1385 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1385 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|   stepper.c - stepper motor driver: executes motion plans using stepper motors
 | |
|   Part of Grbl
 | |
| 
 | |
|   Copyright (c) 2009-2011 Simen Svale Skogsrud
 | |
| 
 | |
|   Grbl is free software: you can redistribute it and/or modify
 | |
|   it under the terms of the GNU General Public License as published by
 | |
|   the Free Software Foundation, either version 3 of the License, or
 | |
|   (at your option) any later version.
 | |
| 
 | |
|   Grbl is distributed in the hope that it will be useful,
 | |
|   but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|   GNU General Public License for more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License
 | |
|   along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 | |
| */
 | |
| 
 | |
| /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
 | |
|    and Philipp Tiefenbacher. */
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "stepper.h"
 | |
| #include "planner.h"
 | |
| #include "temperature.h"
 | |
| #include "ultralcd.h"
 | |
| #include "language.h"
 | |
| #include "cardreader.h"
 | |
| #include "speed_lookuptable.h"
 | |
| #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | |
| #include <SPI.h>
 | |
| #endif
 | |
| 
 | |
| 
 | |
| //===========================================================================
 | |
| //=============================public variables  ============================
 | |
| //===========================================================================
 | |
| block_t *current_block;  // A pointer to the block currently being traced
 | |
| 
 | |
| 
 | |
| //===========================================================================
 | |
| //=============================private variables ============================
 | |
| //===========================================================================
 | |
| //static makes it inpossible to be called from outside of this file by extern.!
 | |
| 
 | |
| // Variables used by The Stepper Driver Interrupt
 | |
| static unsigned char out_bits;        // The next stepping-bits to be output
 | |
| static long counter_x,       // Counter variables for the bresenham line tracer
 | |
|             counter_y,
 | |
|             counter_z,
 | |
|             counter_e;
 | |
| volatile static unsigned long step_events_completed; // The number of step events executed in the current block
 | |
| #ifdef ADVANCE
 | |
|   static long advance_rate, advance, final_advance = 0;
 | |
|   static long old_advance = 0;
 | |
|   static long e_steps[4];
 | |
| #endif
 | |
| static long acceleration_time, deceleration_time;
 | |
| //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
 | |
| static unsigned short acc_step_rate; // needed for deccelaration start point
 | |
| static char step_loops;
 | |
| static unsigned short OCR1A_nominal;
 | |
| static unsigned short step_loops_nominal;
 | |
| 
 | |
| volatile long endstops_trigsteps[3]={0,0,0};
 | |
| volatile long endstops_stepsTotal,endstops_stepsDone;
 | |
| static volatile bool endstop_x_hit=false;
 | |
| static volatile bool endstop_y_hit=false;
 | |
| static volatile bool endstop_z_hit=false;
 | |
| #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
 | |
| bool abort_on_endstop_hit = false;
 | |
| #endif
 | |
| #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | |
|   int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
 | |
| #endif
 | |
| 
 | |
| static bool old_x_min_endstop=false;
 | |
| static bool old_x_max_endstop=false;
 | |
| static bool old_y_min_endstop=false;
 | |
| static bool old_y_max_endstop=false;
 | |
| static bool old_z_min_endstop=false;
 | |
| static bool old_z_max_endstop=false;
 | |
| 
 | |
| static bool check_endstops = true;
 | |
| 
 | |
| volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
 | |
| volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
 | |
| 
 | |
| //===========================================================================
 | |
| //=============================functions         ============================
 | |
| //===========================================================================
 | |
| 
 | |
| #define CHECK_ENDSTOPS  if(check_endstops)
 | |
| 
 | |
| // intRes = intIn1 * intIn2 >> 16
 | |
| // uses:
 | |
| // r26 to store 0
 | |
| // r27 to store the byte 1 of the 24 bit result
 | |
| #define MultiU16X8toH16(intRes, charIn1, intIn2) \
 | |
| asm volatile ( \
 | |
| "clr r26 \n\t" \
 | |
| "mul %A1, %B2 \n\t" \
 | |
| "movw %A0, r0 \n\t" \
 | |
| "mul %A1, %A2 \n\t" \
 | |
| "add %A0, r1 \n\t" \
 | |
| "adc %B0, r26 \n\t" \
 | |
| "lsr r0 \n\t" \
 | |
| "adc %A0, r26 \n\t" \
 | |
| "adc %B0, r26 \n\t" \
 | |
| "clr r1 \n\t" \
 | |
| : \
 | |
| "=&r" (intRes) \
 | |
| : \
 | |
| "d" (charIn1), \
 | |
| "d" (intIn2) \
 | |
| : \
 | |
| "r26" \
 | |
| )
 | |
| 
 | |
| // intRes = longIn1 * longIn2 >> 24
 | |
| // uses:
 | |
| // r26 to store 0
 | |
| // r27 to store the byte 1 of the 48bit result
 | |
| #define MultiU24X24toH16(intRes, longIn1, longIn2) \
 | |
| asm volatile ( \
 | |
| "clr r26 \n\t" \
 | |
| "mul %A1, %B2 \n\t" \
 | |
| "mov r27, r1 \n\t" \
 | |
| "mul %B1, %C2 \n\t" \
 | |
| "movw %A0, r0 \n\t" \
 | |
| "mul %C1, %C2 \n\t" \
 | |
| "add %B0, r0 \n\t" \
 | |
| "mul %C1, %B2 \n\t" \
 | |
| "add %A0, r0 \n\t" \
 | |
| "adc %B0, r1 \n\t" \
 | |
| "mul %A1, %C2 \n\t" \
 | |
| "add r27, r0 \n\t" \
 | |
| "adc %A0, r1 \n\t" \
 | |
| "adc %B0, r26 \n\t" \
 | |
| "mul %B1, %B2 \n\t" \
 | |
| "add r27, r0 \n\t" \
 | |
| "adc %A0, r1 \n\t" \
 | |
| "adc %B0, r26 \n\t" \
 | |
| "mul %C1, %A2 \n\t" \
 | |
| "add r27, r0 \n\t" \
 | |
| "adc %A0, r1 \n\t" \
 | |
| "adc %B0, r26 \n\t" \
 | |
| "mul %B1, %A2 \n\t" \
 | |
| "add r27, r1 \n\t" \
 | |
| "adc %A0, r26 \n\t" \
 | |
| "adc %B0, r26 \n\t" \
 | |
| "lsr r27 \n\t" \
 | |
| "adc %A0, r26 \n\t" \
 | |
| "adc %B0, r26 \n\t" \
 | |
| "clr r1 \n\t" \
 | |
| : \
 | |
| "=&r" (intRes) \
 | |
| : \
 | |
| "d" (longIn1), \
 | |
| "d" (longIn2) \
 | |
| : \
 | |
| "r26" , "r27" \
 | |
| )
 | |
| 
 | |
| // Some useful constants
 | |
| 
 | |
| #define ENABLE_STEPPER_DRIVER_INTERRUPT()  TIMSK1 |= (1<<OCIE1A)
 | |
| #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
 | |
| 
 | |
| 
 | |
| void checkHitEndstops()
 | |
| {
 | |
|  if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
 | |
|    SERIAL_ECHO_START;
