diff --git a/linux-tkg-patches/6.6/0008-6.6-bcachefs.patch b/linux-tkg-patches/6.6/0008-6.6-bcachefs.patch new file mode 100644 index 0000000..fc6193a --- /dev/null +++ b/linux-tkg-patches/6.6/0008-6.6-bcachefs.patch @@ -0,0 +1,97244 @@ +From eba9f7cba146ee634aa1f329b87e5fe09eef9f51 Mon Sep 17 00:00:00 2001 +From: Piotr Gorski +Date: Fri, 27 Oct 2023 15:37:35 +0200 +Subject: [PATCH] bcachefs + +Signed-off-by: Piotr Gorski +--- + MAINTAINERS | 23 + + drivers/md/bcache/Kconfig | 10 +- + drivers/md/bcache/Makefile | 4 +- + drivers/md/bcache/bcache.h | 2 +- + drivers/md/bcache/super.c | 1 - + drivers/md/bcache/util.h | 3 +- + fs/Kconfig | 1 + + fs/Makefile | 1 + + fs/bcachefs/Kconfig | 85 + + fs/bcachefs/Makefile | 88 + + fs/bcachefs/acl.c | 463 +++ + fs/bcachefs/acl.h | 60 + + fs/bcachefs/alloc_background.c | 2146 +++++++++++ + fs/bcachefs/alloc_background.h | 258 ++ + fs/bcachefs/alloc_foreground.c | 1576 ++++++++ + fs/bcachefs/alloc_foreground.h | 224 ++ + fs/bcachefs/alloc_types.h | 126 + + fs/bcachefs/backpointers.c | 868 +++++ + fs/bcachefs/backpointers.h | 131 + + fs/bcachefs/bbpos.h | 48 + + fs/bcachefs/bcachefs.h | 1156 ++++++ + fs/bcachefs/bcachefs_format.h | 2413 +++++++++++++ + fs/bcachefs/bcachefs_ioctl.h | 368 ++ + fs/bcachefs/bkey.c | 1120 ++++++ + fs/bcachefs/bkey.h | 782 ++++ + fs/bcachefs/bkey_buf.h | 61 + + fs/bcachefs/bkey_cmp.h | 129 + + fs/bcachefs/bkey_methods.c | 458 +++ + fs/bcachefs/bkey_methods.h | 188 + + fs/bcachefs/bkey_sort.c | 201 ++ + fs/bcachefs/bkey_sort.h | 54 + + fs/bcachefs/bset.c | 1592 ++++++++ + fs/bcachefs/bset.h | 541 +++ + fs/bcachefs/btree_cache.c | 1202 ++++++ + fs/bcachefs/btree_cache.h | 130 + + fs/bcachefs/btree_gc.c | 2111 +++++++++++ + fs/bcachefs/btree_gc.h | 114 + + fs/bcachefs/btree_io.c | 2223 ++++++++++++ + fs/bcachefs/btree_io.h | 228 ++ + fs/bcachefs/btree_iter.c | 3215 +++++++++++++++++ + fs/bcachefs/btree_iter.h | 939 +++++ + fs/bcachefs/btree_journal_iter.c | 531 +++ + fs/bcachefs/btree_journal_iter.h | 57 + + fs/bcachefs/btree_key_cache.c | 1072 ++++++ + fs/bcachefs/btree_key_cache.h | 48 + + fs/bcachefs/btree_locking.c | 791 ++++ + fs/bcachefs/btree_locking.h | 423 +++ + fs/bcachefs/btree_trans_commit.c | 1150 ++++++ + fs/bcachefs/btree_types.h | 739 ++++ + fs/bcachefs/btree_update.c | 933 +++++ + fs/bcachefs/btree_update.h | 340 ++ + fs/bcachefs/btree_update_interior.c | 2480 +++++++++++++ + fs/bcachefs/btree_update_interior.h | 337 ++ + fs/bcachefs/btree_write_buffer.c | 375 ++ + fs/bcachefs/btree_write_buffer.h | 14 + + fs/bcachefs/btree_write_buffer_types.h | 44 + + fs/bcachefs/buckets.c | 2106 +++++++++++ + fs/bcachefs/buckets.h | 443 +++ + fs/bcachefs/buckets_types.h | 92 + + fs/bcachefs/buckets_waiting_for_journal.c | 166 + + fs/bcachefs/buckets_waiting_for_journal.h | 15 + + .../buckets_waiting_for_journal_types.h | 23 + + fs/bcachefs/chardev.c | 784 ++++ + fs/bcachefs/chardev.h | 31 + + fs/bcachefs/checksum.c | 804 +++++ + fs/bcachefs/checksum.h | 213 ++ + fs/bcachefs/clock.c | 193 + + fs/bcachefs/clock.h | 38 + + fs/bcachefs/clock_types.h | 37 + + fs/bcachefs/compress.c | 710 ++++ + fs/bcachefs/compress.h | 55 + + fs/bcachefs/counters.c | 107 + + fs/bcachefs/counters.h | 17 + + fs/bcachefs/darray.h | 87 + + fs/bcachefs/data_update.c | 558 +++ + fs/bcachefs/data_update.h | 43 + + fs/bcachefs/debug.c | 954 +++++ + fs/bcachefs/debug.h | 32 + + fs/bcachefs/dirent.c | 587 +++ + fs/bcachefs/dirent.h | 70 + + fs/bcachefs/disk_groups.c | 550 +++ + fs/bcachefs/disk_groups.h | 106 + + fs/bcachefs/ec.c | 1966 ++++++++++ + fs/bcachefs/ec.h | 260 ++ + fs/bcachefs/ec_types.h | 41 + + fs/bcachefs/errcode.c | 68 + + fs/bcachefs/errcode.h | 265 ++ + fs/bcachefs/error.c | 293 ++ + fs/bcachefs/error.h | 206 ++ + fs/bcachefs/extent_update.c | 173 + + fs/bcachefs/extent_update.h | 12 + + fs/bcachefs/extents.c | 1403 +++++++ + fs/bcachefs/extents.h | 758 ++++ + fs/bcachefs/extents_types.h | 40 + + fs/bcachefs/eytzinger.h | 281 ++ + fs/bcachefs/fifo.h | 127 + + fs/bcachefs/fs-common.c | 501 +++ + fs/bcachefs/fs-common.h | 43 + + fs/bcachefs/fs-io-buffered.c | 1093 ++++++ + fs/bcachefs/fs-io-buffered.h | 27 + + fs/bcachefs/fs-io-direct.c | 679 ++++ + fs/bcachefs/fs-io-direct.h | 16 + + fs/bcachefs/fs-io-pagecache.c | 791 ++++ + fs/bcachefs/fs-io-pagecache.h | 176 + + fs/bcachefs/fs-io.c | 1072 ++++++ + fs/bcachefs/fs-io.h | 184 + + fs/bcachefs/fs-ioctl.c | 572 +++ + fs/bcachefs/fs-ioctl.h | 81 + + fs/bcachefs/fs.c | 1980 ++++++++++ + fs/bcachefs/fs.h | 209 ++ + fs/bcachefs/fsck.c | 2417 +++++++++++++ + fs/bcachefs/fsck.h | 14 + + fs/bcachefs/inode.c | 1133 ++++++ + fs/bcachefs/inode.h | 207 ++ + fs/bcachefs/io_misc.c | 515 +++ + fs/bcachefs/io_misc.h | 34 + + fs/bcachefs/io_read.c | 1210 +++++++ + fs/bcachefs/io_read.h | 158 + + fs/bcachefs/io_write.c | 1671 +++++++++ + fs/bcachefs/io_write.h | 110 + + fs/bcachefs/io_write_types.h | 96 + + fs/bcachefs/journal.c | 1449 ++++++++ + fs/bcachefs/journal.h | 548 +++ + fs/bcachefs/journal_io.c | 1894 ++++++++++ + fs/bcachefs/journal_io.h | 65 + + fs/bcachefs/journal_reclaim.c | 876 +++++ + fs/bcachefs/journal_reclaim.h | 87 + + fs/bcachefs/journal_sb.c | 219 ++ + fs/bcachefs/journal_sb.h | 24 + + fs/bcachefs/journal_seq_blacklist.c | 320 ++ + fs/bcachefs/journal_seq_blacklist.h | 22 + + fs/bcachefs/journal_types.h | 345 ++ + fs/bcachefs/keylist.c | 52 + + fs/bcachefs/keylist.h | 74 + + fs/bcachefs/keylist_types.h | 16 + + fs/bcachefs/logged_ops.c | 112 + + fs/bcachefs/logged_ops.h | 20 + + fs/bcachefs/lru.c | 162 + + fs/bcachefs/lru.h | 69 + + fs/bcachefs/mean_and_variance.c | 159 + + fs/bcachefs/mean_and_variance.h | 198 + + fs/bcachefs/mean_and_variance_test.c | 240 ++ + fs/bcachefs/migrate.c | 179 + + fs/bcachefs/migrate.h | 7 + + fs/bcachefs/move.c | 1159 ++++++ + fs/bcachefs/move.h | 96 + + fs/bcachefs/move_types.h | 36 + + fs/bcachefs/movinggc.c | 414 +++ + fs/bcachefs/movinggc.h | 12 + + fs/bcachefs/nocow_locking.c | 144 + + fs/bcachefs/nocow_locking.h | 50 + + fs/bcachefs/nocow_locking_types.h | 20 + + fs/bcachefs/opts.c | 605 ++++ + fs/bcachefs/opts.h | 564 +++ + fs/bcachefs/printbuf.c | 425 +++ + fs/bcachefs/printbuf.h | 284 ++ + fs/bcachefs/quota.c | 978 +++++ + fs/bcachefs/quota.h | 74 + + fs/bcachefs/quota_types.h | 43 + + fs/bcachefs/rebalance.c | 366 ++ + fs/bcachefs/rebalance.h | 28 + + fs/bcachefs/rebalance_types.h | 26 + + fs/bcachefs/recovery.c | 1049 ++++++ + fs/bcachefs/recovery.h | 33 + + fs/bcachefs/recovery_types.h | 49 + + fs/bcachefs/reflink.c | 405 +++ + fs/bcachefs/reflink.h | 81 + + fs/bcachefs/replicas.c | 1058 ++++++ + fs/bcachefs/replicas.h | 91 + + fs/bcachefs/replicas_types.h | 27 + + fs/bcachefs/sb-clean.c | 395 ++ + fs/bcachefs/sb-clean.h | 16 + + fs/bcachefs/sb-members.c | 339 ++ + fs/bcachefs/sb-members.h | 182 + + fs/bcachefs/seqmutex.h | 48 + + fs/bcachefs/siphash.c | 173 + + fs/bcachefs/siphash.h | 87 + + fs/bcachefs/six.c | 913 +++++ + fs/bcachefs/six.h | 393 ++ + fs/bcachefs/snapshot.c | 1689 +++++++++ + fs/bcachefs/snapshot.h | 270 ++ + fs/bcachefs/str_hash.h | 370 ++ + fs/bcachefs/subvolume.c | 450 +++ + fs/bcachefs/subvolume.h | 35 + + fs/bcachefs/subvolume_types.h | 31 + + fs/bcachefs/super-io.c | 1258 +++++++ + fs/bcachefs/super-io.h | 124 + + fs/bcachefs/super.c | 2022 +++++++++++ + fs/bcachefs/super.h | 52 + + fs/bcachefs/super_types.h | 52 + + fs/bcachefs/sysfs.c | 1031 ++++++ + fs/bcachefs/sysfs.h | 48 + + fs/bcachefs/tests.c | 919 +++++ + fs/bcachefs/tests.h | 15 + + fs/bcachefs/trace.c | 16 + + fs/bcachefs/trace.h | 1284 +++++++ + fs/bcachefs/two_state_shared_lock.c | 8 + + fs/bcachefs/two_state_shared_lock.h | 59 + + fs/bcachefs/util.c | 1141 ++++++ + fs/bcachefs/util.h | 852 +++++ + fs/bcachefs/varint.c | 129 + + fs/bcachefs/varint.h | 11 + + fs/bcachefs/vstructs.h | 63 + + fs/bcachefs/xattr.c | 651 ++++ + fs/bcachefs/xattr.h | 50 + + fs/dcache.c | 12 +- + .../md/bcache => include/linux}/closure.h | 46 +- + include/linux/dcache.h | 1 + + include/linux/exportfs.h | 6 + + include/linux/generic-radix-tree.h | 68 +- + include/linux/sched.h | 1 + + include/linux/string_helpers.h | 4 +- + init/init_task.c | 1 + + kernel/locking/mutex.c | 3 + + kernel/stacktrace.c | 2 + + lib/Kconfig | 3 + + lib/Kconfig.debug | 9 + + lib/Makefile | 2 + + {drivers/md/bcache => lib}/closure.c | 36 +- + lib/errname.c | 1 + + lib/generic-radix-tree.c | 76 +- + lib/string_helpers.c | 10 +- + tools/objtool/noreturns.h | 2 + + 223 files changed, 95037 insertions(+), 56 deletions(-) + create mode 100644 fs/bcachefs/Kconfig + create mode 100644 fs/bcachefs/Makefile + create mode 100644 fs/bcachefs/acl.c + create mode 100644 fs/bcachefs/acl.h + create mode 100644 fs/bcachefs/alloc_background.c + create mode 100644 fs/bcachefs/alloc_background.h + create mode 100644 fs/bcachefs/alloc_foreground.c + create mode 100644 fs/bcachefs/alloc_foreground.h + create mode 100644 fs/bcachefs/alloc_types.h + create mode 100644 fs/bcachefs/backpointers.c + create mode 100644 fs/bcachefs/backpointers.h + create mode 100644 fs/bcachefs/bbpos.h + create mode 100644 fs/bcachefs/bcachefs.h + create mode 100644 fs/bcachefs/bcachefs_format.h + create mode 100644 fs/bcachefs/bcachefs_ioctl.h + create mode 100644 fs/bcachefs/bkey.c + create mode 100644 fs/bcachefs/bkey.h + create mode 100644 fs/bcachefs/bkey_buf.h + create mode 100644 fs/bcachefs/bkey_cmp.h + create mode 100644 fs/bcachefs/bkey_methods.c + create mode 100644 fs/bcachefs/bkey_methods.h + create mode 100644 fs/bcachefs/bkey_sort.c + create mode 100644 fs/bcachefs/bkey_sort.h + create mode 100644 fs/bcachefs/bset.c + create mode 100644 fs/bcachefs/bset.h + create mode 100644 fs/bcachefs/btree_cache.c + create mode 100644 fs/bcachefs/btree_cache.h + create mode 100644 fs/bcachefs/btree_gc.c + create mode 100644 fs/bcachefs/btree_gc.h + create mode 100644 fs/bcachefs/btree_io.c + create mode 100644 fs/bcachefs/btree_io.h + create mode 100644 fs/bcachefs/btree_iter.c + create mode 100644 fs/bcachefs/btree_iter.h + create mode 100644 fs/bcachefs/btree_journal_iter.c + create mode 100644 fs/bcachefs/btree_journal_iter.h + create mode 100644 fs/bcachefs/btree_key_cache.c + create mode 100644 fs/bcachefs/btree_key_cache.h + create mode 100644 fs/bcachefs/btree_locking.c + create mode 100644 fs/bcachefs/btree_locking.h + create mode 100644 fs/bcachefs/btree_trans_commit.c + create mode 100644 fs/bcachefs/btree_types.h + create mode 100644 fs/bcachefs/btree_update.c + create mode 100644 fs/bcachefs/btree_update.h + create mode 100644 fs/bcachefs/btree_update_interior.c + create mode 100644 fs/bcachefs/btree_update_interior.h + create mode 100644 fs/bcachefs/btree_write_buffer.c + create mode 100644 fs/bcachefs/btree_write_buffer.h + create mode 100644 fs/bcachefs/btree_write_buffer_types.h + create mode 100644 fs/bcachefs/buckets.c + create mode 100644 fs/bcachefs/buckets.h + create mode 100644 fs/bcachefs/buckets_types.h + create mode 100644 fs/bcachefs/buckets_waiting_for_journal.c + create mode 100644 fs/bcachefs/buckets_waiting_for_journal.h + create mode 100644 fs/bcachefs/buckets_waiting_for_journal_types.h + create mode 100644 fs/bcachefs/chardev.c + create mode 100644 fs/bcachefs/chardev.h + create mode 100644 fs/bcachefs/checksum.c + create mode 100644 fs/bcachefs/checksum.h + create mode 100644 fs/bcachefs/clock.c + create mode 100644 fs/bcachefs/clock.h + create mode 100644 fs/bcachefs/clock_types.h + create mode 100644 fs/bcachefs/compress.c + create mode 100644 fs/bcachefs/compress.h + create mode 100644 fs/bcachefs/counters.c + create mode 100644 fs/bcachefs/counters.h + create mode 100644 fs/bcachefs/darray.h + create mode 100644 fs/bcachefs/data_update.c + create mode 100644 fs/bcachefs/data_update.h + create mode 100644 fs/bcachefs/debug.c + create mode 100644 fs/bcachefs/debug.h + create mode 100644 fs/bcachefs/dirent.c + create mode 100644 fs/bcachefs/dirent.h + create mode 100644 fs/bcachefs/disk_groups.c + create mode 100644 fs/bcachefs/disk_groups.h + create mode 100644 fs/bcachefs/ec.c + create mode 100644 fs/bcachefs/ec.h + create mode 100644 fs/bcachefs/ec_types.h + create mode 100644 fs/bcachefs/errcode.c + create mode 100644 fs/bcachefs/errcode.h + create mode 100644 fs/bcachefs/error.c + create mode 100644 fs/bcachefs/error.h + create mode 100644 fs/bcachefs/extent_update.c + create mode 100644 fs/bcachefs/extent_update.h + create mode 100644 fs/bcachefs/extents.c + create mode 100644 fs/bcachefs/extents.h + create mode 100644 fs/bcachefs/extents_types.h + create mode 100644 fs/bcachefs/eytzinger.h + create mode 100644 fs/bcachefs/fifo.h + create mode 100644 fs/bcachefs/fs-common.c + create mode 100644 fs/bcachefs/fs-common.h + create mode 100644 fs/bcachefs/fs-io-buffered.c + create mode 100644 fs/bcachefs/fs-io-buffered.h + create mode 100644 fs/bcachefs/fs-io-direct.c + create mode 100644 fs/bcachefs/fs-io-direct.h + create mode 100644 fs/bcachefs/fs-io-pagecache.c + create mode 100644 fs/bcachefs/fs-io-pagecache.h + create mode 100644 fs/bcachefs/fs-io.c + create mode 100644 fs/bcachefs/fs-io.h + create mode 100644 fs/bcachefs/fs-ioctl.c + create mode 100644 fs/bcachefs/fs-ioctl.h + create mode 100644 fs/bcachefs/fs.c + create mode 100644 fs/bcachefs/fs.h + create mode 100644 fs/bcachefs/fsck.c + create mode 100644 fs/bcachefs/fsck.h + create mode 100644 fs/bcachefs/inode.c + create mode 100644 fs/bcachefs/inode.h + create mode 100644 fs/bcachefs/io_misc.c + create mode 100644 fs/bcachefs/io_misc.h + create mode 100644 fs/bcachefs/io_read.c + create mode 100644 fs/bcachefs/io_read.h + create mode 100644 fs/bcachefs/io_write.c + create mode 100644 fs/bcachefs/io_write.h + create mode 100644 fs/bcachefs/io_write_types.h + create mode 100644 fs/bcachefs/journal.c + create mode 100644 fs/bcachefs/journal.h + create mode 100644 fs/bcachefs/journal_io.c + create mode 100644 fs/bcachefs/journal_io.h + create mode 100644 fs/bcachefs/journal_reclaim.c + create mode 100644 fs/bcachefs/journal_reclaim.h + create mode 100644 fs/bcachefs/journal_sb.c + create mode 100644 fs/bcachefs/journal_sb.h + create mode 100644 fs/bcachefs/journal_seq_blacklist.c + create mode 100644 fs/bcachefs/journal_seq_blacklist.h + create mode 100644 fs/bcachefs/journal_types.h + create mode 100644 fs/bcachefs/keylist.c + create mode 100644 fs/bcachefs/keylist.h + create mode 100644 fs/bcachefs/keylist_types.h + create mode 100644 fs/bcachefs/logged_ops.c + create mode 100644 fs/bcachefs/logged_ops.h + create mode 100644 fs/bcachefs/lru.c + create mode 100644 fs/bcachefs/lru.h + create mode 100644 fs/bcachefs/mean_and_variance.c + create mode 100644 fs/bcachefs/mean_and_variance.h + create mode 100644 fs/bcachefs/mean_and_variance_test.c + create mode 100644 fs/bcachefs/migrate.c + create mode 100644 fs/bcachefs/migrate.h + create mode 100644 fs/bcachefs/move.c + create mode 100644 fs/bcachefs/move.h + create mode 100644 fs/bcachefs/move_types.h + create mode 100644 fs/bcachefs/movinggc.c + create mode 100644 fs/bcachefs/movinggc.h + create mode 100644 fs/bcachefs/nocow_locking.c + create mode 100644 fs/bcachefs/nocow_locking.h + create mode 100644 fs/bcachefs/nocow_locking_types.h + create mode 100644 fs/bcachefs/opts.c + create mode 100644 fs/bcachefs/opts.h + create mode 100644 fs/bcachefs/printbuf.c + create mode 100644 fs/bcachefs/printbuf.h + create mode 100644 fs/bcachefs/quota.c + create mode 100644 fs/bcachefs/quota.h + create mode 100644 fs/bcachefs/quota_types.h + create mode 100644 fs/bcachefs/rebalance.c + create mode 100644 fs/bcachefs/rebalance.h + create mode 100644 fs/bcachefs/rebalance_types.h + create mode 100644 fs/bcachefs/recovery.c + create mode 100644 fs/bcachefs/recovery.h + create mode 100644 fs/bcachefs/recovery_types.h + create mode 100644 fs/bcachefs/reflink.c + create mode 100644 fs/bcachefs/reflink.h + create mode 100644 fs/bcachefs/replicas.c + create mode 100644 fs/bcachefs/replicas.h + create mode 100644 fs/bcachefs/replicas_types.h + create mode 100644 fs/bcachefs/sb-clean.c + create mode 100644 fs/bcachefs/sb-clean.h + create mode 100644 fs/bcachefs/sb-members.c + create mode 100644 fs/bcachefs/sb-members.h + create mode 100644 fs/bcachefs/seqmutex.h + create mode 100644 fs/bcachefs/siphash.c + create mode 100644 fs/bcachefs/siphash.h + create mode 100644 fs/bcachefs/six.c + create mode 100644 fs/bcachefs/six.h + create mode 100644 fs/bcachefs/snapshot.c + create mode 100644 fs/bcachefs/snapshot.h + create mode 100644 fs/bcachefs/str_hash.h + create mode 100644 fs/bcachefs/subvolume.c + create mode 100644 fs/bcachefs/subvolume.h + create mode 100644 fs/bcachefs/subvolume_types.h + create mode 100644 fs/bcachefs/super-io.c + create mode 100644 fs/bcachefs/super-io.h + create mode 100644 fs/bcachefs/super.c + create mode 100644 fs/bcachefs/super.h + create mode 100644 fs/bcachefs/super_types.h + create mode 100644 fs/bcachefs/sysfs.c + create mode 100644 fs/bcachefs/sysfs.h + create mode 100644 fs/bcachefs/tests.c + create mode 100644 fs/bcachefs/tests.h + create mode 100644 fs/bcachefs/trace.c + create mode 100644 fs/bcachefs/trace.h + create mode 100644 fs/bcachefs/two_state_shared_lock.c + create mode 100644 fs/bcachefs/two_state_shared_lock.h + create mode 100644 fs/bcachefs/util.c + create mode 100644 fs/bcachefs/util.h + create mode 100644 fs/bcachefs/varint.c + create mode 100644 fs/bcachefs/varint.h + create mode 100644 fs/bcachefs/vstructs.h + create mode 100644 fs/bcachefs/xattr.c + create mode 100644 fs/bcachefs/xattr.h + rename {drivers/md/bcache => include/linux}/closure.h (93%) + rename {drivers/md/bcache => lib}/closure.c (88%) + +diff --git a/MAINTAINERS b/MAINTAINERS +index 7a7bd8bd80e9..0b57e61205f9 100644 +--- a/MAINTAINERS ++++ b/MAINTAINERS +@@ -3481,6 +3481,14 @@ W: http://bcache.evilpiepirate.org + C: irc://irc.oftc.net/bcache + F: drivers/md/bcache/ + ++BCACHEFS ++M: Kent Overstreet ++R: Brian Foster ++L: linux-bcachefs@vger.kernel.org ++S: Supported ++C: irc://irc.oftc.net/bcache ++F: fs/bcachefs/ ++ + BDISP ST MEDIA DRIVER + M: Fabien Dessenne + L: linux-media@vger.kernel.org +@@ -5067,6 +5075,14 @@ T: git git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip.git timers/core + F: Documentation/devicetree/bindings/timer/ + F: drivers/clocksource/ + ++CLOSURES ++M: Kent Overstreet ++L: linux-bcachefs@vger.kernel.org ++S: Supported ++C: irc://irc.oftc.net/bcache ++F: include/linux/closure.h ++F: lib/closure.c ++ + CMPC ACPI DRIVER + M: Thadeu Lima de Souza Cascardo + M: Daniel Oliveira Nascimento +@@ -8747,6 +8763,13 @@ S: Supported + T: git git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/linux-pm.git + F: drivers/pmdomain/ + ++GENERIC RADIX TREE ++M: Kent Overstreet ++S: Supported ++C: irc://irc.oftc.net/bcache ++F: include/linux/generic-radix-tree.h ++F: lib/generic-radix-tree.c ++ + GENERIC RESISTIVE TOUCHSCREEN ADC DRIVER + M: Eugen Hristev + L: linux-input@vger.kernel.org +diff --git a/drivers/md/bcache/Kconfig b/drivers/md/bcache/Kconfig +index 529c9d04e9a4..b2d10063d35f 100644 +--- a/drivers/md/bcache/Kconfig ++++ b/drivers/md/bcache/Kconfig +@@ -4,6 +4,7 @@ config BCACHE + tristate "Block device as cache" + select BLOCK_HOLDER_DEPRECATED if SYSFS + select CRC64 ++ select CLOSURES + help + Allows a block device to be used as cache for other devices; uses + a btree for indexing and the layout is optimized for SSDs. +@@ -19,15 +20,6 @@ config BCACHE_DEBUG + Enables extra debugging tools, allows expensive runtime checks to be + turned on. + +-config BCACHE_CLOSURES_DEBUG +- bool "Debug closures" +- depends on BCACHE +- select DEBUG_FS +- help +- Keeps all active closures in a linked list and provides a debugfs +- interface to list them, which makes it possible to see asynchronous +- operations that get stuck. +- + config BCACHE_ASYNC_REGISTRATION + bool "Asynchronous device registration" + depends on BCACHE +diff --git a/drivers/md/bcache/Makefile b/drivers/md/bcache/Makefile +index 5b87e59676b8..054e8a33a7ab 100644 +--- a/drivers/md/bcache/Makefile ++++ b/drivers/md/bcache/Makefile +@@ -2,6 +2,6 @@ + + obj-$(CONFIG_BCACHE) += bcache.o + +-bcache-y := alloc.o bset.o btree.o closure.o debug.o extents.o\ +- io.o journal.o movinggc.o request.o stats.o super.o sysfs.o trace.o\ ++bcache-y := alloc.o bset.o btree.o debug.o extents.o io.o\ ++ journal.o movinggc.o request.o stats.o super.o sysfs.o trace.o\ + util.o writeback.o features.o +diff --git a/drivers/md/bcache/bcache.h b/drivers/md/bcache/bcache.h +index 5a79bb3c272f..7c0d00432612 100644 +--- a/drivers/md/bcache/bcache.h ++++ b/drivers/md/bcache/bcache.h +@@ -179,6 +179,7 @@ + #define pr_fmt(fmt) "bcache: %s() " fmt, __func__ + + #include ++#include + #include + #include + #include +@@ -192,7 +193,6 @@ + #include "bcache_ondisk.h" + #include "bset.h" + #include "util.h" +-#include "closure.h" + + struct bucket { + atomic_t pin; +diff --git a/drivers/md/bcache/super.c b/drivers/md/bcache/super.c +index 0ae2b3676293..4affe587586c 100644 +--- a/drivers/md/bcache/super.c ++++ b/drivers/md/bcache/super.c +@@ -2905,7 +2905,6 @@ static int __init bcache_init(void) + goto err; + + bch_debug_init(); +- closure_debug_init(); + + bcache_is_reboot = false; + +diff --git a/drivers/md/bcache/util.h b/drivers/md/bcache/util.h +index 6f3cb7c92130..f61ab1bada6c 100644 +--- a/drivers/md/bcache/util.h ++++ b/drivers/md/bcache/util.h +@@ -4,6 +4,7 @@ + #define _BCACHE_UTIL_H + + #include ++#include + #include + #include + #include +@@ -13,8 +14,6 @@ + #include + #include + +-#include "closure.h" +- + struct closure; + + #ifdef CONFIG_BCACHE_DEBUG +diff --git a/fs/Kconfig b/fs/Kconfig +index aa7e03cc1941..0d6cb927872a 100644 +--- a/fs/Kconfig ++++ b/fs/Kconfig +@@ -48,6 +48,7 @@ source "fs/ocfs2/Kconfig" + source "fs/btrfs/Kconfig" + source "fs/nilfs2/Kconfig" + source "fs/f2fs/Kconfig" ++source "fs/bcachefs/Kconfig" + source "fs/zonefs/Kconfig" + + endif # BLOCK +diff --git a/fs/Makefile b/fs/Makefile +index f9541f40be4e..75522f88e763 100644 +--- a/fs/Makefile ++++ b/fs/Makefile +@@ -123,6 +123,7 @@ obj-$(CONFIG_OCFS2_FS) += ocfs2/ + obj-$(CONFIG_BTRFS_FS) += btrfs/ + obj-$(CONFIG_GFS2_FS) += gfs2/ + obj-$(CONFIG_F2FS_FS) += f2fs/ ++obj-$(CONFIG_BCACHEFS_FS) += bcachefs/ + obj-$(CONFIG_CEPH_FS) += ceph/ + obj-$(CONFIG_PSTORE) += pstore/ + obj-$(CONFIG_EFIVAR_FS) += efivarfs/ +diff --git a/fs/bcachefs/Kconfig b/fs/bcachefs/Kconfig +new file mode 100644 +index 000000000000..df13a4f9a6e3 +--- /dev/null ++++ b/fs/bcachefs/Kconfig +@@ -0,0 +1,85 @@ ++ ++config BCACHEFS_FS ++ tristate "bcachefs filesystem support (EXPERIMENTAL)" ++ depends on BLOCK ++ select EXPORTFS ++ select CLOSURES ++ select LIBCRC32C ++ select CRC64 ++ select FS_POSIX_ACL ++ select LZ4_COMPRESS ++ select LZ4_DECOMPRESS ++ select LZ4HC_COMPRESS ++ select LZ4HC_DECOMPRESS ++ select ZLIB_DEFLATE ++ select ZLIB_INFLATE ++ select ZSTD_COMPRESS ++ select ZSTD_DECOMPRESS ++ select CRYPTO_SHA256 ++ select CRYPTO_CHACHA20 ++ select CRYPTO_POLY1305 ++ select KEYS ++ select RAID6_PQ ++ select XOR_BLOCKS ++ select XXHASH ++ select SRCU ++ select SYMBOLIC_ERRNAME ++ select MEAN_AND_VARIANCE ++ help ++ The bcachefs filesystem - a modern, copy on write filesystem, with ++ support for multiple devices, compression, checksumming, etc. ++ ++config BCACHEFS_QUOTA ++ bool "bcachefs quota support" ++ depends on BCACHEFS_FS ++ select QUOTACTL ++ ++config BCACHEFS_POSIX_ACL ++ bool "bcachefs POSIX ACL support" ++ depends on BCACHEFS_FS ++ select FS_POSIX_ACL ++ ++config BCACHEFS_DEBUG_TRANSACTIONS ++ bool "bcachefs runtime info" ++ depends on BCACHEFS_FS ++ default y ++ help ++ This makes the list of running btree transactions available in debugfs. ++ ++ This is a highly useful debugging feature but does add a small amount of overhead. ++ ++config BCACHEFS_DEBUG ++ bool "bcachefs debugging" ++ depends on BCACHEFS_FS ++ help ++ Enables many extra debugging checks and assertions. ++ ++ The resulting code will be significantly slower than normal; you ++ probably shouldn't select this option unless you're a developer. ++ ++config BCACHEFS_TESTS ++ bool "bcachefs unit and performance tests" ++ depends on BCACHEFS_FS ++ help ++ Include some unit and performance tests for the core btree code ++ ++config BCACHEFS_LOCK_TIME_STATS ++ bool "bcachefs lock time statistics" ++ depends on BCACHEFS_FS ++ help ++ Expose statistics for how long we held a lock in debugfs ++ ++config BCACHEFS_NO_LATENCY_ACCT ++ bool "disable latency accounting and time stats" ++ depends on BCACHEFS_FS ++ help ++ This disables device latency tracking and time stats, only for performance testing ++ ++config MEAN_AND_VARIANCE_UNIT_TEST ++ tristate "mean_and_variance unit tests" if !KUNIT_ALL_TESTS ++ depends on KUNIT ++ select MEAN_AND_VARIANCE ++ default KUNIT_ALL_TESTS ++ help ++ This option enables the kunit tests for mean_and_variance module. ++ If unsure, say N. +diff --git a/fs/bcachefs/Makefile b/fs/bcachefs/Makefile +new file mode 100644 +index 000000000000..0749731b9072 +--- /dev/null ++++ b/fs/bcachefs/Makefile +@@ -0,0 +1,88 @@ ++ ++obj-$(CONFIG_BCACHEFS_FS) += bcachefs.o ++ ++bcachefs-y := \ ++ acl.o \ ++ alloc_background.o \ ++ alloc_foreground.o \ ++ backpointers.o \ ++ bkey.o \ ++ bkey_methods.o \ ++ bkey_sort.o \ ++ bset.o \ ++ btree_cache.o \ ++ btree_gc.o \ ++ btree_io.o \ ++ btree_iter.o \ ++ btree_journal_iter.o \ ++ btree_key_cache.o \ ++ btree_locking.o \ ++ btree_trans_commit.o \ ++ btree_update.o \ ++ btree_update_interior.o \ ++ btree_write_buffer.o \ ++ buckets.o \ ++ buckets_waiting_for_journal.o \ ++ chardev.o \ ++ checksum.o \ ++ clock.o \ ++ compress.o \ ++ counters.o \ ++ debug.o \ ++ dirent.o \ ++ disk_groups.o \ ++ data_update.o \ ++ ec.o \ ++ errcode.o \ ++ error.o \ ++ extents.o \ ++ extent_update.o \ ++ fs.o \ ++ fs-common.o \ ++ fs-ioctl.o \ ++ fs-io.o \ ++ fs-io-buffered.o \ ++ fs-io-direct.o \ ++ fs-io-pagecache.o \ ++ fsck.o \ ++ inode.o \ ++ io_read.o \ ++ io_misc.o \ ++ io_write.o \ ++ journal.o \ ++ journal_io.o \ ++ journal_reclaim.o \ ++ journal_sb.o \ ++ journal_seq_blacklist.o \ ++ keylist.o \ ++ logged_ops.o \ ++ lru.o \ ++ mean_and_variance.o \ ++ migrate.o \ ++ move.o \ ++ movinggc.o \ ++ nocow_locking.o \ ++ opts.o \ ++ printbuf.o \ ++ quota.o \ ++ rebalance.o \ ++ recovery.o \ ++ reflink.o \ ++ replicas.o \ ++ sb-clean.o \ ++ sb-members.o \ ++ siphash.o \ ++ six.o \ ++ snapshot.o \ ++ subvolume.o \ ++ super.o \ ++ super-io.o \ ++ sysfs.o \ ++ tests.o \ ++ trace.o \ ++ two_state_shared_lock.o \ ++ util.o \ ++ varint.o \ ++ xattr.o ++ ++obj-$(CONFIG_MEAN_AND_VARIANCE_UNIT_TEST) += mean_and_variance_test.o +diff --git a/fs/bcachefs/acl.c b/fs/bcachefs/acl.c +new file mode 100644 +index 000000000000..f3809897f00a +--- /dev/null ++++ b/fs/bcachefs/acl.c +@@ -0,0 +1,463 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++ ++#include "acl.h" ++#include "xattr.h" ++ ++#include ++ ++static const char * const acl_types[] = { ++ [ACL_USER_OBJ] = "user_obj", ++ [ACL_USER] = "user", ++ [ACL_GROUP_OBJ] = "group_obj", ++ [ACL_GROUP] = "group", ++ [ACL_MASK] = "mask", ++ [ACL_OTHER] = "other", ++ NULL, ++}; ++ ++void bch2_acl_to_text(struct printbuf *out, const void *value, size_t size) ++{ ++ const void *p, *end = value + size; ++ ++ if (!value || ++ size < sizeof(bch_acl_header) || ++ ((bch_acl_header *)value)->a_version != cpu_to_le32(BCH_ACL_VERSION)) ++ return; ++ ++ p = value + sizeof(bch_acl_header); ++ while (p < end) { ++ const bch_acl_entry *in = p; ++ unsigned tag = le16_to_cpu(in->e_tag); ++ ++ prt_str(out, acl_types[tag]); ++ ++ switch (tag) { ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ p += sizeof(bch_acl_entry_short); ++ break; ++ case ACL_USER: ++ prt_printf(out, " uid %u", le32_to_cpu(in->e_id)); ++ p += sizeof(bch_acl_entry); ++ break; ++ case ACL_GROUP: ++ prt_printf(out, " gid %u", le32_to_cpu(in->e_id)); ++ p += sizeof(bch_acl_entry); ++ break; ++ } ++ ++ prt_printf(out, " %o", le16_to_cpu(in->e_perm)); ++ ++ if (p != end) ++ prt_char(out, ' '); ++ } ++} ++ ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ ++#include "fs.h" ++ ++#include ++#include ++#include ++#include ++ ++static inline size_t bch2_acl_size(unsigned nr_short, unsigned nr_long) ++{ ++ return sizeof(bch_acl_header) + ++ sizeof(bch_acl_entry_short) * nr_short + ++ sizeof(bch_acl_entry) * nr_long; ++} ++ ++static inline int acl_to_xattr_type(int type) ++{ ++ switch (type) { ++ case ACL_TYPE_ACCESS: ++ return KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS; ++ case ACL_TYPE_DEFAULT: ++ return KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT; ++ default: ++ BUG(); ++ } ++} ++ ++/* ++ * Convert from filesystem to in-memory representation. ++ */ ++static struct posix_acl *bch2_acl_from_disk(struct btree_trans *trans, ++ const void *value, size_t size) ++{ ++ const void *p, *end = value + size; ++ struct posix_acl *acl; ++ struct posix_acl_entry *out; ++ unsigned count = 0; ++ int ret; ++ ++ if (!value) ++ return NULL; ++ if (size < sizeof(bch_acl_header)) ++ goto invalid; ++ if (((bch_acl_header *)value)->a_version != ++ cpu_to_le32(BCH_ACL_VERSION)) ++ goto invalid; ++ ++ p = value + sizeof(bch_acl_header); ++ while (p < end) { ++ const bch_acl_entry *entry = p; ++ ++ if (p + sizeof(bch_acl_entry_short) > end) ++ goto invalid; ++ ++ switch (le16_to_cpu(entry->e_tag)) { ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ p += sizeof(bch_acl_entry_short); ++ break; ++ case ACL_USER: ++ case ACL_GROUP: ++ p += sizeof(bch_acl_entry); ++ break; ++ default: ++ goto invalid; ++ } ++ ++ count++; ++ } ++ ++ if (p > end) ++ goto invalid; ++ ++ if (!count) ++ return NULL; ++ ++ acl = allocate_dropping_locks(trans, ret, ++ posix_acl_alloc(count, _gfp)); ++ if (!acl) ++ return ERR_PTR(-ENOMEM); ++ if (ret) { ++ kfree(acl); ++ return ERR_PTR(ret); ++ } ++ ++ out = acl->a_entries; ++ ++ p = value + sizeof(bch_acl_header); ++ while (p < end) { ++ const bch_acl_entry *in = p; ++ ++ out->e_tag = le16_to_cpu(in->e_tag); ++ out->e_perm = le16_to_cpu(in->e_perm); ++ ++ switch (out->e_tag) { ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ p += sizeof(bch_acl_entry_short); ++ break; ++ case ACL_USER: ++ out->e_uid = make_kuid(&init_user_ns, ++ le32_to_cpu(in->e_id)); ++ p += sizeof(bch_acl_entry); ++ break; ++ case ACL_GROUP: ++ out->e_gid = make_kgid(&init_user_ns, ++ le32_to_cpu(in->e_id)); ++ p += sizeof(bch_acl_entry); ++ break; ++ } ++ ++ out++; ++ } ++ ++ BUG_ON(out != acl->a_entries + acl->a_count); ++ ++ return acl; ++invalid: ++ pr_err("invalid acl entry"); ++ return ERR_PTR(-EINVAL); ++} ++ ++#define acl_for_each_entry(acl, acl_e) \ ++ for (acl_e = acl->a_entries; \ ++ acl_e < acl->a_entries + acl->a_count; \ ++ acl_e++) ++ ++/* ++ * Convert from in-memory to filesystem representation. ++ */ ++static struct bkey_i_xattr * ++bch2_acl_to_xattr(struct btree_trans *trans, ++ const struct posix_acl *acl, ++ int type) ++{ ++ struct bkey_i_xattr *xattr; ++ bch_acl_header *acl_header; ++ const struct posix_acl_entry *acl_e; ++ void *outptr; ++ unsigned nr_short = 0, nr_long = 0, acl_len, u64s; ++ ++ acl_for_each_entry(acl, acl_e) { ++ switch (acl_e->e_tag) { ++ case ACL_USER: ++ case ACL_GROUP: ++ nr_long++; ++ break; ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ nr_short++; ++ break; ++ default: ++ return ERR_PTR(-EINVAL); ++ } ++ } ++ ++ acl_len = bch2_acl_size(nr_short, nr_long); ++ u64s = BKEY_U64s + xattr_val_u64s(0, acl_len); ++ ++ if (u64s > U8_MAX) ++ return ERR_PTR(-E2BIG); ++ ++ xattr = bch2_trans_kmalloc(trans, u64s * sizeof(u64)); ++ if (IS_ERR(xattr)) ++ return xattr; ++ ++ bkey_xattr_init(&xattr->k_i); ++ xattr->k.u64s = u64s; ++ xattr->v.x_type = acl_to_xattr_type(type); ++ xattr->v.x_name_len = 0; ++ xattr->v.x_val_len = cpu_to_le16(acl_len); ++ ++ acl_header = xattr_val(&xattr->v); ++ acl_header->a_version = cpu_to_le32(BCH_ACL_VERSION); ++ ++ outptr = (void *) acl_header + sizeof(*acl_header); ++ ++ acl_for_each_entry(acl, acl_e) { ++ bch_acl_entry *entry = outptr; ++ ++ entry->e_tag = cpu_to_le16(acl_e->e_tag); ++ entry->e_perm = cpu_to_le16(acl_e->e_perm); ++ switch (acl_e->e_tag) { ++ case ACL_USER: ++ entry->e_id = cpu_to_le32( ++ from_kuid(&init_user_ns, acl_e->e_uid)); ++ outptr += sizeof(bch_acl_entry); ++ break; ++ case ACL_GROUP: ++ entry->e_id = cpu_to_le32( ++ from_kgid(&init_user_ns, acl_e->e_gid)); ++ outptr += sizeof(bch_acl_entry); ++ break; ++ ++ case ACL_USER_OBJ: ++ case ACL_GROUP_OBJ: ++ case ACL_MASK: ++ case ACL_OTHER: ++ outptr += sizeof(bch_acl_entry_short); ++ break; ++ } ++ } ++ ++ BUG_ON(outptr != xattr_val(&xattr->v) + acl_len); ++ ++ return xattr; ++} ++ ++struct posix_acl *bch2_get_acl(struct mnt_idmap *idmap, ++ struct dentry *dentry, int type) ++{ ++ struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_hash_info hash = bch2_hash_info_init(c, &inode->ei_inode); ++ struct xattr_search_key search = X_SEARCH(acl_to_xattr_type(type), "", 0); ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter = { NULL }; ++ struct bkey_s_c_xattr xattr; ++ struct posix_acl *acl = NULL; ++ struct bkey_s_c k; ++ int ret; ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_hash_lookup(trans, &iter, bch2_xattr_hash_desc, ++ &hash, inode_inum(inode), &search, 0); ++ if (ret) { ++ if (!bch2_err_matches(ret, ENOENT)) ++ acl = ERR_PTR(ret); ++ goto out; ++ } ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) { ++ acl = ERR_PTR(ret); ++ goto out; ++ } ++ ++ xattr = bkey_s_c_to_xattr(k); ++ acl = bch2_acl_from_disk(trans, xattr_val(xattr.v), ++ le16_to_cpu(xattr.v->x_val_len)); ++ ++ if (!IS_ERR(acl)) ++ set_cached_acl(&inode->v, type, acl); ++out: ++ if (bch2_err_matches(PTR_ERR_OR_ZERO(acl), BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return acl; ++} ++ ++int bch2_set_acl_trans(struct btree_trans *trans, subvol_inum inum, ++ struct bch_inode_unpacked *inode_u, ++ struct posix_acl *acl, int type) ++{ ++ struct bch_hash_info hash_info = bch2_hash_info_init(trans->c, inode_u); ++ int ret; ++ ++ if (type == ACL_TYPE_DEFAULT && ++ !S_ISDIR(inode_u->bi_mode)) ++ return acl ? -EACCES : 0; ++ ++ if (acl) { ++ struct bkey_i_xattr *xattr = ++ bch2_acl_to_xattr(trans, acl, type); ++ if (IS_ERR(xattr)) ++ return PTR_ERR(xattr); ++ ++ ret = bch2_hash_set(trans, bch2_xattr_hash_desc, &hash_info, ++ inum, &xattr->k_i, 0); ++ } else { ++ struct xattr_search_key search = ++ X_SEARCH(acl_to_xattr_type(type), "", 0); ++ ++ ret = bch2_hash_delete(trans, bch2_xattr_hash_desc, &hash_info, ++ inum, &search); ++ } ++ ++ return bch2_err_matches(ret, ENOENT) ? 0 : ret; ++} ++ ++int bch2_set_acl(struct mnt_idmap *idmap, ++ struct dentry *dentry, ++ struct posix_acl *_acl, int type) ++{ ++ struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter inode_iter = { NULL }; ++ struct bch_inode_unpacked inode_u; ++ struct posix_acl *acl; ++ umode_t mode; ++ int ret; ++ ++ mutex_lock(&inode->ei_update_lock); ++retry: ++ bch2_trans_begin(trans); ++ acl = _acl; ++ ++ ret = bch2_inode_peek(trans, &inode_iter, &inode_u, inode_inum(inode), ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto btree_err; ++ ++ mode = inode_u.bi_mode; ++ ++ if (type == ACL_TYPE_ACCESS) { ++ ret = posix_acl_update_mode(idmap, &inode->v, &mode, &acl); ++ if (ret) ++ goto btree_err; ++ } ++ ++ ret = bch2_set_acl_trans(trans, inode_inum(inode), &inode_u, acl, type); ++ if (ret) ++ goto btree_err; ++ ++ inode_u.bi_ctime = bch2_current_time(c); ++ inode_u.bi_mode = mode; ++ ++ ret = bch2_inode_write(trans, &inode_iter, &inode_u) ?: ++ bch2_trans_commit(trans, NULL, NULL, 0); ++btree_err: ++ bch2_trans_iter_exit(trans, &inode_iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ if (unlikely(ret)) ++ goto err; ++ ++ bch2_inode_update_after_write(trans, inode, &inode_u, ++ ATTR_CTIME|ATTR_MODE); ++ ++ set_cached_acl(&inode->v, type, acl); ++err: ++ mutex_unlock(&inode->ei_update_lock); ++ bch2_trans_put(trans); ++ ++ return ret; ++} ++ ++int bch2_acl_chmod(struct btree_trans *trans, subvol_inum inum, ++ struct bch_inode_unpacked *inode, ++ umode_t mode, ++ struct posix_acl **new_acl) ++{ ++ struct bch_hash_info hash_info = bch2_hash_info_init(trans->c, inode); ++ struct xattr_search_key search = X_SEARCH(KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS, "", 0); ++ struct btree_iter iter; ++ struct bkey_s_c_xattr xattr; ++ struct bkey_i_xattr *new; ++ struct posix_acl *acl = NULL; ++ struct bkey_s_c k; ++ int ret; ++ ++ ret = bch2_hash_lookup(trans, &iter, bch2_xattr_hash_desc, ++ &hash_info, inum, &search, BTREE_ITER_INTENT); ++ if (ret) ++ return bch2_err_matches(ret, ENOENT) ? 0 : ret; ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ xattr = bkey_s_c_to_xattr(k); ++ ++ acl = bch2_acl_from_disk(trans, xattr_val(xattr.v), ++ le16_to_cpu(xattr.v->x_val_len)); ++ ret = PTR_ERR_OR_ZERO(acl); ++ if (IS_ERR_OR_NULL(acl)) ++ goto err; ++ ++ ret = allocate_dropping_locks_errcode(trans, ++ __posix_acl_chmod(&acl, _gfp, mode)); ++ if (ret) ++ goto err; ++ ++ new = bch2_acl_to_xattr(trans, acl, ACL_TYPE_ACCESS); ++ if (IS_ERR(new)) { ++ ret = PTR_ERR(new); ++ goto err; ++ } ++ ++ new->k.p = iter.pos; ++ ret = bch2_trans_update(trans, &iter, &new->k_i, 0); ++ *new_acl = acl; ++ acl = NULL; ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ if (!IS_ERR_OR_NULL(acl)) ++ kfree(acl); ++ return ret; ++} ++ ++#endif /* CONFIG_BCACHEFS_POSIX_ACL */ +diff --git a/fs/bcachefs/acl.h b/fs/bcachefs/acl.h +new file mode 100644 +index 000000000000..27e7eec0f278 +--- /dev/null ++++ b/fs/bcachefs/acl.h +@@ -0,0 +1,60 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ACL_H ++#define _BCACHEFS_ACL_H ++ ++struct bch_inode_unpacked; ++struct bch_hash_info; ++struct bch_inode_info; ++struct posix_acl; ++ ++#define BCH_ACL_VERSION 0x0001 ++ ++typedef struct { ++ __le16 e_tag; ++ __le16 e_perm; ++ __le32 e_id; ++} bch_acl_entry; ++ ++typedef struct { ++ __le16 e_tag; ++ __le16 e_perm; ++} bch_acl_entry_short; ++ ++typedef struct { ++ __le32 a_version; ++} bch_acl_header; ++ ++void bch2_acl_to_text(struct printbuf *, const void *, size_t); ++ ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ ++struct posix_acl *bch2_get_acl(struct mnt_idmap *, struct dentry *, int); ++ ++int bch2_set_acl_trans(struct btree_trans *, subvol_inum, ++ struct bch_inode_unpacked *, ++ struct posix_acl *, int); ++int bch2_set_acl(struct mnt_idmap *, struct dentry *, struct posix_acl *, int); ++int bch2_acl_chmod(struct btree_trans *, subvol_inum, ++ struct bch_inode_unpacked *, ++ umode_t, struct posix_acl **); ++ ++#else ++ ++static inline int bch2_set_acl_trans(struct btree_trans *trans, subvol_inum inum, ++ struct bch_inode_unpacked *inode_u, ++ struct posix_acl *acl, int type) ++{ ++ return 0; ++} ++ ++static inline int bch2_acl_chmod(struct btree_trans *trans, subvol_inum inum, ++ struct bch_inode_unpacked *inode, ++ umode_t mode, ++ struct posix_acl **new_acl) ++{ ++ return 0; ++} ++ ++#endif /* CONFIG_BCACHEFS_POSIX_ACL */ ++ ++#endif /* _BCACHEFS_ACL_H */ +diff --git a/fs/bcachefs/alloc_background.c b/fs/bcachefs/alloc_background.c +new file mode 100644 +index 000000000000..2d516207e223 +--- /dev/null ++++ b/fs/bcachefs/alloc_background.c +@@ -0,0 +1,2146 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "backpointers.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_key_cache.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_gc.h" ++#include "btree_write_buffer.h" ++#include "buckets.h" ++#include "buckets_waiting_for_journal.h" ++#include "clock.h" ++#include "debug.h" ++#include "ec.h" ++#include "error.h" ++#include "lru.h" ++#include "recovery.h" ++#include "trace.h" ++#include "varint.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* Persistent alloc info: */ ++ ++static const unsigned BCH_ALLOC_V1_FIELD_BYTES[] = { ++#define x(name, bits) [BCH_ALLOC_FIELD_V1_##name] = bits / 8, ++ BCH_ALLOC_FIELDS_V1() ++#undef x ++}; ++ ++struct bkey_alloc_unpacked { ++ u64 journal_seq; ++ u8 gen; ++ u8 oldest_gen; ++ u8 data_type; ++ bool need_discard:1; ++ bool need_inc_gen:1; ++#define x(_name, _bits) u##_bits _name; ++ BCH_ALLOC_FIELDS_V2() ++#undef x ++}; ++ ++static inline u64 alloc_field_v1_get(const struct bch_alloc *a, ++ const void **p, unsigned field) ++{ ++ unsigned bytes = BCH_ALLOC_V1_FIELD_BYTES[field]; ++ u64 v; ++ ++ if (!