Nonlinear Plots

- Generate all plots via nonlinear system
- Remove extra matlab and simulink files that are no longer used
This commit is contained in:
Sravan Balaji
2020-04-21 00:43:27 -04:00
parent 4d787de64f
commit 81426af0ce
3 changed files with 178 additions and 416 deletions

260
src/LQR.m
View File

@@ -1,14 +1,9 @@
% Clear workspace
clear all;
close all;
clc;
clear all; close all; clc;
% Parameters source: https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
g = 9.81;
m = 0.468;
Ix = 4.856*10^-3;
Iy = 4.856*10^-3;
Iz = 8.801*10^-3;
g = 9.81; m = 0.468; Ix = 4.856*10^-3;
Iy = 4.856*10^-3; Iz = 8.801*10^-3;
% States:
% X1: x X4: x'
@@ -82,38 +77,31 @@ impulse(discrete, 0:T_s:1);
%% Define goals
%Goal 1: settle at 1m height <2s
% LQR drives states to 0, so we redefine initial
% condition to be -1 in z direction such that
% controller gives a positive z input as if
% quadcopter drives from origin up 1 m in z direction
x_0_up = [0, 0, -1, ...
0, 0, 0, ...
0, 0, 0, ...
0, 0, 0]';
0, 0, 0]'; %Redefine origin!
%Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
x_0_pitch = [0, 0, 0, ...
x_0_pitchroll = [0, 0, 0, ...
0, 0, 0, ...
10, 0, 0, ...
0, 0, 0]'; %Pitch of 10 degrees
10*(pi/180), 10*(pi/180), 0, ...
0, 0, 0]'; %Pitch and roll of 10 degrees
x_0_roll = [0, 0, 0, ...
0, 0, 0, ...
0, 10, 0, ...
0, 10*(pi/180), 0, ...
0, 0, 0]'; %Roll of 10 degrees
%Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
% Redefine initial condition to be -1 in x, y, and z direction so
% when LQR drives states to 0, it is as if quadcopter drives from
% origin to (1,1,1)
x_0_trans = [-1, -1, -1, ...
x_0_trans = [-1, -1, 0, ...
0, 0, 0, ...
0, 0, 0, ...
0, 0, 0]';
0, 0, 0]'; %Redefine origin!
%% Finite-Time Horizon LQR for Goal 1
% Cost matrices
%Define Q and R for the cost function. Begin with nominal ones for all.
Q = diag([1000, 1000, 1000, ... % x, y, z
1, 1, 100, ... % x', y', z'
200, 200, 1, ... % roll, pitch, yaw
@@ -127,15 +115,26 @@ nSteps = length(tSpan);
%Determine gains
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
FiniteLQR_Goal_1_K = K;
% Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
% States are relative to origin, so we need to add the reference to the
% state to get global coordinates
xlqr(3,:) = xlqr(3,:) + 1;
% Plot
plot_states(xlqr, tSpan);
zd = diff(xlqr(6,:))./T_s
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_up);
set_param('LQRNonlinearSim', 'StopTime', '2')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
state = [simout.x';
simout.y';
simout.z' + 1;
simout.xdot';
simout.ydot';
simout.zdot';
simout.pitch';
simout.roll';
simout.yaw';
simout.dotpitch';
simout.dotroll';
simout.dotyaw'];
plot_states(state, tSpan);
%% Infinite-Time Horizon LQR for Goal 1
@@ -152,88 +151,116 @@ tSpan = 0:T_s:2;
nSteps = length(tSpan);
% Determine Gains
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
xlqr(3,:) = xlqr(3,:) + 1;
plot_states(xlqr, tSpan);
zd = diff(xlqr(6,:))./T_s;
[X, K_const, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
K = zeros(nInputs, nStates, nSteps);
for i = 1:nSteps
K(:,:,i) = K_const;
end
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_up);
set_param('LQRNonlinearSim', 'StopTime', '2')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
state = [simout.x';
simout.y';
simout.z' + 1;
simout.xdot';
simout.ydot';
simout.zdot';
simout.pitch';
simout.roll';
simout.yaw';
simout.dotpitch';
simout.dotroll';
simout.dotyaw'];
plot_states(state, tSpan);
%% Finite-Time Horizon LQR for Goal 2
% Cost matrices
Q = diag([1000, 1000, 1000, ... % x, y, z
1, 1, 100, ... % x', y', z'
200, 200, 1, ... % roll, pitch, yaw
1, 1, 1]); % roll', pitch', yaw'
Q = diag([0, 0, 0, ... % x, y, z
0, 0, 0, ... % x', y', z'
1000, 1000, 1, ... % roll, pitch, yaw
10, 10, 1]); % roll', pitch', yaw'
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
%Calculate number of timesteps.