 | |
|    SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
 | |
|    if(endstop_x_hit) {
 | |
|      SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
 | |
|      LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
 | |
|    }
 | |
|    if(endstop_y_hit) {
 | |
|      SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
 | |
|      LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
 | |
|    }
 | |
|    if(endstop_z_hit) {
 | |
|      SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
 | |
|      LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
 | |
|    }
 | |
|    SERIAL_ECHOLN("");
 | |
|    endstop_x_hit=false;
 | |
|    endstop_y_hit=false;
 | |
|    endstop_z_hit=false;
 | |
| #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
 | |
|    if (abort_on_endstop_hit)
 | |
|    {
 | |
|      card.sdprinting = false;
 | |
|      card.closefile();
 | |
|      quickStop();
 | |
|      setTargetHotend0(0);
 | |
|      setTargetHotend1(0);
 | |
|      setTargetHotend2(0);
 | |
|      setTargetHotend3(0);
 | |
|      setTargetBed(0);
 | |
|    }
 | |
| #endif
 | |
|  }
 | |
| }
 | |
| 
 | |
| void endstops_hit_on_purpose()
 | |
| {
 | |
|   endstop_x_hit=false;
 | |
|   endstop_y_hit=false;
 | |
|   endstop_z_hit=false;
 | |
| }
 | |
| 
 | |
| void enable_endstops(bool check)
 | |
| {
 | |
|   check_endstops = check;
 | |
| }
 | |
| 
 | |
| //         __________________________
 | |
| //        /|                        |\     _________________         ^
 | |
| //       / |                        | \   /|               |\        |
 | |
| //      /  |                        |  \ / |               | \       s
 | |
| //     /   |                        |   |  |               |  \      p
 | |
| //    /    |                        |   |  |               |   \     e
 | |
| //   +-----+------------------------+---+--+---------------+----+    e
 | |
| //   |               BLOCK 1            |      BLOCK 2          |    d
 | |
| //
 | |
| //                           time ----->
 | |
| //
 | |
| //  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
 | |
| //  first block->accelerate_until step_events_completed, then keeps going at constant speed until
 | |
| //  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
 | |
| //  The slope of acceleration is calculated with the leib ramp alghorithm.
 | |
| 
 | |
| void st_wake_up() {
 | |
|   //  TCNT1 = 0;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| }
 | |
| 
 | |
| FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
 | |
|   unsigned short timer;
 | |
|   if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
 | |
| 
 | |
|   if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
 | |
|     step_rate = (step_rate >> 2)&0x3fff;
 | |
|     step_loops = 4;
 | |
|   }
 | |
|   else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
 | |
|     step_rate = (step_rate >> 1)&0x7fff;
 | |
|     step_loops = 2;
 | |
|   }
 | |
|   else {
 | |
|     step_loops = 1;
 | |
|   }
 | |
| 
 | |
|   if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
 | |
|   step_rate -= (F_CPU/500000); // Correct for minimal speed
 | |
|   if(step_rate >= (8*256)){ // higher step rate
 | |
|     unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
 | |
|     unsigned char tmp_step_rate = (step_rate & 0x00ff);
 | |
|     unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
 | |
|     MultiU16X8toH16(timer, tmp_step_rate, gain);
 | |
|     timer = (unsigned short)pgm_read_word_near(table_address) - timer;
 | |
|   }
 | |
|   else { // lower step rates
 | |
|     unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
 | |
|     table_address += ((step_rate)>>1) & 0xfffc;
 | |
|     timer = (unsigned short)pgm_read_word_near(table_address);
 | |
|     timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
 | |
|   }
 | |
|   if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
 | |
|   return timer;
 | |
| }
 | |
| 
 | |
| // Initializes the trapezoid generator from the current block. Called whenever a new
 | |
| // block begins.
 | |
| FORCE_INLINE void trapezoid_generator_reset() {
 | |
|   #ifdef ADVANCE
 | |
|     advance = current_block->initial_advance;
 | |
|     final_advance = current_block->final_advance;
 | |
|     // Do E steps + advance steps
 | |
|     e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | |
|     old_advance = advance >>8;
 | |
|   #endif
 | |
|   deceleration_time = 0;
 | |
|   // step_rate to timer interval
 | |
|   OCR1A_nominal = calc_timer(current_block->nominal_rate);
 | |
|   // make a note of the number of step loops required at nominal speed
 | |
|   step_loops_nominal = step_loops;
 | |
|   acc_step_rate = current_block->initial_rate;
 | |
|   acceleration_time = calc_timer(acc_step_rate);
 | |
|   OCR1A = acceleration_time;
 | |
| 
 | |
| //    SERIAL_ECHO_START;
 | |
| //    SERIAL_ECHOPGM("advance :");
 | |
| //    SERIAL_ECHO(current_block->advance/256.0);
 | |
| //    SERIAL_ECHOPGM("advance rate :");
 | |
| //    SERIAL_ECHO(current_block->advance_rate/256.0);
 | |
| //    SERIAL_ECHOPGM("initial advance :");
 | |
| //    SERIAL_ECHO(current_block->initial_advance/256.0);
 | |
| //    SERIAL_ECHOPGM("final advance :");
 | |
| //    SERIAL_ECHOLN(current_block->final_advance/256.0);
 | |
| 
 | |
| }
 | |
| 
 | |
| // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
 | |
| // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
 | |
| ISR(TIMER1_COMPA_vect)
 | |
| {
 | |
|   // If there is no current block, attempt to pop one from the buffer
 | |
|   if (current_block == NULL) {
 | |
|     // Anything in the buffer?
 | |
|     current_block = plan_get_current_block();
 | |
|     if (current_block != NULL) {
 | |
|       current_block->busy = true;
 | |
|       trapezoid_generator_reset();
 | |
|       counter_x = -(current_block->step_event_count >> 1);
 | |
|       counter_y = counter_x;
 | |
|       counter_z = counter_x;
 | |
|       counter_e = counter_x;
 | |
|       step_events_completed = 0;
 | |
| 
 | |
|       #ifdef Z_LATE_ENABLE
 | |
|         if(current_block->steps_z > 0) {
 | |
|           enable_z();
 | |
|           OCR1A = 2000; //1ms wait
 | |
|           return;
 | |
|         }
 | |
|       #endif
 | |
| 
 | |
| //      #ifdef ADVANCE
 | |
| //      e_steps[current_block->active_extruder] = 0;
 | |
| //      #endif
 | |
|     }
 | |
|     else {
 | |
|         OCR1A=2000; // 1kHz.
