1996 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1996 lines
		
	
	
		
			56 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|   temperature.c - temperature control
 | |
|   Part of Marlin
 | |
|   
 | |
|  Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | |
|  
 | |
|  This program is free software: you can redistribute it and/or modify
 | |
|  it under the terms of the GNU General Public License as published by
 | |
|  the Free Software Foundation, either version 3 of the License, or
 | |
|  (at your option) any later version.
 | |
|  
 | |
|  This program is distributed in the hope that it will be useful,
 | |
|  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  GNU General Public License for more details.
 | |
|  
 | |
|  You should have received a copy of the GNU General Public License
 | |
|  along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  This firmware is a mashup between Sprinter and grbl.
 | |
|   (https://github.com/kliment/Sprinter)
 | |
|   (https://github.com/simen/grbl/tree)
 | |
|  
 | |
|  It has preliminary support for Matthew Roberts advance algorithm 
 | |
|     http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
 | |
| 
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "Marlin.h"
 | |
| #include "ultralcd.h"
 | |
| #include "temperature.h"
 | |
| #include "watchdog.h"
 | |
| 
 | |
| #include "Sd2PinMap.h"
 | |
| 
 | |
| 
 | |
| //===========================================================================
 | |
| //============================= public variables ============================
 | |
| //===========================================================================
 | |
| 
 | |
| // Sampling period of the temperature routine
 | |
| #ifdef PID_dT
 | |
|   #undef PID_dT
 | |
| #endif
 | |
| #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
 | |
| 
 | |
| int target_temperature[EXTRUDERS] = { 0 };
 | |
| int target_temperature_bed = 0;
 | |
| int current_temperature_raw[EXTRUDERS] = { 0 };
 | |
| float current_temperature[EXTRUDERS] = { 0.0 };
 | |
| int current_temperature_bed_raw = 0;
 | |
| float current_temperature_bed = 0.0;
 | |
| #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|   int redundant_temperature_raw = 0;
 | |
|   float redundant_temperature = 0.0;
 | |
| #endif
 | |
| 
 | |
| #ifdef PIDTEMPBED
 | |
|   float bedKp=DEFAULT_bedKp;
 | |
|   float bedKi=(DEFAULT_bedKi*PID_dT);
 | |
|   float bedKd=(DEFAULT_bedKd/PID_dT);
 | |
| #endif //PIDTEMPBED
 | |
|   
 | |
| #ifdef FAN_SOFT_PWM
 | |
|   unsigned char fanSpeedSoftPwm;
 | |
| #endif
 | |
| 
 | |
| unsigned char soft_pwm_bed;
 | |
|   
 | |
| #ifdef BABYSTEPPING
 | |
|   volatile int babystepsTodo[3]={0,0,0};
 | |
| #endif
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
|   int current_raw_filwidth = 0;  //Holds measured filament diameter - one extruder only
 | |
| #endif  
 | |
| //===========================================================================
 | |
| //=============================private variables============================
 | |
| //===========================================================================
 | |
| static volatile bool temp_meas_ready = false;
 | |
| 
 | |
| #ifdef PIDTEMP
 | |
|   //static cannot be external:
 | |
|   static float temp_iState[EXTRUDERS] = { 0 };
 | |
|   static float temp_dState[EXTRUDERS] = { 0 };
 | |
|   static float pTerm[EXTRUDERS];
 | |
|   static float iTerm[EXTRUDERS];
 | |
|   static float dTerm[EXTRUDERS];
 | |
|   //int output;
 | |
|   static float pid_error[EXTRUDERS];
 | |
|   static float temp_iState_min[EXTRUDERS];
 | |
|   static float temp_iState_max[EXTRUDERS];
 | |
|   // static float pid_input[EXTRUDERS];
 | |
|   // static float pid_output[EXTRUDERS];
 | |
|   static bool pid_reset[EXTRUDERS];
 | |
| #endif //PIDTEMP
 | |
| #ifdef PIDTEMPBED
 | |
|   //static cannot be external:
 | |
|   static float temp_iState_bed = { 0 };
 | |
|   static float temp_dState_bed = { 0 };
 | |
|   static float pTerm_bed;
 | |
|   static float iTerm_bed;
 | |
|   static float dTerm_bed;
 | |
|   //int output;
 | |
|   static float pid_error_bed;
 | |
|   static float temp_iState_min_bed;
 | |
|   static float temp_iState_max_bed;
 | |
| #else //PIDTEMPBED
 | |
| 	static unsigned long  previous_millis_bed_heater;
 | |
| #endif //PIDTEMPBED
 | |
|   static unsigned char soft_pwm[EXTRUDERS];
 | |
| 
 | |
| #ifdef FAN_SOFT_PWM
 | |
|   static unsigned char soft_pwm_fan;
 | |
| #endif
 | |
| #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
 | |
|     (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
 | |
|     (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
 | |
|   static unsigned long extruder_autofan_last_check;
 | |
| #endif  
 | |
| 
 | |
| #if EXTRUDERS > 4
 | |
|   # error Unsupported number of extruders
 | |
| #elif EXTRUDERS > 3
 | |
|   # define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
 | |
| #elif EXTRUDERS > 2
 | |
|   # define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
 | |
| #elif EXTRUDERS > 1
 | |
|   # define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
 | |
| #else
 | |
|   # define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
 | |
| #endif
 | |
| 
 | |
| #ifdef PIDTEMP
 | |
| #ifdef PID_PARAMS_PER_EXTRUDER
 | |
|   float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
 | |
|   float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
 | |
|   float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
 | |
|   #ifdef PID_ADD_EXTRUSION_RATE
 | |
|     float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
 | |
|   #endif // PID_ADD_EXTRUSION_RATE
 | |
| #else //PID_PARAMS_PER_EXTRUDER
 | |
|   float Kp = DEFAULT_Kp;
 | |
|   float Ki = DEFAULT_Ki * PID_dT;
 | |
|   float Kd = DEFAULT_Kd / PID_dT;
 | |
|   #ifdef PID_ADD_EXTRUSION_RATE
 | |
|     float Kc = DEFAULT_Kc;
 | |
|   #endif // PID_ADD_EXTRUSION_RATE
 | |
| #endif // PID_PARAMS_PER_EXTRUDER
 | |
| #endif //PIDTEMP
 | |
| 
 | |
| // Init min and max temp with extreme values to prevent false errors during startup
 | |
| static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
 | |
| static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
 | |
| static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 );
 | |
| static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
 | |
| //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
 | |
| #ifdef BED_MAXTEMP
 | |
| static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
 | |
| #endif
 | |
| 
 | |
| #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|   static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
 | |
|   static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
 | |
| #else
 | |
|   static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
 | |
|   static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
 | |
| #endif
 | |
| 
 | |
| static float analog2temp(int raw, uint8_t e);
 | |
| static float analog2tempBed(int raw);
 | |
| static void updateTemperaturesFromRawValues();
 | |
| 
 | |
| #ifdef WATCH_TEMP_PERIOD
 | |
| int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
 | |
| unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
 | |
| #endif //WATCH_TEMP_PERIOD
 | |
| 
 | |
| #ifndef SOFT_PWM_SCALE
 | |
| #define SOFT_PWM_SCALE 0
 | |
| #endif
 | |
| 
 | |
| #ifdef FILAMENT_SENSOR
 | |
|   static int meas_shift_index;  //used to point to a delayed sample in buffer for filament width sensor
 | |
| #endif
 | |
| 
 | |
| #ifdef HEATER_0_USES_MAX6675
 | |
|   static int read_max6675();
 | |
| #endif
 | |
| 
 | |
| //===========================================================================
 | |
| //=============================   functions      ============================
 | |
| //===========================================================================
 | |
| 
 | |
| void PID_autotune(float temp, int extruder, int ncycles)
 | |
| {
 | |
|   float input = 0.0;
 | |
|   int cycles=0;
 | |
|   bool heating = true;
 | |
| 
 | |
|   unsigned long temp_millis = millis();
 | |
|   unsigned long t1=temp_millis;
 | |
|   unsigned long t2=temp_millis;
 | |
|   long t_high = 0;
 | |
|   long t_low = 0;
 | |
| 
 | |
|   long bias, d;
 | |
|   float Ku, Tu;
 | |
|   float Kp, Ki, Kd;
 | |
|   float max = 0, min = 10000;
 | |
| 
 | |
| #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
 | |
|     (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
 | |
|     (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
 | |
|     (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
 | |
|   unsigned long extruder_autofan_last_check = millis();
 | |
| #endif
 | |
| 
 | |
|   if ((extruder >= EXTRUDERS)
 | |
|   #if (TEMP_BED_PIN <= -1)
 | |
|        ||(extruder < 0)
 | |
|   #endif
 | |
|        ){
 | |
|           SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
 | |
|           return;
 | |
|         }
 | |
| 	
 | |
|   SERIAL_ECHOLN("PID Autotune start");
 | |
|   
 | |
|   disable_heater(); // switch off all heaters.