(a->fields & (1 << field))) ++ return 0; ++ ++ switch (bytes) { ++ case 1: ++ v = *((const u8 *) *p); ++ break; ++ case 2: ++ v = le16_to_cpup(*p); ++ break; ++ case 4: ++ v = le32_to_cpup(*p); ++ break; ++ case 8: ++ v = le64_to_cpup(*p); ++ break; ++ default: ++ BUG(); ++ } ++ ++ *p += bytes; ++ return v; ++} ++ ++static void bch2_alloc_unpack_v1(struct bkey_alloc_unpacked *out, ++ struct bkey_s_c k) ++{ ++ const struct bch_alloc *in = bkey_s_c_to_alloc(k).v; ++ const void *d = in->data; ++ unsigned idx = 0; ++ ++ out->gen = in->gen; ++ ++#define x(_name, _bits) out->_name = alloc_field_v1_get(in, &d, idx++); ++ BCH_ALLOC_FIELDS_V1() ++#undef x ++} ++ ++static int bch2_alloc_unpack_v2(struct bkey_alloc_unpacked *out, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_alloc_v2 a = bkey_s_c_to_alloc_v2(k); ++ const u8 *in = a.v->data; ++ const u8 *end = bkey_val_end(a); ++ unsigned fieldnr = 0; ++ int ret; ++ u64 v; ++ ++ out->gen = a.v->gen; ++ out->oldest_gen = a.v->oldest_gen; ++ out->data_type = a.v->data_type; ++ ++#define x(_name, _bits) \ ++ if (fieldnr < a.v->nr_fields) { \ ++ ret = bch2_varint_decode_fast(in, end, &v); \ ++ if (ret < 0) \ ++ return ret; \ ++ in += ret; \ ++ } else { \ ++ v = 0; \ ++ } \ ++ out->_name = v; \ ++ if (v != out->_name) \ ++ return -1; \ ++ fieldnr++; ++ ++ BCH_ALLOC_FIELDS_V2() ++#undef x ++ return 0; ++} ++ ++static int bch2_alloc_unpack_v3(struct bkey_alloc_unpacked *out, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_alloc_v3 a = bkey_s_c_to_alloc_v3(k); ++ const u8 *in = a.v->data; ++ const u8 *end = bkey_val_end(a); ++ unsigned fieldnr = 0; ++ int ret; ++ u64 v; ++ ++ out->gen = a.v->gen; ++ out->oldest_gen = a.v->oldest_gen; ++ out->data_type = a.v->data_type; ++ out->need_discard = BCH_ALLOC_V3_NEED_DISCARD(a.v); ++ out->need_inc_gen = BCH_ALLOC_V3_NEED_INC_GEN(a.v); ++ out->journal_seq = le64_to_cpu(a.v->journal_seq); ++ ++#define x(_name, _bits) \ ++ if (fieldnr < a.v->nr_fields) { \ ++ ret = bch2_varint_decode_fast(in, end, &v); \ ++ if (ret < 0) \ ++ return ret; \ ++ in += ret; \ ++ } else { \ ++ v = 0; \ ++ } \ ++ out->_name = v; \ ++ if (v != out->_name) \ ++ return -1; \ ++ fieldnr++; ++ ++ BCH_ALLOC_FIELDS_V2() ++#undef x ++ return 0; ++} ++ ++static struct bkey_alloc_unpacked bch2_alloc_unpack(struct bkey_s_c k) ++{ ++ struct bkey_alloc_unpacked ret = { .gen = 0 }; ++ ++ switch (k.k->type) { ++ case KEY_TYPE_alloc: ++ bch2_alloc_unpack_v1(&ret, k); ++ break; ++ case KEY_TYPE_alloc_v2: ++ bch2_alloc_unpack_v2(&ret, k); ++ break; ++ case KEY_TYPE_alloc_v3: ++ bch2_alloc_unpack_v3(&ret, k); ++ break; ++ } ++ ++ return ret; ++} ++ ++static unsigned bch_alloc_v1_val_u64s(const struct bch_alloc *a) ++{ ++ unsigned i, bytes = offsetof(struct bch_alloc, data); ++ ++ for (i = 0; i < ARRAY_SIZE(BCH_ALLOC_V1_FIELD_BYTES); i++) ++ if (a->fields & (1 << i)) ++ bytes += BCH_ALLOC_V1_FIELD_BYTES[i]; ++ ++ return DIV_ROUND_UP(bytes, sizeof(u64)); ++} ++ ++int bch2_alloc_v1_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_alloc a = bkey_s_c_to_alloc(k); ++ ++ /* allow for unknown fields */ ++ if (bkey_val_u64s(a.k) < bch_alloc_v1_val_u64s(a.v)) { ++ prt_printf(err, "incorrect value size (%zu < %u)", ++ bkey_val_u64s(a.k), bch_alloc_v1_val_u64s(a.v)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++int bch2_alloc_v2_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_alloc_unpacked u; ++ ++ if (bch2_alloc_unpack_v2(&u, k)) { ++ prt_printf(err, "unpack error"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++int bch2_alloc_v3_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_alloc_unpacked u; ++ ++ if (bch2_alloc_unpack_v3(&u, k)) { ++ prt_printf(err, "unpack error"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++int bch2_alloc_v4_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, struct printbuf *err) ++{ ++ struct bkey_s_c_alloc_v4 a = bkey_s_c_to_alloc_v4(k); ++ ++ if (alloc_v4_u64s(a.v) > bkey_val_u64s(k.k)) { ++ prt_printf(err, "bad val size (%u > %zu)", ++ alloc_v4_u64s(a.v), bkey_val_u64s(k.k)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (!BCH_ALLOC_V4_BACKPOINTERS_START(a.v) && ++ BCH_ALLOC_V4_NR_BACKPOINTERS(a.v)) { ++ prt_printf(err, "invalid backpointers_start"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (alloc_data_type(*a.v, a.v->data_type) != a.v->data_type) { ++ prt_printf(err, "invalid data type (got %u should be %u)", ++ a.v->data_type, alloc_data_type(*a.v, a.v->data_type)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ switch (a.v->data_type) { ++ case BCH_DATA_free: ++ case BCH_DATA_need_gc_gens: ++ case BCH_DATA_need_discard: ++ if (a.v->dirty_sectors || ++ a.v->cached_sectors || ++ a.v->stripe) { ++ prt_printf(err, "empty data type free but have data"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ break; ++ case BCH_DATA_sb: ++ case BCH_DATA_journal: ++ case BCH_DATA_btree: ++ case BCH_DATA_user: ++ case BCH_DATA_parity: ++ if (!a.v->dirty_sectors) { ++ prt_printf(err, "data_type %s but dirty_sectors==0", ++ bch2_data_types[a.v->data_type]); ++ return -BCH_ERR_invalid_bkey; ++ } ++ break; ++ case BCH_DATA_cached: ++ if (!a.v->cached_sectors || ++ a.v->dirty_sectors || ++ a.v->stripe) { ++ prt_printf(err, "data type inconsistency"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (!a.v->io_time[READ] && ++ c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_to_lru_refs) { ++ prt_printf(err, "cached bucket with read_time == 0"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ break; ++ case BCH_DATA_stripe: ++ break; ++ } ++ ++ return 0; ++} ++ ++static inline u64 swab40(u64 x) ++{ ++ return (((x & 0x00000000ffULL) << 32)| ++ ((x & 0x000000ff00ULL) << 16)| ++ ((x & 0x0000ff0000ULL) >> 0)| ++ ((x & 0x00ff000000ULL) >> 16)| ++ ((x & 0xff00000000ULL) >> 32)); ++} ++ ++void bch2_alloc_v4_swab(struct bkey_s k) ++{ ++ struct bch_alloc_v4 *a = bkey_s_to_alloc_v4(k).v; ++ struct bch_backpointer *bp, *bps; ++ ++ a->journal_seq = swab64(a->journal_seq); ++ a->flags = swab32(a->flags); ++ a->dirty_sectors = swab32(a->dirty_sectors); ++ a->cached_sectors = swab32(a->cached_sectors); ++ a->io_time[0] = swab64(a->io_time[0]); ++ a->io_time[1] = swab64(a->io_time[1]); ++ a->stripe = swab32(a->stripe); ++ a->nr_external_backpointers = swab32(a->nr_external_backpointers); ++ ++ bps = alloc_v4_backpointers(a); ++ for (bp = bps; bp < bps + BCH_ALLOC_V4_NR_BACKPOINTERS(a); bp++) { ++ bp->bucket_offset = swab40(bp->bucket_offset); ++ bp->bucket_len = swab32(bp->bucket_len); ++ bch2_bpos_swab(&bp->pos); ++ } ++} ++ ++void bch2_alloc_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bch_alloc_v4 _a; ++ const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &_a); ++ unsigned i; ++ ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ ++ prt_printf(out, "gen %u oldest_gen %u data_type %s", ++ a->gen, a->oldest_gen, ++ a->data_type < BCH_DATA_NR ++ ? bch2_data_types[a->data_type] ++ : "(invalid data type)"); ++ prt_newline(out); ++ prt_printf(out, "journal_seq %llu", a->journal_seq); ++ prt_newline(out); ++ prt_printf(out, "need_discard %llu", BCH_ALLOC_V4_NEED_DISCARD(a)); ++ prt_newline(out); ++ prt_printf(out, "need_inc_gen %llu", BCH_ALLOC_V4_NEED_INC_GEN(a)); ++ prt_newline(out); ++ prt_printf(out, "dirty_sectors %u", a->dirty_sectors); ++ prt_newline(out); ++ prt_printf(out, "cached_sectors %u", a->cached_sectors); ++ prt_newline(out); ++ prt_printf(out, "stripe %u", a->stripe); ++ prt_newline(out); ++ prt_printf(out, "stripe_redundancy %u", a->stripe_redundancy); ++ prt_newline(out); ++ prt_printf(out, "io_time[READ] %llu", a->io_time[READ]); ++ prt_newline(out); ++ prt_printf(out, "io_time[WRITE] %llu", a->io_time[WRITE]); ++ prt_newline(out); ++ prt_printf(out, "fragmentation %llu", a->fragmentation_lru); ++ prt_newline(out); ++ prt_printf(out, "bp_start %llu", BCH_ALLOC_V4_BACKPOINTERS_START(a)); ++ prt_newline(out); ++ ++ if (BCH_ALLOC_V4_NR_BACKPOINTERS(a)) { ++ struct bkey_s_c_alloc_v4 a_raw = bkey_s_c_to_alloc_v4(k); ++ const struct bch_backpointer *bps = alloc_v4_backpointers_c(a_raw.v); ++ ++ prt_printf(out, "backpointers: %llu", BCH_ALLOC_V4_NR_BACKPOINTERS(a_raw.v)); ++ printbuf_indent_add(out, 2); ++ ++ for (i = 0; i < BCH_ALLOC_V4_NR_BACKPOINTERS(a_raw.v); i++) { ++ prt_newline(out); ++ bch2_backpointer_to_text(out, &bps[i]); ++ } ++ ++ printbuf_indent_sub(out, 2); ++ } ++ ++ printbuf_indent_sub(out, 2); ++} ++ ++void __bch2_alloc_to_v4(struct bkey_s_c k, struct bch_alloc_v4 *out) ++{ ++ if (k.k->type == KEY_TYPE_alloc_v4) { ++ void *src, *dst; ++ ++ *out = *bkey_s_c_to_alloc_v4(k).v; ++ ++ src = alloc_v4_backpointers(out); ++ SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s); ++ dst = alloc_v4_backpointers(out); ++ ++ if (src < dst) ++ memset(src, 0, dst - src); ++ ++ SET_BCH_ALLOC_V4_NR_BACKPOINTERS(out, 0); ++ } else { ++ struct bkey_alloc_unpacked u = bch2_alloc_unpack(k); ++ ++ *out = (struct bch_alloc_v4) { ++ .journal_seq = u.journal_seq, ++ .flags = u.need_discard, ++ .gen = u.gen, ++ .oldest_gen = u.oldest_gen, ++ .data_type = u.data_type, ++ .stripe_redundancy = u.stripe_redundancy, ++ .dirty_sectors = u.dirty_sectors, ++ .cached_sectors = u.cached_sectors, ++ .io_time[READ] = u.read_time, ++ .io_time[WRITE] = u.write_time, ++ .stripe = u.stripe, ++ }; ++ ++ SET_BCH_ALLOC_V4_BACKPOINTERS_START(out, BCH_ALLOC_V4_U64s); ++ } ++} ++ ++static noinline struct bkey_i_alloc_v4 * ++__bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k) ++{ ++ struct bkey_i_alloc_v4 *ret; ++ ++ ret = bch2_trans_kmalloc(trans, max(bkey_bytes(k.k), sizeof(struct bkey_i_alloc_v4))); ++ if (IS_ERR(ret)) ++ return ret; ++ ++ if (k.k->type == KEY_TYPE_alloc_v4) { ++ void *src, *dst; ++ ++ bkey_reassemble(&ret->k_i, k); ++ ++ src = alloc_v4_backpointers(&ret->v); ++ SET_BCH_ALLOC_V4_BACKPOINTERS_START(&ret->v, BCH_ALLOC_V4_U64s); ++ dst = alloc_v4_backpointers(&ret->v); ++ ++ if (src < dst) ++ memset(src, 0, dst - src); ++ ++ SET_BCH_ALLOC_V4_NR_BACKPOINTERS(&ret->v, 0); ++ set_alloc_v4_u64s(ret); ++ } else { ++ bkey_alloc_v4_init(&ret->k_i); ++ ret->k.p = k.k->p; ++ bch2_alloc_to_v4(k, &ret->v); ++ } ++ return ret; ++} ++ ++static inline struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut_inlined(struct btree_trans *trans, struct bkey_s_c k) ++{ ++ struct bkey_s_c_alloc_v4 a; ++ ++ if (likely(k.k->type == KEY_TYPE_alloc_v4) && ++ ((a = bkey_s_c_to_alloc_v4(k), true) && ++ BCH_ALLOC_V4_NR_BACKPOINTERS(a.v) == 0)) ++ return bch2_bkey_make_mut_noupdate_typed(trans, k, alloc_v4); ++ ++ return __bch2_alloc_to_v4_mut(trans, k); ++} ++ ++struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut(struct btree_trans *trans, struct bkey_s_c k) ++{ ++ return bch2_alloc_to_v4_mut_inlined(trans, k); ++} ++ ++struct bkey_i_alloc_v4 * ++bch2_trans_start_alloc_update(struct btree_trans *trans, struct btree_iter *iter, ++ struct bpos pos) ++{ ++ struct bkey_s_c k; ++ struct bkey_i_alloc_v4 *a; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, iter, BTREE_ID_alloc, pos, ++ BTREE_ITER_WITH_UPDATES| ++ BTREE_ITER_CACHED| ++ BTREE_ITER_INTENT); ++ ret = bkey_err(k); ++ if (unlikely(ret)) ++ return ERR_PTR(ret); ++ ++ a = bch2_alloc_to_v4_mut_inlined(trans, k); ++ ret = PTR_ERR_OR_ZERO(a); ++ if (unlikely(ret)) ++ goto err; ++ return a; ++err: ++ bch2_trans_iter_exit(trans, iter); ++ return ERR_PTR(ret); ++} ++ ++static struct bpos alloc_gens_pos(struct bpos pos, unsigned *offset) ++{ ++ *offset = pos.offset & KEY_TYPE_BUCKET_GENS_MASK; ++ ++ pos.offset >>= KEY_TYPE_BUCKET_GENS_BITS; ++ return pos; ++} ++ ++static struct bpos bucket_gens_pos_to_alloc(struct bpos pos, unsigned offset) ++{ ++ pos.offset <<= KEY_TYPE_BUCKET_GENS_BITS; ++ pos.offset += offset; ++ return pos; ++} ++ ++static unsigned alloc_gen(struct bkey_s_c k, unsigned offset) ++{ ++ return k.k->type == KEY_TYPE_bucket_gens ++ ? bkey_s_c_to_bucket_gens(k).v->gens[offset] ++ : 0; ++} ++ ++int bch2_bucket_gens_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ if (bkey_val_bytes(k.k) != sizeof(struct bch_bucket_gens)) { ++ prt_printf(err, "bad val size (%zu != %zu)", ++ bkey_val_bytes(k.k), sizeof(struct bch_bucket_gens)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_bucket_gens_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_bucket_gens g = bkey_s_c_to_bucket_gens(k); ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(g.v->gens); i++) { ++ if (i) ++ prt_char(out, ' '); ++ prt_printf(out, "%u", g.v->gens[i]); ++ } ++} ++ ++int bch2_bucket_gens_init(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_alloc_v4 a; ++ struct bkey_i_bucket_gens g; ++ bool have_bucket_gens_key = false; ++ unsigned offset; ++ struct bpos pos; ++ u8 gen; ++ int ret; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_alloc, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ret) { ++ /* ++ * Not a fsck error because this is checked/repaired by ++ * bch2_check_alloc_key() which runs later: ++ */ ++ if (!bch2_dev_bucket_exists(c, k.k->p)) ++ continue; ++ ++ gen = bch2_alloc_to_v4(k, &a)->gen; ++ pos = alloc_gens_pos(iter.pos, &offset); ++ ++ if (have_bucket_gens_key && bkey_cmp(iter.pos, pos)) { ++ ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ bch2_btree_insert_trans(trans, BTREE_ID_bucket_gens, &g.k_i, 0)); ++ if (ret) ++ break; ++ have_bucket_gens_key = false; ++ } ++ ++ if (!have_bucket_gens_key) { ++ bkey_bucket_gens_init(&g.k_i); ++ g.k.p = pos; ++ have_bucket_gens_key = true; ++ } ++ ++ g.v.gens[offset] = gen; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (have_bucket_gens_key && !ret) ++ ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ bch2_btree_insert_trans(trans, BTREE_ID_bucket_gens, &g.k_i, 0)); ++ ++ bch2_trans_put(trans); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++int bch2_alloc_read(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_dev *ca; ++ int ret; ++ ++ down_read(&c->gc_lock); ++ ++ if (c->sb.version_upgrade_complete >= bcachefs_metadata_version_bucket_gens) { ++ const struct bch_bucket_gens *g; ++ u64 b; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_bucket_gens, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ret) { ++ u64 start = bucket_gens_pos_to_alloc(k.k->p, 0).offset; ++ u64 end = bucket_gens_pos_to_alloc(bpos_nosnap_successor(k.k->p), 0).offset; ++ ++ if (k.k->type != KEY_TYPE_bucket_gens) ++ continue; ++ ++ g = bkey_s_c_to_bucket_gens(k).v; ++ ++ /* ++ * Not a fsck error because this is checked/repaired by ++ * bch2_check_alloc_key() which runs later: ++ */ ++ if (!bch2_dev_exists2(c, k.k->p.inode)) ++ continue; ++ ++ ca = bch_dev_bkey_exists(c, k.k->p.inode); ++ ++ for (b = max_t(u64, ca->mi.first_bucket, start); ++ b < min_t(u64, ca->mi.nbuckets, end); ++ b++) ++ *bucket_gen(ca, b) = g->gens[b & KEY_TYPE_BUCKET_GENS_MASK]; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ } else { ++ struct bch_alloc_v4 a; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_alloc, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ret) { ++ /* ++ * Not a fsck error because this is checked/repaired by ++ * bch2_check_alloc_key() which runs later: ++ */ ++ if (!bch2_dev_bucket_exists(c, k.k->p)) ++ continue; ++ ++ ca = bch_dev_bkey_exists(c, k.k->p.inode); ++ ++ *bucket_gen(ca, k.k->p.offset) = bch2_alloc_to_v4(k, &a)->gen; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ } ++ ++ bch2_trans_put(trans); ++ up_read(&c->gc_lock); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ ++ return ret; ++} ++ ++/* Free space/discard btree: */ ++ ++static int bch2_bucket_do_index(struct btree_trans *trans, ++ struct bkey_s_c alloc_k, ++ const struct bch_alloc_v4 *a, ++ bool set) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode); ++ struct btree_iter iter; ++ struct bkey_s_c old; ++ struct bkey_i *k; ++ enum btree_id btree; ++ enum bch_bkey_type old_type = !set ? KEY_TYPE_set : KEY_TYPE_deleted; ++ enum bch_bkey_type new_type = set ? KEY_TYPE_set : KEY_TYPE_deleted; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ if (a->data_type != BCH_DATA_free && ++ a->data_type != BCH_DATA_need_discard) ++ return 0; ++ ++ k = bch2_trans_kmalloc_nomemzero(trans, sizeof(*k)); ++ if (IS_ERR(k)) ++ return PTR_ERR(k); ++ ++ bkey_init(&k->k); ++ k->k.type = new_type; ++ ++ switch (a->data_type) { ++ case BCH_DATA_free: ++ btree = BTREE_ID_freespace; ++ k->k.p = alloc_freespace_pos(alloc_k.k->p, *a); ++ bch2_key_resize(&k->k, 1); ++ break; ++ case BCH_DATA_need_discard: ++ btree = BTREE_ID_need_discard; ++ k->k.p = alloc_k.k->p; ++ break; ++ default: ++ return 0; ++ } ++ ++ old = bch2_bkey_get_iter(trans, &iter, btree, ++ bkey_start_pos(&k->k), ++ BTREE_ITER_INTENT); ++ ret = bkey_err(old); ++ if (ret) ++ return ret; ++ ++ if (ca->mi.freespace_initialized && ++ c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info && ++ bch2_trans_inconsistent_on(old.k->type != old_type, trans, ++ "incorrect key when %s %s:%llu:%llu:0 (got %s should be %s)\n" ++ " for %s", ++ set ? "setting" : "clearing", ++ bch2_btree_ids[btree], ++ iter.pos.inode, ++ iter.pos.offset, ++ bch2_bkey_types[old.k->type], ++ bch2_bkey_types[old_type], ++ (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) { ++ ret = -EIO; ++ goto err; ++ } ++ ++ ret = bch2_trans_update(trans, &iter, k, 0); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static noinline int bch2_bucket_gen_update(struct btree_trans *trans, ++ struct bpos bucket, u8 gen) ++{ ++ struct btree_iter iter; ++ unsigned offset; ++ struct bpos pos = alloc_gens_pos(bucket, &offset); ++ struct bkey_i_bucket_gens *g; ++ struct bkey_s_c k; ++ int ret; ++ ++ g = bch2_trans_kmalloc(trans, sizeof(*g)); ++ ret = PTR_ERR_OR_ZERO(g); ++ if (ret) ++ return ret; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_bucket_gens, pos, ++ BTREE_ITER_INTENT| ++ BTREE_ITER_WITH_UPDATES); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ ++ if (k.k->type != KEY_TYPE_bucket_gens) { ++ bkey_bucket_gens_init(&g->k_i); ++ g->k.p = iter.pos; ++ } else { ++ bkey_reassemble(&g->k_i, k); ++ } ++ ++ g->v.gens[offset] = gen; ++ ++ ret = bch2_trans_update(trans, &iter, &g->k_i, 0); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_trans_mark_alloc(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_i *new, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_alloc_v4 old_a_convert, *new_a; ++ const struct bch_alloc_v4 *old_a; ++ u64 old_lru, new_lru; ++ int ret = 0; ++ ++ /* ++ * Deletion only happens in the device removal path, with ++ * BTREE_TRIGGER_NORUN: ++ */ ++ BUG_ON(new->k.type != KEY_TYPE_alloc_v4); ++ ++ old_a = bch2_alloc_to_v4(old, &old_a_convert); ++ new_a = &bkey_i_to_alloc_v4(new)->v; ++ ++ new_a->data_type = alloc_data_type(*new_a, new_a->data_type); ++ ++ if (new_a->dirty_sectors > old_a->dirty_sectors || ++ new_a->cached_sectors > old_a->cached_sectors) { ++ new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now)); ++ new_a->io_time[WRITE]= max_t(u64, 1, atomic64_read(&c->io_clock[WRITE].now)); ++ SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, true); ++ SET_BCH_ALLOC_V4_NEED_DISCARD(new_a, true); ++ } ++ ++ if (data_type_is_empty(new_a->data_type) && ++ BCH_ALLOC_V4_NEED_INC_GEN(new_a) && ++ !bch2_bucket_is_open_safe(c, new->k.p.inode, new->k.p.offset)) { ++ new_a->gen++; ++ SET_BCH_ALLOC_V4_NEED_INC_GEN(new_a, false); ++ } ++ ++ if (old_a->data_type != new_a->data_type || ++ (new_a->data_type == BCH_DATA_free && ++ alloc_freespace_genbits(*old_a) != alloc_freespace_genbits(*new_a))) { ++ ret = bch2_bucket_do_index(trans, old, old_a, false) ?: ++ bch2_bucket_do_index(trans, bkey_i_to_s_c(new), new_a, true); ++ if (ret) ++ return ret; ++ } ++ ++ if (new_a->data_type == BCH_DATA_cached && ++ !new_a->io_time[READ]) ++ new_a->io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now)); ++ ++ old_lru = alloc_lru_idx_read(*old_a); ++ new_lru = alloc_lru_idx_read(*new_a); ++ ++ if (old_lru != new_lru) { ++ ret = bch2_lru_change(trans, new->k.p.inode, ++ bucket_to_u64(new->k.p), ++ old_lru, new_lru); ++ if (ret) ++ return ret; ++ } ++ ++ new_a->fragmentation_lru = alloc_lru_idx_fragmentation(*new_a, ++ bch_dev_bkey_exists(c, new->k.p.inode)); ++ ++ if (old_a->fragmentation_lru != new_a->fragmentation_lru) { ++ ret = bch2_lru_change(trans, ++ BCH_LRU_FRAGMENTATION_START, ++ bucket_to_u64(new->k.p), ++ old_a->fragmentation_lru, new_a->fragmentation_lru); ++ if (ret) ++ return ret; ++ } ++ ++ if (old_a->gen != new_a->gen) { ++ ret = bch2_bucket_gen_update(trans, new->k.p, new_a->gen); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++/* ++ * This synthesizes deleted extents for holes, similar to BTREE_ITER_SLOTS for ++ * extents style btrees, but works on non-extents btrees: ++ */ ++static struct bkey_s_c bch2_get_key_or_hole(struct btree_iter *iter, struct bpos end, struct bkey *hole) ++{ ++ struct bkey_s_c k = bch2_btree_iter_peek_slot(iter); ++ ++ if (bkey_err(k)) ++ return k; ++ ++ if (k.k->type) { ++ return k; ++ } else { ++ struct btree_iter iter2; ++ struct bpos next; ++ ++ bch2_trans_copy_iter(&iter2, iter); ++ ++ if (!bpos_eq(iter->path->l[0].b->key.k.p, SPOS_MAX)) ++ end = bkey_min(end, bpos_nosnap_successor(iter->path->l[0].b->key.k.p)); ++ ++ end = bkey_min(end, POS(iter->pos.inode, iter->pos.offset + U32_MAX - 1)); ++ ++ /* ++ * btree node min/max is a closed interval, upto takes a half ++ * open interval: ++ */ ++ k = bch2_btree_iter_peek_upto(&iter2, end); ++ next = iter2.pos; ++ bch2_trans_iter_exit(iter->trans, &iter2); ++ ++ BUG_ON(next.offset >= iter->pos.offset + U32_MAX); ++ ++ if (bkey_err(k)) ++ return k; ++ ++ bkey_init(hole); ++ hole->p = iter->pos; ++ ++ bch2_key_resize(hole, next.offset - iter->pos.offset); ++ return (struct bkey_s_c) { hole, NULL }; ++ } ++} ++ ++static bool next_bucket(struct bch_fs *c, struct bpos *bucket) ++{ ++ struct bch_dev *ca; ++ unsigned iter; ++ ++ if (bch2_dev_bucket_exists(c, *bucket)) ++ return true; ++ ++ if (bch2_dev_exists2(c, bucket->inode)) { ++ ca = bch_dev_bkey_exists(c, bucket->inode); ++ ++ if (bucket->offset < ca->mi.first_bucket) { ++ bucket->offset = ca->mi.first_bucket; ++ return true; ++ } ++ ++ bucket->inode++; ++ bucket->offset = 0; ++ } ++ ++ rcu_read_lock(); ++ iter = bucket->inode; ++ ca = __bch2_next_dev(c, &iter, NULL); ++ if (ca) ++ *bucket = POS(ca->dev_idx, ca->mi.first_bucket); ++ rcu_read_unlock(); ++ ++ return ca != NULL; ++} ++ ++static struct bkey_s_c bch2_get_key_or_real_bucket_hole(struct btree_iter *iter, struct bkey *hole) ++{ ++ struct bch_fs *c = iter->trans->c; ++ struct bkey_s_c k; ++again: ++ k = bch2_get_key_or_hole(iter, POS_MAX, hole); ++ if (bkey_err(k)) ++ return k; ++ ++ if (!k.k->type) { ++ struct bpos bucket = bkey_start_pos(k.k); ++ ++ if (!bch2_dev_bucket_exists(c, bucket)) { ++ if (!next_bucket(c, &bucket)) ++ return bkey_s_c_null; ++ ++ bch2_btree_iter_set_pos(iter, bucket); ++ goto again; ++ } ++ ++ if (!bch2_dev_bucket_exists(c, k.k->p)) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, bucket.inode); ++ ++ bch2_key_resize(hole, ca->mi.nbuckets - bucket.offset); ++ } ++ } ++ ++ return k; ++} ++ ++static noinline_for_stack ++int bch2_check_alloc_key(struct btree_trans *trans, ++ struct bkey_s_c alloc_k, ++ struct btree_iter *alloc_iter, ++ struct btree_iter *discard_iter, ++ struct btree_iter *freespace_iter, ++ struct btree_iter *bucket_gens_iter) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca; ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a; ++ unsigned discard_key_type, freespace_key_type; ++ unsigned gens_offset; ++ struct bkey_s_c k; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ if (fsck_err_on(!bch2_dev_bucket_exists(c, alloc_k.k->p), c, ++ "alloc key for invalid device:bucket %llu:%llu", ++ alloc_k.k->p.inode, alloc_k.k->p.offset)) ++ return bch2_btree_delete_at(trans, alloc_iter, 0); ++ ++ ca = bch_dev_bkey_exists(c, alloc_k.k->p.inode); ++ if (!ca->mi.freespace_initialized) ++ return 0; ++ ++ a = bch2_alloc_to_v4(alloc_k, &a_convert); ++ ++ discard_key_type = a->data_type == BCH_DATA_need_discard ? KEY_TYPE_set : 0; ++ bch2_btree_iter_set_pos(discard_iter, alloc_k.k->p); ++ k = bch2_btree_iter_peek_slot(discard_iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (k.k->type != discard_key_type && ++ (c->opts.reconstruct_alloc || ++ fsck_err(c, "incorrect key in need_discard btree (got %s should be %s)\n" ++ " %s", ++ bch2_bkey_types[k.k->type], ++ bch2_bkey_types[discard_key_type], ++ (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)))) { ++ struct bkey_i *update = ++ bch2_trans_kmalloc(trans, sizeof(*update)); ++ ++ ret = PTR_ERR_OR_ZERO(update); ++ if (ret) ++ goto err; ++ ++ bkey_init(&update->k); ++ update->k.type = discard_key_type; ++ update->k.p = discard_iter->pos; ++ ++ ret = bch2_trans_update(trans, discard_iter, update, 0); ++ if (ret) ++ goto err; ++ } ++ ++ freespace_key_type = a->data_type == BCH_DATA_free ? KEY_TYPE_set : 0; ++ bch2_btree_iter_set_pos(freespace_iter, alloc_freespace_pos(alloc_k.k->p, *a)); ++ k = bch2_btree_iter_peek_slot(freespace_iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (k.k->type != freespace_key_type && ++ (c->opts.reconstruct_alloc || ++ fsck_err(c, "incorrect key in freespace btree (got %s should be %s)\n" ++ " %s", ++ bch2_bkey_types[k.k->type], ++ bch2_bkey_types[freespace_key_type], ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)))) { ++ struct bkey_i *update = ++ bch2_trans_kmalloc(trans, sizeof(*update)); ++ ++ ret = PTR_ERR_OR_ZERO(update); ++ if (ret) ++ goto err; ++ ++ bkey_init(&update->k); ++ update->k.type = freespace_key_type; ++ update->k.p = freespace_iter->pos; ++ bch2_key_resize(&update->k, 1); ++ ++ ret = bch2_trans_update(trans, freespace_iter, update, 0); ++ if (ret) ++ goto err; ++ } ++ ++ bch2_btree_iter_set_pos(bucket_gens_iter, alloc_gens_pos(alloc_k.k->p, &gens_offset)); ++ k = bch2_btree_iter_peek_slot(bucket_gens_iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (a->gen != alloc_gen(k, gens_offset) && ++ (c->opts.reconstruct_alloc || ++ fsck_err(c, "incorrect gen in bucket_gens btree (got %u should be %u)\n" ++ " %s", ++ alloc_gen(k, gens_offset), a->gen, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)))) { ++ struct bkey_i_bucket_gens *g = ++ bch2_trans_kmalloc(trans, sizeof(*g)); ++ ++ ret = PTR_ERR_OR_ZERO(g); ++ if (ret) ++ goto err; ++ ++ if (k.k->type == KEY_TYPE_bucket_gens) { ++ bkey_reassemble(&g->k_i, k); ++ } else { ++ bkey_bucket_gens_init(&g->k_i); ++ g->k.p = alloc_gens_pos(alloc_k.k->p, &gens_offset); ++ } ++ ++ g->v.gens[gens_offset] = a->gen; ++ ++ ret = bch2_trans_update(trans, bucket_gens_iter, &g->k_i, 0); ++ if (ret) ++ goto err; ++ } ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static noinline_for_stack ++int bch2_check_alloc_hole_freespace(struct btree_trans *trans, ++ struct bpos start, ++ struct bpos *end, ++ struct btree_iter *freespace_iter) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca; ++ struct bkey_s_c k; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ ca = bch_dev_bkey_exists(c, start.inode); ++ if (!ca->mi.freespace_initialized) ++ return 0; ++ ++ bch2_btree_iter_set_pos(freespace_iter, start); ++ ++ k = bch2_btree_iter_peek_slot(freespace_iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ *end = bkey_min(k.k->p, *end); ++ ++ if (k.k->type != KEY_TYPE_set && ++ (c->opts.reconstruct_alloc || ++ fsck_err(c, "hole in alloc btree missing in freespace btree\n" ++ " device %llu buckets %llu-%llu", ++ freespace_iter->pos.inode, ++ freespace_iter->pos.offset, ++ end->offset))) { ++ struct bkey_i *update = ++ bch2_trans_kmalloc(trans, sizeof(*update)); ++ ++ ret = PTR_ERR_OR_ZERO(update); ++ if (ret) ++ goto err; ++ ++ bkey_init(&update->k); ++ update->k.type = KEY_TYPE_set; ++ update->k.p = freespace_iter->pos; ++ bch2_key_resize(&update->k, ++ min_t(u64, U32_MAX, end->offset - ++ freespace_iter->pos.offset)); ++ ++ ret = bch2_trans_update(trans, freespace_iter, update, 0); ++ if (ret) ++ goto err; ++ } ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static noinline_for_stack ++int bch2_check_alloc_hole_bucket_gens(struct btree_trans *trans, ++ struct bpos start, ++ struct bpos *end, ++ struct btree_iter *bucket_gens_iter) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k; ++ struct printbuf buf = PRINTBUF; ++ unsigned i, gens_offset, gens_end_offset; ++ int ret; ++ ++ if (c->sb.version < bcachefs_metadata_version_bucket_gens) ++ return 0; ++ ++ bch2_btree_iter_set_pos(bucket_gens_iter, alloc_gens_pos(start, &gens_offset)); ++ ++ k = bch2_btree_iter_peek_slot(bucket_gens_iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (bkey_cmp(alloc_gens_pos(start, &gens_offset), ++ alloc_gens_pos(*end, &gens_end_offset))) ++ gens_end_offset = KEY_TYPE_BUCKET_GENS_NR; ++ ++ if (k.k->type == KEY_TYPE_bucket_gens) { ++ struct bkey_i_bucket_gens g; ++ bool need_update = false; ++ ++ bkey_reassemble(&g.k_i, k); ++ ++ for (i = gens_offset; i < gens_end_offset; i++) { ++ if (fsck_err_on(g.v.gens[i], c, ++ "hole in alloc btree at %llu:%llu with nonzero gen in bucket_gens btree (%u)", ++ bucket_gens_pos_to_alloc(k.k->p, i).inode, ++ bucket_gens_pos_to_alloc(k.k->p, i).offset, ++ g.v.gens[i])) { ++ g.v.gens[i] = 0; ++ need_update = true; ++ } ++ } ++ ++ if (need_update) { ++ struct bkey_i *u = bch2_trans_kmalloc(trans, sizeof(g)); ++ ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ goto err; ++ ++ memcpy(u, &g, sizeof(g)); ++ ++ ret = bch2_trans_update(trans, bucket_gens_iter, u, 0); ++ if (ret) ++ goto err; ++ } ++ } ++ ++ *end = bkey_min(*end, bucket_gens_pos_to_alloc(bpos_nosnap_successor(k.k->p), 0)); ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static noinline_for_stack int __bch2_check_discard_freespace_key(struct btree_trans *trans, ++ struct btree_iter *iter) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter alloc_iter; ++ struct bkey_s_c alloc_k; ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a; ++ u64 genbits; ++ struct bpos pos; ++ enum bch_data_type state = iter->btree_id == BTREE_ID_need_discard ++ ? BCH_DATA_need_discard ++ : BCH_DATA_free; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ pos = iter->pos; ++ pos.offset &= ~(~0ULL << 56); ++ genbits = iter->pos.offset & (~0ULL << 56); ++ ++ alloc_k = bch2_bkey_get_iter(trans, &alloc_iter, BTREE_ID_alloc, pos, 0); ++ ret = bkey_err(alloc_k); ++ if (ret) ++ return ret; ++ ++ if (fsck_err_on(!bch2_dev_bucket_exists(c, pos), c, ++ "entry in %s btree for nonexistant dev:bucket %llu:%llu", ++ bch2_btree_ids[iter->btree_id], pos.inode, pos.offset)) ++ goto delete; ++ ++ a = bch2_alloc_to_v4(alloc_k, &a_convert); ++ ++ if (fsck_err_on(a->data_type != state || ++ (state == BCH_DATA_free && ++ genbits != alloc_freespace_genbits(*a)), c, ++ "%s\n incorrectly set at %s:%llu:%llu:0 (free %u, genbits %llu should be %llu)", ++ (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf), ++ bch2_btree_ids[iter->btree_id], ++ iter->pos.inode, ++ iter->pos.offset, ++ a->data_type == state, ++ genbits >> 56, alloc_freespace_genbits(*a) >> 56)) ++ goto delete; ++out: ++fsck_err: ++ set_btree_iter_dontneed(&alloc_iter); ++ bch2_trans_iter_exit(trans, &alloc_iter); ++ printbuf_exit(&buf); ++ return ret; ++delete: ++ ret = bch2_btree_delete_extent_at(trans, iter, ++ iter->btree_id == BTREE_ID_freespace ? 1 : 0, 0) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW); ++ goto out; ++} ++ ++static int bch2_check_discard_freespace_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bpos end) ++{ ++ if (!btree_id_is_extents(iter->btree_id)) { ++ return __bch2_check_discard_freespace_key(trans, iter); ++ } else { ++ int ret = 0; ++ ++ while (!bkey_eq(iter->pos, end) && ++ !(ret = btree_trans_too_many_iters(trans) ?: ++ __bch2_check_discard_freespace_key(trans, iter))) ++ bch2_btree_iter_set_pos(iter, bpos_nosnap_successor(iter->pos)); ++ ++ return ret; ++ } ++} ++ ++/* ++ * We've already checked that generation numbers in the bucket_gens btree are ++ * valid for buckets that exist; this just checks for keys for nonexistent ++ * buckets. ++ */ ++static noinline_for_stack ++int bch2_check_bucket_gens_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_i_bucket_gens g; ++ struct bch_dev *ca; ++ u64 start = bucket_gens_pos_to_alloc(k.k->p, 0).offset; ++ u64 end = bucket_gens_pos_to_alloc(bpos_nosnap_successor(k.k->p), 0).offset; ++ u64 b; ++ bool need_update = false, dev_exists; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ BUG_ON(k.k->type != KEY_TYPE_bucket_gens); ++ bkey_reassemble(&g.k_i, k); ++ ++ /* if no bch_dev, skip out whether we repair or not */ ++ dev_exists = bch2_dev_exists2(c, k.k->p.inode); ++ if (!dev_exists) { ++ if (fsck_err_on(!dev_exists, c, ++ "bucket_gens key for invalid device:\n %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ ret = bch2_btree_delete_at(trans, iter, 0); ++ } ++ goto out; ++ } ++ ++ ca = bch_dev_bkey_exists(c, k.k->p.inode); ++ if (fsck_err_on(end <= ca->mi.first_bucket || ++ start >= ca->mi.nbuckets, c, ++ "bucket_gens key for invalid buckets:\n %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ ret = bch2_btree_delete_at(trans, iter, 0); ++ goto out; ++ } ++ ++ for (b = start; b < ca->mi.first_bucket; b++) ++ if (fsck_err_on(g.v.gens[b & KEY_TYPE_BUCKET_GENS_MASK], c, ++ "bucket_gens key has nonzero gen for invalid bucket")) { ++ g.v.gens[b & KEY_TYPE_BUCKET_GENS_MASK] = 0; ++ need_update = true; ++ } ++ ++ for (b = ca->mi.nbuckets; b < end; b++) ++ if (fsck_err_on(g.v.gens[b & KEY_TYPE_BUCKET_GENS_MASK], c, ++ "bucket_gens key has nonzero gen for invalid bucket")) { ++ g.v.gens[b & KEY_TYPE_BUCKET_GENS_MASK] = 0; ++ need_update = true; ++ } ++ ++ if (need_update) { ++ struct bkey_i *u = bch2_trans_kmalloc(trans, sizeof(g)); ++ ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ goto out; ++ ++ memcpy(u, &g, sizeof(g)); ++ ret = bch2_trans_update(trans, iter, u, 0); ++ } ++out: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++int bch2_check_alloc_info(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter, discard_iter, freespace_iter, bucket_gens_iter; ++ struct bkey hole; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, POS_MIN, ++ BTREE_ITER_PREFETCH); ++ bch2_trans_iter_init(trans, &discard_iter, BTREE_ID_need_discard, POS_MIN, ++ BTREE_ITER_PREFETCH); ++ bch2_trans_iter_init(trans, &freespace_iter, BTREE_ID_freespace, POS_MIN, ++ BTREE_ITER_PREFETCH); ++ bch2_trans_iter_init(trans, &bucket_gens_iter, BTREE_ID_bucket_gens, POS_MIN, ++ BTREE_ITER_PREFETCH); ++ ++ while (1) { ++ struct bpos next; ++ ++ bch2_trans_begin(trans); ++ ++ k = bch2_get_key_or_real_bucket_hole(&iter, &hole); ++ ret = bkey_err(k); ++ if (ret) ++ goto bkey_err; ++ ++ if (!k.k) ++ break; ++ ++ if (k.k->type) { ++ next = bpos_nosnap_successor(k.k->p); ++ ++ ret = bch2_check_alloc_key(trans, ++ k, &iter, ++ &discard_iter, ++ &freespace_iter, ++ &bucket_gens_iter); ++ if (ret) ++ goto bkey_err; ++ } else { ++ next = k.k->p; ++ ++ ret = bch2_check_alloc_hole_freespace(trans, ++ bkey_start_pos(k.k), ++ &next, ++ &freespace_iter) ?: ++ bch2_check_alloc_hole_bucket_gens(trans, ++ bkey_start_pos(k.k), ++ &next, ++ &bucket_gens_iter); ++ if (ret) ++ goto bkey_err; ++ } ++ ++ ret = bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW); ++ if (ret) ++ goto bkey_err; ++ ++ bch2_btree_iter_set_pos(&iter, next); ++bkey_err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &bucket_gens_iter); ++ bch2_trans_iter_exit(trans, &freespace_iter); ++ bch2_trans_iter_exit(trans, &discard_iter); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret < 0) ++ goto err; ++ ++ ret = for_each_btree_key2(trans, iter, ++ BTREE_ID_need_discard, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ++ bch2_check_discard_freespace_key(trans, &iter, k.k->p)) ?: ++ for_each_btree_key2(trans, iter, ++ BTREE_ID_freespace, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ++ bch2_check_discard_freespace_key(trans, &iter, k.k->p)) ?: ++ for_each_btree_key_commit(trans, iter, ++ BTREE_ID_bucket_gens, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, ++ bch2_check_bucket_gens_key(trans, &iter, k)); ++err: ++ bch2_trans_put(trans); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int bch2_check_alloc_to_lru_ref(struct btree_trans *trans, ++ struct btree_iter *alloc_iter) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter lru_iter; ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a; ++ struct bkey_s_c alloc_k, lru_k; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ alloc_k = bch2_btree_iter_peek(alloc_iter); ++ if (!alloc_k.k) ++ return 0; ++ ++ ret = bkey_err(alloc_k); ++ if (ret) ++ return ret; ++ ++ a = bch2_alloc_to_v4(alloc_k, &a_convert); ++ ++ if (a->data_type != BCH_DATA_cached) ++ return 0; ++ ++ lru_k = bch2_bkey_get_iter(trans, &lru_iter, BTREE_ID_lru, ++ lru_pos(alloc_k.k->p.inode, ++ bucket_to_u64(alloc_k.k->p), ++ a->io_time[READ]), 0); ++ ret = bkey_err(lru_k); ++ if (ret) ++ return ret; ++ ++ if (fsck_err_on(!a->io_time[READ], c, ++ "cached bucket with read_time 0\n" ++ " %s", ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf)) || ++ fsck_err_on(lru_k.k->type != KEY_TYPE_set, c, ++ "missing lru entry\n" ++ " %s", ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) { ++ u64 read_time = a->io_time[READ] ?: ++ atomic64_read(&c->io_clock[READ].now); ++ ++ ret = bch2_lru_set(trans, ++ alloc_k.k->p.inode, ++ bucket_to_u64(alloc_k.k->p), ++ read_time); ++ if (ret) ++ goto err; ++ ++ if (a->io_time[READ] != read_time) { ++ struct bkey_i_alloc_v4 *a_mut = ++ bch2_alloc_to_v4_mut(trans, alloc_k); ++ ret = PTR_ERR_OR_ZERO(a_mut); ++ if (ret) ++ goto err; ++ ++ a_mut->v.io_time[READ] = read_time; ++ ret = bch2_trans_update(trans, alloc_iter, ++ &a_mut->k_i, BTREE_TRIGGER_NORUN); ++ if (ret) ++ goto err; ++ } ++ } ++err: ++fsck_err: ++ bch2_trans_iter_exit(trans, &lru_iter); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++int bch2_check_alloc_to_lru_refs(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, BTREE_ID_alloc, ++ POS_MIN, BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, ++ bch2_check_alloc_to_lru_ref(trans, &iter))); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int bch2_discard_one_bucket(struct btree_trans *trans, ++ struct btree_iter *need_discard_iter, ++ struct bpos *discard_pos_done, ++ u64 *seen, ++ u64 *open, ++ u64 *need_journal_commit, ++ u64 *discarded) ++{ ++ struct bch_fs *c = trans->c; ++ struct bpos pos = need_discard_iter->pos; ++ struct btree_iter iter = { NULL }; ++ struct bkey_s_c k; ++ struct bch_dev *ca; ++ struct bkey_i_alloc_v4 *a; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ ca = bch_dev_bkey_exists(c, pos.inode); ++ if (!percpu_ref_tryget(&ca->io_ref)) { ++ bch2_btree_iter_set_pos(need_discard_iter, POS(pos.inode + 1, 0)); ++ return 0; ++ } ++ ++ if (bch2_bucket_is_open_safe(c, pos.inode, pos.offset)) { ++ (*open)++; ++ goto out; ++ } ++ ++ if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal, ++ c->journal.flushed_seq_ondisk, ++ pos.inode, pos.offset)) { ++ (*need_journal_commit)++; ++ goto out; ++ } ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_alloc, ++ need_discard_iter->pos, ++ BTREE_ITER_CACHED); ++ ret = bkey_err(k); ++ if (ret) ++ goto out; ++ ++ a = bch2_alloc_to_v4_mut(trans, k); ++ ret = PTR_ERR_OR_ZERO(a); ++ if (ret) ++ goto out; ++ ++ if (BCH_ALLOC_V4_NEED_INC_GEN(&a->v)) { ++ a->v.gen++; ++ SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false); ++ goto write; ++ } ++ ++ if (a->v.journal_seq > c->journal.flushed_seq_ondisk) { ++ if (c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info) { ++ bch2_trans_inconsistent(trans, ++ "clearing need_discard but journal_seq %llu > flushed_seq %llu\n" ++ "%s", ++ a->v.journal_seq, ++ c->journal.flushed_seq_ondisk, ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ ret = -EIO; ++ } ++ goto out; ++ } ++ ++ if (a->v.data_type != BCH_DATA_need_discard) { ++ if (c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info) { ++ bch2_trans_inconsistent(trans, ++ "bucket incorrectly set in need_discard btree\n" ++ "%s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ ret = -EIO; ++ } ++ ++ goto out; ++ } ++ ++ if (!bkey_eq(*discard_pos_done, iter.pos) && ++ ca->mi.discard && !c->opts.nochanges) { ++ /* ++ * This works without any other locks because this is the only ++ * thread that removes items from the need_discard tree ++ */ ++ bch2_trans_unlock(trans); ++ blkdev_issue_discard(ca->disk_sb.bdev, ++ k.k->p.offset * ca->mi.bucket_size, ++ ca->mi.bucket_size, ++ GFP_KERNEL); ++ *discard_pos_done = iter.pos; ++ ++ ret = bch2_trans_relock_notrace(trans); ++ if (ret) ++ goto out; ++ } ++ ++ SET_BCH_ALLOC_V4_NEED_DISCARD(&a->v, false); ++ a->v.data_type = alloc_data_type(a->v, a->v.data_type); ++write: ++ ret = bch2_trans_update(trans, &iter, &a->k_i, 0) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BCH_WATERMARK_btree| ++ BTREE_INSERT_NOFAIL); ++ if (ret) ++ goto out; ++ ++ this_cpu_inc(c->counters[BCH_COUNTER_bucket_discard]); ++ (*discarded)++; ++out: ++ (*seen)++; ++ bch2_trans_iter_exit(trans, &iter); ++ percpu_ref_put(&ca->io_ref); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static void bch2_do_discards_work(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, struct bch_fs, discard_work); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ u64 seen = 0, open = 0, need_journal_commit = 0, discarded = 0; ++ struct bpos discard_pos_done = POS_MAX; ++ int ret; ++ ++ /* ++ * We're doing the commit in bch2_discard_one_bucket instead of using ++ * for_each_btree_key_commit() so that we can increment counters after ++ * successful commit: ++ */ ++ ret = bch2_trans_run(c, ++ for_each_btree_key2(trans, iter, ++ BTREE_ID_need_discard, POS_MIN, 0, k, ++ bch2_discard_one_bucket(trans, &iter, &discard_pos_done, ++ &seen, ++ &open, ++ &need_journal_commit, ++ &discarded))); ++ ++ if (need_journal_commit * 2 > seen) ++ bch2_journal_flush_async(&c->journal, NULL); ++ ++ bch2_write_ref_put(c, BCH_WRITE_REF_discard); ++ ++ trace_discard_buckets(c, seen, open, need_journal_commit, discarded, ++ bch2_err_str(ret)); ++} ++ ++void bch2_do_discards(struct bch_fs *c) ++{ ++ if (bch2_write_ref_tryget(c, BCH_WRITE_REF_discard) && ++ !queue_work(c->write_ref_wq, &c->discard_work)) ++ bch2_write_ref_put(c, BCH_WRITE_REF_discard); ++} ++ ++static int invalidate_one_bucket(struct btree_trans *trans, ++ struct btree_iter *lru_iter, ++ struct bkey_s_c lru_k, ++ s64 *nr_to_invalidate) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter alloc_iter = { NULL }; ++ struct bkey_i_alloc_v4 *a = NULL; ++ struct printbuf buf = PRINTBUF; ++ struct bpos bucket = u64_to_bucket(lru_k.k->p.offset); ++ unsigned cached_sectors; ++ int ret = 0; ++ ++ if (*nr_to_invalidate <= 0) ++ return 1; ++ ++ if (!bch2_dev_bucket_exists(c, bucket)) { ++ prt_str(&buf, "lru entry points to invalid bucket"); ++ goto err; ++ } ++ ++ if (bch2_bucket_is_open_safe(c, bucket.inode, bucket.offset)) ++ return 0; ++ ++ a = bch2_trans_start_alloc_update(trans, &alloc_iter, bucket); ++ ret = PTR_ERR_OR_ZERO(a); ++ if (ret) ++ goto out; ++ ++ /* We expect harmless races here due to the btree write buffer: */ ++ if (lru_pos_time(lru_iter->pos) != alloc_lru_idx_read(a->v)) ++ goto out; ++ ++ BUG_ON(a->v.data_type != BCH_DATA_cached); ++ ++ if (!a->v.cached_sectors) ++ bch_err(c, "invalidating empty bucket, confused"); ++ ++ cached_sectors = a->v.cached_sectors; ++ ++ SET_BCH_ALLOC_V4_NEED_INC_GEN(&a->v, false); ++ a->v.gen++; ++ a->v.data_type = 0; ++ a->v.dirty_sectors = 0; ++ a->v.cached_sectors = 0; ++ a->v.io_time[READ] = atomic64_read(&c->io_clock[READ].now); ++ a->v.io_time[WRITE] = atomic64_read(&c->io_clock[WRITE].now); ++ ++ ret = bch2_trans_update(trans, &alloc_iter, &a->k_i, ++ BTREE_TRIGGER_BUCKET_INVALIDATE) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BCH_WATERMARK_btree| ++ BTREE_INSERT_NOFAIL); ++ if (ret) ++ goto out; ++ ++ trace_and_count(c, bucket_invalidate, c, bucket.inode, bucket.offset, cached_sectors); ++ --*nr_to_invalidate; ++out: ++ bch2_trans_iter_exit(trans, &alloc_iter); ++ printbuf_exit(&buf); ++ return ret; ++err: ++ prt_str(&buf, "\n lru key: "); ++ bch2_bkey_val_to_text(&buf, c, lru_k); ++ ++ prt_str(&buf, "\n lru entry: "); ++ bch2_lru_pos_to_text(&buf, lru_iter->pos); ++ ++ prt_str(&buf, "\n alloc key: "); ++ if (!a) ++ bch2_bpos_to_text(&buf, bucket); ++ else ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&a->k_i)); ++ ++ bch_err(c, "%s", buf.buf); ++ if (c->curr_recovery_pass > BCH_RECOVERY_PASS_check_lrus) { ++ bch2_inconsistent_error(c); ++ ret = -EINVAL; ++ } ++ ++ goto out; ++} ++ ++static void bch2_do_invalidates_work(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, struct bch_fs, invalidate_work); ++ struct bch_dev *ca; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ unsigned i; ++ int ret = 0; ++ ++ ret = bch2_btree_write_buffer_flush(trans); ++ if (ret) ++ goto err; ++ ++ for_each_member_device(ca, c, i) { ++ s64 nr_to_invalidate = ++ should_invalidate_buckets(ca, bch2_dev_usage_read(ca)); ++ ++ ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_lru, ++ lru_pos(ca->dev_idx, 0, 0), ++ lru_pos(ca->dev_idx, U64_MAX, LRU_TIME_MAX), ++ BTREE_ITER_INTENT, k, ++ invalidate_one_bucket(trans, &iter, k, &nr_to_invalidate)); ++ ++ if (ret < 0) { ++ percpu_ref_put(&ca->ref); ++ break; ++ } ++ } ++err: ++ bch2_trans_put(trans); ++ bch2_write_ref_put(c, BCH_WRITE_REF_invalidate); ++} ++ ++void bch2_do_invalidates(struct bch_fs *c) ++{ ++ if (bch2_write_ref_tryget(c, BCH_WRITE_REF_invalidate) && ++ !queue_work(c->write_ref_wq, &c->invalidate_work)) ++ bch2_write_ref_put(c, BCH_WRITE_REF_invalidate); ++} ++ ++int bch2_dev_freespace_init(struct bch_fs *c, struct bch_dev *ca, ++ u64 bucket_start, u64 bucket_end) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey hole; ++ struct bpos end = POS(ca->dev_idx, bucket_end); ++ struct bch_member *m; ++ unsigned long last_updated = jiffies; ++ int ret; ++ ++ BUG_ON(bucket_start > bucket_end); ++ BUG_ON(bucket_end > ca->mi.nbuckets); ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, ++ POS(ca->dev_idx, max_t(u64, ca->mi.first_bucket, bucket_start)), ++ BTREE_ITER_PREFETCH); ++ /* ++ * Scan the alloc btree for every bucket on @ca, and add buckets to the ++ * freespace/need_discard/need_gc_gens btrees as needed: ++ */ ++ while (1) { ++ if (last_updated + HZ * 10 < jiffies) { ++ bch_info(ca, "%s: currently at %llu/%llu", ++ __func__, iter.pos.offset, ca->mi.nbuckets); ++ last_updated = jiffies; ++ } ++ ++ bch2_trans_begin(trans); ++ ++ if (bkey_ge(iter.pos, end)) { ++ ret = 0; ++ break; ++ } ++ ++ k = bch2_get_key_or_hole(&iter, end, &hole); ++ ret = bkey_err(k); ++ if (ret) ++ goto bkey_err; ++ ++ if (k.k->type) { ++ /* ++ * We process live keys in the alloc btree one at a ++ * time: ++ */ ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert); ++ ++ ret = bch2_bucket_do_index(trans, k, a, true) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_NOFAIL); ++ if (ret) ++ goto bkey_err; ++ ++ bch2_btree_iter_advance(&iter); ++ } else { ++ struct bkey_i *freespace; ++ ++ freespace = bch2_trans_kmalloc(trans, sizeof(*freespace)); ++ ret = PTR_ERR_OR_ZERO(freespace); ++ if (ret) ++ goto bkey_err; ++ ++ bkey_init(&freespace->k); ++ freespace->k.type = KEY_TYPE_set; ++ freespace->k.p = k.k->p; ++ freespace->k.size = k.k->size; ++ ++ ret = bch2_btree_insert_trans(trans, BTREE_ID_freespace, freespace, 0) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_NOFAIL); ++ if (ret) ++ goto bkey_err; ++ ++ bch2_btree_iter_set_pos(&iter, k.k->p); ++ } ++bkey_err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ ++ if (ret < 0) { ++ bch_err_msg(ca, ret, "initializing free space"); ++ return ret; ++ } ++ ++ mutex_lock(&c->sb_lock); ++ m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); ++ SET_BCH_MEMBER_FREESPACE_INITIALIZED(m, true); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++int bch2_fs_freespace_init(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ int ret = 0; ++ bool doing_init = false; ++ ++ /* ++ * We can crash during the device add path, so we need to check this on ++ * every mount: ++ */ ++ ++ for_each_member_device(ca, c, i) { ++ if (ca->mi.freespace_initialized) ++ continue; ++ ++ if (!doing_init) { ++ bch_info(c, "initializing freespace"); ++ doing_init = true; ++ } ++ ++ ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets); ++ if (ret) { ++ percpu_ref_put(&ca->ref); ++ bch_err_fn(c, ret); ++ return ret; ++ } ++ } ++ ++ if (doing_init) { ++ mutex_lock(&c->sb_lock); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ bch_verbose(c, "done initializing freespace"); ++ } ++ ++ return 0; ++} ++ ++/* Bucket IO clocks: */ ++ ++int bch2_bucket_io_time_reset(struct btree_trans *trans, unsigned dev, ++ size_t bucket_nr, int rw) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_i_alloc_v4 *a; ++ u64 now; ++ int ret = 0; ++ ++ a = bch2_trans_start_alloc_update(trans, &iter, POS(dev, bucket_nr)); ++ ret = PTR_ERR_OR_ZERO(a); ++ if (ret) ++ return ret; ++ ++ now = atomic64_read(&c->io_clock[rw].now); ++ if (a->v.io_time[rw] == now) ++ goto out; ++ ++ a->v.io_time[rw] = now; ++ ++ ret = bch2_trans_update(trans, &iter, &a->k_i, 0) ?: ++ bch2_trans_commit(trans, NULL, NULL, 0); ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++/* Startup/shutdown (ro/rw): */ ++ ++void bch2_recalc_capacity(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ u64 capacity = 0, reserved_sectors = 0, gc_reserve; ++ unsigned bucket_size_max = 0; ++ unsigned long ra_pages = 0; ++ unsigned i; ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ for_each_online_member(ca, c, i) { ++ struct backing_dev_info *bdi = ca->disk_sb.bdev->bd_disk->bdi; ++ ++ ra_pages += bdi->ra_pages; ++ } ++ ++ bch2_set_ra_pages(c, ra_pages); ++ ++ for_each_rw_member(ca, c, i) { ++ u64 dev_reserve = 0; ++ ++ /* ++ * We need to reserve buckets (from the number ++ * of currently available buckets) against ++ * foreground writes so that mainly copygc can ++ * make forward progress. ++ * ++ * We need enough to refill the various reserves ++ * from scratch - copygc will use its entire ++ * reserve all at once, then run against when ++ * its reserve is refilled (from the formerly ++ * available buckets). ++ * ++ * This reserve is just used when considering if ++ * allocations for foreground writes must wait - ++ * not -ENOSPC calculations. ++ */ ++ ++ dev_reserve += ca->nr_btree_reserve * 2; ++ dev_reserve += ca->mi.nbuckets >> 6; /* copygc reserve */ ++ ++ dev_reserve += 1; /* btree write point */ ++ dev_reserve += 1; /* copygc write point */ ++ dev_reserve += 1; /* rebalance write point */ ++ ++ dev_reserve *= ca->mi.bucket_size; ++ ++ capacity += bucket_to_sector(ca, ca->mi.nbuckets - ++ ca->mi.first_bucket); ++ ++ reserved_sectors += dev_reserve * 2; ++ ++ bucket_size_max = max_t(unsigned, bucket_size_max, ++ ca->mi.bucket_size); ++ } ++ ++ gc_reserve = c->opts.gc_reserve_bytes ++ ? c->opts.gc_reserve_bytes >> 9 ++ : div64_u64(capacity * c->opts.gc_reserve_percent, 100); ++ ++ reserved_sectors = max(gc_reserve, reserved_sectors); ++ ++ reserved_sectors = min(reserved_sectors, capacity); ++ ++ c->capacity = capacity - reserved_sectors; ++ ++ c->bucket_size_max = bucket_size_max; ++ ++ /* Wake up case someone was waiting for buckets */ ++ closure_wake_up(&c->freelist_wait); ++} ++ ++static bool bch2_dev_has_open_write_point(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct open_bucket *ob; ++ bool ret = false; ++ ++ for (ob = c->open_buckets; ++ ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ++ ob++) { ++ spin_lock(&ob->lock); ++ if (ob->valid && !ob->on_partial_list && ++ ob->dev == ca->dev_idx) ++ ret = true; ++ spin_unlock(&ob->lock); ++ } ++ ++ return ret; ++} ++ ++/* device goes ro: */ ++void bch2_dev_allocator_remove(struct bch_fs *c, struct bch_dev *ca) ++{ ++ unsigned i; ++ ++ /* First, remove device from allocation groups: */ ++ ++ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) ++ clear_bit(ca->dev_idx, c->rw_devs[i].d); ++ ++ /* ++ * Capacity is calculated based off of devices in allocation groups: ++ */ ++ bch2_recalc_capacity(c); ++ ++ bch2_open_buckets_stop(c, ca, false); ++ ++ /* ++ * Wake up threads that were blocked on allocation, so they can notice ++ * the device can no longer be removed and the capacity has changed: ++ */ ++ closure_wake_up(&c->freelist_wait); ++ ++ /* ++ * journal_res_get() can block waiting for free space in the journal - ++ * it needs to notice there may not be devices to allocate from anymore: ++ */ ++ wake_up(&c->journal.wait); ++ ++ /* Now wait for any in flight writes: */ ++ ++ closure_wait_event(&c->open_buckets_wait, ++ !bch2_dev_has_open_write_point(c, ca)); ++} ++ ++/* device goes rw: */ ++void bch2_dev_allocator_add(struct bch_fs *c, struct bch_dev *ca) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(c->rw_devs); i++) ++ if (ca->mi.data_allowed & (1 << i)) ++ set_bit(ca->dev_idx, c->rw_devs[i].d); ++} ++ ++void bch2_fs_allocator_background_init(struct bch_fs *c) ++{ ++ spin_lock_init(&c->freelist_lock); ++ INIT_WORK(&c->discard_work, bch2_do_discards_work); ++ INIT_WORK(&c->invalidate_work, bch2_do_invalidates_work); ++} +diff --git a/fs/bcachefs/alloc_background.h b/fs/bcachefs/alloc_background.h +new file mode 100644 +index 000000000000..97042067d2a9 +--- /dev/null ++++ b/fs/bcachefs/alloc_background.h +@@ -0,0 +1,258 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ALLOC_BACKGROUND_H ++#define _BCACHEFS_ALLOC_BACKGROUND_H ++ ++#include "bcachefs.h" ++#include "alloc_types.h" ++#include "buckets.h" ++#include "debug.h" ++#include "super.h" ++ ++enum bkey_invalid_flags; ++ ++/* How out of date a pointer gen is allowed to be: */ ++#define BUCKET_GC_GEN_MAX 96U ++ ++static inline bool bch2_dev_bucket_exists(struct bch_fs *c, struct bpos pos) ++{ ++ struct bch_dev *ca; ++ ++ if (!bch2_dev_exists2(c, pos.inode)) ++ return false; ++ ++ ca = bch_dev_bkey_exists(c, pos.inode); ++ return pos.offset >= ca->mi.first_bucket && ++ pos.offset < ca->mi.nbuckets; ++} ++ ++static inline u64 bucket_to_u64(struct bpos bucket) ++{ ++ return (bucket.inode << 48) | bucket.offset; ++} ++ ++static inline struct bpos u64_to_bucket(u64 bucket) ++{ ++ return POS(bucket >> 48, bucket & ~(~0ULL << 48)); ++} ++ ++static inline u8 alloc_gc_gen(struct bch_alloc_v4 a) ++{ ++ return a.gen - a.oldest_gen; ++} ++ ++static inline enum bch_data_type __alloc_data_type(u32 dirty_sectors, ++ u32 cached_sectors, ++ u32 stripe, ++ struct bch_alloc_v4 a, ++ enum bch_data_type data_type) ++{ ++ if (stripe) ++ return data_type == BCH_DATA_parity ? data_type : BCH_DATA_stripe; ++ if (dirty_sectors) ++ return data_type; ++ if (cached_sectors) ++ return BCH_DATA_cached; ++ if (BCH_ALLOC_V4_NEED_DISCARD(&a)) ++ return BCH_DATA_need_discard; ++ if (alloc_gc_gen(a) >= BUCKET_GC_GEN_MAX) ++ return BCH_DATA_need_gc_gens; ++ return BCH_DATA_free; ++} ++ ++static inline enum bch_data_type alloc_data_type(struct bch_alloc_v4 a, ++ enum bch_data_type data_type) ++{ ++ return __alloc_data_type(a.dirty_sectors, a.cached_sectors, ++ a.stripe, a, data_type); ++} ++ ++static inline enum bch_data_type bucket_data_type(enum bch_data_type data_type) ++{ ++ return data_type == BCH_DATA_stripe ? BCH_DATA_user : data_type; ++} ++ ++static inline u64 alloc_lru_idx_read(struct bch_alloc_v4 a) ++{ ++ return a.data_type == BCH_DATA_cached ? a.io_time[READ] : 0; ++} ++ ++#define DATA_TYPES_MOVABLE \ ++ ((1U << BCH_DATA_btree)| \ ++ (1U << BCH_DATA_user)| \ ++ (1U << BCH_DATA_stripe)) ++ ++static inline bool data_type_movable(enum bch_data_type type) ++{ ++ return (1U << type) & DATA_TYPES_MOVABLE; ++} ++ ++static inline u64 alloc_lru_idx_fragmentation(struct bch_alloc_v4 a, ++ struct bch_dev *ca) ++{ ++ if (!data_type_movable(a.data_type) || ++ a.dirty_sectors >= ca->mi.bucket_size) ++ return 0; ++ ++ return div_u64((u64) a.dirty_sectors * (1ULL << 31), ca->mi.bucket_size); ++} ++ ++static inline u64 alloc_freespace_genbits(struct bch_alloc_v4 a) ++{ ++ return ((u64) alloc_gc_gen(a) >> 4) << 56; ++} ++ ++static inline struct bpos alloc_freespace_pos(struct bpos pos, struct bch_alloc_v4 a) ++{ ++ pos.offset |= alloc_freespace_genbits(a); ++ return pos; ++} ++ ++static inline unsigned alloc_v4_u64s(const struct bch_alloc_v4 *a) ++{ ++ unsigned ret = (BCH_ALLOC_V4_BACKPOINTERS_START(a) ?: ++ BCH_ALLOC_V4_U64s_V0) + ++ BCH_ALLOC_V4_NR_BACKPOINTERS(a) * ++ (sizeof(struct bch_backpointer) / sizeof(u64)); ++ ++ BUG_ON(ret > U8_MAX - BKEY_U64s); ++ return ret; ++} ++ ++static inline void set_alloc_v4_u64s(struct bkey_i_alloc_v4 *a) ++{ ++ set_bkey_val_u64s(&a->k, alloc_v4_u64s(&a->v)); ++} ++ ++struct bkey_i_alloc_v4 * ++bch2_trans_start_alloc_update(struct btree_trans *, struct btree_iter *, struct bpos); ++ ++void __bch2_alloc_to_v4(struct bkey_s_c, struct bch_alloc_v4 *); ++ ++static inline const struct bch_alloc_v4 *bch2_alloc_to_v4(struct bkey_s_c k, struct bch_alloc_v4 *convert) ++{ ++ const struct bch_alloc_v4 *ret; ++ ++ if (unlikely(k.k->type != KEY_TYPE_alloc_v4)) ++ goto slowpath; ++ ++ ret = bkey_s_c_to_alloc_v4(k).v; ++ if (BCH_ALLOC_V4_BACKPOINTERS_START(ret) != BCH_ALLOC_V4_U64s) ++ goto slowpath; ++ ++ return ret; ++slowpath: ++ __bch2_alloc_to_v4(k, convert); ++ return convert; ++} ++ ++struct bkey_i_alloc_v4 *bch2_alloc_to_v4_mut(struct btree_trans *, struct bkey_s_c); ++ ++int bch2_bucket_io_time_reset(struct btree_trans *, unsigned, size_t, int); ++ ++int bch2_alloc_v1_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++int bch2_alloc_v2_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++int bch2_alloc_v3_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++int bch2_alloc_v4_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_alloc_v4_swab(struct bkey_s); ++void bch2_alloc_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_alloc ((struct bkey_ops) { \ ++ .key_invalid = bch2_alloc_v1_invalid, \ ++ .val_to_text = bch2_alloc_to_text, \ ++ .trans_trigger = bch2_trans_mark_alloc, \ ++ .atomic_trigger = bch2_mark_alloc, \ ++ .min_val_size = 8, \ ++}) ++ ++#define bch2_bkey_ops_alloc_v2 ((struct bkey_ops) { \ ++ .key_invalid = bch2_alloc_v2_invalid, \ ++ .val_to_text = bch2_alloc_to_text, \ ++ .trans_trigger = bch2_trans_mark_alloc, \ ++ .atomic_trigger = bch2_mark_alloc, \ ++ .min_val_size = 8, \ ++}) ++ ++#define bch2_bkey_ops_alloc_v3 ((struct bkey_ops) { \ ++ .key_invalid = bch2_alloc_v3_invalid, \ ++ .val_to_text = bch2_alloc_to_text, \ ++ .trans_trigger = bch2_trans_mark_alloc, \ ++ .atomic_trigger = bch2_mark_alloc, \ ++ .min_val_size = 16, \ ++}) ++ ++#define bch2_bkey_ops_alloc_v4 ((struct bkey_ops) { \ ++ .key_invalid = bch2_alloc_v4_invalid, \ ++ .val_to_text = bch2_alloc_to_text, \ ++ .swab = bch2_alloc_v4_swab, \ ++ .trans_trigger = bch2_trans_mark_alloc, \ ++ .atomic_trigger = bch2_mark_alloc, \ ++ .min_val_size = 48, \ ++}) ++ ++int bch2_bucket_gens_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_bucket_gens_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_bucket_gens ((struct bkey_ops) { \ ++ .key_invalid = bch2_bucket_gens_invalid, \ ++ .val_to_text = bch2_bucket_gens_to_text, \ ++}) ++ ++int bch2_bucket_gens_init(struct bch_fs *); ++ ++static inline bool bkey_is_alloc(const struct bkey *k) ++{ ++ return k->type == KEY_TYPE_alloc || ++ k->type == KEY_TYPE_alloc_v2 || ++ k->type == KEY_TYPE_alloc_v3; ++} ++ ++int bch2_alloc_read(struct bch_fs *); ++ ++int bch2_trans_mark_alloc(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_i *, unsigned); ++int bch2_check_alloc_info(struct bch_fs *); ++int bch2_check_alloc_to_lru_refs(struct bch_fs *); ++void bch2_do_discards(struct bch_fs *); ++ ++static inline u64 should_invalidate_buckets(struct bch_dev *ca, ++ struct bch_dev_usage u) ++{ ++ u64 want_free = ca->mi.nbuckets >> 7; ++ u64 free = max_t(s64, 0, ++ u.d[BCH_DATA_free].buckets ++ + u.d[BCH_DATA_need_discard].buckets ++ - bch2_dev_buckets_reserved(ca, BCH_WATERMARK_stripe)); ++ ++ return clamp_t(s64, want_free - free, 0, u.d[BCH_DATA_cached].buckets); ++} ++ ++void bch2_do_invalidates(struct bch_fs *); ++ ++static inline struct bch_backpointer *alloc_v4_backpointers(struct bch_alloc_v4 *a) ++{ ++ return (void *) ((u64 *) &a->v + ++ (BCH_ALLOC_V4_BACKPOINTERS_START(a) ?: ++ BCH_ALLOC_V4_U64s_V0)); ++} ++ ++static inline const struct bch_backpointer *alloc_v4_backpointers_c(const struct bch_alloc_v4 *a) ++{ ++ return (void *) ((u64 *) &a->v + BCH_ALLOC_V4_BACKPOINTERS_START(a)); ++} ++ ++int bch2_dev_freespace_init(struct bch_fs *, struct bch_dev *, u64, u64); ++int bch2_fs_freespace_init(struct bch_fs *); ++ ++void bch2_recalc_capacity(struct bch_fs *); ++ ++void bch2_dev_allocator_remove(struct bch_fs *, struct bch_dev *); ++void bch2_dev_allocator_add(struct bch_fs *, struct bch_dev *); ++ ++void bch2_fs_allocator_background_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_ALLOC_BACKGROUND_H */ +diff --git a/fs/bcachefs/alloc_foreground.c b/fs/bcachefs/alloc_foreground.c +new file mode 100644 +index 000000000000..3bc4abd3d7d5 +--- /dev/null ++++ b/fs/bcachefs/alloc_foreground.c +@@ -0,0 +1,1576 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Copyright 2012 Google, Inc. ++ * ++ * Foreground allocator code: allocate buckets from freelist, and allocate in ++ * sector granularity from writepoints. ++ * ++ * bch2_bucket_alloc() allocates a single bucket from a specific device. ++ * ++ * bch2_bucket_alloc_set() allocates one or more buckets from different devices ++ * in a given filesystem. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "backpointers.h" ++#include "btree_iter.h" ++#include "btree_update.h" ++#include "btree_gc.h" ++#include "buckets.h" ++#include "buckets_waiting_for_journal.h" ++#include "clock.h" ++#include "debug.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "error.h" ++#include "io_write.h" ++#include "journal.h" ++#include "movinggc.h" ++#include "nocow_locking.h" ++#include "trace.h" ++ ++#include ++#include ++#include ++ ++static void bch2_trans_mutex_lock_norelock(struct btree_trans *trans, ++ struct mutex *lock) ++{ ++ if (!mutex_trylock(lock)) { ++ bch2_trans_unlock(trans); ++ mutex_lock(lock); ++ } ++} ++ ++const char * const bch2_watermarks[] = { ++#define x(t) #t, ++ BCH_WATERMARKS() ++#undef x ++ NULL ++}; ++ ++/* ++ * Open buckets represent a bucket that's currently being allocated from. They ++ * serve two purposes: ++ * ++ * - They track buckets that have been partially allocated, allowing for ++ * sub-bucket sized allocations - they're used by the sector allocator below ++ * ++ * - They provide a reference to the buckets they own that mark and sweep GC ++ * can find, until the new allocation has a pointer to it inserted into the ++ * btree ++ * ++ * When allocating some space with the sector allocator, the allocation comes ++ * with a reference to an open bucket - the caller is required to put that ++ * reference _after_ doing the index update that makes its allocation reachable. ++ */ ++ ++void bch2_reset_alloc_cursors(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ rcu_read_lock(); ++ for_each_member_device_rcu(ca, c, i, NULL) ++ ca->alloc_cursor = 0; ++ rcu_read_unlock(); ++} ++ ++static void bch2_open_bucket_hash_add(struct bch_fs *c, struct open_bucket *ob) ++{ ++ open_bucket_idx_t idx = ob - c->open_buckets; ++ open_bucket_idx_t *slot = open_bucket_hashslot(c, ob->dev, ob->bucket); ++ ++ ob->hash = *slot; ++ *slot = idx; ++} ++ ++static void bch2_open_bucket_hash_remove(struct bch_fs *c, struct open_bucket *ob) ++{ ++ open_bucket_idx_t idx = ob - c->open_buckets; ++ open_bucket_idx_t *slot = open_bucket_hashslot(c, ob->dev, ob->bucket); ++ ++ while (*slot != idx) { ++ BUG_ON(!*slot); ++ slot = &c->open_buckets[*slot].hash; ++ } ++ ++ *slot = ob->hash; ++ ob->hash = 0; ++} ++ ++void __bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); ++ ++ if (ob->ec) { ++ ec_stripe_new_put(c, ob->ec, STRIPE_REF_io); ++ return; ++ } ++ ++ percpu_down_read(&c->mark_lock); ++ spin_lock(&ob->lock); ++ ++ ob->valid = false; ++ ob->data_type = 0; ++ ++ spin_unlock(&ob->lock); ++ percpu_up_read(&c->mark_lock); ++ ++ spin_lock(&c->freelist_lock); ++ bch2_open_bucket_hash_remove(c, ob); ++ ++ ob->freelist = c->open_buckets_freelist; ++ c->open_buckets_freelist = ob - c->open_buckets; ++ ++ c->open_buckets_nr_free++; ++ ca->nr_open_buckets--; ++ spin_unlock(&c->freelist_lock); ++ ++ closure_wake_up(&c->open_buckets_wait); ++} ++ ++void bch2_open_bucket_write_error(struct bch_fs *c, ++ struct open_buckets *obs, ++ unsigned dev) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, obs, ob, i) ++ if (ob->dev == dev && ob->ec) ++ bch2_ec_bucket_cancel(c, ob); ++} ++ ++static struct open_bucket *bch2_open_bucket_alloc(struct bch_fs *c) ++{ ++ struct open_bucket *ob; ++ ++ BUG_ON(!c->open_buckets_freelist || !c->open_buckets_nr_free); ++ ++ ob = c->open_buckets + c->open_buckets_freelist; ++ c->open_buckets_freelist = ob->freelist; ++ atomic_set(&ob->pin, 1); ++ ob->data_type = 0; ++ ++ c->open_buckets_nr_free--; ++ return ob; ++} ++ ++static void open_bucket_free_unused(struct bch_fs *c, struct open_bucket *ob) ++{ ++ BUG_ON(c->open_buckets_partial_nr >= ++ ARRAY_SIZE(c->open_buckets_partial)); ++ ++ spin_lock(&c->freelist_lock); ++ ob->on_partial_list = true; ++ c->open_buckets_partial[c->open_buckets_partial_nr++] = ++ ob - c->open_buckets; ++ spin_unlock(&c->freelist_lock); ++ ++ closure_wake_up(&c->open_buckets_wait); ++ closure_wake_up(&c->freelist_wait); ++} ++ ++/* _only_ for allocating the journal on a new device: */ ++long bch2_bucket_alloc_new_fs(struct bch_dev *ca) ++{ ++ while (ca->new_fs_bucket_idx < ca->mi.nbuckets) { ++ u64 b = ca->new_fs_bucket_idx++; ++ ++ if (!is_superblock_bucket(ca, b) && ++ (!ca->buckets_nouse || !test_bit(b, ca->buckets_nouse))) ++ return b; ++ } ++ ++ return -1; ++} ++ ++static inline unsigned open_buckets_reserved(enum bch_watermark watermark) ++{ ++ switch (watermark) { ++ case BCH_WATERMARK_reclaim: ++ return 0; ++ case BCH_WATERMARK_btree: ++ case BCH_WATERMARK_btree_copygc: ++ return OPEN_BUCKETS_COUNT / 4; ++ case BCH_WATERMARK_copygc: ++ return OPEN_BUCKETS_COUNT / 3; ++ default: ++ return OPEN_BUCKETS_COUNT / 2; ++ } ++} ++ ++static struct open_bucket *__try_alloc_bucket(struct bch_fs *c, struct bch_dev *ca, ++ u64 bucket, ++ enum bch_watermark watermark, ++ const struct bch_alloc_v4 *a, ++ struct bucket_alloc_state *s, ++ struct closure *cl) ++{ ++ struct open_bucket *ob; ++ ++ if (unlikely(ca->buckets_nouse && test_bit(bucket, ca->buckets_nouse))) { ++ s->skipped_nouse++; ++ return NULL; ++ } ++ ++ if (bch2_bucket_is_open(c, ca->dev_idx, bucket)) { ++ s->skipped_open++; ++ return NULL; ++ } ++ ++ if (bch2_bucket_needs_journal_commit(&c->buckets_waiting_for_journal, ++ c->journal.flushed_seq_ondisk, ca->dev_idx, bucket)) { ++ s->skipped_need_journal_commit++; ++ return NULL; ++ } ++ ++ if (bch2_bucket_nocow_is_locked(&c->nocow_locks, POS(ca->dev_idx, bucket))) { ++ s->skipped_nocow++; ++ return NULL; ++ } ++ ++ spin_lock(&c->freelist_lock); ++ ++ if (unlikely(c->open_buckets_nr_free <= open_buckets_reserved(watermark))) { ++ if (cl) ++ closure_wait(&c->open_buckets_wait, cl); ++ ++ if (!c->blocked_allocate_open_bucket) ++ c->blocked_allocate_open_bucket = local_clock(); ++ ++ spin_unlock(&c->freelist_lock); ++ return ERR_PTR(-BCH_ERR_open_buckets_empty); ++ } ++ ++ /* Recheck under lock: */ ++ if (bch2_bucket_is_open(c, ca->dev_idx, bucket)) { ++ spin_unlock(&c->freelist_lock); ++ s->skipped_open++; ++ return NULL; ++ } ++ ++ ob = bch2_open_bucket_alloc(c); ++ ++ spin_lock(&ob->lock); ++ ++ ob->valid = true; ++ ob->sectors_free = ca->mi.bucket_size; ++ ob->dev = ca->dev_idx; ++ ob->gen = a->gen; ++ ob->bucket = bucket; ++ spin_unlock(&ob->lock); ++ ++ ca->nr_open_buckets++; ++ bch2_open_bucket_hash_add(c, ob); ++ ++ if (c->blocked_allocate_open_bucket) { ++ bch2_time_stats_update( ++ &c->times[BCH_TIME_blocked_allocate_open_bucket], ++ c->blocked_allocate_open_bucket); ++ c->blocked_allocate_open_bucket = 0; ++ } ++ ++ if (c->blocked_allocate) { ++ bch2_time_stats_update( ++ &c->times[BCH_TIME_blocked_allocate], ++ c->blocked_allocate); ++ c->blocked_allocate = 0; ++ } ++ ++ spin_unlock(&c->freelist_lock); ++ return ob; ++} ++ ++static struct open_bucket *try_alloc_bucket(struct btree_trans *trans, struct bch_dev *ca, ++ enum bch_watermark watermark, u64 free_entry, ++ struct bucket_alloc_state *s, ++ struct bkey_s_c freespace_k, ++ struct closure *cl) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter = { NULL }; ++ struct bkey_s_c k; ++ struct open_bucket *ob; ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a; ++ u64 b = free_entry & ~(~0ULL << 56); ++ unsigned genbits = free_entry >> 56; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ if (b < ca->mi.first_bucket || b >= ca->mi.nbuckets) { ++ prt_printf(&buf, "freespace btree has bucket outside allowed range %u-%llu\n" ++ " freespace key ", ++ ca->mi.first_bucket, ca->mi.nbuckets); ++ bch2_bkey_val_to_text(&buf, c, freespace_k); ++ bch2_trans_inconsistent(trans, "%s", buf.buf); ++ ob = ERR_PTR(-EIO); ++ goto err; ++ } ++ ++ k = bch2_bkey_get_iter(trans, &iter, ++ BTREE_ID_alloc, POS(ca->dev_idx, b), ++ BTREE_ITER_CACHED); ++ ret = bkey_err(k); ++ if (ret) { ++ ob = ERR_PTR(ret); ++ goto err; ++ } ++ ++ a = bch2_alloc_to_v4(k, &a_convert); ++ ++ if (a->data_type != BCH_DATA_free) { ++ if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_alloc_info) { ++ ob = NULL; ++ goto err; ++ } ++ ++ prt_printf(&buf, "non free bucket in freespace btree\n" ++ " freespace key "); ++ bch2_bkey_val_to_text(&buf, c, freespace_k); ++ prt_printf(&buf, "\n "); ++ bch2_bkey_val_to_text(&buf, c, k); ++ bch2_trans_inconsistent(trans, "%s", buf.buf); ++ ob = ERR_PTR(-EIO); ++ goto err; ++ } ++ ++ if (genbits != (alloc_freespace_genbits(*a) >> 56) && ++ c->curr_recovery_pass > BCH_RECOVERY_PASS_check_alloc_info) { ++ prt_printf(&buf, "bucket in freespace btree with wrong genbits (got %u should be %llu)\n" ++ " freespace key ", ++ genbits, alloc_freespace_genbits(*a) >> 56); ++ bch2_bkey_val_to_text(&buf, c, freespace_k); ++ prt_printf(&buf, "\n "); ++ bch2_bkey_val_to_text(&buf, c, k); ++ bch2_trans_inconsistent(trans, "%s", buf.buf); ++ ob = ERR_PTR(-EIO); ++ goto err; ++ } ++ ++ if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_extents_to_backpointers) { ++ struct bch_backpointer bp; ++ struct bpos bp_pos = POS_MIN; ++ ++ ret = bch2_get_next_backpointer(trans, POS(ca->dev_idx, b), -1, ++ &bp_pos, &bp, ++ BTREE_ITER_NOPRESERVE); ++ if (ret) { ++ ob = ERR_PTR(ret); ++ goto err; ++ } ++ ++ if (!bkey_eq(bp_pos, POS_MAX)) { ++ /* ++ * Bucket may have data in it - we don't call ++ * bc2h_trans_inconnsistent() because fsck hasn't ++ * finished yet ++ */ ++ ob = NULL; ++ goto err; ++ } ++ } ++ ++ ob = __try_alloc_bucket(c, ca, b, watermark, a, s, cl); ++ if (!ob) ++ iter.path->preserve = false; ++err: ++ if (iter.trans && iter.path) ++ set_btree_iter_dontneed(&iter); ++ bch2_trans_iter_exit(trans, &iter); ++ printbuf_exit(&buf); ++ return ob; ++} ++ ++/* ++ * This path is for before the freespace btree is initialized: ++ * ++ * If ca->new_fs_bucket_idx is nonzero, we haven't yet marked superblock & ++ * journal buckets - journal buckets will be < ca->new_fs_bucket_idx ++ */ ++static noinline struct open_bucket * ++bch2_bucket_alloc_early(struct btree_trans *trans, ++ struct bch_dev *ca, ++ enum bch_watermark watermark, ++ struct bucket_alloc_state *s, ++ struct closure *cl) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct open_bucket *ob = NULL; ++ u64 alloc_start = max_t(u64, ca->mi.first_bucket, ca->new_fs_bucket_idx); ++ u64 alloc_cursor = max(alloc_start, READ_ONCE(ca->alloc_cursor)); ++ int ret; ++again: ++ for_each_btree_key_norestart(trans, iter, BTREE_ID_alloc, POS(ca->dev_idx, alloc_cursor), ++ BTREE_ITER_SLOTS, k, ret) { ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a; ++ ++ if (bkey_ge(k.k->p, POS(ca->dev_idx, ca->mi.nbuckets))) ++ break; ++ ++ if (ca->new_fs_bucket_idx && ++ is_superblock_bucket(ca, k.k->p.offset)) ++ continue; ++ ++ a = bch2_alloc_to_v4(k, &a_convert); ++ ++ if (a->data_type != BCH_DATA_free) ++ continue; ++ ++ s->buckets_seen++; ++ ++ ob = __try_alloc_bucket(trans->c, ca, k.k->p.offset, watermark, a, s, cl); ++ if (ob) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ ca->alloc_cursor = alloc_cursor; ++ ++ if (!ob && ret) ++ ob = ERR_PTR(ret); ++ ++ if (!ob && alloc_cursor > alloc_start) { ++ alloc_cursor = alloc_start; ++ goto again; ++ } ++ ++ return ob; ++} ++ ++static struct open_bucket *bch2_bucket_alloc_freelist(struct btree_trans *trans, ++ struct bch_dev *ca, ++ enum bch_watermark watermark, ++ struct bucket_alloc_state *s, ++ struct closure *cl) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct open_bucket *ob = NULL; ++ u64 alloc_start = max_t(u64, ca->mi.first_bucket, READ_ONCE(ca->alloc_cursor)); ++ u64 alloc_cursor = alloc_start; ++ int ret; ++ ++ BUG_ON(ca->new_fs_bucket_idx); ++again: ++ for_each_btree_key_norestart(trans, iter, BTREE_ID_freespace, ++ POS(ca->dev_idx, alloc_cursor), 0, k, ret) { ++ if (k.k->p.inode != ca->dev_idx) ++ break; ++ ++ for (alloc_cursor = max(alloc_cursor, bkey_start_offset(k.k)); ++ alloc_cursor < k.k->p.offset; ++ alloc_cursor++) { ++ ret = btree_trans_too_many_iters(trans); ++ if (ret) { ++ ob = ERR_PTR(ret); ++ break; ++ } ++ ++ s->buckets_seen++; ++ ++ ob = try_alloc_bucket(trans, ca, watermark, ++ alloc_cursor, s, k, cl); ++ if (ob) { ++ iter.path->preserve = false; ++ break; ++ } ++ } ++ ++ if (ob || ret) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ ca->alloc_cursor = alloc_cursor; ++ ++ if (!ob && ret) ++ ob = ERR_PTR(ret); ++ ++ if (!ob && alloc_start > ca->mi.first_bucket) { ++ alloc_cursor = alloc_start = ca->mi.first_bucket; ++ goto again; ++ } ++ ++ return ob; ++} ++ ++/** ++ * bch2_bucket_alloc_trans - allocate a single bucket from a specific device ++ * @trans: transaction object ++ * @ca: device to allocate from ++ * @watermark: how important is this allocation? ++ * @cl: if not NULL, closure to be used to wait if buckets not available ++ * @usage: for secondarily also returning the current device usage ++ * ++ * Returns: an open_bucket on success, or an ERR_PTR() on failure. ++ */ ++static struct open_bucket *bch2_bucket_alloc_trans(struct btree_trans *trans, ++ struct bch_dev *ca, ++ enum bch_watermark watermark, ++ struct closure *cl, ++ struct bch_dev_usage *usage) ++{ ++ struct bch_fs *c = trans->c; ++ struct open_bucket *ob = NULL; ++ bool freespace = READ_ONCE(ca->mi.freespace_initialized); ++ u64 avail; ++ struct bucket_alloc_state s = { 0 }; ++ bool waiting = false; ++again: ++ bch2_dev_usage_read_fast(ca, usage); ++ avail = dev_buckets_free(ca, *usage, watermark); ++ ++ if (usage->d[BCH_DATA_need_discard].buckets > avail) ++ bch2_do_discards(c); ++ ++ if (usage->d[BCH_DATA_need_gc_gens].buckets > avail) ++ bch2_do_gc_gens(c); ++ ++ if (should_invalidate_buckets(ca, *usage)) ++ bch2_do_invalidates(c); ++ ++ if (!avail) { ++ if (cl && !waiting) { ++ closure_wait(&c->freelist_wait, cl); ++ waiting = true; ++ goto again; ++ } ++ ++ if (!c->blocked_allocate) ++ c->blocked_allocate = local_clock(); ++ ++ ob = ERR_PTR(-BCH_ERR_freelist_empty); ++ goto err; ++ } ++ ++ if (waiting) ++ closure_wake_up(&c->freelist_wait); ++alloc: ++ ob = likely(freespace) ++ ? bch2_bucket_alloc_freelist(trans, ca, watermark, &s, cl) ++ : bch2_bucket_alloc_early(trans, ca, watermark, &s, cl); ++ ++ if (s.skipped_need_journal_commit * 2 > avail) ++ bch2_journal_flush_async(&c->journal, NULL); ++ ++ if (!ob && freespace && c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_alloc_info) { ++ freespace = false; ++ goto alloc; ++ } ++err: ++ if (!ob) ++ ob = ERR_PTR(-BCH_ERR_no_buckets_found); ++ ++ if (!IS_ERR(ob)) ++ trace_and_count(c, bucket_alloc, ca, ++ bch2_watermarks[watermark], ++ ob->bucket, ++ usage->d[BCH_DATA_free].buckets, ++ avail, ++ bch2_copygc_wait_amount(c), ++ c->copygc_wait - atomic64_read(&c->io_clock[WRITE].now), ++ &s, ++ cl == NULL, ++ ""); ++ else if (!bch2_err_matches(PTR_ERR(ob), BCH_ERR_transaction_restart)) ++ trace_and_count(c, bucket_alloc_fail, ca, ++ bch2_watermarks[watermark], ++ 0, ++ usage->d[BCH_DATA_free].buckets, ++ avail, ++ bch2_copygc_wait_amount(c), ++ c->copygc_wait - atomic64_read(&c->io_clock[WRITE].now), ++ &s, ++ cl == NULL, ++ bch2_err_str(PTR_ERR(ob))); ++ ++ return ob; ++} ++ ++struct open_bucket *bch2_bucket_alloc(struct bch_fs *c, struct bch_dev *ca, ++ enum bch_watermark watermark, ++ struct closure *cl) ++{ ++ struct bch_dev_usage usage; ++ struct open_bucket *ob; ++ ++ bch2_trans_do(c, NULL, NULL, 0, ++ PTR_ERR_OR_ZERO(ob = bch2_bucket_alloc_trans(trans, ca, watermark, ++ cl, &usage))); ++ return ob; ++} ++ ++static int __dev_stripe_cmp(struct dev_stripe_state *stripe, ++ unsigned l, unsigned r) ++{ ++ return ((stripe->next_alloc[l] > stripe->next_alloc[r]) - ++ (stripe->next_alloc[l] < stripe->next_alloc[r])); ++} ++ ++#define dev_stripe_cmp(l, r) __dev_stripe_cmp(stripe, l, r) ++ ++struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *c, ++ struct dev_stripe_state *stripe, ++ struct bch_devs_mask *devs) ++{ ++ struct dev_alloc_list ret = { .nr = 0 }; ++ unsigned i; ++ ++ for_each_set_bit(i, devs->d, BCH_SB_MEMBERS_MAX) ++ ret.devs[ret.nr++] = i; ++ ++ bubble_sort(ret.devs, ret.nr, dev_stripe_cmp); ++ return ret; ++} ++ ++static inline void bch2_dev_stripe_increment_inlined(struct bch_dev *ca, ++ struct dev_stripe_state *stripe, ++ struct bch_dev_usage *usage) ++{ ++ u64 *v = stripe->next_alloc + ca->dev_idx; ++ u64 free_space = dev_buckets_available(ca, BCH_WATERMARK_normal); ++ u64 free_space_inv = free_space ++ ? div64_u64(1ULL << 48, free_space) ++ : 1ULL << 48; ++ u64 scale = *v / 4; ++ ++ if (*v + free_space_inv >= *v) ++ *v += free_space_inv; ++ else ++ *v = U64_MAX; ++ ++ for (v = stripe->next_alloc; ++ v < stripe->next_alloc + ARRAY_SIZE(stripe->next_alloc); v++) ++ *v = *v < scale ? 0 : *v - scale; ++} ++ ++void bch2_dev_stripe_increment(struct bch_dev *ca, ++ struct dev_stripe_state *stripe) ++{ ++ struct bch_dev_usage usage; ++ ++ bch2_dev_usage_read_fast(ca, &usage); ++ bch2_dev_stripe_increment_inlined(ca, stripe, &usage); ++} ++ ++static int add_new_bucket(struct bch_fs *c, ++ struct open_buckets *ptrs, ++ struct bch_devs_mask *devs_may_alloc, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ unsigned flags, ++ struct open_bucket *ob) ++{ ++ unsigned durability = ++ bch_dev_bkey_exists(c, ob->dev)->mi.durability; ++ ++ BUG_ON(*nr_effective >= nr_replicas); ++ BUG_ON(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS); ++ ++ __clear_bit(ob->dev, devs_may_alloc->d); ++ *nr_effective += (flags & BCH_WRITE_ONLY_SPECIFIED_DEVS) ++ ? durability : 1; ++ *have_cache |= !durability; ++ ++ ob_push(c, ptrs, ob); ++ ++ if (*nr_effective >= nr_replicas) ++ return 1; ++ if (ob->ec) ++ return 1; ++ return 0; ++} ++ ++int bch2_bucket_alloc_set_trans(struct btree_trans *trans, ++ struct open_buckets *ptrs, ++ struct dev_stripe_state *stripe, ++ struct bch_devs_mask *devs_may_alloc, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ unsigned flags, ++ enum bch_data_type data_type, ++ enum bch_watermark watermark, ++ struct closure *cl) ++{ ++ struct bch_fs *c = trans->c; ++ struct dev_alloc_list devs_sorted = ++ bch2_dev_alloc_list(c, stripe, devs_may_alloc); ++ unsigned dev; ++ struct bch_dev *ca; ++ int ret = -BCH_ERR_insufficient_devices; ++ unsigned i; ++ ++ BUG_ON(*nr_effective >= nr_replicas); ++ ++ for (i = 0; i < devs_sorted.nr; i++) { ++ struct bch_dev_usage usage; ++ struct open_bucket *ob; ++ ++ dev = devs_sorted.devs[i]; ++ ++ rcu_read_lock(); ++ ca = rcu_dereference(c->devs[dev]); ++ if (ca) ++ percpu_ref_get(&ca->ref); ++ rcu_read_unlock(); ++ ++ if (!ca) ++ continue; ++ ++ if (!ca->mi.durability && *have_cache) { ++ percpu_ref_put(&ca->ref); ++ continue; ++ } ++ ++ ob = bch2_bucket_alloc_trans(trans, ca, watermark, cl, &usage); ++ if (!IS_ERR(ob)) ++ bch2_dev_stripe_increment_inlined(ca, stripe, &usage); ++ percpu_ref_put(&ca->ref); ++ ++ if (IS_ERR(ob)) { ++ ret = PTR_ERR(ob); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || cl) ++ break; ++ continue; ++ } ++ ++ ob->data_type = data_type; ++ ++ if (add_new_bucket(c, ptrs, devs_may_alloc, ++ nr_replicas, nr_effective, ++ have_cache, flags, ob)) { ++ ret = 0; ++ break; ++ } ++ } ++ ++ return ret; ++} ++ ++/* Allocate from stripes: */ ++ ++/* ++ * if we can't allocate a new stripe because there are already too many ++ * partially filled stripes, force allocating from an existing stripe even when ++ * it's to a device we don't want: ++ */ ++ ++static int bucket_alloc_from_stripe(struct btree_trans *trans, ++ struct open_buckets *ptrs, ++ struct write_point *wp, ++ struct bch_devs_mask *devs_may_alloc, ++ u16 target, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ enum bch_watermark watermark, ++ unsigned flags, ++ struct closure *cl) ++{ ++ struct bch_fs *c = trans->c; ++ struct dev_alloc_list devs_sorted; ++ struct ec_stripe_head *h; ++ struct open_bucket *ob; ++ unsigned i, ec_idx; ++ int ret = 0; ++ ++ if (nr_replicas < 2) ++ return 0; ++ ++ if (ec_open_bucket(c, ptrs)) ++ return 0; ++ ++ h = bch2_ec_stripe_head_get(trans, target, 0, nr_replicas - 1, watermark, cl); ++ if (IS_ERR(h)) ++ return PTR_ERR(h); ++ if (!h) ++ return 0; ++ ++ devs_sorted = bch2_dev_alloc_list(c, &wp->stripe, devs_may_alloc); ++ ++ for (i = 0; i < devs_sorted.nr; i++) ++ for (ec_idx = 0; ec_idx < h->s->nr_data; ec_idx++) { ++ if (!h->s->blocks[ec_idx]) ++ continue; ++ ++ ob = c->open_buckets + h->s->blocks[ec_idx]; ++ if (ob->dev == devs_sorted.devs[i] && ++ !test_and_set_bit(ec_idx, h->s->blocks_allocated)) ++ goto got_bucket; ++ } ++ goto out_put_head; ++got_bucket: ++ ob->ec_idx = ec_idx; ++ ob->ec = h->s; ++ ec_stripe_new_get(h->s, STRIPE_REF_io); ++ ++ ret = add_new_bucket(c, ptrs, devs_may_alloc, ++ nr_replicas, nr_effective, ++ have_cache, flags, ob); ++out_put_head: ++ bch2_ec_stripe_head_put(c, h); ++ return ret; ++} ++ ++/* Sector allocator */ ++ ++static bool want_bucket(struct bch_fs *c, ++ struct write_point *wp, ++ struct bch_devs_mask *devs_may_alloc, ++ bool *have_cache, bool ec, ++ struct open_bucket *ob) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); ++ ++ if (!test_bit(ob->dev, devs_may_alloc->d)) ++ return false; ++ ++ if (ob->data_type != wp->data_type) ++ return false; ++ ++ if (!ca->mi.durability && ++ (wp->data_type == BCH_DATA_btree || ec || *have_cache)) ++ return false; ++ ++ if (ec != (ob->ec != NULL)) ++ return false; ++ ++ return true; ++} ++ ++static int bucket_alloc_set_writepoint(struct bch_fs *c, ++ struct open_buckets *ptrs, ++ struct write_point *wp, ++ struct bch_devs_mask *devs_may_alloc, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ bool ec, unsigned flags) ++{ ++ struct open_buckets ptrs_skip = { .nr = 0 }; ++ struct open_bucket *ob; ++ unsigned i; ++ int ret = 0; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) { ++ if (!ret && want_bucket(c, wp, devs_may_alloc, ++ have_cache, ec, ob)) ++ ret = add_new_bucket(c, ptrs, devs_may_alloc, ++ nr_replicas, nr_effective, ++ have_cache, flags, ob); ++ else ++ ob_push(c, &ptrs_skip, ob); ++ } ++ wp->ptrs = ptrs_skip; ++ ++ return ret; ++} ++ ++static int bucket_alloc_set_partial(struct bch_fs *c, ++ struct open_buckets *ptrs, ++ struct write_point *wp, ++ struct bch_devs_mask *devs_may_alloc, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, bool ec, ++ enum bch_watermark watermark, ++ unsigned flags) ++{ ++ int i, ret = 0; ++ ++ if (!c->open_buckets_partial_nr) ++ return 0; ++ ++ spin_lock(&c->freelist_lock); ++ ++ if (!c->open_buckets_partial_nr) ++ goto unlock; ++ ++ for (i = c->open_buckets_partial_nr - 1; i >= 0; --i) { ++ struct open_bucket *ob = c->open_buckets + c->open_buckets_partial[i]; ++ ++ if (want_bucket(c, wp, devs_may_alloc, have_cache, ec, ob)) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); ++ struct bch_dev_usage usage; ++ u64 avail; ++ ++ bch2_dev_usage_read_fast(ca, &usage); ++ avail = dev_buckets_free(ca, usage, watermark); ++ if (!avail) ++ continue; ++ ++ array_remove_item(c->open_buckets_partial, ++ c->open_buckets_partial_nr, ++ i); ++ ob->on_partial_list = false; ++ ++ ret = add_new_bucket(c, ptrs, devs_may_alloc, ++ nr_replicas, nr_effective, ++ have_cache, flags, ob); ++ if (ret) ++ break; ++ } ++ } ++unlock: ++ spin_unlock(&c->freelist_lock); ++ return ret; ++} ++ ++static int __open_bucket_add_buckets(struct btree_trans *trans, ++ struct