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   if (current_block != NULL) {
 | |
|     // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
 | |
|     out_bits = current_block->direction_bits;
 | |
| 
 | |
| 
 | |
|     // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
 | |
|     if((out_bits & (1<<X_AXIS))!=0){
 | |
|       #ifdef DUAL_X_CARRIAGE
 | |
|         if (extruder_duplication_enabled){
 | |
|           WRITE(X_DIR_PIN, INVERT_X_DIR);
 | |
|           WRITE(X2_DIR_PIN, INVERT_X_DIR);
 | |
|         }
 | |
|         else{
 | |
|           if (current_block->active_extruder != 0)
 | |
|             WRITE(X2_DIR_PIN, INVERT_X_DIR);
 | |
|           else
 | |
|             WRITE(X_DIR_PIN, INVERT_X_DIR);
 | |
|         }
 | |
|       #else
 | |
|         WRITE(X_DIR_PIN, INVERT_X_DIR);
 | |
|       #endif        
 | |
|       count_direction[X_AXIS]=-1;
 | |
|     }
 | |
|     else{
 | |
|       #ifdef DUAL_X_CARRIAGE
 | |
|         if (extruder_duplication_enabled){
 | |
|           WRITE(X_DIR_PIN, !INVERT_X_DIR);
 | |
|           WRITE(X2_DIR_PIN, !INVERT_X_DIR);
 | |
|         }
 | |
|         else{
 | |
|           if (current_block->active_extruder != 0)
 | |
|             WRITE(X2_DIR_PIN, !INVERT_X_DIR);
 | |
|           else
 | |
|             WRITE(X_DIR_PIN, !INVERT_X_DIR);
 | |
|         }
 | |
|       #else
 | |
|         WRITE(X_DIR_PIN, !INVERT_X_DIR);
 | |
|       #endif        
 | |
|       count_direction[X_AXIS]=1;
 | |
|     }
 | |
|     if((out_bits & (1<<Y_AXIS))!=0){
 | |
|       WRITE(Y_DIR_PIN, INVERT_Y_DIR);
 | |
| 	  
 | |
| 	  #ifdef Y_DUAL_STEPPER_DRIVERS
 | |
| 	    WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
 | |
| 	  #endif
 | |
| 	  
 | |
|       count_direction[Y_AXIS]=-1;
 | |
|     }
 | |
|     else{
 | |
|       WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
 | |
| 	  
 | |
| 	  #ifdef Y_DUAL_STEPPER_DRIVERS
 | |
| 	    WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
 | |
| 	  #endif
 | |
| 	  
 | |
|       count_direction[Y_AXIS]=1;
 | |
|     }
 | |
| 
 | |
|     // Set direction en check limit switches
 | |
|     #ifndef COREXY
 | |
|     if ((out_bits & (1<<X_AXIS)) != 0) {   // stepping along -X axis
 | |
|     #else
 | |
|     if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) {   //-X occurs for -A and -B
 | |
|     #endif
 | |
|       CHECK_ENDSTOPS
 | |
|       {
 | |
|         #ifdef DUAL_X_CARRIAGE
 | |
|         // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
 | |
|         if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) 
 | |
|             || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
 | |
|         #endif          
 | |
|         {
 | |
|           #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 | |
|             bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
 | |
|             if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
 | |
|               endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
 | |
|               endstop_x_hit=true;
 | |
|               step_events_completed = current_block->step_event_count;
 | |
|             }
 | |
|             old_x_min_endstop = x_min_endstop;
 | |
|           #endif
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|     else { // +direction
 | |
|       CHECK_ENDSTOPS
 | |
|       {
 | |
|         #ifdef DUAL_X_CARRIAGE
 | |
|         // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
 | |
|         if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) 
 | |
|             || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
 | |
|         #endif          
 | |
|         {
 | |
|           #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 | |
|             bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
 | |
|             if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
 | |
|               endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
 | |
|               endstop_x_hit=true;
 | |
|               step_events_completed = current_block->step_event_count;
 | |
|             }
 | |
|             old_x_max_endstop = x_max_endstop;
 | |
|           #endif
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     #ifndef COREXY
 | |
|     if ((out_bits & (1<<Y_AXIS)) != 0) {   // -direction
 | |
|     #else
 | |
|     if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) {   // -Y occurs for -A and +B
 | |
|     #endif
 | |
|       CHECK_ENDSTOPS
 | |
|       {
 | |
|         #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 | |
|           bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
 | |
|           if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
 | |
|             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
 | |
|             endstop_y_hit=true;
 | |
|             step_events_completed = current_block->step_event_count;
 | |
|           }
 | |
|           old_y_min_endstop = y_min_endstop;
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
|     else { // +direction
 | |
|       CHECK_ENDSTOPS
 | |
|       {
 | |
|         #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 | |
|           bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
 | |
|           if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
 | |
|             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
 | |
|             endstop_y_hit=true;
 | |
|             step_events_completed = current_block->step_event_count;
 | |
|           }
 | |
|           old_y_max_endstop = y_max_endstop;
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction
 | |
|       WRITE(Z_DIR_PIN,INVERT_Z_DIR);
 | |
|       
 | |
|       #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|         WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
 | |
|       #endif
 | |
| 
 | |
|       count_direction[Z_AXIS]=-1;
 | |
|       CHECK_ENDSTOPS
 | |
|       {
 | |
|         #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 | |
|           bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | |
|           if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
 | |
|             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 | |
|             endstop_z_hit=true;
 | |
|             step_events_completed = current_block->step_event_count;
 | |
|           }
 | |
|           old_z_min_endstop = z_min_endstop;
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
|     else { // +direction
 | |
|       WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
 | |
| 
 | |
|       #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|         WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
 | |
|       #endif
 | |
| 
 | |
|       count_direction[Z_AXIS]=1;
 | |
|       CHECK_ENDSTOPS
 | |
|       {
 | |
|         #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 | |
|           bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
 | |
|           if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
 | |
|             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
 | |
|             endstop_z_hit=true;
 | |
|             step_events_completed = current_block->step_event_count;
 | |
|           }
 | |
|           old_z_max_endstop = z_max_endstop;
 | |
|         #endif
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     #ifndef ADVANCE
 | |
|       if ((out_bits & (1<<E_AXIS)) != 0) {  // -direction
 | |
|         REV_E_DIR();
 | |
|         count_direction[E_AXIS]=-1;
 | |
|       }
 | |
|       else { // +direction
 | |
|         NORM_E_DIR();
 | |
|         count_direction[E_AXIS]=1;
 | |
|       }
 | |
|     #endif //!ADVANCE
 | |
| 
 | |
| 
 | |
| 
 | |
|     for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
 | |
|       #ifndef AT90USB
 | |
|       MSerial.checkRx(); // Check for serial chars.