 | |
| 
 | |
|   if (extruder<0)
 | |
|   {
 | |
|      soft_pwm_bed = (MAX_BED_POWER)/2;
 | |
|      bias = d = (MAX_BED_POWER)/2;
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|      soft_pwm[extruder] = (PID_MAX)/2;
 | |
|      bias = d = (PID_MAX)/2;
 | |
|   }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|  for(;;) {
 | |
| 
 | |
|     if(temp_meas_ready == true) { // temp sample ready
 | |
|       updateTemperaturesFromRawValues();
 | |
| 
 | |
|       input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
 | |
| 
 | |
|       max=max(max,input);
 | |
|       min=min(min,input);
 | |
| 
 | |
|       #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
 | |
|           (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
 | |
|           (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
 | |
|           (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
 | |
|       if(millis() - extruder_autofan_last_check > 2500) {
 | |
|         checkExtruderAutoFans();
 | |
|         extruder_autofan_last_check = millis();
 | |
|       }
 | |
|       #endif
 | |
| 
 | |
|       if(heating == true && input > temp) {
 | |
|         if(millis() - t2 > 5000) { 
 | |
|           heating=false;
 | |
|           if (extruder<0)
 | |
|             soft_pwm_bed = (bias - d) >> 1;
 | |
|           else
 | |
|             soft_pwm[extruder] = (bias - d) >> 1;
 | |
|           t1=millis();
 | |
|           t_high=t1 - t2;
 | |
|           max=temp;
 | |
|         }
 | |
|       }
 | |
|       if(heating == false && input < temp) {
 | |
|         if(millis() - t1 > 5000) {
 | |
|           heating=true;
 | |
|           t2=millis();
 | |
|           t_low=t2 - t1;
 | |
|           if(cycles > 0) {
 | |
|             bias += (d*(t_high - t_low))/(t_low + t_high);
 | |
|             bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
 | |
|             if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
 | |
|             else d = bias;
 | |
| 
 | |
|             SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
 | |
|             SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
 | |
|             SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
 | |
|             SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
 | |
|             if(cycles > 2) {
 | |
|               Ku = (4.0*d)/(3.14159*(max-min)/2.0);
 | |
|               Tu = ((float)(t_low + t_high)/1000.0);
 | |
|               SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
 | |
|               SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
 | |
|               Kp = 0.6*Ku;
 | |
|               Ki = 2*Kp/Tu;
 | |
|               Kd = Kp*Tu/8;
 | |
|               SERIAL_PROTOCOLLNPGM(" Classic PID ");
 | |
|               SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | |
|               SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | |
|               SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | |
|               /*
 | |
|               Kp = 0.33*Ku;
 | |
|               Ki = Kp/Tu;
 | |
|               Kd = Kp*Tu/3;
 | |
|               SERIAL_PROTOCOLLNPGM(" Some overshoot ");
 | |
|               SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | |
|               SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | |
|               SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | |
|               Kp = 0.2*Ku;
 | |
|               Ki = 2*Kp/Tu;
 | |
|               Kd = Kp*Tu/3;
 | |
|               SERIAL_PROTOCOLLNPGM(" No overshoot ");
 | |
|               SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
 | |
|               SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
 | |
|               SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
 | |
|               */
 | |
|             }
 | |
|           }
 | |
|           if (extruder<0)
 | |
|             soft_pwm_bed = (bias + d) >> 1;
 | |
|           else
 | |
|             soft_pwm[extruder] = (bias + d) >> 1;
 | |
|           cycles++;
 | |
|           min=temp;
 | |
|         }
 | |
|       } 
 | |
|     }
 | |
|     if(input > (temp + 20)) {
 | |
|       SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
 | |
|       return;
 | |
|     }
 | |
|     if(millis() - temp_millis > 2000) {
 | |
|       int p;
 | |
|       if (extruder<0){
 | |
|         p=soft_pwm_bed;       
 | |
|         SERIAL_PROTOCOLPGM("ok B:");
 | |
|       }else{
 | |
|         p=soft_pwm[extruder];       
 | |
|         SERIAL_PROTOCOLPGM("ok T:");
 | |
|       }
 | |
| 			
 | |
|       SERIAL_PROTOCOL(input);   
 | |
|       SERIAL_PROTOCOLPGM(" @:");
 | |
|       SERIAL_PROTOCOLLN(p);       
 | |
| 
 | |
|       temp_millis = millis();
 | |
|     }
 | |
|     if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
 | |
|       SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
 | |
|       return;
 | |
|     }
 | |
|     if(cycles > ncycles) {
 | |
|       SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
 | |
|       return;
 | |
|     }
 | |
|     lcd_update();
 | |
|   }
 | |
| }
 | |
| 
 | |
| void updatePID()
 | |
| {
 | |
| #ifdef PIDTEMP
 | |
|   for(int e = 0; e < EXTRUDERS; e++) { 
 | |
|      temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);  
 | |
|   }
 | |
| #endif
 | |
| #ifdef PIDTEMPBED
 | |
|   temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;  
 | |
| #endif
 | |
| }
 | |
|   
 | |
| int getHeaterPower(int heater) {
 | |
| 	if (heater<0)
 | |
| 		return soft_pwm_bed;
 | |
|   return soft_pwm[heater];
 | |
| }
 | |
| 
 | |
| #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
 | |
|     (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
 | |
|     (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
 | |
| 
 | |
|   #if defined(FAN_PIN) && FAN_PIN > -1
 | |
|     #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN 
 | |
|        #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
 | |
|     #endif
 | |
|     #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN 
 | |
|        #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
 | |
|     #endif
 | |
|     #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN 
 | |
|        #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
 | |
|     #endif
 | |
|   #endif 
 | |
| 
 | |
| void setExtruderAutoFanState(int pin, bool state)
 | |
| {
 | |
|   unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
 | |
|   // this idiom allows both digital and PWM fan outputs (see M42 handling).
 | |
|   pinMode(pin, OUTPUT);
 | |
|   digitalWrite(pin, newFanSpeed);
 | |
|   analogWrite(pin, newFanSpeed);
 | |
| }
 | |
| 
 | |
| void checkExtruderAutoFans()
 | |
| {
 | |
|   uint8_t fanState = 0;
 | |
| 
 | |
|   // which fan pins need to be turned on?      
 | |
|   #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
 | |
|     if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | |
|       fanState |= 1;
 | |
|   #endif
 | |
|   #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
 | |
|     if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | |
|     {
 | |
|       if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) 
 | |
|         fanState |= 1;
 | |
|       else
 | |
|         fanState |= 2;
 | |
|     }
 | |
|   #endif
 | |
|   #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
 | |
|     if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | |
|     {
 | |
|       if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) 
 | |
|         fanState |= 1;
 | |
|       else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) 
 | |
|         fanState |= 2;
 | |
|       else
 | |
|         fanState |= 4;
 | |
|     }
 | |
|   #endif
 | |
|   #if defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1
 | |
|     if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE) 
 | |
|     {
 | |
|       if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) 
 | |
|         fanState |= 1;
 | |
|       else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN) 
 | |
|         fanState |= 2;
 | |
|       else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN) 
 | |
|         fanState |= 4;
 | |
|       else
 | |
|         fanState |= 8;
 | |
|     }
 | |
|   #endif
 | |
|   
 | |
|   // update extruder auto fan states
 | |
|   #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
 | |
|     setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
 | |
|   #endif 
 | |
|   #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
 | |
|     if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) 
 | |
|       setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
 | |
|   #endif 
 | |
|   #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
 | |
|     if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN 
 | |
|         && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
 | |
|       setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
 | |
|   #endif
 | |
|   #if defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1
 | |
|     if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN 
 | |
|         && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
 | |
|         && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
 | |
|       setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #endif // any extruder auto fan pins set
 | |
| 
 | |
| void manage_heater()
 | |
| {
 | |
|   float pid_input;
 | |
|   float pid_output;
 | |
| 
 | |
|   if(temp_meas_ready != true)   //better readability
 | |
|     return; 
 | |
| 
 | |
|   updateTemperaturesFromRawValues();
 | |
| 
 | |
|   #ifdef HEATER_0_USES_MAX6675
 | |
|     if (current_temperature[0] > 1023 || current_temperature[0] > HEATER_0_MAXTEMP) {
 | |
|       max_temp_error(0);
 | |
|     }
 | |
|     if (current_temperature[0] == 0  || current_temperature[0] < HEATER_0_MINTEMP) {
 | |
|       min_temp_error(0);
 | |
|     }
 | |
|   #endif //HEATER_0_USES_MAX6675
 | |
| 
 | |
