1193 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1193 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/**
 | 
						|
 * Marlin 3D Printer Firmware
 | 
						|
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 | 
						|
 *
 | 
						|
 * Based on Sprinter and grbl.
 | 
						|
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 | 
						|
 *
 | 
						|
 * This program is free software: you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published by
 | 
						|
 * the Free Software Foundation, either version 3 of the License, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * planner.cpp
 | 
						|
 *
 | 
						|
 * Buffer movement commands and manage the acceleration profile plan
 | 
						|
 *
 | 
						|
 * Derived from Grbl
 | 
						|
 * Copyright (c) 2009-2011 Simen Svale Skogsrud
 | 
						|
 *
 | 
						|
 * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis.
 | 
						|
 *
 | 
						|
 *
 | 
						|
 * Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
 | 
						|
 *
 | 
						|
 * s == speed, a == acceleration, t == time, d == distance
 | 
						|
 *
 | 
						|
 * Basic definitions:
 | 
						|
 *   Speed[s_, a_, t_] := s + (a*t)
 | 
						|
 *   Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
 | 
						|
 *
 | 
						|
 * Distance to reach a specific speed with a constant acceleration:
 | 
						|
 *   Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
 | 
						|
 *   d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
 | 
						|
 *
 | 
						|
 * Speed after a given distance of travel with constant acceleration:
 | 
						|
 *   Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
 | 
						|
 *   m -> Sqrt[2 a d + s^2]
 | 
						|
 *
 | 
						|
 * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
 | 
						|
 *
 | 
						|
 * When to start braking (di) to reach a specified destination speed (s2) after accelerating
 | 
						|
 * from initial speed s1 without ever stopping at a plateau:
 | 
						|
 *   Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
 | 
						|
 *   di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
 | 
						|
 *
 | 
						|
 * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include "Marlin.h"
 | 
						|
#include "planner.h"
 | 
						|
#include "stepper.h"
 | 
						|
#include "temperature.h"
 | 
						|
#include "ultralcd.h"
 | 
						|
#include "language.h"
 | 
						|
 | 
						|
#if ENABLED(MESH_BED_LEVELING)
 | 
						|
  #include "mesh_bed_leveling.h"
 | 
						|
#endif
 | 
						|
 | 
						|
Planner planner;
 | 
						|
 | 
						|
  // public:
 | 
						|
 | 
						|
/**
 | 
						|
 * A ring buffer of moves described in steps
 | 
						|
 */
 | 
						|
block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
 | 
						|
volatile uint8_t Planner::block_buffer_head = 0;           // Index of the next block to be pushed
 | 
						|
volatile uint8_t Planner::block_buffer_tail = 0;
 | 
						|
 | 
						|
float Planner::max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
 | 
						|
float Planner::axis_steps_per_mm[NUM_AXIS];
 | 
						|
unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
 | 
						|
unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
 | 
						|
 | 
						|
millis_t Planner::min_segment_time;
 | 
						|
float Planner::min_feedrate_mm_s;
 | 
						|
float Planner::acceleration;         // Normal acceleration mm/s^2  DEFAULT ACCELERATION for all printing moves. M204 SXXXX
 | 
						|
float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
 | 
						|
float Planner::travel_acceleration;  // Travel acceleration mm/s^2  DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
 | 
						|
float Planner::max_xy_jerk;          // The largest speed change requiring no acceleration
 | 
						|
float Planner::max_z_jerk;
 | 
						|
float Planner::max_e_jerk;
 | 
						|
float Planner::min_travel_feedrate_mm_s;
 | 
						|
 | 
						|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | 
						|
  matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
 | 
						|
#endif
 | 
						|
 | 
						|
#if ENABLED(AUTOTEMP)
 | 
						|
  float Planner::autotemp_max = 250;
 | 
						|
  float Planner::autotemp_min = 210;
 | 
						|
  float Planner::autotemp_factor = 0.1;
 | 
						|
  bool Planner::autotemp_enabled = false;
 | 
						|
#endif
 | 
						|
 | 
						|
// private:
 | 
						|
 | 
						|
long Planner::position[NUM_AXIS] = { 0 };
 | 
						|
 | 
						|
float Planner::previous_speed[NUM_AXIS];
 | 
						|
 | 
						|
float Planner::previous_nominal_speed;
 | 
						|
 | 
						|
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
 | 
						|
  uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
 | 
						|
#endif // DISABLE_INACTIVE_EXTRUDER
 | 
						|
 | 
						|
#ifdef XY_FREQUENCY_LIMIT
 | 
						|
  // Old direction bits. Used for speed calculations
 | 
						|
  unsigned char Planner::old_direction_bits = 0;
 | 
						|
  // Segment times (in µs). Used for speed calculations
 | 
						|
  long Planner::axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} };
 | 
						|
#endif
 | 
						|
 | 
						|
/**
 | 
						|
 * Class and Instance Methods
 | 
						|
 */
 | 
						|
 | 
						|
Planner::Planner() { init(); }
 | 
						|
 | 
						|
void Planner::init() {
 | 
						|
  block_buffer_head = block_buffer_tail = 0;
 | 
						|
  memset(position, 0, sizeof(position)); // clear position
 | 
						|
  for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
 | 
						|
  previous_nominal_speed = 0.0;
 | 
						|
  #if ENABLED(AUTO_BED_LEVELING_FEATURE)
 | 
						|
    bed_level_matrix.set_to_identity();
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Calculate trapezoid parameters, multiplying the entry- and exit-speeds
 | 
						|
 * by the provided factors.
 | 
						|
 */
 | 
						|
void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) {
 | 
						|
  unsigned long initial_rate = ceil(block->nominal_rate * entry_factor),
 | 
						|
                final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
 | 
						|
 | 
						|
  // Limit minimal step rate (Otherwise the timer will overflow.)
 | 
						|
  NOLESS(initial_rate, 120);
 | 
						|
  NOLESS(final_rate, 120);
 | 
						|
 | 
						|
  long accel = block->acceleration_steps_per_s2;
 | 
						|
  int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel));
 | 
						|
  int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel));
 | 
						|
 | 
						|
  // Calculate the size of Plateau of Nominal Rate.
 | 
						|
  int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
 | 
						|
 | 
						|
  // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
 | 
						|
  // have to use intersection_distance() to calculate when to abort accel and start braking
 | 
						|
  // in order to reach the final_rate exactly at the end of this block.