 | |
|       #endif
 | |
| 
 | |
|       #ifdef ADVANCE
 | |
|       counter_e += current_block->steps_e;
 | |
|       if (counter_e > 0) {
 | |
|         counter_e -= current_block->step_event_count;
 | |
|         if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
 | |
|           e_steps[current_block->active_extruder]--;
 | |
|         }
 | |
|         else {
 | |
|           e_steps[current_block->active_extruder]++;
 | |
|         }
 | |
|       }
 | |
|       #endif //ADVANCE
 | |
| 
 | |
|       counter_x += current_block->steps_x;
 | |
| #ifdef CONFIG_STEPPERS_TOSHIBA
 | |
| 	/* The toshiba stepper controller require much longer pulses
 | |
| 	 * tjerfore we 'stage' decompose the pulses between high, and
 | |
| 	 * low instead of doing each in turn. The extra tests add enough
 | |
| 	 * lag to allow it work with without needing NOPs */ 
 | |
|       if (counter_x > 0) {
 | |
|         WRITE(X_STEP_PIN, HIGH);
 | |
|       }
 | |
| 
 | |
|       counter_y += current_block->steps_y;
 | |
|       if (counter_y > 0) {
 | |
|         WRITE(Y_STEP_PIN, HIGH);
 | |
|       }
 | |
| 
 | |
|       counter_z += current_block->steps_z;
 | |
|       if (counter_z > 0) {
 | |
|         WRITE(Z_STEP_PIN, HIGH);
 | |
|       }
 | |
| 
 | |
|       #ifndef ADVANCE
 | |
|         counter_e += current_block->steps_e;
 | |
|         if (counter_e > 0) {
 | |
|           WRITE_E_STEP(HIGH);
 | |
|         }
 | |
|       #endif //!ADVANCE
 | |
| 
 | |
|       if (counter_x > 0) {
 | |
|         counter_x -= current_block->step_event_count;
 | |
|         count_position[X_AXIS]+=count_direction[X_AXIS];   
 | |
|         WRITE(X_STEP_PIN, LOW);
 | |
|       }
 | |
| 
 | |
|       if (counter_y > 0) {
 | |
|         counter_y -= current_block->step_event_count;
 | |
|         count_position[Y_AXIS]+=count_direction[Y_AXIS];
 | |
|         WRITE(Y_STEP_PIN, LOW);
 | |
|       }
 | |
| 
 | |
|       if (counter_z > 0) {
 | |
|         counter_z -= current_block->step_event_count;
 | |
|         count_position[Z_AXIS]+=count_direction[Z_AXIS];
 | |
|         WRITE(Z_STEP_PIN, LOW);
 | |
|       }
 | |
| 
 | |
|       #ifndef ADVANCE
 | |
|         if (counter_e > 0) {
 | |
|           counter_e -= current_block->step_event_count;
 | |
|           count_position[E_AXIS]+=count_direction[E_AXIS];
 | |
|           WRITE_E_STEP(LOW);
 | |
|         }
 | |
|       #endif //!ADVANCE
 | |
| #else
 | |
|         if (counter_x > 0) {
 | |
|         #ifdef DUAL_X_CARRIAGE
 | |
|           if (extruder_duplication_enabled){
 | |
|             WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
 | |
|             WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
 | |
|           }
 | |
|           else {
 | |
|             if (current_block->active_extruder != 0)
 | |
|               WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
 | |
|             else
 | |
|               WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
 | |
|           }
 | |
|         #else
 | |
|           WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
 | |
|         #endif        
 | |
|           counter_x -= current_block->step_event_count;
 | |
|           count_position[X_AXIS]+=count_direction[X_AXIS];   
 | |
|         #ifdef DUAL_X_CARRIAGE
 | |
|           if (extruder_duplication_enabled){
 | |
|             WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
 | |
|             WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
 | |
|           }
 | |
|           else {
 | |
|             if (current_block->active_extruder != 0)
 | |
|               WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
 | |
|             else
 | |
|               WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
 | |
|           }
 | |
|         #else
 | |
|           WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
 | |
|         #endif
 | |
|         }
 | |
| 
 | |
|         counter_y += current_block->steps_y;
 | |
|         if (counter_y > 0) {
 | |
|           WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
 | |
| 		  
 | |
| 		  #ifdef Y_DUAL_STEPPER_DRIVERS
 | |
| 			WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
 | |
| 		  #endif
 | |
| 		  
 | |
|           counter_y -= current_block->step_event_count;
 | |
|           count_position[Y_AXIS]+=count_direction[Y_AXIS];
 | |
|           WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 | |
| 		  
 | |
| 		  #ifdef Y_DUAL_STEPPER_DRIVERS
 | |
| 			WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
 | |
| 		  #endif
 | |
|         }
 | |
| 
 | |
|       counter_z += current_block->steps_z;
 | |
|       if (counter_z > 0) {
 | |
|         WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
 | |
|         
 | |
|         #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|           WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
 | |
|         #endif
 | |
| 
 | |
|         counter_z -= current_block->step_event_count;
 | |
|         count_position[Z_AXIS]+=count_direction[Z_AXIS];
 | |
|         WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 | |
|         
 | |
|         #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|           WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
 | |
|         #endif
 | |
|       }
 | |
| 
 | |
|       #ifndef ADVANCE
 | |
|         counter_e += current_block->steps_e;
 | |
|         if (counter_e > 0) {
 | |
|           WRITE_E_STEP(!INVERT_E_STEP_PIN);
 | |
|           counter_e -= current_block->step_event_count;
 | |
|           count_position[E_AXIS]+=count_direction[E_AXIS];
 | |
|           WRITE_E_STEP(INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       #endif //!ADVANCE
 | |
| #endif // CONFIG_STEPPERS_TOSHIBA
 | |
|       step_events_completed += 1;
 | |
|       if(step_events_completed >= current_block->step_event_count) break;
 | |
|     }
 | |
|     // Calculare new timer value
 | |
|     unsigned short timer;
 | |
|     unsigned short step_rate;
 | |
|     if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
 | |
| 
 | |
|       MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
 | |
|       acc_step_rate += current_block->initial_rate;
 | |
| 
 | |
|       // upper limit
 | |
|       if(acc_step_rate > current_block->nominal_rate)
 | |
