Replaced flextile with flextile-deluxe, refactored monitor rules to support predetermined layouts per tag

This commit is contained in:
bakkeby
2019-09-30 23:52:51 +02:00
parent 44d2db84ae
commit 009819e186
15 changed files with 990 additions and 652 deletions

View File

@ -17,6 +17,7 @@ setcfact(const Arg *arg)
arrange(selmon);
}
#if BSTACK_LAYOUT || BSTACKHORIZ_LAYOUT || CENTEREDMASTER_LAYOUT || CENTEREDFLOATINGMASTER_LAYOUT || DECK_LAYOUT || TILE_LAYOUT || MONOCLE_LAYOUT
void
getfacts(Monitor *m, float *mf, float *sf)
{
@ -30,6 +31,7 @@ getfacts(Monitor *m, float *mf, float *sf)
else
sfacts += c->cfact;
}
*mf = mfacts; // total factor of master area
*sf = sfacts; // total factor of slave area
}
*mf = mfacts; // total factor of master area
*sf = sfacts; // total factor of slave area
}
#endif

View File

@ -1,2 +1,4 @@
#if BSTACK_LAYOUT || BSTACKHORIZ_LAYOUT || CENTEREDMASTER_LAYOUT || CENTEREDFLOATINGMASTER_LAYOUT || DECK_LAYOUT || TILE_LAYOUT || MONOCLE_LAYOUT
static void getfacts(Monitor *m, float *mf, float *sf);
#endif
static void setcfact(const Arg *arg);

View File

@ -1,13 +1,15 @@
static int combo = 0;
void
keyrelease(XEvent *e) {
keyrelease(XEvent *e)
{
combo = 0;
}
void
combotag(const Arg *arg) {
if(selmon->sel && arg->ui & TAGMASK) {
combotag(const Arg *arg)
{
if (selmon->sel && arg->ui & TAGMASK) {
if (combo) {
selmon->sel->tags |= arg->ui & TAGMASK;
} else {
@ -20,15 +22,21 @@ combotag(const Arg *arg) {
}
void
comboview(const Arg *arg) {
comboview(const Arg *arg)
{
unsigned newtags = arg->ui & TAGMASK;
if (combo) {
selmon->tagset[selmon->seltags] |= newtags;
} else {
selmon->seltags ^= 1; /*toggle tagset*/
combo = 1;
if (newtags)
if (newtags) {
#if PERTAG_PATCH
pertagview(&((Arg) { .ui = newtags }));
#else
selmon->tagset[selmon->seltags] = newtags;
#endif // PERTAG_PATCH
}
}
focus(NULL);
arrange(selmon);

