SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
 | |
|         SERIAL_PROTOCOLPGM("W");
 | |
|       #else
 | |
|         SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
 | |
|       #endif
 | |
| 
 | |
|         SERIAL_PROTOCOLPGM(" B@:");
 | |
|       #ifdef BED_WATTS
 | |
|         SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
 | |
|         SERIAL_PROTOCOLPGM("W");
 | |
|       #else
 | |
|         SERIAL_PROTOCOL(getHeaterPower(-1));
 | |
|       #endif
 | |
| 
 | |
|         #ifdef SHOW_TEMP_ADC_VALUES
 | |
|           #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | |
|             SERIAL_PROTOCOLPGM("    ADC B:");
 | |
|             SERIAL_PROTOCOL_F(degBed(),1);
 | |
|             SERIAL_PROTOCOLPGM("C->");
 | |
|             SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
 | |
|           #endif
 | |
|           for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
 | |
|             SERIAL_PROTOCOLPGM("  T");
 | |
|             SERIAL_PROTOCOL(cur_extruder);
 | |
|             SERIAL_PROTOCOLPGM(":");
 | |
|             SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
 | |
|             SERIAL_PROTOCOLPGM("C->");
 | |
|             SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
 | |
|           }
 | |
|         #endif
 | |
| 
 | |
|         SERIAL_PROTOCOLLN("");
 | |
|       return;
 | |
|       break;
 | |
|     case 109:
 | |
|     {// M109 - Wait for extruder heater to reach target.
 | |
|       if(setTargetedHotend(109)){
 | |
|         break;
 | |
|       }
 | |
|       LCD_MESSAGEPGM(MSG_HEATING);
 | |
|       #ifdef AUTOTEMP
 | |
|         autotemp_enabled=false;
 | |
|       #endif
 | |
|       if (code_seen('S')) {
 | |
|         setTargetHotend(code_value(), tmp_extruder);
 | |
| #ifdef DUAL_X_CARRIAGE
 | |
|         if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
 | |
|           setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
 | |
| #endif
 | |
|         CooldownNoWait = true;
 | |
|       } else if (code_seen('R')) {
 | |
|         setTargetHotend(code_value(), tmp_extruder);
 | |
| #ifdef DUAL_X_CARRIAGE
 | |
|         if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
 | |
|           setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
 | |
| #endif
 | |
|         CooldownNoWait = false;
 | |
|       }
 | |
|       #ifdef AUTOTEMP
 | |
|         if (code_seen('S')) autotemp_min=code_value();
 | |
|         if (code_seen('B')) autotemp_max=code_value();
 | |
|         if (code_seen('F'))
 | |
|         {
 | |
|           autotemp_factor=code_value();
 | |
|           autotemp_enabled=true;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
|       setWatch();
 | |
|       codenum = millis();
 | |
| 
 | |
|       /* See if we are heating up or cooling down */
 | |
|       target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
 | |
| 
 | |
|       cancel_heatup = false;
 | |
| 
 | |
|       #ifdef TEMP_RESIDENCY_TIME
 | |
|         long residencyStart;
 | |
|         residencyStart = -1;
 | |
|         /* continue to loop until we have reached the target temp
 | |
|           _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
 | |
|         while((!cancel_heatup)&&((residencyStart == -1) ||
 | |
|               (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
 | |
|       #else
 | |
|         while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
 | |
|       #endif //TEMP_RESIDENCY_TIME
 | |
|           if( (millis() - codenum) > 1000UL )
 | |
|           { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
 | |
|             SERIAL_PROTOCOLPGM("T:");
 | |
|             SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
 | |
|             SERIAL_PROTOCOLPGM(" E:");
 | |
|             SERIAL_PROTOCOL((int)tmp_extruder);
 | |
|             #ifdef TEMP_RESIDENCY_TIME
 | |
|               SERIAL_PROTOCOLPGM(" W:");
 | |
|               if(residencyStart > -1)
 | |
|               {
 | |
|                  codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
 | |
|                  SERIAL_PROTOCOLLN( codenum );
 | |
|               }
 | |
|               else
 | |
|               {
 | |
|                  SERIAL_PROTOCOLLN( "?" );
 | |
|               }
 | |
|             #else
 | |
|               SERIAL_PROTOCOLLN("");
 | |
|             #endif
 | |
|             codenum = millis();
 | |
|           }
 | |
|           manage_heater();
 | |
|           manage_inactivity();
 | |
|           lcd_update();
 | |
|         #ifdef TEMP_RESIDENCY_TIME
 | |
|             /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
 | |
|               or when current temp falls outside the hysteresis after target temp was reached */
 | |
|           if ((residencyStart == -1 &&  target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
 | |
|               (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
 | |
|               (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
 | |
|           {
 | |
|             residencyStart = millis();
 | |
|           }
 | |
|         #endif //TEMP_RESIDENCY_TIME
 | |
|         }
 | |
|         LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
 | |
|         starttime=millis();
 | |
|         previous_millis_cmd = millis();
 | |
|       }
 | |
|       break;
 | |
|     case 190: // M190 - Wait for bed heater to reach target.
 | |
|     #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | |
|         LCD_MESSAGEPGM(MSG_BED_HEATING);
 | |
|         if (code_seen('S')) {
 | |
|           setTargetBed(code_value());
 | |
|           CooldownNoWait = true;
 | |
|         } else if (code_seen('R')) {
 | |
|           setTargetBed(code_value());
 | |
|           CooldownNoWait = false;
 | |
|         }
 | |
|         codenum = millis();
 | |
|         
 | |
|         cancel_heatup = false;
 | |
|         target_direction = isHeatingBed(); // true if heating, false if cooling
 | |
| 
 | |
|         while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
 | |
|         {
 | |
|           if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
 | |
|           {
 | |
|             float tt=degHotend(active_extruder);
 | |
|             SERIAL_PROTOCOLPGM("T:");
 | |
|             SERIAL_PROTOCOL(tt);
 | |
|             SERIAL_PROTOCOLPGM(" E:");
 | |
|             SERIAL_PROTOCOL((int)active_extruder);
 | |
|             SERIAL_PROTOCOLPGM(" B:");
 | |
|             SERIAL_PROTOCOL_F(degBed(),1);
 | |
|             SERIAL_PROTOCOLLN("");
 | |
|             codenum = millis();
 | |
|           }
 | |
|           manage_heater();
 | |
|           manage_inactivity();
 | |
|           lcd_update();
 | |
|         }
 | |
|         LCD_MESSAGEPGM(MSG_BED_DONE);
 | |
|         previous_millis_cmd = millis();
 | |
|     #endif
 | |
|         break;
 | |
| 
 | |
|     #if defined(FAN_PIN) && FAN_PIN > -1
 | |
|       case 106: //M106 Fan On
 | |
|         if (code_seen('S')){
 | |
|            fanSpeed=constrain(code_value(),0,255);
 | |
|         }
 | |
|         else {
 | |
|           fanSpeed=255;
 | |
|         }
 | |
|         break;
 | |
|       case 107: //M107 Fan Off
 | |
|         fanSpeed = 0;
 | |
|         break;
 | |
|     #endif //FAN_PIN
 | |
|     #ifdef BARICUDA
 | |
|       // PWM for HEATER_1_PIN
 | |
|       #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
 | |
|         case 126: //M126 valve open
 | |
|           if (code_seen('S')){
 | |
|              ValvePressure=constrain(code_value(),0,255);
 | |
|           }
 | |
|           else {
 | |
|             ValvePressure=255;
 | |
|           }
 | |
|           break;
 | |
|         case 127: //M127 valve closed
 | |
|           ValvePressure = 0;
 | |
|           break;
 | |
|       #endif //HEATER_1_PIN
 | |
| 
 | |
|       // PWM for HEATER_2_PIN
 | |
|       #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
 | |
|         case 128: //M128 valve open
 | |
|           if (code_seen('S')){
 | |
|              EtoPPressure=constrain(code_value(),0,255);
 | |
|           }
 | |
|           else {
 | |
|             EtoPPressure=255;
 | |
|           }
 | |
|           break;
 | |
|         case 129: //M129 valve closed
 | |
|           EtoPPressure = 0;
 | |
|           break;
 | |
|       #endif //HEATER_2_PIN
 | |
|     #endif
 | |
| 
 | |
|     #if defined(PS_ON_PIN) && PS_ON_PIN > -1
 | |
|       case 80: // M80 - Turn on Power Supply
 | |
|         SET_OUTPUT(PS_ON_PIN); //GND
 | |
|         WRITE(PS_ON_PIN, PS_ON_AWAKE);
 | |
| 
 | |
|         // If you have a switch on suicide pin, this is useful
 | |
|         // if you want to start another print with suicide feature after
 | |
|         // a print without suicide...