|         acc_step_rate = current_block->nominal_rate;
 | |
| 
 | |
|       // step_rate to timer interval
 | |
|       timer = calc_timer(acc_step_rate);
 | |
|       OCR1A = timer;
 | |
|       acceleration_time += timer;
 | |
|       #ifdef ADVANCE
 | |
|         for(int8_t i=0; i < step_loops; i++) {
 | |
|           advance += advance_rate;
 | |
|         }
 | |
|         //if(advance > current_block->advance) advance = current_block->advance;
 | |
|         // Do E steps + advance steps
 | |
|         e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | |
|         old_advance = advance >>8;
 | |
| 
 | |
|       #endif
 | |
|     }
 | |
|     else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
 | |
|       MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
 | |
| 
 | |
|       if(step_rate > acc_step_rate) { // Check step_rate stays positive
 | |
|         step_rate = current_block->final_rate;
 | |
|       }
 | |
|       else {
 | |
|         step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
 | |
|       }
 | |
| 
 | |
|       // lower limit
 | |
|       if(step_rate < current_block->final_rate)
 | |
|         step_rate = current_block->final_rate;
 | |
| 
 | |
|       // step_rate to timer interval
 | |
|       timer = calc_timer(step_rate);
 | |
|       OCR1A = timer;
 | |
|       deceleration_time += timer;
 | |
|       #ifdef ADVANCE
 | |
|         for(int8_t i=0; i < step_loops; i++) {
 | |
|           advance -= advance_rate;
 | |
|         }
 | |
|         if(advance < final_advance) advance = final_advance;
 | |
|         // Do E steps + advance steps
 | |
|         e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
 | |
|         old_advance = advance >>8;
 | |
|       #endif //ADVANCE
 | |
|     }
 | |
|     else {
 | |
|       OCR1A = OCR1A_nominal;
 | |
|       // ensure we're running at the correct step rate, even if we just came off an acceleration
 | |
|       step_loops = step_loops_nominal;
 | |
|     }
 | |
| 
 | |
|     // If current block is finished, reset pointer
 | |
|     if (step_events_completed >= current_block->step_event_count) {
 | |
|       current_block = NULL;
 | |
|       plan_discard_current_block();
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #ifdef ADVANCE
 | |
|   unsigned char old_OCR0A;
 | |
|   // Timer interrupt for E. e_steps is set in the main routine;
 | |
|   // Timer 0 is shared with millies
 | |
|   ISR(TIMER0_COMPA_vect)
 | |
|   {
 | |
|     old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
 | |
|     OCR0A = old_OCR0A;
 | |
|     // Set E direction (Depends on E direction + advance)
 | |
|     for(unsigned char i=0; i<4;i++) {
 | |
|       if (e_steps[0] != 0) {
 | |
|         WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
 | |
|         if (e_steps[0] < 0) {
 | |
|           WRITE(E0_DIR_PIN, INVERT_E0_DIR);
 | |
|           e_steps[0]++;
 | |
|           WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|         else if (e_steps[0] > 0) {
 | |
|           WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
 | |
|           e_steps[0]--;
 | |
|           WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       }
 | |
|  #if EXTRUDERS > 1
 | |
|       if (e_steps[1] != 0) {
 | |
|         WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
 | |
|         if (e_steps[1] < 0) {
 | |
|           WRITE(E1_DIR_PIN, INVERT_E1_DIR);
 | |
|           e_steps[1]++;
 | |
|           WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|         else if (e_steps[1] > 0) {
 | |
|           WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
 | |
|           e_steps[1]--;
 | |
|           WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       }
 | |
|  #endif
 | |
|  #if EXTRUDERS > 2
 | |
|       if (e_steps[2] != 0) {
 | |
|         WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
 | |
|         if (e_steps[2] < 0) {
 | |
|           WRITE(E2_DIR_PIN, INVERT_E2_DIR);
 | |
|           e_steps[2]++;
 | |
|           WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|         else if (e_steps[2] > 0) {
 | |
|           WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
 | |
|           e_steps[2]--;
 | |
|           WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       }
 | |
|  #endif
 | |
|  #if EXTRUDERS > 3
 | |
|       if (e_steps[3] != 0) {
 | |
|         WRITE(E3_STEP_PIN, INVERT_E_STEP_PIN);
 | |
|         if (e_steps[3] < 0) {
 | |
|           WRITE(E3_DIR_PIN, INVERT_E3_DIR);
 | |
|           e_steps[3]++;
 | |
|           WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|         else if (e_steps[3] > 0) {
 | |
|           WRITE(E3_DIR_PIN, !INVERT_E3_DIR);
 | |
|           e_steps[3]--;
 | |
|           WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
 | |
|         }
 | |
|       }
 | |
|  #endif
 | |
| 
 | |
|     }
 | |
|   }
 | |
| #endif // ADVANCE
 | |
| 
 | |
| void st_init()
 | |
| {
 | |
|   digipot_init(); //Initialize Digipot Motor Current
 | |
|   microstep_init(); //Initialize Microstepping Pins
 | |
| 
 | |
|   //Initialize Dir Pins
 | |
|   #if defined(X_DIR_PIN) && X_DIR_PIN > -1
 | |
|     SET_OUTPUT(X_DIR_PIN);
 | |
|   #endif
 | |
|   #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
 | |
|     SET_OUTPUT(X2_DIR_PIN);
 | |
|   #endif
 | |
|   #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
 | |
|     SET_OUTPUT(Y_DIR_PIN);
 | |
| 		
 | |
| 	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
 | |
| 	  SET_OUTPUT(Y2_DIR_PIN);
 | |
| 	#endif
 | |
|   #endif
 | |
|   #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
 | |
|     SET_OUTPUT(Z_DIR_PIN);
 | |
| 
 | |
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
 | |
|       SET_OUTPUT(Z2_DIR_PIN);
 | |
|     #endif
 | |
|   #endif
 | |
|   #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
 | |
|     SET_OUTPUT(E0_DIR_PIN);
 | |
|   #endif
 | |
|   #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
 | |
|     SET_OUTPUT(E1_DIR_PIN);
 | |
|   #endif
 | |
|   #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
 | |
|     SET_OUTPUT(E2_DIR_PIN);
 | |
|   #endif
 | |
|   #if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1)
 | |
|     SET_OUTPUT(E3_DIR_PIN);
 | |
|   #endif
 | |
| 
 | |
|   //Initialize Enable Pins - steppers default to disabled.