tSpan = 0:T_s:2;
tSpan = 0:T_s:4;
nSteps = length(tSpan);
%Determine gains
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
% Pitch Goal
% Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_pitch, K, discrete.A, discrete.B);
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_pitchroll);
set_param('LQRNonlinearSim', 'StopTime', '4')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
% Plot
plot_states(xlqr, tSpan);
yd = diff(xlqr(5,:))./T_s;
pd = diff(xlqr(7,:))./T_s;
% Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
% Plot
plot_states(xlqr, tSpan);
xd = diff(xlqr(4,:))./T_s;
rd = diff(xlqr(8,:))./T_s;
state = [simout.x';
simout.y';
simout.z' + 1;
simout.xdot';
simout.ydot';
simout.zdot';
simout.pitch';
simout.roll';
simout.yaw';
simout.dotpitch';
simout.dotroll';
simout.dotyaw'];
plot_states(state, tSpan);
%% Infinite-Time Horizon LQR for Goal 2
% Cost matrices
Q = diag([1000, 1000, 1, ... % x, y, z
10, 10, 1, ... % x', y', z'
1000, 1000, 1, ... % roll, pitch, yaw
1, 1, 1]); % roll', pitch', yaw'
Q = diag([0, 0, 0, ... % x, y, z
0, 0, 0, ... % x', y', z'
1000, 1000, 0, ... % roll, pitch, yaw
10, 10, 0]); % roll', pitch', yaw'
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
% Calculate number of timesteps.
tSpan = 0:T_s:2;
tSpan = 0:T_s:4;
nSteps = length(tSpan);
% Determine gains
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
K = zeros(nInputs, nStates, nSteps);
for i = 1:nSteps
K(:,:,i) = K_const;
end
% Pitch Goal
% Propagate
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_pitch, K, discrete.A, discrete.B);
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_pitchroll);
set_param('LQRNonlinearSim', 'StopTime', '4')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
% Plot
plot_states(xlqr, tSpan);
yd = diff(xlqr(5,:))./T_s;
pd = diff(xlqr(7,:))./T_s;
% Propagate
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
% Plot
plot_states(xlqr, tSpan);
xd = diff(xlqr(4,:))./T_s;
rd = diff(xlqr(8,:))./T_s;
state = [simout.x';
simout.y';
simout.z' + 1;
simout.xdot';
simout.ydot';
simout.zdot';
simout.pitch';
simout.roll';
simout.yaw';
simout.dotpitch';
simout.dotroll';
simout.dotyaw'];
plot_states(state, tSpan);
%% Finite-Time Horizon For Goal 3
% Cost matrices
Q = diag([1000, 1000, 1000, ... % x, y, z
1, 1, 100, ... % x', y', z'
200, 200, 1, ... % roll, pitch, yaw
1, 1, 1]); % roll', pitch', yaw'
0, 0, 0, ... % x', y', z'
1000, 1000, 0, ... % roll, pitch, yaw
0, 0, 0]); % roll', pitch', yaw'
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
R = diag([1, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
%Calculate number of timesteps.