 | |
|         #if defined SUICIDE_PIN && SUICIDE_PIN > -1
 | |
|             SET_OUTPUT(SUICIDE_PIN);
 | |
|             WRITE(SUICIDE_PIN, HIGH);
 | |
|         #endif
 | |
| 
 | |
|         #ifdef ULTIPANEL
 | |
|           powersupply = true;
 | |
|           LCD_MESSAGEPGM(WELCOME_MSG);
 | |
|           lcd_update();
 | |
|         #endif
 | |
|         break;
 | |
|       #endif
 | |
| 
 | |
|       case 81: // M81 - Turn off Power Supply
 | |
|         disable_heater();
 | |
|         st_synchronize();
 | |
|         disable_e0();
 | |
|         disable_e1();
 | |
|         disable_e2();
 | |
|         finishAndDisableSteppers();
 | |
|         fanSpeed = 0;
 | |
|         delay(1000); // Wait a little before to switch off
 | |
|       #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
 | |
|         st_synchronize();
 | |
|         suicide();
 | |
|       #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
 | |
|         SET_OUTPUT(PS_ON_PIN);
 | |
|         WRITE(PS_ON_PIN, PS_ON_ASLEEP);
 | |
|       #endif
 | |
|       #ifdef ULTIPANEL
 | |
|         powersupply = false;
 | |
|         LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
 | |
|         lcd_update();
 | |
|       #endif
 | |
| 	  break;
 | |
| 
 | |
|     case 82:
 | |
|       axis_relative_modes[3] = false;
 | |
|       break;
 | |
|     case 83:
 | |
|       axis_relative_modes[3] = true;
 | |
|       break;
 | |
|     case 18: //compatibility
 | |
|     case 84: // M84
 | |
|       if(code_seen('S')){
 | |
|         stepper_inactive_time = code_value() * 1000;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
 | |
|         if(all_axis)
 | |
|         {
 | |
|           st_synchronize();
 | |
|           disable_e0();
 | |
|           disable_e1();
 | |
|           disable_e2();
 | |
|           finishAndDisableSteppers();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           st_synchronize();
 | |
|           if(code_seen('X')) disable_x();
 | |
|           if(code_seen('Y')) disable_y();
 | |
|           if(code_seen('Z')) disable_z();
 | |
|           #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
 | |
|             if(code_seen('E')) {
 | |
|               disable_e0();
 | |
|               disable_e1();
 | |
|               disable_e2();
 | |
|             }
 | |
|           #endif
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case 85: // M85
 | |
|       if(code_seen('S')) {
 | |
|         max_inactive_time = code_value() * 1000;
 | |
|       }
 | |
|       break;
 | |
|     case 92: // M92
 | |
|       for(int8_t i=0; i < NUM_AXIS; i++)
 | |
|       {
 | |
|         if(code_seen(axis_codes[i]))
 | |
|         {
 | |
|           if(i == 3) { // E
 | |
|             float value = code_value();
 | |
|             if(value < 20.0) {
 | |
|               float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
 | |
|               max_e_jerk *= factor;
 | |
|               max_feedrate[i] *= factor;
 | |
|               axis_steps_per_sqr_second[i] *= factor;
 | |
|             }
 | |
|             axis_steps_per_unit[i] = value;
 | |
|           }
 | |
|           else {
 | |
|             axis_steps_per_unit[i] = code_value();
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     case 115: // M115
 | |
|       SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
 | |
|       break;
 | |
|     case 117: // M117 display message
 | |
|       starpos = (strchr(strchr_pointer + 5,'*'));
 | |
|       if(starpos!=NULL)
 | |
|         *(starpos)='\0';
 | |
|       lcd_setstatus(strchr_pointer + 5);
 | |
|       break;
 | |
|     case 114: // M114
 | |
|       SERIAL_PROTOCOLPGM("X:");
 | |
|       SERIAL_PROTOCOL(current_position[X_AXIS]);
 | |
|       SERIAL_PROTOCOLPGM(" Y:");
 | |
|       SERIAL_PROTOCOL(current_position[Y_AXIS]);
 | |
|       SERIAL_PROTOCOLPGM(" Z:");
 | |
|       SERIAL_PROTOCOL(current_position[Z_AXIS]);
 | |
|       SERIAL_PROTOCOLPGM(" E:");
 | |
|       SERIAL_PROTOCOL(current_position[E_AXIS]);
 | |
| 
 | |
|       SERIAL_PROTOCOLPGM(MSG_COUNT_X);
 | |
|       SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
 | |
|       SERIAL_PROTOCOLPGM(" Y:");
 | |
|       SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
 | |
|       SERIAL_PROTOCOLPGM(" Z:");
 | |
|       SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
 | |
| 
 | |
|       SERIAL_PROTOCOLLN("");
 | |
| #ifdef SCARA
 | |
| 	  SERIAL_PROTOCOLPGM("SCARA Theta:");
 | |
|       SERIAL_PROTOCOL(delta[X_AXIS]);
 | |
|       SERIAL_PROTOCOLPGM("   Psi+Theta:");
 | |
|       SERIAL_PROTOCOL(delta[Y_AXIS]);
 | |
|       SERIAL_PROTOCOLLN("");
 | |
|       
 | |
|       SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
 | |
|       SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
 | |
|       SERIAL_PROTOCOLPGM("   Psi+Theta (90):");
 | |
|       SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
 | |
|       SERIAL_PROTOCOLLN("");
 | |
|       
 | |
|       SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
 | |
|       SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
 | |
|       SERIAL_PROTOCOLPGM("   Psi+Theta:");
 | |
|       SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
 | |
|       SERIAL_PROTOCOLLN("");
 | |
|       SERIAL_PROTOCOLLN("");
 | |
| #endif
 | |
|       break;
 | |
|     case 120: // M120
 | |
|       enable_endstops(false) ;
 | |
|       break;
 | |
|     case 121: // M121
 | |
|       enable_endstops(true) ;
 | |
|       break;
 | |
|     case 119: // M119
 | |
|     SERIAL_PROTOCOLLN(MSG_M119_REPORT);
 | |
|       #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 | |
|         SERIAL_PROTOCOLPGM(MSG_X_MIN);
 | |
|         SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | |
|       #endif
 | |
|       #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 | |
|         SERIAL_PROTOCOLPGM(MSG_X_MAX);
 | |
|         SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | |
|       #endif
 | |
|       #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 | |
|         SERIAL_PROTOCOLPGM(MSG_Y_MIN);
 | |
|         SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | |
|       #endif
 | |
|       #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 | |
|         SERIAL_PROTOCOLPGM(MSG_Y_MAX);
 | |
|         SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | |
|       #endif
 | |
|       #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 | |
|         SERIAL_PROTOCOLPGM(MSG_Z_MIN);
 | |
|         SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | |
|       #endif
 | |
|       #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 | |
|         SERIAL_PROTOCOLPGM(MSG_Z_MAX);
 | |
|         SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
 | |
|       #endif
 | |
|       break;
 | |
|       //TODO: update for all axis, use for loop
 | |
|     #ifdef BLINKM
 | |
|     case 150: // M150
 | |
|       {
 | |
|         byte red;
 | |
|         byte grn;
 | |
|         byte blu;
 | |
| 
 | |
|         if(code_seen('R')) red = code_value();
 | |
|         if(code_seen('U')) grn = code_value();
 | |
|         if(code_seen('B')) blu = code_value();
 | |
| 
 | |
|         SendColors(red,grn,blu);
 | |
|       }
 | |
|       break;
 | |
|     #endif //BLINKM
 | |
|     case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
 | |
|       {
 | |
| 
 | |
|         tmp_extruder = active_extruder;
 | |
|         if(code_seen('T')) {
 | |
|           tmp_extruder = code_value();
 | |
|           if(tmp_extruder >= EXTRUDERS) {
 | |
|             SERIAL_ECHO_START;
 | |
|             SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
 | |
|             break;
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         float area = .0;
 | |
|         if(code_seen('D')) {
 | |
|           float diameter = code_value();
 | |
|           // setting any extruder filament size disables volumetric on the assumption that
 | |
|           // slicers either generate in extruder values as cubic mm or as as filament feeds
 | |
|           // for all extruders
 | |
|           volumetric_enabled = (diameter != 0.0);
 | |
|           if (volumetric_enabled) {
 | |
|             filament_size[tmp_extruder] = diameter;
 | |
|             // make sure all extruders have some sane value for the filament size
 | |
|             for (int i=0; i<EXTRUDERS; i++)
 | |
|               if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
 | |
|           }
 | |
|         } else {
 | |
|           //reserved for setting filament diameter via UFID or filament measuring device
 | |
|           break;
 | |
|         }
 | |
|         calculate_volumetric_multipliers();
 | |
|       }
 | |
|       break;
 | |
|     case 201: // M201
 | |
|       for(int8_t i=0; i < NUM_AXIS; i++)
 | |
|       {
 | |
|         if(code_seen(axis_codes[i]))
 | |
|         {
 | |
|           max_acceleration_units_per_sq_second[i] = code_value();
 | |
|         }
 | |
|       }
 | |
|       // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
 | |
|       reset_acceleration_rates();
 | |
|       break;
 | |
|     #if 0 // Not used for Sprinter/grbl gen6
 | |
|     case 202: // M202
 | |
|       for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
|         if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
 | |
|       }
 | |
|       break;
 | |
|     #endif
 | |
|     case 203: // M203 max feedrate mm/sec
 | |
|       for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
|         if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
 | |
|       }
 | |
|       break;
 | |
|     case 204: // M204 acclereration S normal moves T filmanent only moves
 | |
|       {
 | |
|         if(code_seen('S')) acceleration = code_value() ;
 | |
|         if(code_seen('T')) retract_acceleration = code_value() ;
 | |
|       }
 | |
|       break;
 | |
|     case 205: //M205 advanced settings:  minimum travel speed S=while printing T=travel only,  B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
