mirror of
https://github.com/ME-561-W20-Quadcopter-Project/Quadcopter-Control.git
synced 2025-09-01 13:13:15 +00:00
Nonlinear Plots
- Generate all plots via nonlinear system - Remove extra matlab and simulink files that are no longer used
This commit is contained in:
306
src/LQR.m
306
src/LQR.m
@@ -1,14 +1,9 @@
|
||||
% Clear workspace
|
||||
clear all;
|
||||
close all;
|
||||
clc;
|
||||
clear all; close all; clc;
|
||||
|
||||
% Parameters source: https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
|
||||
g = 9.81;
|
||||
m = 0.468;
|
||||
Ix = 4.856*10^-3;
|
||||
Iy = 4.856*10^-3;
|
||||
Iz = 8.801*10^-3;
|
||||
g = 9.81; m = 0.468; Ix = 4.856*10^-3;
|
||||
Iy = 4.856*10^-3; Iz = 8.801*10^-3;
|
||||
|
||||
% States:
|
||||
% X1: x X4: x'
|
||||
@@ -74,46 +69,39 @@ continuous = ss(A, B, C, D);
|
||||
T_s = 0.01;
|
||||
discrete = c2d(continuous, T_s);
|
||||
|
||||
% Check if this works
|
||||
%Check if this works
|
||||
impulse(discrete, 0:T_s:1);
|
||||
|
||||
% We should see that U1 gets us only translation in z, U2 couples Y2 and Y4,
|
||||
% U3 couples Y1 and Y5, and U4 gets us Y6
|
||||
%We should see that U1 gets us only translation in z, U2 couples Y2 and Y4,
|
||||
%U3 couples Y1 and Y5, and U4 gets us Y6
|
||||
|
||||
%% Define goals
|
||||
% Goal 1: settle at 1m height <2s
|
||||
% LQR drives states to 0, so we redefine initial
|
||||
% condition to be -1 in z direction such that
|
||||
% controller gives a positive z input as if
|
||||
% quadcopter drives from origin up 1 m in z direction
|
||||
%Goal 1: settle at 1m height <2s
|
||||
x_0_up = [0, 0, -1, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]';
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]'; %Redefine origin!
|
||||
|
||||
% Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
|
||||
x_0_pitch = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
10, 0, 0, ...
|
||||
0, 0, 0]'; %Pitch of 10 degrees
|
||||
%Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
|
||||
x_0_pitchroll = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
10*(pi/180), 10*(pi/180), 0, ...
|
||||
0, 0, 0]'; %Pitch and roll of 10 degrees
|
||||
|
||||
x_0_roll = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 10, 0, ...
|
||||
0, 0, 0]'; %Roll of 10 degrees
|
||||
0, 0, 0, ...
|
||||
0, 10*(pi/180), 0, ...
|
||||
0, 0, 0]'; %Roll of 10 degrees
|
||||
|
||||
% Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
|
||||
% Redefine initial condition to be -1 in x, y, and z direction so
|
||||
% when LQR drives states to 0, it is as if quadcopter drives from
|
||||
% origin to (1,1,1)
|
||||
x_0_trans = [-1, -1, -1, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]';
|
||||
%Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
|
||||
x_0_trans = [-1, -1, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]'; %Redefine origin!
|
||||
|
||||
%% Finite-Time Horizon LQR for Goal 1
|
||||
|
||||
% Cost matrices
|
||||
%Define Q and R for the cost function. Begin with nominal ones for all.
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
@@ -121,21 +109,32 @@ Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps.
