1114 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1114 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|   planner.c - buffers movement commands and manages the acceleration profile plan
 | |
|  Part of Grbl
 | |
|  
 | |
|  Copyright (c) 2009-2011 Simen Svale Skogsrud
 | |
|  
 | |
|  Grbl is free software: you can redistribute it and/or modify
 | |
|  it under the terms of the GNU General Public License as published by
 | |
|  the Free Software Foundation, either version 3 of the License, or
 | |
|  (at your option) any later version.
 | |
|  
 | |
|  Grbl is distributed in the hope that it will be useful,
 | |
|  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  GNU General Public License for more details.
 | |
|  
 | |
|  You should have received a copy of the GNU General Public License
 | |
|  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
 | |
| 
 | |
| /*  
 | |
|  Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
 | |
|  
 | |
|  s == speed, a == acceleration, t == time, d == distance
 | |
|  
 | |
|  Basic definitions:
 | |
|  
 | |
|  Speed[s_, a_, t_] := s + (a*t) 
 | |
|  Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
 | |
|  
 | |
|  Distance to reach a specific speed with a constant acceleration:
 | |
|  
 | |
|  Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
 | |
|  d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
 | |
|  
 | |
|  Speed after a given distance of travel with constant acceleration:
 | |
|  
 | |
|  Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
 | |
|  m -> Sqrt[2 a d + s^2]    
 | |
|  
 | |
|  DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
 | |
|  
 | |
|  When to start braking (di) to reach a specified destionation speed (s2) after accelerating
 | |
|  from initial speed s1 without ever stopping at a plateau:
 | |
|  
 | |
|  Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
 | |
|  di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
 | |
|  
 | |
|  IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
 | |
|  */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "planner.h"
 | |
| #include "stepper.h"
 | |
| #include "temperature.h"
 | |
| #include "ultralcd.h"
 | |
| #include "language.h"
 | |
| 
 | |
| //===========================================================================
 | |
| //=============================public variables ============================
 | |
| //===========================================================================
 | |
| 
 | |
| unsigned long minsegmenttime;
 | |
| float max_feedrate[NUM_AXIS]; // set the max speeds
 | |
| float axis_steps_per_unit[NUM_AXIS];
 | |
| unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
 | |
| float minimumfeedrate;
 | |
| float acceleration;         // Normal acceleration mm/s^2  THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
 | |
| float retract_acceleration; //  mm/s^2   filament pull-pack and push-forward  while standing still in the other axis M204 TXXXX
 | |
| float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
 | |
| float max_z_jerk;
 | |
| float max_e_jerk;
 | |
| float mintravelfeedrate;
 | |
| unsigned long axis_steps_per_sqr_second[NUM_AXIS];
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| // this holds the required transform to compensate for bed level
 | |
| matrix_3x3 plan_bed_level_matrix = {
 | |
| 	1.0, 0.0, 0.0,
 | |
| 	0.0, 1.0, 0.0,
 | |
| 	0.0, 0.0, 1.0
 | |
| };
 | |
| #endif // #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
| // The current position of the tool in absolute steps
 | |
| long position[NUM_AXIS];   //rescaled from extern when axis_steps_per_unit are changed by gcode
 | |
| static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
 | |
| static float previous_nominal_speed; // Nominal speed of previous path line segment
 | |
| 
 | |
| #ifdef AUTOTEMP
 | |
| float autotemp_max=250;
 | |
| float autotemp_min=210;
 | |
| float autotemp_factor=0.1;
 | |
| bool autotemp_enabled=false;
 | |
| #endif
 | |
| 
 | |
| unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
 | |
| 
 | |
| //===========================================================================
 | |
| //=================semi-private variables, used in inline  functions    =====
 | |
| //===========================================================================
 | |
| block_t block_buffer[BLOCK_BUFFER_SIZE];            // A ring buffer for motion instfructions
 | |
| volatile unsigned char block_buffer_head;           // Index of the next block to be pushed
 | |
| volatile unsigned char block_buffer_tail;           // Index of the block to process now
 | |
| 
 | |
| //===========================================================================
 | |
| //=============================private variables ============================
 | |
| //===========================================================================
 | |
| #ifdef PREVENT_DANGEROUS_EXTRUDE
 | |
| float extrude_min_temp=EXTRUDE_MINTEMP;
 | |
| #endif
 | |
| #ifdef XY_FREQUENCY_LIMIT
 | |
| #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
 | |
| // Used for the frequency limit
 | |
| static unsigned char old_direction_bits = 0;               // Old direction bits. Used for speed calculations
 | |
| static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0};     // Segment times (in us). Used for speed calculations
 | |
| static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
 | |
| #endif
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
|  static char meas_sample; //temporary variable to hold filament measurement sample
 | |
| #endif
 | |
| 
 | |
| // Returns the index of the next block in the ring buffer
 | |
| // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
 | |
| static int8_t next_block_index(int8_t block_index) {
 | |
|   block_index++;
 | |
|   if (block_index == BLOCK_BUFFER_SIZE) { 
 | |
|     block_index = 0; 
 | |
|   }
 | |
|   return(block_index);
 | |
| }
 | |
| 
 | |
| 
 | |