 | |
|     {
 | |
|       if(code_seen('S')) minimumfeedrate = code_value();
 | |
|       if(code_seen('T')) mintravelfeedrate = code_value();
 | |
|       if(code_seen('B')) minsegmenttime = code_value() ;
 | |
|       if(code_seen('X')) max_xy_jerk = code_value() ;
 | |
|       if(code_seen('Z')) max_z_jerk = code_value() ;
 | |
|       if(code_seen('E')) max_e_jerk = code_value() ;
 | |
|     }
 | |
|     break;
 | |
|     case 206: // M206 additional homing offset
 | |
|       for(int8_t i=0; i < 3; i++)
 | |
|       {
 | |
|         if(code_seen(axis_codes[i])) add_homing[i] = code_value();
 | |
|       }
 | |
| 	  #ifdef SCARA
 | |
| 	   if(code_seen('T'))       // Theta
 | |
|       {
 | |
|         add_homing[X_AXIS] = code_value() ;
 | |
|       }
 | |
|       if(code_seen('P'))       // Psi
 | |
|       {
 | |
|         add_homing[Y_AXIS] = code_value() ;
 | |
|       }
 | |
| 	  #endif
 | |
|       break;
 | |
|     #ifdef DELTA
 | |
| 	case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
 | |
| 		if(code_seen('L')) {
 | |
| 			delta_diagonal_rod= code_value();
 | |
| 		}
 | |
| 		if(code_seen('R')) {
 | |
| 			delta_radius= code_value();
 | |
| 		}
 | |
| 		if(code_seen('S')) {
 | |
| 			delta_segments_per_second= code_value();
 | |
| 		}
 | |
| 		
 | |
| 		recalc_delta_settings(delta_radius, delta_diagonal_rod);
 | |
| 		break;
 | |
|     case 666: // M666 set delta endstop adjustemnt
 | |
|       for(int8_t i=0; i < 3; i++)
 | |
|       {
 | |
|         if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
 | |
|       }
 | |
|       break;
 | |
|     #endif
 | |
|     #ifdef FWRETRACT
 | |
|     case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
 | |
|     {
 | |
|       if(code_seen('S'))
 | |
|       {
 | |
|         retract_length = code_value() ;
 | |
|       }
 | |
|       if(code_seen('F'))
 | |
|       {
 | |
|         retract_feedrate = code_value()/60 ;
 | |
|       }
 | |
|       if(code_seen('Z'))
 | |
|       {
 | |
|         retract_zlift = code_value() ;
 | |
|       }
 | |
|     }break;
 | |
|     case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
 | |
|     {
 | |
|       if(code_seen('S'))
 | |
|       {
 | |
|         retract_recover_length = code_value() ;
 | |
|       }
 | |
|       if(code_seen('F'))
 | |
|       {
 | |
|         retract_recover_feedrate = code_value()/60 ;
 | |
|       }
 | |
|     }break;
 | |
|     case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
 | |
|     {
 | |
|       if(code_seen('S'))
 | |
|       {
 | |
|         int t= code_value() ;
 | |
|         switch(t)
 | |
|         {
 | |
|           case 0:
 | |
|           case 1:
 | |
|           {
 | |
|             autoretract_enabled = (t == 1);
 | |
|             for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
 | |
|           }break;
 | |
|           default:
 | |
|             SERIAL_ECHO_START;
 | |
|             SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
 | |
|             SERIAL_ECHO(cmdbuffer[bufindr]);
 | |
|             SERIAL_ECHOLNPGM("\"");
 | |
|         }
 | |
|       }
 | |
| 
 | |
|     }break;
 | |
|     #endif // FWRETRACT
 | |
|     #if EXTRUDERS > 1
 | |
|     case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
 | |
|     {
 | |
|       if(setTargetedHotend(218)){
 | |
|         break;
 | |
|       }
 | |
|       if(code_seen('X'))
 | |
|       {
 | |
|         extruder_offset[X_AXIS][tmp_extruder] = code_value();
 | |
|       }
 | |
|       if(code_seen('Y'))
 | |
|       {
 | |
|         extruder_offset[Y_AXIS][tmp_extruder] = code_value();
 | |
|       }
 | |
|       #ifdef DUAL_X_CARRIAGE
 | |
|       if(code_seen('Z'))
 | |
|       {
 | |
|         extruder_offset[Z_AXIS][tmp_extruder] = code_value();
 | |
|       }
 | |
|       #endif
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | |
|       for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
 | |
|       {
 | |
|          SERIAL_ECHO(" ");
 | |
|          SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
 | |
|          SERIAL_ECHO(",");
 | |
|          SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
 | |
|       #ifdef DUAL_X_CARRIAGE
 | |
|          SERIAL_ECHO(",");
 | |
|          SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
 | |
|       #endif
 | |
|       }
 | |
|       SERIAL_ECHOLN("");
 | |
|     }break;
 | |
|     #endif
 | |
|     case 220: // M220 S<factor in percent>- set speed factor override percentage
 | |
|     {
 | |
|       if(code_seen('S'))
 | |
|       {
 | |
|         feedmultiply = code_value() ;
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|     case 221: // M221 S<factor in percent>- set extrude factor override percentage
 | |
|     {
 | |
|       if(code_seen('S'))
 | |
|       {
 | |
|         int tmp_code = code_value();
 | |
|         if (code_seen('T'))
 | |
|         {
 | |
|           if(setTargetedHotend(221)){
 | |
|             break;
 | |
|           }
 | |
|           extruder_multiply[tmp_extruder] = tmp_code;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           extrudemultiply = tmp_code ;
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
| 	case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
 | |
| 	{
 | |
|       if(code_seen('P')){
 | |
|         int pin_number = code_value(); // pin number
 | |
|         int pin_state = -1; // required pin state - default is inverted
 | |
| 
 | |
|         if(code_seen('S')) pin_state = code_value(); // required pin state
 | |
| 
 | |
|         if(pin_state >= -1 && pin_state <= 1){
 | |
| 
 | |
|           for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
 | |
|           {
 | |
|             if (sensitive_pins[i] == pin_number)
 | |
|             {
 | |
|               pin_number = -1;
 | |
|               break;
 | |
|             }
 | |
|           }
 | |
| 
 | |
|           if (pin_number > -1)
 | |
|           {
 | |
|             int target = LOW;
 | |
| 
 | |
|             st_synchronize();
 | |
| 
 | |
|             pinMode(pin_number, INPUT);
 | |
| 
 | |
|             switch(pin_state){
 | |
|             case 1:
 | |
|               target = HIGH;
 | |
|               break;
 | |
| 
 | |
|             case 0:
 | |
|               target = LOW;
 | |
|               break;
 | |
| 
 | |
|             case -1:
 | |
|               target = !digitalRead(pin_number);
 | |
|               break;
 | |
|             }
 | |
| 
 | |
|             while(digitalRead(pin_number) != target){
 | |
|               manage_heater();
 | |
|               manage_inactivity();
 | |
|               lcd_update();
 | |
|             }
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     #if NUM_SERVOS > 0
 | |
|     case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
 | |
|       {
 | |
|         int servo_index = -1;
 | |
|         int servo_position = 0;
 | |
|         if (code_seen('P'))
 | |
|           servo_index = code_value();
 | |
|         if (code_seen('S')) {
 | |
|           servo_position = code_value();
 | |
|           if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
 | |
| #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
| 		      servos[servo_index].attach(0);
 | |
| #endif
 | |
|             servos[servo_index].write(servo_position);
 | |
| #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
 | |
|               delay(PROBE_SERVO_DEACTIVATION_DELAY);
 | |
|               servos[servo_index].detach();
 | |
| #endif
 | |
|           }
 | |
|           else {
 | |
|             SERIAL_ECHO_START;
 | |
|             SERIAL_ECHO("Servo ");
 | |
|             SERIAL_ECHO(servo_index);
 | |
|             SERIAL_ECHOLN(" out of range");
 | |
|           }
 | |
|         }
 | |
|         else if (servo_index >= 0) {
 | |
|           SERIAL_PROTOCOL(MSG_OK);
 | |
|           SERIAL_PROTOCOL(" Servo ");
 | |
|           SERIAL_PROTOCOL(servo_index);
 | |
|           SERIAL_PROTOCOL(": ");
 | |
|           SERIAL_PROTOCOL(servos[servo_index].read());
 | |
|           SERIAL_PROTOCOLLN("");
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|     #endif // NUM_SERVOS > 0
 | |
| 
 | |
|     #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
 | |
|     case 300: // M300
 | |
|     {
 | |
|       int beepS = code_seen('S') ? code_value() : 110;
 | |
|       int beepP = code_seen('P') ? code_value() : 1000;
 | |
|       if (beepS > 0)
 | |
|       {
 | |
|         #if BEEPER > 0
 | |
|           tone(BEEPER, beepS);
 | |
|           delay(beepP);
 | |
|           noTone(BEEPER);
 | |
|         #elif defined(ULTRALCD)
 | |
| 		  lcd_buzz(beepS, beepP);
 | |
| 		#elif defined(LCD_USE_I2C_BUZZER)
 | |
| 		  lcd_buzz(beepP, beepS);
 | |
|         #endif
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         delay(beepP);
 | |
|       }
 | |
|     }
 | |
|     break;
 | |
|     #endif // M300
 | |
| 
 | |
|     #ifdef PIDTEMP
 | |
| 	case 301: // M301
 | |
| 	{
 | |
| 
 | |
| 		// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
 | |
| 		// default behaviour (omitting E parameter) is to update for extruder 0 only
 | |
| 		int e = 0; // extruder being updated
 | |
| 		if (code_seen('E'))
 | |
| 		{
 | |
| 			e = (int)code_value();
 | |
| 		}
 | |
| 		if (e < EXTRUDERS) // catch bad input value
 | |
| 		{
 | |
| 
 | |
| 			if (code_seen('P')) PID_PARAM(Kp,e) = code_value();
 | |
| 			if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value());
 | |
| 			if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value());
 | |
| 			#ifdef PID_ADD_EXTRUSION_RATE
 | |
| 			if (code_seen('C')) PID_PARAM(Kc,e) = code_value();
 | |
| 			#endif			
 | |
| 
 | |
| 			updatePID();
 | |
| 			SERIAL_PROTOCOL(MSG_OK);
 | |
|             #ifdef PID_PARAMS_PER_EXTRUDER
 | |
| 			  SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
 | |
| 			  SERIAL_PROTOCOL(e);
 | |
|             #endif // PID_PARAMS_PER_EXTRUDER
 | |
| 			SERIAL_PROTOCOL(" p:");
 | |
| 			SERIAL_PROTOCOL(PID_PARAM(Kp,e));