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
% Determine gains
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
FiniteLQR_Goal_1_K = K;
|
||||
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
|
||||
% States are relative to origin, so we need to add the reference to the
|
||||
% state to get global coordinates
|
||||
xlqr(3,:) = xlqr(3,:) + 1;
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
zd = diff(xlqr(6,:))./T_s
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_up);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '2')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
state = [simout.x';
|
||||
simout.y';
|
||||
simout.z' + 1;
|
||||
simout.xdot';
|
||||
simout.ydot';
|
||||
simout.zdot';
|
||||
simout.pitch';
|
||||
simout.roll';
|
||||
simout.yaw';
|
||||
simout.dotpitch';
|
||||
simout.dotroll';
|
||||
simout.dotyaw'];
|
||||
plot_states(state, tSpan);
|
||||
|
||||
%% Infinite-Time Horizon LQR for Goal 1
|
||||
|
||||
@@ -152,103 +151,142 @@ tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
% Determine Gains
|
||||
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
|
||||
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
|
||||
xlqr(3,:) = xlqr(3,:) + 1;
|
||||
plot_states(xlqr, tSpan);
|
||||
zd = diff(xlqr(6,:))./T_s;
|
||||
[X, K_const, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
|
||||
|
||||
K = zeros(nInputs, nStates, nSteps);
|
||||
for i = 1:nSteps
|
||||
K(:,:,i) = K_const;
|
||||
end
|
||||
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_up);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '2')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
state = [simout.x';
|
||||
simout.y';
|
||||
simout.z' + 1;
|
||||
simout.xdot';
|
||||
simout.ydot';
|
||||
simout.zdot';
|
||||
simout.pitch';
|
||||
simout.roll';
|
||||
simout.yaw';
|
||||
simout.dotpitch';
|
||||
simout.dotroll';
|
||||
simout.dotyaw'];
|
||||
plot_states(state, tSpan);
|
||||
|
||||
%% Finite-Time Horizon LQR for Goal 2
|
||||
|
||||
% Cost matrices
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
Q = diag([0, 0, 0, ... % x, y, z
|
||||
0, 0, 0, ... % x', y', z'
|
||||
1000, 1000, 1, ... % roll, pitch, yaw
|
||||
10, 10, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:4;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
% Determine gains
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
% Pitch Goal
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_pitch, K, discrete.A, discrete.B);
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_pitchroll);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '4')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
yd = diff(xlqr(5,:))./T_s;
|
||||
pd = diff(xlqr(7,:))./T_s;
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
xd = diff(xlqr(4,:))./T_s;
|
||||
rd = diff(xlqr(8,:))./T_s;
|
||||
state = [simout.x';
|
||||
simout.y';
|
||||
simout.z' + 1;
|
||||
simout.xdot';
|
||||
simout.ydot';
|
||||
simout.zdot';
|
||||
simout.pitch';
|
||||
simout.roll';
|
||||
simout.yaw';
|
||||
simout.dotpitch';
|
||||
simout.dotroll';
|
||||
simout.dotyaw'];
|
||||
plot_states(state, tSpan);
|
||||
|
||||
%% Infinite-Time Horizon LQR for Goal 2
|
||||
|
||||
% Cost matrices
|
||||
Q = diag([1000, 1000, 1, ... % x, y, z
|
||||
10, 10, 1, ... % x', y', z'
|
||||
1000, 1000, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
Q = diag([0, 0, 0, ... % x, y, z
|
||||
0, 0, 0, ... % x', y', z'
|
||||
1000, 1000, 0, ... % roll, pitch, yaw
|
||||
10, 10, 0]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
tSpan = 0:T_s:4;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
% Determine gains
|
||||
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
|
||||
|
||||
K = zeros(nInputs, nStates, nSteps);
|
||||
for i = 1:nSteps
|
||||
K(:,:,i) = K_const;
|
||||
end
|
||||
|
||||
% Pitch Goal
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_pitch, K, discrete.A, discrete.B);
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_pitchroll);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '4')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
yd = diff(xlqr(5,:))./T_s;
|
||||
pd = diff(xlqr(7,:))./T_s;
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
xd = diff(xlqr(4,:))./T_s;
|
||||
rd = diff(xlqr(8,:))./T_s;
|
||||
state = [simout.x';
|
||||
simout.y';
|
||||
simout.z' + 1;
|
||||
simout.xdot';
|
||||
simout.ydot';
|
||||
simout.zdot';
|
||||
simout.pitch';
|
||||
simout.roll';
|
||||
simout.yaw';
|
||||
simout.dotpitch';
|
||||
simout.dotroll';
|
||||
simout.dotyaw'];
|
||||
plot_states(state, tSpan);
|
||||
|
||||
%% Finite-Time Horizon For Goal 3
|
||||
|
||||
% Cost matrices
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
0, 0, 0, ... % x', y', z'
|
||||
1000, 1000, 0, ... % roll, pitch, yaw
|
||||
0, 0, 0]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
R = diag([1, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
|
||||
% Calculate number of timesteps.