 | 
						|
  if (plateau_steps < 0) {
 | 
						|
    accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
 | 
						|
    accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
 | 
						|
    accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
 | 
						|
    plateau_steps = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  #if ENABLED(ADVANCE)
 | 
						|
    volatile long initial_advance = block->advance * sq(entry_factor);
 | 
						|
    volatile long final_advance = block->advance * sq(exit_factor);
 | 
						|
  #endif // ADVANCE
 | 
						|
 | 
						|
  // block->accelerate_until = accelerate_steps;
 | 
						|
  // block->decelerate_after = accelerate_steps+plateau_steps;
 | 
						|
  CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section
 | 
						|
  if (!block->busy) { // Don't update variables if block is busy.
 | 
						|
    block->accelerate_until = accelerate_steps;
 | 
						|
    block->decelerate_after = accelerate_steps + plateau_steps;
 | 
						|
    block->initial_rate = initial_rate;
 | 
						|
    block->final_rate = final_rate;
 | 
						|
    #if ENABLED(ADVANCE)
 | 
						|
      block->initial_advance = initial_advance;
 | 
						|
      block->final_advance = final_advance;
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
  CRITICAL_SECTION_END;
 | 
						|
}
 | 
						|
 | 
						|
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
 | 
						|
// This method will calculate the junction jerk as the euclidean distance between the nominal
 | 
						|
// velocities of the respective blocks.
 | 
						|
//inline float junction_jerk(block_t *before, block_t *after) {
 | 
						|
//  return sqrt(
 | 
						|
//    pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
 | 
						|
//}
 | 
						|
 | 
						|
 | 
						|
// The kernel called by recalculate() when scanning the plan from last to first entry.
 | 
						|
void Planner::reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) {
 | 
						|
  if (!current) return;
 | 
						|
  UNUSED(previous);
 | 
						|
 | 
						|
  if (next) {
 | 
						|
    // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
 | 
						|
    // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
 | 
						|
    // check for maximum allowable speed reductions to ensure maximum possible planned speed.
 | 
						|
    float max_entry_speed = current->max_entry_speed;
 | 
						|
    if (current->entry_speed != max_entry_speed) {
 | 
						|
 | 
						|
      // If nominal length true, max junction speed is guaranteed to be reached. Only compute
 | 
						|
      // for max allowable speed if block is decelerating and nominal length is false.
 | 
						|
      if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) {
 | 
						|
        current->entry_speed = min(max_entry_speed,
 | 
						|
                                   max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
 | 
						|
      }
 | 
						|
      else {
 | 
						|
        current->entry_speed = max_entry_speed;
 | 
						|
      }
 | 
						|
      current->recalculate_flag = true;
 | 
						|
 | 
						|
    }
 | 
						|
  } // Skip last block. Already initialized and set for recalculation.
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * recalculate() needs to go over the current plan twice.
 | 
						|
 * Once in reverse and once forward. This implements the reverse pass.
 | 
						|
 */
 | 
						|
void Planner::reverse_pass() {
 | 
						|
 | 
						|
  if (movesplanned() > 3) {
 | 
						|
 | 
						|
    block_t* block[3] = { NULL, NULL, NULL };
 | 
						|
 | 
						|
    // Make a local copy of block_buffer_tail, because the interrupt can alter it
 | 
						|
    CRITICAL_SECTION_START;
 | 
						|
      uint8_t tail = block_buffer_tail;
 | 
						|
    CRITICAL_SECTION_END
 | 
						|
 | 
						|
    uint8_t b = BLOCK_MOD(block_buffer_head - 3);
 | 
						|
    while (b != tail) {
 | 
						|
      b = prev_block_index(b);
 | 
						|
      block[2] = block[1];
 | 
						|
      block[1] = block[0];
 | 
						|
      block[0] = &block_buffer[b];
 | 
						|
      reverse_pass_kernel(block[0], block[1], block[2]);
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// The kernel called by recalculate() when scanning the plan from first to last entry.
 | 
						|
void Planner::forward_pass_kernel(block_t* previous, block_t* current, block_t* next) {
 | 
						|
  if (!previous) return;
 | 
						|
  UNUSED(next);
 | 
						|
 | 
						|
  // If the previous block is an acceleration block, but it is not long enough to complete the
 | 
						|
  // full speed change within the block, we need to adjust the entry speed accordingly. Entry
 | 
						|
  // speeds have already been reset, maximized, and reverse planned by reverse planner.
 | 
						|
  // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
 | 
						|
  if (!previous->nominal_length_flag) {
 | 
						|
    if (previous->entry_speed < current->entry_speed) {
 | 
						|
      double entry_speed = min(current->entry_speed,
 | 
						|
                               max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
 | 
						|
      // Check for junction speed change
 | 
						|
      if (current->entry_speed != entry_speed) {
 | 
						|
        current->entry_speed = entry_speed;
 | 
						|
        current->recalculate_flag = true;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * recalculate() needs to go over the current plan twice.
 | 
						|
 * Once in reverse and once forward. This implements the forward pass.
 | 
						|
 */
 | 
						|
void Planner::forward_pass() {
 | 
						|
  block_t* block[3] = { NULL, NULL, NULL };
 | 
						|
 | 
						|
  for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
 | 
						|
    block[0] = block[1];
 | 
						|
    block[1] = block[2];
 | 
						|
    block[2] = &block_buffer[b];
 | 
						|
    forward_pass_kernel(block[0], block[1], block[2]);
 | 
						|
  }
 | 
						|
  forward_pass_kernel(block[1], block[2], NULL);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Recalculate the trapezoid speed profiles for all blocks in the plan
 | 
						|
 * according to the entry_factor for each junction. Must be called by
 | 
						|
 * recalculate() after updating the blocks.
 | 
						|
 */
 | 
						|
void Planner::recalculate_trapezoids() {
 | 
						|
  int8_t block_index = block_buffer_tail;
 | 
						|
  block_t* current;
 | 
						|
  block_t* next = NULL;
 | 
						|
 | 
						|
  while (block_index != block_buffer_head) {
 | 
						|
    current = next;
 | 
						|
    next = &block_buffer[block_index];
 | 
						|
    if (current) {
 | 
						|
      // Recalculate if current block entry or exit junction speed has changed.
 | 
						|
      if (current->recalculate_flag || next->recalculate_flag) {
 | 
						|
        // NOTE: Entry and exit factors always > 0 by all previous logic operations.
 | 
						|
        float nom = current->nominal_speed;
 | 
						|
        calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
 | 
						|
        current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
 | 
						|
      }
 | 
						|
    }
 | 
						|
    block_index = next_block_index(block_index);
 | 
						|
  }
 | 
						|
  // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
 | 
						|
  if (next) {
 | 
						|
    float nom = next->nominal_speed;
 | 
						|
    calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom);
 | 
						|
    next->recalculate_flag = false;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Recalculate the motion plan according to the following algorithm:
 | 
						|
 *
 | 
						|
 *   1. Go over every block in reverse order...