 | |
| 			SERIAL_PROTOCOL(" i:");
 | |
| 			SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e)));
 | |
| 			SERIAL_PROTOCOL(" d:");
 | |
| 			SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e)));
 | |
| 			#ifdef PID_ADD_EXTRUSION_RATE
 | |
| 			SERIAL_PROTOCOL(" c:");
 | |
| 			//Kc does not have scaling applied above, or in resetting defaults
 | |
| 			SERIAL_PROTOCOL(PID_PARAM(Kc,e));
 | |
| 			#endif
 | |
| 			SERIAL_PROTOCOLLN("");
 | |
| 		
 | |
| 		}
 | |
| 		else
 | |
| 		{
 | |
| 			SERIAL_ECHO_START;
 | |
| 			SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
 | |
| 		}
 | |
| 
 | |
|       }
 | |
|       break;
 | |
|     #endif //PIDTEMP
 | |
|     #ifdef PIDTEMPBED
 | |
|     case 304: // M304
 | |
|       {
 | |
|         if(code_seen('P')) bedKp = code_value();
 | |
|         if(code_seen('I')) bedKi = scalePID_i(code_value());
 | |
|         if(code_seen('D')) bedKd = scalePID_d(code_value());
 | |
| 
 | |
|         updatePID();
 | |
|         SERIAL_PROTOCOL(MSG_OK);
 | |
|         SERIAL_PROTOCOL(" p:");
 | |
|         SERIAL_PROTOCOL(bedKp);
 | |
|         SERIAL_PROTOCOL(" i:");
 | |
|         SERIAL_PROTOCOL(unscalePID_i(bedKi));
 | |
|         SERIAL_PROTOCOL(" d:");
 | |
|         SERIAL_PROTOCOL(unscalePID_d(bedKd));
 | |
|         SERIAL_PROTOCOLLN("");
 | |
|       }
 | |
|       break;
 | |
|     #endif //PIDTEMP
 | |
|     case 240: // M240  Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
 | |
|      {
 | |
|      	#ifdef CHDK
 | |
|        
 | |
|          SET_OUTPUT(CHDK);
 | |
|          WRITE(CHDK, HIGH);
 | |
|          chdkHigh = millis();
 | |
|          chdkActive = true;
 | |
|        
 | |
|        #else
 | |
|      	
 | |
|       	#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
 | |
| 	const uint8_t NUM_PULSES=16;
 | |
| 	const float PULSE_LENGTH=0.01524;
 | |
| 	for(int i=0; i < NUM_PULSES; i++) {
 | |
|         WRITE(PHOTOGRAPH_PIN, HIGH);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|         WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|         }
 | |
|         delay(7.33);
 | |
|         for(int i=0; i < NUM_PULSES; i++) {
 | |
|         WRITE(PHOTOGRAPH_PIN, HIGH);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|         WRITE(PHOTOGRAPH_PIN, LOW);
 | |
|         _delay_ms(PULSE_LENGTH);
 | |
|         }
 | |
|       	#endif
 | |
|       #endif //chdk end if
 | |
|      }
 | |
|     break;
 | |
| #ifdef DOGLCD
 | |
|     case 250: // M250  Set LCD contrast value: C<value> (value 0..63)
 | |
|      {
 | |
| 	  if (code_seen('C')) {
 | |
| 	   lcd_setcontrast( ((int)code_value())&63 );
 | |
|           }
 | |
|           SERIAL_PROTOCOLPGM("lcd contrast value: ");
 | |
|           SERIAL_PROTOCOL(lcd_contrast);
 | |
|           SERIAL_PROTOCOLLN("");
 | |
|      }
 | |
|     break;
 | |
| #endif
 | |
|     #ifdef PREVENT_DANGEROUS_EXTRUDE
 | |
|     case 302: // allow cold extrudes, or set the minimum extrude temperature
 | |
|     {
 | |
| 	  float temp = .0;
 | |
| 	  if (code_seen('S')) temp=code_value();
 | |
|       set_extrude_min_temp(temp);
 | |
|     }
 | |
|     break;
 | |
| 	#endif
 | |
|     case 303: // M303 PID autotune
 | |
|     {
 | |
|       float temp = 150.0;
 | |
|       int e=0;
 | |
|       int c=5;
 | |
|       if (code_seen('E')) e=code_value();
 | |
|         if (e<0)
 | |
|           temp=70;
 | |
|       if (code_seen('S')) temp=code_value();
 | |
|       if (code_seen('C')) c=code_value();
 | |
|       PID_autotune(temp, e, c);
 | |
|     }
 | |
|     break;
 | |
| 	#ifdef SCARA
 | |
| 	case 360:  // M360 SCARA Theta pos1
 | |
|       SERIAL_ECHOLN(" Cal: Theta 0 ");
 | |
|       //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | |
|       //SERIAL_ECHOLN(" Soft endstops disabled ");
 | |
|       if(Stopped == false) {
 | |
|         //get_coordinates(); // For X Y Z E F
 | |
|         delta[X_AXIS] = 0;
 | |
|         delta[Y_AXIS] = 120;
 | |
|         calculate_SCARA_forward_Transform(delta);
 | |
|         destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | |
|         destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | |
|         
 | |
|         prepare_move();
 | |
|         //ClearToSend();
 | |
|         return;
 | |
|       }
 | |
|     break;
 | |
| 
 | |
|     case 361:  // SCARA Theta pos2
 | |
|       SERIAL_ECHOLN(" Cal: Theta 90 ");
 | |
|       //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | |
|       //SERIAL_ECHOLN(" Soft endstops disabled ");
 | |
|       if(Stopped == false) {
 | |
|         //get_coordinates(); // For X Y Z E F
 | |
|         delta[X_AXIS] = 90;
 | |
|         delta[Y_AXIS] = 130;
 | |
|         calculate_SCARA_forward_Transform(delta);
 | |
|         destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | |
|         destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | |
|         
 | |
|         prepare_move();
 | |
|         //ClearToSend();
 | |
|         return;
 | |
|       }
 | |
|     break;
 | |
|     case 362:  // SCARA Psi pos1
 | |
|       SERIAL_ECHOLN(" Cal: Psi 0 ");
 | |
|       //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | |
|       //SERIAL_ECHOLN(" Soft endstops disabled ");
 | |
|       if(Stopped == false) {
 | |
|         //get_coordinates(); // For X Y Z E F
 | |
|         delta[X_AXIS] = 60;
 | |
|         delta[Y_AXIS] = 180;
 | |
|         calculate_SCARA_forward_Transform(delta);
 | |
|         destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | |
|         destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | |
|         
 | |
|         prepare_move();
 | |
|         //ClearToSend();
 | |
|         return;
 | |
|       }
 | |
|     break;
 | |
|     case 363:  // SCARA Psi pos2
 | |
|       SERIAL_ECHOLN(" Cal: Psi 90 ");
 | |
|       //SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | |
|       //SERIAL_ECHOLN(" Soft endstops disabled ");
 | |
|       if(Stopped == false) {
 | |
|         //get_coordinates(); // For X Y Z E F
 | |
|         delta[X_AXIS] = 50;
 | |
|         delta[Y_AXIS] = 90;
 | |
|         calculate_SCARA_forward_Transform(delta);
 | |
|         destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | |
|         destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
 | |
|         
 | |
|         prepare_move();
 | |
|         //ClearToSend();
 | |
|         return;
 | |
|       }
 | |
|     break;
 | |
|     case 364:  // SCARA Psi pos3 (90 deg to Theta)
 | |
|       SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
 | |
|      // SoftEndsEnabled = false;              // Ignore soft endstops during calibration
 | |
|       //SERIAL_ECHOLN(" Soft endstops disabled ");
 | |
|       if(Stopped == false) {
 | |
|         //get_coordinates(); // For X Y Z E F
 | |
|         delta[X_AXIS] = 45;
 | |
|         delta[Y_AXIS] = 135;
 | |
|         calculate_SCARA_forward_Transform(delta);
 | |
|         destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
 | |
|         destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS]; 
 | |
|         
 | |
|         prepare_move();
 | |
|         //ClearToSend();
 | |
|         return;
 | |
|       }
 | |
|     break;
 | |
|     case 365: // M364  Set SCARA scaling for X Y Z
 | |
|       for(int8_t i=0; i < 3; i++) 
 | |
|       {
 | |
|         if(code_seen(axis_codes[i])) 
 | |
|         {
 | |
|           
 | |
|             axis_scaling[i] = code_value();
 | |
|           
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
| 	#endif
 | |
|     case 400: // M400 finish all moves
 | |
|     {
 | |
|       st_synchronize();
 | |
|     }
 | |
|     break;
 | |
| #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
 | |
|     case 401:
 | |
|     {
 | |
|         engage_z_probe();    // Engage Z Servo endstop if available
 | |
|     }
 | |
|     break;
 | |
| 
 | |
|     case 402:
 | |
|     {
 | |
|         retract_z_probe();    // Retract Z Servo endstop if enabled
 | |
|     }
 | |
|     break;
 | |
| #endif
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
| case 404:  //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width 
 | |
|     {
 | |
|     #if (FILWIDTH_PIN > -1) 
 | |
|     if(code_seen('N')) filament_width_nominal=code_value();
 | |
|     else{
 | |
|     SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); 
 | |
|     SERIAL_PROTOCOLLN(filament_width_nominal); 
 | |
|     }
 | |
|     #endif
 | |
|     }
 | |
|     break; 
 | |
|     
 | |
|     case 405:  //M405 Turn on filament sensor for control 
 | |
|     {
 | |
|     
 | |
|     
 | |
|     if(code_seen('D')) meas_delay_cm=code_value();
 | |
|        
 | |
|        if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
 | |
|        	meas_delay_cm = MAX_MEASUREMENT_DELAY;
 | |
|     
 | |
|        if(delay_index2 == -1)  //initialize the ring buffer if it has not been done since startup
 | |
|     	   {
 | |
|     	   int temp_ratio = widthFil_to_size_ratio(); 
 | |
|        	    
 | |
|        	    for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
 | |
|        	              measurement_delay[delay_index1]=temp_ratio-100;  //subtract 100 to scale within a signed byte
 | |
|        	        }
 | |
|        	    delay_index1=0;
 | |
|        	    delay_index2=0;	
 | |
|     	   }
 | |
|     
 | |
|     filament_sensor = true ; 
 | |
|     
 | |
|     //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
 | |
|     //SERIAL_PROTOCOL(filament_width_meas); 
 | |
|     //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); 
 | |
|     //SERIAL_PROTOCOL(extrudemultiply); 
 | |
|     } 
 | |
|     break; 
 | |
|     
 | |
|     case 406:  //M406 Turn off filament sensor for control 
 | |
|     {      
 | |
|     filament_sensor = false ; 
 | |
|     } 
 | |
|     break; 
 | |
|   
 | |
|     case 407:   //M407 Display measured filament diameter 
 | |
|     { 
 | |
|      
 | |
|     
 | |
|     
 | |
|     SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); 
 | |