658
patch/flextile-deluxe.c Normal file
View File

@ -0,0 +1,658 @@
typedef struct {
void (*arrange)(Monitor *, int, int, int, int, int, int, int);
} LayoutArranger;
typedef struct {
void (*arrange)(Monitor *, int, int, int, int, int, int, int, int, int);
} TileArranger;
static const LayoutArranger flexlayouts[] = {
{ layout_no_split },
{ layout_split_vertical },
{ layout_split_horizontal },
{ layout_split_centered_vertical },
{ layout_split_centered_horizontal },
{ layout_split_vertical_dual_stack },
{ layout_split_horizontal_dual_stack },
{ layout_floating_master },
{ layout_split_vertical_fixed },
{ layout_split_horizontal_fixed },
{ layout_split_centered_vertical_fixed },
{ layout_split_centered_horizontal_fixed },
{ layout_split_vertical_dual_stack_fixed },
{ layout_split_horizontal_dual_stack_fixed },
{ layout_floating_master_fixed },
};
static const TileArranger flextiles[] = {
{ arrange_top_to_bottom },
{ arrange_left_to_right },
{ arrange_monocle },
{ arrange_gapplessgrid },
{ arrange_gridmode },
{ arrange_horizgrid },
{ arrange_dwindle },
{ arrange_spiral },
};
static float
getfactsforrange(Monitor *m, int an, int ai)
{
int i;
float facts;
Client *c;
facts = 0;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++)
if (i >= ai && i < (ai + an))
#if CFACTS_PATCH
facts += c->cfact;
#else
facts += 1;
#endif // CFACTS_PATCH
return facts;
}
static void
layout_no_split(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, n, 0);
}
static void
layout_split_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (m->nmaster && n > m->nmaster) {
layout_split_vertical_fixed(m, x, y, h, w, ih, iv, n);
} else {
layout_no_split(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sw, sx;
sw = (w - iv) * (1 - m->mfact);
w = (w - iv) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sx = x;
x += sw + iv;
} else {
sx = x + w + iv;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, h, sw, ih, iv, n, n - m->nmaster, m->nmaster);
}
static void
layout_split_vertical_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) {
layout_split_vertical(m, x, y, h, w, ih, iv, n);
} else {
layout_split_vertical_dual_stack_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_vertical_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sh, sw, sx, oy, sc;
if (m->nstack)
sc = m->nstack;
else
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
sw = (w - iv) * (1 - m->mfact);
sh = (h - ih) / 2;
w = (w - iv) * m->mfact;
oy = y + sh + ih;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sx = x;
x += sw + iv;
} else {
sx = x + w + iv;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, sh, sw, ih, iv, n, sc, m->nmaster);
(&flextiles[m->ltaxis[STACK2]])->arrange(m, sx, oy, sh, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc);
}
static void
layout_split_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (m->nmaster && n > m->nmaster) {
layout_split_horizontal_fixed(m, x, y, h, w, ih, iv, n);
} else {
layout_no_split(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sh, sy;
sh = (h - ih) * (1 - m->mfact);
h = (h - ih) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sy = y;
y += sh + ih;
} else {
sy = y + h + ih;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, w, ih, iv, n, n - m->nmaster, m->nmaster);
}
static void
layout_split_horizontal_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) {
layout_split_horizontal(m, x, y, h, w, ih, iv, n);
} else {
layout_split_horizontal_dual_stack_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_horizontal_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sh, sy, ox, sc;
if (m->nstack)
sc = m->nstack;
else
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
sh = (h - ih) * (1 - m->mfact);
h = (h - ih) * m->mfact;
sw = (w - iv) / 2;
ox = x + sw + iv;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sy = y;
y += sh + ih;
} else {
sy = y + h + ih;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, sw, ih, iv, n, sc, m->nmaster);
(&flextiles[m->ltaxis[STACK2]])->arrange(m, ox, sy, sh, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc);
}
static void
layout_split_centered_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) {
layout_split_vertical(m, x, y, h, w, ih, iv, n);
} else {
layout_split_centered_vertical_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_centered_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sw, sx, ox, sc;
if (m->nstack)
sc = m->nstack;
else
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
sw = (w - 2*iv) * (1 - m->mfact) / 2;
w = (w - 2*iv) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sx = x;
x += sw + iv;
ox = x + w + iv;
} else {
ox = x;
x += sw + iv;
sx = x + w + iv;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, sx, y, h, sw, ih, iv, n, sc, m->nmaster);
(&flextiles[m->ltaxis[STACK2]])->arrange(m, ox, y, h, sw, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc);
}
static void
layout_split_centered_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else if (n <= m->nmaster + (m->nstack ? m->nstack : 1)) {
layout_split_horizontal(m, x, y, h, w, ih, iv, n);
} else {
layout_split_centered_horizontal_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_split_centered_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int sh, sy, oy, sc;
if (m->nstack)
sc = m->nstack;
else
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
sh = (h - 2*ih) * (1 - m->mfact) / 2;
h = (h - 2*ih) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) { // mirror
sy = y;
y += sh + ih;
oy = y + h + ih;
} else {
oy = y;
y += sh + ih;
sy = y + h + ih;
}
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, h, w, ih, iv, n, m->nmaster, 0);
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, sy, sh, w, ih, iv, n, sc, m->nmaster);
(&flextiles[m->ltaxis[STACK2]])->arrange(m, x, oy, sh, w, ih, iv, n, n - m->nmaster - sc, m->nmaster + sc);
}
static void
layout_floating_master(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
/* Split master into master + stack if we have enough clients */
if (!m->nmaster || n <= m->nmaster) {
layout_no_split(m, x, y, h, w, ih, iv, n);
} else {
layout_floating_master_fixed(m, x, y, h, w, ih, iv, n);
}
}
static void
layout_floating_master_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n)
{
int mh, mw;
/* Draw stack area first */
(&flextiles[m->ltaxis[STACK]])->arrange(m, x, y, h, w, ih, iv, n, n - m->nmaster, m->nmaster);
if (w > h) {
mw = w * m->mfact;
mh = h * 0.9;
} else {
mw = w * 0.9;
mh = h * m->mfact;
}
x += (w - mw) / 2;
y += (h - mh) / 2;
(&flextiles[m->ltaxis[MASTER]])->arrange(m, x, y, mh, mw, ih, iv, n, m->nmaster, 0);
}
static void
arrange_left_to_right(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i;
float facts, fact = 1;
Client *c;
w -= iv * (an - 1);
facts = getfactsforrange(m, an, ai);
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
#if CFACTS_PATCH
fact = c->cfact;
#endif // CFACTS_PATCH
resize(c, x, y, w * (fact / facts) - (2*c->bw), h - (2*c->bw), 0);
x += WIDTH(c) + iv;
}
}
}
static void
arrange_top_to_bottom(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i;
float facts, fact = 1;
Client *c;
h -= ih * (an - 1);
facts = getfactsforrange(m, an, ai);