open_buckets *ptrs, ++ struct write_point *wp, ++ struct bch_devs_list *devs_have, ++ u16 target, ++ bool erasure_code, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ enum bch_watermark watermark, ++ unsigned flags, ++ struct closure *_cl) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_devs_mask devs; ++ struct open_bucket *ob; ++ struct closure *cl = NULL; ++ unsigned i; ++ int ret; ++ ++ devs = target_rw_devs(c, wp->data_type, target); ++ ++ /* Don't allocate from devices we already have pointers to: */ ++ for (i = 0; i < devs_have->nr; i++) ++ __clear_bit(devs_have->devs[i], devs.d); ++ ++ open_bucket_for_each(c, ptrs, ob, i) ++ __clear_bit(ob->dev, devs.d); ++ ++ if (erasure_code && ec_open_bucket(c, ptrs)) ++ return 0; ++ ++ ret = bucket_alloc_set_writepoint(c, ptrs, wp, &devs, ++ nr_replicas, nr_effective, ++ have_cache, erasure_code, flags); ++ if (ret) ++ return ret; ++ ++ ret = bucket_alloc_set_partial(c, ptrs, wp, &devs, ++ nr_replicas, nr_effective, ++ have_cache, erasure_code, watermark, flags); ++ if (ret) ++ return ret; ++ ++ if (erasure_code) { ++ ret = bucket_alloc_from_stripe(trans, ptrs, wp, &devs, ++ target, ++ nr_replicas, nr_effective, ++ have_cache, ++ watermark, flags, _cl); ++ } else { ++retry_blocking: ++ /* ++ * Try nonblocking first, so that if one device is full we'll try from ++ * other devices: ++ */ ++ ret = bch2_bucket_alloc_set_trans(trans, ptrs, &wp->stripe, &devs, ++ nr_replicas, nr_effective, have_cache, ++ flags, wp->data_type, watermark, cl); ++ if (ret && ++ !bch2_err_matches(ret, BCH_ERR_transaction_restart) && ++ !bch2_err_matches(ret, BCH_ERR_insufficient_devices) && ++ !cl && _cl) { ++ cl = _cl; ++ goto retry_blocking; ++ } ++ } ++ ++ return ret; ++} ++ ++static int open_bucket_add_buckets(struct btree_trans *trans, ++ struct open_buckets *ptrs, ++ struct write_point *wp, ++ struct bch_devs_list *devs_have, ++ u16 target, ++ unsigned erasure_code, ++ unsigned nr_replicas, ++ unsigned *nr_effective, ++ bool *have_cache, ++ enum bch_watermark watermark, ++ unsigned flags, ++ struct closure *cl) ++{ ++ int ret; ++ ++ if (erasure_code) { ++ ret = __open_bucket_add_buckets(trans, ptrs, wp, ++ devs_have, target, erasure_code, ++ nr_replicas, nr_effective, have_cache, ++ watermark, flags, cl); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || ++ bch2_err_matches(ret, BCH_ERR_operation_blocked) || ++ bch2_err_matches(ret, BCH_ERR_freelist_empty) || ++ bch2_err_matches(ret, BCH_ERR_open_buckets_empty)) ++ return ret; ++ if (*nr_effective >= nr_replicas) ++ return 0; ++ } ++ ++ ret = __open_bucket_add_buckets(trans, ptrs, wp, ++ devs_have, target, false, ++ nr_replicas, nr_effective, have_cache, ++ watermark, flags, cl); ++ return ret < 0 ? ret : 0; ++} ++ ++/** ++ * should_drop_bucket - check if this is open_bucket should go away ++ * @ob: open_bucket to predicate on ++ * @c: filesystem handle ++ * @ca: if set, we're killing buckets for a particular device ++ * @ec: if true, we're shutting down erasure coding and killing all ec ++ * open_buckets ++ * otherwise, return true ++ * Returns: true if we should kill this open_bucket ++ * ++ * We're killing open_buckets because we're shutting down a device, erasure ++ * coding, or the entire filesystem - check if this open_bucket matches: ++ */ ++static bool should_drop_bucket(struct open_bucket *ob, struct bch_fs *c, ++ struct bch_dev *ca, bool ec) ++{ ++ if (ec) { ++ return ob->ec != NULL; ++ } else if (ca) { ++ bool drop = ob->dev == ca->dev_idx; ++ struct open_bucket *ob2; ++ unsigned i; ++ ++ if (!drop && ob->ec) { ++ unsigned nr_blocks; ++ ++ mutex_lock(&ob->ec->lock); ++ nr_blocks = bkey_i_to_stripe(&ob->ec->new_stripe.key)->v.nr_blocks; ++ ++ for (i = 0; i < nr_blocks; i++) { ++ if (!ob->ec->blocks[i]) ++ continue; ++ ++ ob2 = c->open_buckets + ob->ec->blocks[i]; ++ drop |= ob2->dev == ca->dev_idx; ++ } ++ mutex_unlock(&ob->ec->lock); ++ } ++ ++ return drop; ++ } else { ++ return true; ++ } ++} ++ ++static void bch2_writepoint_stop(struct bch_fs *c, struct bch_dev *ca, ++ bool ec, struct write_point *wp) ++{ ++ struct open_buckets ptrs = { .nr = 0 }; ++ struct open_bucket *ob; ++ unsigned i; ++ ++ mutex_lock(&wp->lock); ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ if (should_drop_bucket(ob, c, ca, ec)) ++ bch2_open_bucket_put(c, ob); ++ else ++ ob_push(c, &ptrs, ob); ++ wp->ptrs = ptrs; ++ mutex_unlock(&wp->lock); ++} ++ ++void bch2_open_buckets_stop(struct bch_fs *c, struct bch_dev *ca, ++ bool ec) ++{ ++ unsigned i; ++ ++ /* Next, close write points that point to this device... */ ++ for (i = 0; i < ARRAY_SIZE(c->write_points); i++) ++ bch2_writepoint_stop(c, ca, ec, &c->write_points[i]); ++ ++ bch2_writepoint_stop(c, ca, ec, &c->copygc_write_point); ++ bch2_writepoint_stop(c, ca, ec, &c->rebalance_write_point); ++ bch2_writepoint_stop(c, ca, ec, &c->btree_write_point); ++ ++ mutex_lock(&c->btree_reserve_cache_lock); ++ while (c->btree_reserve_cache_nr) { ++ struct btree_alloc *a = ++ &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; ++ ++ bch2_open_buckets_put(c, &a->ob); ++ } ++ mutex_unlock(&c->btree_reserve_cache_lock); ++ ++ spin_lock(&c->freelist_lock); ++ i = 0; ++ while (i < c->open_buckets_partial_nr) { ++ struct open_bucket *ob = ++ c->open_buckets + c->open_buckets_partial[i]; ++ ++ if (should_drop_bucket(ob, c, ca, ec)) { ++ --c->open_buckets_partial_nr; ++ swap(c->open_buckets_partial[i], ++ c->open_buckets_partial[c->open_buckets_partial_nr]); ++ ob->on_partial_list = false; ++ spin_unlock(&c->freelist_lock); ++ bch2_open_bucket_put(c, ob); ++ spin_lock(&c->freelist_lock); ++ } else { ++ i++; ++ } ++ } ++ spin_unlock(&c->freelist_lock); ++ ++ bch2_ec_stop_dev(c, ca); ++} ++ ++static inline struct hlist_head *writepoint_hash(struct bch_fs *c, ++ unsigned long write_point) ++{ ++ unsigned hash = ++ hash_long(write_point, ilog2(ARRAY_SIZE(c->write_points_hash))); ++ ++ return &c->write_points_hash[hash]; ++} ++ ++static struct write_point *__writepoint_find(struct hlist_head *head, ++ unsigned long write_point) ++{ ++ struct write_point *wp; ++ ++ rcu_read_lock(); ++ hlist_for_each_entry_rcu(wp, head, node) ++ if (wp->write_point == write_point) ++ goto out; ++ wp = NULL; ++out: ++ rcu_read_unlock(); ++ return wp; ++} ++ ++static inline bool too_many_writepoints(struct bch_fs *c, unsigned factor) ++{ ++ u64 stranded = c->write_points_nr * c->bucket_size_max; ++ u64 free = bch2_fs_usage_read_short(c).free; ++ ++ return stranded * factor > free; ++} ++ ++static bool try_increase_writepoints(struct bch_fs *c) ++{ ++ struct write_point *wp; ++ ++ if (c->write_points_nr == ARRAY_SIZE(c->write_points) || ++ too_many_writepoints(c, 32)) ++ return false; ++ ++ wp = c->write_points + c->write_points_nr++; ++ hlist_add_head_rcu(&wp->node, writepoint_hash(c, wp->write_point)); ++ return true; ++} ++ ++static bool try_decrease_writepoints(struct btree_trans *trans, unsigned old_nr) ++{ ++ struct bch_fs *c = trans->c; ++ struct write_point *wp; ++ struct open_bucket *ob; ++ unsigned i; ++ ++ mutex_lock(&c->write_points_hash_lock); ++ if (c->write_points_nr < old_nr) { ++ mutex_unlock(&c->write_points_hash_lock); ++ return true; ++ } ++ ++ if (c->write_points_nr == 1 || ++ !too_many_writepoints(c, 8)) { ++ mutex_unlock(&c->write_points_hash_lock); ++ return false; ++ } ++ ++ wp = c->write_points + --c->write_points_nr; ++ ++ hlist_del_rcu(&wp->node); ++ mutex_unlock(&c->write_points_hash_lock); ++ ++ bch2_trans_mutex_lock_norelock(trans, &wp->lock); ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ open_bucket_free_unused(c, ob); ++ wp->ptrs.nr = 0; ++ mutex_unlock(&wp->lock); ++ return true; ++} ++ ++static struct write_point *writepoint_find(struct btree_trans *trans, ++ unsigned long write_point) ++{ ++ struct bch_fs *c = trans->c; ++ struct write_point *wp, *oldest; ++ struct hlist_head *head; ++ ++ if (!(write_point & 1UL)) { ++ wp = (struct write_point *) write_point; ++ bch2_trans_mutex_lock_norelock(trans, &wp->lock); ++ return wp; ++ } ++ ++ head = writepoint_hash(c, write_point); ++restart_find: ++ wp = __writepoint_find(head, write_point); ++ if (wp) { ++lock_wp: ++ bch2_trans_mutex_lock_norelock(trans, &wp->lock); ++ if (wp->write_point == write_point) ++ goto out; ++ mutex_unlock(&wp->lock); ++ goto restart_find; ++ } ++restart_find_oldest: ++ oldest = NULL; ++ for (wp = c->write_points; ++ wp < c->write_points + c->write_points_nr; wp++) ++ if (!oldest || time_before64(wp->last_used, oldest->last_used)) ++ oldest = wp; ++ ++ bch2_trans_mutex_lock_norelock(trans, &oldest->lock); ++ bch2_trans_mutex_lock_norelock(trans, &c->write_points_hash_lock); ++ if (oldest >= c->write_points + c->write_points_nr || ++ try_increase_writepoints(c)) { ++ mutex_unlock(&c->write_points_hash_lock); ++ mutex_unlock(&oldest->lock); ++ goto restart_find_oldest; ++ } ++ ++ wp = __writepoint_find(head, write_point); ++ if (wp && wp != oldest) { ++ mutex_unlock(&c->write_points_hash_lock); ++ mutex_unlock(&oldest->lock); ++ goto lock_wp; ++ } ++ ++ wp = oldest; ++ hlist_del_rcu(&wp->node); ++ wp->write_point = write_point; ++ hlist_add_head_rcu(&wp->node, head); ++ mutex_unlock(&c->write_points_hash_lock); ++out: ++ wp->last_used = local_clock(); ++ return wp; ++} ++ ++/* ++ * Get us an open_bucket we can allocate from, return with it locked: ++ */ ++int bch2_alloc_sectors_start_trans(struct btree_trans *trans, ++ unsigned target, ++ unsigned erasure_code, ++ struct write_point_specifier write_point, ++ struct bch_devs_list *devs_have, ++ unsigned nr_replicas, ++ unsigned nr_replicas_required, ++ enum bch_watermark watermark, ++ unsigned flags, ++ struct closure *cl, ++ struct write_point **wp_ret) ++{ ++ struct bch_fs *c = trans->c; ++ struct write_point *wp; ++ struct open_bucket *ob; ++ struct open_buckets ptrs; ++ unsigned nr_effective, write_points_nr; ++ bool have_cache; ++ int ret; ++ int i; ++ ++ BUG_ON(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS); ++ ++ BUG_ON(!nr_replicas || !nr_replicas_required); ++retry: ++ ptrs.nr = 0; ++ nr_effective = 0; ++ write_points_nr = c->write_points_nr; ++ have_cache = false; ++ ++ *wp_ret = wp = writepoint_find(trans, write_point.v); ++ ++ /* metadata may not allocate on cache devices: */ ++ if (wp->data_type != BCH_DATA_user) ++ have_cache = true; ++ ++ if (target && !(flags & BCH_WRITE_ONLY_SPECIFIED_DEVS)) { ++ ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, ++ target, erasure_code, ++ nr_replicas, &nr_effective, ++ &have_cache, watermark, ++ flags, NULL); ++ if (!ret || ++ bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto alloc_done; ++ ++ /* Don't retry from all devices if we're out of open buckets: */ ++ if (bch2_err_matches(ret, BCH_ERR_open_buckets_empty)) ++ goto allocate_blocking; ++ ++ /* ++ * Only try to allocate cache (durability = 0 devices) from the ++ * specified target: ++ */ ++ have_cache = true; ++ ++ ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, ++ 0, erasure_code, ++ nr_replicas, &nr_effective, ++ &have_cache, watermark, ++ flags, cl); ++ } else { ++allocate_blocking: ++ ret = open_bucket_add_buckets(trans, &ptrs, wp, devs_have, ++ target, erasure_code, ++ nr_replicas, &nr_effective, ++ &have_cache, watermark, ++ flags, cl); ++ } ++alloc_done: ++ BUG_ON(!ret && nr_effective < nr_replicas); ++ ++ if (erasure_code && !ec_open_bucket(c, &ptrs)) ++ pr_debug("failed to get ec bucket: ret %u", ret); ++ ++ if (ret == -BCH_ERR_insufficient_devices && ++ nr_effective >= nr_replicas_required) ++ ret = 0; ++ ++ if (ret) ++ goto err; ++ ++ /* Free buckets we didn't use: */ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ open_bucket_free_unused(c, ob); ++ ++ wp->ptrs = ptrs; ++ ++ wp->sectors_free = UINT_MAX; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ wp->sectors_free = min(wp->sectors_free, ob->sectors_free); ++ ++ BUG_ON(!wp->sectors_free || wp->sectors_free == UINT_MAX); ++ ++ return 0; ++err: ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ if (ptrs.nr < ARRAY_SIZE(ptrs.v)) ++ ob_push(c, &ptrs, ob); ++ else ++ open_bucket_free_unused(c, ob); ++ wp->ptrs = ptrs; ++ ++ mutex_unlock(&wp->lock); ++ ++ if (bch2_err_matches(ret, BCH_ERR_freelist_empty) && ++ try_decrease_writepoints(trans, write_points_nr)) ++ goto retry; ++ ++ if (bch2_err_matches(ret, BCH_ERR_open_buckets_empty) || ++ bch2_err_matches(ret, BCH_ERR_freelist_empty)) ++ return cl ++ ? -BCH_ERR_bucket_alloc_blocked ++ : -BCH_ERR_ENOSPC_bucket_alloc; ++ ++ return ret; ++} ++ ++struct bch_extent_ptr bch2_ob_ptr(struct bch_fs *c, struct open_bucket *ob) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); ++ ++ return (struct bch_extent_ptr) { ++ .type = 1 << BCH_EXTENT_ENTRY_ptr, ++ .gen = ob->gen, ++ .dev = ob->dev, ++ .offset = bucket_to_sector(ca, ob->bucket) + ++ ca->mi.bucket_size - ++ ob->sectors_free, ++ }; ++} ++ ++void bch2_alloc_sectors_append_ptrs(struct bch_fs *c, struct write_point *wp, ++ struct bkey_i *k, unsigned sectors, ++ bool cached) ++{ ++ bch2_alloc_sectors_append_ptrs_inlined(c, wp, k, sectors, cached); ++} ++ ++/* ++ * Append pointers to the space we just allocated to @k, and mark @sectors space ++ * as allocated out of @ob ++ */ ++void bch2_alloc_sectors_done(struct bch_fs *c, struct write_point *wp) ++{ ++ bch2_alloc_sectors_done_inlined(c, wp); ++} ++ ++static inline void writepoint_init(struct write_point *wp, ++ enum bch_data_type type) ++{ ++ mutex_init(&wp->lock); ++ wp->data_type = type; ++ ++ INIT_WORK(&wp->index_update_work, bch2_write_point_do_index_updates); ++ INIT_LIST_HEAD(&wp->writes); ++ spin_lock_init(&wp->writes_lock); ++} ++ ++void bch2_fs_allocator_foreground_init(struct bch_fs *c) ++{ ++ struct open_bucket *ob; ++ struct write_point *wp; ++ ++ mutex_init(&c->write_points_hash_lock); ++ c->write_points_nr = ARRAY_SIZE(c->write_points); ++ ++ /* open bucket 0 is a sentinal NULL: */ ++ spin_lock_init(&c->open_buckets[0].lock); ++ ++ for (ob = c->open_buckets + 1; ++ ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ob++) { ++ spin_lock_init(&ob->lock); ++ c->open_buckets_nr_free++; ++ ++ ob->freelist = c->open_buckets_freelist; ++ c->open_buckets_freelist = ob - c->open_buckets; ++ } ++ ++ writepoint_init(&c->btree_write_point, BCH_DATA_btree); ++ writepoint_init(&c->rebalance_write_point, BCH_DATA_user); ++ writepoint_init(&c->copygc_write_point, BCH_DATA_user); ++ ++ for (wp = c->write_points; ++ wp < c->write_points + c->write_points_nr; wp++) { ++ writepoint_init(wp, BCH_DATA_user); ++ ++ wp->last_used = local_clock(); ++ wp->write_point = (unsigned long) wp; ++ hlist_add_head_rcu(&wp->node, ++ writepoint_hash(c, wp->write_point)); ++ } ++} ++ ++static void bch2_open_bucket_to_text(struct printbuf *out, struct bch_fs *c, struct open_bucket *ob) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); ++ unsigned data_type = ob->data_type; ++ barrier(); /* READ_ONCE() doesn't work on bitfields */ ++ ++ prt_printf(out, "%zu ref %u %s %u:%llu gen %u allocated %u/%u", ++ ob - c->open_buckets, ++ atomic_read(&ob->pin), ++ data_type < BCH_DATA_NR ? bch2_data_types[data_type] : "invalid data type", ++ ob->dev, ob->bucket, ob->gen, ++ ca->mi.bucket_size - ob->sectors_free, ca->mi.bucket_size); ++ if (ob->ec) ++ prt_printf(out, " ec idx %llu", ob->ec->idx); ++ if (ob->on_partial_list) ++ prt_str(out, " partial"); ++ prt_newline(out); ++} ++ ++void bch2_open_buckets_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct open_bucket *ob; ++ ++ out->atomic++; ++ ++ for (ob = c->open_buckets; ++ ob < c->open_buckets + ARRAY_SIZE(c->open_buckets); ++ ob++) { ++ spin_lock(&ob->lock); ++ if (ob->valid && !ob->on_partial_list) ++ bch2_open_bucket_to_text(out, c, ob); ++ spin_unlock(&ob->lock); ++ } ++ ++ --out->atomic; ++} ++ ++void bch2_open_buckets_partial_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ unsigned i; ++ ++ out->atomic++; ++ spin_lock(&c->freelist_lock); ++ ++ for (i = 0; i < c->open_buckets_partial_nr; i++) ++ bch2_open_bucket_to_text(out, c, ++ c->open_buckets + c->open_buckets_partial[i]); ++ ++ spin_unlock(&c->freelist_lock); ++ --out->atomic; ++} ++ ++static const char * const bch2_write_point_states[] = { ++#define x(n) #n, ++ WRITE_POINT_STATES() ++#undef x ++ NULL ++}; ++ ++static void bch2_write_point_to_text(struct printbuf *out, struct bch_fs *c, ++ struct write_point *wp) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ prt_printf(out, "%lu: ", wp->write_point); ++ prt_human_readable_u64(out, wp->sectors_allocated); ++ ++ prt_printf(out, " last wrote: "); ++ bch2_pr_time_units(out, sched_clock() - wp->last_used); ++ ++ for (i = 0; i < WRITE_POINT_STATE_NR; i++) { ++ prt_printf(out, " %s: ", bch2_write_point_states[i]); ++ bch2_pr_time_units(out, wp->time[i]); ++ } ++ ++ prt_newline(out); ++ ++ printbuf_indent_add(out, 2); ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ bch2_open_bucket_to_text(out, c, ob); ++ printbuf_indent_sub(out, 2); ++} ++ ++void bch2_write_points_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct write_point *wp; ++ ++ prt_str(out, "Foreground write points\n"); ++ for (wp = c->write_points; ++ wp < c->write_points + ARRAY_SIZE(c->write_points); ++ wp++) ++ bch2_write_point_to_text(out, c, wp); ++ ++ prt_str(out, "Copygc write point\n"); ++ bch2_write_point_to_text(out, c, &c->copygc_write_point); ++ ++ prt_str(out, "Rebalance write point\n"); ++ bch2_write_point_to_text(out, c, &c->rebalance_write_point); ++ ++ prt_str(out, "Btree write point\n"); ++ bch2_write_point_to_text(out, c, &c->btree_write_point); ++} +diff --git a/fs/bcachefs/alloc_foreground.h b/fs/bcachefs/alloc_foreground.h +new file mode 100644 +index 000000000000..7aaeec44c746 +--- /dev/null ++++ b/fs/bcachefs/alloc_foreground.h +@@ -0,0 +1,224 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ALLOC_FOREGROUND_H ++#define _BCACHEFS_ALLOC_FOREGROUND_H ++ ++#include "bcachefs.h" ++#include "alloc_types.h" ++#include "extents.h" ++#include "sb-members.h" ++ ++#include ++ ++struct bkey; ++struct bch_dev; ++struct bch_fs; ++struct bch_devs_List; ++ ++extern const char * const bch2_watermarks[]; ++ ++void bch2_reset_alloc_cursors(struct bch_fs *); ++ ++struct dev_alloc_list { ++ unsigned nr; ++ u8 devs[BCH_SB_MEMBERS_MAX]; ++}; ++ ++struct dev_alloc_list bch2_dev_alloc_list(struct bch_fs *, ++ struct dev_stripe_state *, ++ struct bch_devs_mask *); ++void bch2_dev_stripe_increment(struct bch_dev *, struct dev_stripe_state *); ++ ++long bch2_bucket_alloc_new_fs(struct bch_dev *); ++ ++struct open_bucket *bch2_bucket_alloc(struct bch_fs *, struct bch_dev *, ++ enum bch_watermark, struct closure *); ++ ++static inline void ob_push(struct bch_fs *c, struct open_buckets *obs, ++ struct open_bucket *ob) ++{ ++ BUG_ON(obs->nr >= ARRAY_SIZE(obs->v)); ++ ++ obs->v[obs->nr++] = ob - c->open_buckets; ++} ++ ++#define open_bucket_for_each(_c, _obs, _ob, _i) \ ++ for ((_i) = 0; \ ++ (_i) < (_obs)->nr && \ ++ ((_ob) = (_c)->open_buckets + (_obs)->v[_i], true); \ ++ (_i)++) ++ ++static inline struct open_bucket *ec_open_bucket(struct bch_fs *c, ++ struct open_buckets *obs) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, obs, ob, i) ++ if (ob->ec) ++ return ob; ++ ++ return NULL; ++} ++ ++void bch2_open_bucket_write_error(struct bch_fs *, ++ struct open_buckets *, unsigned); ++ ++void __bch2_open_bucket_put(struct bch_fs *, struct open_bucket *); ++ ++static inline void bch2_open_bucket_put(struct bch_fs *c, struct open_bucket *ob) ++{ ++ if (atomic_dec_and_test(&ob->pin)) ++ __bch2_open_bucket_put(c, ob); ++} ++ ++static inline void bch2_open_buckets_put(struct bch_fs *c, ++ struct open_buckets *ptrs) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, ptrs, ob, i) ++ bch2_open_bucket_put(c, ob); ++ ptrs->nr = 0; ++} ++ ++static inline void bch2_alloc_sectors_done_inlined(struct bch_fs *c, struct write_point *wp) ++{ ++ struct open_buckets ptrs = { .nr = 0 }, keep = { .nr = 0 }; ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ ob_push(c, !ob->sectors_free ? &ptrs : &keep, ob); ++ wp->ptrs = keep; ++ ++ mutex_unlock(&wp->lock); ++ ++ bch2_open_buckets_put(c, &ptrs); ++} ++ ++static inline void bch2_open_bucket_get(struct bch_fs *c, ++ struct write_point *wp, ++ struct open_buckets *ptrs) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) { ++ ob->data_type = wp->data_type; ++ atomic_inc(&ob->pin); ++ ob_push(c, ptrs, ob); ++ } ++} ++ ++static inline open_bucket_idx_t *open_bucket_hashslot(struct bch_fs *c, ++ unsigned dev, u64 bucket) ++{ ++ return c->open_buckets_hash + ++ (jhash_3words(dev, bucket, bucket >> 32, 0) & ++ (OPEN_BUCKETS_COUNT - 1)); ++} ++ ++static inline bool bch2_bucket_is_open(struct bch_fs *c, unsigned dev, u64 bucket) ++{ ++ open_bucket_idx_t slot = *open_bucket_hashslot(c, dev, bucket); ++ ++ while (slot) { ++ struct open_bucket *ob = &c->open_buckets[slot]; ++ ++ if (ob->dev == dev && ob->bucket == bucket) ++ return true; ++ ++ slot = ob->hash; ++ } ++ ++ return false; ++} ++ ++static inline bool bch2_bucket_is_open_safe(struct bch_fs *c, unsigned dev, u64 bucket) ++{ ++ bool ret; ++ ++ if (bch2_bucket_is_open(c, dev, bucket)) ++ return true; ++ ++ spin_lock(&c->freelist_lock); ++ ret = bch2_bucket_is_open(c, dev, bucket); ++ spin_unlock(&c->freelist_lock); ++ ++ return ret; ++} ++ ++int bch2_bucket_alloc_set_trans(struct btree_trans *, struct open_buckets *, ++ struct dev_stripe_state *, struct bch_devs_mask *, ++ unsigned, unsigned *, bool *, unsigned, ++ enum bch_data_type, enum bch_watermark, ++ struct closure *); ++ ++int bch2_alloc_sectors_start_trans(struct btree_trans *, ++ unsigned, unsigned, ++ struct write_point_specifier, ++ struct bch_devs_list *, ++ unsigned, unsigned, ++ enum bch_watermark, ++ unsigned, ++ struct closure *, ++ struct write_point **); ++ ++struct bch_extent_ptr bch2_ob_ptr(struct bch_fs *, struct open_bucket *); ++ ++/* ++ * Append pointers to the space we just allocated to @k, and mark @sectors space ++ * as allocated out of @ob ++ */ ++static inline void ++bch2_alloc_sectors_append_ptrs_inlined(struct bch_fs *c, struct write_point *wp, ++ struct bkey_i *k, unsigned sectors, ++ bool cached) ++{ ++ struct open_bucket *ob; ++ unsigned i; ++ ++ BUG_ON(sectors > wp->sectors_free); ++ wp->sectors_free -= sectors; ++ wp->sectors_allocated += sectors; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); ++ struct bch_extent_ptr ptr = bch2_ob_ptr(c, ob); ++ ++ ptr.cached = cached || ++ (!ca->mi.durability && ++ wp->data_type == BCH_DATA_user); ++ ++ bch2_bkey_append_ptr(k, ptr); ++ ++ BUG_ON(sectors > ob->sectors_free); ++ ob->sectors_free -= sectors; ++ } ++} ++ ++void bch2_alloc_sectors_append_ptrs(struct bch_fs *, struct write_point *, ++ struct bkey_i *, unsigned, bool); ++void bch2_alloc_sectors_done(struct bch_fs *, struct write_point *); ++ ++void bch2_open_buckets_stop(struct bch_fs *c, struct bch_dev *, bool); ++ ++static inline struct write_point_specifier writepoint_hashed(unsigned long v) ++{ ++ return (struct write_point_specifier) { .v = v | 1 }; ++} ++ ++static inline struct write_point_specifier writepoint_ptr(struct write_point *wp) ++{ ++ return (struct write_point_specifier) { .v = (unsigned long) wp }; ++} ++ ++void bch2_fs_allocator_foreground_init(struct bch_fs *); ++ ++void bch2_open_buckets_to_text(struct printbuf *, struct bch_fs *); ++void bch2_open_buckets_partial_to_text(struct printbuf *, struct bch_fs *); ++ ++void bch2_write_points_to_text(struct printbuf *, struct bch_fs *); ++ ++#endif /* _BCACHEFS_ALLOC_FOREGROUND_H */ +diff --git a/fs/bcachefs/alloc_types.h b/fs/bcachefs/alloc_types.h +new file mode 100644 +index 000000000000..b91b7a461056 +--- /dev/null ++++ b/fs/bcachefs/alloc_types.h +@@ -0,0 +1,126 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ALLOC_TYPES_H ++#define _BCACHEFS_ALLOC_TYPES_H ++ ++#include ++#include ++ ++#include "clock_types.h" ++#include "fifo.h" ++ ++struct bucket_alloc_state { ++ u64 buckets_seen; ++ u64 skipped_open; ++ u64 skipped_need_journal_commit; ++ u64 skipped_nocow; ++ u64 skipped_nouse; ++}; ++ ++#define BCH_WATERMARKS() \ ++ x(stripe) \ ++ x(normal) \ ++ x(copygc) \ ++ x(btree) \ ++ x(btree_copygc) \ ++ x(reclaim) ++ ++enum bch_watermark { ++#define x(name) BCH_WATERMARK_##name, ++ BCH_WATERMARKS() ++#undef x ++ BCH_WATERMARK_NR, ++}; ++ ++#define BCH_WATERMARK_BITS 3 ++#define BCH_WATERMARK_MASK ~(~0U << BCH_WATERMARK_BITS) ++ ++#define OPEN_BUCKETS_COUNT 1024 ++ ++#define WRITE_POINT_HASH_NR 32 ++#define WRITE_POINT_MAX 32 ++ ++/* ++ * 0 is never a valid open_bucket_idx_t: ++ */ ++typedef u16 open_bucket_idx_t; ++ ++struct open_bucket { ++ spinlock_t lock; ++ atomic_t pin; ++ open_bucket_idx_t freelist; ++ open_bucket_idx_t hash; ++ ++ /* ++ * When an open bucket has an ec_stripe attached, this is the index of ++ * the block in the stripe this open_bucket corresponds to: ++ */ ++ u8 ec_idx; ++ enum bch_data_type data_type:6; ++ unsigned valid:1; ++ unsigned on_partial_list:1; ++ ++ u8 dev; ++ u8 gen; ++ u32 sectors_free; ++ u64 bucket; ++ struct ec_stripe_new *ec; ++}; ++ ++#define OPEN_BUCKET_LIST_MAX 15 ++ ++struct open_buckets { ++ open_bucket_idx_t nr; ++ open_bucket_idx_t v[OPEN_BUCKET_LIST_MAX]; ++}; ++ ++struct dev_stripe_state { ++ u64 next_alloc[BCH_SB_MEMBERS_MAX]; ++}; ++ ++#define WRITE_POINT_STATES() \ ++ x(stopped) \ ++ x(waiting_io) \ ++ x(waiting_work) \ ++ x(running) ++ ++enum write_point_state { ++#define x(n) WRITE_POINT_##n, ++ WRITE_POINT_STATES() ++#undef x ++ WRITE_POINT_STATE_NR ++}; ++ ++struct write_point { ++ struct { ++ struct hlist_node node; ++ struct mutex lock; ++ u64 last_used; ++ unsigned long write_point; ++ enum bch_data_type data_type; ++ ++ /* calculated based on how many pointers we're actually going to use: */ ++ unsigned sectors_free; ++ ++ struct open_buckets ptrs; ++ struct dev_stripe_state stripe; ++ ++ u64 sectors_allocated; ++ } __aligned(SMP_CACHE_BYTES); ++ ++ struct { ++ struct work_struct index_update_work; ++ ++ struct list_head writes; ++ spinlock_t writes_lock; ++ ++ enum write_point_state state; ++ u64 last_state_change; ++ u64 time[WRITE_POINT_STATE_NR]; ++ } __aligned(SMP_CACHE_BYTES); ++}; ++ ++struct write_point_specifier { ++ unsigned long v; ++}; ++ ++#endif /* _BCACHEFS_ALLOC_TYPES_H */ +diff --git a/fs/bcachefs/backpointers.c b/fs/bcachefs/backpointers.c +new file mode 100644 +index 000000000000..cc856150a948 +--- /dev/null ++++ b/fs/bcachefs/backpointers.c +@@ -0,0 +1,868 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "bbpos.h" ++#include "alloc_background.h" ++#include "backpointers.h" ++#include "btree_cache.h" ++#include "btree_update.h" ++#include "btree_write_buffer.h" ++#include "error.h" ++ ++#include ++ ++static bool extent_matches_bp(struct bch_fs *c, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c k, ++ struct bpos bucket, ++ struct bch_backpointer bp) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ struct bpos bucket2; ++ struct bch_backpointer bp2; ++ ++ if (p.ptr.cached) ++ continue; ++ ++ bch2_extent_ptr_to_bp(c, btree_id, level, k, p, ++ &bucket2, &bp2); ++ if (bpos_eq(bucket, bucket2) && ++ !memcmp(&bp, &bp2, sizeof(bp))) ++ return true; ++ } ++ ++ return false; ++} ++ ++int bch2_backpointer_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_backpointer bp = bkey_s_c_to_backpointer(k); ++ struct bpos bucket = bp_pos_to_bucket(c, bp.k->p); ++ ++ if (!bpos_eq(bp.k->p, bucket_pos_to_bp(c, bucket, bp.v->bucket_offset))) { ++ prt_str(err, "backpointer at wrong pos"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_backpointer_to_text(struct printbuf *out, const struct bch_backpointer *bp) ++{ ++ prt_printf(out, "btree=%s l=%u offset=%llu:%u len=%u pos=", ++ bch2_btree_ids[bp->btree_id], ++ bp->level, ++ (u64) (bp->bucket_offset >> MAX_EXTENT_COMPRESS_RATIO_SHIFT), ++ (u32) bp->bucket_offset & ~(~0U << MAX_EXTENT_COMPRESS_RATIO_SHIFT), ++ bp->bucket_len); ++ bch2_bpos_to_text(out, bp->pos); ++} ++ ++void bch2_backpointer_k_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) ++{ ++ prt_str(out, "bucket="); ++ bch2_bpos_to_text(out, bp_pos_to_bucket(c, k.k->p)); ++ prt_str(out, " "); ++ ++ bch2_backpointer_to_text(out, bkey_s_c_to_backpointer(k).v); ++} ++ ++void bch2_backpointer_swab(struct bkey_s k) ++{ ++ struct bkey_s_backpointer bp = bkey_s_to_backpointer(k); ++ ++ bp.v->bucket_offset = swab32(bp.v->bucket_offset); ++ bp.v->bucket_len = swab32(bp.v->bucket_len); ++ bch2_bpos_swab(&bp.v->pos); ++} ++ ++static noinline int backpointer_mod_err(struct btree_trans *trans, ++ struct bch_backpointer bp, ++ struct bkey_s_c bp_k, ++ struct bkey_s_c orig_k, ++ bool insert) ++{ ++ struct bch_fs *c = trans->c; ++ struct printbuf buf = PRINTBUF; ++ ++ if (insert) { ++ prt_printf(&buf, "existing backpointer found when inserting "); ++ bch2_backpointer_to_text(&buf, &bp); ++ prt_newline(&buf); ++ printbuf_indent_add(&buf, 2); ++ ++ prt_printf(&buf, "found "); ++ bch2_bkey_val_to_text(&buf, c, bp_k); ++ prt_newline(&buf); ++ ++ prt_printf(&buf, "for "); ++ bch2_bkey_val_to_text(&buf, c, orig_k); ++ ++ bch_err(c, "%s", buf.buf); ++ } else if (c->curr_recovery_pass > BCH_RECOVERY_PASS_check_extents_to_backpointers) { ++ prt_printf(&buf, "backpointer not found when deleting"); ++ prt_newline(&buf); ++ printbuf_indent_add(&buf, 2); ++ ++ prt_printf(&buf, "searching for "); ++ bch2_backpointer_to_text(&buf, &bp); ++ prt_newline(&buf); ++ ++ prt_printf(&buf, "got "); ++ bch2_bkey_val_to_text(&buf, c, bp_k); ++ prt_newline(&buf); ++ ++ prt_printf(&buf, "for "); ++ bch2_bkey_val_to_text(&buf, c, orig_k); ++ ++ bch_err(c, "%s", buf.buf); ++ } ++ ++ printbuf_exit(&buf); ++ ++ if (c->curr_recovery_pass > BCH_RECOVERY_PASS_check_extents_to_backpointers) { ++ bch2_inconsistent_error(c); ++ return -EIO; ++ } else { ++ return 0; ++ } ++} ++ ++int bch2_bucket_backpointer_mod_nowritebuffer(struct btree_trans *trans, ++ struct bkey_i_backpointer *bp_k, ++ struct bch_backpointer bp, ++ struct bkey_s_c orig_k, ++ bool insert) ++{ ++ struct btree_iter bp_iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, &bp_iter, BTREE_ID_backpointers, ++ bp_k->k.p, ++ BTREE_ITER_INTENT| ++ BTREE_ITER_SLOTS| ++ BTREE_ITER_WITH_UPDATES); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (insert ++ ? k.k->type ++ : (k.k->type != KEY_TYPE_backpointer || ++ memcmp(bkey_s_c_to_backpointer(k).v, &bp, sizeof(bp)))) { ++ ret = backpointer_mod_err(trans, bp, k, orig_k, insert); ++ if (ret) ++ goto err; ++ } ++ ++ ret = bch2_trans_update(trans, &bp_iter, &bp_k->k_i, 0); ++err: ++ bch2_trans_iter_exit(trans, &bp_iter); ++ return ret; ++} ++ ++/* ++ * Find the next backpointer >= *bp_offset: ++ */ ++int bch2_get_next_backpointer(struct btree_trans *trans, ++ struct bpos bucket, int gen, ++ struct bpos *bp_pos, ++ struct bch_backpointer *bp, ++ unsigned iter_flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bpos bp_end_pos = bucket_pos_to_bp(c, bpos_nosnap_successor(bucket), 0); ++ struct btree_iter alloc_iter = { NULL }, bp_iter = { NULL }; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ if (bpos_ge(*bp_pos, bp_end_pos)) ++ goto done; ++ ++ if (gen >= 0) { ++ k = bch2_bkey_get_iter(trans, &alloc_iter, BTREE_ID_alloc, ++ bucket, BTREE_ITER_CACHED|iter_flags); ++ ret = bkey_err(k); ++ if (ret) ++ goto out; ++ ++ if (k.k->type != KEY_TYPE_alloc_v4 || ++ bkey_s_c_to_alloc_v4(k).v->gen != gen) ++ goto done; ++ } ++ ++ *bp_pos = bpos_max(*bp_pos, bucket_pos_to_bp(c, bucket, 0)); ++ ++ for_each_btree_key_norestart(trans, bp_iter, BTREE_ID_backpointers, ++ *bp_pos, iter_flags, k, ret) { ++ if (bpos_ge(k.k->p, bp_end_pos)) ++ break; ++ ++ *bp_pos = k.k->p; ++ *bp = *bkey_s_c_to_backpointer(k).v; ++ goto out; ++ } ++done: ++ *bp_pos = SPOS_MAX; ++out: ++ bch2_trans_iter_exit(trans, &bp_iter); ++ bch2_trans_iter_exit(trans, &alloc_iter); ++ return ret; ++} ++ ++static void backpointer_not_found(struct btree_trans *trans, ++ struct bpos bp_pos, ++ struct bch_backpointer bp, ++ struct bkey_s_c k, ++ const char *thing_it_points_to) ++{ ++ struct bch_fs *c = trans->c; ++ struct printbuf buf = PRINTBUF; ++ struct bpos bucket = bp_pos_to_bucket(c, bp_pos); ++ ++ if (likely(!bch2_backpointers_no_use_write_buffer)) ++ return; ++ ++ prt_printf(&buf, "backpointer doesn't match %s it points to:\n ", ++ thing_it_points_to); ++ prt_printf(&buf, "bucket: "); ++ bch2_bpos_to_text(&buf, bucket); ++ prt_printf(&buf, "\n "); ++ ++ prt_printf(&buf, "backpointer pos: "); ++ bch2_bpos_to_text(&buf, bp_pos); ++ prt_printf(&buf, "\n "); ++ ++ bch2_backpointer_to_text(&buf, &bp); ++ prt_printf(&buf, "\n "); ++ bch2_bkey_val_to_text(&buf, c, k); ++ if (c->curr_recovery_pass >= BCH_RECOVERY_PASS_check_extents_to_backpointers) ++ bch_err_ratelimited(c, "%s", buf.buf); ++ else ++ bch2_trans_inconsistent(trans, "%s", buf.buf); ++ ++ printbuf_exit(&buf); ++} ++ ++struct bkey_s_c bch2_backpointer_get_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bpos bp_pos, ++ struct bch_backpointer bp, ++ unsigned iter_flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_root *r = bch2_btree_id_root(c, bp.btree_id); ++ struct bpos bucket = bp_pos_to_bucket(c, bp_pos); ++ struct bkey_s_c k; ++ ++ bch2_trans_node_iter_init(trans, iter, ++ bp.btree_id, ++ bp.pos, ++ 0, ++ min(bp.level, r->level), ++ iter_flags); ++ k = bch2_btree_iter_peek_slot(iter); ++ if (bkey_err(k)) { ++ bch2_trans_iter_exit(trans, iter); ++ return k; ++ } ++ ++ if (bp.level == r->level + 1) ++ k = bkey_i_to_s_c(&r->key); ++ ++ if (k.k && extent_matches_bp(c, bp.btree_id, bp.level, k, bucket, bp)) ++ return k; ++ ++ bch2_trans_iter_exit(trans, iter); ++ ++ if (unlikely(bch2_backpointers_no_use_write_buffer)) { ++ if (bp.level) { ++ struct btree *b; ++ ++ /* ++ * If a backpointer for a btree node wasn't found, it may be ++ * because it was overwritten by a new btree node that hasn't ++ * been written out yet - backpointer_get_node() checks for ++ * this: ++ */ ++ b = bch2_backpointer_get_node(trans, iter, bp_pos, bp); ++ if (!IS_ERR_OR_NULL(b)) ++ return bkey_i_to_s_c(&b->key); ++ ++ bch2_trans_iter_exit(trans, iter); ++ ++ if (IS_ERR(b)) ++ return bkey_s_c_err(PTR_ERR(b)); ++ return bkey_s_c_null; ++ } ++ ++ backpointer_not_found(trans, bp_pos, bp, k, "extent"); ++ } ++ ++ return bkey_s_c_null; ++} ++ ++struct btree *bch2_backpointer_get_node(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bpos bp_pos, ++ struct bch_backpointer bp) ++{ ++ struct bch_fs *c = trans->c; ++ struct bpos bucket = bp_pos_to_bucket(c, bp_pos); ++ struct btree *b; ++ ++ BUG_ON(!bp.level); ++ ++ bch2_trans_node_iter_init(trans, iter, ++ bp.btree_id, ++ bp.pos, ++ 0, ++ bp.level - 1, ++ 0); ++ b = bch2_btree_iter_peek_node(iter); ++ if (IS_ERR(b)) ++ goto err; ++ ++ if (b && extent_matches_bp(c, bp.btree_id, bp.level, ++ bkey_i_to_s_c(&b->key), ++ bucket, bp)) ++ return b; ++ ++ if (b && btree_node_will_make_reachable(b)) { ++ b = ERR_PTR(-BCH_ERR_backpointer_to_overwritten_btree_node); ++ } else { ++ backpointer_not_found(trans, bp_pos, bp, ++ bkey_i_to_s_c(&b->key), "btree node"); ++ b = NULL; ++ } ++err: ++ bch2_trans_iter_exit(trans, iter); ++ return b; ++} ++ ++static int bch2_check_btree_backpointer(struct btree_trans *trans, struct btree_iter *bp_iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter alloc_iter = { NULL }; ++ struct bkey_s_c alloc_k; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ if (fsck_err_on(!bch2_dev_exists2(c, k.k->p.inode), c, ++ "backpointer for missing device:\n%s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ ret = bch2_btree_delete_at(trans, bp_iter, 0); ++ goto out; ++ } ++ ++ alloc_k = bch2_bkey_get_iter(trans, &alloc_iter, BTREE_ID_alloc, ++ bp_pos_to_bucket(c, k.k->p), 0); ++ ret = bkey_err(alloc_k); ++ if (ret) ++ goto out; ++ ++ if (fsck_err_on(alloc_k.k->type != KEY_TYPE_alloc_v4, c, ++ "backpointer for nonexistent alloc key: %llu:%llu:0\n%s", ++ alloc_iter.pos.inode, alloc_iter.pos.offset, ++ (bch2_bkey_val_to_text(&buf, c, alloc_k), buf.buf))) { ++ ret = bch2_btree_delete_at(trans, bp_iter, 0); ++ goto out; ++ } ++out: ++fsck_err: ++ bch2_trans_iter_exit(trans, &alloc_iter); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++/* verify that every backpointer has a corresponding alloc key */ ++int bch2_check_btree_backpointers(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, ++ BTREE_ID_backpointers, POS_MIN, 0, k, ++ NULL, NULL, BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ bch2_check_btree_backpointer(trans, &iter, k))); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++struct bpos_level { ++ unsigned level; ++ struct bpos pos; ++}; ++ ++static int check_bp_exists(struct btree_trans *trans, ++ struct bpos bucket, ++ struct bch_backpointer bp, ++ struct bkey_s_c orig_k, ++ struct bpos bucket_start, ++ struct bpos bucket_end, ++ struct bpos_level *last_flushed) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter bp_iter = { NULL }; ++ struct printbuf buf = PRINTBUF; ++ struct bkey_s_c bp_k; ++ int ret; ++ ++ if (bpos_lt(bucket, bucket_start) || ++ bpos_gt(bucket, bucket_end)) ++ return 0; ++ ++ if (!bch2_dev_bucket_exists(c, bucket)) ++ goto missing; ++ ++ bp_k = bch2_bkey_get_iter(trans, &bp_iter, BTREE_ID_backpointers, ++ bucket_pos_to_bp(c, bucket, bp.bucket_offset), ++ 0); ++ ret = bkey_err(bp_k); ++ if (ret) ++ goto err; ++ ++ if (bp_k.k->type != KEY_TYPE_backpointer || ++ memcmp(bkey_s_c_to_backpointer(bp_k).v, &bp, sizeof(bp))) { ++ if (last_flushed->level != bp.level || ++ !bpos_eq(last_flushed->pos, orig_k.k->p)) { ++ last_flushed->level = bp.level; ++ last_flushed->pos = orig_k.k->p; ++ ++ ret = bch2_btree_write_buffer_flush_sync(trans) ?: ++ -BCH_ERR_transaction_restart_write_buffer_flush; ++ goto out; ++ } ++ goto missing; ++ } ++out: ++err: ++fsck_err: ++ bch2_trans_iter_exit(trans, &bp_iter); ++ printbuf_exit(&buf); ++ return ret; ++missing: ++ prt_printf(&buf, "missing backpointer for btree=%s l=%u ", ++ bch2_btree_ids[bp.btree_id], bp.level); ++ bch2_bkey_val_to_text(&buf, c, orig_k); ++ prt_printf(&buf, "\nbp pos "); ++ bch2_bpos_to_text(&buf, bp_iter.pos); ++ ++ if (c->sb.version_upgrade_complete < bcachefs_metadata_version_backpointers || ++ c->opts.reconstruct_alloc || ++ fsck_err(c, "%s", buf.buf)) ++ ret = bch2_bucket_backpointer_mod(trans, bucket, bp, orig_k, true); ++ ++ goto out; ++} ++ ++static int check_extent_to_backpointers(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bpos bucket_start, ++ struct bpos bucket_end, ++ struct bpos_level *last_flushed) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_ptrs_c ptrs; ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ struct bkey_s_c k; ++ int ret; ++ ++ k = bch2_btree_iter_peek_all_levels(iter); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ if (!k.k) ++ return 0; ++ ++ ptrs = bch2_bkey_ptrs_c(k); ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ struct bpos bucket_pos; ++ struct bch_backpointer bp; ++ ++ if (p.ptr.cached) ++ continue; ++ ++ bch2_extent_ptr_to_bp(c, iter->btree_id, iter->path->level, ++ k, p, &bucket_pos, &bp); ++ ++ ret = check_bp_exists(trans, bucket_pos, bp, k, ++ bucket_start, bucket_end, ++ last_flushed); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int check_btree_root_to_backpointers(struct btree_trans *trans, ++ enum btree_id btree_id, ++ struct bpos bucket_start, ++ struct bpos bucket_end, ++ struct bpos_level *last_flushed) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_root *r = bch2_btree_id_root(c, btree_id); ++ struct btree_iter iter; ++ struct btree *b; ++ struct bkey_s_c k; ++ struct bkey_ptrs_c ptrs; ++ struct extent_ptr_decoded p; ++ const union bch_extent_entry *entry; ++ int ret; ++ ++ bch2_trans_node_iter_init(trans, &iter, btree_id, POS_MIN, 0, r->level, 0); ++ b = bch2_btree_iter_peek_node(&iter); ++ ret = PTR_ERR_OR_ZERO(b); ++ if (ret) ++ goto err; ++ ++ BUG_ON(b != btree_node_root(c, b)); ++ ++ k = bkey_i_to_s_c(&b->key); ++ ptrs = bch2_bkey_ptrs_c(k); ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ struct bpos bucket_pos; ++ struct bch_backpointer bp; ++ ++ if (p.ptr.cached) ++ continue; ++ ++ bch2_extent_ptr_to_bp(c, iter.btree_id, b->c.level + 1, ++ k, p, &bucket_pos, &bp); ++ ++ ret = check_bp_exists(trans, bucket_pos, bp, k, ++ bucket_start, bucket_end, ++ last_flushed); ++ if (ret) ++ goto err; ++ } ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static inline struct bbpos bp_to_bbpos(struct bch_backpointer bp) ++{ ++ return (struct bbpos) { ++ .btree = bp.btree_id, ++ .pos = bp.pos, ++ }; ++} ++ ++static size_t btree_nodes_fit_in_ram(struct bch_fs *c) ++{ ++ struct sysinfo i; ++ u64 mem_bytes; ++ ++ si_meminfo(&i); ++ mem_bytes = i.totalram * i.mem_unit; ++ return div_u64(mem_bytes >> 1, btree_bytes(c)); ++} ++ ++static int bch2_get_btree_in_memory_pos(struct btree_trans *trans, ++ unsigned btree_leaf_mask, ++ unsigned btree_interior_mask, ++ struct bbpos start, struct bbpos *end) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ size_t btree_nodes = btree_nodes_fit_in_ram(trans->c); ++ enum btree_id btree; ++ int ret = 0; ++ ++ for (btree = start.btree; btree < BTREE_ID_NR && !ret; btree++) { ++ unsigned depth = ((1U << btree) & btree_leaf_mask) ? 1 : 2; ++ ++ if (!((1U << btree) & btree_leaf_mask) && ++ !