|     SERIAL_PROTOCOLLN(filament_width_meas);   
 | |
|     } 
 | |
|     break; 
 | |
|     #endif
 | |
|     
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     case 500: // M500 Store settings in EEPROM
 | |
|     {
 | |
|         Config_StoreSettings();
 | |
|     }
 | |
|     break;
 | |
|     case 501: // M501 Read settings from EEPROM
 | |
|     {
 | |
|         Config_RetrieveSettings();
 | |
|     }
 | |
|     break;
 | |
|     case 502: // M502 Revert to default settings
 | |
|     {
 | |
|         Config_ResetDefault();
 | |
|     }
 | |
|     break;
 | |
|     case 503: // M503 print settings currently in memory
 | |
|     {
 | |
|         Config_PrintSettings(code_seen('S') && code_value == 0);
 | |
|     }
 | |
|     break;
 | |
|     #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | |
|     case 540:
 | |
|     {
 | |
|         if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
 | |
|     }
 | |
|     break;
 | |
|     #endif
 | |
| 
 | |
|     #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | |
|     case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
 | |
|     {
 | |
|       float value;
 | |
|       if (code_seen('Z'))
 | |
|       {
 | |
|         value = code_value();
 | |
|         if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
 | |
|         {
 | |
|           zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
 | |
|           SERIAL_PROTOCOLLN("");
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
 | |
|           SERIAL_ECHOPGM(MSG_Z_MIN);
 | |
|           SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
 | |
|           SERIAL_ECHOPGM(MSG_Z_MAX);
 | |
|           SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
 | |
|           SERIAL_PROTOCOLLN("");
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
 | |
|           SERIAL_ECHO(-zprobe_zoffset);
 | |
|           SERIAL_PROTOCOLLN("");
 | |
|       }
 | |
|       break;
 | |
|     }
 | |
|     #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
 | |
| 
 | |
|     #ifdef FILAMENTCHANGEENABLE
 | |
|     case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
 | |
|     {
 | |
|         float target[4];
 | |
|         float lastpos[4];
 | |
|         target[X_AXIS]=current_position[X_AXIS];
 | |
|         target[Y_AXIS]=current_position[Y_AXIS];
 | |
|         target[Z_AXIS]=current_position[Z_AXIS];
 | |
|         target[E_AXIS]=current_position[E_AXIS];
 | |
|         lastpos[X_AXIS]=current_position[X_AXIS];
 | |
|         lastpos[Y_AXIS]=current_position[Y_AXIS];
 | |
|         lastpos[Z_AXIS]=current_position[Z_AXIS];
 | |
|         lastpos[E_AXIS]=current_position[E_AXIS];
 | |
|         //retract by E
 | |
|         if(code_seen('E'))
 | |
|         {
 | |
|           target[E_AXIS]+= code_value();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           #ifdef FILAMENTCHANGE_FIRSTRETRACT
 | |
|             target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
 | |
|           #endif
 | |
|         }
 | |
|         plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
 | |
| 
 | |
|         //lift Z
 | |
|         if(code_seen('Z'))
 | |
|         {
 | |
|           target[Z_AXIS]+= code_value();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           #ifdef FILAMENTCHANGE_ZADD
 | |
|             target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
 | |
|           #endif
 | |
|         }
 | |
|         plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
 | |
| 
 | |
|         //move xy
 | |
|         if(code_seen('X'))
 | |
|         {
 | |
|           target[X_AXIS]+= code_value();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           #ifdef FILAMENTCHANGE_XPOS
 | |
|             target[X_AXIS]= FILAMENTCHANGE_XPOS ;
 | |
|           #endif
 | |
|         }
 | |
|         if(code_seen('Y'))
 | |
|         {
 | |
|           target[Y_AXIS]= code_value();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           #ifdef FILAMENTCHANGE_YPOS
 | |
|             target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
 | |
|           #endif
 | |
|         }
 | |
| 
 | |
|         plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
 | |
| 
 | |
|         if(code_seen('L'))
 | |
|         {
 | |
|           target[E_AXIS]+= code_value();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           #ifdef FILAMENTCHANGE_FINALRETRACT
 | |
|             target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
 | |
|           #endif
 | |
|         }
 | |
| 
 | |
|         plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
 | |
| 
 | |
|         //finish moves
 | |
|         st_synchronize();
 | |
|         //disable extruder steppers so filament can be removed
 | |
|         disable_e0();
 | |
|         disable_e1();
 | |
|         disable_e2();
 | |
|         delay(100);
 | |
|         LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
 | |
|         uint8_t cnt=0;
 | |
|         while(!lcd_clicked()){
 | |
|           cnt++;
 | |
|           manage_heater();
 | |
|           manage_inactivity(true);
 | |
|           lcd_update();
 | |
|           if(cnt==0)
 | |
|           {
 | |
|           #if BEEPER > 0
 | |
|             SET_OUTPUT(BEEPER);
 | |
| 
 | |
|             WRITE(BEEPER,HIGH);
 | |
|             delay(3);
 | |
|             WRITE(BEEPER,LOW);
 | |
|             delay(3);
 | |
|           #else
 | |
| 			#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
 | |
|               lcd_buzz(1000/6,100);
 | |
| 			#else
 | |
| 			  lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
 | |
| 			#endif
 | |
|           #endif
 | |
|           }
 | |
|         }
 | |
| 
 | |
|         //return to normal
 | |
|         if(code_seen('L'))
 | |
|         {
 | |
|           target[E_AXIS]+= -code_value();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           #ifdef FILAMENTCHANGE_FINALRETRACT
 | |
|             target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
 | |
|           #endif
 | |
|         }
 | |
|         current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
 | |
|         plan_set_e_position(current_position[E_AXIS]);
 | |
|         plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
 | |
|         plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
 | |
|         plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
 | |
|         plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
 | |
|     }
 | |
|     break;
 | |
|     #endif //FILAMENTCHANGEENABLE
 | |
|     #ifdef DUAL_X_CARRIAGE
 | |
|     case 605: // Set dual x-carriage movement mode:
 | |
|               //    M605 S0: Full control mode. The slicer has full control over x-carriage movement
 | |
|               //    M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
 | |
|               //    M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
 | |
|               //                         millimeters x-offset and an optional differential hotend temperature of
 | |
|               //                         mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
 | |
|               //                         the first with a spacing of 100mm in the x direction and 2 degrees hotter.
 | |
|               //
 | |
|               //    Note: the X axis should be homed after changing dual x-carriage mode.
 | |
|     {
 | |
|         st_synchronize();
 | |
| 
 | |
|         if (code_seen('S'))
 | |
|           dual_x_carriage_mode = code_value();
 | |
| 
 | |
|         if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
 | |
|         {
 | |
|           if (code_seen('X'))
 | |
|             duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
 | |
| 
 | |
|           if (code_seen('R'))
 | |
|             duplicate_extruder_temp_offset = code_value();
 | |
| 
 | |
|           SERIAL_ECHO_START;
 | |
|           SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
 | |
|           SERIAL_ECHO(" ");
 | |
|           SERIAL_ECHO(extruder_offset[X_AXIS][0]);
 | |
|           SERIAL_ECHO(",");
 | |
|           SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
 | |
|           SERIAL_ECHO(" ");
 | |
|           SERIAL_ECHO(duplicate_extruder_x_offset);
 | |
|           SERIAL_ECHO(",");
 | |
|           SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
 | |
|         }
 | |
|         else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
 | |
|         {
 | |
|           dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
 | |
|         }
 | |
| 
 | |
|         active_extruder_parked = false;
 | |
|         extruder_duplication_enabled = false;
 | |
|         delayed_move_time = 0;
 | |
|     }
 | |
|     break;
 | |
|     #endif //DUAL_X_CARRIAGE
 | |
| 
 | |
|     case 907: // M907 Set digital trimpot motor current using axis codes.
 | |
|     {
 | |
|       #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | |
|         for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
 | |
|         if(code_seen('B')) digipot_current(4,code_value());
 | |
|         if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
 | |
|       #endif
 | |
|       #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | |
|         if(code_seen('X')) digipot_current(0, code_value());
 | |
|       #endif
 | |
|       #ifdef MOTOR_CURRENT_PWM_Z_PIN
 | |
|         if(code_seen('Z')) digipot_current(1, code_value());
 | |
|       #endif
 | |
|       #ifdef MOTOR_CURRENT_PWM_E_PIN
 | |
|         if(code_seen('E')) digipot_current(2, code_value());
 | |
|       #endif
 | |
|       #ifdef DIGIPOT_I2C
 | |
|         // this one uses actual amps in floating point
 | |
|         for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
 | |
|         // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
 | |
|         for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
 | |
|       #endif
 | |
|     }
 | |
|     break;
 | |
|     case 908: // M908 Control digital trimpot directly.