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
#if CFACTS_PATCH
fact = c->cfact;
#endif // CFACTS_PATCH
resize(c, x, y, w - (2*c->bw), h * (fact / facts) - (2*c->bw), 0);
y += HEIGHT(c) + ih;
}
}
}
static void
arrange_monocle(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i;
Client *c;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++)
if (i >= ai && i < (ai + an))
resize(c, x, y, w - (2*c->bw), h - (2*c->bw), 0);
}
static void
arrange_gridmode(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i, cols, rows, ch, cw, cx, cy; // counters
Client *c;
/* grid dimensions */
for (rows = 0; rows <= an/2; rows++)
if (rows*rows >= an)
break;
cols = (rows && (rows - 1) * rows >= an) ? rows - 1 : rows;
/* window geoms (cell height/width) */
ch = (h - ih * (rows - 1)) / (rows ? rows : 1);
cw = (w - iv * (cols - 1)) / (cols ? cols : 1);
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
cx = x + ((i - ai) / rows) * (cw + iv);
cy = y + ((i - ai) % rows) * (ch + ih);
resize(c, cx, cy, cw - 2*c->bw, ch - 2*c->bw, False);
}
}
}
static void
arrange_horizgrid(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int ntop, nbottom, i;
Client *c;
/* Exception when there is only one client; don't split into two rows */
if (an == 1) {
arrange_monocle(m, x, y, h, w, ih, iv, n, an, ai);
return;
}
ntop = an / 2;
nbottom = an - ntop;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
if ((i - ai) < ntop)
resize(
c,
x + (i - ai) * ((w - iv*(ntop - 1)) / ntop + iv),
y,
(w - iv*(ntop - 1)) / ntop - (2*c->bw),
(h - ih) / 2 - (2*c->bw),
False
);
else
resize(
c,
x + (i - ai - ntop) * ((w - iv*(nbottom - 1)) / nbottom + iv),
y + ih + (h - ih) / 2,
(w - iv*(nbottom - 1)) / nbottom - (2*c->bw),
(h - ih) / 2 - (2*c->bw),
False
);
}
}
}
static void
arrange_gapplessgrid(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
int i, cols, rows, cn, rn, cc; // counters
Client *c;
/* grid dimensions */
for (cols = 1; cols <= an/2; cols++)
if (cols*cols >= an)
break;
if (an == 5) /* set layout against the general calculation: not 1:2:2, but 2:3 */
cols = 2;
rows = an/cols;
cn = rn = cc = 0; // reset cell no, row no, client count
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i >= ai && i < (ai + an)) {
if (cc/rows + 1 > cols - an%cols)
rows = an/cols + 1;
resize(c,
x + cn*((w - iv*(cols - 1)) / cols + iv),
y + rn*((h - ih*(rows - 1)) / rows + ih),
(w - iv*(cols - 1)) / cols,
(h - ih*(rows - 1)) / rows,
0);
rn++;
cc++;
if (rn >= rows) {
rn = 0;
cn++;
}
}
}
}
static void
arrange_fibonacci(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai, int s)
{
int i, j, nx = x, ny = y, nw = w, nh = h, r = 1;
Client *c;
for (i = 0, j = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), j++) {
if (j >= ai && j < (ai + an)) {
if (r) {
if ((i % 2 && ((nh - ih) / 2) <= (20 + 2*c->bw)) || (!(i % 2) && ((nw - iv) / 2) <= (20 + 2*c->bw))) {
r = 0;
}
if (r && i < an - 1) {
if (i % 2)
nh = (nh - ih) / 2;
else
nw = (nw - iv) / 2;
if ((i % 4) == 2 && !s)
nx += nw + iv;
else if ((i % 4) == 3 && !s)
ny += nh + ih;
}
if ((i % 4) == 0) {
if (s)
ny += nh + ih;
else
ny -= nh + ih;
}
else if ((i % 4) == 1)
nx += nw + iv;
else if ((i % 4) == 2)
ny += nh + ih;
else if ((i % 4) == 3) {
if (s)
nx += nw + iv;
else
nx -= nw + iv;
}
if (i == 0) {
if (an != 1)
nw = (w - iv) * m->mfact;
ny = y;
}
else if (i == 1)
nw = w - nw - iv;
i++;
}
resize(c, nx, ny, nw - 2 * c->bw, nh - 2 * c->bw, False);
}
}
}
static void
arrange_dwindle(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
arrange_fibonacci(m, x, y, h, w, ih, iv, n, an, ai, 1);
}
static void
arrange_spiral(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n, int an, int ai)
{
arrange_fibonacci(m, x, y, h, w, ih, iv, n, an, ai, 0);
}
static void
flextile(Monitor *m)
{
unsigned int n;
int oh = 0, ov = 0, ih = 0, iv = 0; // gaps outer/inner horizontal/vertical
#if VANITYGAPS_PATCH
getgaps(m, &oh, &ov, &ih, &iv, &n);
#else
Client *c;
for (n = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), n++);
#endif // VANITYGAPS_PATCH
if (m->lt[m->sellt]->preset.layout != m->ltaxis[LAYOUT] ||
m->lt[m->sellt]->preset.masteraxis != m->ltaxis[MASTER] ||
m->lt[m->sellt]->preset.stack1axis != m->ltaxis[STACK] ||
m->lt[m->sellt]->preset.stack2axis != m->ltaxis[STACK2])
setflexsymbols(m, n);
else if (m->lt[m->sellt]->preset.symbolfunc != NULL)
m->lt[m->sellt]->preset.symbolfunc(m, n);
if (n == 0)
return;
#if VANITYGAPS_PATCH
/* No outer gap if full screen monocle */
if (abs(m->ltaxis[MASTER]) == MONOCLE && (abs(m->ltaxis[LAYOUT]) == NO_SPLIT || n <= m->nmaster)) {
oh = 0;
ov = 0;
}
#endif // VANITYGAPS_PATCH
(&flexlayouts[abs(m->ltaxis[LAYOUT])])->arrange(m, m->wx + ov, m->wy + oh, m->wh - 2*oh, m->ww - 2*ov, ih, iv, n);
return;
}
static void
setflexsymbols(Monitor *m, unsigned int n)
{
int l;
char sym1, sym2, sym3;
Client *c;
if (n == 0)
for (c = nexttiled(m->clients); c; c = nexttiled(c->next), n++);
l = abs(m->ltaxis[LAYOUT]);
if (m->ltaxis[MASTER] == MONOCLE && (l == NO_SPLIT || !m->nmaster || n <= m->nmaster)) {
monoclesymbols(m, n);
return;
}
if (m->ltaxis[STACK] == MONOCLE && (l == SPLIT_VERTICAL || l == SPLIT_HORIZONTAL_FIXED)) {
decksymbols(m, n);
return;
}
/* Layout symbols */
if (l == NO_SPLIT || !m->nmaster) {
sym1 = sym2 = sym3 = (int)tilesymb[m->ltaxis[MASTER]];
} else {
sym2 = layoutsymb[l];
if (m->ltaxis[LAYOUT] < 0) {
sym1 = tilesymb[m->ltaxis[STACK]];
sym3 = tilesymb[m->ltaxis[MASTER]];
} else {
sym1 = tilesymb[m->ltaxis[MASTER]];
sym3 = tilesymb[m->ltaxis[STACK]];
}
}
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", sym1, sym2, sym3);
}
static void
monoclesymbols(Monitor *m, unsigned int n)
{
if (n > 0)
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[%d]", n);
else
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[M]");
}
static void
decksymbols(Monitor *m, unsigned int n)
{
if (n > m->nmaster)
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[]%d", n);
else
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[D]");
}
/* Mirror layout axis for flextile */
void
mirrorlayout(const Arg *arg)
{
if (!selmon->lt[selmon->sellt]->arrange)
return;
selmon->ltaxis[LAYOUT] *= -1;
#if PERTAG_PATCH
selmon->pertag->ltaxis[selmon->pertag->curtag][0] = selmon->ltaxis[LAYOUT];
#endif // PERTAG_PATCH
arrange(selmon);
}
/* Rotate layout axis for flextile */
void
rotatelayoutaxis(const Arg *arg)
{
if (!selmon->lt[selmon->sellt]->arrange)
return;
if (arg->i == 0) {
if (selmon->ltaxis[LAYOUT] >= 0)
selmon->ltaxis[LAYOUT] = selmon->ltaxis[LAYOUT] + 1 >= LAYOUT_LAST ? 0 : selmon->ltaxis[LAYOUT] + 1;
else
selmon->ltaxis[LAYOUT] = selmon->ltaxis[LAYOUT] - 1 <= -LAYOUT_LAST ? -0 : selmon->ltaxis[LAYOUT] - 1;
} else
selmon->ltaxis[arg->i] = selmon->ltaxis[arg->i] + 1 >= AXIS_LAST ? 0 : selmon->ltaxis[arg->i] + 1;
#if PERTAG_PATCH
selmon->pertag->ltaxis[selmon->pertag->curtag][arg->i] = selmon->ltaxis[arg->i];
#endif // PERTAG_PATCH
arrange(selmon);
setflexsymbols(selmon, 0);
}
void
incnstack(const Arg *arg)
{
#if PERTAG_PATCH
selmon->nstack = selmon->pertag->nstacks[selmon->pertag->curtag] = MAX(selmon->nstack + arg->i, 0);
#else
selmon->nstack = MAX(selmon->nstack + arg->i, 0);
#endif // PERTAG_PATCH
arrange(selmon);
}