 | 
						|
 *
 | 
						|
 *      Calculate a junction speed reduction (block_t.entry_factor) so:
 | 
						|
 *
 | 
						|
 *      a. The junction jerk is within the set limit, and
 | 
						|
 *
 | 
						|
 *      b. No speed reduction within one block requires faster
 | 
						|
 *         deceleration than the one, true constant acceleration.
 | 
						|
 *
 | 
						|
 *   2. Go over every block in chronological order...
 | 
						|
 *
 | 
						|
 *      Dial down junction speed reduction values if:
 | 
						|
 *      a. The speed increase within one block would require faster
 | 
						|
 *         acceleration than the one, true constant acceleration.
 | 
						|
 *
 | 
						|
 * After that, all blocks will have an entry_factor allowing all speed changes to
 | 
						|
 * be performed using only the one, true constant acceleration, and where no junction
 | 
						|
 * jerk is jerkier than the set limit, Jerky. Finally it will:
 | 
						|
 *
 | 
						|
 *   3. Recalculate "trapezoids" for all blocks.
 | 
						|
 */
 | 
						|
void Planner::recalculate() {
 | 
						|
  reverse_pass();
 | 
						|
  forward_pass();
 | 
						|
  recalculate_trapezoids();
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#if ENABLED(AUTOTEMP)
 | 
						|
 | 
						|
  void Planner::getHighESpeed() {
 | 
						|
    static float oldt = 0;
 | 
						|
 | 
						|
    if (!autotemp_enabled) return;
 | 
						|
    if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
 | 
						|
 | 
						|
    float high = 0.0;
 | 
						|
    for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
 | 
						|
      block_t* block = &block_buffer[b];
 | 
						|
      if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
 | 
						|
        float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
 | 
						|
        NOLESS(high, se);
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    float t = autotemp_min + high * autotemp_factor;
 | 
						|
    t = constrain(t, autotemp_min, autotemp_max);
 | 
						|
    if (oldt > t) {
 | 
						|
      t *= (1 - (AUTOTEMP_OLDWEIGHT));
 | 
						|
      t += (AUTOTEMP_OLDWEIGHT) * oldt;
 | 
						|
    }
 | 
						|
    oldt = t;
 | 
						|
    thermalManager.setTargetHotend(t, 0);
 | 
						|
  }
 | 
						|
 | 
						|
#endif //AUTOTEMP
 | 
						|
 | 
						|
/**
 | 
						|
 * Maintain fans, paste extruder pressure,
 | 
						|
 */
 | 
						|
void Planner::check_axes_activity() {
 | 
						|
  unsigned char axis_active[NUM_AXIS] = { 0 },
 | 
						|
                tail_fan_speed[FAN_COUNT];
 | 
						|
 | 
						|
  #if FAN_COUNT > 0
 | 
						|
    for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i];
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if ENABLED(BARICUDA)
 | 
						|
    #if HAS_HEATER_1
 | 
						|
      unsigned char tail_valve_pressure = baricuda_valve_pressure;
 | 
						|
    #endif
 | 
						|
    #if HAS_HEATER_2
 | 
						|
      unsigned char tail_e_to_p_pressure = baricuda_e_to_p_pressure;
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
 | 
						|
  if (blocks_queued()) {
 | 
						|
 | 
						|
    #if FAN_COUNT > 0
 | 
						|
      for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_buffer_tail].fan_speed[i];
 | 
						|
    #endif
 | 
						|
 | 
						|
    block_t* block;
 | 
						|
 | 
						|
    #if ENABLED(BARICUDA)
 | 
						|
      block = &block_buffer[block_buffer_tail];
 | 
						|
      #if HAS_HEATER_1
 | 
						|
        tail_valve_pressure = block->valve_pressure;
 | 
						|
      #endif
 | 
						|
      #if HAS_HEATER_2
 | 
						|
        tail_e_to_p_pressure = block->e_to_p_pressure;
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
 | 
						|
    for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
 | 
						|
      block = &block_buffer[b];
 | 
						|
      for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
 | 
						|
    }
 | 
						|
  }
 | 
						|
  #if ENABLED(DISABLE_X)
 | 
						|
    if (!axis_active[X_AXIS]) disable_x();
 | 
						|
  #endif
 | 
						|
  #if ENABLED(DISABLE_Y)
 | 
						|
    if (!axis_active[Y_AXIS]) disable_y();
 | 
						|
  #endif
 | 
						|
  #if ENABLED(DISABLE_Z)
 | 
						|
    if (!axis_active[Z_AXIS]) disable_z();
 | 
						|
  #endif
 | 
						|
  #if ENABLED(DISABLE_E)
 | 
						|
    if (!axis_active[E_AXIS]) {
 | 
						|
      disable_e0();
 | 
						|
      disable_e1();
 | 
						|
      disable_e2();
 | 
						|
      disable_e3();
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if FAN_COUNT > 0
 | 
						|
 | 
						|
    #if defined(FAN_MIN_PWM)
 | 
						|
      #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
 | 
						|
    #else
 | 
						|
      #define CALC_FAN_SPEED(f) tail_fan_speed[f]
 | 
						|
    #endif
 | 
						|
 | 
						|
    #ifdef FAN_KICKSTART_TIME
 | 
						|
 | 
						|
      static millis_t fan_kick_end[FAN_COUNT] = { 0 };
 | 
						|
 | 
						|
      #define KICKSTART_FAN(f) \
 | 
						|
        if (tail_fan_speed[f]) { \
 | 
						|
          millis_t ms = millis(); \
 | 
						|
          if (fan_kick_end[f] == 0) { \
 | 
						|
            fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \
 | 
						|
            tail_fan_speed[f] = 255; \
 | 
						|
          } else { \
 | 
						|
            if (PENDING(ms, fan_kick_end[f])) { \
 | 
						|
              tail_fan_speed[f] = 255; \
 | 
						|
            } \
 | 
						|
          } \
 | 
						|
        } else { \
 | 
						|
          fan_kick_end[f] = 0; \
 | 
						|
        }
 | 
						|
 | 
						|
      #if HAS_FAN0
 | 
						|
        KICKSTART_FAN(0);
 | 
						|
      #endif
 | 
						|
      #if HAS_FAN1
 | 
						|
        KICKSTART_FAN(1);
 | 
						|
      #endif
 | 
						|
      #if HAS_FAN2
 | 
						|
        KICKSTART_FAN(2);
 | 
						|
      #endif
 | 
						|
 | 
						|
    #endif //FAN_KICKSTART_TIME
 | 
						|
 | 
						|
    #if ENABLED(FAN_SOFT_PWM)
 | 
						|
      #if HAS_FAN0
 | 
						|
        thermalManager.fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0);
 | 
						|
      #endif
 | 
						|
      #if HAS_FAN1
 | 
						|
        thermalManager.fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1);
 | 
						|
      #endif
 | 
						|
      #if HAS_FAN2
 | 
						|
        thermalManager.fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2);
 | 
						|
      #endif
 | 
						|
    #else
 | 
						|
      #if HAS_FAN0
 | 
						|
        analogWrite(FAN_PIN, CALC_FAN_SPEED(0));
 | 
						|
      #endif
 | 
						|
      #if HAS_FAN1
 | 
						|
        analogWrite(FAN1_PIN, CALC_FAN_SPEED(1));
 | 
						|
      #endif
 | 
						|
      #if HAS_FAN2
 | 
						|
        analogWrite(FAN2_PIN, CALC_FAN_SPEED(2));
 | 
						|
      #endif
 | 
						|
    #endif
 | 
						|
 | 
						|
  #endif // FAN_COUNT > 0
 | 
						|
 | 
						|
  #if ENABLED(AUTOTEMP)
 | 
						|
    getHighESpeed();
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if ENABLED(BARICUDA)
 | 
						|
    #if HAS_HEATER_1
 | 
						|
      analogWrite(HEATER_1_PIN, tail_valve_pressure);
 | 
						|
    #endif
 | 
						|
    #if HAS_HEATER_2
 | 
						|
      analogWrite(HEATER_2_PIN, tail_e_to_p_pressure);
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * Planner::buffer_line
 | 
						|
 *
 | 
						|
 * Add a new linear movement to the buffer.