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:5;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
% Determine gains
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
% Pitch Goal
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
|
||||
xlqr(1:3,:) = xlqr(1:3,:) + 1;
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_trans);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '5')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
state = [simout.x';
|
||||
simout.y';
|
||||
simout.z' + 1;
|
||||
simout.xdot';
|
||||
simout.ydot';
|
||||
simout.zdot';
|
||||
simout.pitch';
|
||||
simout.roll';
|
||||
simout.yaw';
|
||||
simout.dotpitch';
|
||||
simout.dotroll';
|
||||
simout.dotyaw'];
|
||||
plot_states(state, tSpan);
|
||||
|
||||
%% Infinite-Time Horizon For Goal 3
|
||||
|
||||
@@ -267,22 +305,38 @@ nSteps = length(tSpan);
|
||||
% Determine gains
|
||||
[X, K, L, info] = idare(discrete.A, discrete.B, Q, R, [], []);
|
||||
|
||||
% Pitch Goal
|
||||
% Propagate
|
||||
[ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
|
||||
xlqr(1:3,:) = xlqr(1:3,:) + 1;
|
||||
K = zeros(nInputs, nStates, nSteps);
|
||||
for i = 1:nSteps
|
||||
K(:,:,i) = K_const;
|
||||
end
|
||||
|
||||
% Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_trans);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '5')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
state = [simout.x';
|
||||
simout.y';
|
||||
simout.z' + 1;
|
||||
simout.xdot';
|
||||
simout.ydot';
|
||||
simout.zdot';
|
||||
simout.pitch';
|
||||
simout.roll';
|
||||
simout.yaw';
|
||||
simout.dotpitch';
|
||||
simout.dotroll';
|
||||
simout.dotyaw'];
|
||||
plot_states(state, tSpan);
|
||||
|
||||
%% Helper Functions
|
||||
|
||||
function [K, P] = LQR_LTI(A, B, Q, R, nSteps)
|
||||
% Set P up
|
||||
%Set P up
|
||||
P = zeros(size(Q, 1), size(Q, 2), nSteps);
|
||||
% Initial value of P
|
||||
%Initial value of P
|
||||
P(:, :, nSteps) = 1/2 * Q;
|
||||
% Set K up, initial K is 0, so this is fine.
|
||||
%Set K up, initial K is 0, so this is fine.
|
||||
K = zeros(length(R), length(Q), nSteps);
|
||||
|
||||
for i = nSteps-1:-1:1
|
||||
@@ -294,7 +348,7 @@ function [K, P] = LQR_LTI(A, B, Q, R, nSteps)
|
||||
end
|
||||
|
||||
function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
|
||||
% Set up for propagation
|
||||
%Set up for propagation
|
||||
ulqr = zeros(nInputs, nSteps);
|
||||
xlqr = zeros(nStates, nSteps);
|
||||
xlqr(:, 1) = x_0;
|
||||
@@ -305,21 +359,9 @@ function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
|
||||
end
|
||||
end
|
||||
|
||||
function [ulqr, xlqr] = propagate_inf(nInputs, nStates, nSteps, x_0, K, A, B)
|
||||
% Set up for propagation
|
||||
ulqr = zeros(nInputs, nSteps);
|
||||
xlqr = zeros(nStates, nSteps);
|
||||
xlqr(:, 1) = x_0;
|
||||
|
||||
for i = 1:(nSteps - 1)
|
||||
ulqr(:,i) = K * xlqr(:,i);
|
||||
xlqr(:,i+1) = (A*xlqr(:, i) - B*ulqr(:, i));
|
||||
end
|
||||
end
|
||||
|
||||
function plot_states(xlqr, tSpan)
|
||||
figure();
|
||||
subplot(1, 2, 1);
|
||||
subplot(2, 1, 1);
|
||||
plot(tSpan, xlqr(1, :), '-r', 'LineWidth', 2);
|
||||
hold on;
|
||||
plot(tSpan, xlqr(2, :), '-g');
|
||||
@@ -332,7 +374,7 @@ function plot_states(xlqr, tSpan)
|
||||
xlabel("Time(s)");
|
||||
ylabel("Displacement (m)");
|
||||
|
||||
subplot(1, 2, 2);
|
||||
subplot(2, 1, 2);
|
||||
plot(tSpan, xlqr(7, :), '-r');
|
||||
hold on;
|
||||
plot(tSpan, xlqr(8, :), '-g');
|
||||
@@ -343,5 +385,9 @@ function plot_states(xlqr, tSpan)
|
||||
legend('Pitch (about x)', 'Roll (about y)', 'Yaw (about z)', 'Pitch Rate', 'Roll Rate', 'Yaw Rate');
|
||||
title("Angular Displacements(-) and Velocities(--)");
|
||||
xlabel("Time(s)");
|
||||
ylabel("Displacement (deg)");
|
||||
ylabel("Displacement (rad)");
|
||||
end
|
||||
|
||||
function [x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(X0)
|
||||
x0=X0(1); y0=X0(2); z0=X0(3); xdot0=X0(4); ydot0=X0(5); zdot0=X0(6); phi0=X0(7); theta0=X0(8); psi0=X0(9); phidot0=X0(10); thetadot0=X0(11); psidot0=X0(12);
|
||||
end
|
Binary file not shown.