107
patch/flextile-deluxe.h Normal file
View File

@ -0,0 +1,107 @@
static void flextile(Monitor *m);
static void mirrorlayout(const Arg *arg);
static void rotatelayoutaxis(const Arg *arg);
static void incnstack(const Arg *arg);
/* Symbol handlers */
static void setflexsymbols(Monitor *m, unsigned int n);
static void monoclesymbols(Monitor *m, unsigned int n);
static void decksymbols(Monitor *m, unsigned int n);
/* Layout split */
static void layout_no_split(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_vertical_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_horizontal_dual_stack(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_centered_vertical(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_centered_horizontal(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_floating_master(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_vertical_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_horizontal_dual_stack_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_centered_vertical_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_split_centered_horizontal_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
static void layout_floating_master_fixed(Monitor *m, int x, int y, int h, int w, int ih, int iv, int n);
/* Layout tile arrangements */
static void arrange_left_to_right(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_top_to_bottom(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_monocle(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_gapplessgrid(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_gridmode(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_horizgrid(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_dwindle(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
static void arrange_spiral(Monitor *m, int ax, int ay, int ah, int aw, int ih, int iv, int n, int an, int ai);
/* Named flextile constants */
enum {
LAYOUT, // controls overall layout arrangement / split
MASTER, // indicates the tile arrangement for the master area
STACK, // indicates the tile arrangement for the stack area
STACK2, // indicates the tile arrangement for the secondary stack area
LTAXIS_LAST,
};
/* Layout arrangements */
enum {
NO_SPLIT,
SPLIT_VERTICAL, // master stack vertical split
SPLIT_HORIZONTAL, // master stack horizontal split
SPLIT_CENTERED_VERTICAL, // centered master vertical split
SPLIT_CENTERED_HORIZONTAL, // centered master horizontal split
SPLIT_VERTICAL_DUAL_STACK, // master stack vertical split with dual stack
SPLIT_HORIZONTAL_DUAL_STACK, // master stack vertical split with dual stack
FLOATING_MASTER, // (fake) floating master
SPLIT_VERTICAL_FIXED, // master stack vertical fixed split
SPLIT_HORIZONTAL_FIXED, // master stack horizontal fixed split
SPLIT_CENTERED_VERTICAL_FIXED, // centered master vertical fixed split
SPLIT_CENTERED_HORIZONTAL_FIXED, // centered master horizontal fixed split
SPLIT_VERTICAL_DUAL_STACK_FIXED, // master stack vertical split with fixed dual stack
SPLIT_HORIZONTAL_DUAL_STACK_FIXED, // master stack vertical split with fixed dual stack
FLOATING_MASTER_FIXED, // (fake) fixed floating master
LAYOUT_LAST,
};
static char layoutsymb[] = {
32, // " ",
124, // "|",
61, // "=",
94, // "^",
126, // "~",
58, // ":",
59, // ";",
43, // "+",
124, // "¦",
61, // "=",
94, // "^",
126, // "~",
58, // ":",
59, // ";",
43, // "+",
};
/* Tile arrangements */
enum {
TOP_TO_BOTTOM, // clients are stacked vertically
LEFT_TO_RIGHT, // clients are stacked horizontally
MONOCLE, // clients are stacked in deck / monocle mode
GAPPLESSGRID, // clients are stacked in a gappless grid
GRIDMODE, // clients are stacked in a grid
HORIZGRID, // clients are stacked in a grid
DWINDLE, // clients are stacked in fibonacci dwindle mode
SPIRAL, // clients are stacked in fibonacci spiral mode
AXIS_LAST,
};
static char tilesymb[] = {
61, // "=",
124, // "|",
68, // "D",
35, // "#",
35, // "#",
35, // "#",
92, // "\\",
64, // "@",
};