|   for(int e = 0; e < EXTRUDERS; e++) 
 | |
|   {
 | |
| 
 | |
| #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
 | |
|     thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
 | |
|   #endif
 | |
| 
 | |
|   #ifdef PIDTEMP
 | |
|     pid_input = current_temperature[e];
 | |
| 
 | |
|     #ifndef PID_OPENLOOP
 | |
|         pid_error[e] = target_temperature[e] - pid_input;
 | |
|         if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
 | |
|           pid_output = BANG_MAX;
 | |
|           pid_reset[e] = true;
 | |
|         }
 | |
|         else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
 | |
|           pid_output = 0;
 | |
|           pid_reset[e] = true;
 | |
|         }
 | |
|         else {
 | |
|           if(pid_reset[e] == true) {
 | |
|             temp_iState[e] = 0.0;
 | |
|             pid_reset[e] = false;
 | |
|           }
 | |
|           pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
 | |
|           temp_iState[e] += pid_error[e];
 | |
|           temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
 | |
|           iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
 | |
| 
 | |
|           //K1 defined in Configuration.h in the PID settings
 | |
|           #define K2 (1.0-K1)
 | |
|           dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
 | |
|           pid_output = pTerm[e] + iTerm[e] - dTerm[e];
 | |
|           if (pid_output > PID_MAX) {
 | |
|             if (pid_error[e] > 0 )  temp_iState[e] -= pid_error[e]; // conditional un-integration
 | |
|             pid_output=PID_MAX;
 | |
|           } else if (pid_output < 0){
 | |
|             if (pid_error[e] < 0 )  temp_iState[e] -= pid_error[e]; // conditional un-integration
 | |
|             pid_output=0;
 | |
|           }
 | |
|         }
 | |
|         temp_dState[e] = pid_input;
 | |
|     #else 
 | |
|           pid_output = constrain(target_temperature[e], 0, PID_MAX);
 | |
|     #endif //PID_OPENLOOP
 | |
|     #ifdef PID_DEBUG
 | |
|     SERIAL_ECHO_START;
 | |
|     SERIAL_ECHO(" PID_DEBUG ");
 | |
|     SERIAL_ECHO(e);
 | |
|     SERIAL_ECHO(": Input ");
 | |
|     SERIAL_ECHO(pid_input);
 | |
|     SERIAL_ECHO(" Output ");
 | |
|     SERIAL_ECHO(pid_output);
 | |
|     SERIAL_ECHO(" pTerm ");
 | |
|     SERIAL_ECHO(pTerm[e]);
 | |
|     SERIAL_ECHO(" iTerm ");
 | |
|     SERIAL_ECHO(iTerm[e]);
 | |
|     SERIAL_ECHO(" dTerm ");
 | |
|     SERIAL_ECHOLN(dTerm[e]);
 | |
|     #endif //PID_DEBUG
 | |
|   #else /* PID off */
 | |
|     pid_output = 0;
 | |
|     if(current_temperature[e] < target_temperature[e]) {
 | |
|       pid_output = PID_MAX;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|     // Check if temperature is within the correct range
 | |
|     if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e])) 
 | |
|     {
 | |
|       soft_pwm[e] = (int)pid_output >> 1;
 | |
|     }
 | |
|     else {
 | |
|       soft_pwm[e] = 0;
 | |
|     }
 | |
| 
 | |
|     #ifdef WATCH_TEMP_PERIOD
 | |
|     if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
 | |
|     {
 | |
|         if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
 | |
|         {
 | |
|             setTargetHotend(0, e);
 | |
|             LCD_MESSAGEPGM("Heating failed");
 | |
|             SERIAL_ECHO_START;
 | |
|             SERIAL_ECHOLN("Heating failed");
 | |
|         }else{
 | |
|             watchmillis[e] = 0;
 | |
|         }
 | |
|     }
 | |
|     #endif
 | |
|     #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|       if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
 | |
|         disable_heater();
 | |
|         if(IsStopped() == false) {
 | |
|           SERIAL_ERROR_START;
 | |
|           SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
 | |
|           LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
 | |
|         }
 | |
|         #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | |
|           Stop();
 | |
|         #endif
 | |
|       }
 | |
|     #endif
 | |
|   } // End extruder for loop
 | |
| 
 | |
|   #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
 | |
|       (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
 | |
|       (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
 | |
|   if(millis() - extruder_autofan_last_check > 2500)  // only need to check fan state very infrequently
 | |
|   {
 | |
|     checkExtruderAutoFans();
 | |
|     extruder_autofan_last_check = millis();
 | |
|   }  
 | |
|   #endif       
 | |
|   
 | |
|   #ifndef PIDTEMPBED
 | |
|   if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
 | |
|     return;
 | |
|   previous_millis_bed_heater = millis();
 | |
|   #endif
 | |
| 
 | |
|   #if TEMP_SENSOR_BED != 0
 | |
|   
 | |
|     #if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
 | |
|       thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
 | |
|     #endif
 | |
| 
 | |
|   #ifdef PIDTEMPBED
 | |
|     pid_input = current_temperature_bed;
 | |
| 
 | |
|     #ifndef PID_OPENLOOP
 | |
| 		  pid_error_bed = target_temperature_bed - pid_input;
 | |
| 		  pTerm_bed = bedKp * pid_error_bed;
 | |
| 		  temp_iState_bed += pid_error_bed;
 | |
| 		  temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
 | |
| 		  iTerm_bed = bedKi * temp_iState_bed;
 | |
| 
 | |
| 		  //K1 defined in Configuration.h in the PID settings
 | |
| 		  #define K2 (1.0-K1)
 | |
| 		  dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
 | |
| 		  temp_dState_bed = pid_input;
 | |
| 
 | |
| 		  pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
 | |
|       if (pid_output > MAX_BED_POWER) {
 | |
|         if (pid_error_bed > 0 )  temp_iState_bed -= pid_error_bed; // conditional un-integration
 | |
|         pid_output=MAX_BED_POWER;
 | |
|       } else if (pid_output < 0){
 | |
|         if (pid_error_bed < 0 )  temp_iState_bed -= pid_error_bed; // conditional un-integration
 | |
|         pid_output=0;
 | |
|       }
 | |
| 
 | |
|     #else 
 | |
|       pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
 | |
|     #endif //PID_OPENLOOP
 | |
| 
 | |
| 	  if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP)) 
 | |
| 	  {
 | |
| 	    soft_pwm_bed = (int)pid_output >> 1;
 | |
| 	  }
 | |
| 	  else {
 | |
| 	    soft_pwm_bed = 0;
 | |
| 	  }
 | |
| 
 | |
|     #elif !defined(BED_LIMIT_SWITCHING)
 | |
|       // Check if temperature is within the correct range
 | |
|       if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
 | |
|       {
 | |
|         if(current_temperature_bed >= target_temperature_bed)
 | |
|         {
 | |
|           soft_pwm_bed = 0;
 | |
|         }
 | |
|         else 
 | |
|         {
 | |
|           soft_pwm_bed = MAX_BED_POWER>>1;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         soft_pwm_bed = 0;
 | |
|         WRITE(HEATER_BED_PIN,LOW);
 | |
|       }
 | |
|     #else //#ifdef BED_LIMIT_SWITCHING
 | |
|       // Check if temperature is within the correct band
 | |
|       if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
 | |
|       {
 | |
|         if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
 | |
|         {
 | |
|           soft_pwm_bed = 0;
 | |
|         }
 | |
|         else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
 | |
|         {
 | |
|           soft_pwm_bed = MAX_BED_POWER>>1;
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         soft_pwm_bed = 0;
 | |
|         WRITE(HEATER_BED_PIN,LOW);
 | |
|       }
 | |
|     #endif
 | |
|   #endif
 | |
|   
 | |
| //code for controlling the extruder rate based on the width sensor 
 | |
| #ifdef FILAMENT_SENSOR
 | |
|   if(filament_sensor) 
 | |
| 	{
 | |
| 	meas_shift_index=delay_index1-meas_delay_cm;
 | |
| 		  if(meas_shift_index<0)
 | |
| 			  meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1);  //loop around buffer if needed
 | |
| 		  
 | |
| 		  //get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
 | |
| 		  //then square it to get an area
 | |
| 		  
 | |
| 		  if(meas_shift_index<0)
 | |
| 			  meas_shift_index=0;
 | |
| 		  else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
 | |
| 			  meas_shift_index=MAX_MEASUREMENT_DELAY;
 | |
| 		  
 | |
| 		     volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
 | |
| 		     if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
 | |
| 		    	 volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #define PGM_RD_W(x)   (short)pgm_read_word(&x)
 | |
| // Derived from RepRap FiveD extruder::getTemperature()
 | |
| // For hot end temperature measurement.
 | |
| static float analog2temp(int raw, uint8_t e) {
 | |
| #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|   if(e > EXTRUDERS)
 | |
| #else
 | |
|   if(e >= EXTRUDERS)
 | |
| #endif
 | |
|   {
 | |
|       SERIAL_ERROR_START;
 | |
|       SERIAL_ERROR((int)e);
 | |
|       SERIAL_ERRORLNPGM(" - Invalid extruder number !");
 | |
|       kill();
 | |
|       return 0.0;
 | |
|   } 
 | |
|   #ifdef HEATER_0_USES_MAX6675
 | |
|     if (e == 0)
 | |
|     {
 | |
|       return 0.25 * raw;
 | |
|     }
 | |
|   #endif
 | |
| 
 | |
|   if(heater_ttbl_map[e] != NULL)
 | |
|   {
 | |
|     float celsius = 0;
 | |
|     uint8_t i;
 | |
|     short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
 | |
| 
 | |
|     for (i=1; i<heater_ttbllen_map[e]; i++)
 | |
|     {
 | |
|       if (PGM_RD_W((*tt)[i][0]) > raw)
 | |
|       {
 | |
|         celsius = PGM_RD_W((*tt)[i-1][1]) + 
 | |
|           (raw - PGM_RD_W((*tt)[i-1][0])) * 
 | |
|           (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
 | |
|           (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Overflow: Set to last value in the table
 | |
|     if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
 | |
| 
 | |
|     return celsius;
 | |
|   }
 | |
|   return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
 | |
| }
 | |
| 
 | |
| // Derived from RepRap FiveD extruder::getTemperature()
 | |
| // For bed temperature measurement.