 | |
| 
 | |
|   #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
 | |
|     SET_OUTPUT(X_ENABLE_PIN);
 | |
|     if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
 | |
|   #endif
 | |
|   #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
 | |
|     SET_OUTPUT(X2_ENABLE_PIN);
 | |
|     if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
 | |
|   #endif
 | |
|   #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
 | |
|     SET_OUTPUT(Y_ENABLE_PIN);
 | |
|     if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
 | |
| 	
 | |
| 	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
 | |
| 	  SET_OUTPUT(Y2_ENABLE_PIN);
 | |
| 	  if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
 | |
| 	#endif
 | |
|   #endif
 | |
|   #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
 | |
|     SET_OUTPUT(Z_ENABLE_PIN);
 | |
|     if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
 | |
| 
 | |
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
 | |
|       SET_OUTPUT(Z2_ENABLE_PIN);
 | |
|       if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
|   #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
 | |
|     SET_OUTPUT(E0_ENABLE_PIN);
 | |
|     if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
 | |
|   #endif
 | |
|   #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
 | |
|     SET_OUTPUT(E1_ENABLE_PIN);
 | |
|     if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
 | |
|   #endif
 | |
|   #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
 | |
|     SET_OUTPUT(E2_ENABLE_PIN);
 | |
|     if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
 | |
|   #endif
 | |
|   #if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
 | |
|     SET_OUTPUT(E3_ENABLE_PIN);
 | |
|     if(!E_ENABLE_ON) WRITE(E3_ENABLE_PIN,HIGH);
 | |
|   #endif
 | |
| 
 | |
|   //endstops and pullups
 | |
| 
 | |
|   #if defined(X_MIN_PIN) && X_MIN_PIN > -1
 | |
|     SET_INPUT(X_MIN_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_XMIN
 | |
|       WRITE(X_MIN_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
 | |
|     SET_INPUT(Y_MIN_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_YMIN
 | |
|       WRITE(Y_MIN_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
 | |
|     SET_INPUT(Z_MIN_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_ZMIN
 | |
|       WRITE(Z_MIN_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if defined(X_MAX_PIN) && X_MAX_PIN > -1
 | |
|     SET_INPUT(X_MAX_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_XMAX
 | |
|       WRITE(X_MAX_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
 | |
|     SET_INPUT(Y_MAX_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_YMAX
 | |
|       WRITE(Y_MAX_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
 | |
|     SET_INPUT(Z_MAX_PIN);
 | |
|     #ifdef ENDSTOPPULLUP_ZMAX
 | |
|       WRITE(Z_MAX_PIN,HIGH);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
| 
 | |
|   //Initialize Step Pins
 | |
|   #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
 | |
|     SET_OUTPUT(X_STEP_PIN);
 | |
|     WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
 | |
|     disable_x();
 | |
|   #endif
 | |
|   #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
 | |
|     SET_OUTPUT(X2_STEP_PIN);
 | |
|     WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
 | |
|     disable_x();
 | |
|   #endif
 | |
|   #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
 | |
|     SET_OUTPUT(Y_STEP_PIN);
 | |
|     WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
 | |
|     #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
 | |
|       SET_OUTPUT(Y2_STEP_PIN);
 | |
|       WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
 | |
|     #endif
 | |
|     disable_y();
 | |
|   #endif
 | |
|   #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
 | |
|     SET_OUTPUT(Z_STEP_PIN);
 | |
|     WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
 | |
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
 | |
|       SET_OUTPUT(Z2_STEP_PIN);
 | |
|       WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
 | |
|     #endif
 | |
|     disable_z();
 | |
|   #endif
 | |
|   #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
 | |
|     SET_OUTPUT(E0_STEP_PIN);
 | |
|     WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
 | |
|     disable_e0();
 | |
|   #endif
 | |
|   #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
 | |
|     SET_OUTPUT(E1_STEP_PIN);
 | |
|     WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
 | |
|     disable_e1();
 | |
|   #endif
 | |
|   #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
 | |
|     SET_OUTPUT(E2_STEP_PIN);
 | |
|     WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
 | |
|     disable_e2();
 | |
|   #endif
 | |
|   #if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
 | |
|     SET_OUTPUT(E3_STEP_PIN);
 | |
|     WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
 | |
|     disable_e3();
 | |
|   #endif
 | |
| 
 | |
|   // waveform generation = 0100 = CTC
 | |
|   TCCR1B &= ~(1<<WGM13);
 | |
|   TCCR1B |=  (1<<WGM12);
 | |
|   TCCR1A &= ~(1<<WGM11);
 | |
|   TCCR1A &= ~(1<<WGM10);
 | |
| 
 | |
|   // output mode = 00 (disconnected)
 | |
|   TCCR1A &= ~(3<<COM1A0);
 | |
|   TCCR1A &= ~(3<<COM1B0);
 | |
| 
 | |
|   // Set the timer pre-scaler
 | |
|   // Generally we use a divider of 8, resulting in a 2MHz timer
 | |
|   // frequency on a 16MHz MCU. If you are going to change this, be
 | |
|   // sure to regenerate speed_lookuptable.h with
 | |
|   // create_speed_lookuptable.py
 | |
|   TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
 | |
| 
 | |
|   OCR1A = 0x4000;
 | |