View File

@ -1,520 +0,0 @@
/*
* Set predefined flextile layout.
*
* The arg int value is a binary representation of the setup where certain bits have different
* meanings, similar to how Linux permissions work.
*
* The first two bits represents the stack axis, bits 3 and 4 the master axis. Bits 5 and 6
* are used to control the layout while bit 7 indicates whether or not the layout is mirrored.
* The 8th bit is reserved while bit 9 through 12 control nmaster with up to 15 clients in the
* master stack.
*
* Bitwise layout:
*
* 0000 (nmaster: 0-15 = clients in master stack)
* 0 (reserved)
* 0 (orientation: 0 = normal, 1 = mirror)
* 00 (layout: 00 = vertical, 01 = horizontal, 10 = centered (vert), 11 = centered (horz))
* 00 (master axis: 00 = left to right, 01 = top to bottom, 10 = monocle, 11 = grid)
* 00 (stack axis: 00 = left to right, 01 = top to bottom, 10 = monocle, 11 = grid)
*
* Examples:
* binary int layout
* --------------------------
* 000000000110 6 monocle
* 000100000110 262 deck layout
* 000100010000 272 bstack layout
* 000100010001 273 bstackhoriz layout
* 000000000111 7 grid layout
* 000100000101 261 default tile layout
* 000100100101 293 centered master
* 000100000111 263 default tile layout with grid stack
* 000100000001 257 columns (col) layout
*/
void
setflexlayout(const Arg *arg)
{
int i;
/* Find flextile layout */
for (i = 0; i < LENGTH(layouts); i++)
if (layouts[i].arrange == flextile)
break;
selmon->nmaster = ((arg->i & 0x0F00) >> 8);
selmon->ltaxis[0] = (1 + ((arg->i & 0x30) >> 4)) * (arg->i & 0x40 ? -1 : 1);
selmon->ltaxis[1] = 1 + ((arg->i & 0xC) >> 2);
selmon->ltaxis[2] = 1 + (arg->i & 0x3);
#if PERTAG_PATCH
selmon->pertag->nmasters[selmon->pertag->curtag] = selmon->nmaster;
selmon->pertag->ltaxes[selmon->pertag->curtag][0] = selmon->ltaxis[0];
selmon->pertag->ltaxes[selmon->pertag->curtag][1] = selmon->ltaxis[1];
selmon->pertag->ltaxes[selmon->pertag->curtag][2] = selmon->ltaxis[2];
#endif
setlayout(&((Arg) { .v = &layouts[i] }));
}
#if VANITYGAPS_PATCH
static void
flextile(Monitor *m)
{
unsigned int i, n, nc = 0, sc = 0, lt, cn = 0, rn = 0, cc = 0; // counters
int cols = 1, rows = 1;
int x, y, h, w; // master x, y, height, width
int sx, sy, sh, sw; // stack x, y, height, width
int ox, oy; // other stack x, y (centered layout)
int oh, ov, ih, iv; // gaps outer/inner horizontal/vertical
float facts, sfacts, ofacts;
Client *c;
getgaps(m, &oh, &ov, &ih, &iv, &n);
setflexsymbols(m, n);
if (n == 0)
return;
/* No outer gap if full screen monocle */
if ((!m->nmaster && m->ltaxis[STACK] == MONOCLE) || (n <= m->nmaster && m->ltaxis[MASTER] == MONOCLE)) {
ox = sx = x = m->wx;
oy = sy = y = m->wy;
sh = h = m->wh;
sw = w = m->ww;
} else {
ox = sx = x = m->wx + ov;
oy = sy = y = m->wy + oh;
sh = h = m->wh - 2*oh;
sw = w = m->ww - 2*ov;
}
sc = n - m->nmaster;
#if CFACTS_PATCH
getfacts(m, &facts, &sfacts);
ofacts = sfacts;
#else
facts = MIN(n, m->nmaster);
ofacts = sfacts = sc;
#endif // CFACTS_PATCH
/* Split master into master + stack if we have enough clients */
if (m->nmaster && n > m->nmaster) {
if (abs(m->ltaxis[LAYOUT]) == SPLIT_VERTICAL
|| (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V && n == m->nmaster + 1)) {
sw = (w - iv) * (1 - m->mfact);
w = (w - iv) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) // mirror
x = sx + sw + iv;
else
sx = x + w + iv;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL
|| (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H && n == m->nmaster + 1)) {
sh = (h - ih) * (1 - m->mfact);
h = (h - ih) * m->mfact;
if (m->ltaxis[LAYOUT] < 0) // mirror
y = sy + sh + ih;
else
sy = y + h + ih;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V) {
sw = (w - 2*iv) * (1 - m->mfact) / 2;
w = (w - 2*iv) * m->mfact;
x = sx + sw + iv;
if (m->ltaxis[LAYOUT] < 0) // mirror
ox = x + w + iv;
else
sx = x + w + iv;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
sh = (h - 2*ih) * (1 - m->mfact) / 2;
h = (h - 2*ih) * m->mfact;
y = sy + sh + ih;
if (m->ltaxis[LAYOUT] < 0) // mirror
oy = y + h + ih;
else
sy = y + h + ih;
}
if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V || abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
facts = sfacts = ofacts = 0;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
#if CFACTS_PATCH
if (i < m->nmaster)
facts += c->cfact; // total factor of master area
else if (sc && i < m->nmaster + sc)
sfacts += c->cfact; // total factor of first stack area
else
ofacts += c->cfact; // total factor of second stack area
#else
if (i < m->nmaster)
facts += 1;
else if (sc && i < m->nmaster + sc)
sfacts += 1;
else
ofacts += 1;
#endif // CFACTS_PATCH
}
}
}
for (i = 0, lt = MASTER, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i == 0 || (m->nmaster && i == m->nmaster) || i == (m->nmaster + sc)) {
nc = MIN(n, m->nmaster);
if (!m->nmaster || i == m->nmaster) { // switch to stack area
x = sx, y = sy, h = sh, w = sw, facts = sfacts, lt = STACK;