| // Returns the index of the previous block in the ring buffer
 | |
| static int8_t prev_block_index(int8_t block_index) {
 | |
|   if (block_index == 0) { 
 | |
|     block_index = BLOCK_BUFFER_SIZE; 
 | |
|   }
 | |
|   block_index--;
 | |
|   return(block_index);
 | |
| }
 | |
| 
 | |
| //===========================================================================
 | |
| //=============================functions         ============================
 | |
| //===========================================================================
 | |
| 
 | |
| // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the 
 | |
| // given acceleration:
 | |
| FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
 | |
| {
 | |
|   if (acceleration!=0) {
 | |
|     return((target_rate*target_rate-initial_rate*initial_rate)/
 | |
|       (2.0*acceleration));
 | |
|   }
 | |
|   else {
 | |
|     return 0.0;  // acceleration was 0, set acceleration distance to 0
 | |
|   }
 | |
| }
 | |
| 
 | |
| // This function gives you the point at which you must start braking (at the rate of -acceleration) if 
 | |
| // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
 | |
| // a total travel of distance. This can be used to compute the intersection point between acceleration and
 | |
| // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
 | |
| 
 | |
| FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) 
 | |
| {
 | |
|   if (acceleration!=0) {
 | |
|     return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
 | |
|       (4.0*acceleration) );
 | |
|   }
 | |
|   else {
 | |
|     return 0.0;  // acceleration was 0, set intersection distance to 0
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
 | |
| 
 | |
| void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
 | |
|   unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
 | |
|   unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
 | |
| 
 | |
|   // Limit minimal step rate (Otherwise the timer will overflow.)
 | |
|   if(initial_rate <120) {
 | |
|     initial_rate=120; 
 | |
|   }
 | |
|   if(final_rate < 120) {
 | |
|     final_rate=120;  
 | |
|   }
 | |
| 
 | |
|   long acceleration = block->acceleration_st;
 | |
|   int32_t accelerate_steps =
 | |
|     ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
 | |
|   int32_t decelerate_steps =
 | |
|     floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
 | |
| 
 | |
|   // Calculate the size of Plateau of Nominal Rate.
 | |
|   int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
 | |
| 
 | |
|   // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
 | |
|   // have to use intersection_distance() to calculate when to abort acceleration and start braking
 | |
|   // in order to reach the final_rate exactly at the end of this block.
 | |
|   if (plateau_steps < 0) {
 | |
|     accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
 | |
|     accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
 | |
|     accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
 | |
|     plateau_steps = 0;
 | |
|   }
 | |
| 
 | |
| #ifdef ADVANCE
 | |
|   volatile long initial_advance = block->advance*entry_factor*entry_factor; 
 | |
|   volatile long final_advance = block->advance*exit_factor*exit_factor;
 | |
| #endif // ADVANCE
 | |
| 
 | |
|   // block->accelerate_until = accelerate_steps;
 | |
|   // block->decelerate_after = accelerate_steps+plateau_steps;
 | |
|   CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section
 | |
|   if(block->busy == false) { // Don't update variables if block is busy.
 | |
|     block->accelerate_until = accelerate_steps;
 | |
|     block->decelerate_after = accelerate_steps+plateau_steps;
 | |
|     block->initial_rate = initial_rate;
 | |
|     block->final_rate = final_rate;
 | |
| #ifdef ADVANCE
 | |
|     block->initial_advance = initial_advance;
 | |
|     block->final_advance = final_advance;
 | |
| #endif //ADVANCE
 | |
|   }
 | |
|   CRITICAL_SECTION_END;
 | |
| }                    
 | |
| 
 | |
| // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the 
 | |
| // acceleration within the allotted distance.
 | |
| FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
 | |
|   return  sqrt(target_velocity*target_velocity-2*acceleration*distance);
 | |
| }
 | |
| 
 | |
| // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
 | |
| // This method will calculate the junction jerk as the euclidean distance between the nominal 
 | |
| // velocities of the respective blocks.
 | |
| //inline float junction_jerk(block_t *before, block_t *after) {
 | |
| //  return sqrt(
 | |
| //    pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
 | |
| //}
 | |
| 
 | |
| 
 | |
| // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
 | |
| void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
 | |
|   if(!current) { 
 | |
|     return; 
 | |
|   }
 | |
| 
 | |
|   if (next) {
 | |
|     // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
 | |
|     // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
 | |
|     // check for maximum allowable speed reductions to ensure maximum possible planned speed.
 | |
|     if (current->entry_speed != current->max_entry_speed) {
 | |
| 
 | |
|       // If nominal length true, max junction speed is guaranteed to be reached. Only compute
 | |
|       // for max allowable speed if block is decelerating and nominal length is false.
 | |
|       if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
 | |
|         current->entry_speed = min( current->max_entry_speed,
 | |
|         max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
 | |
|       } 
 | |
|       else {
 | |
|         current->entry_speed = current->max_entry_speed;
 | |
|       }
 | |
|       current->recalculate_flag = true;
 | |
| 
 | |
|     }
 | |
|   } // Skip last block. Already initialized and set for recalculation.
 | |
| }
 | |
| 
 | |
| // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This 
 | |
| // implements the reverse pass.