 | |
| static float analog2tempBed(int raw) {
 | |
|   #ifdef BED_USES_THERMISTOR
 | |
|     float celsius = 0;
 | |
|     byte i;
 | |
| 
 | |
|     for (i=1; i<BEDTEMPTABLE_LEN; i++)
 | |
|     {
 | |
|       if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
 | |
|       {
 | |
|         celsius  = PGM_RD_W(BEDTEMPTABLE[i-1][1]) + 
 | |
|           (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) * 
 | |
|           (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
 | |
|           (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     // Overflow: Set to last value in the table
 | |
|     if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
 | |
| 
 | |
|     return celsius;
 | |
|   #elif defined BED_USES_AD595
 | |
|     return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
 | |
|   #else
 | |
|     return 0;
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
 | |
|     and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
 | |
| static void updateTemperaturesFromRawValues()
 | |
| {
 | |
|     #ifdef HEATER_0_USES_MAX6675
 | |
|         current_temperature_raw[0] = read_max6675();
 | |
|     #endif
 | |
|     for(uint8_t e=0;e<EXTRUDERS;e++)
 | |
|     {
 | |
|         current_temperature[e] = analog2temp(current_temperature_raw[e], e);
 | |
|     }
 | |
|     current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
 | |
|     #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|       redundant_temperature = analog2temp(redundant_temperature_raw, 1);
 | |
|     #endif
 | |
|     #if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1)    //check if a sensor is supported 
 | |
|       filament_width_meas = analog2widthFil();
 | |
|     #endif  
 | |
|     //Reset the watchdog after we know we have a temperature measurement.
 | |
|     watchdog_reset();
 | |
| 
 | |
|     CRITICAL_SECTION_START;
 | |
|     temp_meas_ready = false;
 | |
|     CRITICAL_SECTION_END;
 | |
| }
 | |
| 
 | |
| 
 | |
| // For converting raw Filament Width to milimeters 
 | |
| #ifdef FILAMENT_SENSOR
 | |
| float analog2widthFil() { 
 | |
| return current_raw_filwidth/16383.0*5.0; 
 | |
| //return current_raw_filwidth; 
 | |
| } 
 | |
|  
 | |
| // For converting raw Filament Width to a ratio 
 | |
| int widthFil_to_size_ratio() { 
 | |
|  
 | |
| float temp; 
 | |
|       
 | |
| temp=filament_width_meas;
 | |
| if(filament_width_meas<MEASURED_LOWER_LIMIT)
 | |
| 	temp=filament_width_nominal;  //assume sensor cut out
 | |
| else if (filament_width_meas>MEASURED_UPPER_LIMIT)
 | |
| 	temp= MEASURED_UPPER_LIMIT;
 | |
| 
 | |
| 
 | |
| return(filament_width_nominal/temp*100); 
 | |
| 
 | |
| 
 | |
| } 
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| void tp_init()
 | |
| {
 | |
| #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
 | |
|   //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
 | |
|   MCUCR=(1<<JTD); 
 | |
|   MCUCR=(1<<JTD);
 | |
| #endif
 | |
|   
 | |
|   // Finish init of mult extruder arrays 
 | |
|   for(int e = 0; e < EXTRUDERS; e++) {
 | |
|     // populate with the first value 
 | |
|     maxttemp[e] = maxttemp[0];
 | |
| #ifdef PIDTEMP
 | |
|     temp_iState_min[e] = 0.0;
 | |
|     temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
 | |
| #endif //PIDTEMP
 | |
| #ifdef PIDTEMPBED
 | |
|     temp_iState_min_bed = 0.0;
 | |
|     temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
 | |
| #endif //PIDTEMPBED
 | |
|   }
 | |
| 
 | |
|   #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1) 
 | |
|     SET_OUTPUT(HEATER_0_PIN);
 | |
|   #endif
 | |
|   #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1) 
 | |
|     SET_OUTPUT(HEATER_1_PIN);
 | |
|   #endif
 | |
|   #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1) 
 | |
|     SET_OUTPUT(HEATER_2_PIN);
 | |
|   #endif
 | |
|   #if defined(HEATER_3_PIN) && (HEATER_3_PIN > -1) 
 | |
|     SET_OUTPUT(HEATER_3_PIN);
 | |
|   #endif
 | |
|   #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1) 
 | |
|     SET_OUTPUT(HEATER_BED_PIN);
 | |
|   #endif  
 | |
|   #if defined(FAN_PIN) && (FAN_PIN > -1) 
 | |
|     SET_OUTPUT(FAN_PIN);
 | |
|     #ifdef FAST_PWM_FAN
 | |
|     setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
 | |
|     #endif
 | |
|     #ifdef FAN_SOFT_PWM
 | |
|     soft_pwm_fan = fanSpeedSoftPwm / 2;
 | |
|     #endif
 | |
|   #endif  
 | |
| 
 | |
|   #ifdef HEATER_0_USES_MAX6675
 | |
| 
 | |
|     #ifndef SDSUPPORT
 | |
|       SET_OUTPUT(SCK_PIN);
 | |
|       WRITE(SCK_PIN,0);
 | |
|     
 | |
|       SET_OUTPUT(MOSI_PIN);
 | |
|       WRITE(MOSI_PIN,1);
 | |
|     
 | |
|       SET_INPUT(MISO_PIN);
 | |
|       WRITE(MISO_PIN,1);
 | |
|     #else
 | |
|       pinMode(SS_PIN, OUTPUT);
 | |
|       digitalWrite(SS_PIN, HIGH);
 | |
|     #endif
 | |
|     
 | |
|     SET_OUTPUT(MAX6675_SS);
 | |
|     WRITE(MAX6675_SS,1);
 | |
| 
 | |
|   #endif //HEATER_0_USES_MAX6675
 | |
| 
 | |
|   // Set analog inputs
 | |
|   ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
 | |
|   DIDR0 = 0;
 | |
|   #ifdef DIDR2
 | |
|     DIDR2 = 0;
 | |
|   #endif
 | |
|   #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
 | |
|     #if TEMP_0_PIN < 8
 | |
|        DIDR0 |= 1 << TEMP_0_PIN; 
 | |
|     #else
 | |
|        DIDR2 |= 1<<(TEMP_0_PIN - 8); 
 | |
|     #endif
 | |
|   #endif
 | |
|   #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
 | |
|     #if TEMP_1_PIN < 8
 | |
|       DIDR0 |= 1<<TEMP_1_PIN; 
 | |
|     #else
 | |
|     	DIDR2 |= 1<<(TEMP_1_PIN - 8); 
 | |
|     #endif
 | |
|   #endif
 | |
|   #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
 | |
|     #if TEMP_2_PIN < 8
 | |
|       DIDR0 |= 1 << TEMP_2_PIN; 
 | |
|     #else
 | |
|       DIDR2 |= 1<<(TEMP_2_PIN - 8); 
 | |
|     #endif
 | |
|   #endif
 | |
|   #if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
 | |
|     #if TEMP_3_PIN < 8
 | |
|       DIDR0 |= 1 << TEMP_3_PIN; 
 | |
|     #else
 | |
|       DIDR2 |= 1<<(TEMP_3_PIN - 8); 
 | |
|     #endif
 | |
|   #endif
 | |
|   #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
 | |
|     #if TEMP_BED_PIN < 8
 | |
|        DIDR0 |= 1<<TEMP_BED_PIN; 
 | |
|     #else
 | |
|        DIDR2 |= 1<<(TEMP_BED_PIN - 8); 
 | |
|     #endif
 | |
|   #endif
 | |
|   
 | |
|   //Added for Filament Sensor 
 | |
|   #ifdef FILAMENT_SENSOR
 | |
|     #if defined(FILWIDTH_PIN) && (FILWIDTH_PIN > -1) 
 | |
|       #if FILWIDTH_PIN < 8 
 | |
|         DIDR0 |= 1<<FILWIDTH_PIN;  
 | |
|       #else
 | |
|         DIDR2 |= 1<<(FILWIDTH_PIN - 8);  
 | |
|       #endif 
 | |
|     #endif
 | |
|   #endif
 | |
|   
 | |
|   // Use timer0 for temperature measurement
 | |
|   // Interleave temperature interrupt with millies interrupt
 | |
|   OCR0B = 128;
 | |
|   TIMSK0 |= (1<<OCIE0B);  
 | |
|   
 | |
|   // Wait for temperature measurement to settle
 | |
|   delay(250);
 | |
| 
 | |
| #ifdef HEATER_0_MINTEMP
 | |
|   minttemp[0] = HEATER_0_MINTEMP;
 | |
|   while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
 | |
| #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
 | |
|     minttemp_raw[0] += OVERSAMPLENR;
 | |
| #else
 | |
|     minttemp_raw[0] -= OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif //MINTEMP
 | |
| #ifdef HEATER_0_MAXTEMP
 | |
|   maxttemp[0] = HEATER_0_MAXTEMP;
 | |
|   while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
 | |
| #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
 | |
|     maxttemp_raw[0] -= OVERSAMPLENR;
 | |
| #else
 | |
|     maxttemp_raw[0] += OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif //MAXTEMP
 | |
| 
 | |
| #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
 | |
|   minttemp[1] = HEATER_1_MINTEMP;
 | |
|   while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
 | |
| #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
 | |
|     minttemp_raw[1] += OVERSAMPLENR;
 | |
| #else
 | |
|     minttemp_raw[1] -= OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif // MINTEMP 1