 | 
						|
 *
 | 
						|
 *  x,y,z,e   - target position in mm
 | 
						|
 *  fr_mm_s   - (target) speed of the move
 | 
						|
 *  extruder  - target extruder
 | 
						|
 */
 | 
						|
 | 
						|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
 | 
						|
  void Planner::buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder)
 | 
						|
#else
 | 
						|
  void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder)
 | 
						|
#endif  // AUTO_BED_LEVELING_FEATURE
 | 
						|
{
 | 
						|
  // Calculate the buffer head after we push this byte
 | 
						|
  int next_buffer_head = next_block_index(block_buffer_head);
 | 
						|
 | 
						|
  // If the buffer is full: good! That means we are well ahead of the robot.
 | 
						|
  // Rest here until there is room in the buffer.
 | 
						|
  while (block_buffer_tail == next_buffer_head) idle();
 | 
						|
 | 
						|
  #if ENABLED(MESH_BED_LEVELING)
 | 
						|
    if (mbl.active())
 | 
						|
      z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
 | 
						|
  #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
 | 
						|
    apply_rotation_xyz(bed_level_matrix, x, y, z);
 | 
						|
  #endif
 | 
						|
 | 
						|
  // The target position of the tool in absolute steps
 | 
						|
  // Calculate target position in absolute steps
 | 
						|
  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 | 
						|
  long target[NUM_AXIS] = {
 | 
						|
    lround(x * axis_steps_per_mm[X_AXIS]),
 | 
						|
    lround(y * axis_steps_per_mm[Y_AXIS]),
 | 
						|
    lround(z * axis_steps_per_mm[Z_AXIS]),
 | 
						|
    lround(e * axis_steps_per_mm[E_AXIS])
 | 
						|
  };
 | 
						|
 | 
						|
  long dx = target[X_AXIS] - position[X_AXIS],
 | 
						|
       dy = target[Y_AXIS] - position[Y_AXIS],
 | 
						|
       dz = target[Z_AXIS] - position[Z_AXIS];
 | 
						|
 | 
						|
  // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
 | 
						|
  if (DEBUGGING(DRYRUN))
 | 
						|
    position[E_AXIS] = target[E_AXIS];
 | 
						|
 | 
						|
  long de = target[E_AXIS] - position[E_AXIS];
 | 
						|
 | 
						|
  #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
 | 
						|
    if (de) {
 | 
						|
      if (thermalManager.tooColdToExtrude(extruder)) {
 | 
						|
        position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
 | 
						|
        de = 0; // no difference
 | 
						|
        SERIAL_ECHO_START;
 | 
						|
        SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 | 
						|
      }
 | 
						|
      #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
 | 
						|
        if (labs(de) > axis_steps_per_mm[E_AXIS] * (EXTRUDE_MAXLENGTH)) {
 | 
						|
          position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
 | 
						|
          de = 0; // no difference
 | 
						|
          SERIAL_ECHO_START;
 | 
						|
          SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
 | 
						|
        }
 | 
						|
      #endif
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Prepare to set up new block
 | 
						|
  block_t* block = &block_buffer[block_buffer_head];
 | 
						|
 | 
						|
  // Mark block as not busy (Not executed by the stepper interrupt)
 | 
						|
  block->busy = false;
 | 
						|
 | 
						|
  // Number of steps for each axis
 | 
						|
  #if ENABLED(COREXY)
 | 
						|
    // corexy planning
 | 
						|
    // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 | 
						|
    block->steps[A_AXIS] = labs(dx + dy);
 | 
						|
    block->steps[B_AXIS] = labs(dx - dy);
 | 
						|
    block->steps[Z_AXIS] = labs(dz);
 | 
						|
  #elif ENABLED(COREXZ)
 | 
						|
    // corexz planning
 | 
						|
    block->steps[A_AXIS] = labs(dx + dz);
 | 
						|
    block->steps[Y_AXIS] = labs(dy);
 | 
						|
    block->steps[C_AXIS] = labs(dx - dz);
 | 
						|
  #elif ENABLED(COREYZ)
 | 
						|
    // coreyz planning
 | 
						|
    block->steps[X_AXIS] = labs(dx);
 | 
						|
    block->steps[B_AXIS] = labs(dy + dz);
 | 
						|
    block->steps[C_AXIS] = labs(dy - dz);
 | 
						|
  #else
 | 
						|
    // default non-h-bot planning
 | 
						|
    block->steps[X_AXIS] = labs(dx);
 | 
						|
    block->steps[Y_AXIS] = labs(dy);
 | 
						|
    block->steps[Z_AXIS] = labs(dz);
 | 
						|
  #endif
 | 
						|
 | 
						|
  block->steps[E_AXIS] = labs(de);
 | 
						|
  block->steps[E_AXIS] *= volumetric_multiplier[extruder];
 | 
						|
  block->steps[E_AXIS] *= extruder_multiplier[extruder];
 | 
						|
  block->steps[E_AXIS] /= 100;
 | 
						|
  block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
 | 
						|
 | 
						|
  // Bail if this is a zero-length block
 | 
						|
  if (block->step_event_count <= dropsegments) return;
 | 
						|
 | 
						|
  // For a mixing extruder, get a magnified step_event_count for each
 | 
						|
  #if ENABLED(MIXING_EXTRUDER)
 | 
						|
    for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
 | 
						|
      block->mix_event_count[i] = (mixing_factor[i] < 0.0001) ? 0 : block->step_event_count / mixing_factor[i];
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if FAN_COUNT > 0
 | 
						|
    for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
 | 
						|
  #endif
 | 
						|
 | 
						|
  #if ENABLED(BARICUDA)
 | 
						|
    block->valve_pressure = baricuda_valve_pressure;
 | 
						|
    block->e_to_p_pressure = baricuda_e_to_p_pressure;
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Compute direction bits for this block
 | 
						|
  uint8_t db = 0;
 | 
						|
  #if ENABLED(COREXY)
 | 
						|
    if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