nc = sc;
} else if (i > 0 && i == (m->nmaster + sc)) { // switch to second stack area
x = ox, y = oy, h = sh, w = sw, nc = n - i, facts = ofacts;
}
if (m->ltaxis[lt] == LEFT_TO_RIGHT)
w -= iv * (nc - 1);
else if (m->ltaxis[lt] == TOP_TO_BOTTOM)
h -= ih * (nc - 1);
else if (m->ltaxis[lt] == GRID) {
/* grid dimensions */
for (cols = 1; cols <= nc/2; cols++)
if (cols*cols >= nc)
break;
if (nc == 5) /* set layout against the general calculation: not 1:2:2, but 2:3 */
cols = 2;
rows = nc/cols;
cn = rn = cc = 0; // reset cell no, row no, client count
}
}
if (m->ltaxis[lt] == LEFT_TO_RIGHT) {
#if CFACTS_PATCH
resize(c, x, y, w * (c->cfact / facts) - (2*c->bw), h - (2*c->bw), 0);
#else
resize(c, x, y, w / facts - (2*c->bw), h - (2*c->bw), 0);
#endif // CFACTS_PATCH
x = x + WIDTH(c) + iv;
} else if (m->ltaxis[lt] == TOP_TO_BOTTOM) {
#if CFACTS_PATCH
resize(c, x, y, w - (2*c->bw), h * (c->cfact / facts) - (2*c->bw), 0);
#else
resize(c, x, y, w - (2*c->bw), h / facts - (2*c->bw), 0);
#endif // CFACTS_PATCH
y = y + HEIGHT(c) + ih;
} else if (m->ltaxis[lt] == MONOCLE) {
resize(c, x, y, w - (2*c->bw), h - (2*c->bw), 0);
} else if (m->ltaxis[lt] == GRID) {
if (cc/rows + 1 > cols - nc%cols)
rows = nc/cols + 1;
resize(c,
x + cn*((w - iv*(cols - 1)) / cols + iv),
y + rn*((h - ih*(rows - 1)) / rows + ih),
(w - iv*(cols - 1)) / cols,
(h - ih*(rows - 1)) / rows,
0);
rn++;
cc++;
if (rn >= rows) {
rn = 0;
cn++;
}
}
}
}
#else
static void
flextile(Monitor *m)
{
unsigned int i, n, nc = 0, sc = 0, lt, cn = 0, rn = 0, cc = 0; // counters
int cols = 1, rows = 1;
int x, y, h, w; // master x, y, height, width
int sx, sy, sh, sw; // stack x, y, height, width
int ox, oy; // other stack x, y (centered layout)
float facts, sfacts, ofacts;
Client *c;
for (n = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), n++);
setflexsymbols(m, n);
if (n == 0)
return;
ox = sx = x = m->wx;
oy = sy = y = m->wy;
sh = h = m->wh;
sw = w = m->ww;
sc = n - m->nmaster;
#if CFACTS_PATCH
getfacts(m, &facts, &sfacts);
ofacts = sfacts;
#else
facts = MIN(n, m->nmaster);
ofacts = sfacts = sc;
#endif // CFACTS_PATCH
/* Split master into master + stack if we have enough clients */
if (m->nmaster && n > m->nmaster) {
if (abs(m->ltaxis[LAYOUT]) == SPLIT_VERTICAL
|| (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V && n == m->nmaster + 1)) {
sw = w * (1 - m->mfact);
w = w * m->mfact;
if (m->ltaxis[LAYOUT] < 0) // mirror
x = sx + sw;
else
sx = x + w;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL
|| (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H && n == m->nmaster + 1)) {
sh = h * (1 - m->mfact);
h = h * m->mfact;
if (m->ltaxis[LAYOUT] < 0) // mirror
y = sy + sh;
else
sy = y + h;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V) {
sw = w * (1 - m->mfact) / 2;
w = w * m->mfact;
x = sx + sw;
if (m->ltaxis[LAYOUT] < 0) // mirror
ox = x + w;
else
sx = x + w;
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
sh = h * (1 - m->mfact) / 2;
h = h * m->mfact;
y = sy + sh;
if (m->ltaxis[LAYOUT] < 0) // mirror
oy = y + h;
else
sy = y + h;
}
if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V || abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
sc = (n - m->nmaster) / 2 + ((n - m->nmaster) % 2 > 0 ? 1 : 0);
facts = sfacts = ofacts = 0;
for (i = 0, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
#if CFACTS_PATCH
if (i < m->nmaster)
facts += c->cfact; // total factor of master area
else if (sc && i < m->nmaster + sc)
sfacts += c->cfact; // total factor of first stack area
else
ofacts += c->cfact; // total factor of second stack area
#else
if (i < m->nmaster)
facts += 1;
else if (sc && i < m->nmaster + sc)
sfacts += 1;
else
ofacts += 1;
#endif // CFACTS_PATCH
}
}
}
for (i = 0, lt = MASTER, c = nexttiled(m->clients); c; c = nexttiled(c->next), i++) {
if (i == 0 || (m->nmaster && i == m->nmaster) || i == (m->nmaster + sc)) {
nc = MIN(n, m->nmaster);
if (!m->nmaster || i == m->nmaster) { // switch to stack area
x = sx, y = sy, h = sh, w = sw, facts = sfacts, lt = STACK;
nc = sc;
} else if (i > 0 && i == (m->nmaster + sc)) { // switch to second stack area
x = ox, y = oy, h = sh, w = sw, nc = n - i, facts = ofacts;
}
if (m->ltaxis[lt] == GRID) {
/* grid dimensions */
for (cols = 1; cols <= nc/2; cols++)
if (cols*cols >= nc)
break;
if (nc == 5) /* set layout against the general calculation: not 1:2:2, but 2:3 */
cols = 2;
rows = nc/cols;
cn = rn = cc = 0; // reset cell no, row no, client count
}
}
if (m->ltaxis[lt] == LEFT_TO_RIGHT) {
#if CFACTS_PATCH
resize(c, x, y, w * (c->cfact / facts) - (2*c->bw), h - (2*c->bw), 0);
#else
resize(c, x, y, w / facts - (2*c->bw), h - (2*c->bw), 0);
#endif // CFACTS_PATCH
x = x + WIDTH(c);
} else if (m->ltaxis[lt] == TOP_TO_BOTTOM) {
#if CFACTS_PATCH
resize(c, x, y, w - (2*c->bw), h * (c->cfact / facts) - (2*c->bw), 0);
#else
resize(c, x, y, w - (2*c->bw), h / facts - (2*c->bw), 0);
#endif // CFACTS_PATCH
y = y + HEIGHT(c);