tSpan = 0:T_s:5;
@@ -242,13 +269,24 @@ nSteps = length(tSpan);
%Determine gains
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
% Pitch Goal
% Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
xlqr(1:3,:) = xlqr(1:3,:) + 1;
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_trans);
set_param('LQRNonlinearSim', 'StopTime', '5')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
% Plot
plot_states(xlqr, tSpan);
state = [simout.x';
simout.y';
simout.z' + 1;
simout.xdot';
simout.ydot';
simout.zdot';
simout.pitch';
simout.roll';
simout.yaw';
simout.dotpitch';
simout.dotroll';
simout.dotyaw'];
plot_states(state, tSpan);
%% Infinite-Time Horizon For Goal 3
@@ -267,13 +305,29 @@ nSteps = length(tSpan);
% Determine gains
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
% Pitch Goal
% Propagate
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
xlqr(1:3,:) = xlqr(1:3,:) + 1;
K = zeros(nInputs, nStates, nSteps);
for i = 1:nSteps
K(:,:,i) = K_const;
end
% Plot
plot_states(xlqr, tSpan);
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_trans);
set_param('LQRNonlinearSim', 'StopTime', '5')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
state = [simout.x';
simout.y';
simout.z' + 1;
simout.xdot';
simout.ydot';
simout.zdot';
simout.pitch';
simout.roll';
simout.yaw';
simout.dotpitch';
simout.dotroll';
simout.dotyaw'];
plot_states(state, tSpan);
%% Helper Functions
@@ -305,21 +359,9 @@ function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
end
end
function [ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0, K, A, B)
% Set up for propagation
ulqr = zeros(nInputs, nSteps);
xlqr = zeros(nStates, nSteps);
xlqr(:, 1) = x_0;
for i = 1:(nSteps - 1)
ulqr(:,i) = K * xlqr(:,i);
xlqr(:,i+1) = (A*xlqr(:, i) - B*ulqr(:, i));
end
end
function plot_states(xlqr, tSpan)
figure();
subplot(1, 2, 1);
subplot(2, 1, 1);
plot(tSpan, xlqr(1, :), '-r', 'LineWidth', 2);
hold on;
plot(tSpan, xlqr(2, :), '-g');
@@ -332,7 +374,7 @@ function plot_states(xlqr, tSpan)
xlabel("Time(s)");
ylabel("Displacement (m)");
subplot(1, 2, 2);
subplot(2, 1, 2);
plot(tSpan, xlqr(7, :), '-r');
hold on;
plot(tSpan, xlqr(8, :), '-g');
@@ -343,5 +385,9 @@ function plot_states(xlqr, tSpan)
legend('Pitch (about x)', 'Roll (about y)', 'Yaw (about z)', 'Pitch Rate', 'Roll Rate', 'Yaw Rate');
title("Angular Displacements(-) and Velocities(--)");
xlabel("Time(s)");
ylabel("Displacement (deg)");
ylabel("Displacement (rad)");
end
function [x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(X0)
x0=X0(1); y0=X0(2); z0=X0(3); xdot0=X0(4); ydot0=X0(5); zdot0=X0(6); phi0=X0(7); theta0=X0(8); psi0=X0(9); phidot0=X0(10); thetadot0=X0(11); psidot0=X0(12);
end

Binary file not shown.

View File

@@ -1,284 +0,0 @@
% Clear workspace
clear all; close all; clc;
% Parameters source: https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
g = 9.81; m = 0.468; Ix = 4.856*10^-3;
Iy = 4.856*10^-3; Iz = 8.801*10^-3;
% States:
% X1: x X4: x'
% X2: y X5: y'
% X3: z X6: z'
% X7: Pitch angle (x-axis) X10: Pitch rate (x-axis)
% X8: Roll angle (y-axis) X11: Roll rate (y-axis)
% X9: Yaw angle (z-axis) X12: Yaw rate (z-axis)
% Inputs: Outputs:
% U1: Total Upward Force (along z-axis) Y1: Position along x axis
% U2: Pitch Torque (about x-axis) Y2: Position along y axis
% U3: Roll Torque (about y-axis) Y3: Position along z axis
% U4: Yaw Torque (about z-axis) Y4: Pitch (about x-axis)
% Y5: Roll (about y-axis)
% Y6: Yaw (about z-axis)
% State Space Source: https://arxiv.org/ftp/arxiv/papers/1908/1908.07401.pdf
% X' = Ax + Bu
% Y = Cx
nStates = 12;
nInputs = 4;
nOutputs = 6;
A = [0 0 0 1 0 0 0 0 0 0 0 0;
0 0 0 0 1 0 0 0 0 0 0 0;
0 0 0 0 0 1 0 0 0 0 0 0;
0 0 0 0 0 0 0 -g 0 0 0 0;
0 0 0 0 0 0 g 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 1 0 0;
0 0 0 0 0 0 0 0 0 0 1 0;
0 0 0 0 0 0 0 0 0 0 0 1;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 0 0 0 0 0 0];
% Note: In paper, 1/m is in wrong spot
B = [0 0 0 0;
0 0 0 0;
0 0 0 0;
0 0 0 0;
0 0 0 0;
1/m 0 0 0;
0 0 0 0;
0 0 0 0;
0 0 0 0;
0 1/Ix 0 0;
0 0 1/Iy 0;
0 0 0 1/Iz];
C = [1 0 0 0 0 0 0 0 0 0 0 0;
0 1 0 0 0 0 0 0 0 0 0 0;
0 0 1 0 0 0 0 0 0 0 0 0;
0 0 0 0 0 0 1 0 0 0 0 0;
0 0 0 0 0 0 0 1 0 0 0 0;
0 0 0 0 0 0 0 0 1 0 0 0];
D = zeros(6,4);
continuous = ss(A, B, C, D);
T_s = 0.01;
discrete = c2d(continuous, T_s);
%Check if this works
impulse(discrete, 0:T_s:1);
%We should see that U1 gets us only translation in z, U2 couples Y2 and Y4,
%U3 couples Y1 and Y5, and U4 gets us Y6
%% Define goals
%Goal 1: settle at 1m height <2s
x_0_up = [0, 0, -1, ...
0, 0, 0, ...
0, 0, 0, ...
0, 0, 0]'; %Redefine origin!
%Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
x_0_pitchroll = [0, 0, 0, ...
0, 0, 0, ...
10*(pi/180), 10*(pi/180), 0, ...
0, 0, 0]'; %Pitch and roll of 10 degrees
x_0_roll = [0, 0, 0, ...
0, 0, 0, ...
0, 10*(pi/180), 0, ...
0, 0, 0]'; %Roll of 10 degrees
%Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
x_0_trans = [-1, -1, 0, ...
0, 0, 0, ...
0, 0, 0, ...
0, 0, 0]'; %Redefine origin!
%Define Q and R for the cost function. Begin with nominal ones for all.
Q = diag([1000, 1000, 1000, ... % x, y, z
1, 1, 100, ... % x', y', z'
200, 200, 1, ... % roll, pitch, yaw
1, 1, 1]); % roll', pitch', yaw'
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
%% Finite-Time Horizon LQR for Goal 1
%Calculate number of timesteps.
tSpan = 0:T_s:2;
nSteps = length(tSpan);
%Determine gains
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
FiniteLQR_Goal_1_K = K;
save('FiniteLQRGoal_1_K.mat', 'K');
%Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
%States are relative to origin, so we need to add the reference to the
%state to get global coordinates
xlqr(3,:) = xlqr(3,:) + 1;
%Plot
plot_states(xlqr, tSpan);
zd = diff(xlqr(6,:))./T_s;
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_up);
set_param('LQRNonlinearSim', 'StopTime', '2')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
time = simout.allVals.Time(:,1);
figure();
plot(time, simout.z+1, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
plot(time, xlqr(3,:), '-b','LineWidth', 1);
xlabel('Time (s)');
ylabel('Z (m)');
legend({'Nonlinear Model', 'Linear Model'});
%% Finite-Time Horizon LQR for Goal 2
Q = diag([0, 0, 0, ... % x, y, z
0, 0, 0, ... % x', y', z'
200, 200, 1, ... % roll, pitch, yaw
10, 10, 1]); % roll', pitch', yaw'
%Calculate number of timesteps.