 | |
| #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
 | |
|   maxttemp[1] = HEATER_1_MAXTEMP;
 | |
|   while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
 | |
| #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
 | |
|     maxttemp_raw[1] -= OVERSAMPLENR;
 | |
| #else
 | |
|     maxttemp_raw[1] += OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif //MAXTEMP 1
 | |
| 
 | |
| #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
 | |
|   minttemp[2] = HEATER_2_MINTEMP;
 | |
|   while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
 | |
| #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
 | |
|     minttemp_raw[2] += OVERSAMPLENR;
 | |
| #else
 | |
|     minttemp_raw[2] -= OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif //MINTEMP 2
 | |
| #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
 | |
|   maxttemp[2] = HEATER_2_MAXTEMP;
 | |
|   while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
 | |
| #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
 | |
|     maxttemp_raw[2] -= OVERSAMPLENR;
 | |
| #else
 | |
|     maxttemp_raw[2] += OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif //MAXTEMP 2
 | |
| 
 | |
| #if (EXTRUDERS > 3) && defined(HEATER_3_MINTEMP)
 | |
|   minttemp[3] = HEATER_3_MINTEMP;
 | |
|   while(analog2temp(minttemp_raw[3], 3) < HEATER_3_MINTEMP) {
 | |
| #if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
 | |
|     minttemp_raw[3] += OVERSAMPLENR;
 | |
| #else
 | |
|     minttemp_raw[3] -= OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif //MINTEMP 3
 | |
| #if (EXTRUDERS > 3) && defined(HEATER_3_MAXTEMP)
 | |
|   maxttemp[3] = HEATER_3_MAXTEMP;
 | |
|   while(analog2temp(maxttemp_raw[3], 3) > HEATER_3_MAXTEMP) {
 | |
| #if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
 | |
|     maxttemp_raw[3] -= OVERSAMPLENR;
 | |
| #else
 | |
|     maxttemp_raw[3] += OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif // MAXTEMP 3
 | |
| 
 | |
| 
 | |
| #ifdef BED_MINTEMP
 | |
|   /* No bed MINTEMP error implemented?!? */ /*
 | |
|   while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
 | |
| #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
 | |
|     bed_minttemp_raw += OVERSAMPLENR;
 | |
| #else
 | |
|     bed_minttemp_raw -= OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
|   */
 | |
| #endif //BED_MINTEMP
 | |
| #ifdef BED_MAXTEMP
 | |
|   while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
 | |
| #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
 | |
|     bed_maxttemp_raw -= OVERSAMPLENR;
 | |
| #else
 | |
|     bed_maxttemp_raw += OVERSAMPLENR;
 | |
| #endif
 | |
|   }
 | |
| #endif //BED_MAXTEMP
 | |
| }
 | |
| 
 | |
| void setWatch() 
 | |
| {  
 | |
| #ifdef WATCH_TEMP_PERIOD
 | |
|   for (int e = 0; e < EXTRUDERS; e++)
 | |
|   {
 | |
|     if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
 | |
|     {
 | |
|       watch_start_temp[e] = degHotend(e);
 | |
|       watchmillis[e] = millis();
 | |
|     } 
 | |
|   }
 | |
| #endif 
 | |
| }
 | |
| 
 | |
| #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
 | |
| void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
 | |
| {
 | |
| /*
 | |
|       SERIAL_ECHO_START;
 | |
|       SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
 | |
|       SERIAL_ECHO(heater_id);
 | |
|       SERIAL_ECHO(" ;  State:");
 | |
|       SERIAL_ECHO(*state);
 | |
|       SERIAL_ECHO(" ;  Timer:");
 | |
|       SERIAL_ECHO(*timer);
 | |
|       SERIAL_ECHO(" ;  Temperature:");
 | |
|       SERIAL_ECHO(temperature);
 | |
|       SERIAL_ECHO(" ;  Target Temp:");
 | |
|       SERIAL_ECHO(target_temperature);
 | |
|       SERIAL_ECHOLN("");    
 | |
| */
 | |
|   if ((target_temperature == 0) || thermal_runaway)
 | |
|   {
 | |
|     *state = 0;
 | |
|     *timer = 0;
 | |
|     return;
 | |
|   }
 | |
|   switch (*state)
 | |
|   {
 | |
|     case 0: // "Heater Inactive" state
 | |
|       if (target_temperature > 0) *state = 1;
 | |
|       break;
 | |
|     case 1: // "First Heating" state
 | |
|       if (temperature >= target_temperature) *state = 2;
 | |
|       break;
 | |
|     case 2: // "Temperature Stable" state
 | |
|       if (temperature >= (target_temperature - hysteresis_degc))
 | |
|       {
 | |
|         *timer = millis();
 | |
|       } 
 | |
|       else if ( (millis() - *timer) > ((unsigned long) period_seconds) * 1000)
 | |
|       {
 | |
|         SERIAL_ERROR_START;
 | |
|         SERIAL_ERRORLNPGM("Thermal Runaway, system stopped! Heater_ID: ");
 | |
|         SERIAL_ERRORLN((int)heater_id);
 | |
|         LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
 | |
|         thermal_runaway = true;
 | |
|         while(1)
 | |
|         {
 | |
|           disable_heater();
 | |
|           disable_x();
 | |
|           disable_y();
 | |
|           disable_z();
 | |
|           disable_e0();
 | |
|           disable_e1();
 | |
|           disable_e2();
 | |
|           disable_e3();
 | |
|           manage_heater();
 | |
|           lcd_update();
 | |
|         }
 | |
|       }
 | |
|       break;
 | |
|   }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void disable_heater()
 | |
| {
 | |
|   for(int i=0;i<EXTRUDERS;i++)
 | |
|     setTargetHotend(0,i);
 | |
|   setTargetBed(0);
 | |
|   #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
 | |
|   target_temperature[0]=0;
 | |
|   soft_pwm[0]=0;
 | |
|    #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1  
 | |
|      WRITE(HEATER_0_PIN,LOW);
 | |
|    #endif
 | |
|   #endif
 | |
|      
 | |
|   #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
 | |
|     target_temperature[1]=0;
 | |
|     soft_pwm[1]=0;
 | |
|     #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 
 | |
|       WRITE(HEATER_1_PIN,LOW);
 | |
|     #endif
 | |
|   #endif
 | |
|       
 | |
|   #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
 | |
|     target_temperature[2]=0;
 | |
|     soft_pwm[2]=0;
 | |
|     #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1  
 | |
|       WRITE(HEATER_2_PIN,LOW);
 | |
|     #endif
 | |
|   #endif
 | |
| 
 | |
|   #if defined(TEMP_3_PIN) && TEMP_3_PIN > -1 && EXTRUDERS > 3
 | |
|     target_temperature[3]=0;
 | |
|     soft_pwm[3]=0;
 | |
|     #if defined(HEATER_3_PIN) && HEATER_3_PIN > -1  
 | |
|       WRITE(HEATER_3_PIN,LOW);
 | |
|     #endif
 | |
|   #endif 
 | |
| 
 | |
| 
 | |
|   #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
 | |
|     target_temperature_bed=0;
 | |
|     soft_pwm_bed=0;
 | |
|     #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1  
 | |
|       WRITE(HEATER_BED_PIN,LOW);
 | |
|     #endif
 | |
|   #endif 
 | |
| }
 | |
| 
 | |
| void max_temp_error(uint8_t e) {
 | |
|   disable_heater();
 | |
|   if(IsStopped() == false) {
 | |
|     SERIAL_ERROR_START;
 | |
|     SERIAL_ERRORLN((int)e);
 | |
|     SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
 | |
|     LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
 | |
|   }
 | |
|   #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | |
|   Stop();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void min_temp_error(uint8_t e) {
 | |
|   disable_heater();
 | |
|   if(IsStopped() == false) {
 | |
|     SERIAL_ERROR_START;
 | |
|     SERIAL_ERRORLN((int)e);
 | |
|     SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
 | |
|     LCD_ALERTMESSAGEPGM("Err: MINTEMP");
 | |
|   }
 | |
|   #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | |
|   Stop();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| void bed_max_temp_error(void) {
 | |
| #if HEATER_BED_PIN > -1
 | |
|   WRITE(HEATER_BED_PIN, 0);
 | |
| #endif
 | |
|   if(IsStopped() == false) {
 | |
|     SERIAL_ERROR_START;
 | |
|     SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
 | |
|     LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
 | |
|   }
 | |
|   #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
 | |
