diff --git a/src/LQR.slx b/src/LQR.slx deleted file mode 100644 index c2fa0b4..0000000 Binary files a/src/LQR.slx and /dev/null differ diff --git a/src/LQRSim_Goal_1.slx b/src/LQRSim_Goal_1.slx new file mode 100644 index 0000000..6b0e09e Binary files /dev/null and b/src/LQRSim_Goal_1.slx differ diff --git a/src/LQR_Goal_1.m b/src/LQR_Goal_1.m new file mode 100644 index 0000000..fb5c6dc --- /dev/null +++ b/src/LQR_Goal_1.m @@ -0,0 +1,156 @@ +% Clear workspace +clear all; close all; clc; + +% Parameters source: https://sal.aalto.fi/publications/pdf-files/eluu11_public.pdf +g = 9.81; m = 0.468; Ix = 4.856*10^-3; +Iy = 4.856*10^-3; Iz = 8.801*10^-3; + +% States: +% X1: x X4: x' +% X2: y X5: y' +% X3: z X6: z' +% X7: Pitch angle (x-axis) X10: Pitch rate (x-axis) +% X8: Roll angle (y-axis) X11: Roll rate (y-axis) +% X9: Yaw angle (z-axis) X12: Yaw rate (z-axis) + +% Inputs: Outputs: +% U1: Total Upward Force (along z-axis) Y1: Position along x axis +% U2: Pitch Torque (about x-axis) Y2: Position along y axis +% U3: Roll Torque (about y-axis) Y3: Position along z axis +% U4: Yaw Torque (about z-axis) Y4: Pitch (about x-axis) +% Y5: Roll (about y-axis) +% Y6: Yaw (about z-axis) + +% State Space Source: https://arxiv.org/ftp/arxiv/papers/1908/1908.07401.pdf +% X' = Ax + Bu +% Y = Cx + +nStates = 12; +nInputs = 4; +nOutputs = 6; + +A = [0 0 0 1 0 0 0 0 0 0 0 0; + 0 0 0 0 1 0 0 0 0 0 0 0; + 0 0 0 0 0 1 0 0 0 0 0 0; + 0 0 0 0 0 0 0 -g 0 0 0 0; + 0 0 0 0 0 0 g 0 0 0 0 0; + 0 0 0 0 0 0 0 0 0 0 0 0; + 0 0 0 0 0 0 0 0 0 1 0 0; + 0 0 0 0 0 0 0 0 0 0 1 0; + 0 0 0 0 0 0 0 0 0 0 0 1; + 0 0 0 0 0 0 0 0 0 0 0 0; + 0 0 0 0 0 0 0 0 0 0 0 0; + 0 0 0 0 0 0 0 0 0 0 0 0]; + +% Note: In paper, 1/m is in wrong spot +B = [0 0 0 0; + 0 0 0 0; + 0 0 0 0; + 0 0 0 0; + 0 0 0 0; + 1/m 0 0 0; + 0 0 0 0; + 0 0 0 0; + 0 0 0 0; + 0 1/Ix 0 0; + 0 0 1/Iy 0; + 0 0 0 1/Iz]; + +C = [1 0 0 0 0 0 0 0 0 0 0 0; + 0 1 0 0 0 0 0 0 0 0 0 0; + 0 0 1 0 0 0 0 0 0 0 0 0; + 0 0 0 0 0 0 1 0 0 0 0 0; + 0 0 0 0 0 0 0 1 0 0 0 0; + 0 0 0 0 0 0 0 0 1 0 0 0]; + +D = zeros(6,4); + +continuous = ss(A, B, C, D); +T_s = 0.05; +discrete = c2d(continuous, T_s); + +%Check if this works +impulse(discrete, 0:T_s:1); + +%We should see that U1 gets us only translation in z, U2 couples Y2 and Y4, +%U3 couples Y1 and Y5, and U4 gets us Y6 + +%% Define goals +% Desired position +x_d = 0; +y_d = 0; +z_d = 0; + +%Goal 1: settle at 1m height <2s +x_0_up = [0, 0, -1, ... + 0, 0, 0, ... + 0, 0, 0, ... + 0, 0, 0]'; %Redefine origin! + +%Goal 2: Stabilize from a 10-degree roll and pitch with <3deg overshoot +x_0_pitch = [0, 0, 0, ... + 0, 0, 0, ... + 10, 0, 0, ... + 0, 0, 0]'; %Pitch of 10 degrees + +x_0_roll = [0, 0, 0, ... + 0, 0, 0, ... + 0, 10, 0, ... + 0, 0, 0]'; %Roll of 10 degrees + +%Goal 3: Move from position (0,0,0) to within 5 cm of (1,1,1) within 5 seconds. +x_0_trans = [-1, -1, -1, ... + 0, 0, 0, ... + 0, 0, 0, ... + 0, 0, 0]'; %Redefine origin! + +%Define Q and R for the cost function. Begin with nominal ones for all. +Q = diag([1000, 1000, 1000, ... % x, y, z + 1, 1, 100, ... % x', y', z' + 100, 100, 1, ... % roll, pitch, yaw + 1, 1, 1]); % roll', pitch', yaw' + +R = diag([10, 20, 20, 1]); % upward force, pitch torque, roll torque, yaw torque +%% Finite-Time Horizon LQR for Goal 1 + +%Calculate number of timesteps. +tSpan = 0:T_s:2; +nSteps = length(tSpan); + +%Determine gains +[K, P] = LQR_LTI(discrete.A, discrete.B, Q, R, nSteps); + +%Set up for propagation +ulqr = zeros(nInputs, nSteps); +xlqr = zeros(nStates, nSteps); +xlqr(:, 1) = x_0_up; + +for i = 1:(nSteps - 1) + ulqr(:,i) = K(:,:,i) * xlqr(:,i); + xlqr(:,i+1) = (A*xlqr(:, i) - B*ulqr(:, i)); +end + +figure(10); +hold on; +plot(tSpan, ulqr(1,:), 'b-'); +plot(tSpan, ulqr(2,:), 'r-'); +plot(tSpan, ulqr(3,:), 'g-'); +plot(tSpan, ulqr(4,:), 'y-'); + +%% Helper Functions + +function [K, P] = LQR_LTI(A, B, Q, R, nSteps) + %Set P up + P = zeros(size(Q, 1), size(Q, 2), nSteps); + %Initial value of P + P(:, :, nSteps) = 1/2 * Q; + %Set K up, initial K is 0, so this is fine. + K = zeros(length(R), length(Q), nSteps); + + for i = nSteps-1:-1:1 + P_ = P(:,:, i+1); + + K(:, :, i) = ( 1/2 * R + B' * P_ * B )^(-1) * B' * P_ * A; + P(:, :, i) = A' * P_ * ( A - B * K(:, :, i) ) + Q * 1/2; + end +end