tSpan = 0:T_s:4;
nSteps = length(tSpan);
%Determine gains
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
%Pitch Goal
%Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_pitchroll, K, discrete.A, discrete.B);
%Plot
plot_states(xlqr, tSpan);
yd = diff(xlqr(5,:))./T_s
pd = diff(xlqr(7,:))./T_s
%Propagate
%[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
%Plot
%plot_states(xlqr, tSpan);
%xd = diff(xlqr(4,:))./T_s
%rd = diff(xlqr(8,:))./T_s
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_pitchroll);
set_param('LQRNonlinearSim', 'StopTime', '4')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
time = simout.allVals.Time(:,1);
figure();
plot(time, simout.roll, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
plot(time, xlqr(8,:), '-b','LineWidth', 1);
%plot(time, simout.roll, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
xlabel('Time (s)');
ylabel('Pitch/Roll Angle (rad)');
legend({'Nonlinear Model', 'Linear Model'});
%% Finite-Time Horizon For Goal 3
Q = diag([1000, 1000, 0, ... % x, y, z
0, 0, 0, ... % x', y', z'
200, 200, 1, ... % roll, pitch, yaw
0, 0, 1]); % roll', pitch', yaw'
%Calculate number of timesteps.
tSpan = 0:T_s:5;
nSteps = length(tSpan);
%Determine gains
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
%Pitch Goal
%Propagate
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
xlqr(1:2,:) = xlqr(1:2,:) + 1;
%Plot
plot_states(xlqr, tSpan);
%Simulate nonlinear model
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_trans);
set_param('LQRNonlinearSim', 'StopTime', '5')
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
time = simout.allVals.Time(:,1);
figure();
plot(time, simout.x+1, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
plot(time, xlqr(1,:), '-b','LineWidth', 1);
%plot(time, simout.roll, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
xlabel('Time (s)');
ylabel('x (m)');
legend({'Nonlinear Model', 'Linear Model'});
%% Helper Functions
function [K, P] = LQR_LTI(A, B, Q, R, nSteps)
%Set P up
P = zeros(size(Q, 1), size(Q, 2), nSteps);
%Initial value of P
P(:, :, nSteps) = 1/2 * Q;
%Set K up, initial K is 0, so this is fine.
K = zeros(length(R), length(Q), nSteps);
for i = nSteps-1:-1:1
P_ = P(:,:, i+1);
K(:, :, i) = ( 1/2 * R + B' * P_ * B )^(-1) * B' * P_ * A;
P(:, :, i) = A' * P_ * ( A - B * K(:, :, i) ) + Q * 1/2;
end
end
function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
%Set up for propagation
ulqr = zeros(nInputs, nSteps);
xlqr = zeros(nStates, nSteps);
xlqr(:, 1) = x_0;
for i = 1:(nSteps - 1)
ulqr(:,i) = K(:,:,i) * xlqr(:,i);
xlqr(:,i+1) = (A*xlqr(:, i) - B*ulqr(:, i));
end
end
function plot_states(xlqr, tSpan)
figure();
subplot(1, 2, 1);
plot(tSpan, xlqr(1, :), '-r', 'LineWidth', 2);
hold on;
plot(tSpan, xlqr(2, :), '-g');
plot(tSpan, xlqr(3, :), '-b');
plot(tSpan, xlqr(4, :), '--r', 'LineWidth', 2);
plot(tSpan, xlqr(5, :), '--g');
plot(tSpan, xlqr(6, :), '--b');
legend('x', 'y', 'z', 'x`', 'y`', 'z`');
title("Translations(-) and Velocities (--)");
xlabel("Time(s)");
ylabel("Displacement (m)");
subplot(1, 2, 2);
plot(tSpan, xlqr(7, :), '-r');
hold on;
plot(tSpan, xlqr(8, :), '-g');
plot(tSpan, xlqr(9, :), '-b');
plot(tSpan, xlqr(10, :), '--r');
plot(tSpan, xlqr(11, :), '--g');
plot(tSpan, xlqr(12, :), '--b');
legend('Pitch (about x)', 'Roll (about y)', 'Yaw (about z)', 'Pitch Rate', 'Roll Rate', 'Yaw Rate');
title("Angular Displacements(-) and Velocities(--)");
xlabel("Time(s)");
ylabel("Displacement (rad)");
end
function [x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(X0)
x0=X0(1); y0=X0(2); z0=X0(3); xdot0=X0(4); ydot0=X0(5); zdot0=X0(6); phi0=X0(7); theta0=X0(8); psi0=X0(9); phidot0=X0(10); thetadot0=X0(11); psidot0=X0(12);
end