} else if (m->ltaxis[lt] == MONOCLE) {
resize(c, x, y, w - (2*c->bw), h - (2*c->bw), 0);
} else if (m->ltaxis[lt] == GRID) {
if (cc/rows + 1 > cols - nc%cols)
rows = nc/cols + 1;
resize(c,
x + cn * (w / cols),
y + rn * (h / rows),
w / cols,
h / rows,
0);
rn++;
cc++;
if (rn >= rows) {
rn = 0;
cn++;
}
}
}
}
#endif
static void
setflexsymbols(Monitor *m, unsigned int n)
{
char sym1 = 61, sym2 = 93, sym3 = 61, sym = 0;
/* Predefined layouts */
/* bstack */
if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL && m->ltaxis[MASTER] == LEFT_TO_RIGHT && m->ltaxis[STACK] == LEFT_TO_RIGHT) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, (m->ltaxis[LAYOUT] < 0 ? "⚍⚍⚍" : "⚎⚎⚎"));
return;
}
/* bstackhoriz */
if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL && m->ltaxis[MASTER] == LEFT_TO_RIGHT && m->ltaxis[STACK] == TOP_TO_BOTTOM) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, (m->ltaxis[LAYOUT] < 0 ? "☳☳☳" : "☶☶☶"));
return;
}
/* centered master horizontal split */
if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H && m->ltaxis[MASTER] == TOP_TO_BOTTOM && m->ltaxis[STACK] == TOP_TO_BOTTOM) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "☰☰☰");
return;
}
if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H && m->ltaxis[MASTER] == LEFT_TO_RIGHT && m->ltaxis[STACK] == LEFT_TO_RIGHT) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "☵☵☵");
return;
}
/* monocle */
if (n <= 1 && ((!m->nmaster && m->ltaxis[STACK] == MONOCLE) || (n <= m->nmaster && m->ltaxis[MASTER] == MONOCLE))) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "[M]");
return;
}
/* Layout symbols */
if (abs(m->ltaxis[LAYOUT]) == SPLIT_VERTICAL) {
if (m->nmaster > 1 || m->ltaxis[MASTER] == MONOCLE)
sym2 = 124; // |
else if (m->ltaxis[LAYOUT] < 0)
sym2 = 91; // [
else
sym2 = 93; // ]
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_HORIZONTAL) {
if (m->nmaster > 1 || m->ltaxis[MASTER] == MONOCLE)
sym2 = 58; // :
else if (m->ltaxis[LAYOUT] < 0)
sym2 = 91; // [
else
sym2 = 93; // ]
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_V) {
if (m->ltaxis[LAYOUT] < 0)
sym2 = 87; // W
else
sym2 = 77; // M
} else if (abs(m->ltaxis[LAYOUT]) == SPLIT_CENTERED_H) {
if (m->ltaxis[LAYOUT] < 0)
sym2 = 87; // W
else
sym2 = 77; // M
}
if (m->ltaxis[MASTER] == LEFT_TO_RIGHT)
sym1 = 124; // | ⏸
else if (m->ltaxis[MASTER] == TOP_TO_BOTTOM)
sym1 = 61; // =
else if (m->ltaxis[MASTER] == MONOCLE)
sym1 = MIN(n, m->nmaster);
else if (m->ltaxis[MASTER] == GRID)
sym1 = 35; // #
if (m->ltaxis[STACK] == LEFT_TO_RIGHT)
sym3 = 124; // |
else if (m->ltaxis[STACK] == TOP_TO_BOTTOM)
sym3 = 61; // =
else if (m->ltaxis[STACK] == MONOCLE)
sym3 = n - m->nmaster;
else if (m->ltaxis[STACK] == GRID)
sym3 = 35; // #
/* Generic symbols */
if (!m->nmaster) {
if (m->ltaxis[STACK] == MONOCLE) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%d%c", 91, sym3, 93);
} else {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", sym3, sym3, sym3);
}
return;
}
if (n <= m->nmaster) {
if (m->ltaxis[MASTER] == MONOCLE) {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%d%c", 91, sym1, 93);
} else {
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", 91, sym1, 93);
}
} else {
if (m->ltaxis[LAYOUT] < 0) {
sym = sym1;
sym1 = sym3;
sym3 = sym;
}
if (m->nmaster == 1 && abs(m->ltaxis[LAYOUT]) <= SPLIT_HORIZONTAL && m->ltaxis[MASTER] != MONOCLE) {
if (m->ltaxis[LAYOUT] > 0)
sym1 = 91;
else
sym3 = 93;
}
if (m->ltaxis[MASTER] == MONOCLE && m->ltaxis[STACK] == MONOCLE)
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%d%c%d", sym1, sym2, sym3);
else if ((m->nmaster && m->ltaxis[MASTER] == MONOCLE && m->ltaxis[LAYOUT] > 0) || (m->ltaxis[STACK] == MONOCLE && m->ltaxis[LAYOUT] < 0))
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%d%c%c", sym1, sym2, sym3);
else if ((m->ltaxis[STACK] == MONOCLE && m->ltaxis[LAYOUT] > 0) || (m->nmaster && m->ltaxis[MASTER] == MONOCLE && m->ltaxis[LAYOUT] < 0))
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%d", sym1, sym2, n - m->nmaster);
else
snprintf(m->ltsymbol, sizeof m->ltsymbol, "%c%c%c", sym1, sym2, sym3);
}
}
/* Mirror layout axis for flextile */
void
mirrorlayout(const Arg *arg)
{
if (!selmon->lt[selmon->sellt]->arrange)
return;
selmon->ltaxis[0] *= -1;
#if PERTAG_PATCH
selmon->pertag->ltaxes[selmon->pertag->curtag][0] = selmon->ltaxis[0];
#endif // PERTAG_PATCH
arrange(selmon);
}
/* Rotate layout axis for flextile */
void
rotatelayoutaxis(const Arg *arg)
{
if (!selmon->lt[selmon->sellt]->arrange)
return;
if (arg->i == 0) {
if (selmon->ltaxis[0] > 0)
selmon->ltaxis[0] = selmon->ltaxis[0] + 1 > 4 ? 1 : selmon->ltaxis[0] + 1;
else
selmon->ltaxis[0] = selmon->ltaxis[0] - 1 < -4 ? -1 : selmon->ltaxis[0] - 1;
} else
selmon->ltaxis[arg->i] = selmon->ltaxis[arg->i] + 1 > 4 ? 1 : selmon->ltaxis[arg->i] + 1;
#if PERTAG_PATCH
selmon->pertag->ltaxes[selmon->pertag->curtag][arg->i] = selmon->ltaxis[arg->i];
#endif // PERTAG_PATCH
arrange(selmon);
}