 | |
| void planner_reverse_pass() {
 | |
|   uint8_t block_index = block_buffer_head;
 | |
|   
 | |
|   //Make a local copy of block_buffer_tail, because the interrupt can alter it
 | |
|   CRITICAL_SECTION_START;
 | |
|   unsigned char tail = block_buffer_tail;
 | |
|   CRITICAL_SECTION_END
 | |
|   
 | |
|   if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
 | |
|     block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
 | |
|     block_t *block[3] = { 
 | |
|       NULL, NULL, NULL         };
 | |
|     while(block_index != tail) { 
 | |
|       block_index = prev_block_index(block_index); 
 | |
|       block[2]= block[1];
 | |
|       block[1]= block[0];
 | |
|       block[0] = &block_buffer[block_index];
 | |
|       planner_reverse_pass_kernel(block[0], block[1], block[2]);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
 | |
| void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
 | |
|   if(!previous) { 
 | |
|     return; 
 | |
|   }
 | |
| 
 | |
|   // If the previous block is an acceleration block, but it is not long enough to complete the
 | |
|   // full speed change within the block, we need to adjust the entry speed accordingly. Entry
 | |
|   // speeds have already been reset, maximized, and reverse planned by reverse planner.
 | |
|   // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
 | |
|   if (!previous->nominal_length_flag) {
 | |
|     if (previous->entry_speed < current->entry_speed) {
 | |
|       double entry_speed = min( current->entry_speed,
 | |
|       max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
 | |
| 
 | |
|       // Check for junction speed change
 | |
|       if (current->entry_speed != entry_speed) {
 | |
|         current->entry_speed = entry_speed;
 | |
|         current->recalculate_flag = true;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This 
 | |
| // implements the forward pass.
 | |
| void planner_forward_pass() {
 | |
|   uint8_t block_index = block_buffer_tail;
 | |
|   block_t *block[3] = { 
 | |
|     NULL, NULL, NULL   };
 | |
| 
 | |
|   while(block_index != block_buffer_head) {
 | |
|     block[0] = block[1];
 | |
|     block[1] = block[2];
 | |
|     block[2] = &block_buffer[block_index];
 | |
|     planner_forward_pass_kernel(block[0],block[1],block[2]);
 | |
|     block_index = next_block_index(block_index);
 | |
|   }
 | |
|   planner_forward_pass_kernel(block[1], block[2], NULL);
 | |
| }
 | |
| 
 | |
| // Recalculates the trapezoid speed profiles for all blocks in the plan according to the 
 | |
| // entry_factor for each junction. Must be called by planner_recalculate() after 
 | |
| // updating the blocks.
 | |
| void planner_recalculate_trapezoids() {
 | |
|   int8_t block_index = block_buffer_tail;
 | |
|   block_t *current;
 | |
|   block_t *next = NULL;
 | |
| 
 | |
|   while(block_index != block_buffer_head) {
 | |
|     current = next;
 | |
|     next = &block_buffer[block_index];
 | |
|     if (current) {
 | |
|       // Recalculate if current block entry or exit junction speed has changed.
 | |
|       if (current->recalculate_flag || next->recalculate_flag) {
 | |
|         // NOTE: Entry and exit factors always > 0 by all previous logic operations.
 | |
|         calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
 | |
|         next->entry_speed/current->nominal_speed);
 | |
|         current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
 | |
|       }
 | |
|     }
 | |
|     block_index = next_block_index( block_index );
 | |
|   }
 | |
|   // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
 | |
|   if(next != NULL) {
 | |
|     calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
 | |
|     MINIMUM_PLANNER_SPEED/next->nominal_speed);
 | |
|     next->recalculate_flag = false;
 | |
|   }
 | |
| }
 | |
| 
 | |
| // Recalculates the motion plan according to the following algorithm:
 | |
| //
 | |
| //   1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) 
 | |
| //      so that:
 | |
| //     a. The junction jerk is within the set limit
 | |
| //     b. No speed reduction within one block requires faster deceleration than the one, true constant 
 | |
| //        acceleration.
 | |
| //   2. Go over every block in chronological order and dial down junction speed reduction values if 
 | |
| //     a. The speed increase within one block would require faster accelleration than the one, true 
 | |
| //        constant acceleration.
 | |
| //
 | |
| // When these stages are complete all blocks have an entry_factor that will allow all speed changes to 
 | |
| // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than 
 | |
| // the set limit. Finally it will:
 | |
| //
 | |
| //   3. Recalculate trapezoids for all blocks.
 | |
| 
 | |
| void planner_recalculate() {   
 | |
|   planner_reverse_pass();
 | |
|   planner_forward_pass();
 | |
|   planner_recalculate_trapezoids();
 | |
| }
 | |
| 
 | |
| void plan_init() {
 | |
|   block_buffer_head = 0;
 | |
|   block_buffer_tail = 0;
 | |
|   memset(position, 0, sizeof(position)); // clear position
 | |
|   previous_speed[0] = 0.0;
 | |
|   previous_speed[1] = 0.0;
 | |
|   previous_speed[2] = 0.0;
 | |
|   previous_speed[3] = 0.0;
 | |
|   previous_nominal_speed = 0.0;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| #ifdef AUTOTEMP
 | |
| void getHighESpeed()
 | |
| {
 | |
|   static float oldt=0;
 | |
|   if(!autotemp_enabled){
 | |
|     return;
 | |
|   }
 | |
|   if(degTargetHotend0()+2<autotemp_min) {  //probably temperature set to zero.