((1U << btree) & btree_interior_mask)) ++ continue; ++ ++ bch2_trans_node_iter_init(trans, &iter, btree, ++ btree == start.btree ? start.pos : POS_MIN, ++ 0, depth, 0); ++ /* ++ * for_each_btree_key_contineu() doesn't check the return value ++ * from bch2_btree_iter_advance(), which is needed when ++ * iterating over interior nodes where we'll see keys at ++ * SPOS_MAX: ++ */ ++ do { ++ k = __bch2_btree_iter_peek_and_restart(trans, &iter, 0); ++ ret = bkey_err(k); ++ if (!k.k || ret) ++ break; ++ ++ --btree_nodes; ++ if (!btree_nodes) { ++ *end = BBPOS(btree, k.k->p); ++ bch2_trans_iter_exit(trans, &iter); ++ return 0; ++ } ++ } while (bch2_btree_iter_advance(&iter)); ++ bch2_trans_iter_exit(trans, &iter); ++ } ++ ++ *end = BBPOS_MAX; ++ return ret; ++} ++ ++static int bch2_check_extents_to_backpointers_pass(struct btree_trans *trans, ++ struct bpos bucket_start, ++ struct bpos bucket_end) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ enum btree_id btree_id; ++ struct bpos_level last_flushed = { UINT_MAX, POS_MIN }; ++ int ret = 0; ++ ++ for (btree_id = 0; btree_id < btree_id_nr_alive(c); btree_id++) { ++ unsigned depth = btree_type_has_ptrs(btree_id) ? 0 : 1; ++ ++ bch2_trans_node_iter_init(trans, &iter, btree_id, POS_MIN, 0, ++ depth, ++ BTREE_ITER_ALL_LEVELS| ++ BTREE_ITER_PREFETCH); ++ ++ do { ++ ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_NOFAIL, ++ check_extent_to_backpointers(trans, &iter, ++ bucket_start, bucket_end, ++ &last_flushed)); ++ if (ret) ++ break; ++ } while (!bch2_btree_iter_advance(&iter)); ++ ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) ++ break; ++ ++ ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_NOFAIL, ++ check_btree_root_to_backpointers(trans, btree_id, ++ bucket_start, bucket_end, ++ &last_flushed)); ++ if (ret) ++ break; ++ } ++ return ret; ++} ++ ++static struct bpos bucket_pos_to_bp_safe(const struct bch_fs *c, ++ struct bpos bucket) ++{ ++ return bch2_dev_exists2(c, bucket.inode) ++ ? bucket_pos_to_bp(c, bucket, 0) ++ : bucket; ++} ++ ++static int bch2_get_alloc_in_memory_pos(struct btree_trans *trans, ++ struct bpos start, struct bpos *end) ++{ ++ struct btree_iter alloc_iter; ++ struct btree_iter bp_iter; ++ struct bkey_s_c alloc_k, bp_k; ++ size_t btree_nodes = btree_nodes_fit_in_ram(trans->c); ++ bool alloc_end = false, bp_end = false; ++ int ret = 0; ++ ++ bch2_trans_node_iter_init(trans, &alloc_iter, BTREE_ID_alloc, ++ start, 0, 1, 0); ++ bch2_trans_node_iter_init(trans, &bp_iter, BTREE_ID_backpointers, ++ bucket_pos_to_bp_safe(trans->c, start), 0, 1, 0); ++ while (1) { ++ alloc_k = !alloc_end ++ ? __bch2_btree_iter_peek_and_restart(trans, &alloc_iter, 0) ++ : bkey_s_c_null; ++ bp_k = !bp_end ++ ? __bch2_btree_iter_peek_and_restart(trans, &bp_iter, 0) ++ : bkey_s_c_null; ++ ++ ret = bkey_err(alloc_k) ?: bkey_err(bp_k); ++ if ((!alloc_k.k && !bp_k.k) || ret) { ++ *end = SPOS_MAX; ++ break; ++ } ++ ++ --btree_nodes; ++ if (!btree_nodes) { ++ *end = alloc_k.k ? alloc_k.k->p : SPOS_MAX; ++ break; ++ } ++ ++ if (bpos_lt(alloc_iter.pos, SPOS_MAX) && ++ bpos_lt(bucket_pos_to_bp_safe(trans->c, alloc_iter.pos), bp_iter.pos)) { ++ if (!bch2_btree_iter_advance(&alloc_iter)) ++ alloc_end = true; ++ } else { ++ if (!bch2_btree_iter_advance(&bp_iter)) ++ bp_end = true; ++ } ++ } ++ bch2_trans_iter_exit(trans, &bp_iter); ++ bch2_trans_iter_exit(trans, &alloc_iter); ++ return ret; ++} ++ ++int bch2_check_extents_to_backpointers(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct bpos start = POS_MIN, end; ++ int ret; ++ ++ while (1) { ++ ret = bch2_get_alloc_in_memory_pos(trans, start, &end); ++ if (ret) ++ break; ++ ++ if (bpos_eq(start, POS_MIN) && !bpos_eq(end, SPOS_MAX)) ++ bch_verbose(c, "%s(): alloc info does not fit in ram, running in multiple passes with %zu nodes per pass", ++ __func__, btree_nodes_fit_in_ram(c)); ++ ++ if (!bpos_eq(start, POS_MIN) || !bpos_eq(end, SPOS_MAX)) { ++ struct printbuf buf = PRINTBUF; ++ ++ prt_str(&buf, "check_extents_to_backpointers(): "); ++ bch2_bpos_to_text(&buf, start); ++ prt_str(&buf, "-"); ++ bch2_bpos_to_text(&buf, end); ++ ++ bch_verbose(c, "%s", buf.buf); ++ printbuf_exit(&buf); ++ } ++ ++ ret = bch2_check_extents_to_backpointers_pass(trans, start, end); ++ if (ret || bpos_eq(end, SPOS_MAX)) ++ break; ++ ++ start = bpos_successor(end); ++ } ++ bch2_trans_put(trans); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int check_one_backpointer(struct btree_trans *trans, ++ struct bbpos start, ++ struct bbpos end, ++ struct bkey_s_c_backpointer bp, ++ struct bpos *last_flushed_pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bbpos pos = bp_to_bbpos(*bp.v); ++ struct bkey_s_c k; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ if (bbpos_cmp(pos, start) < 0 || ++ bbpos_cmp(pos, end) > 0) ++ return 0; ++ ++ k = bch2_backpointer_get_key(trans, &iter, bp.k->p, *bp.v, 0); ++ ret = bkey_err(k); ++ if (ret == -BCH_ERR_backpointer_to_overwritten_btree_node) ++ return 0; ++ if (ret) ++ return ret; ++ ++ if (!k.k && !bpos_eq(*last_flushed_pos, bp.k->p)) { ++ *last_flushed_pos = bp.k->p; ++ ret = bch2_btree_write_buffer_flush_sync(trans) ?: ++ -BCH_ERR_transaction_restart_write_buffer_flush; ++ goto out; ++ } ++ ++ if (fsck_err_on(!k.k, c, ++ "backpointer for missing extent\n %s", ++ (bch2_bkey_val_to_text(&buf, c, bp.s_c), buf.buf))) { ++ ret = bch2_btree_delete_at_buffered(trans, BTREE_ID_backpointers, bp.k->p); ++ goto out; ++ } ++out: ++fsck_err: ++ bch2_trans_iter_exit(trans, &iter); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int bch2_check_backpointers_to_extents_pass(struct btree_trans *trans, ++ struct bbpos start, ++ struct bbpos end) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bpos last_flushed_pos = SPOS_MAX; ++ ++ return for_each_btree_key_commit(trans, iter, BTREE_ID_backpointers, ++ POS_MIN, BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ check_one_backpointer(trans, start, end, ++ bkey_s_c_to_backpointer(k), ++ &last_flushed_pos)); ++} ++ ++int bch2_check_backpointers_to_extents(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct bbpos start = (struct bbpos) { .btree = 0, .pos = POS_MIN, }, end; ++ int ret; ++ ++ while (1) { ++ ret = bch2_get_btree_in_memory_pos(trans, ++ (1U << BTREE_ID_extents)| ++ (1U << BTREE_ID_reflink), ++ ~0, ++ start, &end); ++ if (ret) ++ break; ++ ++ if (!bbpos_cmp(start, BBPOS_MIN) && ++ bbpos_cmp(end, BBPOS_MAX)) ++ bch_verbose(c, "%s(): extents do not fit in ram, running in multiple passes with %zu nodes per pass", ++ __func__, btree_nodes_fit_in_ram(c)); ++ ++ if (bbpos_cmp(start, BBPOS_MIN) || ++ bbpos_cmp(end, BBPOS_MAX)) { ++ struct printbuf buf = PRINTBUF; ++ ++ prt_str(&buf, "check_backpointers_to_extents(): "); ++ bch2_bbpos_to_text(&buf, start); ++ prt_str(&buf, "-"); ++ bch2_bbpos_to_text(&buf, end); ++ ++ bch_verbose(c, "%s", buf.buf); ++ printbuf_exit(&buf); ++ } ++ ++ ret = bch2_check_backpointers_to_extents_pass(trans, start, end); ++ if (ret || !bbpos_cmp(end, BBPOS_MAX)) ++ break; ++ ++ start = bbpos_successor(end); ++ } ++ bch2_trans_put(trans); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} +diff --git a/fs/bcachefs/backpointers.h b/fs/bcachefs/backpointers.h +new file mode 100644 +index 000000000000..547e0617602a +--- /dev/null ++++ b/fs/bcachefs/backpointers.h +@@ -0,0 +1,131 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BACKPOINTERS_BACKGROUND_H ++#define _BCACHEFS_BACKPOINTERS_BACKGROUND_H ++ ++#include "btree_iter.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "super.h" ++ ++int bch2_backpointer_invalid(const struct bch_fs *, struct bkey_s_c k, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_backpointer_to_text(struct printbuf *, const struct bch_backpointer *); ++void bch2_backpointer_k_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++void bch2_backpointer_swab(struct bkey_s); ++ ++#define bch2_bkey_ops_backpointer ((struct bkey_ops) { \ ++ .key_invalid = bch2_backpointer_invalid, \ ++ .val_to_text = bch2_backpointer_k_to_text, \ ++ .swab = bch2_backpointer_swab, \ ++ .min_val_size = 32, \ ++}) ++ ++#define MAX_EXTENT_COMPRESS_RATIO_SHIFT 10 ++ ++/* ++ * Convert from pos in backpointer btree to pos of corresponding bucket in alloc ++ * btree: ++ */ ++static inline struct bpos bp_pos_to_bucket(const struct bch_fs *c, ++ struct bpos bp_pos) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, bp_pos.inode); ++ u64 bucket_sector = bp_pos.offset >> MAX_EXTENT_COMPRESS_RATIO_SHIFT; ++ ++ return POS(bp_pos.inode, sector_to_bucket(ca, bucket_sector)); ++} ++ ++/* ++ * Convert from pos in alloc btree + bucket offset to pos in backpointer btree: ++ */ ++static inline struct bpos bucket_pos_to_bp(const struct bch_fs *c, ++ struct bpos bucket, ++ u64 bucket_offset) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, bucket.inode); ++ struct bpos ret; ++ ++ ret = POS(bucket.inode, ++ (bucket_to_sector(ca, bucket.offset) << ++ MAX_EXTENT_COMPRESS_RATIO_SHIFT) + bucket_offset); ++ ++ EBUG_ON(!bkey_eq(bucket, bp_pos_to_bucket(c, ret))); ++ ++ return ret; ++} ++ ++int bch2_bucket_backpointer_mod_nowritebuffer(struct btree_trans *, struct bkey_i_backpointer *, ++ struct bch_backpointer, struct bkey_s_c, bool); ++ ++static inline int bch2_bucket_backpointer_mod(struct btree_trans *trans, ++ struct bpos bucket, ++ struct bch_backpointer bp, ++ struct bkey_s_c orig_k, ++ bool insert) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_i_backpointer *bp_k; ++ int ret; ++ ++ bp_k = bch2_trans_kmalloc_nomemzero(trans, sizeof(struct bkey_i_backpointer)); ++ ret = PTR_ERR_OR_ZERO(bp_k); ++ if (ret) ++ return ret; ++ ++ bkey_backpointer_init(&bp_k->k_i); ++ bp_k->k.p = bucket_pos_to_bp(c, bucket, bp.bucket_offset); ++ bp_k->v = bp; ++ ++ if (!insert) { ++ bp_k->k.type = KEY_TYPE_deleted; ++ set_bkey_val_u64s(&bp_k->k, 0); ++ } ++ ++ if (unlikely(bch2_backpointers_no_use_write_buffer)) ++ return bch2_bucket_backpointer_mod_nowritebuffer(trans, bp_k, bp, orig_k, insert); ++ ++ return bch2_trans_update_buffered(trans, BTREE_ID_backpointers, &bp_k->k_i); ++} ++ ++static inline enum bch_data_type bkey_ptr_data_type(enum btree_id btree_id, unsigned level, ++ struct bkey_s_c k, struct extent_ptr_decoded p) ++{ ++ return level ? BCH_DATA_btree : ++ p.has_ec ? BCH_DATA_stripe : ++ BCH_DATA_user; ++} ++ ++static inline void bch2_extent_ptr_to_bp(struct bch_fs *c, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c k, struct extent_ptr_decoded p, ++ struct bpos *bucket_pos, struct bch_backpointer *bp) ++{ ++ enum bch_data_type data_type = bkey_ptr_data_type(btree_id, level, k, p); ++ s64 sectors = level ? btree_sectors(c) : k.k->size; ++ u32 bucket_offset; ++ ++ *bucket_pos = PTR_BUCKET_POS_OFFSET(c, &p.ptr, &bucket_offset); ++ *bp = (struct bch_backpointer) { ++ .btree_id = btree_id, ++ .level = level, ++ .data_type = data_type, ++ .bucket_offset = ((u64) bucket_offset << MAX_EXTENT_COMPRESS_RATIO_SHIFT) + ++ p.crc.offset, ++ .bucket_len = ptr_disk_sectors(sectors, p), ++ .pos = k.k->p, ++ }; ++} ++ ++int bch2_get_next_backpointer(struct btree_trans *, struct bpos, int, ++ struct bpos *, struct bch_backpointer *, unsigned); ++struct bkey_s_c bch2_backpointer_get_key(struct btree_trans *, struct btree_iter *, ++ struct bpos, struct bch_backpointer, ++ unsigned); ++struct btree *bch2_backpointer_get_node(struct btree_trans *, struct btree_iter *, ++ struct bpos, struct bch_backpointer); ++ ++int bch2_check_btree_backpointers(struct bch_fs *); ++int bch2_check_extents_to_backpointers(struct bch_fs *); ++int bch2_check_backpointers_to_extents(struct bch_fs *); ++ ++#endif /* _BCACHEFS_BACKPOINTERS_BACKGROUND_H */ +diff --git a/fs/bcachefs/bbpos.h b/fs/bcachefs/bbpos.h +new file mode 100644 +index 000000000000..1fbed1f8378d +--- /dev/null ++++ b/fs/bcachefs/bbpos.h +@@ -0,0 +1,48 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BBPOS_H ++#define _BCACHEFS_BBPOS_H ++ ++#include "bkey_methods.h" ++ ++struct bbpos { ++ enum btree_id btree; ++ struct bpos pos; ++}; ++ ++static inline struct bbpos BBPOS(enum btree_id btree, struct bpos pos) ++{ ++ return (struct bbpos) { btree, pos }; ++} ++ ++#define BBPOS_MIN BBPOS(0, POS_MIN) ++#define BBPOS_MAX BBPOS(BTREE_ID_NR - 1, POS_MAX) ++ ++static inline int bbpos_cmp(struct bbpos l, struct bbpos r) ++{ ++ return cmp_int(l.btree, r.btree) ?: bpos_cmp(l.pos, r.pos); ++} ++ ++static inline struct bbpos bbpos_successor(struct bbpos pos) ++{ ++ if (bpos_cmp(pos.pos, SPOS_MAX)) { ++ pos.pos = bpos_successor(pos.pos); ++ return pos; ++ } ++ ++ if (pos.btree != BTREE_ID_NR) { ++ pos.btree++; ++ pos.pos = POS_MIN; ++ return pos; ++ } ++ ++ BUG(); ++} ++ ++static inline void bch2_bbpos_to_text(struct printbuf *out, struct bbpos pos) ++{ ++ prt_str(out, bch2_btree_ids[pos.btree]); ++ prt_char(out, ':'); ++ bch2_bpos_to_text(out, pos.pos); ++} ++ ++#endif /* _BCACHEFS_BBPOS_H */ +diff --git a/fs/bcachefs/bcachefs.h b/fs/bcachefs/bcachefs.h +new file mode 100644 +index 000000000000..53ffa88cae16 +--- /dev/null ++++ b/fs/bcachefs/bcachefs.h +@@ -0,0 +1,1156 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_H ++#define _BCACHEFS_H ++ ++/* ++ * SOME HIGH LEVEL CODE DOCUMENTATION: ++ * ++ * Bcache mostly works with cache sets, cache devices, and backing devices. ++ * ++ * Support for multiple cache devices hasn't quite been finished off yet, but ++ * it's about 95% plumbed through. A cache set and its cache devices is sort of ++ * like a md raid array and its component devices. Most of the code doesn't care ++ * about individual cache devices, the main abstraction is the cache set. ++ * ++ * Multiple cache devices is intended to give us the ability to mirror dirty ++ * cached data and metadata, without mirroring clean cached data. ++ * ++ * Backing devices are different, in that they have a lifetime independent of a ++ * cache set. When you register a newly formatted backing device it'll come up ++ * in passthrough mode, and then you can attach and detach a backing device from ++ * a cache set at runtime - while it's mounted and in use. Detaching implicitly ++ * invalidates any cached data for that backing device. ++ * ++ * A cache set can have multiple (many) backing devices attached to it. ++ * ++ * There's also flash only volumes - this is the reason for the distinction ++ * between struct cached_dev and struct bcache_device. A flash only volume ++ * works much like a bcache device that has a backing device, except the ++ * "cached" data is always dirty. The end result is that we get thin ++ * provisioning with very little additional code. ++ * ++ * Flash only volumes work but they're not production ready because the moving ++ * garbage collector needs more work. More on that later. ++ * ++ * BUCKETS/ALLOCATION: ++ * ++ * Bcache is primarily designed for caching, which means that in normal ++ * operation all of our available space will be allocated. Thus, we need an ++ * efficient way of deleting things from the cache so we can write new things to ++ * it. ++ * ++ * To do this, we first divide the cache device up into buckets. A bucket is the ++ * unit of allocation; they're typically around 1 mb - anywhere from 128k to 2M+ ++ * works efficiently. ++ * ++ * Each bucket has a 16 bit priority, and an 8 bit generation associated with ++ * it. The gens and priorities for all the buckets are stored contiguously and ++ * packed on disk (in a linked list of buckets - aside from the superblock, all ++ * of bcache's metadata is stored in buckets). ++ * ++ * The priority is used to implement an LRU. We reset a bucket's priority when ++ * we allocate it or on cache it, and every so often we decrement the priority ++ * of each bucket. It could be used to implement something more sophisticated, ++ * if anyone ever gets around to it. ++ * ++ * The generation is used for invalidating buckets. Each pointer also has an 8 ++ * bit generation embedded in it; for a pointer to be considered valid, its gen ++ * must match the gen of the bucket it points into. Thus, to reuse a bucket all ++ * we have to do is increment its gen (and write its new gen to disk; we batch ++ * this up). ++ * ++ * Bcache is entirely COW - we never write twice to a bucket, even buckets that ++ * contain metadata (including btree nodes). ++ * ++ * THE BTREE: ++ * ++ * Bcache is in large part design around the btree. ++ * ++ * At a high level, the btree is just an index of key -> ptr tuples. ++ * ++ * Keys represent extents, and thus have a size field. Keys also have a variable ++ * number of pointers attached to them (potentially zero, which is handy for ++ * invalidating the cache). ++ * ++ * The key itself is an inode:offset pair. The inode number corresponds to a ++ * backing device or a flash only volume. The offset is the ending offset of the ++ * extent within the inode - not the starting offset; this makes lookups ++ * slightly more convenient. ++ * ++ * Pointers contain the cache device id, the offset on that device, and an 8 bit ++ * generation number. More on the gen later. ++ * ++ * Index lookups are not fully abstracted - cache lookups in particular are ++ * still somewhat mixed in with the btree code, but things are headed in that ++ * direction. ++ * ++ * Updates are fairly well abstracted, though. There are two different ways of ++ * updating the btree; insert and replace. ++ * ++ * BTREE_INSERT will just take a list of keys and insert them into the btree - ++ * overwriting (possibly only partially) any extents they overlap with. This is ++ * used to update the index after a write. ++ * ++ * BTREE_REPLACE is really cmpxchg(); it inserts a key into the btree iff it is ++ * overwriting a key that matches another given key. This is used for inserting ++ * data into the cache after a cache miss, and for background writeback, and for ++ * the moving garbage collector. ++ * ++ * There is no "delete" operation; deleting things from the index is ++ * accomplished by either by invalidating pointers (by incrementing a bucket's ++ * gen) or by inserting a key with 0 pointers - which will overwrite anything ++ * previously present at that location in the index. ++ * ++ * This means that there are always stale/invalid keys in the btree. They're ++ * filtered out by the code that iterates through a btree node, and removed when ++ * a btree node is rewritten. ++ * ++ * BTREE NODES: ++ * ++ * Our unit of allocation is a bucket, and we can't arbitrarily allocate and ++ * free smaller than a bucket - so, that's how big our btree nodes are. ++ * ++ * (If buckets are really big we'll only use part of the bucket for a btree node ++ * - no less than 1/4th - but a bucket still contains no more than a single ++ * btree node. I'd actually like to change this, but for now we rely on the ++ * bucket's gen for deleting btree nodes when we rewrite/split a node.) ++ * ++ * Anyways, btree nodes are big - big enough to be inefficient with a textbook ++ * btree implementation. ++ * ++ * The way this is solved is that btree nodes are internally log structured; we ++ * can append new keys to an existing btree node without rewriting it. This ++ * means each set of keys we write is sorted, but the node is not. ++ * ++ * We maintain this log structure in memory - keeping 1Mb of keys sorted would ++ * be expensive, and we have to distinguish between the keys we have written and ++ * the keys we haven't. So to do a lookup in a btree node, we have to search ++ * each sorted set. But we do merge written sets together lazily, so the cost of ++ * these extra searches is quite low (normally most of the keys in a btree node ++ * will be in one big set, and then there'll be one or two sets that are much ++ * smaller). ++ * ++ * This log structure makes bcache's btree more of a hybrid between a ++ * conventional btree and a compacting data structure, with some of the ++ * advantages of both. ++ * ++ * GARBAGE COLLECTION: ++ * ++ * We can't just invalidate any bucket - it might contain dirty data or ++ * metadata. If it once contained dirty data, other writes might overwrite it ++ * later, leaving no valid pointers into that bucket in the index. ++ * ++ * Thus, the primary purpose of garbage collection is to find buckets to reuse. ++ * It also counts how much valid data it each bucket currently contains, so that ++ * allocation can reuse buckets sooner when they've been mostly overwritten. ++ * ++ * It also does some things that are really internal to the btree ++ * implementation. If a btree node contains pointers that are stale by more than ++ * some threshold, it rewrites the btree node to avoid the bucket's generation ++ * wrapping around. It also merges adjacent btree nodes if they're empty enough. ++ * ++ * THE JOURNAL: ++ * ++ * Bcache's journal is not necessary for consistency; we always strictly ++ * order metadata writes so that the btree and everything else is consistent on ++ * disk in the event of an unclean shutdown, and in fact bcache had writeback ++ * caching (with recovery from unclean shutdown) before journalling was ++ * implemented. ++ * ++ * Rather, the journal is purely a performance optimization; we can't complete a ++ * write until we've updated the index on disk, otherwise the cache would be ++ * inconsistent in the event of an unclean shutdown. This means that without the ++ * journal, on random write workloads we constantly have to update all the leaf ++ * nodes in the btree, and those writes will be mostly empty (appending at most ++ * a few keys each) - highly inefficient in terms of amount of metadata writes, ++ * and it puts more strain on the various btree resorting/compacting code. ++ * ++ * The journal is just a log of keys we've inserted; on startup we just reinsert ++ * all the keys in the open journal entries. That means that when we're updating ++ * a node in the btree, we can wait until a 4k block of keys fills up before ++ * writing them out. ++ * ++ * For simplicity, we only journal updates to leaf nodes; updates to parent ++ * nodes are rare enough (since our leaf nodes are huge) that it wasn't worth ++ * the complexity to deal with journalling them (in particular, journal replay) ++ * - updates to non leaf nodes just happen synchronously (see btree_split()). ++ */ ++ ++#undef pr_fmt ++#ifdef __KERNEL__ ++#define pr_fmt(fmt) "bcachefs: %s() " fmt "\n", __func__ ++#else ++#define pr_fmt(fmt) "%s() " fmt "\n", __func__ ++#endif ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "bcachefs_format.h" ++#include "errcode.h" ++#include "fifo.h" ++#include "nocow_locking_types.h" ++#include "opts.h" ++#include "recovery_types.h" ++#include "seqmutex.h" ++#include "util.h" ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++#define BCH_WRITE_REF_DEBUG ++#endif ++ ++#ifndef dynamic_fault ++#define dynamic_fault(...) 0 ++#endif ++ ++#define race_fault(...) dynamic_fault("bcachefs:race") ++ ++#define trace_and_count(_c, _name, ...) \ ++do { \ ++ this_cpu_inc((_c)->counters[BCH_COUNTER_##_name]); \ ++ trace_##_name(__VA_ARGS__); \ ++} while (0) ++ ++#define bch2_fs_init_fault(name) \ ++ dynamic_fault("bcachefs:bch_fs_init:" name) ++#define bch2_meta_read_fault(name) \ ++ dynamic_fault("bcachefs:meta:read:" name) ++#define bch2_meta_write_fault(name) \ ++ dynamic_fault("bcachefs:meta:write:" name) ++ ++#ifdef __KERNEL__ ++#define BCACHEFS_LOG_PREFIX ++#endif ++ ++#ifdef BCACHEFS_LOG_PREFIX ++ ++#define bch2_log_msg(_c, fmt) "bcachefs (%s): " fmt, ((_c)->name) ++#define bch2_fmt_dev(_ca, fmt) "bcachefs (%s): " fmt "\n", ((_ca)->name) ++#define bch2_fmt_dev_offset(_ca, _offset, fmt) "bcachefs (%s sector %llu): " fmt "\n", ((_ca)->name), (_offset) ++#define bch2_fmt_inum(_c, _inum, fmt) "bcachefs (%s inum %llu): " fmt "\n", ((_c)->name), (_inum) ++#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ ++ "bcachefs (%s inum %llu offset %llu): " fmt "\n", ((_c)->name), (_inum), (_offset) ++ ++#else ++ ++#define bch2_log_msg(_c, fmt) fmt ++#define bch2_fmt_dev(_ca, fmt) "%s: " fmt "\n", ((_ca)->name) ++#define bch2_fmt_dev_offset(_ca, _offset, fmt) "%s sector %llu: " fmt "\n", ((_ca)->name), (_offset) ++#define bch2_fmt_inum(_c, _inum, fmt) "inum %llu: " fmt "\n", (_inum) ++#define bch2_fmt_inum_offset(_c, _inum, _offset, fmt) \ ++ "inum %llu offset %llu: " fmt "\n", (_inum), (_offset) ++ ++#endif ++ ++#define bch2_fmt(_c, fmt) bch2_log_msg(_c, fmt "\n") ++ ++#define bch_info(c, fmt, ...) \ ++ printk(KERN_INFO bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_notice(c, fmt, ...) \ ++ printk(KERN_NOTICE bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_warn(c, fmt, ...) \ ++ printk(KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_warn_ratelimited(c, fmt, ...) \ ++ printk_ratelimited(KERN_WARNING bch2_fmt(c, fmt), ##__VA_ARGS__) ++ ++#define bch_err(c, fmt, ...) \ ++ printk(KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_err_dev(ca, fmt, ...) \ ++ printk(KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) ++#define bch_err_dev_offset(ca, _offset, fmt, ...) \ ++ printk(KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__) ++#define bch_err_inum(c, _inum, fmt, ...) \ ++ printk(KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__) ++#define bch_err_inum_offset(c, _inum, _offset, fmt, ...) \ ++ printk(KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__) ++ ++#define bch_err_ratelimited(c, fmt, ...) \ ++ printk_ratelimited(KERN_ERR bch2_fmt(c, fmt), ##__VA_ARGS__) ++#define bch_err_dev_ratelimited(ca, fmt, ...) \ ++ printk_ratelimited(KERN_ERR bch2_fmt_dev(ca, fmt), ##__VA_ARGS__) ++#define bch_err_dev_offset_ratelimited(ca, _offset, fmt, ...) \ ++ printk_ratelimited(KERN_ERR bch2_fmt_dev_offset(ca, _offset, fmt), ##__VA_ARGS__) ++#define bch_err_inum_ratelimited(c, _inum, fmt, ...) \ ++ printk_ratelimited(KERN_ERR bch2_fmt_inum(c, _inum, fmt), ##__VA_ARGS__) ++#define bch_err_inum_offset_ratelimited(c, _inum, _offset, fmt, ...) \ ++ printk_ratelimited(KERN_ERR bch2_fmt_inum_offset(c, _inum, _offset, fmt), ##__VA_ARGS__) ++ ++#define bch_err_fn(_c, _ret) \ ++do { \ ++ if (_ret && !bch2_err_matches(_ret, BCH_ERR_transaction_restart))\ ++ bch_err(_c, "%s(): error %s", __func__, bch2_err_str(_ret));\ ++} while (0) ++ ++#define bch_err_msg(_c, _ret, _msg, ...) \ ++do { \ ++ if (_ret && !bch2_err_matches(_ret, BCH_ERR_transaction_restart))\ ++ bch_err(_c, "%s(): error " _msg " %s", __func__, \ ++ ##__VA_ARGS__, bch2_err_str(_ret)); \ ++} while (0) ++ ++#define bch_verbose(c, fmt, ...) \ ++do { \ ++ if ((c)->opts.verbose) \ ++ bch_info(c, fmt, ##__VA_ARGS__); \ ++} while (0) ++ ++#define pr_verbose_init(opts, fmt, ...) \ ++do { \ ++ if (opt_get(opts, verbose)) \ ++ pr_info(fmt, ##__VA_ARGS__); \ ++} while (0) ++ ++/* Parameters that are useful for debugging, but should always be compiled in: */ ++#define BCH_DEBUG_PARAMS_ALWAYS() \ ++ BCH_DEBUG_PARAM(key_merging_disabled, \ ++ "Disables merging of extents") \ ++ BCH_DEBUG_PARAM(btree_gc_always_rewrite, \ ++ "Causes mark and sweep to compact and rewrite every " \ ++ "btree node it traverses") \ ++ BCH_DEBUG_PARAM(btree_gc_rewrite_disabled, \ ++ "Disables rewriting of btree nodes during mark and sweep")\ ++ BCH_DEBUG_PARAM(btree_shrinker_disabled, \ ++ "Disables the shrinker callback for the btree node cache")\ ++ BCH_DEBUG_PARAM(verify_btree_ondisk, \ ++ "Reread btree nodes at various points to verify the " \ ++ "mergesort in the read path against modifications " \ ++ "done in memory") \ ++ BCH_DEBUG_PARAM(verify_all_btree_replicas, \ ++ "When reading btree nodes, read all replicas and " \ ++ "compare them") \ ++ BCH_DEBUG_PARAM(backpointers_no_use_write_buffer, \ ++ "Don't use the write buffer for backpointers, enabling "\ ++ "extra runtime checks") ++ ++/* Parameters that should only be compiled in debug mode: */ ++#define BCH_DEBUG_PARAMS_DEBUG() \ ++ BCH_DEBUG_PARAM(expensive_debug_checks, \ ++ "Enables various runtime debugging checks that " \ ++ "significantly affect performance") \ ++ BCH_DEBUG_PARAM(debug_check_iterators, \ ++ "Enables extra verification for btree iterators") \ ++ BCH_DEBUG_PARAM(debug_check_btree_accounting, \ ++ "Verify btree accounting for keys within a node") \ ++ BCH_DEBUG_PARAM(journal_seq_verify, \ ++ "Store the journal sequence number in the version " \ ++ "number of every btree key, and verify that btree " \ ++ "update ordering is preserved during recovery") \ ++ BCH_DEBUG_PARAM(inject_invalid_keys, \ ++ "Store the journal sequence number in the version " \ ++ "number of every btree key, and verify that btree " \ ++ "update ordering is preserved during recovery") \ ++ BCH_DEBUG_PARAM(test_alloc_startup, \ ++ "Force allocator startup to use the slowpath where it" \ ++ "can't find enough free buckets without invalidating" \ ++ "cached data") \ ++ BCH_DEBUG_PARAM(force_reconstruct_read, \ ++ "Force reads to use the reconstruct path, when reading" \ ++ "from erasure coded extents") \ ++ BCH_DEBUG_PARAM(test_restart_gc, \ ++ "Test restarting mark and sweep gc when bucket gens change") ++ ++#define BCH_DEBUG_PARAMS_ALL() BCH_DEBUG_PARAMS_ALWAYS() BCH_DEBUG_PARAMS_DEBUG() ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALL() ++#else ++#define BCH_DEBUG_PARAMS() BCH_DEBUG_PARAMS_ALWAYS() ++#endif ++ ++#define BCH_DEBUG_PARAM(name, description) extern bool bch2_##name; ++BCH_DEBUG_PARAMS() ++#undef BCH_DEBUG_PARAM ++ ++#ifndef CONFIG_BCACHEFS_DEBUG ++#define BCH_DEBUG_PARAM(name, description) static const __maybe_unused bool bch2_##name; ++BCH_DEBUG_PARAMS_DEBUG() ++#undef BCH_DEBUG_PARAM ++#endif ++ ++#define BCH_TIME_STATS() \ ++ x(btree_node_mem_alloc) \ ++ x(btree_node_split) \ ++ x(btree_node_compact) \ ++ x(btree_node_merge) \ ++ x(btree_node_sort) \ ++ x(btree_node_read) \ ++ x(btree_interior_update_foreground) \ ++ x(btree_interior_update_total) \ ++ x(btree_gc) \ ++ x(data_write) \ ++ x(data_read) \ ++ x(data_promote) \ ++ x(journal_flush_write) \ ++ x(journal_noflush_write) \ ++ x(journal_flush_seq) \ ++ x(blocked_journal) \ ++ x(blocked_allocate) \ ++ x(blocked_allocate_open_bucket) \ ++ x(nocow_lock_contended) ++ ++enum bch_time_stats { ++#define x(name) BCH_TIME_##name, ++ BCH_TIME_STATS() ++#undef x ++ BCH_TIME_STAT_NR ++}; ++ ++#include "alloc_types.h" ++#include "btree_types.h" ++#include "btree_write_buffer_types.h" ++#include "buckets_types.h" ++#include "buckets_waiting_for_journal_types.h" ++#include "clock_types.h" ++#include "ec_types.h" ++#include "journal_types.h" ++#include "keylist_types.h" ++#include "quota_types.h" ++#include "rebalance_types.h" ++#include "replicas_types.h" ++#include "subvolume_types.h" ++#include "super_types.h" ++ ++/* Number of nodes btree coalesce will try to coalesce at once */ ++#define GC_MERGE_NODES 4U ++ ++/* Maximum number of nodes we might need to allocate atomically: */ ++#define BTREE_RESERVE_MAX (BTREE_MAX_DEPTH + (BTREE_MAX_DEPTH - 1)) ++ ++/* Size of the freelist we allocate btree nodes from: */ ++#define BTREE_NODE_RESERVE (BTREE_RESERVE_MAX * 4) ++ ++#define BTREE_NODE_OPEN_BUCKET_RESERVE (BTREE_RESERVE_MAX * BCH_REPLICAS_MAX) ++ ++struct btree; ++ ++enum gc_phase { ++ GC_PHASE_NOT_RUNNING, ++ GC_PHASE_START, ++ GC_PHASE_SB, ++ ++ GC_PHASE_BTREE_stripes, ++ GC_PHASE_BTREE_extents, ++ GC_PHASE_BTREE_inodes, ++ GC_PHASE_BTREE_dirents, ++ GC_PHASE_BTREE_xattrs, ++ GC_PHASE_BTREE_alloc, ++ GC_PHASE_BTREE_quotas, ++ GC_PHASE_BTREE_reflink, ++ GC_PHASE_BTREE_subvolumes, ++ GC_PHASE_BTREE_snapshots, ++ GC_PHASE_BTREE_lru, ++ GC_PHASE_BTREE_freespace, ++ GC_PHASE_BTREE_need_discard, ++ GC_PHASE_BTREE_backpointers, ++ GC_PHASE_BTREE_bucket_gens, ++ GC_PHASE_BTREE_snapshot_trees, ++ GC_PHASE_BTREE_deleted_inodes, ++ GC_PHASE_BTREE_logged_ops, ++ ++ GC_PHASE_PENDING_DELETE, ++}; ++ ++struct gc_pos { ++ enum gc_phase phase; ++ struct bpos pos; ++ unsigned level; ++}; ++ ++struct reflink_gc { ++ u64 offset; ++ u32 size; ++ u32 refcount; ++}; ++ ++typedef GENRADIX(struct reflink_gc) reflink_gc_table; ++ ++struct io_count { ++ u64 sectors[2][BCH_DATA_NR]; ++}; ++ ++struct bch_dev { ++ struct kobject kobj; ++ struct percpu_ref ref; ++ struct completion ref_completion; ++ struct percpu_ref io_ref; ++ struct completion io_ref_completion; ++ ++ struct bch_fs *fs; ++ ++ u8 dev_idx; ++ /* ++ * Cached version of this device's member info from superblock ++ * Committed by bch2_write_super() -> bch_fs_mi_update() ++ */ ++ struct bch_member_cpu mi; ++ __uuid_t uuid; ++ char name[BDEVNAME_SIZE]; ++ ++ struct bch_sb_handle disk_sb; ++ struct bch_sb *sb_read_scratch; ++ int sb_write_error; ++ dev_t dev; ++ atomic_t flush_seq; ++ ++ struct bch_devs_mask self; ++ ++ /* biosets used in cloned bios for writing multiple replicas */ ++ struct bio_set replica_set; ++ ++ /* ++ * Buckets: ++ * Per-bucket arrays are protected by c->mark_lock, bucket_lock and ++ * gc_lock, for device resize - holding any is sufficient for access: ++ * Or rcu_read_lock(), but only for ptr_stale(): ++ */ ++ struct bucket_array __rcu *buckets_gc; ++ struct bucket_gens __rcu *bucket_gens; ++ u8 *oldest_gen; ++ unsigned long *buckets_nouse; ++ struct rw_semaphore bucket_lock; ++ ++ struct bch_dev_usage *usage_base; ++ struct bch_dev_usage __percpu *usage[JOURNAL_BUF_NR]; ++ struct bch_dev_usage __percpu *usage_gc; ++ ++ /* Allocator: */ ++ u64 new_fs_bucket_idx; ++ u64 alloc_cursor; ++ ++ unsigned nr_open_buckets; ++ unsigned nr_btree_reserve; ++ ++ size_t inc_gen_needs_gc; ++ size_t inc_gen_really_needs_gc; ++ size_t buckets_waiting_on_journal; ++ ++ atomic64_t rebalance_work; ++ ++ struct journal_device journal; ++ u64 prev_journal_sector; ++ ++ struct work_struct io_error_work; ++ ++ /* The rest of this all shows up in sysfs */ ++ atomic64_t cur_latency[2]; ++ struct bch2_time_stats io_latency[2]; ++ ++#define CONGESTED_MAX 1024 ++ atomic_t congested; ++ u64 congested_last; ++ ++ struct io_count __percpu *io_done; ++}; ++ ++enum { ++ /* startup: */ ++ BCH_FS_STARTED, ++ BCH_FS_MAY_GO_RW, ++ BCH_FS_RW, ++ BCH_FS_WAS_RW, ++ ++ /* shutdown: */ ++ BCH_FS_STOPPING, ++ BCH_FS_EMERGENCY_RO, ++ BCH_FS_GOING_RO, ++ BCH_FS_WRITE_DISABLE_COMPLETE, ++ BCH_FS_CLEAN_SHUTDOWN, ++ ++ /* fsck passes: */ ++ BCH_FS_FSCK_DONE, ++ BCH_FS_INITIAL_GC_UNFIXED, /* kill when we enumerate fsck errors */ ++ BCH_FS_NEED_ANOTHER_GC, ++ ++ BCH_FS_HAVE_DELETED_SNAPSHOTS, ++ ++ /* errors: */ ++ BCH_FS_ERROR, ++ BCH_FS_TOPOLOGY_ERROR, ++ BCH_FS_ERRORS_FIXED, ++ BCH_FS_ERRORS_NOT_FIXED, ++}; ++ ++struct btree_debug { ++ unsigned id; ++}; ++ ++#define BCH_TRANSACTIONS_NR 128 ++ ++struct btree_transaction_stats { ++ struct bch2_time_stats lock_hold_times; ++ struct mutex lock; ++ unsigned nr_max_paths; ++ unsigned wb_updates_size; ++ unsigned max_mem; ++ char *max_paths_text; ++}; ++ ++struct bch_fs_pcpu { ++ u64 sectors_available; ++}; ++ ++struct journal_seq_blacklist_table { ++ size_t nr; ++ struct journal_seq_blacklist_table_entry { ++ u64 start; ++ u64 end; ++ bool dirty; ++ } entries[0]; ++}; ++ ++struct journal_keys { ++ struct journal_key { ++ u64 journal_seq; ++ u32 journal_offset; ++ enum btree_id btree_id:8; ++ unsigned level:8; ++ bool allocated; ++ bool overwritten; ++ struct bkey_i *k; ++ } *d; ++ /* ++ * Gap buffer: instead of all the empty space in the array being at the ++ * end of the buffer - from @nr to @size - the empty space is at @gap. ++ * This means that sequential insertions are O(n) instead of O(n^2). ++ */ ++ size_t gap; ++ size_t nr; ++ size_t size; ++}; ++ ++struct btree_trans_buf { ++ struct btree_trans *trans; ++}; ++ ++#define REPLICAS_DELTA_LIST_MAX (1U << 16) ++ ++#define BCACHEFS_ROOT_SUBVOL_INUM \ ++ ((subvol_inum) { BCACHEFS_ROOT_SUBVOL, BCACHEFS_ROOT_INO }) ++ ++#define BCH_WRITE_REFS() \ ++ x(trans) \ ++ x(write) \ ++ x(promote) \ ++ x(node_rewrite) \ ++ x(stripe_create) \ ++ x(stripe_delete) \ ++ x(reflink) \ ++ x(fallocate) \ ++ x(discard) \ ++ x(invalidate) \ ++ x(delete_dead_snapshots) \ ++ x(snapshot_delete_pagecache) \ ++ x(sysfs) ++ ++enum bch_write_ref { ++#define x(n) BCH_WRITE_REF_##n, ++ BCH_WRITE_REFS() ++#undef x ++ BCH_WRITE_REF_NR, ++}; ++ ++struct bch_fs { ++ struct closure cl; ++ ++ struct list_head list; ++ struct kobject kobj; ++ struct kobject counters_kobj; ++ struct kobject internal; ++ struct kobject opts_dir; ++ struct kobject time_stats; ++ unsigned long flags; ++ ++ int minor; ++ struct device *chardev; ++ struct super_block *vfs_sb; ++ dev_t dev; ++ char name[40]; ++ ++ /* ro/rw, add/remove/resize devices: */ ++ struct rw_semaphore state_lock; ++ ++ /* Counts outstanding writes, for clean transition to read-only */ ++#ifdef BCH_WRITE_REF_DEBUG ++ atomic_long_t writes[BCH_WRITE_REF_NR]; ++#else ++ struct percpu_ref writes; ++#endif ++ struct work_struct read_only_work; ++ ++ struct bch_dev __rcu *devs[BCH_SB_MEMBERS_MAX]; ++ ++ struct bch_replicas_cpu replicas; ++ struct bch_replicas_cpu replicas_gc; ++ struct mutex replicas_gc_lock; ++ mempool_t replicas_delta_pool; ++ ++ struct journal_entry_res btree_root_journal_res; ++ struct journal_entry_res replicas_journal_res; ++ struct journal_entry_res clock_journal_res; ++ struct journal_entry_res dev_usage_journal_res; ++ ++ struct bch_disk_groups_cpu __rcu *disk_groups; ++ ++ struct bch_opts opts; ++ ++ /* Updated by bch2_sb_update():*/ ++ struct { ++ __uuid_t uuid; ++ __uuid_t user_uuid; ++ ++ u16 version; ++ u16 version_min; ++ u16 version_upgrade_complete; ++ ++ u8 nr_devices; ++ u8 clean; ++ ++ u8 encryption_type; ++ ++ u64 time_base_lo; ++ u32 time_base_hi; ++ unsigned time_units_per_sec; ++ unsigned nsec_per_time_unit; ++ u64 features; ++ u64 compat; ++ } sb; ++ ++ ++ struct bch_sb_handle disk_sb; ++ ++ unsigned short block_bits; /* ilog2(block_size) */ ++ ++ u16 btree_foreground_merge_threshold; ++ ++ struct closure sb_write; ++ struct mutex sb_lock; ++ ++ /* snapshot.c: */ ++ struct snapshot_table __rcu *snapshots; ++ size_t snapshot_table_size; ++ struct mutex snapshot_table_lock; ++ struct rw_semaphore snapshot_create_lock; ++ ++ struct work_struct snapshot_delete_work; ++ struct work_struct snapshot_wait_for_pagecache_and_delete_work; ++ snapshot_id_list snapshots_unlinked; ++ struct mutex snapshots_unlinked_lock; ++ ++ /* BTREE CACHE */ ++ struct bio_set btree_bio; ++ struct workqueue_struct *io_complete_wq; ++ ++ struct btree_root btree_roots_known[BTREE_ID_NR]; ++ DARRAY(struct btree_root) btree_roots_extra; ++ struct mutex btree_root_lock; ++ ++ struct btree_cache btree_cache; ++ ++ /* ++ * Cache of allocated btree nodes - if we allocate a btree node and ++ * don't use it, if we free it that space can't be reused until going ++ * _all_ the way through the allocator (which exposes us to a livelock ++ * when allocating btree reserves fail halfway through) - instead, we ++ * can stick them here: ++ */ ++ struct btree_alloc btree_reserve_cache[BTREE_NODE_RESERVE * 2]; ++ unsigned btree_reserve_cache_nr; ++ struct mutex btree_reserve_cache_lock; ++ ++ mempool_t btree_interior_update_pool; ++ struct list_head btree_interior_update_list; ++ struct list_head btree_interior_updates_unwritten; ++ struct mutex btree_interior_update_lock; ++ struct closure_waitlist btree_interior_update_wait; ++ ++ struct workqueue_struct *btree_interior_update_worker; ++ struct work_struct btree_interior_update_work; ++ ++ struct list_head pending_node_rewrites; ++ struct mutex pending_node_rewrites_lock; ++ ++ /* btree_io.c: */ ++ spinlock_t btree_write_error_lock; ++ struct btree_write_stats { ++ atomic64_t nr; ++ atomic64_t bytes; ++ } btree_write_stats[BTREE_WRITE_TYPE_NR]; ++ ++ /* btree_iter.c: */ ++ struct seqmutex btree_trans_lock; ++ struct list_head btree_trans_list; ++ mempool_t btree_trans_pool; ++ mempool_t btree_trans_mem_pool; ++ struct btree_trans_buf __percpu *btree_trans_bufs; ++ ++ struct srcu_struct btree_trans_barrier; ++ bool btree_trans_barrier_initialized; ++ ++ struct btree_key_cache btree_key_cache; ++ unsigned btree_key_cache_btrees; ++ ++ struct btree_write_buffer btree_write_buffer; ++ ++ struct workqueue_struct *btree_update_wq; ++ struct workqueue_struct *btree_io_complete_wq; ++ /* copygc needs its own workqueue for index updates.. */ ++ struct workqueue_struct *copygc_wq; ++ /* ++ * Use a dedicated wq for write ref holder tasks. Required to avoid ++ * dependency problems with other wq tasks that can block on ref ++ * draining, such as read-only transition. ++ */ ++ struct workqueue_struct *write_ref_wq; ++ ++ /* ALLOCATION */ ++ struct bch_devs_mask rw_devs[BCH_DATA_NR]; ++ ++ u64 capacity; /* sectors */ ++ ++ /* ++ * When capacity _decreases_ (due to a disk being removed), we ++ * increment capacity_gen - this invalidates outstanding reservations ++ * and forces them to be revalidated ++ */ ++ u32 capacity_gen; ++ unsigned bucket_size_max; ++ ++ atomic64_t sectors_available; ++ struct mutex sectors_available_lock; ++ ++ struct bch_fs_pcpu __percpu *pcpu; ++ ++ struct percpu_rw_semaphore mark_lock; ++ ++ seqcount_t usage_lock; ++ struct bch_fs_usage *usage_base; ++ struct bch_fs_usage __percpu *usage[JOURNAL_BUF_NR]; ++ struct bch_fs_usage __percpu *usage_gc; ++ u64 __percpu *online_reserved; ++ ++ /* single element mempool: */ ++ struct mutex usage_scratch_lock; ++ struct bch_fs_usage_online *usage_scratch; ++ ++ struct io_clock io_clock[2]; ++ ++ /* JOURNAL SEQ BLACKLIST */ ++ struct journal_seq_blacklist_table * ++ journal_seq_blacklist_table; ++ struct work_struct journal_seq_blacklist_gc_work; ++ ++ /* ALLOCATOR */ ++ spinlock_t freelist_lock; ++ struct closure_waitlist freelist_wait; ++ u64 blocked_allocate; ++ u64 blocked_allocate_open_bucket; ++ ++ open_bucket_idx_t open_buckets_freelist; ++ open_bucket_idx_t open_buckets_nr_free; ++ struct closure_waitlist open_buckets_wait; ++ struct open_bucket open_buckets[OPEN_BUCKETS_COUNT]; ++ open_bucket_idx_t open_buckets_hash[OPEN_BUCKETS_COUNT]; ++ ++ open_bucket_idx_t open_buckets_partial[OPEN_BUCKETS_COUNT]; ++ open_bucket_idx_t open_buckets_partial_nr; ++ ++ struct write_point btree_write_point; ++ struct write_point rebalance_write_point; ++ ++ struct write_point write_points[WRITE_POINT_MAX]; ++ struct