 | |
|     {
 | |
|       #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | |
|         uint8_t channel,current;
 | |
|         if(code_seen('P')) channel=code_value();
 | |
|         if(code_seen('S')) current=code_value();
 | |
|         digitalPotWrite(channel, current);
 | |
|       #endif
 | |
|     }
 | |
|     break;
 | |
|     case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
 | |
|     {
 | |
|       #if defined(X_MS1_PIN) && X_MS1_PIN > -1
 | |
|         if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
 | |
|         for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
 | |
|         if(code_seen('B')) microstep_mode(4,code_value());
 | |
|         microstep_readings();
 | |
|       #endif
 | |
|     }
 | |
|     break;
 | |
|     case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
 | |
|     {
 | |
|       #if defined(X_MS1_PIN) && X_MS1_PIN > -1
 | |
|       if(code_seen('S')) switch((int)code_value())
 | |
|       {
 | |
|         case 1:
 | |
|           for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
 | |
|           if(code_seen('B')) microstep_ms(4,code_value(),-1);
 | |
|           break;
 | |
|         case 2:
 | |
|           for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
 | |
|           if(code_seen('B')) microstep_ms(4,-1,code_value());
 | |
|           break;
 | |
|       }
 | |
|       microstep_readings();
 | |
|       #endif
 | |
|     }
 | |
|     break;
 | |
|     case 999: // M999: Restart after being stopped
 | |
|       Stopped = false;
 | |
|       lcd_reset_alert_level();
 | |
|       gcode_LastN = Stopped_gcode_LastN;
 | |
|       FlushSerialRequestResend();
 | |
|     break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   else if(code_seen('T'))
 | |
|   {
 | |
|     tmp_extruder = code_value();
 | |
|     if(tmp_extruder >= EXTRUDERS) {
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHO("T");
 | |
|       SERIAL_ECHO(tmp_extruder);
 | |
|       SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
 | |
|     }
 | |
|     else {
 | |
|       boolean make_move = false;
 | |
|       if(code_seen('F')) {
 | |
|         make_move = true;
 | |
|         next_feedrate = code_value();
 | |
|         if(next_feedrate > 0.0) {
 | |
|           feedrate = next_feedrate;
 | |
|         }
 | |
|       }
 | |
|       #if EXTRUDERS > 1
 | |
|       if(tmp_extruder != active_extruder) {
 | |
|         // Save current position to return to after applying extruder offset
 | |
|         memcpy(destination, current_position, sizeof(destination));
 | |
|       #ifdef DUAL_X_CARRIAGE
 | |
|         if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
 | |
|             (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
 | |
|         {
 | |
|           // Park old head: 1) raise 2) move to park position 3) lower
 | |
|           plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
 | |
|                 current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | |
|           plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
 | |
|                 current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
 | |
|           plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
 | |
|                 current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | |
|           st_synchronize();
 | |
|         }
 | |
| 
 | |
|         // apply Y & Z extruder offset (x offset is already used in determining home pos)
 | |
|         current_position[Y_AXIS] = current_position[Y_AXIS] -
 | |
|                      extruder_offset[Y_AXIS][active_extruder] +
 | |
|                      extruder_offset[Y_AXIS][tmp_extruder];
 | |
|         current_position[Z_AXIS] = current_position[Z_AXIS] -
 | |
|                      extruder_offset[Z_AXIS][active_extruder] +
 | |
|                      extruder_offset[Z_AXIS][tmp_extruder];
 | |
| 
 | |
|         active_extruder = tmp_extruder;
 | |
| 
 | |
|         // This function resets the max/min values - the current position may be overwritten below.
 | |
|         axis_is_at_home(X_AXIS);
 | |
| 
 | |
|         if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
 | |
|         {
 | |
|           current_position[X_AXIS] = inactive_extruder_x_pos;
 | |
|           inactive_extruder_x_pos = destination[X_AXIS];
 | |
|         }
 | |
|         else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
 | |
|         {
 | |
|           active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
 | |
|           if (active_extruder == 0 || active_extruder_parked)
 | |
|             current_position[X_AXIS] = inactive_extruder_x_pos;
 | |
|           else
 | |
|             current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
 | |
|           inactive_extruder_x_pos = destination[X_AXIS];
 | |
|           extruder_duplication_enabled = false;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           // record raised toolhead position for use by unpark
 | |
|           memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
 | |
|           raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
 | |
|           active_extruder_parked = true;
 | |
|           delayed_move_time = 0;
 | |
|         }
 | |
|       #else
 | |
|         // Offset extruder (only by XY)
 | |
|         int i;
 | |
|         for(i = 0; i < 2; i++) {
 | |
|            current_position[i] = current_position[i] -
 | |
|                                  extruder_offset[i][active_extruder] +
 | |
|                                  extruder_offset[i][tmp_extruder];
 | |
|         }
 | |
|         // Set the new active extruder and position
 | |
|         active_extruder = tmp_extruder;
 | |
|       #endif //else DUAL_X_CARRIAGE
 | |
| #ifdef DELTA 
 | |
| 
 | |
|   calculate_delta(current_position); // change cartesian kinematic  to  delta kinematic;
 | |
|    //sent position to plan_set_position();
 | |
|   plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
 | |
|             
 | |
| #else
 | |
|         plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
| 
 | |
| #endif
 | |
|         // Move to the old position if 'F' was in the parameters
 | |
|         if(make_move && Stopped == false) {
 | |
|            prepare_move();
 | |
|         }
 | |
|       }
 | |
|       #endif
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
 | |
|       SERIAL_PROTOCOLLN((int)active_extruder);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   else
 | |
|   {
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
 | |
|     SERIAL_ECHO(cmdbuffer[bufindr]);
 | |
|     SERIAL_ECHOLNPGM("\"");
 | |
|   }
 | |
| 
 | |
|   ClearToSend();
 | |
| }
 | |
| 
 | |
| void FlushSerialRequestResend()
 | |
| {
 | |
|   //char cmdbuffer[bufindr][100]="Resend:";
 | |
|   MYSERIAL.flush();
 | |
|   SERIAL_PROTOCOLPGM(MSG_RESEND);
 | |
|   SERIAL_PROTOCOLLN(gcode_LastN + 1);
 | |
|   ClearToSend();
 | |
| }
 | |
| 
 | |
| void ClearToSend()
 | |
| {
 | |
|   previous_millis_cmd = millis();
 | |
|   #ifdef SDSUPPORT
 | |
|   if(fromsd[bufindr])
 | |
|     return;
 | |
|   #endif //SDSUPPORT
 | |
|   SERIAL_PROTOCOLLNPGM(MSG_OK);
 | |
| }
 | |
| 
 | |
| void get_coordinates()
 | |
| {
 | |
|   bool seen[4]={false,false,false,false};
 | |
|   for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
|     if(code_seen(axis_codes[i]))
 | |
|     {
 | |
|       destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
 | |
|       seen[i]=true;
 | |
|     }
 | |
|     else destination[i] = current_position[i]; //Are these else lines really needed?
 | |
|   }
 | |
|   if(code_seen('F')) {
 | |
|     next_feedrate = code_value();
 | |
|     if(next_feedrate > 0.0) feedrate = next_feedrate;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void get_arc_coordinates()
 | |
| {
 | |
| #ifdef SF_ARC_FIX
 | |
|    bool relative_mode_backup = relative_mode;
 | |
|    relative_mode = true;
 | |
| #endif
 | |
|    get_coordinates();
 | |
| #ifdef SF_ARC_FIX
 | |
|    relative_mode=relative_mode_backup;
 | |
| #endif
 | |
| 
 | |
|    if(code_seen('I')) {
 | |
|      offset[0] = code_value();
 | |
|    }
 | |
|    else {
 | |
|      offset[0] = 0.0;
 | |
|    }
 | |
|    if(code_seen('J')) {
 | |
|      offset[1] = code_value();
 | |
|    }
 | |
|    else {
 | |
|      offset[1] = 0.0;
 | |
|    }
 | |
| }
 | |
| 
 | |
| void clamp_to_software_endstops(float target[3])
 | |
| {
 | |
|   if (min_software_endstops) {
 | |
|     if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
 | |
|     if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
 | |
|     
 | |
|     float negative_z_offset = 0;
 | |
|     #ifdef ENABLE_AUTO_BED_LEVELING
 | |
|       if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
 | |
|       if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
 | |
|     #endif
 | |
|     
 | |
|     if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
 | |
|   }
 | |
| 
 | |
|   if (max_software_endstops) {
 | |
|     if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
 | |
|     if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
 | |
|     if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef DELTA
 | |
| void recalc_delta_settings(float radius, float diagonal_rod)
 | |
| {
 | |
| 	 delta_tower1_x= -SIN_60*radius; // front left tower
 | |
| 	 delta_tower1_y= -COS_60*radius;	   
 | |
| 	 delta_tower2_x=  SIN_60*radius; // front right tower
 | |
| 	 delta_tower2_y= -COS_60*radius;	   
 | |
| 	 delta_tower3_x= 0.0;                  // back middle tower
 | |
| 	 delta_tower3_y= radius;
 | |
| 	 delta_diagonal_rod_2= sq(diagonal_rod);
 | |
| }
 | |
| 
 | |
| void calculate_delta(float cartesian[3])
 | |
| {
 | |
|   delta[X_AXIS] = sqrt(delta_diagonal_rod_2
 | |
|                        - sq(delta_tower1_x-cartesian[X_AXIS])
 | |
|                        - sq(delta_tower1_y-cartesian[Y_AXIS])
 | |
|                        ) + cartesian[Z_AXIS];
 | |
|   delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
 | |
|                        - sq(delta_tower2_x-cartesian[X_AXIS])
 | |
|                        - sq(delta_tower2_y-cartesian[Y_AXIS])
 | |
|                        ) + cartesian[Z_AXIS];
 | |
|   delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
 | |
|                        - sq(delta_tower3_x-cartesian[X_AXIS])
 | |
|                        - sq(delta_tower3_y-cartesian[Y_AXIS])
 | |
|                        ) + cartesian[Z_AXIS];
 | |
|   /*
 | |
|   SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | |
|   SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | |
|   SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | |
| 
 | |
|   SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | |
|   SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | |
|   SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | |
|   */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void prepare_move()
 | |
| {
 | |
|   clamp_to_software_endstops(destination);
 | |
|   previous_millis_cmd = millis();
 | |
|   
 | |
|   #ifdef SCARA //for now same as delta-code
 | |
| 
 | |
| float difference[NUM_AXIS];
 | |
| for (int8_t i=0; i < NUM_AXIS; i++) {
 | |
| 	difference[i] = destination[i] - current_position[i];
 | |
| }
 | |
| 
 | |
| float cartesian_mm = sqrt(	sq(difference[X_AXIS]) +
 | |
| 							sq(difference[Y_AXIS]) +
 | |
| 							sq(difference[Z_AXIS]));
 | |
| if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
 | |
| if (cartesian_mm < 0.000001) { return; }
 | |
| float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
 | |
| int steps = max(1, int(scara_segments_per_second * seconds));
 | |
|  //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
 | |
|  //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
 | |
|  //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
 | |
| for (int s = 1; s <= steps; s++) {
 | |
| 	float fraction = float(s) / float(steps);
 | |
| 	for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
| 		destination[i] = current_position[i] + difference[i] * fraction;
 | |
| 	}
 | |
| 
 | |
| 	
 | |
| 	calculate_delta(destination);
 | |
|          //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
 | |
|          //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
 | |
|          //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
 | |
|          //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
 | |
|          //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | |
|          //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | |
|          
 | |
| 	plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
 | |
| 	destination[E_AXIS], feedrate*feedmultiply/60/100.0,
 | |
| 	active_extruder);
 | |
| }
 | |
| #endif // SCARA
 | |
|   
 | |
| #ifdef DELTA
 | |
|   float difference[NUM_AXIS];
 | |
|   for (int8_t i=0; i < NUM_AXIS; i++) {
 | |
|     difference[i] = destination[i] - current_position[i];
 | |
|   }
 | |
|   float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
 | |
|                             sq(difference[Y_AXIS]) +
 | |
|                             sq(difference[Z_AXIS]));
 | |
|   if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
 | |
|   if (cartesian_mm < 0.000001) { return; }
 | |
|   float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
 | |
|   int steps = max(1, int(delta_segments_per_second * seconds));
 | |
|   // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
 | |
|   // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
 | |
|   // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
 | |
|   for (int s = 1; s <= steps; s++) {
 | |
|     float fraction = float(s) / float(steps);
 | |
|     for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
|       destination[i] = current_position[i] + difference[i] * fraction;
 | |
|     }
 | |
|     calculate_delta(destination);
 | |
|     plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
 | |
|                      destination[E_AXIS], feedrate*feedmultiply/60/100.0,
 | |
|                      active_extruder);
 | |
|   }
 | |
|   
 | |
| #endif // DELTA
 | |
| 
 | |
| #ifdef DUAL_X_CARRIAGE
 | |
|   if (active_extruder_parked)
 | |
|   {
 | |
|     if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
 | |
|     {
 | |
|       // move duplicate extruder into correct duplication position.