 | |
|     return; //do nothing
 | |
|   }
 | |
| 
 | |
|   float high=0.0;
 | |
|   uint8_t block_index = block_buffer_tail;
 | |
| 
 | |
|   while(block_index != block_buffer_head) {
 | |
|     if((block_buffer[block_index].steps_x != 0) ||
 | |
|       (block_buffer[block_index].steps_y != 0) ||
 | |
|       (block_buffer[block_index].steps_z != 0)) {
 | |
|       float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
 | |
|       //se; mm/sec;
 | |
|       if(se>high)
 | |
|       {
 | |
|         high=se;
 | |
|       }
 | |
|     }
 | |
|     block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
 | |
|   }
 | |
| 
 | |
|   float g=autotemp_min+high*autotemp_factor;
 | |
|   float t=g;
 | |
|   if(t<autotemp_min)
 | |
|     t=autotemp_min;
 | |
|   if(t>autotemp_max)
 | |
|     t=autotemp_max;
 | |
|   if(oldt>t)
 | |
|   {
 | |
|     t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
 | |
|   }
 | |
|   oldt=t;
 | |
|   setTargetHotend0(t);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void check_axes_activity()
 | |
| {
 | |
|   unsigned char x_active = 0;
 | |
|   unsigned char y_active = 0;  
 | |
|   unsigned char z_active = 0;
 | |
|   unsigned char e_active = 0;
 | |
|   unsigned char tail_fan_speed = fanSpeed;
 | |
|   #ifdef BARICUDA
 | |
|   unsigned char tail_valve_pressure = ValvePressure;
 | |
|   unsigned char tail_e_to_p_pressure = EtoPPressure;
 | |
|   #endif
 | |
|   block_t *block;
 | |
| 
 | |
|   if(block_buffer_tail != block_buffer_head)
 | |
|   {
 | |
|     uint8_t block_index = block_buffer_tail;
 | |
|     tail_fan_speed = block_buffer[block_index].fan_speed;
 | |
|     #ifdef BARICUDA
 | |
|     tail_valve_pressure = block_buffer[block_index].valve_pressure;
 | |
|     tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
 | |
|     #endif
 | |
|     while(block_index != block_buffer_head)
 | |
|     {
 | |
|       block = &block_buffer[block_index];
 | |
|       if(block->steps_x != 0) x_active++;
 | |
|       if(block->steps_y != 0) y_active++;
 | |
|       if(block->steps_z != 0) z_active++;
 | |
|       if(block->steps_e != 0) e_active++;
 | |
|       block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
 | |
|     }
 | |
|   }
 | |
|   if((DISABLE_X) && (x_active == 0)) disable_x();
 | |
|   if((DISABLE_Y) && (y_active == 0)) disable_y();
 | |
|   if((DISABLE_Z) && (z_active == 0)) disable_z();
 | |
|   if((DISABLE_E) && (e_active == 0))
 | |
|   {
 | |
|     disable_e0();
 | |
|     disable_e1();
 | |
|     disable_e2(); 
 | |
|     disable_e3();
 | |
|   }
 | |
| #if defined(FAN_PIN) && FAN_PIN > -1
 | |
|   #ifdef FAN_KICKSTART_TIME
 | |
|     static unsigned long fan_kick_end;
 | |
|     if (tail_fan_speed) {
 | |
|       if (fan_kick_end == 0) {
 | |
|         // Just starting up fan - run at full power.
 | |
|         fan_kick_end = millis() + FAN_KICKSTART_TIME;
 | |
|         tail_fan_speed = 255;
 | |
|       } else if (fan_kick_end > millis())
 | |
|         // Fan still spinning up.
 | |
|         tail_fan_speed = 255;
 | |
|     } else {
 | |
|       fan_kick_end = 0;
 | |
|     }
 | |
|   #endif//FAN_KICKSTART_TIME
 | |
|   #ifdef FAN_SOFT_PWM
 | |
|   fanSpeedSoftPwm = tail_fan_speed;
 | |
|   #else
 | |
|   analogWrite(FAN_PIN,tail_fan_speed);
 | |
|   #endif//!FAN_SOFT_PWM
 | |
| #endif//FAN_PIN > -1
 | |
| #ifdef AUTOTEMP
 | |
|   getHighESpeed();
 | |
| #endif
 | |
| 
 | |
| #ifdef BARICUDA
 | |
|   #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
 | |
|       analogWrite(HEATER_1_PIN,tail_valve_pressure);
 | |
|   #endif
 | |
| 
 | |
|   #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
 | |
|       analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
 | |
|   #endif
 | |
| #endif
 | |
| }
 | |
| 
 | |
| 
 | |
| float junction_deviation = 0.1;
 | |
| // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in 
 | |
| // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
 | |
| // calculation the caller must also provide the physical length of the line in millimeters.