|   Stop();
 | |
|   #endif
 | |
| }
 | |
| 
 | |
| #ifdef HEATER_0_USES_MAX6675
 | |
| #define MAX6675_HEAT_INTERVAL 250
 | |
| long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
 | |
| int max6675_temp = 2000;
 | |
| 
 | |
| static int read_max6675()
 | |
| {
 | |
|   if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL) 
 | |
|     return max6675_temp;
 | |
|   
 | |
|   max6675_previous_millis = millis();
 | |
|   max6675_temp = 0;
 | |
|     
 | |
|   #ifdef PRR
 | |
|     PRR &= ~(1<<PRSPI);
 | |
|   #elif defined(PRR0)
 | |
|     PRR0 &= ~(1<<PRSPI);
 | |
|   #endif
 | |
|   
 | |
|   SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
 | |
|   
 | |
|   // enable TT_MAX6675
 | |
|   WRITE(MAX6675_SS, 0);
 | |
|   
 | |
|   // ensure 100ns delay - a bit extra is fine
 | |
|   asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
 | |
|   asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
 | |
|   
 | |
|   // read MSB
 | |
|   SPDR = 0;
 | |
|   for (;(SPSR & (1<<SPIF)) == 0;);
 | |
|   max6675_temp = SPDR;
 | |
|   max6675_temp <<= 8;
 | |
|   
 | |
|   // read LSB
 | |
|   SPDR = 0;
 | |
|   for (;(SPSR & (1<<SPIF)) == 0;);
 | |
|   max6675_temp |= SPDR;
 | |
|   
 | |
|   // disable TT_MAX6675
 | |
|   WRITE(MAX6675_SS, 1);
 | |
| 
 | |
|   if (max6675_temp & 4)
 | |
|   {
 | |
|     // thermocouple open
 | |
|     max6675_temp = 4000;
 | |
|   }
 | |
|   else 
 | |
|   {
 | |
|     max6675_temp = max6675_temp >> 3;
 | |
|   }
 | |
| 
 | |
|   return max6675_temp;
 | |
| }
 | |
| 
 | |
| #endif //HEATER_0_USES_MAX6675
 | |
| 
 | |
| 
 | |
| // Timer 0 is shared with millies
 | |
| ISR(TIMER0_COMPB_vect)
 | |
| {
 | |
|   //these variables are only accesible from the ISR, but static, so they don't lose their value
 | |
|   static unsigned char temp_count = 0;
 | |
|   static unsigned long raw_temp_0_value = 0;
 | |
|   static unsigned long raw_temp_1_value = 0;
 | |
|   static unsigned long raw_temp_2_value = 0;
 | |
|   static unsigned long raw_temp_3_value = 0;
 | |
|   static unsigned long raw_temp_bed_value = 0;
 | |
|   static unsigned char temp_state = 12;
 | |
|   static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
 | |
|   static unsigned char soft_pwm_0;
 | |
| #ifdef SLOW_PWM_HEATERS
 | |
|   static unsigned char slow_pwm_count = 0;
 | |
|   static unsigned char state_heater_0 = 0;
 | |
|   static unsigned char state_timer_heater_0 = 0;
 | |
| #endif 
 | |
| 
 | |
| #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
 | |
|   static unsigned char soft_pwm_1;
 | |
| #ifdef SLOW_PWM_HEATERS
 | |
|   static unsigned char state_heater_1 = 0;
 | |
|   static unsigned char state_timer_heater_1 = 0;
 | |
| #endif 
 | |
| #endif
 | |
| #if EXTRUDERS > 2
 | |
|   static unsigned char soft_pwm_2;
 | |
| #ifdef SLOW_PWM_HEATERS
 | |
|   static unsigned char state_heater_2 = 0;
 | |
|   static unsigned char state_timer_heater_2 = 0;
 | |
| #endif 
 | |
| #endif
 | |
| #if EXTRUDERS > 3
 | |
|   static unsigned char soft_pwm_3;
 | |
| #ifdef SLOW_PWM_HEATERS
 | |
|   static unsigned char state_heater_3 = 0;
 | |
|   static unsigned char state_timer_heater_3 = 0;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if HEATER_BED_PIN > -1
 | |
|   static unsigned char soft_pwm_b;
 | |
| #ifdef SLOW_PWM_HEATERS
 | |
|   static unsigned char state_heater_b = 0;
 | |
|   static unsigned char state_timer_heater_b = 0;
 | |
| #endif 
 | |
| #endif
 | |
|   
 | |
| #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
 | |
|   static unsigned long raw_filwidth_value = 0;  //added for filament width sensor
 | |
| #endif
 | |
|   
 | |
| #ifndef SLOW_PWM_HEATERS
 | |
|   /*
 | |
|    * standard PWM modulation
 | |
|    */
 | |
|   if(pwm_count == 0){
 | |
|     soft_pwm_0 = soft_pwm[0];
 | |
|     if(soft_pwm_0 > 0) { 
 | |
|       WRITE(HEATER_0_PIN,1);
 | |
| #ifdef HEATERS_PARALLEL
 | |
|       WRITE(HEATER_1_PIN,1);
 | |
| #endif
 | |
|     } else WRITE(HEATER_0_PIN,0);
 | |
| 
 | |
| #if EXTRUDERS > 1
 | |
|     soft_pwm_1 = soft_pwm[1];
 | |
|     if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
 | |
| #endif
 | |
| #if EXTRUDERS > 2
 | |
|     soft_pwm_2 = soft_pwm[2];
 | |
|     if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
 | |
| #endif
 | |
| #if EXTRUDERS > 3
 | |
|     soft_pwm_3 = soft_pwm[3];
 | |
|     if(soft_pwm_3 > 0) WRITE(HEATER_3_PIN,1); else WRITE(HEATER_3_PIN,0);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
 | |
|     soft_pwm_b = soft_pwm_bed;
 | |
|     if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
 | |
| #endif
 | |
| #ifdef FAN_SOFT_PWM
 | |
|     soft_pwm_fan = fanSpeedSoftPwm / 2;
 | |
|     if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
 | |
| #endif
 | |
|   }
 | |
|   if(soft_pwm_0 < pwm_count) { 
 | |
|     WRITE(HEATER_0_PIN,0);
 | |
| #ifdef HEATERS_PARALLEL
 | |
|     WRITE(HEATER_1_PIN,0);
 | |
| #endif
 | |
|   }
 | |
| 
 | |
| #if EXTRUDERS > 1
 | |
|   if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
 | |
| #endif
 | |
| #if EXTRUDERS > 2
 | |
|   if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
 | |
| #endif
 | |
| #if EXTRUDERS > 3
 | |
|   if(soft_pwm_3 < pwm_count) WRITE(HEATER_3_PIN,0);
 | |
| #endif
 | |
| 
 | |
| #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
 | |
|   if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
 | |
| #endif
 | |
| #ifdef FAN_SOFT_PWM
 | |
|   if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
 | |
| #endif
 | |
|   
 | |
|   pwm_count += (1 << SOFT_PWM_SCALE);
 | |
|   pwm_count &= 0x7f;
 | |
|   
 | |
| #else //ifndef SLOW_PWM_HEATERS
 | |
|   /*
 | |
|    * SLOW PWM HEATERS
 | |
|    *
 | |
|    * for heaters drived by relay
 | |
|    */
 | |
| #ifndef MIN_STATE_TIME
 | |
| #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
 | |
| #endif
 | |
|   if (slow_pwm_count == 0) {
 | |
|     // EXTRUDER 0 
 | |
|     soft_pwm_0 = soft_pwm[0];
 | |
|     if (soft_pwm_0 > 0) {
 | |
|       // turn ON heather only if the minimum time is up 
 | |
|       if (state_timer_heater_0 == 0) { 
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_0 == 0) {
 | |
| 	  state_timer_heater_0 = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_0 = 1;
 | |
| 	WRITE(HEATER_0_PIN, 1);
 | |
| #ifdef HEATERS_PARALLEL
 | |
| 	WRITE(HEATER_1_PIN, 1);
 | |
| #endif
 | |
|       }
 | |
|     } else {
 | |
|       // turn OFF heather only if the minimum time is up 
 | |
|       if (state_timer_heater_0 == 0) {
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_0 == 1) {
 | |
| 	  state_timer_heater_0 = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_0 = 0;
 | |
| 	WRITE(HEATER_0_PIN, 0);
 | |
| #ifdef HEATERS_PARALLEL
 | |
| 	WRITE(HEATER_1_PIN, 0);
 | |
| #endif
 | |
|       }
 | |
|     }
 | |
|     
 | |
| #if EXTRUDERS > 1
 | |
|     // EXTRUDER 1
 | |
|     soft_pwm_1 = soft_pwm[1];
 | |
|     if (soft_pwm_1 > 0) {
 | |
|       // turn ON heather only if the minimum time is up 
 | |
|       if (state_timer_heater_1 == 0) { 
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_1 == 0) {
 | |
| 	  state_timer_heater_1 = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_1 = 1;
 | |
| 	WRITE(HEATER_1_PIN, 1);
 | |
|       }
 | |
|     } else {
 | |
|       // turn OFF heather only if the minimum time is up 
 | |
|       if (state_timer_heater_1 == 0) {
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_1 == 1) {
 | |
| 	  state_timer_heater_1 = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_1 = 0;
 | |
| 	WRITE(HEATER_1_PIN, 0);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|     
 | |
| #if EXTRUDERS > 2
 | |
|     // EXTRUDER 2
 | |
|     soft_pwm_2 = soft_pwm[2];
 | |
|     if (soft_pwm_2 > 0) {
 | |
|       // turn ON heather only if the minimum time is up 
 | |
|       if (state_timer_heater_2 == 0) { 
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_2 == 0) {
 | |
| 	  state_timer_heater_2 = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_2 = 1;