 | |
|       plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|       plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
 | |
|           current_position[E_AXIS], max_feedrate[X_AXIS], 1);
 | |
|       plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | |
|       st_synchronize();
 | |
|       extruder_duplication_enabled = true;
 | |
|       active_extruder_parked = false;
 | |
|     }
 | |
|     else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
 | |
|     {
 | |
|       if (current_position[E_AXIS] == destination[E_AXIS])
 | |
|       {
 | |
|         // this is a travel move - skit it but keep track of current position (so that it can later
 | |
|         // be used as start of first non-travel move)
 | |
|         if (delayed_move_time != 0xFFFFFFFFUL)
 | |
|         {
 | |
|           memcpy(current_position, destination, sizeof(current_position));
 | |
|           if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
 | |
|             raised_parked_position[Z_AXIS] = destination[Z_AXIS];
 | |
|           delayed_move_time = millis();
 | |
|           return;
 | |
|         }
 | |
|       }
 | |
|       delayed_move_time = 0;
 | |
|       // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
 | |
|       plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS],    current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | |
|       plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
 | |
|           current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
 | |
|       plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
 | |
|           current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
 | |
|       active_extruder_parked = false;
 | |
|     }
 | |
|   }
 | |
| #endif //DUAL_X_CARRIAGE
 | |
| 
 | |
| #if ! (defined DELTA || defined SCARA)
 | |
|   // Do not use feedmultiply for E or Z only moves
 | |
|   if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
 | |
|       plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
 | |
|   }
 | |
|   else {
 | |
|     plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
 | |
|   }
 | |
| #endif // !(DELTA || SCARA)
 | |
| 
 | |
|   for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
|     current_position[i] = destination[i];
 | |
|   }
 | |
| }
 | |
| 
 | |
| void prepare_arc_move(char isclockwise) {
 | |
|   float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
 | |
| 
 | |
|   // Trace the arc
 | |
|   mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
 | |
| 
 | |
|   // As far as the parser is concerned, the position is now == target. In reality the
 | |
|   // motion control system might still be processing the action and the real tool position
 | |
|   // in any intermediate location.
 | |
|   for(int8_t i=0; i < NUM_AXIS; i++) {
 | |
|     current_position[i] = destination[i];
 | |
|   }
 | |
|   previous_millis_cmd = millis();
 | |
| }
 | |
| 
 | |
| #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
 | |
| 
 | |
| #if defined(FAN_PIN)
 | |
|   #if CONTROLLERFAN_PIN == FAN_PIN
 | |
|     #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
 | |
|   #endif
 | |
| #endif
 | |
| 
 | |
| unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
 | |
| unsigned long lastMotorCheck = 0;
 | |
| 
 | |
| void controllerFan()
 | |
| {
 | |
|   if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
 | |
|   {
 | |
|     lastMotorCheck = millis();
 | |
| 
 | |
|     if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
 | |
|     #if EXTRUDERS > 2
 | |
|        || !READ(E2_ENABLE_PIN)
 | |
|     #endif
 | |
|     #if EXTRUDER > 1
 | |
|       #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
 | |
|        || !READ(X2_ENABLE_PIN)
 | |
|       #endif
 | |
|        || !READ(E1_ENABLE_PIN)
 | |
|     #endif
 | |
|        || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
 | |
|     {
 | |
|       lastMotor = millis(); //... set time to NOW so the fan will turn on
 | |
|     }
 | |
| 
 | |
|     if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
 | |
|     {
 | |
|         digitalWrite(CONTROLLERFAN_PIN, 0);
 | |
|         analogWrite(CONTROLLERFAN_PIN, 0);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // allows digital or PWM fan output to be used (see M42 handling)
 | |
|         digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
 | |
|         analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef SCARA
 | |
| void calculate_SCARA_forward_Transform(float f_scara[3])
 | |
| {
 | |
|   // Perform forward kinematics, and place results in delta[3]
 | |
|   // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | |
|   
 | |
|   float x_sin, x_cos, y_sin, y_cos;
 | |
|   
 | |
|     //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
 | |
|     //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
 | |
|   
 | |
|     x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
 | |
|     x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
 | |
|     y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
 | |
|     y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
 | |
|    
 | |
|   //  SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
 | |
|   //  SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
 | |
|   //  SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
 | |
|   //  SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
 | |
|   
 | |
|     delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x;  //theta
 | |
|     delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y;  //theta+phi
 | |
| 	
 | |
|     //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
 | |
|     //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | |
| }  
 | |
| 
 | |
| void calculate_delta(float cartesian[3]){
 | |
|   //reverse kinematics.