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
 | |
| #else
 | |
| void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
 | |
| #endif  //ENABLE_AUTO_BED_LEVELING
 | |
| {
 | |
|   // Calculate the buffer head after we push this byte
 | |
|   int next_buffer_head = next_block_index(block_buffer_head);
 | |
| 
 | |
|   // If the buffer is full: good! That means we are well ahead of the robot. 
 | |
|   // Rest here until there is room in the buffer.
 | |
|   while(block_buffer_tail == next_buffer_head)
 | |
|   {
 | |
|     manage_heater(); 
 | |
|     manage_inactivity(); 
 | |
|     lcd_update();
 | |
|   }
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
|   apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
 | |
| #endif // ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
|   // The target position of the tool in absolute steps
 | |
|   // Calculate target position in absolute steps
 | |
|   //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 | |
|   long target[4];
 | |
|   target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
 | |
|   target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
 | |
|   target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
 | |
|   target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
 | |
| 
 | |
|   #ifdef PREVENT_DANGEROUS_EXTRUDE
 | |
|   if(target[E_AXIS]!=position[E_AXIS])
 | |
|   {
 | |
|     if(degHotend(active_extruder)<extrude_min_temp)
 | |
|     {
 | |
|       position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | |
|     }
 | |
|     
 | |
|     #ifdef PREVENT_LENGTHY_EXTRUDE
 | |
|     if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
 | |
|     {
 | |
|       position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
 | |
|     }
 | |
|     #endif
 | |
|   }
 | |
|   #endif
 | |
| 
 | |
|   // Prepare to set up new block
 | |
|   block_t *block = &block_buffer[block_buffer_head];
 | |
| 
 | |
|   // Mark block as not busy (Not executed by the stepper interrupt)
 | |
|   block->busy = false;
 | |
| 
 | |
|   // Number of steps for each axis
 | |
| #ifndef COREXY
 | |
| // default non-h-bot planning
 | |
| block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
 | |
| block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
 | |
| #else
 | |
| // corexy planning
 | |
| // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 | |
| block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
 | |
| block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
 | |
| #endif
 | |
|   block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
 | |
|   block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
 | |
|   block->steps_e *= volumetric_multiplier[active_extruder];
 | |
|   block->steps_e *= extrudemultiply;
 | |
|   block->steps_e /= 100;
 | |
|   block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
 | |
| 
 | |
|   // Bail if this is a zero-length block
 | |
|   if (block->step_event_count <= dropsegments)
 | |
|   { 
 | |
|     return; 
 | |
|   }
 | |
| 
 | |
|   block->fan_speed = fanSpeed;
 | |
|   #ifdef BARICUDA
 | |
|   block->valve_pressure = ValvePressure;
 | |
|   block->e_to_p_pressure = EtoPPressure;
 | |
|   #endif
 | |
| 
 | |
|   // Compute direction bits for this block 
 | |
|   block->direction_bits = 0;
 | |
| #ifndef COREXY
 | |
|   if (target[X_AXIS] < position[X_AXIS])
 | |
|   {
 | |
|     block->direction_bits |= (1<<X_AXIS); 
 | |
|   }
 | |
|   if (target[Y_AXIS] < position[Y_AXIS])
 | |
|   {
 | |
|     block->direction_bits |= (1<<Y_AXIS); 
 | |
|   }
 | |
| #else
 | |
|   if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
 | |
|   {
 | |
|     block->direction_bits |= (1<<X_AXIS); 
 | |
|   }
 | |
|   if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
 | |
|   {
 | |
|     block->direction_bits |= (1<<Y_AXIS); 
 | |
|   }
 | |
| #endif
 | |
|   if (target[Z_AXIS] < position[Z_AXIS])
 | |
|   {
 | |
|     block->direction_bits |= (1<<Z_AXIS); 
 | |
|   }
 | |
|   if (target[E_AXIS] < position[E_AXIS])
 | |
|   {
 | |
|     block->direction_bits |= (1<<E_AXIS); 
 | |
|   }
 | |
| 
 | |
|   block->active_extruder = extruder;
 | |
| 
 | |
|   //enable active axes
 | |
|   #ifdef COREXY
 | |
|   if((block->steps_x != 0) || (block->steps_y != 0))
 | |
|   {
 | |
|     enable_x();
 | |
|     enable_y();
 | |
|   }
 | |
|   #else
 | |
|   if(block->steps_x != 0) enable_x();
 | |
|   if(block->steps_y != 0) enable_y();
 | |
|   #endif
 | |
| #ifndef Z_LATE_ENABLE
 | |
|   if(block->steps_z != 0) enable_z();
 | |
| #endif
 | |
| 
 | |
|   // Enable extruder(s)
 | |
|   if(block->steps_e != 0)
 | |
|   {
 | |
|     if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
 | |
|     {
 | |
| 
 | |
|       if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
 | |
|       if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
 | |
|       if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
 | |
|       if(g_uc_extruder_last_move[3] > 0) g_uc_extruder_last_move[3]--;
 | |
|       
 | |
|       switch(extruder)
 | |
|       {
 | |
|         case 0: 
 | |
|           enable_e0(); 
 | |
|           g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
 | |
|           
 | |
|           if(g_uc_extruder_last_move[1] == 0) disable_e1(); 
 | |
|           if(g_uc_extruder_last_move[2] == 0) disable_e2(); 
 | |
|           if(g_uc_extruder_last_move[3] == 0) disable_e3(); 
 | |
|         break;
 | |
|         case 1:
 | |
|           enable_e1(); 
 | |
|           g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
 | |
|           
 | |
|           if(g_uc_extruder_last_move[0] == 0) disable_e0(); 
 | |
|           if(g_uc_extruder_last_move[2] == 0) disable_e2(); 
 | |
|           if(g_uc_extruder_last_move[3] == 0) disable_e3(); 
 | |
|         break;
 | |
|         case 2:
 | |
|           enable_e2(); 
 | |
|           g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
 | |
|           
 | |
|           if(g_uc_extruder_last_move[0] == 0) disable_e0(); 