 | |
| 	WRITE(HEATER_2_PIN, 1);
 | |
|       }
 | |
|     } else {
 | |
|       // turn OFF heather only if the minimum time is up 
 | |
|       if (state_timer_heater_2 == 0) {
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_2 == 1) {
 | |
| 	  state_timer_heater_2 = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_2 = 0;
 | |
| 	WRITE(HEATER_2_PIN, 0);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if EXTRUDERS > 3
 | |
|     // EXTRUDER 3
 | |
|     soft_pwm_3 = soft_pwm[3];
 | |
|     if (soft_pwm_3 > 0) {
 | |
|       // turn ON heather only if the minimum time is up 
 | |
|       if (state_timer_heater_3 == 0) { 
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_3 == 0) {
 | |
| 	  state_timer_heater_3 = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_3 = 1;
 | |
| 	WRITE(HEATER_3_PIN, 1);
 | |
|       }
 | |
|     } else {
 | |
|       // turn OFF heather only if the minimum time is up 
 | |
|       if (state_timer_heater_3 == 0) {
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_3 == 1) {
 | |
| 	  state_timer_heater_3 = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_3 = 0;
 | |
| 	WRITE(HEATER_3_PIN, 0);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
 | |
|     // BED
 | |
|     soft_pwm_b = soft_pwm_bed;
 | |
|     if (soft_pwm_b > 0) {
 | |
|       // turn ON heather only if the minimum time is up 
 | |
|       if (state_timer_heater_b == 0) { 
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_b == 0) {
 | |
| 	  state_timer_heater_b = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_b = 1;
 | |
| 	WRITE(HEATER_BED_PIN, 1);
 | |
|       }
 | |
|     } else {
 | |
|       // turn OFF heather only if the minimum time is up 
 | |
|       if (state_timer_heater_b == 0) {
 | |
| 	// if change state set timer 
 | |
| 	if (state_heater_b == 1) {
 | |
| 	  state_timer_heater_b = MIN_STATE_TIME;
 | |
| 	}
 | |
| 	state_heater_b = 0;
 | |
| 	WRITE(HEATER_BED_PIN, 0);
 | |
|       }
 | |
|     }
 | |
| #endif
 | |
|   } // if (slow_pwm_count == 0)
 | |
|   
 | |
|   // EXTRUDER 0 
 | |
|   if (soft_pwm_0 < slow_pwm_count) {
 | |
|     // turn OFF heather only if the minimum time is up 
 | |
|     if (state_timer_heater_0 == 0) { 
 | |
|       // if change state set timer 
 | |
|       if (state_heater_0 == 1) {
 | |
| 	state_timer_heater_0 = MIN_STATE_TIME;
 | |
|       }
 | |
|       state_heater_0 = 0;
 | |
|       WRITE(HEATER_0_PIN, 0);
 | |
| #ifdef HEATERS_PARALLEL
 | |
|       WRITE(HEATER_1_PIN, 0);
 | |
| #endif
 | |
|     }
 | |
|   }
 | |
|     
 | |
| #if EXTRUDERS > 1
 | |
|   // EXTRUDER 1 
 | |
|   if (soft_pwm_1 < slow_pwm_count) {
 | |
|     // turn OFF heather only if the minimum time is up 
 | |
|     if (state_timer_heater_1 == 0) { 
 | |
|       // if change state set timer 
 | |
|       if (state_heater_1 == 1) {
 | |
| 	state_timer_heater_1 = MIN_STATE_TIME;
 | |
|       }
 | |
|       state_heater_1 = 0;
 | |
|       WRITE(HEATER_1_PIN, 0);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   
 | |
| #if EXTRUDERS > 2
 | |
|   // EXTRUDER 2
 | |
|   if (soft_pwm_2 < slow_pwm_count) {
 | |
|     // turn OFF heather only if the minimum time is up 
 | |
|     if (state_timer_heater_2 == 0) { 
 | |
|       // if change state set timer 
 | |
|       if (state_heater_2 == 1) {
 | |
| 	state_timer_heater_2 = MIN_STATE_TIME;
 | |
|       }
 | |
|       state_heater_2 = 0;
 | |
|       WRITE(HEATER_2_PIN, 0);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
| 
 | |
| #if EXTRUDERS > 3
 | |
|   // EXTRUDER 3
 | |
|   if (soft_pwm_3 < slow_pwm_count) {
 | |
|     // turn OFF heather only if the minimum time is up 
 | |
|     if (state_timer_heater_3 == 0) { 
 | |
|       // if change state set timer 
 | |
|       if (state_heater_3 == 1) {
 | |
| 	state_timer_heater_3 = MIN_STATE_TIME;
 | |
|       }
 | |
|       state_heater_3 = 0;
 | |
|       WRITE(HEATER_3_PIN, 0);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   
 | |
| #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
 | |
|   // BED
 | |
|   if (soft_pwm_b < slow_pwm_count) {
 | |
|     // turn OFF heather only if the minimum time is up 
 | |
|     if (state_timer_heater_b == 0) { 
 | |
|       // if change state set timer 
 | |
|       if (state_heater_b == 1) {
 | |
| 	state_timer_heater_b = MIN_STATE_TIME;
 | |
|       }
 | |
|       state_heater_b = 0;
 | |
|       WRITE(HEATER_BED_PIN, 0);
 | |
|     }
 | |
|   }
 | |
| #endif
 | |
|   
 | |
| #ifdef FAN_SOFT_PWM
 | |
|   if (pwm_count == 0){
 | |
|     soft_pwm_fan = fanSpeedSoftPwm / 2;
 | |
|     if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
 | |
|   }
 | |
|   if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
 | |
| #endif
 | |
|   
 | |
|   pwm_count += (1 << SOFT_PWM_SCALE);
 | |
|   pwm_count &= 0x7f;
 | |
|   
 | |
|   // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
 | |
|   if ((pwm_count % 64) == 0) {
 | |
|     slow_pwm_count++;
 | |
|     slow_pwm_count &= 0x7f;
 | |
|     
 | |
|     // Extruder 0
 | |
|     if (state_timer_heater_0 > 0) {
 | |
|       state_timer_heater_0--;
 | |
|     } 
 | |
|   
 | |
| #if EXTRUDERS > 1
 | |
|     // Extruder 1
 | |
|     if (state_timer_heater_1 > 0) 
 | |
|       state_timer_heater_1--;
 | |
| #endif
 | |
|     
 | |
| #if EXTRUDERS > 2
 | |
|     // Extruder 2
 | |
|     if (state_timer_heater_2 > 0) 
 | |
|       state_timer_heater_2--;
 | |
| #endif
 | |
| 
 | |
| #if EXTRUDERS > 3
 | |
|     // Extruder 3
 | |
|     if (state_timer_heater_3 > 0) 
 | |
|       state_timer_heater_3--;
 | |
| #endif
 | |
|     
 | |
| #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
 | |
|     // Bed   
 | |
|     if (state_timer_heater_b > 0) 
 | |
|       state_timer_heater_b--;
 | |
| #endif
 | |
|   } //if ((pwm_count % 64) == 0) {
 | |
|   
 | |
| #endif //ifndef SLOW_PWM_HEATERS
 | |
|   
 | |
|   switch(temp_state) {
 | |
|     case 0: // Prepare TEMP_0
 | |
|       #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
 | |
|         #if TEMP_0_PIN > 7
 | |
|           ADCSRB = 1<<MUX5;
 | |
|         #else
 | |
|           ADCSRB = 0;
 | |
|         #endif
 | |
|         ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
 | |
|         ADCSRA |= 1<<ADSC; // Start conversion
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = 1;
 | |
|       break;
 | |
|     case 1: // Measure TEMP_0
 | |
|       #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
 | |
|         raw_temp_0_value += ADC;
 | |
|       #endif
 | |
|       temp_state = 2;
 | |
|       break;
 | |
|     case 2: // Prepare TEMP_BED
 | |
|       #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
 | |
|         #if TEMP_BED_PIN > 7
 | |
|           ADCSRB = 1<<MUX5;
 | |
|         #else
 | |
|           ADCSRB = 0;
 | |
|         #endif
 | |
|         ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
 | |
|         ADCSRA |= 1<<ADSC; // Start conversion
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = 3;
 | |
|       break;
 | |
|     case 3: // Measure TEMP_BED
 | |
|       #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
 | |
|         raw_temp_bed_value += ADC;
 | |
|       #endif
 | |
|       temp_state = 4;
 | |
|       break;
 | |
|     case 4: // Prepare TEMP_1
 | |
|       #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
 | |
|         #if TEMP_1_PIN > 7
 | |
|           ADCSRB = 1<<MUX5;
 | |
|         #else
 | |
|           ADCSRB = 0;
 | |
|         #endif
 | |
|         ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
 | |
|         ADCSRA |= 1<<ADSC; // Start conversion
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = 5;
 | |
|       break;
 | |
|     case 5: // Measure TEMP_1
 | |
|       #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
 | |
|         raw_temp_1_value += ADC;
 | |
|       #endif
 | |
|       temp_state = 6;
 | |
|       break;
 | |
|     case 6: // Prepare TEMP_2
 | |