|   TCNT1 = 0;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| 
 | |
|   #ifdef ADVANCE
 | |
|   #if defined(TCCR0A) && defined(WGM01)
 | |
|     TCCR0A &= ~(1<<WGM01);
 | |
|     TCCR0A &= ~(1<<WGM00);
 | |
|   #endif
 | |
|     e_steps[0] = 0;
 | |
|     e_steps[1] = 0;
 | |
|     e_steps[2] = 0;
 | |
|     e_steps[3] = 0;
 | |
|     TIMSK0 |= (1<<OCIE0A);
 | |
|   #endif //ADVANCE
 | |
| 
 | |
|   enable_endstops(true); // Start with endstops active. After homing they can be disabled
 | |
|   sei();
 | |
| }
 | |
| 
 | |
| 
 | |
| // Block until all buffered steps are executed
 | |
| void st_synchronize()
 | |
| {
 | |
|     while( blocks_queued()) {
 | |
|     manage_heater();
 | |
|     manage_inactivity();
 | |
|     lcd_update();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void st_set_position(const long &x, const long &y, const long &z, const long &e)
 | |
| {
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_position[X_AXIS] = x;
 | |
|   count_position[Y_AXIS] = y;
 | |
|   count_position[Z_AXIS] = z;
 | |
|   count_position[E_AXIS] = e;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| void st_set_e_position(const long &e)
 | |
| {
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_position[E_AXIS] = e;
 | |
|   CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| long st_get_position(uint8_t axis)
 | |
| {
 | |
|   long count_pos;
 | |
|   CRITICAL_SECTION_START;
 | |
|   count_pos = count_position[axis];
 | |
|   CRITICAL_SECTION_END;
 | |
|   return count_pos;
 | |
| }
 | |
| 
 | |
| #ifdef ENABLE_AUTO_BED_LEVELING
 | |
| float st_get_position_mm(uint8_t axis)
 | |
| {
 | |
|   float steper_position_in_steps = st_get_position(axis);
 | |
|   return steper_position_in_steps / axis_steps_per_unit[axis];
 | |
| }
 | |
| #endif  // ENABLE_AUTO_BED_LEVELING
 | |
| 
 | |
| void finishAndDisableSteppers()
 | |
| {
 | |
|   st_synchronize();
 | |
|   disable_x();
 | |
|   disable_y();
 | |
|   disable_z();
 | |
|   disable_e0();
 | |
|   disable_e1();
 | |
|   disable_e2();
 | |
|   disable_e3();
 | |
| }
 | |
| 
 | |
| void quickStop()
 | |
| {
 | |
|   DISABLE_STEPPER_DRIVER_INTERRUPT();
 | |
|   while(blocks_queued())
 | |
|     plan_discard_current_block();
 | |
|   current_block = NULL;
 | |
|   ENABLE_STEPPER_DRIVER_INTERRUPT();
 | |
| }
 | |
| 
 | |
| #ifdef BABYSTEPPING
 | |
| 
 | |
| 
 | |
| void babystep(const uint8_t axis,const bool direction)
 | |
| {
 | |
|   //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
 | |
|     //store initial pin states
 | |
|   switch(axis)
 | |
|   {
 | |
|   case X_AXIS:
 | |
|   {
 | |
|     enable_x();   
 | |
|     uint8_t old_x_dir_pin= READ(X_DIR_PIN);  //if dualzstepper, both point to same direction.
 | |
|    
 | |
|     //setup new step
 | |
|     WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
 | |
|     #ifdef DUAL_X_CARRIAGE
 | |
|       WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
 | |
|     #endif
 | |
|     
 | |
|     //perform step 
 | |
|     WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); 
 | |
|     #ifdef DUAL_X_CARRIAGE
 | |
|       WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
 | |
|     #endif
 | |
| 
 | |
|     _delay_us(1U); // wait 1 microsecond
 | |
| 
 | |
|     WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
 | |
|     #ifdef DUAL_X_CARRIAGE
 | |
|       WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
 | |
|     #endif
 | |
| 
 | |
|     //get old pin state back.
 | |
|     WRITE(X_DIR_PIN,old_x_dir_pin);
 | |
|     #ifdef DUAL_X_CARRIAGE
 | |
|       WRITE(X2_DIR_PIN,old_x_dir_pin);
 | |
|     #endif
 | |
| 
 | |
|   }
 | |
|   break;
 | |
|   case Y_AXIS:
 | |
|   {
 | |
|     enable_y();   
 | |
|     uint8_t old_y_dir_pin= READ(Y_DIR_PIN);  //if dualzstepper, both point to same direction.
 | |
|    
 | |
|     //setup new step
 | |
|     WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
 | |
|     #ifdef DUAL_Y_CARRIAGE
 | |
|       WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
 | |
|     #endif
 | |
|     
 | |
|     //perform step 
 | |
|     WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); 
 | |
|     #ifdef DUAL_Y_CARRIAGE
 | |
|       WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
 | |
|     #endif
 | |
| 
 | |
|     _delay_us(1U); // wait 1 microsecond
 | |
| 
 | |
|     WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
 | |
|     #ifdef DUAL_Y_CARRIAGE
 | |
|       WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
 | |
|     #endif
 | |
| 
 | |
|     //get old pin state back.
 | |
|     WRITE(Y_DIR_PIN,old_y_dir_pin);
 | |
|     #ifdef DUAL_Y_CARRIAGE
 | |
|       WRITE(Y2_DIR_PIN,old_y_dir_pin);
 | |
|     #endif
 | |
| 
 | |
|   }
 | |
|   break;
 | |
|  
 | |
| #ifndef DELTA
 | |
|   case Z_AXIS:
 | |
|   {
 | |
|     enable_z();
 | |
|     uint8_t old_z_dir_pin= READ(Z_DIR_PIN);  //if dualzstepper, both point to same direction.
 | |
|     //setup new step
 | |
|     WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
 | |
|     #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|       WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
 | |
|     #endif
 | |
|     //perform step 
 | |
|     WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); 
 | |
|     #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|       WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
 | |
|     #endif
 | |
| 
 | |
|     _delay_us(1U); // wait 1 microsecond
 | |
| 
 | |
|     WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 | |
|     #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|       WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
 | |
|     #endif
 | |
| 
 | |
|     //get old pin state back.