 | |
|           if(g_uc_extruder_last_move[1] == 0) disable_e1(); 
 | |
|           if(g_uc_extruder_last_move[3] == 0) disable_e3(); 
 | |
|         break;        
 | |
|         case 3:
 | |
|           enable_e3(); 
 | |
|           g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
 | |
|           
 | |
|           if(g_uc_extruder_last_move[0] == 0) disable_e0(); 
 | |
|           if(g_uc_extruder_last_move[1] == 0) disable_e1(); 
 | |
|           if(g_uc_extruder_last_move[2] == 0) disable_e2(); 
 | |
|         break;        
 | |
|       }
 | |
|     }
 | |
|     else //enable all
 | |
|     {
 | |
|       enable_e0();
 | |
|       enable_e1();
 | |
|       enable_e2();
 | |
|       enable_e3();
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (block->steps_e == 0)
 | |
|   {
 | |
|     if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
 | |
|   } 
 | |
| 
 | |
| /* This part of the code calculates the total length of the movement. 
 | |
| For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
 | |
| But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
 | |
| and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
 | |
| So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. 
 | |
| Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
 | |
| */ 
 | |
|   #ifndef COREXY
 | |
|     float delta_mm[4];
 | |
|     delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
 | |
|     delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
 | |
|   #else
 | |
|     float delta_mm[6];
 | |
|     delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
 | |
|     delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
 | |
|     delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
 | |
|     delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
 | |
|   #endif
 | |
|   delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
 | |
|   delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
 | |
|   if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
 | |
|   {
 | |
|     block->millimeters = fabs(delta_mm[E_AXIS]);
 | |
|   } 
 | |
|   else
 | |
|   {
 | |
|     #ifndef COREXY
 | |
|       block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
 | |
| 	#else
 | |
| 	  block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
 | |
|     #endif	
 | |
|   }
 | |
|   float inverse_millimeters = 1.0/block->millimeters;  // Inverse millimeters to remove multiple divides 
 | |
| 
 | |
|     // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
 | |
|   float inverse_second = feed_rate * inverse_millimeters;
 | |
| 
 | |
|   int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
 | |
| 
 | |
|   // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
 | |
| #ifdef OLD_SLOWDOWN
 | |
|   if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
 | |
|     feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); 
 | |
| #endif
 | |
| 
 | |
| #ifdef SLOWDOWN
 | |
|   //  segment time im micro seconds
 | |
|   unsigned long segment_time = lround(1000000.0/inverse_second);
 | |
|   if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
 | |
|   {
 | |
|     if (segment_time < minsegmenttime)
 | |
|     { // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
 | |
|       inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
 | |
|       #ifdef XY_FREQUENCY_LIMIT
 | |
|          segment_time = lround(1000000.0/inverse_second);
 | |
|       #endif
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   //  END OF SLOW DOWN SECTION    
 | |
| 
 | |
| 
 | |
|   block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
 | |
|   block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
|   //FMM update ring buffer used for delay with filament measurements
 | |
|   
 | |
|   
 | |
|     if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1))  //only for extruder with filament sensor and if ring buffer is initialized
 | |
|   	  {
 | |
|     delay_dist = delay_dist + delta_mm[E_AXIS];  //increment counter with next move in e axis
 | |
|   
 | |
|     while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1)))  //check if counter is over max buffer size in mm
 | |
|       	  delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1);  //loop around the buffer
 | |
|     while (delay_dist<0)
 | |
|     	  delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
 | |
|       
 | |
|     delay_index1=delay_dist/10.0;  //calculate index
 | |
|     
 | |
|     //ensure the number is within range of the array after converting from floating point
 | |
|     if(delay_index1<0)
 | |
|     	delay_index1=0;
 | |
|     else if (delay_index1>MAX_MEASUREMENT_DELAY)
 | |
|     	delay_index1=MAX_MEASUREMENT_DELAY;
 | |
|     	
 | |
|     if(delay_index1 != delay_index2)  //moved index
 | |
|   	  {
 | |
|     	meas_sample=widthFil_to_size_ratio()-100;  //subtract off 100 to reduce magnitude - to store in a signed char
 | |
|   	  }
 | |
|     while( delay_index1 != delay_index2)
 | |
|   	  {
 | |
|   	  delay_index2 = delay_index2 + 1;
 | |
|   	if(delay_index2>MAX_MEASUREMENT_DELAY)
 | |
|   			  delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1);  //loop around buffer when incrementing
 | |
|   	  if(delay_index2<0)
 | |
|   		delay_index2=0;
 | |
|   	  else if (delay_index2>MAX_MEASUREMENT_DELAY)
 | |
|   		delay_index2=MAX_MEASUREMENT_DELAY;  
 | |
|   	  
 | |
|   	  measurement_delay[delay_index2]=meas_sample;
 | |
|   	  }
 | |
|     	
 | |
|     
 | |
|   	  }
 | |
| #endif
 | |
| 
 | |
| 
 | |
|   // Calculate and limit speed in mm/sec for each axis
 | |
|   float current_speed[4];
 | |
|   float speed_factor = 1.0; //factor <=1 do decrease speed
 | |
|   for(int i=0; i < 4; i++)
 | |
|   {
 | |
|     current_speed[i] = delta_mm[i] * inverse_second;
 | |
|     if(fabs(current_speed[i]) > max_feedrate[i])
 | |
|       speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
 | |
|   }
 | |
| 
 | |
|   // Max segement time in us.