284
src/LQR_Goal_1.m
284
src/LQR_Goal_1.m
@@ -1,284 +0,0 @@
|
||||
% Clear workspace
|
||||
clear all; close all; clc;
|
||||
|
||||
% Parameters source: https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf
|
||||
g = 9.81; m = 0.468; Ix = 4.856*10^-3;
|
||||
Iy = 4.856*10^-3; Iz = 8.801*10^-3;
|
||||
|
||||
% States:
|
||||
% X1: x X4: x'
|
||||
% X2: y X5: y'
|
||||
% X3: z X6: z'
|
||||
% X7: Pitch angle (x-axis) X10: Pitch rate (x-axis)
|
||||
% X8: Roll angle (y-axis) X11: Roll rate (y-axis)
|
||||
% X9: Yaw angle (z-axis) X12: Yaw rate (z-axis)
|
||||
|
||||
% Inputs: Outputs:
|
||||
% U1: Total Upward Force (along z-axis) Y1: Position along x axis
|
||||
% U2: Pitch Torque (about x-axis) Y2: Position along y axis
|
||||
% U3: Roll Torque (about y-axis) Y3: Position along z axis
|
||||
% U4: Yaw Torque (about z-axis) Y4: Pitch (about x-axis)
|
||||
% Y5: Roll (about y-axis)
|
||||
% Y6: Yaw (about z-axis)
|
||||
|
||||
% State Space Source: https://arxiv.org/ftp/arxiv/papers/1908/1908.07401.pdf
|
||||
% X' = Ax + Bu
|
||||
% Y = Cx
|
||||
|
||||
nStates = 12;
|
||||
nInputs = 4;
|
||||
nOutputs = 6;
|
||||
|
||||
A = [0 0 0 1 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 1 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 1 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 -g 0 0 0 0;
|
||||
0 0 0 0 0 0 g 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 0 1 0 0;
|
||||
0 0 0 0 0 0 0 0 0 0 1 0;
|
||||
0 0 0 0 0 0 0 0 0 0 0 1;
|
||||
0 0 0 0 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 0 0 0 0];
|
||||
|
||||
% Note: In paper, 1/m is in wrong spot
|
||||
B = [0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
1/m 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 0 0 0;
|
||||
0 1/Ix 0 0;
|
||||
0 0 1/Iy 0;
|
||||
0 0 0 1/Iz];
|
||||
|
||||
C = [1 0 0 0 0 0 0 0 0 0 0 0;
|
||||
0 1 0 0 0 0 0 0 0 0 0 0;
|
||||
0 0 1 0 0 0 0 0 0 0 0 0;
|
||||
0 0 0 0 0 0 1 0 0 0 0 0;
|
||||
0 0 0 0 0 0 0 1 0 0 0 0;
|
||||
0 0 0 0 0 0 0 0 1 0 0 0];
|
||||
|
||||
D = zeros(6,4);
|
||||
|
||||
continuous = ss(A, B, C, D);
|
||||
T_s = 0.01;
|
||||
discrete = c2d(continuous, T_s);
|
||||
|
||||
%Check if this works
|
||||
impulse(discrete, 0:T_s:1);
|
||||
|
||||
%We should see that U1 gets us only translation in z, U2 couples Y2 and Y4,
|
||||
%U3 couples Y1 and Y5, and U4 gets us Y6
|
||||
|
||||
%% Define goals
|
||||
%Goal 1: settle at 1m height <2s
|
||||
x_0_up = [0, 0, -1, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]'; %Redefine origin!