 | 
						|
    if (dy < 0) SBI(db, Y_HEAD); // ...and Y
 | 
						|
    if (dz < 0) SBI(db, Z_AXIS);
 | 
						|
    if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
 | 
						|
    if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
 | 
						|
  #elif ENABLED(COREXZ)
 | 
						|
    if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
 | 
						|
    if (dy < 0) SBI(db, Y_AXIS);
 | 
						|
    if (dz < 0) SBI(db, Z_HEAD); // ...and Z
 | 
						|
    if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
 | 
						|
    if (dx - dz < 0) SBI(db, C_AXIS); // Motor C direction
 | 
						|
  #elif ENABLED(COREYZ)
 | 
						|
    if (dx < 0) SBI(db, X_AXIS);
 | 
						|
    if (dy < 0) SBI(db, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
 | 
						|
    if (dz < 0) SBI(db, Z_HEAD); // ...and Z
 | 
						|
    if (dy + dz < 0) SBI(db, B_AXIS); // Motor B direction
 | 
						|
    if (dy - dz < 0) SBI(db, C_AXIS); // Motor C direction
 | 
						|
  #else
 | 
						|
    if (dx < 0) SBI(db, X_AXIS);
 | 
						|
    if (dy < 0) SBI(db, Y_AXIS);
 | 
						|
    if (dz < 0) SBI(db, Z_AXIS);
 | 
						|
  #endif
 | 
						|
  if (de < 0) SBI(db, E_AXIS);
 | 
						|
  block->direction_bits = db;
 | 
						|
 | 
						|
  block->active_extruder = extruder;
 | 
						|
 | 
						|
  //enable active axes
 | 
						|
  #if ENABLED(COREXY)
 | 
						|
    if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
 | 
						|
      enable_x();
 | 
						|
      enable_y();
 | 
						|
    }
 | 
						|
    #if DISABLED(Z_LATE_ENABLE)
 | 
						|
      if (block->steps[Z_AXIS]) enable_z();
 | 
						|
    #endif
 | 
						|
  #elif ENABLED(COREXZ)
 | 
						|
    if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
 | 
						|
      enable_x();
 | 
						|
      enable_z();
 | 
						|
    }
 | 
						|
    if (block->steps[Y_AXIS]) enable_y();
 | 
						|
  #else
 | 
						|
    if (block->steps[X_AXIS]) enable_x();
 | 
						|
    if (block->steps[Y_AXIS]) enable_y();
 | 
						|
    #if DISABLED(Z_LATE_ENABLE)
 | 
						|
      if (block->steps[Z_AXIS]) enable_z();
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Enable extruder(s)
 | 
						|
  if (block->steps[E_AXIS]) {
 | 
						|
 | 
						|
    #if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
 | 
						|
 | 
						|
      for (int i = 0; i < EXTRUDERS; i++)
 | 
						|
        if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
 | 
						|
 | 
						|
      switch(extruder) {
 | 
						|
        case 0:
 | 
						|
          enable_e0();
 | 
						|
          #if ENABLED(DUAL_X_CARRIAGE)
 | 
						|
            if (extruder_duplication_enabled) {
 | 
						|
              enable_e1();
 | 
						|
              g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
 | 
						|
            }
 | 
						|
          #endif
 | 
						|
          g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2;
 | 
						|
          #if EXTRUDERS > 1
 | 
						|
            if (g_uc_extruder_last_move[1] == 0) disable_e1();
 | 
						|
            #if EXTRUDERS > 2
 | 
						|
              if (g_uc_extruder_last_move[2] == 0) disable_e2();
 | 
						|
              #if EXTRUDERS > 3
 | 
						|
                if (g_uc_extruder_last_move[3] == 0) disable_e3();
 | 
						|
              #endif
 | 
						|
            #endif
 | 
						|
          #endif
 | 
						|
        break;
 | 
						|
        #if EXTRUDERS > 1
 | 
						|
          case 1:
 | 
						|
            enable_e1();
 | 
						|
            g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2;
 | 
						|
            if (g_uc_extruder_last_move[0] == 0) disable_e0();
 | 
						|
            #if EXTRUDERS > 2
 | 
						|
              if (g_uc_extruder_last_move[2] == 0) disable_e2();
 | 
						|
              #if EXTRUDERS > 3
 | 
						|
                if (g_uc_extruder_last_move[3] == 0) disable_e3();
 | 
						|
              #endif
 | 
						|
            #endif
 | 
						|
          break;
 | 
						|
          #if EXTRUDERS > 2
 | 
						|
            case 2:
 | 
						|
              enable_e2();
 | 
						|
              g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2;
 | 
						|
              if (g_uc_extruder_last_move[0] == 0) disable_e0();
 | 
						|
              if (g_uc_extruder_last_move[1] == 0) disable_e1();
 | 
						|
              #if EXTRUDERS > 3
 | 
						|
                if (g_uc_extruder_last_move[3] == 0) disable_e3();
 | 
						|
              #endif
 | 
						|
            break;
 | 
						|
            #if EXTRUDERS > 3
 | 
						|
              case 3:
 | 
						|
                enable_e3();
 | 
						|
                g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2;
 | 
						|
                if (g_uc_extruder_last_move[0] == 0) disable_e0();
 | 
						|
                if (g_uc_extruder_last_move[1] == 0) disable_e1();
 | 
						|
                if (g_uc_extruder_last_move[2] == 0) disable_e2();
 | 
						|
              break;
 | 
						|
            #endif // EXTRUDERS > 3
 | 
						|
          #endif // EXTRUDERS > 2
 | 
						|
        #endif // EXTRUDERS > 1
 | 
						|
      }
 | 
						|
    #else
 | 
						|
      enable_e0();
 | 
						|
      enable_e1();
 | 
						|
      enable_e2();
 | 
						|
      enable_e3();
 | 
						|
    #endif
 | 
						|
  }
 | 
						|
 | 
						|
  if (block->steps[E_AXIS])
 | 
						|
    NOLESS(fr_mm_s, min_feedrate_mm_s);
 | 
						|
  else
 | 
						|
    NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
 | 
						|
 | 
						|
  /**
 | 
						|
   * This part of the code calculates the total length of the movement.