 | |
|   // Perform reversed kinematics, and place results in delta[3]
 | |
|   // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | |
|   
 | |
|   float SCARA_pos[2];
 | |
|   static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; 
 | |
|   
 | |
|   SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
 | |
|   SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
 | |
|   
 | |
|   #if (Linkage_1 == Linkage_2)
 | |
|     SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
 | |
|   #else
 | |
|     SCARA_C2 =   ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; 
 | |
|   #endif
 | |
|   
 | |
|   SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
 | |
|   
 | |
|   SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
 | |
|   SCARA_K2 = Linkage_2 * SCARA_S2;
 | |
|   
 | |
|   SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
 | |
|   SCARA_psi   =   atan2(SCARA_S2,SCARA_C2);
 | |
|   
 | |
|   delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
 | |
|   delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
 | |
|   delta[Z_AXIS] = cartesian[Z_AXIS];
 | |
|   
 | |
|   /*
 | |
|   SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | |
|   SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | |
|   SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | |
|   
 | |
|   SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
 | |
|   SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
 | |
|   
 | |
|   SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | |
|   SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | |
|   SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | |
|   
 | |
|   SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
 | |
|   SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
 | |
|   SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
 | |
|   SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
 | |
|   SERIAL_ECHOLN(" ");*/
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TEMP_STAT_LEDS
 | |
| static bool blue_led = false;
 | |
| static bool red_led = false;
 | |
| static uint32_t stat_update = 0;
 | |
| 
 | |
| void handle_status_leds(void) {
 | |
|   float max_temp = 0.0;
 | |
|   if(millis() > stat_update) {
 | |
|     stat_update += 500; // Update every 0.5s
 | |
|     for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
 | |
|        max_temp = max(max_temp, degHotend(cur_extruder));
 | |
|        max_temp = max(max_temp, degTargetHotend(cur_extruder));
 | |
|     }
 | |
|     #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | |
|       max_temp = max(max_temp, degTargetBed());
 | |
|       max_temp = max(max_temp, degBed());
 | |
|     #endif
 | |
|     if((max_temp > 55.0) && (red_led == false)) {
 | |
|       digitalWrite(STAT_LED_RED, 1);
 | |
|       digitalWrite(STAT_LED_BLUE, 0);
 | |
|       red_led = true;
 | |
|       blue_led = false;
 | |
|     }
 | |
|     if((max_temp < 54.0) && (blue_led == false)) {
 | |
|       digitalWrite(STAT_LED_RED, 0);
 | |
|       digitalWrite(STAT_LED_BLUE, 1);
 | |
|       red_led = false;
 | |
|       blue_led = true;
 | |
|     }
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
 | |
| {
 | |
| 	
 | |
| #if defined(KILL_PIN) && KILL_PIN > -1
 | |
| 	static int killCount = 0;   // make the inactivity button a bit less responsive
 | |
|    const int KILL_DELAY = 10000;
 | |
| #endif
 | |
| 
 | |
| #if defined(HOME_PIN) && HOME_PIN > -1
 | |
|    static int homeDebounceCount = 0;   // poor man's debouncing count
 | |
|    const int HOME_DEBOUNCE_DELAY = 10000;
 | |
| #endif
 | |
|    
 | |
| 	
 | |
|   if(buflen < (BUFSIZE-1))
 | |
|     get_command();
 | |
| 
 | |
|   if( (millis() - previous_millis_cmd) >  max_inactive_time )
 | |
|     if(max_inactive_time)
 | |
|       kill();
 | |
|   if(stepper_inactive_time)  {
 | |
|     if( (millis() - previous_millis_cmd) >  stepper_inactive_time )
 | |
|     {
 | |
|       if(blocks_queued() == false && ignore_stepper_queue == false) {
 | |
|         disable_x();
 | |
|         disable_y();
 | |
|         disable_z();
 | |
|         disable_e0();
 | |
|         disable_e1();
 | |
|         disable_e2();
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   
 | |
|   #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
 | |
|     if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
 | |
|     {
 | |
|       chdkActive = false;
 | |
|       WRITE(CHDK, LOW);
 | |
|     }
 | |
|   #endif
 | |
|   
 | |
|   #if defined(KILL_PIN) && KILL_PIN > -1
 | |
|     
 | |
|     // Check if the kill button was pressed and wait just in case it was an accidental
 | |
|     // key kill key press
 | |
|     // -------------------------------------------------------------------------------
 | |
|     if( 0 == READ(KILL_PIN) )
 | |
|     {
 | |
|        killCount++;
 | |
|     }
 | |
|     else if (killCount > 0)
 | |
|     {
 | |
|        killCount--;
 | |
|     }
 | |
|     // Exceeded threshold and we can confirm that it was not accidental
 | |
|     // KILL the machine
 | |
|     // ----------------------------------------------------------------
 | |
|     if ( killCount >= KILL_DELAY)
 | |
|     {
 | |
|        kill();
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
| #if defined(HOME_PIN) && HOME_PIN > -1
 | |
|     // Check to see if we have to home, use poor man's debouncer
 | |
|     // ---------------------------------------------------------
 | |
|     if ( 0 == READ(HOME_PIN) )
 | |
|     {
 | |
|        if (homeDebounceCount == 0)
 | |
|        {
 | |
|           enquecommand_P((PSTR("G28")));
 | |
|           homeDebounceCount++;
 | |
|           LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
 | |
|        }
 | |
|        else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
 | |
|        {
 | |
|           homeDebounceCount++;
 | |
|        }
 | |
|        else
 | |
|        {
 | |
|           homeDebounceCount = 0;
 | |
|        }
 | |
|     }
 | |
| #endif
 | |
|     
 | |
|   #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
 | |
|     controllerFan(); //Check if fan should be turned on to cool stepper drivers down
 | |
|   #endif
 | |
|   #ifdef EXTRUDER_RUNOUT_PREVENT
 | |
|     if( (millis() - previous_millis_cmd) >  EXTRUDER_RUNOUT_SECONDS*1000 )
 | |
|     if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
 | |
|     {
 | |
|      bool oldstatus=READ(E0_ENABLE_PIN);
 | |
|      enable_e0();
 | |
|      float oldepos=current_position[E_AXIS];
 | |
|      float oldedes=destination[E_AXIS];
 | |
|      plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
 | |
|                       destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
 | |
|                       EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
 | |
|      current_position[E_AXIS]=oldepos;
 | |
|      destination[E_AXIS]=oldedes;
 | |
|      plan_set_e_position(oldepos);
 | |
|      previous_millis_cmd=millis();
 | |
|      st_synchronize();
 | |
|      WRITE(E0_ENABLE_PIN,oldstatus);
 | |
|     }
 | |
|   #endif
 | |
|   #if defined(DUAL_X_CARRIAGE)
 | |
|     // handle delayed move timeout
 | |
|     if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
 | |
|     {
 | |
|       // travel moves have been received so enact them
 | |
|       delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
 | |
|       memcpy(destination,current_position,sizeof(destination));
 | |
|       prepare_move();
 | |
|     }
 | |
|   #endif
 | |
|   #ifdef TEMP_STAT_LEDS
 | |
|       handle_status_leds();
 | |
|   #endif
 | |
|   check_axes_activity();
 | |
| }
 | |
| 
 | |
| void kill()
 | |
| {
 | |
|   cli(); // Stop interrupts
 | |
|   disable_heater();
 | |
| 
 | |
|   disable_x();
 | |
|   disable_y();
 | |
|   disable_z();
 | |
|   disable_e0();
 | |
|   disable_e1();
 | |
|   disable_e2();
 | |
| 
 | |
| #if defined(PS_ON_PIN) && PS_ON_PIN > -1
 | |
|   pinMode(PS_ON_PIN,INPUT);
 | |
| #endif
 | |
|   SERIAL_ERROR_START;
 | |
|   SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
 | |
|   LCD_ALERTMESSAGEPGM(MSG_KILLED);
 | |
|   
 | |
|   // FMC small patch to update the LCD before ending
 | |
|   sei();   // enable interrupts
 | |
|   for ( int i=5; i--; lcd_update())
 | |
|   {
 | |
|      delay(200);	
 | |
|   }
 | |
|   cli();   // disable interrupts
 | |
|   suicide();
 | |
|   while(1) { /* Intentionally left empty */ } // Wait for reset
 | |
| }
 | |
| 
 | |
| void Stop()
 | |
| {
 | |
|   disable_heater();
 | |
|   if(Stopped == false) {
 | |
|     Stopped = true;
 | |
|     Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
 | |
|     SERIAL_ERROR_START;
 | |
|     SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
 | |
|     LCD_MESSAGEPGM(MSG_STOPPED);
 | |
|   }
 | |
| }
 | |
| 
 | |
| bool IsStopped() { return Stopped; };
 | |
| 
 | |
| #ifdef FAST_PWM_FAN
 | |
| void setPwmFrequency(uint8_t pin, int val)
 | |
| {
 | |
|   val &= 0x07;
 | |
|   switch(digitalPinToTimer(pin))
 | |
|   {
 | |
| 
 | |
|     #if defined(TCCR0A)
 | |
|     case TIMER0A:
 | |
|     case TIMER0B:
 | |
| //         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
 | |
| //         TCCR0B |= val;
 | |
|          break;
 | |
|     #endif
 | |
| 
 | |
|     #if defined(TCCR1A)
 | |
|     case TIMER1A:
 | |
|     case TIMER1B:
 | |
| //         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | |
| //         TCCR1B |= val;
 | |
|          break;
 | |
|     #endif
 | |
| 
 | |
|     #if defined(TCCR2)
 | |
|     case TIMER2:
 | |
|     case TIMER2:
 | |
|          TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | |
|          TCCR2 |= val;
 | |
|          break;
 | |
|     #endif
 | |
| 
 | |
|     #if defined(TCCR2A)
 | |
|     case TIMER2A:
 | |
|     case TIMER2B:
 | |
|          TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
 | |
|          TCCR2B |= val;
 | |
|          break;
 | |
|     #endif
 | |
| 
 | |
|     #if defined(TCCR3A)
 | |
|     case TIMER3A:
 | |
|     case TIMER3B:
 | |
|     case TIMER3C:
 | |
|          TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
 | |
|          TCCR3B |= val;
 | |
|          break;
 | |
|     #endif
 | |
| 
 | |
|     #if defined(TCCR4A)
 | |
|     case TIMER4A:
 | |
|     case TIMER4B:
 | |
|     case TIMER4C:
 | |
|          TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
 | |
|          TCCR4B |= val;
 | |
|          break;
 | |
|    #endif
 | |
| 
 | |
|     #if defined(TCCR5A)
 | |
|     case TIMER5A:
 | |
|     case TIMER5B:
 | |
|     case TIMER5C:
 | |
|          TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
 | |
|          TCCR5B |= val;
 | |
|          break;
 | |
|    #endif
 | |
| 
 | |
|   }
 | |
| }
 | |
| #endif //FAST_PWM_FAN
 | |
| 
 | |
| bool setTargetedHotend(int code){
 | |
|   tmp_extruder = active_extruder;
 | |
|   if(code_seen('T')) {
 | |
|     tmp_extruder = code_value();
 | |
|     if(tmp_extruder >= EXTRUDERS) {
 | |
|       SERIAL_ECHO_START;
 | |
|       switch(code){
 | |
|         case 104:
 | |
|           SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
 | |
|           break;
 | |
|         case 105:
 | |
|           SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
 | |
|           break;
 | |
|         case 109:
 | |
|           SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
 | |
|           break;
 | |
|         case 218:
 | |
|           SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
 | |
|           break;
 | |
|         case 221:
 | |
|           SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
 | |
|           break;
 | |
|       }
 | |
|       SERIAL_ECHOLN(tmp_extruder);
 | |
|       return true;
 | |
|     }
 | |
|   }
 | |
|   return false;
 | |
| }
 | |
| 
 | |
| 
 | |
| float calculate_volumetric_multiplier(float diameter) {
 | |
| 	float area = .0;
 | |
| 	float radius = .0;
 | |
| 
 | |
| 	radius = diameter * .5;
 | |
| 	if (! volumetric_enabled || radius == 0) {
 | |
| 		area = 1;
 | |
| 	}
 | |
| 	else {
 | |
| 		area = M_PI * pow(radius, 2);
 | |
| 	}
 | |
| 
 | |
| 	return 1.0 / area;
 | |
| }
 | |
| 
 | |
| void calculate_volumetric_multipliers() {
 | |
|   for (int i=0; i<EXTRUDERS; i++)
 | |
|   	volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
 | |
| }
 |