|
||||
|
||||
%Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot
|
||||
x_0_pitchroll = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
10*(pi/180), 10*(pi/180), 0, ...
|
||||
0, 0, 0]'; %Pitch and roll of 10 degrees
|
||||
|
||||
x_0_roll = [0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 10*(pi/180), 0, ...
|
||||
0, 0, 0]'; %Roll of 10 degrees
|
||||
|
||||
%Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds.
|
||||
x_0_trans = [-1, -1, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0, ...
|
||||
0, 0, 0]'; %Redefine origin!
|
||||
|
||||
%Define Q and R for the cost function. Begin with nominal ones for all.
|
||||
Q = diag([1000, 1000, 1000, ... % x, y, z
|
||||
1, 1, 100, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
1, 1, 1]); % roll', pitch', yaw'
|
||||
|
||||
R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque
|
||||
%% Finite-Time Horizon LQR for Goal 1
|
||||
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:2;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
FiniteLQR_Goal_1_K = K;
|
||||
save('FiniteLQRGoal_1_K.mat', 'K');
|
||||
|
||||
%Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_up, K, discrete.A, discrete.B);
|
||||
%States are relative to origin, so we need to add the reference to the
|
||||
%state to get global coordinates
|
||||
xlqr(3,:) = xlqr(3,:) + 1;
|
||||
%Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
zd = diff(xlqr(6,:))./T_s;
|
||||
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_up);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '2')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
time = simout.allVals.Time(:,1);
|
||||
figure();
|
||||
plot(time, simout.z+1, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
|
||||
plot(time, xlqr(3,:), '-b','LineWidth', 1);
|
||||
xlabel('Time (s)');
|
||||
ylabel('Z (m)');
|
||||
legend({'Nonlinear Model', 'Linear Model'});
|
||||
|
||||
|
||||
|
||||
%% Finite-Time Horizon LQR for Goal 2
|
||||
Q = diag([0, 0, 0, ... % x, y, z
|
||||
0, 0, 0, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
10, 10, 1]); % roll', pitch', yaw'
|
||||
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:4;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
|
||||
%Pitch Goal
|
||||
%Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_pitchroll, K, discrete.A, discrete.B);
|
||||
|
||||
%Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
yd = diff(xlqr(5,:))./T_s
|
||||
pd = diff(xlqr(7,:))./T_s
|
||||
|
||||
%Propagate
|
||||
%[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_roll, K, discrete.A, discrete.B);
|
||||
|
||||
%Plot
|
||||
%plot_states(xlqr, tSpan);
|
||||
%xd = diff(xlqr(4,:))./T_s
|
||||
%rd = diff(xlqr(8,:))./T_s
|
||||
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_pitchroll);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '4')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
time = simout.allVals.Time(:,1);
|
||||
figure();
|
||||
plot(time, simout.roll, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
|
||||
plot(time, xlqr(8,:), '-b','LineWidth', 1);
|
||||
%plot(time, simout.roll, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
|
||||
xlabel('Time (s)');
|
||||
ylabel('Pitch/Roll Angle (rad)');
|
||||
legend({'Nonlinear Model', 'Linear Model'});
|
||||
|
||||
%% Finite-Time Horizon For Goal 3
|
||||
Q = diag([1000, 1000, 0, ... % x, y, z
|
||||
0, 0, 0, ... % x', y', z'
|
||||
200, 200, 1, ... % roll, pitch, yaw
|
||||
0, 0, 1]); % roll', pitch', yaw'
|
||||
%Calculate number of timesteps.