 | 
						|
   * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
 | 
						|
   * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
 | 
						|
   * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
 | 
						|
   * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
 | 
						|
   * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
 | 
						|
   */
 | 
						|
  #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
 | 
						|
    float delta_mm[6];
 | 
						|
    #if ENABLED(COREXY)
 | 
						|
      delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
 | 
						|
      delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS];
 | 
						|
      delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
 | 
						|
      delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS];
 | 
						|
      delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS];
 | 
						|
    #elif ENABLED(COREXZ)
 | 
						|
      delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS];
 | 
						|
      delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
 | 
						|
      delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
 | 
						|
      delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS];
 | 
						|
      delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS];
 | 
						|
    #elif ENABLED(COREYZ)
 | 
						|
      delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS];
 | 
						|
      delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS];
 | 
						|
      delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS];
 | 
						|
      delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS];
 | 
						|
      delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS];
 | 
						|
    #endif
 | 
						|
  #else
 | 
						|
    float delta_mm[4];
 | 
						|
    delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS];
 | 
						|
    delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS];
 | 
						|
    delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS];
 | 
						|
  #endif
 | 
						|
  delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0;
 | 
						|
 | 
						|
  if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
 | 
						|
    block->millimeters = fabs(delta_mm[E_AXIS]);
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    block->millimeters = sqrt(
 | 
						|
      #if ENABLED(COREXY)
 | 
						|
        sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
 | 
						|
      #elif ENABLED(COREXZ)
 | 
						|
        sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
 | 
						|
      #elif ENABLED(COREYZ)
 | 
						|
        sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
 | 
						|
      #else
 | 
						|
        sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
 | 
						|
      #endif
 | 
						|
    );
 | 
						|
  }
 | 
						|
  float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
 | 
						|
 | 
						|
  // Calculate moves/second for this move. No divide by zero due to previous checks.
 | 
						|
  float inverse_second = fr_mm_s * inverse_millimeters;
 | 
						|
 | 
						|
  int moves_queued = movesplanned();
 | 
						|
 | 
						|
  // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
 | 
						|
  #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
 | 
						|
    bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
 | 
						|
    #if ENABLED(OLD_SLOWDOWN)
 | 
						|
      if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
 | 
						|
    #endif
 | 
						|
    #if ENABLED(SLOWDOWN)
 | 
						|
      //  segment time im micro seconds
 | 
						|
      unsigned long segment_time = lround(1000000.0/inverse_second);
 | 
						|
      if (mq) {
 | 
						|
        if (segment_time < min_segment_time) {
 | 
						|
          // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
 | 
						|
          inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
 | 
						|
          #ifdef XY_FREQUENCY_LIMIT
 | 
						|
            segment_time = lround(1000000.0 / inverse_second);
 | 
						|
          #endif
 | 
						|
        }
 | 
						|
      }
 | 
						|
    #endif
 | 
						|
  #endif
 | 
						|
 | 
						|
  block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
 | 
						|
  block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
 | 
						|
 | 
						|
  #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
						|
    static float filwidth_e_count = 0, filwidth_delay_dist = 0;
 | 
						|
 | 
						|
    //FMM update ring buffer used for delay with filament measurements
 | 
						|
    if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index2 >= 0) {  //only for extruder with filament sensor and if ring buffer is initialized
 | 
						|
 | 
						|
      const int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
 | 
						|
 | 
						|
      // increment counters with next move in e axis
 | 
						|
      filwidth_e_count += delta_mm[E_AXIS];
 | 
						|
      filwidth_delay_dist += delta_mm[E_AXIS];
 | 
						|
 | 
						|
      // Only get new measurements on forward E movement
 | 
						|
      if (filwidth_e_count > 0.0001) {
 | 
						|
 | 
						|
        // Loop the delay distance counter (modulus by the mm length)
 | 
						|
        while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
 | 
						|
 | 
						|
        // Convert into an index into the measurement array
 | 
						|
        filwidth_delay_index1 = (int)(filwidth_delay_dist / 10.0 + 0.0001);
 | 
						|
 | 
						|
        // If the index has changed (must have gone forward)...
 | 
						|
        if (filwidth_delay_index1 != filwidth_delay_index2) {
 | 
						|
          filwidth_e_count = 0; // Reset the E movement counter
 | 
						|
          int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
 | 
						|
          do {
 | 
						|
            filwidth_delay_index2 = (filwidth_delay_index2 + 1) % MMD_CM; // The next unused slot
 | 
						|
            measurement_delay[filwidth_delay_index2] = meas_sample;       // Store the measurement
 | 
						|
          } while (filwidth_delay_index1 != filwidth_delay_index2);       // More slots to fill?
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Calculate and limit speed in mm/sec for each axis
 | 
						|
  float current_speed[NUM_AXIS];
 | 
						|
  float speed_factor = 1.0; //factor <=1 do decrease speed
 | 
						|
  for (int i = 0; i < NUM_AXIS; i++) {
 | 
						|
    current_speed[i] = delta_mm[i] * inverse_second;
 | 
						|
    float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
 | 
						|
    if (cs > mf) speed_factor = min(speed_factor, mf / cs);
 | 
						|
  }
 | 
						|
 | 
						|
  // Max segement time in us.