View File

@ -1,18 +0,0 @@
static void flextile(Monitor *m);
static void mirrorlayout(const Arg *arg);
static void rotatelayoutaxis(const Arg *arg);
static void setflexlayout(const Arg *arg);
static void setflexsymbols(Monitor *m, unsigned int n);
/* Named flextile constants */
#define LAYOUT 0
#define MASTER 1
#define STACK 2
#define SPLIT_VERTICAL 1 // master stack vertical split
#define SPLIT_HORIZONTAL 2 // master stack horizontal split
#define SPLIT_CENTERED_V 3 // centered master vertical split
#define SPLIT_CENTERED_H 4 // centered master horizontal split
#define LEFT_TO_RIGHT 1 // clients are stacked horizontally
#define TOP_TO_BOTTOM 2 // clients are stacked vertically
#define MONOCLE 3 // clients are stacked in deck / monocle mode
#define GRID 4 // clients are stacked in grid mode

View File

@ -124,8 +124,8 @@
#include "fibonacci.c"
#endif
#if FLEXTILE_LAYOUT
#include "flextile.c"
#if FLEXTILE_DELUXE_LAYOUT
#include "flextile-deluxe.c"
#endif
#if GAPPLESSGRID_LAYOUT

View File

@ -36,6 +36,10 @@
#include "ewmhtags.h"
#endif
#if PERTAG_PATCH
#include "pertag.h"
#endif
#if PUSH_NO_MASTER_PATCH
#include "push_no_master.h"
#elif PUSH_PATCH
@ -120,8 +124,8 @@
#include "fibonacci.h"
#endif
#if FLEXTILE_LAYOUT
#include "flextile.h"
#if FLEXTILE_DELUXE_LAYOUT
#include "flextile-deluxe.h"
#endif
#if GAPPLESSGRID_LAYOUT

View File

@ -1,16 +1,61 @@
struct Pertag {
unsigned int curtag, prevtag; /* current and previous tag */
int nmasters[LENGTH(tags) + 1]; /* number of windows in master area */
#if FLEXTILE_LAYOUT
int ltaxes[LENGTH(tags) + 1][3];
#endif // FLEXTILE_LAYOUT
#if FLEXTILE_DELUXE_LAYOUT
int nstacks[LENGTH(tags) + 1]; /* number of windows in primary stack area */
int ltaxis[LENGTH(tags) + 1][LTAXIS_LAST];
const Layout *ltidxs[LENGTH(tags) + 1][3]; /* matrix of tags and layouts indexes */
#else
const Layout *ltidxs[LENGTH(tags) + 1][2]; /* matrix of tags and layouts indexes */
#endif // FLEXTILE_DELUXE_LAYOUT
float mfacts[LENGTH(tags) + 1]; /* mfacts per tag */
unsigned int sellts[LENGTH(tags) + 1]; /* selected layouts */
const Layout *ltidxs[LENGTH(tags) + 1][2]; /* matrix of tags and layouts indexes */
#if PERTAGBAR_PATCH
Bool showbars[LENGTH(tags) + 1]; /* display bar for the current tag */
#endif // PERTAGBAR_PATCH
#if ZOOMSWAP_PATCH
Client *prevzooms[LENGTH(tags) + 1]; /* store zoom information */
#endif // ZOOMSWAP_PATCH
};
};
void
pertagview(const Arg *arg)
{
int i;
unsigned int tmptag;
if (arg->ui & TAGMASK) {
selmon->pertag->prevtag = selmon->pertag->curtag;
selmon->tagset[selmon->seltags] = arg->ui & TAGMASK;
if (arg->ui == ~0)
selmon->pertag->curtag = 0;
else {
for (i=0; !(arg->ui & 1 << i); i++) ;
selmon->pertag->curtag = i + 1;
}
} else {
tmptag = selmon->pertag->prevtag;
selmon->pertag->prevtag = selmon->pertag->curtag;
selmon->pertag->curtag = tmptag;
}
selmon->nmaster = selmon->pertag->nmasters[selmon->pertag->curtag];
#if FLEXTILE_DELUXE_LAYOUT
selmon->nstack = selmon->pertag->nstacks[selmon->pertag->curtag];
#endif // FLEXTILE_DELUXE_LAYOUT
selmon->mfact = selmon->pertag->mfacts[selmon->pertag->curtag];
selmon->sellt = selmon->pertag->sellts[selmon->pertag->curtag];
selmon->lt[selmon->sellt] = selmon->pertag->ltidxs[selmon->pertag->curtag][selmon->sellt];
selmon->lt[selmon->sellt^1] = selmon->pertag->ltidxs[selmon->pertag->curtag][selmon->sellt^1];
#if FLEXTILE_DELUXE_LAYOUT && MONITOR_RULES_PATCH
selmon->ltaxis[LAYOUT] = selmon->pertag->ltaxis[selmon->pertag->curtag][LAYOUT];
selmon->ltaxis[MASTER] = selmon->pertag->ltaxis[selmon->pertag->curtag][MASTER];
selmon->ltaxis[STACK] = selmon->pertag->ltaxis[selmon->pertag->curtag][STACK];
selmon->ltaxis[STACK2] = selmon->pertag->ltaxis[selmon->pertag->curtag][STACK2];
#endif // FLEXTILE_DELUXE_LAYOUT && MONITOR_RULES_PATCH
#if PERTAGBAR_PATCH
if (selmon->showbar != selmon->pertag->showbars[selmon->pertag->curtag])
togglebar(NULL);
#endif // PERTAGBAR_PATCH
// strncpy(selmon->ltsymbol, selmon->lt[selmon->sellt]->symbol, sizeof selmon->ltsymbol); // ??
// strncpy(m->ltsymbol, m->lt[m->sellt]->symbol, sizeof m->ltsymbol);
}

1
patch/pertag.h Normal file
View File

@ -0,0 +1 @@
static void pertagview(const Arg *arg);