 | |
| #ifdef XY_FREQUENCY_LIMIT
 | |
| #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
 | |
|   // Check and limit the xy direction change frequency
 | |
|   unsigned char direction_change = block->direction_bits ^ old_direction_bits;
 | |
|   old_direction_bits = block->direction_bits;
 | |
|   segment_time = lround((float)segment_time / speed_factor);
 | |
|   
 | |
|   if((direction_change & (1<<X_AXIS)) == 0)
 | |
|   {
 | |
|     x_segment_time[0] += segment_time;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     x_segment_time[2] = x_segment_time[1];
 | |
|     x_segment_time[1] = x_segment_time[0];
 | |
|     x_segment_time[0] = segment_time;
 | |
|   }
 | |
|   if((direction_change & (1<<Y_AXIS)) == 0)
 | |
|   {
 | |
|     y_segment_time[0] += segment_time;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     y_segment_time[2] = y_segment_time[1];
 | |
|     y_segment_time[1] = y_segment_time[0];
 | |
|     y_segment_time[0] = segment_time;
 | |
|   }
 | |
|   long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
 | |
|   long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
 | |
|   long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
 | |
|   if(min_xy_segment_time < MAX_FREQ_TIME)
 | |
|     speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
 | |
| #endif // XY_FREQUENCY_LIMIT
 | |
| 
 | |
|   // Correct the speed  
 | |
|   if( speed_factor < 1.0)
 | |
|   {
 | |
|     for(unsigned char i=0; i < 4; i++)
 | |
|     {
 | |
|       current_speed[i] *= speed_factor;
 | |
|     }
 | |
|     block->nominal_speed *= speed_factor;
 | |
|     block->nominal_rate *= speed_factor;
 | |
|   }
 | |
| 
 | |
|   // Compute and limit the acceleration rate for the trapezoid generator.  
 | |
|   float steps_per_mm = block->step_event_count/block->millimeters;
 | |
|   if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
 | |
|   {
 | |
|     block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | |
|     // Limit acceleration per axis
 | |
|     if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
 | |
|       block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
 | |
|     if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
 | |
|       block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
 | |
|     if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
 | |
|       block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
 | |
|     if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
 | |
|       block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
 | |
|   }
 | |
|   block->acceleration = block->acceleration_st / steps_per_mm;
 | |
|   block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
 | |
| 
 | |
| #if 0  // Use old jerk for now
 | |
|   // Compute path unit vector
 | |
|   double unit_vec[3];
 | |
| 
 | |
|   unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
 | |
|   unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
 | |
|   unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
 | |
| 
 | |
|   // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
 | |
|   // Let a circle be tangent to both previous and current path line segments, where the junction
 | |
|   // deviation is defined as the distance from the junction to the closest edge of the circle,
 | |
|   // colinear with the circle center. The circular segment joining the two paths represents the
 | |
|   // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
 | |
|   // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
 | |
|   // path width or max_jerk in the previous grbl version. This approach does not actually deviate
 | |
|   // from path, but used as a robust way to compute cornering speeds, as it takes into account the
 | |
|   // nonlinearities of both the junction angle and junction velocity.
 | |
|   double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
 | |
| 
 | |
|   // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
 | |
|   if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
 | |
|     // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
 | |
|     // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
 | |
|     double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
 | |
|       - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
 | |
|       - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
 | |
| 
 | |
|     // Skip and use default max junction speed for 0 degree acute junction.