|       #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
 | |
|         #if TEMP_2_PIN > 7
 | |
|           ADCSRB = 1<<MUX5;
 | |
|         #else
 | |
|           ADCSRB = 0;
 | |
|         #endif
 | |
|         ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
 | |
|         ADCSRA |= 1<<ADSC; // Start conversion
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = 7;
 | |
|       break;
 | |
|     case 7: // Measure TEMP_2
 | |
|       #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
 | |
|         raw_temp_2_value += ADC;
 | |
|       #endif
 | |
|       temp_state = 8;
 | |
|       break;
 | |
|     case 8: // Prepare TEMP_3
 | |
|       #if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
 | |
|         #if TEMP_3_PIN > 7
 | |
|           ADCSRB = 1<<MUX5;
 | |
|         #else
 | |
|           ADCSRB = 0;
 | |
|         #endif
 | |
|         ADMUX = ((1 << REFS0) | (TEMP_3_PIN & 0x07));
 | |
|         ADCSRA |= 1<<ADSC; // Start conversion
 | |
|       #endif
 | |
|       lcd_buttons_update();
 | |
|       temp_state = 9;
 | |
|       break;
 | |
|     case 9: // Measure TEMP_3
 | |
|       #if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
 | |
|         raw_temp_3_value += ADC;
 | |
|       #endif
 | |
|       temp_state = 10; //change so that Filament Width is also measured
 | |
|       break;
 | |
|     case 10: //Prepare FILWIDTH 
 | |
|      #if defined(FILWIDTH_PIN) && (FILWIDTH_PIN> -1) 
 | |
|       #if FILWIDTH_PIN>7 
 | |
|          ADCSRB = 1<<MUX5;
 | |
|       #else
 | |
|          ADCSRB = 0; 
 | |
|       #endif 
 | |
|       ADMUX = ((1 << REFS0) | (FILWIDTH_PIN & 0x07)); 
 | |
|       ADCSRA |= 1<<ADSC; // Start conversion 
 | |
|      #endif 
 | |
|      lcd_buttons_update();       
 | |
|      temp_state = 11; 
 | |
|      break; 
 | |
|     case 11:   //Measure FILWIDTH 
 | |
|      #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1) 
 | |
|      //raw_filwidth_value += ADC;  //remove to use an IIR filter approach 
 | |
|       if(ADC>102)  //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
 | |
|         {
 | |
|     	raw_filwidth_value= raw_filwidth_value-(raw_filwidth_value>>7);  //multipliy raw_filwidth_value by 127/128
 | |
|         
 | |
|         raw_filwidth_value= raw_filwidth_value + ((unsigned long)ADC<<7);  //add new ADC reading 
 | |
|         }
 | |
|      #endif 
 | |
|      temp_state = 0;   
 | |
|       
 | |
|      temp_count++;
 | |
|      break;      
 | |
|       
 | |
|       
 | |
|     case 12: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
 | |
|       temp_state = 0;
 | |
|       break;
 | |
| //    default:
 | |
| //      SERIAL_ERROR_START;
 | |
| //      SERIAL_ERRORLNPGM("Temp measurement error!");
 | |
| //      break;
 | |
|   }
 | |
|     
 | |
|   if(temp_count >= OVERSAMPLENR) // 10 * 16 * 1/(16000000/64/256)  = 164ms.
 | |
|   {
 | |
|     if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
 | |
|     {
 | |
| #ifndef HEATER_0_USES_MAX6675
 | |
|       current_temperature_raw[0] = raw_temp_0_value;
 | |
| #endif
 | |
| #if EXTRUDERS > 1
 | |
|       current_temperature_raw[1] = raw_temp_1_value;
 | |
| #endif
 | |
| #ifdef TEMP_SENSOR_1_AS_REDUNDANT
 | |
|       redundant_temperature_raw = raw_temp_1_value;
 | |
| #endif
 | |
| #if EXTRUDERS > 2
 | |
|       current_temperature_raw[2] = raw_temp_2_value;
 | |
| #endif
 | |
| #if EXTRUDERS > 3
 | |
|       current_temperature_raw[3] = raw_temp_3_value;
 | |
| #endif
 | |
|       current_temperature_bed_raw = raw_temp_bed_value;
 | |
|     }
 | |
| 
 | |
| //Add similar code for Filament Sensor - can be read any time since IIR filtering is used 
 | |
| #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
 | |
|   current_raw_filwidth = raw_filwidth_value>>10;  //need to divide to get to 0-16384 range since we used 1/128 IIR filter approach 
 | |
| #endif
 | |
|     
 | |
|     
 | |
|     temp_meas_ready = true;
 | |
|     temp_count = 0;
 | |
|     raw_temp_0_value = 0;
 | |
|     raw_temp_1_value = 0;
 | |
|     raw_temp_2_value = 0;
 | |
|     raw_temp_3_value = 0;
 | |
|     raw_temp_bed_value = 0;
 | |
| 
 | |
| #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
 | |
|     if(current_temperature_raw[0] <= maxttemp_raw[0]) {
 | |
| #else
 | |
|     if(current_temperature_raw[0] >= maxttemp_raw[0]) {
 | |
| #endif
 | |
| #ifndef HEATER_0_USES_MAX6675
 | |
|         max_temp_error(0);
 | |
| #endif
 | |
|     }
 | |
| #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
 | |
|     if(current_temperature_raw[0] >= minttemp_raw[0]) {
 | |
| #else
 | |
|     if(current_temperature_raw[0] <= minttemp_raw[0]) {
 | |
| #endif
 | |
| #ifndef HEATER_0_USES_MAX6675
 | |
|         min_temp_error(0);
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| 
 | |
| #if EXTRUDERS > 1
 | |
| #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
 | |
|     if(current_temperature_raw[1] <= maxttemp_raw[1]) {
 | |
| #else
 | |
|     if(current_temperature_raw[1] >= maxttemp_raw[1]) {
 | |
| #endif
 | |
|         max_temp_error(1);
 | |
|     }
 | |
| #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
 | |
|     if(current_temperature_raw[1] >= minttemp_raw[1]) {
 | |
| #else
 | |
|     if(current_temperature_raw[1] <= minttemp_raw[1]) {
 | |
| #endif
 | |
|         min_temp_error(1);
 | |
|     }
 | |
| #endif
 | |
| #if EXTRUDERS > 2
 | |
| #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
 | |
|     if(current_temperature_raw[2] <= maxttemp_raw[2]) {
 | |
| #else
 | |
|     if(current_temperature_raw[2] >= maxttemp_raw[2]) {
 | |
| #endif
 | |
|         max_temp_error(2);
 | |
|     }
 | |
| #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
 | |
|     if(current_temperature_raw[2] >= minttemp_raw[2]) {
 | |
| #else
 | |
|     if(current_temperature_raw[2] <= minttemp_raw[2]) {
 | |
| #endif
 | |
|         min_temp_error(2);
 | |
|     }
 | |
| #endif
 | |
| #if EXTRUDERS > 3
 | |
| #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
 | |
|     if(current_temperature_raw[3] <= maxttemp_raw[3]) {
 | |
| #else
 | |
|     if(current_temperature_raw[3] >= maxttemp_raw[3]) {
 | |
| #endif
 | |
|         max_temp_error(3);
 | |
|     }
 | |
| #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
 | |
|     if(current_temperature_raw[3] >= minttemp_raw[3]) {
 | |
| #else
 | |
|     if(current_temperature_raw[3] <= minttemp_raw[3]) {
 | |
| #endif
 | |
|         min_temp_error(3);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| 
 | |
|   /* No bed MINTEMP error? */
 | |
| #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
 | |
| # if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
 | |
|     if(current_temperature_bed_raw <= bed_maxttemp_raw) {
 | |
| #else
 | |
|     if(current_temperature_bed_raw >= bed_maxttemp_raw) {
 | |
| #endif
 | |
|        target_temperature_bed = 0;
 | |
|        bed_max_temp_error();
 | |
|     }
 | |
| #endif
 | |
|   }
 | |
|   
 | |
| #ifdef BABYSTEPPING
 | |
|   for(uint8_t axis=0;axis<3;axis++)
 | |
|   {
 | |
|     int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
 | |
|    
 | |
|     if(curTodo>0)
 | |
|     {
 | |
|       babystep(axis,/*fwd*/true);
 | |
|       babystepsTodo[axis]--; //less to do next time
 | |
|     }
 | |
|     else
 | |
|     if(curTodo<0)
 | |
|     {
 | |
|       babystep(axis,/*fwd*/false);
 | |
|       babystepsTodo[axis]++; //less to do next time
 | |
|     }
 | |
|   }
 | |
| #endif //BABYSTEPPING
 | |
| }
 | |
| 
 | |
| #ifdef PIDTEMP
 | |
| // Apply the scale factors to the PID values
 | |
| 
 | |
| 
 | |
| float scalePID_i(float i)
 | |
| {
 | |
| 	return i*PID_dT;
 | |
| }
 | |
| 
 | |
| float unscalePID_i(float i)
 | |
| {
 | |
| 	return i/PID_dT;
 | |
| }
 | |
| 
 | |
| float scalePID_d(float d)
 | |
| {
 | |
|     return d/PID_dT;
 | |
| }
 | |
| 
 | |
| float unscalePID_d(float d)
 | |
| {
 | |
| 	return d*PID_dT;
 | |
| }
 | |
| 
 | |
| #endif //PIDTEMP
 |