 | 
						|
  #ifdef XY_FREQUENCY_LIMIT
 | 
						|
 | 
						|
    // Check and limit the xy direction change frequency
 | 
						|
    unsigned char direction_change = block->direction_bits ^ old_direction_bits;
 | 
						|
    old_direction_bits = block->direction_bits;
 | 
						|
    segment_time = lround((float)segment_time / speed_factor);
 | 
						|
 | 
						|
    long xs0 = axis_segment_time[X_AXIS][0],
 | 
						|
         xs1 = axis_segment_time[X_AXIS][1],
 | 
						|
         xs2 = axis_segment_time[X_AXIS][2],
 | 
						|
         ys0 = axis_segment_time[Y_AXIS][0],
 | 
						|
         ys1 = axis_segment_time[Y_AXIS][1],
 | 
						|
         ys2 = axis_segment_time[Y_AXIS][2];
 | 
						|
 | 
						|
    if (TEST(direction_change, X_AXIS)) {
 | 
						|
      xs2 = axis_segment_time[X_AXIS][2] = xs1;
 | 
						|
      xs1 = axis_segment_time[X_AXIS][1] = xs0;
 | 
						|
      xs0 = 0;
 | 
						|
    }
 | 
						|
    xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
 | 
						|
 | 
						|
    if (TEST(direction_change, Y_AXIS)) {
 | 
						|
      ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
 | 
						|
      ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
 | 
						|
      ys0 = 0;
 | 
						|
    }
 | 
						|
    ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
 | 
						|
 | 
						|
    long max_x_segment_time = max(xs0, max(xs1, xs2)),
 | 
						|
         max_y_segment_time = max(ys0, max(ys1, ys2)),
 | 
						|
         min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
 | 
						|
    if (min_xy_segment_time < MAX_FREQ_TIME) {
 | 
						|
      float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME);
 | 
						|
      speed_factor = min(speed_factor, low_sf);
 | 
						|
    }
 | 
						|
  #endif // XY_FREQUENCY_LIMIT
 | 
						|
 | 
						|
  // Correct the speed
 | 
						|
  if (speed_factor < 1.0) {
 | 
						|
    for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
 | 
						|
    block->nominal_speed *= speed_factor;
 | 
						|
    block->nominal_rate *= speed_factor;
 | 
						|
  }
 | 
						|
 | 
						|
  // Compute and limit the acceleration rate for the trapezoid generator.
 | 
						|
  float steps_per_mm = block->step_event_count / block->millimeters;
 | 
						|
  long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
 | 
						|
  if (bsx == 0 && bsy == 0 && bsz == 0) {
 | 
						|
    block->acceleration_steps_per_s2 = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | 
						|
  }
 | 
						|
  else if (bse == 0) {
 | 
						|
    block->acceleration_steps_per_s2 = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | 
						|
  }
 | 
						|
  else {
 | 
						|
    block->acceleration_steps_per_s2 = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 | 
						|
  }
 | 
						|
  // Limit acceleration per axis
 | 
						|
  unsigned long acc_st = block->acceleration_steps_per_s2,
 | 
						|
                x_acc_st = max_acceleration_steps_per_s2[X_AXIS],
 | 
						|
                y_acc_st = max_acceleration_steps_per_s2[Y_AXIS],
 | 
						|
                z_acc_st = max_acceleration_steps_per_s2[Z_AXIS],
 | 
						|
                e_acc_st = max_acceleration_steps_per_s2[E_AXIS],
 | 
						|
                allsteps = block->step_event_count;
 | 
						|
  if (x_acc_st < (acc_st * bsx) / allsteps) acc_st = (x_acc_st * allsteps) / bsx;
 | 
						|
  if (y_acc_st < (acc_st * bsy) / allsteps) acc_st = (y_acc_st * allsteps) / bsy;
 | 
						|
  if (z_acc_st < (acc_st * bsz) / allsteps) acc_st = (z_acc_st * allsteps) / bsz;
 | 
						|
  if (e_acc_st < (acc_st * bse) / allsteps) acc_st = (e_acc_st * allsteps) / bse;
 | 
						|
 | 
						|
  block->acceleration_steps_per_s2 = acc_st;
 | 
						|
  block->acceleration = acc_st / steps_per_mm;
 | 
						|
  block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
 | 
						|
 | 
						|
  #if 0  // Use old jerk for now
 | 
						|
 | 
						|
    float junction_deviation = 0.1;
 | 
						|
 | 
						|
    // Compute path unit vector
 | 
						|
    double unit_vec[3];
 | 
						|
 | 
						|
    unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters;
 | 
						|
    unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters;
 | 
						|
    unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters;
 | 
						|
 | 
						|
    // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
 | 
						|
    // Let a circle be tangent to both previous and current path line segments, where the junction
 | 
						|
    // deviation is defined as the distance from the junction to the closest edge of the circle,
 | 
						|
    // collinear with the circle center. The circular segment joining the two paths represents the
 | 
						|
    // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
 | 
						|
    // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
 | 
						|
    // path width or max_jerk in the previous grbl version. This approach does not actually deviate
 | 
						|
    // from path, but used as a robust way to compute cornering speeds, as it takes into account the
 | 
						|
    // nonlinearities of both the junction angle and junction velocity.
 | 
						|
    double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
 | 
						|
 | 
						|
    // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
 | 
						|
    if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
 | 
						|
      // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
 | 
						|
      // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
 | 
						|
      double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
 | 
						|
                         - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
 | 
						|
                         - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
 | 
						|
      // Skip and use default max junction speed for 0 degree acute junction.
 | 
						|
      if (cos_theta < 0.95) {
 | 
						|
        vmax_junction = min(previous_nominal_speed, block->nominal_speed);
 | 
						|
        // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
 | 
						|
        if (cos_theta > -0.95) {
 | 
						|
          // Compute maximum junction velocity based on maximum acceleration and junction deviation
 | 
						|
          double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
 | 
						|
          vmax_junction = min(vmax_junction,
 | 
						|
                              sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
 | 
						|
        }
 | 
						|
      }
 | 
						|
    }
 | 
						|
  #endif
 | 
						|
 | 
						|
  // Start with a safe speed
 | 
						|
  float vmax_junction = max_xy_jerk / 2;
 | 
						|
  float vmax_junction_factor = 1.0;
 | 
						|
  float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
 | 
						|
  float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
 | 
						|
  if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
 | 
						|
  if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
 | 
						|
  vmax_junction = min(vmax_junction, block->nominal_speed);
 | 
						|
  float safe_speed = vmax_junction;
 | 
						|
 | 
						|
  if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
 | 
						|
    float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS],
 | 
						|
          dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
 | 
						|
          dsz = fabs(csz - previous_speed[Z_AXIS]),
 | 
						|
          dse = fabs(cse - previous_speed[E_AXIS]),
 | 
						|
          jerk = HYPOT(dsx, dsy);
 | 
						|
 | 
						|
    //    if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
 | 
						|
    vmax_junction = block->nominal_speed;
 | 
						|
    //    }
 | 
						|
    if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
 | 
						|
    if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz);
 | 
						|
    if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse);
 | 
						|
 | 
						|
    vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
 | 
						|
  }
 | 
						|
  block->max_entry_speed = vmax_junction;
 | 
						|
 | 
						|
  // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
 | 
						|
  double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
 | 
						|
  block->entry_speed = min(vmax_junction, v_allowable);
 | 
						|
 | 
						|
  // Initialize planner efficiency flags
 | 
						|
  // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
 | 
						|
  // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
 | 
						|
  // the current block and next block junction speeds are guaranteed to always be at their maximum
 | 
						|
  // junction speeds in deceleration and acceleration, respectively. This is due to how the current
 | 
						|
  // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
 | 
						|
  // the reverse and forward planners, the corresponding block junction speed will always be at the
 | 
						|
  // the maximum junction speed and may always be ignored for any speed reduction checks.