 | |
|     if (cos_theta < 0.95) {
 | |
|       vmax_junction = min(previous_nominal_speed,block->nominal_speed);
 | |
|       // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
 | |
|       if (cos_theta > -0.95) {
 | |
|         // Compute maximum junction velocity based on maximum acceleration and junction deviation
 | |
|         double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
 | |
|         vmax_junction = min(vmax_junction,
 | |
|         sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   // Start with a safe speed
 | |
|   float vmax_junction = max_xy_jerk/2; 
 | |
|   float vmax_junction_factor = 1.0; 
 | |
|   if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) 
 | |
|     vmax_junction = min(vmax_junction, max_z_jerk/2);
 | |
|   if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) 
 | |
|     vmax_junction = min(vmax_junction, max_e_jerk/2);
 | |
|   vmax_junction = min(vmax_junction, block->nominal_speed);
 | |
|   float safe_speed = vmax_junction;
 | |
| 
 | |
|   if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
 | |
|     float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
 | |
|     //    if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
 | |
|     vmax_junction = block->nominal_speed;
 | |
|     //    }
 | |
|     if (jerk > max_xy_jerk) {
 | |
|       vmax_junction_factor = (max_xy_jerk/jerk);
 | |
|     } 
 | |
|     if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
 | |
|       vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
 | |
|     } 
 | |
|     if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
 | |
|       vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
 | |
|     } 
 | |
|     vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
 | |
|   }
 | |
|   block->max_entry_speed = vmax_junction;
 | |
| 
 | |
|   // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
 | |
|   double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
 | |
|   block->entry_speed = min(vmax_junction, v_allowable);
 | |
| 
 | |
|   // Initialize planner efficiency flags
 | |
|   // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
 | |
|   // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
 | |
|   // the current block and next block junction speeds are guaranteed to always be at their maximum
 | |
|   // junction speeds in deceleration and acceleration, respectively. This is due to how the current
 | |
|   // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
 | |
|   // the reverse and forward planners, the corresponding block junction speed will always be at the
 | |
|   // the maximum junction speed and may always be ignored for any speed reduction checks.
 | |
|   if (block->nominal_speed <= v_allowable) { 
 | |
|     block->nominal_length_flag = true; 
 | |
|   }
 | |
|   else { 
 | |
|     block->nominal_length_flag = false; 
 | |
|   }
 | |
|   block->recalculate_flag = true; // Always calculate trapezoid for new block
 | |
| 
 | |
|   // Update previous path unit_vector and nominal speed
 | |
|   memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
 | |
|   previous_nominal_speed = block->nominal_speed;
 | |
| 
 | |
| 
 | |
| #ifdef ADVANCE
 | |
|   // Calculate advance rate
 | |
|   if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
 | |
|     block->advance_rate = 0;
 | |
|     block->advance = 0;
 | |
|   }
 | |
|   else {
 | |
|     long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
 | |
|     float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * 
 | |
|       (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
 | |
|     block->advance = advance;
 | |
|     if(acc_dist == 0) {
 | |
|       block->advance_rate = 0;
 | |
|     } 
 | |
|     else {
 | |
|       block->advance_rate = advance / (float)acc_dist;
 | |
|     }
 | |
|   }
 | |
|   /*
 | |
|     SERIAL_ECHO_START;
 | |
|    SERIAL_ECHOPGM("advance :");
 | |
|    SERIAL_ECHO(block->advance/256.0);
 | |
|    SERIAL_ECHOPGM("advance rate :");
 | |
|    SERIAL_ECHOLN(block->advance_rate/256.0);
 | |
|    */
 | |
| #endif // ADVANCE
 | |
| 
 | |
|   calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
 | |
|   safe_speed/block->nominal_speed);
 | |
| 
 | |
|   // Move buffer head
 | |
|   block_buffer_head = next_buffer_head;
 | |
| 
 | |
|   // Update position
 | |
|   memcpy(position, target, sizeof(target)); // position[] = target[]
 | |
| 
 | |
|   planner_recalculate();
 | |
| 
 | |
|   st_wake_up();
 | |
| }
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| vector_3 plan_get_position() {
 | |
| 	vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
 | |
| 
 | |
| 	//position.debug("in plan_get position");
 | |
| 	//plan_bed_level_matrix.debug("in plan_get bed_level");
 | |
| 	matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
 | |
| 	//inverse.debug("in plan_get inverse");
 | |
| 	position.apply_rotation(inverse);
 | |
| 	//position.debug("after rotation");
 | |
| 
 | |
| 	return position;
 | |
| }
 | |
| #endif // ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| void plan_set_position(float x, float y, float z, const float &e)
 | |
| {
 | |
|   apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
 | |
| #else
 | |
| void plan_set_position(const float &x, const float &y, const float &z, const float &e)
 | |
| {
 | |
| #endif // ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
|   position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
 | |
|   position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
 | |
|   position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);     
 | |
|   position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
 | |
|   st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
 | |
|   previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
 | |
|   previous_speed[0] = 0.0;
 | |
|   previous_speed[1] = 0.0;
 | |
|   previous_speed[2] = 0.0;
 | |
|   previous_speed[3] = 0.0;
 | |
| }
 | |
| 
 | |
| void plan_set_e_position(const float &e)
 | |
| {
 | |
|   position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
 | |
|   st_set_e_position(position[E_AXIS]);
 | |
| }
 | |
| 
 | |
| uint8_t movesplanned()
 | |
| {
 | |
|   return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
 | |
| }
 | |
| 
 | |
| #ifdef PREVENT_DANGEROUS_EXTRUDE
 | |
| void set_extrude_min_temp(float temp)
 | |
| {
 | |
|   extrude_min_temp=temp;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
 | |
| void reset_acceleration_rates()
 | |
| {
 | |
| 	for(int8_t i=0; i < NUM_AXIS; i++)
 | |
|         {
 | |
|         axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
 | |
|         }
 | |
| }
 |