|
||||
tSpan = 0:T_s:5;
|
||||
nSteps = length(tSpan);
|
||||
|
||||
%Determine gains
|
||||
[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps);
|
||||
|
||||
%Pitch Goal
|
||||
%Propagate
|
||||
[ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0_trans, K, discrete.A, discrete.B);
|
||||
xlqr(1:2,:) = xlqr(1:2,:) + 1;
|
||||
|
||||
%Plot
|
||||
plot_states(xlqr, tSpan);
|
||||
|
||||
%Simulate nonlinear model
|
||||
[x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(x_0_trans);
|
||||
set_param('LQRNonlinearSim', 'StopTime', '5')
|
||||
simout = sim('LQRNonlinearSim', 'FixedStep', '.01');
|
||||
|
||||
time = simout.allVals.Time(:,1);
|
||||
figure();
|
||||
plot(time, simout.x+1, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
|
||||
plot(time, xlqr(1,:), '-b','LineWidth', 1);
|
||||
%plot(time, simout.roll, 'LineStyle', '--', 'color',[0 0.5 0], 'LineWidth', 2); hold on;
|
||||
xlabel('Time (s)');
|
||||
ylabel('x (m)');
|
||||
legend({'Nonlinear Model', 'Linear Model'});
|
||||
|
||||
%% Helper Functions
|
||||
|
||||
function [K, P] = LQR_LTI(A, B, Q, R, nSteps)
|
||||
%Set P up
|
||||
P = zeros(size(Q, 1), size(Q, 2), nSteps);
|
||||
%Initial value of P
|
||||
P(:, :, nSteps) = 1/2 * Q;
|
||||
%Set K up, initial K is 0, so this is fine.
|
||||
K = zeros(length(R), length(Q), nSteps);
|
||||
|
||||
for i = nSteps-1:-1:1
|
||||
P_ = P(:,:, i+1);
|
||||
|
||||
K(:, :, i) = ( 1/2 * R + B' * P_ * B )^(-1) * B' * P_ * A;
|
||||
P(:, :, i) = A' * P_ * ( A - B * K(:, :, i) ) + Q * 1/2;
|
||||
end
|
||||
end
|
||||
|
||||
function [ulqr, xlqr] = propagate(nInputs, nStates, nSteps, x_0, K, A, B)
|
||||
%Set up for propagation
|
||||
ulqr = zeros(nInputs, nSteps);
|
||||
xlqr = zeros(nStates, nSteps);
|
||||
xlqr(:, 1) = x_0;
|
||||
|
||||
for i = 1:(nSteps - 1)
|
||||
ulqr(:,i) = K(:,:,i) * xlqr(:,i);
|
||||
xlqr(:,i+1) = (A*xlqr(:, i) - B*ulqr(:, i));
|
||||
end
|
||||
end
|
||||
|
||||
function plot_states(xlqr, tSpan)
|
||||
figure();
|
||||
subplot(1, 2, 1);
|
||||
plot(tSpan, xlqr(1, :), '-r', 'LineWidth', 2);
|
||||
hold on;
|
||||
plot(tSpan, xlqr(2, :), '-g');
|
||||
plot(tSpan, xlqr(3, :), '-b');
|
||||
plot(tSpan, xlqr(4, :), '--r', 'LineWidth', 2);
|
||||
plot(tSpan, xlqr(5, :), '--g');
|
||||
plot(tSpan, xlqr(6, :), '--b');
|
||||
legend('x', 'y', 'z', 'x`', 'y`', 'z`');
|
||||
title("Translations(-) and Velocities (--)");
|
||||
xlabel("Time(s)");
|
||||
ylabel("Displacement (m)");
|
||||
|
||||
subplot(1, 2, 2);
|
||||
plot(tSpan, xlqr(7, :), '-r');
|
||||
hold on;
|
||||
plot(tSpan, xlqr(8, :), '-g');
|
||||
plot(tSpan, xlqr(9, :), '-b');
|
||||
plot(tSpan, xlqr(10, :), '--r');
|
||||
plot(tSpan, xlqr(11, :), '--g');
|
||||
plot(tSpan, xlqr(12, :), '--b');
|
||||
legend('Pitch (about x)', 'Roll (about y)', 'Yaw (about z)', 'Pitch Rate', 'Roll Rate', 'Yaw Rate');
|
||||
title("Angular Displacements(-) and Velocities(--)");
|
||||
xlabel("Time(s)");
|
||||
ylabel("Displacement (rad)");
|
||||
end
|
||||
|
||||
function [x0, y0, z0, xdot0, ydot0, zdot0, phi0, theta0, psi0, phidot0, thetadot0, psidot0] = unpack(X0)
|
||||
x0=X0(1); y0=X0(2); z0=X0(3); xdot0=X0(4); ydot0=X0(5); zdot0=X0(6); phi0=X0(7); theta0=X0(8); psi0=X0(9); phidot0=X0(10); thetadot0=X0(11); psidot0=X0(12);
|
||||
end
|
Reference in New Issue
Block a user