 | |
|     WRITE(Z_DIR_PIN,old_z_dir_pin);
 | |
|     #ifdef Z_DUAL_STEPPER_DRIVERS
 | |
|       WRITE(Z2_DIR_PIN,old_z_dir_pin);
 | |
|     #endif
 | |
| 
 | |
|   }
 | |
|   break;
 | |
| #else //DELTA
 | |
|   case Z_AXIS:
 | |
|   {
 | |
|     enable_x();
 | |
|     enable_y();
 | |
|     enable_z();
 | |
|     uint8_t old_x_dir_pin= READ(X_DIR_PIN);  
 | |
|     uint8_t old_y_dir_pin= READ(Y_DIR_PIN);  
 | |
|     uint8_t old_z_dir_pin= READ(Z_DIR_PIN);  
 | |
|     //setup new step
 | |
|     WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
 | |
|     WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
 | |
|     WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
 | |
|     
 | |
|     //perform step 
 | |
|     WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); 
 | |
|     WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); 
 | |
|     WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); 
 | |
|     
 | |
|     _delay_us(1U); // wait 1 microsecond
 | |
| 
 | |
|     WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); 
 | |
|     WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); 
 | |
|     WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
 | |
| 
 | |
|     //get old pin state back.
 | |
|     WRITE(X_DIR_PIN,old_x_dir_pin);
 | |
|     WRITE(Y_DIR_PIN,old_y_dir_pin);
 | |
|     WRITE(Z_DIR_PIN,old_z_dir_pin);
 | |
| 
 | |
|   }
 | |
|   break;
 | |
| #endif
 | |
|  
 | |
|   default:    break;
 | |
|   }
 | |
| }
 | |
| #endif //BABYSTEPPING
 | |
| 
 | |
| void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
 | |
| {
 | |
|   #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | |
|     digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
 | |
|     SPI.transfer(address); //  send in the address and value via SPI:
 | |
|     SPI.transfer(value);
 | |
|     digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
 | |
|     //delay(10);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void digipot_init() //Initialize Digipot Motor Current
 | |
| {
 | |
|   #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | |
|     const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
 | |
| 
 | |
|     SPI.begin();
 | |
|     pinMode(DIGIPOTSS_PIN, OUTPUT);
 | |
|     for(int i=0;i<=4;i++)
 | |
|       //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
 | |
|       digipot_current(i,digipot_motor_current[i]);
 | |
|   #endif
 | |
|   #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | |
|     pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
 | |
|     pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
 | |
|     pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
 | |
|     digipot_current(0, motor_current_setting[0]);
 | |
|     digipot_current(1, motor_current_setting[1]);
 | |
|     digipot_current(2, motor_current_setting[2]);
 | |
|     //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
 | |
|     TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void digipot_current(uint8_t driver, int current)
 | |
| {
 | |
|   #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
 | |
|     const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
 | |
|     digitalPotWrite(digipot_ch[driver], current);
 | |
|   #endif
 | |
|   #ifdef MOTOR_CURRENT_PWM_XY_PIN
 | |
|   if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 | |
|   if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 | |
|   if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void microstep_init()
 | |
| {
 | |
|   const uint8_t microstep_modes[] = MICROSTEP_MODES;
 | |
| 
 | |
|   #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 | |
|   pinMode(E1_MS1_PIN,OUTPUT);
 | |
|   pinMode(E1_MS2_PIN,OUTPUT); 
 | |
|   #endif
 | |
| 
 | |
|   #if defined(X_MS1_PIN) && X_MS1_PIN > -1
 | |
|   pinMode(X_MS1_PIN,OUTPUT);
 | |
|   pinMode(X_MS2_PIN,OUTPUT);  
 | |
|   pinMode(Y_MS1_PIN,OUTPUT);
 | |
|   pinMode(Y_MS2_PIN,OUTPUT);
 | |
|   pinMode(Z_MS1_PIN,OUTPUT);
 | |
|   pinMode(Z_MS2_PIN,OUTPUT);
 | |
|   pinMode(E0_MS1_PIN,OUTPUT);
 | |
|   pinMode(E0_MS2_PIN,OUTPUT);
 | |
|   for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
 | |
| {
 | |
|   if(ms1 > -1) switch(driver)
 | |
|   {
 | |
|     case 0: digitalWrite( X_MS1_PIN,ms1); break;
 | |
|     case 1: digitalWrite( Y_MS1_PIN,ms1); break;
 | |
|     case 2: digitalWrite( Z_MS1_PIN,ms1); break;
 | |
|     case 3: digitalWrite(E0_MS1_PIN,ms1); break;
 | |
|     #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 | |
|     case 4: digitalWrite(E1_MS1_PIN,ms1); break;
 | |
|     #endif
 | |
|   }
 | |
|   if(ms2 > -1) switch(driver)
 | |
|   {
 | |
|     case 0: digitalWrite( X_MS2_PIN,ms2); break;
 | |
|     case 1: digitalWrite( Y_MS2_PIN,ms2); break;
 | |
|     case 2: digitalWrite( Z_MS2_PIN,ms2); break;
 | |
|     case 3: digitalWrite(E0_MS2_PIN,ms2); break;
 | |
|     #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
 | |
|     case 4: digitalWrite(E1_MS2_PIN,ms2); break;
 | |
|     #endif
 | |
|   }
 | |
| }
 | |
| 
 | |
| void microstep_mode(uint8_t driver, uint8_t stepping_mode)
 | |
| {
 | |
|   switch(stepping_mode)
 | |
|   {
 | |
|     case 1: microstep_ms(driver,MICROSTEP1); break;
 | |
|     case 2: microstep_ms(driver,MICROSTEP2); break;
 | |
|     case 4: microstep_ms(driver,MICROSTEP4); break;
 | |
|     case 8: microstep_ms(driver,MICROSTEP8); break;
 | |
|     case 16: microstep_ms(driver,MICROSTEP16); break;
 | |
|   }
 | |
| }
 | |
| 
 | |
| void microstep_readings()
 | |
| {
 | |
|       SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
 | |
|       SERIAL_PROTOCOLPGM("X: ");
 | |
|       SERIAL_PROTOCOL(   digitalRead(X_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
 | |
|       SERIAL_PROTOCOLPGM("Y: ");
 | |
|       SERIAL_PROTOCOL(   digitalRead(Y_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
 | |
|       SERIAL_PROTOCOLPGM("Z: ");
 | |
|       SERIAL_PROTOCOL(   digitalRead(Z_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
 | |
|       SERIAL_PROTOCOLPGM("E0: ");
 | |
|       SERIAL_PROTOCOL(   digitalRead(E0_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
 | |
|       #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
 | |
|       SERIAL_PROTOCOLPGM("E1: ");
 | |
|       SERIAL_PROTOCOL(   digitalRead(E1_MS1_PIN));
 | |
|       SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
 | |
|       #endif
 | |
| }
 | |
| 
 |