 | 
						|
  block->nominal_length_flag = (block->nominal_speed <= v_allowable);
 | 
						|
  block->recalculate_flag = true; // Always calculate trapezoid for new block
 | 
						|
 | 
						|
  // Update previous path unit_vector and nominal speed
 | 
						|
  for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
 | 
						|
  previous_nominal_speed = block->nominal_speed;
 | 
						|
 | 
						|
  #if ENABLED(LIN_ADVANCE)
 | 
						|
 | 
						|
    // bse == allsteps: A problem occurs when there's a very tiny move before a retract.
 | 
						|
    // In this case, the retract and the move will be executed together.
 | 
						|
    // This leads to an enormous number of advance steps due to a huge e_acceleration.
 | 
						|
    // The math is correct, but you don't want a retract move done with advance!
 | 
						|
    // So this situation is filtered out here.
 | 
						|
    if (!bse || (!bsx && !bsy && !bsz) || stepper.get_advance_k() == 0 || (uint32_t) bse == allsteps) {
 | 
						|
      block->use_advance_lead = false;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      block->use_advance_lead = true;
 | 
						|
      block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
 | 
						|
    }
 | 
						|
 | 
						|
  #elif ENABLED(ADVANCE)
 | 
						|
 | 
						|
    // Calculate advance rate
 | 
						|
    if (!bse || (!bsx && !bsy && !bsz)) {
 | 
						|
      block->advance_rate = 0;
 | 
						|
      block->advance = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
      long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
 | 
						|
      float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(cse, EXTRUSION_AREA) * 256;
 | 
						|
      block->advance = advance;
 | 
						|
      block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
 | 
						|
    }
 | 
						|
    /**
 | 
						|
      SERIAL_ECHO_START;
 | 
						|
     SERIAL_ECHOPGM("advance :");
 | 
						|
     SERIAL_ECHO(block->advance/256.0);
 | 
						|
     SERIAL_ECHOPGM("advance rate :");
 | 
						|
     SERIAL_ECHOLN(block->advance_rate/256.0);
 | 
						|
     */
 | 
						|
 | 
						|
  #endif // ADVANCE or LIN_ADVANCE
 | 
						|
 | 
						|
  calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
 | 
						|
 | 
						|
  // Move buffer head
 | 
						|
  block_buffer_head = next_buffer_head;
 | 
						|
 | 
						|
  // Update position
 | 
						|
  for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
 | 
						|
 | 
						|
  recalculate();
 | 
						|
 | 
						|
  stepper.wake_up();
 | 
						|
 | 
						|
} // buffer_line()
 | 
						|
 | 
						|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA)
 | 
						|
 | 
						|
  /**
 | 
						|
   * Get the XYZ position of the steppers as a vector_3.
 | 
						|
   *
 | 
						|
   * On CORE machines XYZ is derived from ABC.
 | 
						|
   */
 | 
						|
  vector_3 Planner::adjusted_position() {
 | 
						|
    vector_3 pos = vector_3(stepper.get_axis_position_mm(X_AXIS), stepper.get_axis_position_mm(Y_AXIS), stepper.get_axis_position_mm(Z_AXIS));
 | 
						|
 | 
						|
    //pos.debug("in Planner::adjusted_position");
 | 
						|
    //bed_level_matrix.debug("in Planner::adjusted_position");
 | 
						|
 | 
						|
    matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
 | 
						|
    //inverse.debug("in Planner::inverse");
 | 
						|
 | 
						|
    pos.apply_rotation(inverse);
 | 
						|
    //pos.debug("after rotation");
 | 
						|
 | 
						|
    return pos;
 | 
						|
  }
 | 
						|
 | 
						|
#endif // AUTO_BED_LEVELING_FEATURE && !DELTA
 | 
						|
 | 
						|
/**
 | 
						|
 * Directly set the planner XYZ position (hence the stepper positions).
 | 
						|
 *
 | 
						|
 * On CORE machines stepper ABC will be translated from the given XYZ.
 | 
						|
 */
 | 
						|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
 | 
						|
  void Planner::set_position_mm(float x, float y, float z, const float& e)
 | 
						|
#else
 | 
						|
  void Planner::set_position_mm(const float& x, const float& y, const float& z, const float& e)
 | 
						|
#endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
 | 
						|
  {
 | 
						|
    #if ENABLED(MESH_BED_LEVELING)
 | 
						|
      if (mbl.active())
 | 
						|
        z += mbl.get_z(x - home_offset[X_AXIS], y - home_offset[Y_AXIS]);
 | 
						|
    #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
 | 
						|
      apply_rotation_xyz(bed_level_matrix, x, y, z);
 | 
						|
    #endif
 | 
						|
 | 
						|
    long nx = position[X_AXIS] = lround(x * axis_steps_per_mm[X_AXIS]),
 | 
						|
         ny = position[Y_AXIS] = lround(y * axis_steps_per_mm[Y_AXIS]),
 | 
						|
         nz = position[Z_AXIS] = lround(z * axis_steps_per_mm[Z_AXIS]),
 | 
						|
         ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
 | 
						|
    stepper.set_position(nx, ny, nz, ne);
 | 
						|
    previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
 | 
						|
 | 
						|
    for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
 | 
						|
  }
 | 
						|
 | 
						|
/**
 | 
						|
 * Directly set the planner E position (hence the stepper E position).
 | 
						|
 */
 | 
						|
void Planner::set_e_position_mm(const float& e) {
 | 
						|
  position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
 | 
						|
  stepper.set_e_position(position[E_AXIS]);
 | 
						|
}
 | 
						|
 | 
						|
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
 | 
						|
void Planner::reset_acceleration_rates() {
 | 
						|
  for (int i = 0; i < NUM_AXIS; i++)
 | 
						|
    max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
 | 
						|
}
 | 
						|
 | 
						|
#if ENABLED(AUTOTEMP)
 | 
						|
 | 
						|
  void Planner::autotemp_M109() {
 | 
						|
    autotemp_enabled = code_seen('F');
 | 
						|
    if (autotemp_enabled) autotemp_factor = code_value_temp_diff();
 | 
						|
    if (code_seen('S')) autotemp_min = code_value_temp_abs();
 | 
						|
    if (code_seen('B')) autotemp_max = code_value_temp_abs();
 | 
						|
  }
 | 
						|
 | 
						|
#endif
 |