hlist_head write_points_hash[WRITE_POINT_HASH_NR]; ++ struct mutex write_points_hash_lock; ++ unsigned write_points_nr; ++ ++ struct buckets_waiting_for_journal buckets_waiting_for_journal; ++ struct work_struct discard_work; ++ struct work_struct invalidate_work; ++ ++ /* GARBAGE COLLECTION */ ++ struct task_struct *gc_thread; ++ atomic_t kick_gc; ++ unsigned long gc_count; ++ ++ enum btree_id gc_gens_btree; ++ struct bpos gc_gens_pos; ++ ++ /* ++ * Tracks GC's progress - everything in the range [ZERO_KEY..gc_cur_pos] ++ * has been marked by GC. ++ * ++ * gc_cur_phase is a superset of btree_ids (BTREE_ID_extents etc.) ++ * ++ * Protected by gc_pos_lock. Only written to by GC thread, so GC thread ++ * can read without a lock. ++ */ ++ seqcount_t gc_pos_lock; ++ struct gc_pos gc_pos; ++ ++ /* ++ * The allocation code needs gc_mark in struct bucket to be correct, but ++ * it's not while a gc is in progress. ++ */ ++ struct rw_semaphore gc_lock; ++ struct mutex gc_gens_lock; ++ ++ /* IO PATH */ ++ struct semaphore io_in_flight; ++ struct bio_set bio_read; ++ struct bio_set bio_read_split; ++ struct bio_set bio_write; ++ struct mutex bio_bounce_pages_lock; ++ mempool_t bio_bounce_pages; ++ struct bucket_nocow_lock_table ++ nocow_locks; ++ struct rhashtable promote_table; ++ ++ mempool_t compression_bounce[2]; ++ mempool_t compress_workspace[BCH_COMPRESSION_TYPE_NR]; ++ mempool_t decompress_workspace; ++ ZSTD_parameters zstd_params; ++ ++ struct crypto_shash *sha256; ++ struct crypto_sync_skcipher *chacha20; ++ struct crypto_shash *poly1305; ++ ++ atomic64_t key_version; ++ ++ mempool_t large_bkey_pool; ++ ++ /* MOVE.C */ ++ struct list_head moving_context_list; ++ struct mutex moving_context_lock; ++ ++ struct list_head data_progress_list; ++ struct mutex data_progress_lock; ++ ++ /* REBALANCE */ ++ struct bch_fs_rebalance rebalance; ++ ++ /* COPYGC */ ++ struct task_struct *copygc_thread; ++ struct write_point copygc_write_point; ++ s64 copygc_wait_at; ++ s64 copygc_wait; ++ bool copygc_running; ++ wait_queue_head_t copygc_running_wq; ++ ++ /* STRIPES: */ ++ GENRADIX(struct stripe) stripes; ++ GENRADIX(struct gc_stripe) gc_stripes; ++ ++ struct hlist_head ec_stripes_new[32]; ++ spinlock_t ec_stripes_new_lock; ++ ++ ec_stripes_heap ec_stripes_heap; ++ struct mutex ec_stripes_heap_lock; ++ ++ /* ERASURE CODING */ ++ struct list_head ec_stripe_head_list; ++ struct mutex ec_stripe_head_lock; ++ ++ struct list_head ec_stripe_new_list; ++ struct mutex ec_stripe_new_lock; ++ wait_queue_head_t ec_stripe_new_wait; ++ ++ struct work_struct ec_stripe_create_work; ++ u64 ec_stripe_hint; ++ ++ struct work_struct ec_stripe_delete_work; ++ ++ struct bio_set ec_bioset; ++ ++ /* REFLINK */ ++ reflink_gc_table reflink_gc_table; ++ size_t reflink_gc_nr; ++ ++ /* fs.c */ ++ struct list_head vfs_inodes_list; ++ struct mutex vfs_inodes_lock; ++ ++ /* VFS IO PATH - fs-io.c */ ++ struct bio_set writepage_bioset; ++ struct bio_set dio_write_bioset; ++ struct bio_set dio_read_bioset; ++ struct bio_set nocow_flush_bioset; ++ ++ /* ERRORS */ ++ struct list_head fsck_errors; ++ struct mutex fsck_error_lock; ++ bool fsck_alloc_err; ++ ++ /* QUOTAS */ ++ struct bch_memquota_type quotas[QTYP_NR]; ++ ++ /* RECOVERY */ ++ u64 journal_replay_seq_start; ++ u64 journal_replay_seq_end; ++ enum bch_recovery_pass curr_recovery_pass; ++ /* bitmap of explicitly enabled recovery passes: */ ++ u64 recovery_passes_explicit; ++ u64 recovery_passes_complete; ++ ++ /* DEBUG JUNK */ ++ struct dentry *fs_debug_dir; ++ struct dentry *btree_debug_dir; ++ struct btree_debug btree_debug[BTREE_ID_NR]; ++ struct btree *verify_data; ++ struct btree_node *verify_ondisk; ++ struct mutex verify_lock; ++ ++ u64 *unused_inode_hints; ++ unsigned inode_shard_bits; ++ ++ /* ++ * A btree node on disk could have too many bsets for an iterator to fit ++ * on the stack - have to dynamically allocate them ++ */ ++ mempool_t fill_iter; ++ ++ mempool_t btree_bounce_pool; ++ ++ struct journal journal; ++ GENRADIX(struct journal_replay *) journal_entries; ++ u64 journal_entries_base_seq; ++ struct journal_keys journal_keys; ++ struct list_head journal_iters; ++ ++ u64 last_bucket_seq_cleanup; ++ ++ u64 counters_on_mount[BCH_COUNTER_NR]; ++ u64 __percpu *counters; ++ ++ unsigned btree_gc_periodic:1; ++ unsigned copy_gc_enabled:1; ++ bool promote_whole_extents; ++ ++ struct bch2_time_stats times[BCH_TIME_STAT_NR]; ++ ++ struct btree_transaction_stats btree_transaction_stats[BCH_TRANSACTIONS_NR]; ++}; ++ ++extern struct wait_queue_head bch2_read_only_wait; ++ ++static inline void bch2_write_ref_get(struct bch_fs *c, enum bch_write_ref ref) ++{ ++#ifdef BCH_WRITE_REF_DEBUG ++ atomic_long_inc(&c->writes[ref]); ++#else ++ percpu_ref_get(&c->writes); ++#endif ++} ++ ++static inline bool bch2_write_ref_tryget(struct bch_fs *c, enum bch_write_ref ref) ++{ ++#ifdef BCH_WRITE_REF_DEBUG ++ return !test_bit(BCH_FS_GOING_RO, &c->flags) && ++ atomic_long_inc_not_zero(&c->writes[ref]); ++#else ++ return percpu_ref_tryget_live(&c->writes); ++#endif ++} ++ ++static inline void bch2_write_ref_put(struct bch_fs *c, enum bch_write_ref ref) ++{ ++#ifdef BCH_WRITE_REF_DEBUG ++ long v = atomic_long_dec_return(&c->writes[ref]); ++ ++ BUG_ON(v < 0); ++ if (v) ++ return; ++ for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) ++ if (atomic_long_read(&c->writes[i])) ++ return; ++ ++ set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); ++ wake_up(&bch2_read_only_wait); ++#else ++ percpu_ref_put(&c->writes); ++#endif ++} ++ ++static inline void bch2_set_ra_pages(struct bch_fs *c, unsigned ra_pages) ++{ ++#ifndef NO_BCACHEFS_FS ++ if (c->vfs_sb) ++ c->vfs_sb->s_bdi->ra_pages = ra_pages; ++#endif ++} ++ ++static inline unsigned bucket_bytes(const struct bch_dev *ca) ++{ ++ return ca->mi.bucket_size << 9; ++} ++ ++static inline unsigned block_bytes(const struct bch_fs *c) ++{ ++ return c->opts.block_size; ++} ++ ++static inline unsigned block_sectors(const struct bch_fs *c) ++{ ++ return c->opts.block_size >> 9; ++} ++ ++static inline size_t btree_sectors(const struct bch_fs *c) ++{ ++ return c->opts.btree_node_size >> 9; ++} ++ ++static inline bool btree_id_cached(const struct bch_fs *c, enum btree_id btree) ++{ ++ return c->btree_key_cache_btrees & (1U << btree); ++} ++ ++static inline struct timespec64 bch2_time_to_timespec(const struct bch_fs *c, s64 time) ++{ ++ struct timespec64 t; ++ s32 rem; ++ ++ time += c->sb.time_base_lo; ++ ++ t.tv_sec = div_s64_rem(time, c->sb.time_units_per_sec, &rem); ++ t.tv_nsec = rem * c->sb.nsec_per_time_unit; ++ return t; ++} ++ ++static inline s64 timespec_to_bch2_time(const struct bch_fs *c, struct timespec64 ts) ++{ ++ return (ts.tv_sec * c->sb.time_units_per_sec + ++ (int) ts.tv_nsec / c->sb.nsec_per_time_unit) - c->sb.time_base_lo; ++} ++ ++static inline s64 bch2_current_time(const struct bch_fs *c) ++{ ++ struct timespec64 now; ++ ++ ktime_get_coarse_real_ts64(&now); ++ return timespec_to_bch2_time(c, now); ++} ++ ++static inline bool bch2_dev_exists2(const struct bch_fs *c, unsigned dev) ++{ ++ return dev < c->sb.nr_devices && c->devs[dev]; ++} ++ ++#define BKEY_PADDED_ONSTACK(key, pad) \ ++ struct { struct bkey_i key; __u64 key ## _pad[pad]; } ++ ++#endif /* _BCACHEFS_H */ +diff --git a/fs/bcachefs/bcachefs_format.h b/fs/bcachefs/bcachefs_format.h +new file mode 100644 +index 000000000000..99749f3315fe +--- /dev/null ++++ b/fs/bcachefs/bcachefs_format.h +@@ -0,0 +1,2413 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FORMAT_H ++#define _BCACHEFS_FORMAT_H ++ ++/* ++ * bcachefs on disk data structures ++ * ++ * OVERVIEW: ++ * ++ * There are three main types of on disk data structures in bcachefs (this is ++ * reduced from 5 in bcache) ++ * ++ * - superblock ++ * - journal ++ * - btree ++ * ++ * The btree is the primary structure; most metadata exists as keys in the ++ * various btrees. There are only a small number of btrees, they're not ++ * sharded - we have one btree for extents, another for inodes, et cetera. ++ * ++ * SUPERBLOCK: ++ * ++ * The superblock contains the location of the journal, the list of devices in ++ * the filesystem, and in general any metadata we need in order to decide ++ * whether we can start a filesystem or prior to reading the journal/btree ++ * roots. ++ * ++ * The superblock is extensible, and most of the contents of the superblock are ++ * in variable length, type tagged fields; see struct bch_sb_field. ++ * ++ * Backup superblocks do not reside in a fixed location; also, superblocks do ++ * not have a fixed size. To locate backup superblocks we have struct ++ * bch_sb_layout; we store a copy of this inside every superblock, and also ++ * before the first superblock. ++ * ++ * JOURNAL: ++ * ++ * The journal primarily records btree updates in the order they occurred; ++ * journal replay consists of just iterating over all the keys in the open ++ * journal entries and re-inserting them into the btrees. ++ * ++ * The journal also contains entry types for the btree roots, and blacklisted ++ * journal sequence numbers (see journal_seq_blacklist.c). ++ * ++ * BTREE: ++ * ++ * bcachefs btrees are copy on write b+ trees, where nodes are big (typically ++ * 128k-256k) and log structured. We use struct btree_node for writing the first ++ * entry in a given node (offset 0), and struct btree_node_entry for all ++ * subsequent writes. ++ * ++ * After the header, btree node entries contain a list of keys in sorted order. ++ * Values are stored inline with the keys; since values are variable length (and ++ * keys effectively are variable length too, due to packing) we can't do random ++ * access without building up additional in memory tables in the btree node read ++ * path. ++ * ++ * BTREE KEYS (struct bkey): ++ * ++ * The various btrees share a common format for the key - so as to avoid ++ * switching in fastpath lookup/comparison code - but define their own ++ * structures for the key values. ++ * ++ * The size of a key/value pair is stored as a u8 in units of u64s, so the max ++ * size is just under 2k. The common part also contains a type tag for the ++ * value, and a format field indicating whether the key is packed or not (and ++ * also meant to allow adding new key fields in the future, if desired). ++ * ++ * bkeys, when stored within a btree node, may also be packed. In that case, the ++ * bkey_format in that node is used to unpack it. Packed bkeys mean that we can ++ * be generous with field sizes in the common part of the key format (64 bit ++ * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. ++ */ ++ ++#include ++#include ++#include ++#include ++#include "vstructs.h" ++ ++#ifdef __KERNEL__ ++typedef uuid_t __uuid_t; ++#endif ++ ++#define BITMASK(name, type, field, offset, end) \ ++static const __maybe_unused unsigned name##_OFFSET = offset; \ ++static const __maybe_unused unsigned name##_BITS = (end - offset); \ ++ \ ++static inline __u64 name(const type *k) \ ++{ \ ++ return (k->field >> offset) & ~(~0ULL << (end - offset)); \ ++} \ ++ \ ++static inline void SET_##name(type *k, __u64 v) \ ++{ \ ++ k->field &= ~(~(~0ULL << (end - offset)) << offset); \ ++ k->field |= (v & ~(~0ULL << (end - offset))) << offset; \ ++} ++ ++#define LE_BITMASK(_bits, name, type, field, offset, end) \ ++static const __maybe_unused unsigned name##_OFFSET = offset; \ ++static const __maybe_unused unsigned name##_BITS = (end - offset); \ ++static const __maybe_unused __u##_bits name##_MAX = (1ULL << (end - offset)) - 1;\ ++ \ ++static inline __u64 name(const type *k) \ ++{ \ ++ return (__le##_bits##_to_cpu(k->field) >> offset) & \ ++ ~(~0ULL << (end - offset)); \ ++} \ ++ \ ++static inline void SET_##name(type *k, __u64 v) \ ++{ \ ++ __u##_bits new = __le##_bits##_to_cpu(k->field); \ ++ \ ++ new &= ~(~(~0ULL << (end - offset)) << offset); \ ++ new |= (v & ~(~0ULL << (end - offset))) << offset; \ ++ k->field = __cpu_to_le##_bits(new); \ ++} ++ ++#define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) ++#define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) ++#define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) ++ ++struct bkey_format { ++ __u8 key_u64s; ++ __u8 nr_fields; ++ /* One unused slot for now: */ ++ __u8 bits_per_field[6]; ++ __le64 field_offset[6]; ++}; ++ ++/* Btree keys - all units are in sectors */ ++ ++struct bpos { ++ /* ++ * Word order matches machine byte order - btree code treats a bpos as a ++ * single large integer, for search/comparison purposes ++ * ++ * Note that wherever a bpos is embedded in another on disk data ++ * structure, it has to be byte swabbed when reading in metadata that ++ * wasn't written in native endian order: ++ */ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ __u32 snapshot; ++ __u64 offset; ++ __u64 inode; ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++ __u64 inode; ++ __u64 offset; /* Points to end of extent - sectors */ ++ __u32 snapshot; ++#else ++#error edit for your odd byteorder. ++#endif ++} __packed __aligned(4); ++ ++#define KEY_INODE_MAX ((__u64)~0ULL) ++#define KEY_OFFSET_MAX ((__u64)~0ULL) ++#define KEY_SNAPSHOT_MAX ((__u32)~0U) ++#define KEY_SIZE_MAX ((__u32)~0U) ++ ++static inline struct bpos SPOS(__u64 inode, __u64 offset, __u32 snapshot) ++{ ++ return (struct bpos) { ++ .inode = inode, ++ .offset = offset, ++ .snapshot = snapshot, ++ }; ++} ++ ++#define POS_MIN SPOS(0, 0, 0) ++#define POS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, 0) ++#define SPOS_MAX SPOS(KEY_INODE_MAX, KEY_OFFSET_MAX, KEY_SNAPSHOT_MAX) ++#define POS(_inode, _offset) SPOS(_inode, _offset, 0) ++ ++/* Empty placeholder struct, for container_of() */ ++struct bch_val { ++ __u64 __nothing[0]; ++}; ++ ++struct bversion { ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ __u64 lo; ++ __u32 hi; ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++ __u32 hi; ++ __u64 lo; ++#endif ++} __packed __aligned(4); ++ ++struct bkey { ++ /* Size of combined key and value, in u64s */ ++ __u8 u64s; ++ ++ /* Format of key (0 for format local to btree node) */ ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u8 format:7, ++ needs_whiteout:1; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u8 needs_whiteout:1, ++ format:7; ++#else ++#error edit for your odd byteorder. ++#endif ++ ++ /* Type of the value */ ++ __u8 type; ++ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ __u8 pad[1]; ++ ++ struct bversion version; ++ __u32 size; /* extent size, in sectors */ ++ struct bpos p; ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++ struct bpos p; ++ __u32 size; /* extent size, in sectors */ ++ struct bversion version; ++ ++ __u8 pad[1]; ++#endif ++} __packed __aligned(8); ++ ++struct bkey_packed { ++ __u64 _data[0]; ++ ++ /* Size of combined key and value, in u64s */ ++ __u8 u64s; ++ ++ /* Format of key (0 for format local to btree node) */ ++ ++ /* ++ * XXX: next incompat on disk format change, switch format and ++ * needs_whiteout - bkey_packed() will be cheaper if format is the high ++ * bits of the bitfield ++ */ ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u8 format:7, ++ needs_whiteout:1; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u8 needs_whiteout:1, ++ format:7; ++#endif ++ ++ /* Type of the value */ ++ __u8 type; ++ __u8 key_start[0]; ++ ++ /* ++ * We copy bkeys with struct assignment in various places, and while ++ * that shouldn't be done with packed bkeys we can't disallow it in C, ++ * and it's legal to cast a bkey to a bkey_packed - so padding it out ++ * to the same size as struct bkey should hopefully be safest. ++ */ ++ __u8 pad[sizeof(struct bkey) - 3]; ++} __packed __aligned(8); ++ ++typedef struct { ++ __le64 lo; ++ __le64 hi; ++} bch_le128; ++ ++#define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) ++#define BKEY_U64s_MAX U8_MAX ++#define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) ++ ++#define KEY_PACKED_BITS_START 24 ++ ++#define KEY_FORMAT_LOCAL_BTREE 0 ++#define KEY_FORMAT_CURRENT 1 ++ ++enum bch_bkey_fields { ++ BKEY_FIELD_INODE, ++ BKEY_FIELD_OFFSET, ++ BKEY_FIELD_SNAPSHOT, ++ BKEY_FIELD_SIZE, ++ BKEY_FIELD_VERSION_HI, ++ BKEY_FIELD_VERSION_LO, ++ BKEY_NR_FIELDS, ++}; ++ ++#define bkey_format_field(name, field) \ ++ [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) ++ ++#define BKEY_FORMAT_CURRENT \ ++((struct bkey_format) { \ ++ .key_u64s = BKEY_U64s, \ ++ .nr_fields = BKEY_NR_FIELDS, \ ++ .bits_per_field = { \ ++ bkey_format_field(INODE, p.inode), \ ++ bkey_format_field(OFFSET, p.offset), \ ++ bkey_format_field(SNAPSHOT, p.snapshot), \ ++ bkey_format_field(SIZE, size), \ ++ bkey_format_field(VERSION_HI, version.hi), \ ++ bkey_format_field(VERSION_LO, version.lo), \ ++ }, \ ++}) ++ ++/* bkey with inline value */ ++struct bkey_i { ++ __u64 _data[0]; ++ ++ struct bkey k; ++ struct bch_val v; ++}; ++ ++#define KEY(_inode, _offset, _size) \ ++((struct bkey) { \ ++ .u64s = BKEY_U64s, \ ++ .format = KEY_FORMAT_CURRENT, \ ++ .p = POS(_inode, _offset), \ ++ .size = _size, \ ++}) ++ ++static inline void bkey_init(struct bkey *k) ++{ ++ *k = KEY(0, 0, 0); ++} ++ ++#define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) ++ ++#define __BKEY_PADDED(key, pad) \ ++ struct bkey_i key; __u64 key ## _pad[pad] ++ ++/* ++ * - DELETED keys are used internally to mark keys that should be ignored but ++ * override keys in composition order. Their version number is ignored. ++ * ++ * - DISCARDED keys indicate that the data is all 0s because it has been ++ * discarded. DISCARDs may have a version; if the version is nonzero the key ++ * will be persistent, otherwise the key will be dropped whenever the btree ++ * node is rewritten (like DELETED keys). ++ * ++ * - ERROR: any read of the data returns a read error, as the data was lost due ++ * to a failing device. Like DISCARDED keys, they can be removed (overridden) ++ * by new writes or cluster-wide GC. Node repair can also overwrite them with ++ * the same or a more recent version number, but not with an older version ++ * number. ++ * ++ * - WHITEOUT: for hash table btrees ++ */ ++#define BCH_BKEY_TYPES() \ ++ x(deleted, 0) \ ++ x(whiteout, 1) \ ++ x(error, 2) \ ++ x(cookie, 3) \ ++ x(hash_whiteout, 4) \ ++ x(btree_ptr, 5) \ ++ x(extent, 6) \ ++ x(reservation, 7) \ ++ x(inode, 8) \ ++ x(inode_generation, 9) \ ++ x(dirent, 10) \ ++ x(xattr, 11) \ ++ x(alloc, 12) \ ++ x(quota, 13) \ ++ x(stripe, 14) \ ++ x(reflink_p, 15) \ ++ x(reflink_v, 16) \ ++ x(inline_data, 17) \ ++ x(btree_ptr_v2, 18) \ ++ x(indirect_inline_data, 19) \ ++ x(alloc_v2, 20) \ ++ x(subvolume, 21) \ ++ x(snapshot, 22) \ ++ x(inode_v2, 23) \ ++ x(alloc_v3, 24) \ ++ x(set, 25) \ ++ x(lru, 26) \ ++ x(alloc_v4, 27) \ ++ x(backpointer, 28) \ ++ x(inode_v3, 29) \ ++ x(bucket_gens, 30) \ ++ x(snapshot_tree, 31) \ ++ x(logged_op_truncate, 32) \ ++ x(logged_op_finsert, 33) ++ ++enum bch_bkey_type { ++#define x(name, nr) KEY_TYPE_##name = nr, ++ BCH_BKEY_TYPES() ++#undef x ++ KEY_TYPE_MAX, ++}; ++ ++struct bch_deleted { ++ struct bch_val v; ++}; ++ ++struct bch_whiteout { ++ struct bch_val v; ++}; ++ ++struct bch_error { ++ struct bch_val v; ++}; ++ ++struct bch_cookie { ++ struct bch_val v; ++ __le64 cookie; ++}; ++ ++struct bch_hash_whiteout { ++ struct bch_val v; ++}; ++ ++struct bch_set { ++ struct bch_val v; ++}; ++ ++/* Extents */ ++ ++/* ++ * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally ++ * preceded by checksum/compression information (bch_extent_crc32 or ++ * bch_extent_crc64). ++ * ++ * One major determining factor in the format of extents is how we handle and ++ * represent extents that have been partially overwritten and thus trimmed: ++ * ++ * If an extent is not checksummed or compressed, when the extent is trimmed we ++ * don't have to remember the extent we originally allocated and wrote: we can ++ * merely adjust ptr->offset to point to the start of the data that is currently ++ * live. The size field in struct bkey records the current (live) size of the ++ * extent, and is also used to mean "size of region on disk that we point to" in ++ * this case. ++ * ++ * Thus an extent that is not checksummed or compressed will consist only of a ++ * list of bch_extent_ptrs, with none of the fields in ++ * bch_extent_crc32/bch_extent_crc64. ++ * ++ * When an extent is checksummed or compressed, it's not possible to read only ++ * the data that is currently live: we have to read the entire extent that was ++ * originally written, and then return only the part of the extent that is ++ * currently live. ++ * ++ * Thus, in addition to the current size of the extent in struct bkey, we need ++ * to store the size of the originally allocated space - this is the ++ * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also, ++ * when the extent is trimmed, instead of modifying the offset field of the ++ * pointer, we keep a second smaller offset field - "offset into the original ++ * extent of the currently live region". ++ * ++ * The other major determining factor is replication and data migration: ++ * ++ * Each pointer may have its own bch_extent_crc32/64. When doing a replicated ++ * write, we will initially write all the replicas in the same format, with the ++ * same checksum type and compression format - however, when copygc runs later (or ++ * tiering/cache promotion, anything that moves data), it is not in general ++ * going to rewrite all the pointers at once - one of the replicas may be in a ++ * bucket on one device that has very little fragmentation while another lives ++ * in a bucket that has become heavily fragmented, and thus is being rewritten ++ * sooner than the rest. ++ * ++ * Thus it will only move a subset of the pointers (or in the case of ++ * tiering/cache promotion perhaps add a single pointer without dropping any ++ * current pointers), and if the extent has been partially overwritten it must ++ * write only the currently live portion (or copygc would not be able to reduce ++ * fragmentation!) - which necessitates a different bch_extent_crc format for ++ * the new pointer. ++ * ++ * But in the interests of space efficiency, we don't want to store one ++ * bch_extent_crc for each pointer if we don't have to. ++ * ++ * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and ++ * bch_extent_ptrs appended arbitrarily one after the other. We determine the ++ * type of a given entry with a scheme similar to utf8 (except we're encoding a ++ * type, not a size), encoding the type in the position of the first set bit: ++ * ++ * bch_extent_crc32 - 0b1 ++ * bch_extent_ptr - 0b10 ++ * bch_extent_crc64 - 0b100 ++ * ++ * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and ++ * bch_extent_crc64 is the least constrained). ++ * ++ * Then, each bch_extent_crc32/64 applies to the pointers that follow after it, ++ * until the next bch_extent_crc32/64. ++ * ++ * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer ++ * is neither checksummed nor compressed. ++ */ ++ ++/* 128 bits, sufficient for cryptographic MACs: */ ++struct bch_csum { ++ __le64 lo; ++ __le64 hi; ++} __packed __aligned(8); ++ ++#define BCH_EXTENT_ENTRY_TYPES() \ ++ x(ptr, 0) \ ++ x(crc32, 1) \ ++ x(crc64, 2) \ ++ x(crc128, 3) \ ++ x(stripe_ptr, 4) \ ++ x(rebalance, 5) ++#define BCH_EXTENT_ENTRY_MAX 6 ++ ++enum bch_extent_entry_type { ++#define x(f, n) BCH_EXTENT_ENTRY_##f = n, ++ BCH_EXTENT_ENTRY_TYPES() ++#undef x ++}; ++ ++/* Compressed/uncompressed size are stored biased by 1: */ ++struct bch_extent_crc32 { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u32 type:2, ++ _compressed_size:7, ++ _uncompressed_size:7, ++ offset:7, ++ _unused:1, ++ csum_type:4, ++ compression_type:4; ++ __u32 csum; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u32 csum; ++ __u32 compression_type:4, ++ csum_type:4, ++ _unused:1, ++ offset:7, ++ _uncompressed_size:7, ++ _compressed_size:7, ++ type:2; ++#endif ++} __packed __aligned(8); ++ ++#define CRC32_SIZE_MAX (1U << 7) ++#define CRC32_NONCE_MAX 0 ++ ++struct bch_extent_crc64 { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:3, ++ _compressed_size:9, ++ _uncompressed_size:9, ++ offset:9, ++ nonce:10, ++ csum_type:4, ++ compression_type:4, ++ csum_hi:16; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 csum_hi:16, ++ compression_type:4, ++ csum_type:4, ++ nonce:10, ++ offset:9, ++ _uncompressed_size:9, ++ _compressed_size:9, ++ type:3; ++#endif ++ __u64 csum_lo; ++} __packed __aligned(8); ++ ++#define CRC64_SIZE_MAX (1U << 9) ++#define CRC64_NONCE_MAX ((1U << 10) - 1) ++ ++struct bch_extent_crc128 { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:4, ++ _compressed_size:13, ++ _uncompressed_size:13, ++ offset:13, ++ nonce:13, ++ csum_type:4, ++ compression_type:4; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 compression_type:4, ++ csum_type:4, ++ nonce:13, ++ offset:13, ++ _uncompressed_size:13, ++ _compressed_size:13, ++ type:4; ++#endif ++ struct bch_csum csum; ++} __packed __aligned(8); ++ ++#define CRC128_SIZE_MAX (1U << 13) ++#define CRC128_NONCE_MAX ((1U << 13) - 1) ++ ++/* ++ * @reservation - pointer hasn't been written to, just reserved ++ */ ++struct bch_extent_ptr { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:1, ++ cached:1, ++ unused:1, ++ unwritten:1, ++ offset:44, /* 8 petabytes */ ++ dev:8, ++ gen:8; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 gen:8, ++ dev:8, ++ offset:44, ++ unwritten:1, ++ unused:1, ++ cached:1, ++ type:1; ++#endif ++} __packed __aligned(8); ++ ++struct bch_extent_stripe_ptr { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:5, ++ block:8, ++ redundancy:4, ++ idx:47; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 idx:47, ++ redundancy:4, ++ block:8, ++ type:5; ++#endif ++}; ++ ++struct bch_extent_reservation { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:6, ++ unused:22, ++ replicas:4, ++ generation:32; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 generation:32, ++ replicas:4, ++ unused:22, ++ type:6; ++#endif ++}; ++ ++struct bch_extent_rebalance { ++#if defined(__LITTLE_ENDIAN_BITFIELD) ++ __u64 type:7, ++ unused:33, ++ compression:8, ++ target:16; ++#elif defined (__BIG_ENDIAN_BITFIELD) ++ __u64 target:16, ++ compression:8, ++ unused:33, ++ type:7; ++#endif ++}; ++ ++union bch_extent_entry { ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || __BITS_PER_LONG == 64 ++ unsigned long type; ++#elif __BITS_PER_LONG == 32 ++ struct { ++ unsigned long pad; ++ unsigned long type; ++ }; ++#else ++#error edit for your odd byteorder. ++#endif ++ ++#define x(f, n) struct bch_extent_##f f; ++ BCH_EXTENT_ENTRY_TYPES() ++#undef x ++}; ++ ++struct bch_btree_ptr { ++ struct bch_val v; ++ ++ __u64 _data[0]; ++ struct bch_extent_ptr start[]; ++} __packed __aligned(8); ++ ++struct bch_btree_ptr_v2 { ++ struct bch_val v; ++ ++ __u64 mem_ptr; ++ __le64 seq; ++ __le16 sectors_written; ++ __le16 flags; ++ struct bpos min_key; ++ __u64 _data[0]; ++ struct bch_extent_ptr start[]; ++} __packed __aligned(8); ++ ++LE16_BITMASK(BTREE_PTR_RANGE_UPDATED, struct bch_btree_ptr_v2, flags, 0, 1); ++ ++struct bch_extent { ++ struct bch_val v; ++ ++ __u64 _data[0]; ++ union bch_extent_entry start[]; ++} __packed __aligned(8); ++ ++struct bch_reservation { ++ struct bch_val v; ++ ++ __le32 generation; ++ __u8 nr_replicas; ++ __u8 pad[3]; ++} __packed __aligned(8); ++ ++/* Maximum size (in u64s) a single pointer could be: */ ++#define BKEY_EXTENT_PTR_U64s_MAX\ ++ ((sizeof(struct bch_extent_crc128) + \ ++ sizeof(struct bch_extent_ptr)) / sizeof(__u64)) ++ ++/* Maximum possible size of an entire extent value: */ ++#define BKEY_EXTENT_VAL_U64s_MAX \ ++ (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1)) ++ ++/* * Maximum possible size of an entire extent, key + value: */ ++#define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX) ++ ++/* Btree pointers don't carry around checksums: */ ++#define BKEY_BTREE_PTR_VAL_U64s_MAX \ ++ ((sizeof(struct bch_btree_ptr_v2) + \ ++ sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(__u64)) ++#define BKEY_BTREE_PTR_U64s_MAX \ ++ (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX) ++ ++/* Inodes */ ++ ++#define BLOCKDEV_INODE_MAX 4096 ++ ++#define BCACHEFS_ROOT_INO 4096 ++ ++struct bch_inode { ++ struct bch_val v; ++ ++ __le64 bi_hash_seed; ++ __le32 bi_flags; ++ __le16 bi_mode; ++ __u8 fields[]; ++} __packed __aligned(8); ++ ++struct bch_inode_v2 { ++ struct bch_val v; ++ ++ __le64 bi_journal_seq; ++ __le64 bi_hash_seed; ++ __le64 bi_flags; ++ __le16 bi_mode; ++ __u8 fields[]; ++} __packed __aligned(8); ++ ++struct bch_inode_v3 { ++ struct bch_val v; ++ ++ __le64 bi_journal_seq; ++ __le64 bi_hash_seed; ++ __le64 bi_flags; ++ __le64 bi_sectors; ++ __le64 bi_size; ++ __le64 bi_version; ++ __u8 fields[]; ++} __packed __aligned(8); ++ ++#define INODEv3_FIELDS_START_INITIAL 6 ++#define INODEv3_FIELDS_START_CUR (offsetof(struct bch_inode_v3, fields) / sizeof(__u64)) ++ ++struct bch_inode_generation { ++ struct bch_val v; ++ ++ __le32 bi_generation; ++ __le32 pad; ++} __packed __aligned(8); ++ ++/* ++ * bi_subvol and bi_parent_subvol are only set for subvolume roots: ++ */ ++ ++#define BCH_INODE_FIELDS_v2() \ ++ x(bi_atime, 96) \ ++ x(bi_ctime, 96) \ ++ x(bi_mtime, 96) \ ++ x(bi_otime, 96) \ ++ x(bi_size, 64) \ ++ x(bi_sectors, 64) \ ++ x(bi_uid, 32) \ ++ x(bi_gid, 32) \ ++ x(bi_nlink, 32) \ ++ x(bi_generation, 32) \ ++ x(bi_dev, 32) \ ++ x(bi_data_checksum, 8) \ ++ x(bi_compression, 8) \ ++ x(bi_project, 32) \ ++ x(bi_background_compression, 8) \ ++ x(bi_data_replicas, 8) \ ++ x(bi_promote_target, 16) \ ++ x(bi_foreground_target, 16) \ ++ x(bi_background_target, 16) \ ++ x(bi_erasure_code, 16) \ ++ x(bi_fields_set, 16) \ ++ x(bi_dir, 64) \ ++ x(bi_dir_offset, 64) \ ++ x(bi_subvol, 32) \ ++ x(bi_parent_subvol, 32) ++ ++#define BCH_INODE_FIELDS_v3() \ ++ x(bi_atime, 96) \ ++ x(bi_ctime, 96) \ ++ x(bi_mtime, 96) \ ++ x(bi_otime, 96) \ ++ x(bi_uid, 32) \ ++ x(bi_gid, 32) \ ++ x(bi_nlink, 32) \ ++ x(bi_generation, 32) \ ++ x(bi_dev, 32) \ ++ x(bi_data_checksum, 8) \ ++ x(bi_compression, 8) \ ++ x(bi_project, 32) \ ++ x(bi_background_compression, 8) \ ++ x(bi_data_replicas, 8) \ ++ x(bi_promote_target, 16) \ ++ x(bi_foreground_target, 16) \ ++ x(bi_background_target, 16) \ ++ x(bi_erasure_code, 16) \ ++ x(bi_fields_set, 16) \ ++ x(bi_dir, 64) \ ++ x(bi_dir_offset, 64) \ ++ x(bi_subvol, 32) \ ++ x(bi_parent_subvol, 32) \ ++ x(bi_nocow, 8) ++ ++/* subset of BCH_INODE_FIELDS */ ++#define BCH_INODE_OPTS() \ ++ x(data_checksum, 8) \ ++ x(compression, 8) \ ++ x(project, 32) \ ++ x(background_compression, 8) \ ++ x(data_replicas, 8) \ ++ x(promote_target, 16) \ ++ x(foreground_target, 16) \ ++ x(background_target, 16) \ ++ x(erasure_code, 16) \ ++ x(nocow, 8) ++ ++enum inode_opt_id { ++#define x(name, ...) \ ++ Inode_opt_##name, ++ BCH_INODE_OPTS() ++#undef x ++ Inode_opt_nr, ++}; ++ ++enum { ++ /* ++ * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL ++ * flags) ++ */ ++ __BCH_INODE_SYNC = 0, ++ __BCH_INODE_IMMUTABLE = 1, ++ __BCH_INODE_APPEND = 2, ++ __BCH_INODE_NODUMP = 3, ++ __BCH_INODE_NOATIME = 4, ++ ++ __BCH_INODE_I_SIZE_DIRTY = 5, /* obsolete */ ++ __BCH_INODE_I_SECTORS_DIRTY = 6, /* obsolete */ ++ __BCH_INODE_UNLINKED = 7, ++ __BCH_INODE_BACKPTR_UNTRUSTED = 8, ++ ++ /* bits 20+ reserved for packed fields below: */ ++}; ++ ++#define BCH_INODE_SYNC (1 << __BCH_INODE_SYNC) ++#define BCH_INODE_IMMUTABLE (1 << __BCH_INODE_IMMUTABLE) ++#define BCH_INODE_APPEND (1 << __BCH_INODE_APPEND) ++#define BCH_INODE_NODUMP (1 << __BCH_INODE_NODUMP) ++#define BCH_INODE_NOATIME (1 << __BCH_INODE_NOATIME) ++#define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY) ++#define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY) ++#define BCH_INODE_UNLINKED (1 << __BCH_INODE_UNLINKED) ++#define BCH_INODE_BACKPTR_UNTRUSTED (1 << __BCH_INODE_BACKPTR_UNTRUSTED) ++ ++LE32_BITMASK(INODE_STR_HASH, struct bch_inode, bi_flags, 20, 24); ++LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, bi_flags, 24, 31); ++LE32_BITMASK(INODE_NEW_VARINT, struct bch_inode, bi_flags, 31, 32); ++ ++LE64_BITMASK(INODEv2_STR_HASH, struct bch_inode_v2, bi_flags, 20, 24); ++LE64_BITMASK(INODEv2_NR_FIELDS, struct bch_inode_v2, bi_flags, 24, 31); ++ ++LE64_BITMASK(INODEv3_STR_HASH, struct bch_inode_v3, bi_flags, 20, 24); ++LE64_BITMASK(INODEv3_NR_FIELDS, struct bch_inode_v3, bi_flags, 24, 31); ++ ++LE64_BITMASK(INODEv3_FIELDS_START, ++ struct bch_inode_v3, bi_flags, 31, 36); ++LE64_BITMASK(INODEv3_MODE, struct bch_inode_v3, bi_flags, 36, 52); ++ ++/* Dirents */ ++ ++/* ++ * Dirents (and xattrs) have to implement string lookups; since our b-tree ++ * doesn't support arbitrary length strings for the key, we instead index by a ++ * 64 bit hash (currently truncated sha1) of the string, stored in the offset ++ * field of the key - using linear probing to resolve hash collisions. This also ++ * provides us with the readdir cookie posix requires. ++ * ++ * Linear probing requires us to use whiteouts for deletions, in the event of a ++ * collision: ++ */ ++ ++struct bch_dirent { ++ struct bch_val v; ++ ++ /* Target inode number: */ ++ union { ++ __le64 d_inum; ++ struct { /* DT_SUBVOL */ ++ __le32 d_child_subvol; ++ __le32 d_parent_subvol; ++ }; ++ }; ++ ++ /* ++ * Copy of mode bits 12-15 from the target inode - so userspace can get ++ * the filetype without having to do a stat() ++ */ ++ __u8 d_type; ++ ++ __u8 d_name[]; ++} __packed __aligned(8); ++ ++#define DT_SUBVOL 16 ++#define BCH_DT_MAX 17 ++ ++#define BCH_NAME_MAX 512 ++ ++/* Xattrs */ ++ ++#define KEY_TYPE_XATTR_INDEX_USER 0 ++#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS 1 ++#define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT 2 ++#define KEY_TYPE_XATTR_INDEX_TRUSTED 3 ++#define KEY_TYPE_XATTR_INDEX_SECURITY 4 ++ ++struct bch_xattr { ++ struct bch_val v; ++ __u8 x_type; ++ __u8 x_name_len; ++ __le16 x_val_len; ++ __u8 x_name[]; ++} __packed __aligned(8); ++ ++/* Bucket/allocation information: */ ++ ++struct bch_alloc { ++ struct bch_val v; ++ __u8 fields; ++ __u8 gen; ++ __u8 data[]; ++} __packed __aligned(8); ++ ++#define BCH_ALLOC_FIELDS_V1() \ ++ x(read_time, 16) \ ++ x(write_time, 16) \ ++ x(data_type, 8) \ ++ x(dirty_sectors, 16) \ ++ x(cached_sectors, 16) \ ++ x(oldest_gen, 8) \ ++ x(stripe, 32) \ ++ x(stripe_redundancy, 8) ++ ++enum { ++#define x(name, _bits) BCH_ALLOC_FIELD_V1_##name, ++ BCH_ALLOC_FIELDS_V1() ++#undef x ++}; ++ ++struct bch_alloc_v2 { ++ struct bch_val v; ++ __u8 nr_fields; ++ __u8 gen; ++ __u8 oldest_gen; ++ __u8 data_type; ++ __u8 data[]; ++} __packed __aligned(8); ++ ++#define BCH_ALLOC_FIELDS_V2() \ ++ x(read_time, 64) \ ++ x(write_time, 64) \ ++ x(dirty_sectors, 32) \ ++ x(cached_sectors, 32) \ ++ x(stripe, 32) \ ++ x(stripe_redundancy, 8) ++ ++struct bch_alloc_v3 { ++ struct bch_val v; ++ __le64 journal_seq; ++ __le32 flags; ++ __u8 nr_fields; ++ __u8 gen; ++ __u8 oldest_gen; ++ __u8 data_type; ++ __u8 data[]; ++} __packed __aligned(8); ++ ++LE32_BITMASK(BCH_ALLOC_V3_NEED_DISCARD,struct bch_alloc_v3, flags, 0, 1) ++LE32_BITMASK(BCH_ALLOC_V3_NEED_INC_GEN,struct bch_alloc_v3, flags, 1, 2) ++ ++struct bch_alloc_v4 { ++ struct bch_val v; ++ __u64 journal_seq; ++ __u32 flags; ++ __u8 gen; ++ __u8 oldest_gen; ++ __u8 data_type; ++ __u8 stripe_redundancy; ++ __u32 dirty_sectors; ++ __u32 cached_sectors; ++ __u64 io_time[2]; ++ __u32 stripe; ++ __u32 nr_external_backpointers; ++ __u64 fragmentation_lru; ++} __packed __aligned(8); ++ ++#define BCH_ALLOC_V4_U64s_V0 6 ++#define BCH_ALLOC_V4_U64s (sizeof(struct bch_alloc_v4) / sizeof(__u64)) ++ ++BITMASK(BCH_ALLOC_V4_NEED_DISCARD, struct bch_alloc_v4, flags, 0, 1) ++BITMASK(BCH_ALLOC_V4_NEED_INC_GEN, struct bch_alloc_v4, flags, 1, 2) ++BITMASK(BCH_ALLOC_V4_BACKPOINTERS_START,struct bch_alloc_v4, flags, 2, 8) ++BITMASK(BCH_ALLOC_V4_NR_BACKPOINTERS, struct bch_alloc_v4, flags, 8, 14) ++ ++#define BCH_ALLOC_V4_NR_BACKPOINTERS_MAX 40 ++ ++struct bch_backpointer { ++ struct bch_val v; ++ __u8 btree_id; ++ __u8 level; ++ __u8 data_type; ++ __u64 bucket_offset:40; ++ __u32 bucket_len; ++ struct bpos pos; ++} __packed __aligned(8); ++ ++#define KEY_TYPE_BUCKET_GENS_BITS 8 ++#define KEY_TYPE_BUCKET_GENS_NR (1U << KEY_TYPE_BUCKET_GENS_BITS) ++#define KEY_TYPE_BUCKET_GENS_MASK (KEY_TYPE_BUCKET_GENS_NR - 1) ++ ++struct bch_bucket_gens { ++ struct bch_val v; ++ u8 gens[KEY_TYPE_BUCKET_GENS_NR]; ++} __packed __aligned(8); ++ ++/* Quotas: */ ++ ++enum quota_types { ++ QTYP_USR = 0, ++ QTYP_GRP = 1, ++ QTYP_PRJ = 2, ++ QTYP_NR = 3, ++}; ++ ++enum quota_counters { ++ Q_SPC = 0, ++ Q_INO = 1, ++ Q_COUNTERS = 2, ++}; ++ ++struct bch_quota_counter { ++ __le64 hardlimit; ++ __le64 softlimit; ++}; ++ ++struct bch_quota { ++ struct bch_val v; ++ struct bch_quota_counter c[Q_COUNTERS]; ++} __packed __aligned(8); ++ ++/* Erasure coding */ ++ ++struct bch_stripe { ++ struct bch_val v; ++ __le16 sectors; ++ __u8 algorithm; ++ __u8 nr_blocks; ++ __u8 nr_redundant; ++ ++ __u8 csum_granularity_bits; ++ __u8 csum_type; ++ __u8 pad; ++ ++ struct bch_extent_ptr ptrs[]; ++} __packed __aligned(8); ++ ++/* Reflink: */ ++ ++struct bch_reflink_p { ++ struct bch_val v; ++ __le64 idx; ++ /* ++ * A reflink pointer might point to an indirect extent which is then ++ * later split (by copygc or rebalance). If we only pointed to part of ++ * the original indirect extent, and then one of the fragments is ++ * outside the range we point to, we'd leak a refcount: so when creating ++ * reflink pointers, we need to store pad values to remember the full ++ * range we were taking a reference on. ++ */ ++ __le32 front_pad; ++ __le32 back_pad; ++} __packed __aligned(8); ++ ++struct bch_reflink_v { ++ struct bch_val v; ++ __le64 refcount; ++ union bch_extent_entry start[0]; ++ __u64 _data[]; ++} __packed __aligned(8); ++ ++struct bch_indirect_inline_data { ++ struct bch_val v; ++ __le64 refcount; ++ u8 data[]; ++}; ++ ++/* Inline data */ ++ ++struct bch_inline_data { ++ struct bch_val v; ++ u8 data[]; ++}; ++ ++/* Subvolumes: */ ++ ++#define SUBVOL_POS_MIN POS(0, 1) ++#define SUBVOL_POS_MAX POS(0, S32_MAX) ++#define BCACHEFS_ROOT_SUBVOL 1 ++ ++struct bch_subvolume { ++ struct bch_val v; ++ __le32 flags; ++ __le32 snapshot; ++ __le64 inode; ++ /* ++ * Snapshot subvolumes form a tree, separate from the snapshot nodes ++ * tree - if this subvolume is a snapshot, this is the ID of the ++ * subvolume it was created from: ++ */ ++ __le32 parent; ++ __le32 pad; ++ bch_le128 otime; ++}; ++ ++LE32_BITMASK(BCH_SUBVOLUME_RO, struct bch_subvolume, flags, 0, 1) ++/* ++ * We need to know whether a subvolume is a snapshot so we can know whether we ++ * can delete it (or whether it should just be rm -rf'd) ++ */ ++LE32_BITMASK(BCH_SUBVOLUME_SNAP, struct bch_subvolume, flags, 1, 2) ++LE32_BITMASK(BCH_SUBVOLUME_UNLINKED, struct bch_subvolume, flags, 2, 3) ++ ++/* Snapshots */ ++ ++struct bch_snapshot { ++ struct bch_val v; ++ __le32 flags; ++ __le32 parent; ++ __le32 children[2]; ++ __le32 subvol; ++ /* corresponds to a bch_snapshot_tree in BTREE_ID_snapshot_trees */ ++ __le32 tree; ++ __le32 depth; ++ __le32 skip[3]; ++}; ++ ++LE32_BITMASK(BCH_SNAPSHOT_DELETED, struct bch_snapshot, flags, 0, 1) ++ ++/* True if a subvolume points to this snapshot node: */ ++LE32_BITMASK(BCH_SNAPSHOT_SUBVOL, struct bch_snapshot, flags, 1, 2) ++ ++/* ++ * Snapshot trees: ++ * ++ * The snapshot_trees btree gives us persistent indentifier for each tree of ++ * bch_snapshot nodes, and allow us to record and easily find the root/master ++ * subvolume that other snapshots were created from: ++ */ ++struct bch_snapshot_tree { ++ struct bch_val v; ++ __le32 master_subvol; ++ __le32 root_snapshot; ++}; ++ ++/* LRU btree: */ ++ ++struct bch_lru { ++ struct bch_val v; ++ __le64 idx; ++} __packed __aligned(8); ++ ++#define LRU_ID_STRIPES (1U << 16) ++ ++/* Logged operations btree: */ ++ ++struct bch_logged_op_truncate { ++ struct bch_val v; ++ __le32 subvol; ++ __le32 pad; ++ __le64 inum; ++ __le64 new_i_size; ++}; ++ ++enum logged_op_finsert_state { ++ LOGGED_OP_FINSERT_start, ++ LOGGED_OP_FINSERT_shift_extents, ++ LOGGED_OP_FINSERT_finish, ++}; ++ ++struct bch_logged_op_finsert { ++ struct bch_val v; ++ __u8 state; ++ __u8 pad[3]; ++ __le32 subvol; ++ __le64 inum; ++ __le64 dst_offset; ++ __le64 src_offset; ++ __le64 pos; ++}; ++ ++/* Optional/variable size superblock sections: */ ++ ++struct bch_sb_field { ++ __u64 _data[0]; ++ __le32 u64s; ++ __le32 type; ++}; ++ ++#define BCH_SB_FIELDS() \ ++ x(journal, 0) \ ++ x(members_v1, 1) \ ++ x(crypt, 2) \ ++ x(replicas_v0, 3) \ ++ x(quota, 4) \ ++ x(disk_groups, 5) \ ++ x(clean, 6) \ ++ x(replicas, 7) \ ++ x(journal_seq_blacklist, 8) \ ++ x(journal_v2, 9) \ ++ x(counters, 10) \ ++ x(members_v2, 11) ++ ++enum bch_sb_field_type { ++#define x(f, nr) BCH_SB_FIELD_##f = nr, ++ BCH_SB_FIELDS() ++#undef x ++ BCH_SB_FIELD_NR ++}; ++ ++/* ++ * Most superblock fields are replicated in all device's superblocks - a few are ++ * not: ++ */ ++#define BCH_SINGLE_DEVICE_SB_FIELDS \ ++ ((1U << BCH_SB_FIELD_journal)| \ ++ (1U << BCH_SB_FIELD_journal_v2)) ++ ++/* BCH_SB_FIELD_journal: */ ++ ++struct bch_sb_field_journal { ++ struct bch_sb_field field; ++ __le64 buckets[]; ++}; ++ ++struct bch_sb_field_journal_v2 { ++ struct bch_sb_field field; ++ ++ struct bch_sb_field_journal_v2_entry { ++ __le64 start; ++ __le64 nr; ++ } d[]; ++}; ++ ++/* BCH_SB_FIELD_members_v1: */ ++ ++#define BCH_MIN_NR_NBUCKETS (1 << 6) ++ ++#define BCH_IOPS_MEASUREMENTS() \ ++ x(seqread, 0) \ ++ x(seqwrite, 1) \ ++ x(randread, 2) \ ++ x(randwrite, 3) ++ ++enum bch_iops_measurement { ++#define x(t, n) BCH_IOPS_##t = n, ++ BCH_IOPS_MEASUREMENTS() ++#undef x ++ BCH_IOPS_NR ++}; ++ ++struct bch_member { ++ __uuid_t uuid; ++ __le64 nbuckets; /* device size */ ++ __le16 first_bucket; /* index of first bucket used */ ++ __le16 bucket_size; /* sectors */ ++ __le32 pad; ++ __le64 last_mount; /* time_t */ ++ ++ __le64 flags; ++ __le32 iops[4]; ++}; ++ ++#define BCH_MEMBER_V1_BYTES 56 ++ ++LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags, 0, 4) ++/* 4-14 unused, was TIER, HAS_(META)DATA, REPLACEMENT */ ++LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags, 14, 15) ++LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags, 15, 20) ++LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags, 20, 28) ++LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags, 28, 30) ++LE64_BITMASK(BCH_MEMBER_FREESPACE_INITIALIZED, ++ struct bch_member, flags, 30, 31) ++ ++#if 0 ++LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); ++LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); ++#endif ++ ++#define BCH_MEMBER_STATES() \ ++ x(rw, 0) \ ++ x(ro, 1) \ ++ x(failed, 2) \ ++ x(spare, 3) ++ ++enum bch_member_state { ++#define x(t, n) BCH_MEMBER_STATE_##t = n, ++ BCH_MEMBER_STATES() ++#undef x ++ BCH_MEMBER_STATE_NR ++}; ++ ++struct bch_sb_field_members_v1 { ++ struct bch_sb_field field; ++ struct bch_member _members[]; //Members are now variable size ++}; ++ ++struct bch_sb_field_members_v2 { ++ struct bch_sb_field field; ++ __le16 member_bytes; //size of single member entry ++ u8 pad[6]; ++ struct bch_member _members[]; ++}; ++ ++/* BCH_SB_FIELD_crypt: */ ++ ++struct nonce { ++ __le32 d[4]; ++}; ++ ++struct bch_key { ++ __le64 key[4]; ++}; ++ ++#define BCH_KEY_MAGIC \ ++ (((__u64) 'b' << 0)|((__u64) 'c' << 8)| \ ++ ((__u64) 'h' << 16)|((__u64) '*' << 24)| \ ++ ((__u64) '*' << 32)|((__u64) 'k' << 40)| \ ++ ((__u64) 'e' << 48)|((__u64) 'y' << 56)) ++ ++struct bch_encrypted_key { ++ __le64 magic; ++ struct bch_key key; ++}; ++ ++/* ++ * If this field is present in the superblock, it stores an encryption key which ++ * is used encrypt all other data/metadata. The key will normally be encrypted ++ * with the key userspace provides, but if encryption has been turned off we'll ++ * just store the master key unencrypted in the superblock so we can access the ++ * previously encrypted data. ++ */ ++struct bch_sb_field_crypt { ++ struct bch_sb_field field; ++ ++ __le64 flags; ++ __le64 kdf_flags; ++ struct bch_encrypted_key key; ++}; ++ ++LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); ++ ++enum bch_kdf_types { ++ BCH_KDF_SCRYPT = 0, ++ BCH_KDF_NR = 1, ++}; ++ ++/* stored as base 2 log of scrypt params: */ ++LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); ++LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); ++LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); ++ ++/* BCH_SB_FIELD_replicas: */ ++ ++#define BCH_DATA_TYPES() \ ++ x(free, 0) \ ++ x(sb, 1) \ ++ x(journal, 2) \ ++ x(btree, 3) \ ++ x(user, 4) \ ++ x(cached, 5) \ ++ x(parity, 6) \ ++ x(stripe, 7) \ ++ x(need_gc_gens, 8) \ ++ x(need_discard, 9) ++ ++enum bch_data_type { ++#define x(t, n) BCH_DATA_##t, ++ BCH_DATA_TYPES() ++#undef x ++ BCH_DATA_NR ++}; ++ ++static inline bool data_type_is_empty(enum bch_data_type type) ++{ ++ switch (type) { ++ case BCH_DATA_free: ++ case BCH_DATA_need_gc_gens: ++ case BCH_DATA_need_discard: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++static inline bool data_type_is_hidden(enum bch_data_type type) ++{ ++ switch (type) { ++ case BCH_DATA_sb: ++ case BCH_DATA_journal: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++struct bch_replicas_entry_v0 { ++ __u8 data_type; ++ __u8 nr_devs; ++ __u8 devs[]; ++} __packed; ++ ++struct bch_sb_field_replicas_v0 { ++ struct bch_sb_field field; ++ struct bch_replicas_entry_v0 entries[]; ++} __packed __aligned(8); ++ ++struct bch_replicas_entry { ++ __u8 data_type; ++ __u8 nr_devs; ++ __u8 nr_required; ++ __u8 devs[]; ++} __packed; ++ ++#define replicas_entry_bytes(_i) \ ++ (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) ++ ++struct bch_sb_field_replicas { ++ struct bch_sb_field field; ++ struct bch_replicas_entry entries[]; ++} __packed __aligned(8); ++ ++/* BCH_SB_FIELD_quota: */ ++ ++struct bch_sb_quota_counter { ++ __le32 timelimit; ++ __le32 warnlimit; ++}; ++ ++struct bch_sb_quota_type { ++ __le64 flags; ++ struct bch_sb_quota_counter c[Q_COUNTERS]; ++}; ++ ++struct bch_sb_field_quota { ++ struct bch_sb_field field; ++ struct bch_sb_quota_type q[QTYP_NR]; ++} __packed __aligned(8); ++ ++/* BCH_SB_FIELD_disk_groups: */ ++ ++#define BCH_SB_LABEL_SIZE 32 ++ ++struct bch_disk_group { ++ __u8 label[BCH_SB_LABEL_SIZE]; ++ __le64 flags[2]; ++} __packed __aligned(8); ++ ++LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) ++LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) ++LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) ++ ++struct bch_sb_field_disk_groups { ++ struct bch_sb_field field; ++ struct bch_disk_group entries[]; ++} __packed __aligned(8); ++ ++/* BCH_SB_FIELD_counters */ ++ ++#define BCH_PERSISTENT_COUNTERS() \ ++ x(io_read, 0) \ ++ x(io_write, 1) \ ++ x(io_move, 2) \ ++ x(bucket_invalidate, 3) \ ++ x(bucket_discard, 4) \ ++ x(bucket_alloc, 5) \ ++ x(bucket_alloc_fail, 6) \ ++ x(btree_cache_scan, 7) \ ++ x(btree_cache_reap, 8) \ ++ x(btree_cache_cannibalize, 9) \ ++ x(btree_cache_cannibalize_lock, 10) \ ++ x(btree_cache_cannibalize_lock_fail, 11) \ ++ x(btree_cache_cannibalize_unlock, 12) \ ++ x(btree_node_write, 13) \ ++ x(btree_node_read, 14) \ ++ x(btree_node_compact, 15) \ ++ x(btree_node_merge, 16) \ ++ x(btree_node_split, 17) \ ++ x(btree_node_rewrite, 18) \ ++ x(btree_node_alloc, 19) \ ++ x(btree_node_free, 20) \ ++ x(btree_node_set_root, 21) \ ++ x(btree_path_relock_fail, 22) \ ++ x(btree_path_upgrade_fail, 23) \ ++ x(btree_reserve_get_fail, 24) \ ++ x(journal_entry_full, 25) \ ++ x(journal_full, 26) \ ++ x(journal_reclaim_finish, 27) \ ++ x(journal_reclaim_start, 28) \ ++ x(journal_write, 29) \ ++ x(read_promote, 30) \ ++ x(read_bounce, 31) \ ++ x(read_split, 33) \ ++ x(read_retry, 32) \ ++ x(read_reuse_race, 34) \ ++ x(move_extent_read, 35) \ ++ x(move_extent_write, 36) \ ++ x(move_extent_finish, 37) \ ++ x(move_extent_fail, 38) \ ++ x(move_extent_alloc_mem_fail, 39) \ ++ x(copygc, 40) \ ++ x(copygc_wait, 41) \ ++ x(gc_gens_end, 42) \ ++ x(gc_gens_start, 43) \ ++ x(trans_blocked_journal_reclaim, 44) \ ++ x(trans_restart_btree_node_reused, 45) \ ++ x(trans_restart_btree_node_split, 46) \ ++ x(trans_restart_fault_inject, 47) \ ++ x(trans_restart_iter_upgrade, 48) \ ++ x(trans_restart_journal_preres_get, 49) \ ++ x(trans_restart_journal_reclaim, 50) \ ++ x(trans_restart_journal_res_get, 51) \ ++ x(trans_restart_key_cache_key_realloced, 52) \ ++ x(trans_restart_key_cache_raced, 53) \ ++ x(trans_restart_mark_replicas, 54) \ ++ x(trans_restart_mem_realloced, 55) \ ++ x(trans_restart_memory_allocation_failure, 56) \ ++ x(trans_restart_relock, 57) \ ++ x(trans_restart_relock_after_fill, 58) \ ++ x(trans_restart_relock_key_cache_fill, 59) \ ++ x(trans_restart_relock_next_node, 60) \ ++ x(trans_restart_relock_parent_for_fill, 61) \ ++ x(trans_restart_relock_path, 62) \ ++ x(trans_restart_relock_path_intent, 63) \ ++ x(trans_restart_too_many_iters, 64) \ ++ x(trans_restart_traverse, 65) \ ++ x(trans_restart_upgrade, 66) \ ++ x(trans_restart_would_deadlock, 67) \ ++ x(trans_restart_would_deadlock_write, 68) \ ++ x(trans_restart_injected, 69) \ ++ x(trans_restart_key_cache_upgrade, 70) \ ++ x(trans_traverse_all, 71) \ ++ x(transaction_commit, 72) \ ++ x(write_super, 73) \ ++ x(trans_restart_would_deadlock_recursion_limit, 74) \ ++ x(trans_restart_write_buffer_flush, 75) \ ++ x(trans_restart_split_race, 76) ++ ++enum bch_persistent_counters { ++#define x(t, n, ...) BCH_COUNTER_##t, ++ BCH_PERSISTENT_COUNTERS() ++#undef x ++ BCH_COUNTER_NR ++}; ++ ++struct bch_sb_field_counters { ++ struct bch_sb_field field; ++ __le64 d[]; ++}; ++ ++/* ++ * On clean shutdown, store btree roots and current journal sequence number in ++ * the superblock: ++ */ ++struct jset_entry { ++ __le16 u64s; ++ __u8 btree_id; ++ __u8 level; ++ __u8 type; /* designates what this jset holds */ ++ __u8 pad[3]; ++ ++ struct bkey_i start[0]; ++ __u64 _data[]; ++}; ++ ++struct bch_sb_field_clean { ++ struct bch_sb_field field; ++ ++ __le32 flags; ++ __le16 _read_clock; /* no longer used */ ++ __le16 _write_clock; ++ __le64 journal_seq; ++ ++ struct jset_entry start[0]; ++ __u64 _data[]; ++}; ++ ++struct journal_seq_blacklist_entry { ++ __le64 start; ++ __le64 end; ++}; ++ ++struct bch_sb_field_journal_seq_blacklist { ++ struct bch_sb_field field; ++ ++ struct journal_seq_blacklist_entry start[0]; ++ __u64 _data[]; ++}; ++ ++/* Superblock: */ ++ ++/* ++ * New versioning scheme: ++ * One common version number for all on disk data structures - superblock, btree ++ * nodes, journal entries ++ */ ++#define BCH_VERSION_MAJOR(_v) ((__u16) ((_v) >> 10)) ++#define BCH_VERSION_MINOR(_v) ((__u16) ((_v) & ~(~0U << 10))) ++#define BCH_VERSION(_major, _minor) (((_major) << 10)|(_minor) << 0) ++ ++#define RECOVERY_PASS_ALL_FSCK (1ULL << 63) ++ ++#define BCH_METADATA_VERSIONS() \ ++ x(bkey_renumber, BCH_VERSION(0, 10), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(inode_btree_change, BCH_VERSION(0, 11), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(snapshot, BCH_VERSION(0, 12), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(inode_backpointers, BCH_VERSION(0, 13), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(btree_ptr_sectors_written, BCH_VERSION(0, 14), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(snapshot_2, BCH_VERSION(0, 15), \ ++ BIT_ULL(BCH_RECOVERY_PASS_fs_upgrade_for_subvolumes)| \ ++ BIT_ULL(BCH_RECOVERY_PASS_initialize_subvolumes)| \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(reflink_p_fix, BCH_VERSION(0, 16), \ ++ BIT_ULL(BCH_RECOVERY_PASS_fix_reflink_p)) \ ++ x(subvol_dirent, BCH_VERSION(0, 17), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(inode_v2, BCH_VERSION(0, 18), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(freespace, BCH_VERSION(0, 19), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(alloc_v4, BCH_VERSION(0, 20), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(new_data_types, BCH_VERSION(0, 21), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(backpointers, BCH_VERSION(0, 22), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(inode_v3, BCH_VERSION(0, 23), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(unwritten_extents, BCH_VERSION(0, 24), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(bucket_gens, BCH_VERSION(0, 25), \ ++ BIT_ULL(BCH_RECOVERY_PASS_bucket_gens_init)| \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(lru_v2, BCH_VERSION(0, 26), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(fragmentation_lru, BCH_VERSION(0, 27), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(no_bps_in_alloc_keys, BCH_VERSION(0, 28), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(snapshot_trees, BCH_VERSION(0, 29), \ ++ RECOVERY_PASS_ALL_FSCK) \ ++ x(major_minor, BCH_VERSION(1, 0), \ ++ 0) \ ++ x(snapshot_skiplists, BCH_VERSION(1, 1), \ ++ BIT_ULL(BCH_RECOVERY_PASS_check_snapshots)) \ ++ x(deleted_inodes, BCH_VERSION(1, 2), \ ++ BIT_ULL(BCH_RECOVERY_PASS_check_inodes)) ++ ++enum bcachefs_metadata_version { ++ bcachefs_metadata_version_min = 9, ++#define x(t, n, upgrade_passes) bcachefs_metadata_version_##t = n, ++ BCH_METADATA_VERSIONS() ++#undef x ++ bcachefs_metadata_version_max ++}; ++ ++static const __maybe_unused ++unsigned bcachefs_metadata_required_upgrade_below = bcachefs_metadata_version_major_minor; ++ ++#define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) ++ ++#define BCH_SB_SECTOR 8 ++#define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ ++ ++struct bch_sb_layout { ++ __uuid_t magic; /* bcachefs superblock UUID */ ++ __u8 layout_type; ++ __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ ++ __u8 nr_superblocks; ++ __u8 pad[5]; ++ __le64 sb_offset[61]; ++} __packed __aligned(8); ++ ++#define BCH_SB_LAYOUT_SECTOR 7 ++ ++/* ++ * @offset - sector where this sb was written ++ * @version - on disk format version ++ * @version_min - Oldest metadata version this filesystem contains; so we can ++ * safely drop compatibility code and refuse to mount filesystems ++ * we'd need it for ++ * @magic - identifies as a bcachefs superblock (BCHFS_MAGIC) ++ * @seq - incremented each time superblock is written ++ * @uuid - used for generating various magic numbers and identifying ++ * member devices, never changes ++ * @user_uuid - user visible UUID, may be changed ++ * @label - filesystem label ++ * @seq - identifies most recent superblock, incremented each time ++ * superblock is written ++ * @features - enabled incompatible features ++ */ ++struct bch_sb { ++ struct bch_csum csum; ++ __le16 version; ++ __le16 version_min; ++ __le16 pad[2]; ++ __uuid_t magic; ++ __uuid_t uuid; ++ __uuid_t user_uuid; ++ __u8 label[BCH_SB_LABEL_SIZE]; ++ __le64 offset; ++ __le64 seq; ++ ++ __le16 block_size; ++ __u8 dev_idx; ++ __u8 nr_devices; ++ __le32 u64s; ++ ++ __le64 time_base_lo; ++ __le32 time_base_hi; ++ __le32 time_precision; ++ ++ __le64 flags[8]; ++ __le64 features[2]; ++ __le64 compat[2]; ++ ++ struct bch_sb_layout layout; ++ ++ struct bch_sb_field start[0]; ++ __le64 _data[]; ++} __packed __aligned(8); ++ ++/* ++ * Flags: ++ * BCH_SB_INITALIZED - set on first mount ++ * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect ++ * behaviour of mount/recovery path: ++ * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits ++ * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 ++ * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides ++ * DATA/META_CSUM_TYPE. Also indicates encryption ++ * algorithm in use, if/when we get more than one ++ */ ++ ++LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); ++ ++LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); ++LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); ++LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); ++LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); ++ ++LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); ++ ++LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); ++LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); ++ ++LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); ++LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); ++ ++LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); ++LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); ++ ++LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); ++LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); ++LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); ++LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); ++ ++LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); ++LE64_BITMASK(BCH_SB_HAS_TOPOLOGY_ERRORS,struct bch_sb, flags[0], 61, 62); ++ ++LE64_BITMASK(BCH_SB_BIG_ENDIAN, struct bch_sb, flags[0], 62, 63); ++ ++LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); ++LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_LO,struct bch_sb, flags[1], 4, 8); ++LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); ++ ++LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); ++LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); ++ ++/* ++ * Max size of an extent that may require bouncing to read or write ++ * (checksummed, compressed): 64k ++ */ ++LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, ++ struct bch_sb, flags[1], 14, 20); ++ ++LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); ++LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); ++ ++LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); ++LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); ++LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); ++ ++LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO, ++ struct bch_sb, flags[2], 0, 4); ++LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); ++ ++LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); ++LE64_BITMASK(BCH_SB_METADATA_TARGET, struct bch_sb, flags[3], 16, 28); ++LE64_BITMASK(BCH_SB_SHARD_INUMS, struct bch_sb, flags[3], 28, 29); ++LE64_BITMASK(BCH_SB_INODES_USE_KEY_CACHE,struct bch_sb, flags[3], 29, 30); ++LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DELAY,struct bch_sb, flags[3], 30, 62); ++LE64_BITMASK(BCH_SB_JOURNAL_FLUSH_DISABLED,struct bch_sb, flags[3], 62, 63); ++LE64_BITMASK(BCH_SB_JOURNAL_RECLAIM_DELAY,struct bch_sb, flags[4], 0, 32); ++LE64_BITMASK(BCH_SB_JOURNAL_TRANSACTION_NAMES,struct bch_sb, flags[4], 32, 33); ++LE64_BITMASK(BCH_SB_NOCOW, struct bch_sb, flags[4], 33, 34); ++LE64_BITMASK(BCH_SB_WRITE_BUFFER_SIZE, struct bch_sb, flags[4], 34, 54); ++LE64_BITMASK(BCH_SB_VERSION_UPGRADE, struct bch_sb, flags[4], 54, 56); ++ ++LE64_BITMASK(BCH_SB_COMPRESSION_TYPE_HI,struct bch_sb, flags[4], 56, 60); ++LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI, ++ struct bch_sb, flags[4], 60, 64); ++ ++LE64_BITMASK(BCH_SB_VERSION_UPGRADE_COMPLETE, ++ struct bch_sb, flags[5], 0, 16); ++ ++static inline __u64 BCH_SB_COMPRESSION_TYPE(const struct bch_sb *sb) ++{ ++ return BCH_SB_COMPRESSION_TYPE_LO(sb) | (BCH_SB_COMPRESSION_TYPE_HI(sb) << 4); ++} ++ ++static inline void SET_BCH_SB_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) ++{ ++ SET_BCH_SB_COMPRESSION_TYPE_LO(sb, v); ++ SET_BCH_SB_COMPRESSION_TYPE_HI(sb, v >> 4); ++} ++ ++static inline __u64 BCH_SB_BACKGROUND_COMPRESSION_TYPE(const struct bch_sb *sb) ++{ ++ return BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb) | ++ (BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb) << 4); ++} ++ ++static inline void SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE(struct bch_sb *sb, __u64 v) ++{ ++ SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_LO(sb, v); ++ SET_BCH_SB_BACKGROUND_COMPRESSION_TYPE_HI(sb, v >> 4); ++} ++ ++/* ++ * Features: ++ * ++ * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist ++ * reflink: gates KEY_TYPE_reflink ++ * inline_data: gates KEY_TYPE_inline_data ++ * new_siphash: gates BCH_STR_HASH_siphash ++ * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE ++ */ ++#define BCH_SB_FEATURES() \ ++ x(lz4, 0) \ ++ x(gzip, 1) \ ++ x(zstd, 2) \ ++ x(atomic_nlink, 3) \ ++ x(ec, 4) \ ++ x(journal_seq_blacklist_v3, 5) \ ++ x(reflink, 6) \ ++ x(new_siphash, 7) \ ++ x(inline_data, 8) \ ++ x(new_extent_overwrite, 9) \ ++ x(incompressible, 10) \ ++ x(btree_ptr_v2, 11) \ ++ x(extents_above_btree_updates, 12) \ ++ x(btree_updates_journalled, 13) \ ++ x(reflink_inline_data, 14) \ ++ x(new_varint, 15) \ ++ x(journal_no_flush, 16) \ ++ x(alloc_v2, 17) \ ++ x(extents_across_btree_nodes, 18) ++ ++#define BCH_SB_FEATURES_ALWAYS \ ++ ((1ULL << BCH_FEATURE_new_extent_overwrite)| \ ++ (1ULL << BCH_FEATURE_extents_above_btree_updates)|\ ++ (1ULL << BCH_FEATURE_btree_updates_journalled)|\ ++ (1ULL << BCH_FEATURE_alloc_v2)|\ ++ (1ULL << BCH_FEATURE_extents_across_btree_nodes)) ++ ++#define BCH_SB_FEATURES_ALL \ ++ (BCH_SB_FEATURES_ALWAYS| \ ++ (1ULL << BCH_FEATURE_new_siphash)| \ ++ (1ULL << BCH_FEATURE_btree_ptr_v2)| \ ++ (1ULL << BCH_FEATURE_new_varint)| \ ++ (1ULL << BCH_FEATURE_journal_no_flush)) ++ ++enum bch_sb_feature { ++#define x(f, n) BCH_FEATURE_##f, ++ BCH_SB_FEATURES() ++#undef x ++ BCH_FEATURE_NR, ++}; ++ ++#define BCH_SB_COMPAT() \ ++ x(alloc_info, 0) \ ++ x(alloc_metadata, 1) \ ++ x(extents_above_btree_updates_done, 2) \ ++ x(bformat_overflow_done, 3) ++ ++enum bch_sb_compat { ++#define x(f, n) BCH_COMPAT_##f, ++ BCH_SB_COMPAT() ++#undef x ++ BCH_COMPAT_NR, ++}; ++ ++/* options: */ ++ ++#define BCH_VERSION_UPGRADE_OPTS() \ ++ x(compatible, 0) \ ++ x(incompatible, 1) \ ++ x(none, 2) ++ ++enum bch_version_upgrade_opts { ++#define x(t, n) BCH_VERSION_UPGRADE_##t = n, ++ BCH_VERSION_UPGRADE_OPTS() ++#undef x ++}; ++ ++#define BCH_REPLICAS_MAX 4U ++ ++#define BCH_BKEY_PTRS_MAX 16U ++ ++#define BCH_ERROR_ACTIONS() \ ++ x(continue, 0) \ ++ x(ro, 1) \ ++ x(panic, 2) ++ ++enum bch_error_actions { ++#define x(t, n) BCH_ON_ERROR_##t = n, ++ BCH_ERROR_ACTIONS() ++#undef x ++ BCH_ON_ERROR_NR ++}; ++ ++#define BCH_STR_HASH_TYPES() \ ++ x(crc32c, 0) \ ++ x(crc64, 1) \ ++ x(siphash_old, 2) \ ++ x(siphash, 3) ++ ++enum bch_str_hash_type { ++#define x(t, n) BCH_STR_HASH_##t = n, ++ BCH_STR_HASH_TYPES() ++#undef x ++ BCH_STR_HASH_NR ++}; ++ ++#define BCH_STR_HASH_OPTS() \ ++ x(crc32c, 0) \ ++ x(crc64, 1) \ ++ x(siphash, 2) ++ ++enum bch_str_hash_opts { ++#define x(t, n) BCH_STR_HASH_OPT_##t = n, ++ BCH_STR_HASH_OPTS() ++#undef x ++ BCH_STR_HASH_OPT_NR ++}; ++ ++#define BCH_CSUM_TYPES() \ ++ x(none, 0) \ ++ x(crc32c_nonzero, 1) \ ++ x(crc64_nonzero, 2) \ ++ x(chacha20_poly1305_80, 3) \ ++ x(chacha20_poly1305_128, 4) \ ++ x(crc32c, 5) \ ++ x(crc64, 6) \ ++ x(xxhash, 7) ++ ++enum bch_csum_type { ++#define x(t, n) BCH_CSUM_##t = n, ++ BCH_CSUM_TYPES() ++#undef x ++ BCH_CSUM_NR ++}; ++ ++static const __maybe_unused unsigned bch_crc_bytes[] = { ++ [BCH_CSUM_none] = 0, ++ [BCH_CSUM_crc32c_nonzero] = 4, ++ [BCH_CSUM_crc32c] = 4, ++ [BCH_CSUM_crc64_nonzero] = 8, ++ [BCH_CSUM_crc64] = 8, ++ [BCH_CSUM_xxhash] = 8, ++ [BCH_CSUM_chacha20_poly1305_80] = 10, ++ [BCH_CSUM_chacha20_poly1305_128] = 16, ++}; ++ ++static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) ++{ ++ switch (type) { ++ case BCH_CSUM_chacha20_poly1305_80: ++ case BCH_CSUM_chacha20_poly1305_128: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++#define BCH_CSUM_OPTS() \ ++ x(none, 0) \ ++ x(crc32c, 1) \ ++ x(crc64, 2) \ ++ x(xxhash, 3) ++ ++enum bch_csum_opts { ++#define x(t, n) BCH_CSUM_OPT_##t = n, ++ BCH_CSUM_OPTS() ++#undef x ++ BCH_CSUM_OPT_NR ++}; ++ ++#define BCH_COMPRESSION_TYPES() \ ++ x(none, 0) \ ++ x(lz4_old, 1) \ ++ x(gzip, 2) \ ++ x(lz4, 3) \ ++ x(zstd, 4) \ ++ x(incompressible, 5) ++ ++enum bch_compression_type { ++#define x(t, n) BCH_COMPRESSION_TYPE_##t = n, ++ BCH_COMPRESSION_TYPES() ++#undef x ++ BCH_COMPRESSION_TYPE_NR ++}; ++ ++#define BCH_COMPRESSION_OPTS() \ ++ x(none, 0) \ ++ x(lz4, 1) \ ++ x(gzip, 2) \ ++ x(zstd, 3) ++ ++enum bch_compression_opts { ++#define x(t, n) BCH_COMPRESSION_OPT_##t = n, ++ BCH_COMPRESSION_OPTS() ++#undef x ++ BCH_COMPRESSION_OPT_NR ++}; ++ ++/* ++ * Magic numbers ++ * ++ * The various other data structures have their own magic numbers, which are ++ * xored with the first part of the cache set's UUID ++ */ ++ ++#define BCACHE_MAGIC \ ++ UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ ++ 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) ++#define BCHFS_MAGIC \ ++ UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ ++ 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) ++ ++#define BCACHEFS_STATFS_MAGIC 0xca451a4e ++ ++#define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) ++#define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) ++ ++static inline __le64 __bch2_sb_magic(struct bch_sb *sb) ++{ ++ __le64 ret; ++ ++ memcpy(&ret, &sb->uuid, sizeof(ret)); ++ return ret; ++} ++ ++static inline __u64 __jset_magic(struct bch_sb *sb) ++{ ++ return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); ++} ++ ++static inline __u64 __bset_magic(struct bch_sb *sb) ++{ ++ return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); ++} ++ ++/* Journal */ ++ ++#define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) ++ ++#define BCH_JSET_ENTRY_TYPES() \ ++ x(btree_keys, 0) \ ++ x(btree_root, 1) \ ++ x(prio_ptrs, 2) \ ++ x(blacklist, 3) \ ++ x(blacklist_v2, 4) \ ++ x(usage, 5) \ ++ x(data_usage, 6) \ ++ x(clock, 7) \ ++ x(dev_usage, 8) \ ++ x(log, 9) \ ++ x(overwrite, 10) ++ ++enum { ++#define x(f, nr) BCH_JSET_ENTRY_##f = nr, ++ BCH_JSET_ENTRY_TYPES() ++#undef x ++ BCH_JSET_ENTRY_NR ++}; ++ ++/* ++ * Journal sequence numbers can be blacklisted: bsets record the max sequence ++ * number of all the journal entries they contain updates for, so that on ++ * recovery we can ignore those bsets that contain index updates newer that what ++ * made it into the journal. ++ * ++ * This means that we can't reuse that journal_seq - we have to skip it, and ++ * then record that we skipped it so that the next time we crash and recover we ++ * don't think there was a missing journal entry. ++ */ ++struct jset_entry_blacklist { ++ struct jset_entry entry; ++ __le64 seq; ++}; ++ ++struct jset_entry_blacklist_v2 { ++ struct jset_entry entry; ++ __le64 start; ++ __le64 end; ++}; ++ ++#define BCH_FS_USAGE_TYPES() \ ++ x(reserved, 0) \ ++ x(inodes, 1) \ ++ x(key_version, 2) ++ ++enum { ++#define x(f, nr) BCH_FS_USAGE_##f = nr, ++ BCH_FS_USAGE_TYPES() ++#undef x ++ BCH_FS_USAGE_NR ++}; ++ ++struct jset_entry_usage { ++ struct jset_entry entry; ++ __le64 v; ++} __packed; ++ ++struct jset_entry_data_usage { ++ struct jset_entry entry; ++ __le64 v; ++ struct bch_replicas_entry r; ++} __packed; ++ ++struct jset_entry_clock { ++ struct jset_entry entry; ++ __u8 rw; ++ __u8 pad[7]; ++ __le64 time; ++} __packed; ++ ++struct jset_entry_dev_usage_type { ++ __le64 buckets; ++ __le64 sectors; ++ __le64 fragmented; ++} __packed; ++ ++struct jset_entry_dev_usage { ++ struct jset_entry entry; ++ __le32 dev; ++ __u32 pad; ++ ++ __le64 buckets_ec; ++ __le64 _buckets_unavailable; /* No longer used */ ++ ++ struct jset_entry_dev_usage_type d[]; ++}; ++ ++static inline unsigned jset_entry_dev_usage_nr_types(struct jset_entry_dev_usage *u) ++{ ++ return (vstruct_bytes(&u->entry) - sizeof(struct jset_entry_dev_usage)) / ++ sizeof(struct jset_entry_dev_usage_type); ++} ++ ++struct jset_entry_log { ++ struct jset_entry entry; ++ u8 d[]; ++} __packed; ++ ++/* ++ * On disk format for a journal entry: ++ * seq is monotonically increasing; every journal entry has its own unique ++ * sequence number. ++ * ++ * last_seq is the oldest journal entry that still has keys the btree hasn't ++ * flushed to disk yet. ++ * ++ * version is for on disk format changes. ++ */ ++struct jset { ++ struct bch_csum csum; ++ ++ __le64 magic; ++ __le64 seq; ++ __le32 version; ++ __le32 flags; ++ ++ __le32 u64s; /* size of d[] in u64s */ ++ ++ __u8 encrypted_start[0]; ++ ++ __le16 _read_clock; /* no longer used */ ++ __le16 _write_clock; ++ ++ /* Sequence number of oldest dirty journal entry */ ++ __le64 last_seq; ++ ++ ++ struct jset_entry start[0]; ++ __u64 _data[]; ++} __packed __aligned(8); ++ ++LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); ++LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); ++LE32_BITMASK(JSET_NO_FLUSH, struct jset, flags, 5, 6); ++ ++#define BCH_JOURNAL_BUCKETS_MIN 8 ++ ++/* Btree: */ ++ ++enum btree_id_flags { ++ BTREE_ID_EXTENTS = BIT(0), ++ BTREE_ID_SNAPSHOTS = BIT(1), ++ BTREE_ID_DATA = BIT(2), ++}; ++ ++#define BCH_BTREE_IDS() \ ++ x(extents, 0, BTREE_ID_EXTENTS|BTREE_ID_SNAPSHOTS|BTREE_ID_DATA,\ ++ BIT_ULL(KEY_TYPE_whiteout)| \ ++ BIT_ULL(KEY_TYPE_error)| \ ++ BIT_ULL(KEY_TYPE_cookie)| \ ++ BIT_ULL(KEY_TYPE_extent)| \ ++ BIT_ULL(KEY_TYPE_reservation)| \ ++ BIT_ULL(KEY_TYPE_reflink_p)| \ ++ BIT_ULL(KEY_TYPE_inline_data)) \ ++ x(inodes, 1, BTREE_ID_SNAPSHOTS, \ ++ BIT_ULL(KEY_TYPE_whiteout)| \ ++ BIT_ULL(KEY_TYPE_inode)| \ ++ BIT_ULL(KEY_TYPE_inode_v2)| \ ++ BIT_ULL(KEY_TYPE_inode_v3)| \ ++ BIT_ULL(KEY_TYPE_inode_generation)) \ ++ x(dirents, 2, BTREE_ID_SNAPSHOTS, \ ++ BIT_ULL(KEY_TYPE_whiteout)| \ ++ BIT_ULL(KEY_TYPE_hash_whiteout)| \ ++ BIT_ULL(KEY_TYPE_dirent)) \ ++ x(xattrs, 3, BTREE_ID_SNAPSHOTS, \ ++ BIT_ULL(KEY_TYPE_whiteout)| \ ++ BIT_ULL(KEY_TYPE_cookie)| \ ++ BIT_ULL(KEY_TYPE_hash_whiteout)| \ ++ BIT_ULL(KEY_TYPE_xattr)) \ ++ x(alloc, 4, 0, \ ++ BIT_ULL(KEY_TYPE_alloc)| \ ++ BIT_ULL(KEY_TYPE_alloc_v2)| \ ++ BIT_ULL(KEY_TYPE_alloc_v3)| \ ++ BIT_ULL(KEY_TYPE_alloc_v4)) \ ++ x(quotas, 5, 0, \ ++ BIT_ULL(KEY_TYPE_quota)) \ ++ x(stripes, 6, 0, \ ++ BIT_ULL(KEY_TYPE_stripe)) \ ++ x(reflink, 7, BTREE_ID_EXTENTS|BTREE_ID_DATA, \ ++ BIT_ULL(KEY_TYPE_reflink_v)| \ ++ BIT_ULL(KEY_TYPE_indirect_inline_data)) \ ++ x(subvolumes, 8, 0, \ ++ BIT_ULL(KEY_TYPE_subvolume)) \ ++ x(snapshots, 9, 0, \ ++ BIT_ULL(KEY_TYPE_snapshot)) \ ++ x(lru, 10, 0, \ ++ BIT_ULL(KEY_TYPE_set)) \ ++ x(freespace, 11, BTREE_ID_EXTENTS, \ ++ BIT_ULL(KEY_TYPE_set)) \ ++ x(need_discard, 12, 0, \ ++ BIT_ULL(KEY_TYPE_set)) \ ++ x(backpointers, 13, 0, \ ++ BIT_ULL(KEY_TYPE_backpointer)) \ ++ x(bucket_gens, 14, 0, \ ++ BIT_ULL(KEY_TYPE_bucket_gens)) \ ++ x(snapshot_trees, 15, 0, \ ++ BIT_ULL(KEY_TYPE_snapshot_tree)) \ ++ x(deleted_inodes, 16, BTREE_ID_SNAPSHOTS, \ ++ BIT_ULL(KEY_TYPE_set)) \ ++ x(logged_ops, 17, 0, \ ++ BIT_ULL(KEY_TYPE_logged_op_truncate)| \ ++ BIT_ULL(KEY_TYPE_logged_op_finsert)) ++ ++enum btree_id { ++#define x(name, nr, ...) BTREE_ID_##name = nr, ++ BCH_BTREE_IDS() ++#undef x ++ BTREE_ID_NR ++}; ++ ++#define BTREE_MAX_DEPTH 4U ++ ++/* Btree nodes */ ++ ++/* ++ * Btree nodes ++ * ++ * On disk a btree node is a list/log of these; within each set the keys are ++ * sorted ++ */ ++struct bset { ++ __le64 seq; ++ ++ /* ++ * Highest journal entry this bset contains keys for. ++ * If on recovery we don't see that journal entry, this bset is ignored: ++ * this allows us to preserve the order of all index updates after a ++ * crash, since the journal records a total order of all index updates ++ * and anything that didn't make it to the journal doesn't get used. ++ */ ++ __le64 journal_seq; ++ ++ __le32 flags; ++ __le16 version; ++ __le16 u64s; /* count of d[] in u64s */ ++ ++ struct bkey_packed start[0]; ++ __u64 _data[]; ++} __packed __aligned(8); ++ ++LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); ++ ++LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); ++LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, ++ struct bset, flags, 5, 6); ++ ++/* Sector offset within the btree node: */ ++LE32_BITMASK(BSET_OFFSET, struct bset, flags, 16, 32); ++ ++struct btree_node { ++ struct bch_csum csum; ++ __le64 magic; ++ ++ /* this flags field is encrypted, unlike bset->flags: */ ++ __le64 flags; ++ ++ /* Closed interval: */ ++ struct bpos min_key; ++ struct bpos max_key; ++ struct bch_extent_ptr _ptr; /* not used anymore */ ++ struct bkey_format format; ++ ++ union { ++ struct bset keys; ++ struct { ++ __u8 pad[22]; ++ __le16 u64s; ++ __u64 _data[0]; ++ ++ }; ++ }; ++} __packed __aligned(8); ++ ++LE64_BITMASK(BTREE_NODE_ID_LO, struct btree_node, flags, 0, 4); ++LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); ++LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, ++ struct btree_node, flags, 8, 9); ++LE64_BITMASK(BTREE_NODE_ID_HI, struct btree_node, flags, 9, 25); ++/* 25-32 unused */ ++LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); ++ ++static inline __u64 BTREE_NODE_ID(struct btree_node *n) ++{ ++ return BTREE_NODE_ID_LO(n) | (BTREE_NODE_ID_HI(n) << 4); ++} ++ ++static inline void SET_BTREE_NODE_ID(struct btree_node *n, __u64 v) ++{ ++ SET_BTREE_NODE_ID_LO(n, v); ++ SET_BTREE_NODE_ID_HI(n, v >> 4); ++} ++ ++struct btree_node_entry { ++ struct bch_csum csum; ++ ++ union { ++ struct bset keys; ++ struct { ++ __u8 pad[22]; ++ __le16 u64s; ++ __u64 _data[0]; ++ }; ++ }; ++} __packed __aligned(8); ++ ++#endif /* _BCACHEFS_FORMAT_H */ +diff --git a/fs/bcachefs/bcachefs_ioctl.h b/fs/bcachefs/bcachefs_ioctl.h +new file mode 100644 +index 000000000000..f05881f7e113 +--- /dev/null ++++ b/fs/bcachefs/bcachefs_ioctl.h +@@ -0,0 +1,368 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_IOCTL_H ++#define _BCACHEFS_IOCTL_H ++ ++#include ++#include ++#include "bcachefs_format.h" ++ ++/* ++ * Flags common to multiple ioctls: ++ */ ++#define BCH_FORCE_IF_DATA_LOST (1 << 0) ++#define BCH_FORCE_IF_METADATA_LOST (1 << 1) ++#define BCH_FORCE_IF_DATA_DEGRADED (1 << 2) ++#define BCH_FORCE_IF_METADATA_DEGRADED (1 << 3) ++ ++#define BCH_FORCE_IF_LOST \ ++ (BCH_FORCE_IF_DATA_LOST| \ ++ BCH_FORCE_IF_METADATA_LOST) ++#define BCH_FORCE_IF_DEGRADED \ ++ (BCH_FORCE_IF_DATA_DEGRADED| \ ++ BCH_FORCE_IF_METADATA_DEGRADED) ++ ++/* ++ * If cleared, ioctl that refer to a device pass it as a pointer to a pathname ++ * (e.g. /dev/sda1); if set, the dev field is the device's index within the ++ * filesystem: ++ */ ++#define BCH_BY_INDEX (1 << 4) ++ ++/* ++ * For BCH_IOCTL_READ_SUPER: get superblock of a specific device, not filesystem ++ * wide superblock: ++ */ ++#define BCH_READ_DEV (1 << 5) ++ ++/* global control dev: */ ++ ++/* These are currently broken, and probably unnecessary: */ ++#if 0 ++#define BCH_IOCTL_ASSEMBLE _IOW(0xbc, 1, struct bch_ioctl_assemble) ++#define BCH_IOCTL_INCREMENTAL _IOW(0xbc, 2, struct bch_ioctl_incremental) ++ ++struct bch_ioctl_assemble { ++ __u32 flags; ++ __u32 nr_devs; ++ __u64 pad; ++ __u64 devs[]; ++}; ++ ++struct bch_ioctl_incremental { ++ __u32 flags; ++ __u64 pad; ++ __u64 dev; ++}; ++#endif ++ ++/* filesystem ioctls: */ ++ ++#define BCH_IOCTL_QUERY_UUID _IOR(0xbc, 1, struct bch_ioctl_query_uuid) ++ ++/* These only make sense when we also have incremental assembly */ ++#if 0 ++#define BCH_IOCTL_START _IOW(0xbc, 2, struct bch_ioctl_start) ++#define BCH_IOCTL_STOP _IO(0xbc, 3) ++#endif ++ ++#define BCH_IOCTL_DISK_ADD _IOW(0xbc, 4, struct bch_ioctl_disk) ++#define BCH_IOCTL_DISK_REMOVE _IOW(0xbc, 5, struct bch_ioctl_disk) ++#define BCH_IOCTL_DISK_ONLINE _IOW(0xbc, 6, struct bch_ioctl_disk) ++#define BCH_IOCTL_DISK_OFFLINE _IOW(0xbc, 7, struct bch_ioctl_disk) ++#define BCH_IOCTL_DISK_SET_STATE _IOW(0xbc, 8, struct bch_ioctl_disk_set_state) ++#define BCH_IOCTL_DATA _IOW(0xbc, 10, struct bch_ioctl_data) ++#define BCH_IOCTL_FS_USAGE _IOWR(0xbc, 11, struct bch_ioctl_fs_usage) ++#define BCH_IOCTL_DEV_USAGE _IOWR(0xbc, 11, struct bch_ioctl_dev_usage) ++#define BCH_IOCTL_READ_SUPER _IOW(0xbc, 12, struct bch_ioctl_read_super) ++#define BCH_IOCTL_DISK_GET_IDX _IOW(0xbc, 13, struct bch_ioctl_disk_get_idx) ++#define BCH_IOCTL_DISK_RESIZE _IOW(0xbc, 14, struct bch_ioctl_disk_resize) ++#define BCH_IOCTL_DISK_RESIZE_JOURNAL _IOW(0xbc,15, struct bch_ioctl_disk_resize_journal) ++ ++#define BCH_IOCTL_SUBVOLUME_CREATE _IOW(0xbc, 16, struct bch_ioctl_subvolume) ++#define BCH_IOCTL_SUBVOLUME_DESTROY _IOW(0xbc, 17, struct bch_ioctl_subvolume) ++ ++/* ioctl below act on a particular file, not the filesystem as a whole: */ ++ ++#define BCHFS_IOC_REINHERIT_ATTRS _IOR(0xbc, 64, const char __user *) ++ ++/* ++ * BCH_IOCTL_QUERY_UUID: get filesystem UUID ++ * ++ * Returns user visible UUID, not internal UUID (which may not ever be changed); ++ * the filesystem's sysfs directory may be found under /sys/fs/bcachefs with ++ * this UUID. ++ */ ++struct bch_ioctl_query_uuid { ++ __uuid_t uuid; ++}; ++ ++#if 0 ++struct bch_ioctl_start { ++ __u32 flags; ++ __u32 pad; ++}; ++#endif ++ ++/* ++ * BCH_IOCTL_DISK_ADD: add a new device to an existing filesystem ++ * ++ * The specified device must not be open or in use. On success, the new device ++ * will be an online member of the filesystem just like any other member. ++ * ++ * The device must first be prepared by userspace by formatting with a bcachefs ++ * superblock, which is only used for passing in superblock options/parameters ++ * for that device (in struct bch_member). The new device's superblock should ++ * not claim to be a member of any existing filesystem - UUIDs on it will be ++ * ignored. ++ */ ++ ++/* ++ * BCH_IOCTL_DISK_REMOVE: permanently remove a member device from a filesystem ++ * ++ * Any data present on @dev will be permanently deleted, and @dev will be ++ * removed from its slot in the filesystem's list of member devices. The device ++ * may be either offline or offline. ++ * ++ * Will fail removing @dev would leave us with insufficient read write devices ++ * or degraded/unavailable data, unless the approprate BCH_FORCE_IF_* flags are ++ * set. ++ */ ++ ++/* ++ * BCH_IOCTL_DISK_ONLINE: given a disk that is already a member of a filesystem ++ * but is not open (e.g. because we started in degraded mode), bring it online ++ * ++ * all existing data on @dev will be available once the device is online, ++ * exactly as if @dev was present when the filesystem was first mounted ++ */ ++ ++/* ++ * BCH_IOCTL_DISK_OFFLINE: offline a disk, causing the kernel to close that ++ * block device, without removing it from the filesystem (so it can be brought ++ * back online later) ++ * ++ * Data present on @dev will be unavailable while @dev is offline (unless ++ * replicated), but will still be intact and untouched if @dev is brought back ++ * online ++ * ++ * Will fail (similarly to BCH_IOCTL_DISK_SET_STATE) if offlining @dev would ++ * leave us with insufficient read write devices or degraded/unavailable data, ++ * unless the approprate BCH_FORCE_IF_* flags are set. ++ */ ++ ++struct bch_ioctl_disk { ++ __u32 flags; ++ __u32 pad; ++ __u64 dev; ++}; ++ ++/* ++ * BCH_IOCTL_DISK_SET_STATE: modify state of a member device of a filesystem ++ * ++ * @new_state - one of the bch_member_state states (rw, ro, failed, ++ * spare) ++ * ++ * Will refuse to change member state if we would then have insufficient devices ++ * to write to, or if it would result in degraded data (when @new_state is ++ * failed or spare) unless the appropriate BCH_FORCE_IF_* flags are set. ++ */ ++struct bch_ioctl_disk_set_state { ++ __u32 flags; ++ __u8 new_state; ++ __u8 pad[3]; ++ __u64 dev; ++}; ++ ++enum bch_data_ops { ++ BCH_DATA_OP_SCRUB = 0, ++ BCH_DATA_OP_REREPLICATE = 1, ++ BCH_DATA_OP_MIGRATE = 2, ++ BCH_DATA_OP_REWRITE_OLD_NODES = 3, ++ BCH_DATA_OP_NR = 4, ++}; ++ ++/* ++ * BCH_IOCTL_DATA: operations that walk and manipulate filesystem data (e.g. ++ * scrub, rereplicate, migrate). ++ * ++ * This ioctl kicks off a job in the background, and returns a file descriptor. ++ * Reading from the file descriptor returns a struct bch_ioctl_data_event, ++ * indicating current progress, and closing the file descriptor will stop the ++ * job. The file descriptor is O_CLOEXEC. ++ */ ++struct bch_ioctl_data { ++ __u16 op; ++ __u8 start_btree; ++ __u8 end_btree; ++ __u32 flags; ++ ++ struct bpos start_pos; ++ struct bpos end_pos; ++ ++ union { ++ struct { ++ __u32 dev; ++ __u32 pad; ++ } migrate; ++ struct { ++ __u64 pad[8]; ++ }; ++ }; ++} __packed __aligned(8); ++ ++enum bch_data_event { ++ BCH_DATA_EVENT_PROGRESS = 0, ++ /* XXX: add an event for reporting errors */ ++ BCH_DATA_EVENT_NR = 1, ++}; ++ ++struct bch_ioctl_data_progress { ++ __u8 data_type; ++ __u8 btree_id; ++ __u8 pad[2]; ++ struct bpos pos; ++ ++ __u64 sectors_done; ++ __u64 sectors_total; ++} __packed __aligned(8); ++ ++struct bch_ioctl_data_event { ++ __u8 type; ++ __u8 pad[7]; ++ union { ++ struct bch_ioctl_data_progress p; ++ __u64 pad2[15]; ++ }; ++} __packed __aligned(8); ++ ++struct bch_replicas_usage { ++ __u64 sectors; ++ struct bch_replicas_entry r; ++} __packed; ++ ++static inline struct bch_replicas_usage * ++replicas_usage_next(struct bch_replicas_usage *u) ++{ ++ return (void *) u + replicas_entry_bytes(&u->r) + 8; ++} ++ ++/* ++ * BCH_IOCTL_FS_USAGE: query filesystem disk space usage ++ * ++ * Returns disk space usage broken out by data type, number of replicas, and ++ * by component device ++ * ++ * @replica_entries_bytes - size, in bytes, allocated for replica usage entries ++ * ++ * On success, @replica_entries_bytes will be changed to indicate the number of ++ * bytes actually used. ++ * ++ * Returns -ERANGE if @replica_entries_bytes was too small ++ */ ++struct bch_ioctl_fs_usage { ++ __u64 capacity; ++ __u64 used; ++ __u64 online_reserved; ++ __u64 persistent_reserved[BCH_REPLICAS_MAX]; ++ ++ __u32 replica_entries_bytes; ++ __u32 pad; ++ ++ struct bch_replicas_usage replicas[0]; ++}; ++ ++/* ++ * BCH_IOCTL_DEV_USAGE: query device disk space usage ++ * ++ * Returns disk space usage broken out by data type - both by buckets and ++ * sectors. ++ */ ++struct bch_ioctl_dev_usage { ++ __u64 dev; ++ __u32 flags; ++ __u8 state; ++ __u8 pad[7]; ++ ++ __u32 bucket_size; ++ __u64 nr_buckets; ++ ++ __u64 buckets_ec; ++ ++ struct bch_ioctl_dev_usage_type { ++ __u64 buckets; ++ __u64 sectors; ++ __u64 fragmented; ++ } d[BCH_DATA_NR]; ++}; ++ ++/* ++ * BCH_IOCTL_READ_SUPER: read filesystem superblock ++ * ++ * Equivalent to reading the superblock directly from the block device, except ++ * avoids racing with the kernel writing the superblock or having to figure out ++ * which block device to read ++ * ++ * @sb - buffer to read into ++ * @size - size of userspace allocated buffer ++ * @dev - device to read superblock for, if BCH_READ_DEV flag is ++ * specified ++ * ++ * Returns -ERANGE if buffer provided is too small ++ */ ++struct bch_ioctl_read_super { ++ __u32 flags; ++ __u32 pad; ++ __u64 dev; ++ __u64 size; ++ __u64 sb; ++}; ++ ++/* ++ * BCH_IOCTL_DISK_GET_IDX: give a path to a block device, query filesystem to ++ * determine if disk is a (online) member - if so, returns device's index ++ * ++ * Returns -ENOENT if not found ++ */ ++struct bch_ioctl_disk_get_idx { ++ __u64 dev; ++}; ++ ++/* ++ * BCH_IOCTL_DISK_RESIZE: resize filesystem on a device ++ * ++ * @dev - member to resize ++ * @nbuckets - new number of buckets ++ */ ++struct bch_ioctl_disk_resize { ++ __u32 flags; ++ __u32 pad; ++ __u64 dev; ++ __u64 nbuckets; ++}; ++ ++/* ++ * BCH_IOCTL_DISK_RESIZE_JOURNAL: resize journal on a device ++ * ++ * @dev - member to resize ++ * @nbuckets - new number of buckets ++ */ ++struct bch_ioctl_disk_resize_journal { ++ __u32 flags; ++ __u32 pad; ++ __u64 dev; ++ __u64 nbuckets; ++}; ++ ++struct bch_ioctl_subvolume { ++ __u32 flags; ++ __u32 dirfd; ++ __u16 mode; ++ __u16 pad[3]; ++ __u64 dst_ptr; ++ __u64 src_ptr; ++}; ++ ++#define BCH_SUBVOL_SNAPSHOT_CREATE (1U << 0) ++#define BCH_SUBVOL_SNAPSHOT_RO (1U << 1) ++ ++#endif /* _BCACHEFS_IOCTL_H */ +diff --git a/fs/bcachefs/bkey.c b/fs/bcachefs/bkey.c +new file mode 100644 +index 000000000000..abdb05507d16 +--- /dev/null ++++ b/fs/bcachefs/bkey.c +@@ -0,0 +1,1120 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey.h" ++#include "bkey_cmp.h" ++#include "bkey_methods.h" ++#include "bset.h" ++#include "util.h" ++ ++const struct bkey_format bch2_bkey_format_current = BKEY_FORMAT_CURRENT; ++ ++void bch2_bkey_packed_to_binary_text(struct printbuf *out, ++ const struct bkey_format *f, ++ const struct bkey_packed *k) ++{ ++ const u64 *p = high_word(f, k); ++ unsigned word_bits = 64 - high_bit_offset; ++ unsigned nr_key_bits = bkey_format_key_bits(f) + high_bit_offset; ++ u64 v = *p & (~0ULL >> high_bit_offset); ++ ++ if (!nr_key_bits) { ++ prt_str(out, "(empty)"); ++ return; ++ } ++ ++ while (1) { ++ unsigned next_key_bits = nr_key_bits; ++ ++ if (nr_key_bits < 64) { ++ v >>= 64 - nr_key_bits; ++ next_key_bits = 0; ++ } else { ++ next_key_bits -= 64; ++ } ++ ++ bch2_prt_u64_binary(out, v, min(word_bits, nr_key_bits)); ++ ++ if (!next_key_bits) ++ break; ++ ++ prt_char(out, ' '); ++ ++ p = next_word(p); ++ v = *p; ++ word_bits = 64; ++ nr_key_bits = next_key_bits; ++ } ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++static void bch2_bkey_pack_verify(const struct bkey_packed *packed, ++ const struct bkey *unpacked, ++ const struct bkey_format *format) ++{ ++ struct bkey tmp; ++ ++ BUG_ON(bkeyp_val_u64s(format, packed) != ++ bkey_val_u64s(unpacked)); ++ ++ BUG_ON(packed->u64s < bkeyp_key_u64s(format, packed)); ++ ++ tmp = __bch2_bkey_unpack_key(format, packed); ++ ++ if (memcmp(&tmp, unpacked, sizeof(struct bkey))) { ++ struct printbuf buf = PRINTBUF; ++ ++ prt_printf(&buf, "keys differ: format u64s %u fields %u %u %u %u %u\n", ++ format->key_u64s, ++ format->bits_per_field[0], ++ format->bits_per_field[1], ++ format->bits_per_field[2], ++ format->bits_per_field[3], ++ format->bits_per_field[4]); ++ ++ prt_printf(&buf, "compiled unpack: "); ++ bch2_bkey_to_text(&buf, unpacked); ++ prt_newline(&buf); ++ ++ prt_printf(&buf, "c unpack: "); ++ bch2_bkey_to_text(&buf, &tmp); ++ prt_newline(&buf); ++ ++ prt_printf(&buf, "compiled unpack: "); ++ bch2_bkey_packed_to_binary_text(&buf, &bch2_bkey_format_current, ++ (struct bkey_packed *) unpacked); ++ prt_newline(&buf); ++ ++ prt_printf(&buf, "c unpack: "); ++ bch2_bkey_packed_to_binary_text(&buf, &bch2_bkey_format_current, ++ (struct bkey_packed *) &tmp); ++ prt_newline(&buf); ++ ++ panic("%s", buf.buf); ++ } ++} ++ ++#else ++static inline void bch2_bkey_pack_verify(const struct bkey_packed *packed, ++ const struct bkey *unpacked, ++ const struct bkey_format *format) {} ++#endif ++ ++struct pack_state { ++ const struct bkey_format *format; ++ unsigned bits; /* bits remaining in current word */ ++ u64 w; /* current word */ ++ u64 *p; /* pointer to next word */ ++}; ++ ++__always_inline ++static struct pack_state pack_state_init(const struct bkey_format *format, ++ struct bkey_packed *k) ++{ ++ u64 *p = high_word(format, k); ++ ++ return (struct pack_state) { ++ .format = format, ++ .bits = 64 - high_bit_offset, ++ .w = 0, ++ .p = p, ++ }; ++} ++ ++__always_inline ++static void pack_state_finish(struct pack_state *state, ++ struct bkey_packed *k) ++{ ++ EBUG_ON(state->p < k->_data); ++ EBUG_ON(state->p >= (u64 *) k->_data + state->format->key_u64s); ++ ++ *state->p = state->w; ++} ++ ++struct unpack_state { ++ const struct bkey_format *format; ++ unsigned bits; /* bits remaining in current word */ ++ u64 w; /* current word */ ++ const u64 *p; /* pointer to next word */ ++}; ++ ++__always_inline ++static struct unpack_state unpack_state_init(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ const u64 *p = high_word(format, k); ++ ++ return (struct unpack_state) { ++ .format = format, ++ .bits = 64 - high_bit_offset, ++ .w = *p << high_bit_offset, ++ .p = p, ++ }; ++} ++ ++__always_inline ++static u64 get_inc_field(struct unpack_state *state, unsigned field) ++{ ++ unsigned bits = state->format->bits_per_field[field]; ++ u64 v = 0, offset = le64_to_cpu(state->format->field_offset[field]); ++ ++ if (bits >= state->bits) { ++ v = state->w >> (64 - bits); ++ bits -= state->bits; ++ ++ state->p = next_word(state->p); ++ state->w = *state->p; ++ state->bits = 64; ++ } ++ ++ /* avoid shift by 64 if bits is 0 - bits is never 64 here: */ ++ v |= (state->w >> 1) >> (63 - bits); ++ state->w <<= bits; ++ state->bits -= bits; ++ ++ return v + offset; ++} ++ ++__always_inline ++static void __set_inc_field(struct pack_state *state, unsigned field, u64 v) ++{ ++ unsigned bits = state->format->bits_per_field[field]; ++ ++ if (bits) { ++ if (bits > state->bits) { ++ bits -= state->bits; ++ /* avoid shift by 64 if bits is 64 - bits is never 0 here: */ ++ state->w |= (v >> 1) >> (bits - 1); ++ ++ *state->p = state->w; ++ state->p = next_word(state->p); ++ state->w = 0; ++ state->bits = 64; ++ } ++ ++ state->bits -= bits; ++ state->w |= v << state->bits; ++ } ++} ++ ++__always_inline ++static bool set_inc_field(struct pack_state *state, unsigned field, u64 v) ++{ ++ unsigned bits = state->format->bits_per_field[field]; ++ u64 offset = le64_to_cpu(state->format->field_offset[field]); ++ ++ if (v < offset) ++ return false; ++ ++ v -= offset; ++ ++ if (fls64(v) > bits) ++ return false; ++ ++ __set_inc_field(state, field, v); ++ return true; ++} ++ ++/* ++ * Note: does NOT set out->format (we don't know what it should be here!) ++ * ++ * Also: doesn't work on extents - it doesn't preserve the invariant that ++ * if k is packed bkey_start_pos(k) will successfully pack ++ */ ++static bool bch2_bkey_transform_key(const struct bkey_format *out_f, ++ struct bkey_packed *out, ++ const struct bkey_format *in_f, ++ const struct bkey_packed *in) ++{ ++ struct pack_state out_s = pack_state_init(out_f, out); ++ struct unpack_state in_s = unpack_state_init(in_f, in); ++ u64 *w = out->_data; ++ unsigned i; ++ ++ *w = 0; ++ ++ for (i = 0; i < BKEY_NR_FIELDS; i++) ++ if (!set_inc_field(&out_s, i, get_inc_field(&in_s, i))) ++ return false; ++ ++ /* Can't happen because the val would be too big to unpack: */ ++ EBUG_ON(in->u64s - in_f->key_u64s + out_f->key_u64s > U8_MAX); ++ ++ pack_state_finish(&out_s, out); ++ out->u64s = out_f->key_u64s + in->u64s - in_f->key_u64s; ++ out->needs_whiteout = in->needs_whiteout; ++ out->type = in->type; ++ ++ return true; ++} ++ ++bool bch2_bkey_transform(const struct bkey_format *out_f, ++ struct bkey_packed *out, ++ const struct bkey_format *in_f, ++ const struct bkey_packed *in) ++{ ++ if (!bch2_bkey_transform_key(out_f, out, in_f, in)) ++ return false; ++ ++ memcpy_u64s((u64 *) out + out_f->key_u64s, ++ (u64 *) in + in_f->key_u64s, ++ (in->u64s - in_f->key_u64s)); ++ return true; ++} ++ ++struct bkey __bch2_bkey_unpack_key(const struct bkey_format *format, ++ const struct bkey_packed *in) ++{ ++ struct unpack_state state = unpack_state_init(format, in); ++ struct bkey out; ++ ++ EBUG_ON(format->nr_fields != BKEY_NR_FIELDS); ++ EBUG_ON(in->u64s < format->key_u64s); ++ EBUG_ON(in->format != KEY_FORMAT_LOCAL_BTREE); ++ EBUG_ON(in->u64s - format->key_u64s + BKEY_U64s > U8_MAX); ++ ++ out.u64s = BKEY_U64s + in->u64s - format->key_u64s; ++ out.format = KEY_FORMAT_CURRENT; ++ out.needs_whiteout = in->needs_whiteout; ++ out.type = in->type; ++ out.pad[0] = 0; ++ ++#define x(id, field) out.field = get_inc_field(&state, id); ++ bkey_fields() ++#undef x ++ ++ return out; ++} ++ ++#ifndef HAVE_BCACHEFS_COMPILED_UNPACK ++struct bpos __bkey_unpack_pos(const struct bkey_format *format, ++ const struct bkey_packed *in) ++{ ++ struct unpack_state state = unpack_state_init(format, in); ++ struct bpos out; ++ ++ EBUG_ON(format->nr_fields != BKEY_NR_FIELDS); ++ EBUG_ON(in->u64s < format->key_u64s); ++ EBUG_ON(in->format != KEY_FORMAT_LOCAL_BTREE); ++ ++ out.inode = get_inc_field(&state, BKEY_FIELD_INODE); ++ out.offset = get_inc_field(&state, BKEY_FIELD_OFFSET); ++ out.snapshot = get_inc_field(&state, BKEY_FIELD_SNAPSHOT); ++ ++ return out; ++} ++#endif ++ ++/** ++ * bch2_bkey_pack_key -- pack just the key, not the value ++ * @out: packed result ++ * @in: key to pack ++ * @format: format of packed result ++ * ++ * Returns: true on success, false on failure ++ */ ++bool bch2_bkey_pack_key(struct bkey_packed *out, const struct bkey *in, ++ const struct bkey_format *format) ++{ ++ struct pack_state state = pack_state_init(format, out); ++ u64 *w = out->_data; ++ ++ EBUG_ON((void *) in == (void *) out); ++ EBUG_ON(format->nr_fields != BKEY_NR_FIELDS); ++ EBUG_ON(in->format != KEY_FORMAT_CURRENT); ++ ++ *w = 0; ++ ++#define x(id, field) if (!set_inc_field(&state, id, in->field)) return false; ++ bkey_fields() ++#undef x ++ pack_state_finish(&state, out); ++ out->u64s = format->key_u64s + in->u64s - BKEY_U64s; ++ out->format = KEY_FORMAT_LOCAL_BTREE; ++ out->needs_whiteout = in->needs_whiteout; ++ out->type = in->type; ++ ++ bch2_bkey_pack_verify(out, in, format); ++ return true; ++} ++ ++/** ++ * bch2_bkey_unpack -- unpack the key and the value ++ * @b: btree node of @src key (for packed format) ++ * @dst: unpacked result ++ * @src: packed input ++ */ ++void bch2_bkey_unpack(const struct btree *b, struct bkey_i *dst, ++ const struct bkey_packed *src) ++{ ++ __bkey_unpack_key(b, &dst->k, src); ++ ++ memcpy_u64s(&dst->v, ++ bkeyp_val(&b->format, src), ++ bkeyp_val_u64s(&b->format, src)); ++} ++ ++/** ++ * bch2_bkey_pack -- pack the key and the value ++ * @dst: packed result ++ * @src: unpacked input ++ * @format: format of packed result ++ * ++ * Returns: true on success, false on failure ++ */ ++bool bch2_bkey_pack(struct bkey_packed *dst, const struct bkey_i *src, ++ const struct bkey_format *format) ++{ ++ struct bkey_packed tmp; ++ ++ if (!bch2_bkey_pack_key(&tmp, &src->k, format)) ++ return false; ++ ++ memmove_u64s((u64 *) dst + format->key_u64s, ++ &src->v, ++ bkey_val_u64s(&src->k)); ++ memcpy_u64s_small(dst, &tmp, format->key_u64s); ++ ++ return true; ++} ++ ++__always_inline ++static bool set_inc_field_lossy(struct pack_state *state, unsigned field, u64 v) ++{ ++ unsigned bits = state->format->bits_per_field[field]; ++ u64 offset = le64_to_cpu(state->format->field_offset[field]); ++ bool ret = true; ++ ++ EBUG_ON(v < offset); ++ v -= offset; ++ ++ if (fls64(v) > bits) { ++ v = ~(~0ULL << bits); ++ ret = false; ++ } ++ ++ __set_inc_field(state, field, v); ++ return ret; ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++static bool bkey_packed_successor(struct bkey_packed *out, ++ const struct btree *b, ++ struct bkey_packed k) ++{ ++ const struct bkey_format *f = &b->format; ++ unsigned nr_key_bits = b->nr_key_bits; ++ unsigned first_bit, offset; ++ u64 *p; ++ ++ EBUG_ON(b->nr_key_bits != bkey_format_key_bits(f)); ++ ++ if (!nr_key_bits) ++ return false; ++ ++ *out = k; ++ ++ first_bit = high_bit_offset + nr_key_bits - 1; ++ p = nth_word(high_word(f, out), first_bit >> 6); ++ offset = 63 - (first_bit & 63); ++ ++ while (nr_key_bits) { ++ unsigned bits = min(64 - offset, nr_key_bits); ++ u64 mask = (~0ULL >> (64 - bits)) << offset; ++ ++ if ((*p & mask) != mask) { ++ *p += 1ULL << offset; ++ EBUG_ON(bch2_bkey_cmp_packed(b, out, &k) <= 0); ++ return true; ++ } ++ ++ *p &= ~mask; ++ p = prev_word(p); ++ nr_key_bits -= bits; ++ offset = 0; ++ } ++ ++ return false; ++} ++ ++static bool bkey_format_has_too_big_fields(const struct bkey_format *f) ++{ ++ for (unsigned i = 0; i < f->nr_fields; i++) { ++ unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i]; ++ u64 unpacked_max = ~((~0ULL << 1) << (unpacked_bits - 1)); ++ u64 packed_max = f->bits_per_field[i] ++ ? ~((~0ULL << 1) << (f->bits_per_field[i] - 1)) ++ : 0; ++ u64 field_offset = le64_to_cpu(f->field_offset[i]); ++ ++ if (packed_max + field_offset < packed_max || ++ packed_max + field_offset > unpacked_max) ++ return true; ++ } ++ ++ return false; ++} ++#endif ++ ++/* ++ * Returns a packed key that compares <= in ++ * ++ * This is used in bset_search_tree(), where we need a packed pos in order to be ++ * able to compare against the keys in the auxiliary search tree - and it's ++ * legal to use a packed pos that isn't equivalent to the original pos, ++ * _provided_ it compares <= to the original pos. ++ */ ++enum bkey_pack_pos_ret bch2_bkey_pack_pos_lossy(struct bkey_packed *out, ++ struct bpos in, ++ const struct btree *b) ++{ ++ const struct bkey_format *f = &b->format; ++ struct pack_state state = pack_state_init(f, out); ++ u64 *w = out->_data; ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bpos orig = in; ++#endif ++ bool exact = true; ++ unsigned i; ++ ++ /* ++ * bch2_bkey_pack_key() will write to all of f->key_u64s, minus the 3 ++ * byte header, but pack_pos() won't if the len/version fields are big ++ * enough - we need to make sure to zero them out: ++ */ ++ for (i = 0; i < f->key_u64s; i++) ++ w[i] = 0; ++ ++ if (unlikely(in.snapshot < ++ le64_to_cpu(f->field_offset[BKEY_FIELD_SNAPSHOT]))) { ++ if (!in.offset-- && ++ !in.inode--) ++ return BKEY_PACK_POS_FAIL; ++ in.snapshot = KEY_SNAPSHOT_MAX; ++ exact = false; ++ } ++ ++ if (unlikely(in.offset < ++ le64_to_cpu(f->field_offset[BKEY_FIELD_OFFSET]))) { ++ if (!in.inode--) ++ return BKEY_PACK_POS_FAIL; ++ in.offset = KEY_OFFSET_MAX; ++ in.snapshot = KEY_SNAPSHOT_MAX; ++ exact = false; ++ } ++ ++ if (unlikely(in.inode < ++ le64_to_cpu(f->field_offset[BKEY_FIELD_INODE]))) ++ return BKEY_PACK_POS_FAIL; ++ ++ if (unlikely(!set_inc_field_lossy(&state, BKEY_FIELD_INODE, in.inode))) { ++ in.offset = KEY_OFFSET_MAX; ++ in.snapshot = KEY_SNAPSHOT_MAX; ++ exact = false; ++ } ++ ++ if (unlikely(!set_inc_field_lossy(&state, BKEY_FIELD_OFFSET, in.offset))) { ++ in.snapshot = KEY_SNAPSHOT_MAX; ++ exact = false; ++ } ++ ++ if (unlikely(!set_inc_field_lossy(&state, BKEY_FIELD_SNAPSHOT, in.snapshot))) ++ exact = false; ++ ++ pack_state_finish(&state, out); ++ out->u64s = f->key_u64s; ++ out->format = KEY_FORMAT_LOCAL_BTREE; ++ out->type = KEY_TYPE_deleted; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ if (exact) { ++ BUG_ON(bkey_cmp_left_packed(b, out, &orig)); ++ } else { ++ struct bkey_packed successor; ++ ++ BUG_ON(bkey_cmp_left_packed(b, out, &orig) >= 0); ++ BUG_ON(bkey_packed_successor(&successor, b, *out) && ++ bkey_cmp_left_packed(b, &successor, &orig) < 0 && ++ !bkey_format_has_too_big_fields(f)); ++ } ++#endif ++ ++ return exact ? BKEY_PACK_POS_EXACT : BKEY_PACK_POS_SMALLER; ++} ++ ++void bch2_bkey_format_init(struct bkey_format_state *s) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(s->field_min); i++) ++ s->field_min[i] = U64_MAX; ++ ++ for (i = 0; i < ARRAY_SIZE(s->field_max); i++) ++ s->field_max[i] = 0; ++ ++ /* Make sure we can store a size of 0: */ ++ s->field_min[BKEY_FIELD_SIZE] = 0; ++} ++ ++void bch2_bkey_format_add_pos(struct bkey_format_state *s, struct bpos p) ++{ ++ unsigned field = 0; ++ ++ __bkey_format_add(s, field++, p.inode); ++ __bkey_format_add(s, field++, p.offset); ++ __bkey_format_add(s, field++, p.snapshot); ++} ++ ++/* ++ * We don't want it to be possible for the packed format to represent fields ++ * bigger than a u64... that will cause confusion and issues (like with ++ * bkey_packed_successor()) ++ */ ++static void set_format_field(struct bkey_format *f, enum bch_bkey_fields i, ++ unsigned bits, u64 offset) ++{ ++ unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i]; ++ u64 unpacked_max = ~((~0ULL << 1) << (unpacked_bits - 1)); ++ ++ bits = min(bits, unpacked_bits); ++ ++ offset = bits == unpacked_bits ? 0 : min(offset, unpacked_max - ((1ULL << bits) - 1)); ++ ++ f->bits_per_field[i] = bits; ++ f->field_offset[i] = cpu_to_le64(offset); ++} ++ ++struct bkey_format bch2_bkey_format_done(struct bkey_format_state *s) ++{ ++ unsigned i, bits = KEY_PACKED_BITS_START; ++ struct bkey_format ret = { ++ .nr_fields = BKEY_NR_FIELDS, ++ }; ++ ++ for (i = 0; i < ARRAY_SIZE(s->field_min); i++) { ++ s->field_min[i] = min(s->field_min[i], s->field_max[i]); ++ ++ set_format_field(&ret, i, ++ fls64(s->field_max[i] - s->field_min[i]), ++ s->field_min[i]); ++ ++ bits += ret.bits_per_field[i]; ++ } ++ ++ /* allow for extent merging: */ ++ if (ret.bits_per_field[BKEY_FIELD_SIZE]) { ++ unsigned b = min(4U, 32U - ret.bits_per_field[BKEY_FIELD_SIZE]); ++ ++ ret.bits_per_field[BKEY_FIELD_SIZE] += b; ++ bits += b; ++ } ++ ++ ret.key_u64s = DIV_ROUND_UP(bits, 64); ++ ++ /* if we have enough spare bits, round fields up to nearest byte */ ++ bits = ret.key_u64s * 64 - bits; ++ ++ for (i = 0; i < ARRAY_SIZE(ret.bits_per_field); i++) { ++ unsigned r = round_up(ret.bits_per_field[i], 8) - ++ ret.bits_per_field[i]; ++ ++ if (r <= bits) { ++ set_format_field(&ret, i, ++ ret.bits_per_field[i] + r, ++ le64_to_cpu(ret.field_offset[i])); ++ bits -= r; ++ } ++ } ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ { ++ struct printbuf buf = PRINTBUF; ++ ++ BUG_ON(bch2_bkey_format_invalid(NULL, &ret, 0, &buf)); ++ printbuf_exit(&buf); ++ } ++#endif ++ return ret; ++} ++ ++int bch2_bkey_format_invalid(struct bch_fs *c, ++ struct bkey_format *f, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ unsigned i, bits = KEY_PACKED_BITS_START; ++ ++ if (f->nr_fields != BKEY_NR_FIELDS) { ++ prt_printf(err, "incorrect number of fields: got %u, should be %u", ++ f->nr_fields, BKEY_NR_FIELDS); ++ return -BCH_ERR_invalid; ++ } ++ ++ /* ++ * Verify that the packed format can't represent fields larger than the ++ * unpacked format: ++ */ ++ for (i = 0; i < f->nr_fields; i++) { ++ if (!c || c->sb.version_min >= bcachefs_metadata_version_snapshot) { ++ unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i]; ++ u64 unpacked_max = ~((~0ULL << 1) << (unpacked_bits - 1)); ++ u64 packed_max = f->bits_per_field[i] ++ ? ~((~0ULL << 1) << (f->bits_per_field[i] - 1)) ++ : 0; ++ u64 field_offset = le64_to_cpu(f->field_offset[i]); ++ ++ if (packed_max + field_offset < packed_max || ++ packed_max + field_offset > unpacked_max) { ++ prt_printf(err, "field %u too large: %llu + %llu > %llu", ++ i, packed_max, field_offset, unpacked_max); ++ return -BCH_ERR_invalid; ++ } ++ } ++ ++ bits += f->bits_per_field[i]; ++ } ++ ++ if (f->key_u64s != DIV_ROUND_UP(bits, 64)) { ++ prt_printf(err, "incorrect key_u64s: got %u, should be %u", ++ f->key_u64s, DIV_ROUND_UP(bits, 64)); ++ return -BCH_ERR_invalid; ++ } ++ ++ return 0; ++} ++ ++void bch2_bkey_format_to_text(struct printbuf *out, const struct bkey_format *f) ++{ ++ prt_printf(out, "u64s %u fields ", f->key_u64s); ++ ++ for (unsigned i = 0; i < ARRAY_SIZE(f->bits_per_field); i++) { ++ if (i) ++ prt_str(out, ", "); ++ prt_printf(out, "%u:%llu", ++ f->bits_per_field[i], ++ le64_to_cpu(f->field_offset[i])); ++ } ++} ++ ++/* ++ * Most significant differing bit ++ * Bits are indexed from 0 - return is [0, nr_key_bits) ++ */ ++__pure ++unsigned bch2_bkey_greatest_differing_bit(const struct btree *b, ++ const struct bkey_packed *l_k, ++ const struct bkey_packed *r_k) ++{ ++ const u64 *l = high_word(&b->format, l_k); ++ const u64 *r = high_word(&b->format, r_k); ++ unsigned nr_key_bits = b->nr_key_bits; ++ unsigned word_bits = 64 - high_bit_offset; ++ u64 l_v, r_v; ++ ++ EBUG_ON(b->nr_key_bits != bkey_format_key_bits(&b->format)); ++ ++ /* for big endian, skip past header */ ++ l_v = *l & (~0ULL >> high_bit_offset); ++ r_v = *r & (~0ULL >> high_bit_offset); ++ ++ while (nr_key_bits) { ++ if (nr_key_bits < word_bits) { ++ l_v >>= word_bits - nr_key_bits; ++ r_v >>= word_bits - nr_key_bits; ++ nr_key_bits = 0; ++ } else { ++ nr_key_bits -= word_bits; ++ } ++ ++ if (l_v != r_v) ++ return fls64(l_v ^ r_v) - 1 + nr_key_bits; ++ ++ l = next_word(l); ++ r = next_word(r); ++ ++ l_v = *l; ++ r_v = *r; ++ word_bits = 64; ++ } ++ ++ return 0; ++} ++ ++/* ++ * First set bit ++ * Bits are indexed from 0 - return is [0, nr_key_bits) ++ */ ++__pure ++unsigned bch2_bkey_ffs(const struct btree *b, const struct bkey_packed *k) ++{ ++ const u64 *p = high_word(&b->format, k); ++ unsigned nr_key_bits = b->nr_key_bits; ++ unsigned ret = 0, offset; ++ ++ EBUG_ON(b->nr_key_bits != bkey_format_key_bits(&b->format)); ++ ++ offset = nr_key_bits; ++ while (offset > 64) { ++ p = next_word(p); ++ offset -= 64; ++ } ++ ++ offset = 64 - offset; ++ ++ while (nr_key_bits) { ++ unsigned bits = nr_key_bits + offset < 64 ++ ? nr_key_bits ++ : 64 - offset; ++ ++ u64 mask = (~0ULL >> (64 - bits)) << offset; ++ ++ if (*p & mask) ++ return ret + __ffs64(*p & mask) - offset; ++ ++ p = prev_word(p); ++ nr_key_bits -= bits; ++ ret += bits; ++ offset = 0; ++ } ++ ++ return 0; ++} ++ ++#ifdef HAVE_BCACHEFS_COMPILED_UNPACK ++ ++#define I(_x) (*(out)++ = (_x)) ++#define I1(i0) I(i0) ++#define I2(i0, i1) (I1(i0), I(i1)) ++#define I3(i0, i1, i2) (I2(i0, i1), I(i2)) ++#define I4(i0, i1, i2, i3) (I3(i0, i1, i2), I(i3)) ++#define I5(i0, i1, i2, i3, i4) (I4(i0, i1, i2, i3), I(i4)) ++ ++static u8 *compile_bkey_field(const struct bkey_format *format, u8 *out, ++ enum bch_bkey_fields field, ++ unsigned dst_offset, unsigned dst_size, ++ bool *eax_zeroed) ++{ ++ unsigned bits = format->bits_per_field[field]; ++ u64 offset = le64_to_cpu(format->field_offset[field]); ++ unsigned i, byte, bit_offset, align, shl, shr; ++ ++ if (!bits && !offset) { ++ if (!*eax_zeroed) { ++ /* xor eax, eax */ ++ I2(0x31, 0xc0); ++ } ++ ++ *eax_zeroed = true; ++ goto set_field; ++ } ++ ++ if (!bits) { ++ /* just return offset: */ ++ ++ switch (dst_size) { ++ case 8: ++ if (offset > S32_MAX) { ++ /* mov [rdi + dst_offset], offset */ ++ I3(0xc7, 0x47, dst_offset); ++ memcpy(out, &offset, 4); ++ out += 4; ++ ++ I3(0xc7, 0x47, dst_offset + 4); ++ memcpy(out, (void *) &offset + 4, 4); ++ out += 4; ++ } else { ++ /* mov [rdi + dst_offset], offset */ ++ /* sign extended */ ++ I4(0x48, 0xc7, 0x47, dst_offset); ++ memcpy(out, &offset, 4); ++ out += 4; ++ } ++ break; ++ case 4: ++ /* mov [rdi + dst_offset], offset */ ++ I3(0xc7, 0x47, dst_offset); ++ memcpy(out, &offset, 4); ++ out += 4; ++ break; ++ default: ++ BUG(); ++ } ++ ++ return out; ++ } ++ ++ bit_offset = format->key_u64s * 64; ++ for (i = 0; i <= field; i++) ++ bit_offset -= format->bits_per_field[i]; ++ ++ byte = bit_offset / 8; ++ bit_offset -= byte * 8; ++ ++ *eax_zeroed = false; ++ ++ if (bit_offset == 0 && bits == 8) { ++ /* movzx eax, BYTE PTR [rsi + imm8] */ ++ I4(0x0f, 0xb6, 0x46, byte); ++ } else if (bit_offset == 0 && bits == 16) { ++ /* movzx eax, WORD PTR [rsi + imm8] */ ++ I4(0x0f, 0xb7, 0x46, byte); ++ } else if (bit_offset + bits <= 32) { ++ align = min(4 - DIV_ROUND_UP(bit_offset + bits, 8), byte & 3); ++ byte -= align; ++ bit_offset += align * 8; ++ ++ BUG_ON(bit_offset + bits > 32); ++ ++ /* mov eax, [rsi + imm8] */ ++ I3(0x8b, 0x46, byte); ++ ++ if (bit_offset) { ++ /* shr eax, imm8 */ ++ I3(0xc1, 0xe8, bit_offset); ++ } ++ ++ if (bit_offset + bits < 32) { ++ unsigned mask = ~0U >> (32 - bits); ++ ++ /* and eax, imm32 */ ++ I1(0x25); ++ memcpy(out, &mask, 4); ++ out += 4; ++ } ++ } else if (bit_offset + bits <= 64) { ++ align = min(8 - DIV_ROUND_UP(bit_offset + bits, 8), byte & 7); ++ byte -= align; ++ bit_offset += align * 8; ++ ++ BUG_ON(bit_offset + bits > 64); ++ ++ /* mov rax, [rsi + imm8] */ ++ I4(0x48, 0x8b, 0x46, byte); ++ ++ shl = 64 - bit_offset - bits; ++ shr = bit_offset + shl; ++ ++ if (shl) { ++ /* shl rax, imm8 */ ++ I4(0x48, 0xc1, 0xe0, shl); ++ } ++ ++ if (shr) { ++ /* shr rax, imm8 */ ++ I4(0x48, 0xc1, 0xe8, shr); ++ } ++ } else { ++ align = min(4 - DIV_ROUND_UP(bit_offset + bits, 8), byte & 3); ++ byte -= align; ++ bit_offset += align * 8; ++ ++ BUG_ON(bit_offset + bits > 96); ++ ++ /* mov rax, [rsi + byte] */ ++ I4(0x48, 0x8b, 0x46, byte); ++ ++ /* mov edx, [rsi + byte + 8] */ ++ I3(0x8b, 0x56, byte + 8); ++ ++ /* bits from next word: */ ++ shr = bit_offset + bits - 64; ++ BUG_ON(shr > bit_offset); ++ ++ /* shr rax, bit_offset */ ++ I4(0x48, 0xc1, 0xe8, shr); ++ ++ /* shl rdx, imm8 */ ++ I4(0x48, 0xc1, 0xe2, 64 - shr); ++ ++ /* or rax, rdx */ ++ I3(0x48, 0x09, 0xd0); ++ ++ shr = bit_offset - shr; ++ ++ if (shr) { ++ /* shr rax, imm8 */ ++ I4(0x48, 0xc1, 0xe8, shr); ++ } ++ } ++ ++ /* rax += offset: */ ++ if (offset > S32_MAX) { ++ /* mov rdx, imm64 */ ++ I2(0x48, 0xba); ++ memcpy(out, &offset, 8); ++ out += 8; ++ /* add %rdx, %rax */ ++ I3(0x48, 0x01, 0xd0); ++ } else if (offset + (~0ULL >> (64 - bits)) > U32_MAX) { ++ /* add rax, imm32 */ ++ I2(0x48, 0x05); ++ memcpy(out, &offset, 4); ++ out += 4; ++ } else if (offset) { ++ /* add eax, imm32 */ ++ I1(0x05); ++ memcpy(out, &offset, 4); ++ out += 4; ++ } ++set_field: ++ switch (dst_size) { ++ case 8: ++ /* mov [rdi + dst_offset], rax */ ++ I4(0x48, 0x89, 0x47, dst_offset); ++ break; ++ case 4: ++ /* mov [rdi + dst_offset], eax */ ++ I3(0x89, 0x47, dst_offset); ++ break; ++ default: ++ BUG(); ++ } ++ ++ return out; ++} ++ ++int bch2_compile_bkey_format(const struct bkey_format *format, void *_out) ++{ ++ bool eax_zeroed = false; ++ u8 *out = _out; ++ ++ /* ++ * rdi: dst - unpacked key ++ * rsi: src - packed key ++ */ ++ ++ /* k->u64s, k->format, k->type */ ++ ++ /* mov eax, [rsi] */ ++ I2(0x8b, 0x06); ++ ++ /* add eax, BKEY_U64s - format->key_u64s */ ++ I5(0x05, BKEY_U64s - format->key_u64s, KEY_FORMAT_CURRENT, 0, 0); ++ ++ /* and eax, imm32: mask out k->pad: */ ++ I5(0x25, 0xff, 0xff, 0xff, 0); ++ ++ /* mov [rdi], eax */ ++ I2(0x89, 0x07); ++ ++#define x(id, field) \ ++ out = compile_bkey_field(format, out, id, \ ++ offsetof(struct bkey, field), \ ++ sizeof(((struct bkey *) NULL)->field), \ ++ &eax_zeroed); ++ bkey_fields() ++#undef x ++ ++ /* retq */ ++ I1(0xc3); ++ ++ return (void *) out - _out; ++} ++ ++#else ++#endif ++ ++__pure ++int __bch2_bkey_cmp_packed_format_checked(const struct bkey_packed *l, ++ const struct bkey_packed *r, ++ const struct btree *b) ++{ ++ return __bch2_bkey_cmp_packed_format_checked_inlined(l, r, b); ++} ++ ++__pure __flatten ++int __bch2_bkey_cmp_left_packed_format_checked(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bpos *r) ++{ ++ return bpos_cmp(bkey_unpack_pos_format_checked(b, l), *r); ++} ++ ++__pure __flatten ++int bch2_bkey_cmp_packed(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bkey_packed *r) ++{ ++ return bch2_bkey_cmp_packed_inlined(b, l, r); ++} ++ ++__pure __flatten ++int __bch2_bkey_cmp_left_packed(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bpos *r) ++{ ++ const struct bkey *l_unpacked; ++ ++ return unlikely(l_unpacked = packed_to_bkey_c(l)) ++ ? bpos_cmp(l_unpacked->p, *r) ++ : __bch2_bkey_cmp_left_packed_format_checked(b, l, r); ++} ++ ++void bch2_bpos_swab(struct bpos *p) ++{ ++ u8 *l = (u8 *) p; ++ u8 *h = ((u8 *) &p[1]) - 1; ++ ++ while (l < h) { ++ swap(*l, *h); ++ l++; ++ --h; ++ } ++} ++ ++void bch2_bkey_swab_key(const struct bkey_format *_f, struct bkey_packed *k) ++{ ++ const struct bkey_format *f = bkey_packed(k) ? _f : &bch2_bkey_format_current; ++ u8 *l = k->key_start; ++ u8 *h = (u8 *) (k->_data + f->key_u64s) - 1; ++ ++ while (l < h) { ++ swap(*l, *h); ++ l++; ++ --h; ++ } ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_bkey_pack_test(void) ++{ ++ struct bkey t = KEY(4134ULL, 1250629070527416633ULL, 0); ++ struct bkey_packed p; ++ ++ struct bkey_format test_format = { ++ .key_u64s = 3, ++ .nr_fields = BKEY_NR_FIELDS, ++ .bits_per_field = { ++ 13, ++ 64, ++ 32, ++ }, ++ }; ++ ++ struct unpack_state in_s = ++ unpack_state_init(&bch2_bkey_format_current, (void *) &t); ++ struct pack_state out_s = pack_state_init(&test_format, &p); ++ unsigned i; ++ ++ for (i = 0; i < out_s.format->nr_fields; i++) { ++ u64 a, v = get_inc_field(&in_s, i); ++ ++ switch (i) { ++#define x(id, field) case id: a = t.field; break; ++ bkey_fields() ++#undef x ++ default: ++ BUG(); ++ } ++ ++ if (a != v) ++ panic("got %llu actual %llu i %u\n", v, a, i); ++ ++ if (!set_inc_field(&out_s, i, v)) ++ panic("failed at %u\n", i); ++ } ++ ++ BUG_ON(!bch2_bkey_pack_key(&p, &t, &test_format)); ++} ++#endif +diff --git a/fs/bcachefs/bkey.h b/fs/bcachefs/bkey.h +new file mode 100644 +index 000000000000..518450209236 +--- /dev/null ++++ b/fs/bcachefs/bkey.h +@@ -0,0 +1,782 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_H ++#define _BCACHEFS_BKEY_H ++ ++#include ++#include "bcachefs_format.h" ++ ++#include "btree_types.h" ++#include "util.h" ++#include "vstructs.h" ++ ++enum bkey_invalid_flags { ++ BKEY_INVALID_WRITE = (1U << 0), ++ BKEY_INVALID_COMMIT = (1U << 1), ++ BKEY_INVALID_JOURNAL = (1U << 2), ++}; ++ ++#if 0 ++ ++/* ++ * compiled unpack functions are disabled, pending a new interface for ++ * dynamically allocating executable memory: ++ */ ++ ++#ifdef CONFIG_X86_64 ++#define HAVE_BCACHEFS_COMPILED_UNPACK 1 ++#endif ++#endif ++ ++void bch2_bkey_packed_to_binary_text(struct printbuf *, ++ const struct bkey_format *, ++ const struct bkey_packed *); ++ ++/* bkey with split value, const */ ++struct bkey_s_c { ++ const struct bkey *k; ++ const struct bch_val *v; ++}; ++ ++/* bkey with split value */ ++struct bkey_s { ++ union { ++ struct { ++ struct bkey *k; ++ struct bch_val *v; ++ }; ++ struct bkey_s_c s_c; ++ }; ++}; ++ ++#define bkey_p_next(_k) vstruct_next(_k) ++ ++static inline struct bkey_i *bkey_next(struct bkey_i *k) ++{ ++ return (struct bkey_i *) ((u64 *) k->_data + k->k.u64s); ++} ++ ++#define bkey_val_u64s(_k) ((_k)->u64s - BKEY_U64s) ++ ++static inline size_t bkey_val_bytes(const struct bkey *k) ++{ ++ return bkey_val_u64s(k) * sizeof(u64); ++} ++ ++static inline void set_bkey_val_u64s(struct bkey *k, unsigned val_u64s) ++{ ++ unsigned u64s = BKEY_U64s + val_u64s; ++ ++ BUG_ON(u64s > U8_MAX); ++ k->u64s = u64s; ++} ++ ++static inline void set_bkey_val_bytes(struct bkey *k, unsigned bytes) ++{ ++ set_bkey_val_u64s(k, DIV_ROUND_UP(bytes, sizeof(u64))); ++} ++ ++#define bkey_val_end(_k) ((void *) (((u64 *) (_k).v) + bkey_val_u64s((_k).k))) ++ ++#define bkey_deleted(_k) ((_k)->type == KEY_TYPE_deleted) ++ ++#define bkey_whiteout(_k) \ ++ ((_k)->type == KEY_TYPE_deleted || (_k)->type == KEY_TYPE_whiteout) ++ ++enum bkey_lr_packed { ++ BKEY_PACKED_BOTH, ++ BKEY_PACKED_RIGHT, ++ BKEY_PACKED_LEFT, ++ BKEY_PACKED_NONE, ++}; ++ ++#define bkey_lr_packed(_l, _r) \ ++ ((_l)->format + ((_r)->format << 1)) ++ ++#define bkey_copy(_dst, _src) \ ++do { \ ++ BUILD_BUG_ON(!type_is(_dst, struct bkey_i *) && \ ++ !type_is(_dst, struct bkey_packed *)); \ ++ BUILD_BUG_ON(!type_is(_src, struct bkey_i *) && \ ++ !type_is(_src, struct bkey_packed *)); \ ++ EBUG_ON((u64 *) (_dst) > (u64 *) (_src) && \ ++ (u64 *) (_dst) < (u64 *) (_src) + \ ++ ((struct bkey *) (_src))->u64s); \ ++ \ ++ memcpy_u64s_small((_dst), (_src), \ ++ ((struct bkey *) (_src))->u64s); \ ++} while (0) ++ ++struct btree; ++ ++__pure ++unsigned bch2_bkey_greatest_differing_bit(const struct btree *, ++ const struct bkey_packed *, ++ const struct bkey_packed *); ++__pure ++unsigned bch2_bkey_ffs(const struct btree *, const struct bkey_packed *); ++ ++__pure ++int __bch2_bkey_cmp_packed_format_checked(const struct bkey_packed *, ++ const struct bkey_packed *, ++ const struct btree *); ++ ++__pure ++int __bch2_bkey_cmp_left_packed_format_checked(const struct btree *, ++ const struct bkey_packed *, ++ const struct bpos *); ++ ++__pure ++int bch2_bkey_cmp_packed(const struct btree *, ++ const struct bkey_packed *, ++ const struct bkey_packed *); ++ ++__pure ++int __bch2_bkey_cmp_left_packed(const struct btree *, ++ const struct bkey_packed *, ++ const struct bpos *); ++ ++static inline __pure ++int bkey_cmp_left_packed(const struct btree *b, ++ const struct bkey_packed *l, const struct bpos *r) ++{ ++ return __bch2_bkey_cmp_left_packed(b, l, r); ++} ++ ++/* ++ * The compiler generates better code when we pass bpos by ref, but it's often ++ * enough terribly convenient to pass it by val... as much as I hate c++, const ++ * ref would be nice here: ++ */ ++__pure __flatten ++static inline int bkey_cmp_left_packed_byval(const struct btree *b, ++ const struct bkey_packed *l, ++ struct bpos r) ++{ ++ return bkey_cmp_left_packed(b, l, &r); ++} ++ ++static __always_inline bool bpos_eq(struct bpos l, struct bpos r) ++{ ++ return !((l.inode ^ r.inode) | ++ (l.offset ^ r.offset) | ++ (l.snapshot ^ r.snapshot)); ++} ++ ++static __always_inline bool bpos_lt(struct bpos l, struct bpos r) ++{ ++ return l.inode != r.inode ? l.inode < r.inode : ++ l.offset != r.offset ? l.offset < r.offset : ++ l.snapshot != r.snapshot ? l.snapshot < r.snapshot : false; ++} ++ ++static __always_inline bool bpos_le(struct bpos l, struct bpos r) ++{ ++ return l.inode != r.inode ? l.inode < r.inode : ++ l.offset != r.offset ? l.offset < r.offset : ++ l.snapshot != r.snapshot ? l.snapshot < r.snapshot : true; ++} ++ ++static __always_inline bool bpos_gt(struct bpos l, struct bpos r) ++{ ++ return bpos_lt(r, l); ++} ++ ++static __always_inline bool bpos_ge(struct bpos l, struct bpos r) ++{ ++ return bpos_le(r, l); ++} ++ ++static __always_inline int bpos_cmp(struct bpos l, struct bpos r) ++{ ++ return cmp_int(l.inode, r.inode) ?: ++ cmp_int(l.offset, r.offset) ?: ++ cmp_int(l.snapshot, r.snapshot); ++} ++ ++static inline struct bpos bpos_min(struct bpos l, struct bpos r) ++{ ++ return bpos_lt(l, r) ? l : r; ++} ++ ++static inline struct bpos bpos_max(struct bpos l, struct bpos r) ++{ ++ return bpos_gt(l, r) ? l : r; ++} ++ ++static __always_inline bool bkey_eq(struct bpos l, struct bpos r) ++{ ++ return !((l.inode ^ r.inode) | ++ (l.offset ^ r.offset)); ++} ++ ++static __always_inline bool bkey_lt(struct bpos l, struct bpos r) ++{ ++ return l.inode != r.inode ++ ? l.inode < r.inode ++ : l.offset < r.offset; ++} ++ ++static __always_inline bool bkey_le(struct bpos l, struct bpos r) ++{ ++ return l.inode != r.inode ++ ? l.inode < r.inode ++ : l.offset <= r.offset; ++} ++ ++static __always_inline bool bkey_gt(struct bpos l, struct bpos r) ++{ ++ return bkey_lt(r, l); ++} ++ ++static __always_inline bool bkey_ge(struct bpos l, struct bpos r) ++{ ++ return bkey_le(r, l); ++} ++ ++static __always_inline int bkey_cmp(struct bpos l, struct bpos r) ++{ ++ return cmp_int(l.inode, r.inode) ?: ++ cmp_int(l.offset, r.offset); ++} ++ ++static inline struct bpos bkey_min(struct bpos l, struct bpos r) ++{ ++ return bkey_lt(l, r) ? l : r; ++} ++ ++static inline struct bpos bkey_max(struct bpos l, struct bpos r) ++{ ++ return bkey_gt(l, r) ? l : r; ++} ++ ++void bch2_bpos_swab(struct bpos *); ++void bch2_bkey_swab_key(const struct bkey_format *, struct bkey_packed *); ++ ++static __always_inline int bversion_cmp(struct bversion l, struct bversion r) ++{ ++ return cmp_int(l.hi, r.hi) ?: ++ cmp_int(l.lo, r.lo); ++} ++ ++#define ZERO_VERSION ((struct bversion) { .hi = 0, .lo = 0 }) ++#define MAX_VERSION ((struct bversion) { .hi = ~0, .lo = ~0ULL }) ++ ++static __always_inline int bversion_zero(struct bversion v) ++{ ++ return !bversion_cmp(v, ZERO_VERSION); ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++/* statement expressions confusing unlikely()? */ ++#define bkey_packed(_k) \ ++ ({ EBUG_ON((_k)->format > KEY_FORMAT_CURRENT); \ ++ (_k)->format != KEY_FORMAT_CURRENT; }) ++#else ++#define bkey_packed(_k) ((_k)->format != KEY_FORMAT_CURRENT) ++#endif ++ ++/* ++ * It's safe to treat an unpacked bkey as a packed one, but not the reverse ++ */ ++static inline struct bkey_packed *bkey_to_packed(struct bkey_i *k) ++{ ++ return (struct bkey_packed *) k; ++} ++ ++static inline const struct bkey_packed *bkey_to_packed_c(const struct bkey_i *k) ++{ ++ return (const struct bkey_packed *) k; ++} ++ ++static inline struct bkey_i *packed_to_bkey(struct bkey_packed *k) ++{ ++ return bkey_packed(k) ? NULL : (struct bkey_i *) k; ++} ++ ++static inline const struct bkey *packed_to_bkey_c(const struct bkey_packed *k) ++{ ++ return bkey_packed(k) ? NULL : (const struct bkey *) k; ++} ++ ++static inline unsigned bkey_format_key_bits(const struct bkey_format *format) ++{ ++ return format->bits_per_field[BKEY_FIELD_INODE] + ++ format->bits_per_field[BKEY_FIELD_OFFSET] + ++ format->bits_per_field[BKEY_FIELD_SNAPSHOT]; ++} ++ ++static inline struct bpos bpos_successor(struct bpos p) ++{ ++ if (!++p.snapshot && ++ !++p.offset && ++ !++p.inode) ++ BUG(); ++ ++ return p; ++} ++ ++static inline struct bpos bpos_predecessor(struct bpos p) ++{ ++ if (!p.snapshot-- && ++ !p.offset-- && ++ !p.inode--) ++ BUG(); ++ ++ return p; ++} ++ ++static inline struct bpos bpos_nosnap_successor(struct bpos p) ++{ ++ p.snapshot = 0; ++ ++ if (!++p.offset && ++ !++p.inode) ++ BUG(); ++ ++ return p; ++} ++ ++static inline struct bpos bpos_nosnap_predecessor(struct bpos p) ++{ ++ p.snapshot = 0; ++ ++ if (!p.offset-- && ++ !p.inode--) ++ BUG(); ++ ++ return p; ++} ++ ++static inline u64 bkey_start_offset(const struct bkey *k) ++{ ++ return k->p.offset - k->size; ++} ++ ++static inline struct bpos bkey_start_pos(const struct bkey *k) ++{ ++ return (struct bpos) { ++ .inode = k->p.inode, ++ .offset = bkey_start_offset(k), ++ .snapshot = k->p.snapshot, ++ }; ++} ++ ++/* Packed helpers */ ++ ++static inline unsigned bkeyp_key_u64s(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ unsigned ret = bkey_packed(k) ? format->key_u64s : BKEY_U64s; ++ ++ EBUG_ON(k->u64s < ret); ++ return ret; ++} ++ ++static inline unsigned bkeyp_key_bytes(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ return bkeyp_key_u64s(format, k) * sizeof(u64); ++} ++ ++static inline unsigned bkeyp_val_u64s(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ return k->u64s - bkeyp_key_u64s(format, k); ++} ++ ++static inline size_t bkeyp_val_bytes(const struct bkey_format *format, ++ const struct bkey_packed *k) ++{ ++ return bkeyp_val_u64s(format, k) * sizeof(u64); ++} ++ ++static inline void set_bkeyp_val_u64s(const struct bkey_format *format, ++ struct bkey_packed *k, unsigned val_u64s) ++{ ++ k->u64s = bkeyp_key_u64s(format, k) + val_u64s; ++} ++ ++#define bkeyp_val(_format, _k) \ ++ ((struct bch_val *) ((u64 *) (_k)->_data + bkeyp_key_u64s(_format, _k))) ++ ++extern const struct bkey_format bch2_bkey_format_current; ++ ++bool bch2_bkey_transform(const struct bkey_format *, ++ struct bkey_packed *, ++ const struct bkey_format *, ++ const struct bkey_packed *); ++ ++struct bkey __bch2_bkey_unpack_key(const struct bkey_format *, ++ const struct bkey_packed *); ++ ++#ifndef HAVE_BCACHEFS_COMPILED_UNPACK ++struct bpos __bkey_unpack_pos(const struct bkey_format *, ++ const struct bkey_packed *); ++#endif ++ ++bool bch2_bkey_pack_key(struct bkey_packed *, const struct bkey *, ++ const struct bkey_format *); ++ ++enum bkey_pack_pos_ret { ++ BKEY_PACK_POS_EXACT, ++ BKEY_PACK_POS_SMALLER, ++ BKEY_PACK_POS_FAIL, ++}; ++ ++enum bkey_pack_pos_ret bch2_bkey_pack_pos_lossy(struct bkey_packed *, struct bpos, ++ const struct btree *); ++ ++static inline bool bkey_pack_pos(struct bkey_packed *out, struct bpos in, ++ const struct btree *b) ++{ ++ return bch2_bkey_pack_pos_lossy(out, in, b) == BKEY_PACK_POS_EXACT; ++} ++ ++void bch2_bkey_unpack(const struct btree *, struct bkey_i *, ++ const struct bkey_packed *); ++bool bch2_bkey_pack(struct bkey_packed *, const struct bkey_i *, ++ const struct bkey_format *); ++ ++typedef void (*compiled_unpack_fn)(struct bkey *, const struct bkey_packed *); ++ ++static inline void ++__bkey_unpack_key_format_checked(const struct btree *b, ++ struct bkey *dst, ++ const struct bkey_packed *src) ++{ ++ if (IS_ENABLED(HAVE_BCACHEFS_COMPILED_UNPACK)) { ++ compiled_unpack_fn unpack_fn = b->aux_data; ++ unpack_fn(dst, src); ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) && ++ bch2_expensive_debug_checks) { ++ struct bkey dst2 = __bch2_bkey_unpack_key(&b->format, src); ++ ++ BUG_ON(memcmp(dst, &dst2, sizeof(*dst))); ++ } ++ } else { ++ *dst = __bch2_bkey_unpack_key(&b->format, src); ++ } ++} ++ ++static inline struct bkey ++bkey_unpack_key_format_checked(const struct btree *b, ++ const struct bkey_packed *src) ++{ ++ struct bkey dst; ++ ++ __bkey_unpack_key_format_checked(b, &dst, src); ++ return dst; ++} ++ ++static inline void __bkey_unpack_key(const struct btree *b, ++ struct bkey *dst, ++ const struct bkey_packed *src) ++{ ++ if (likely(bkey_packed(src))) ++ __bkey_unpack_key_format_checked(b, dst, src); ++ else ++ *dst = *packed_to_bkey_c(src); ++} ++ ++/** ++ * bkey_unpack_key -- unpack just the key, not the value ++ */ ++static inline struct bkey bkey_unpack_key(const struct btree *b, ++ const struct bkey_packed *src) ++{ ++ return likely(bkey_packed(src)) ++ ? bkey_unpack_key_format_checked(b, src) ++ : *packed_to_bkey_c(src); ++} ++ ++static inline struct bpos ++bkey_unpack_pos_format_checked(const struct btree *b, ++ const struct bkey_packed *src) ++{ ++#ifdef HAVE_BCACHEFS_COMPILED_UNPACK ++ return bkey_unpack_key_format_checked(b, src).p; ++#else ++ return __bkey_unpack_pos(&b->format, src); ++#endif ++} ++ ++static inline struct bpos bkey_unpack_pos(const struct btree *b, ++ const struct bkey_packed *src) ++{ ++ return likely(bkey_packed(src)) ++ ? bkey_unpack_pos_format_checked(b, src) ++ : packed_to_bkey_c(src)->p; ++} ++ ++/* Disassembled bkeys */ ++ ++static inline struct bkey_s_c bkey_disassemble(const struct btree *b, ++ const struct bkey_packed *k, ++ struct bkey *u) ++{ ++ __bkey_unpack_key(b, u, k); ++ ++ return (struct bkey_s_c) { u, bkeyp_val(&b->format, k), }; ++} ++ ++/* non const version: */ ++static inline struct bkey_s __bkey_disassemble(const struct btree *b, ++ struct bkey_packed *k, ++ struct bkey *u) ++{ ++ __bkey_unpack_key(b, u, k); ++ ++ return (struct bkey_s) { .k = u, .v = bkeyp_val(&b->format, k), }; ++} ++ ++static inline u64 bkey_field_max(const struct bkey_format *f, ++ enum bch_bkey_fields nr) ++{ ++ return f->bits_per_field[nr] < 64 ++ ? (le64_to_cpu(f->field_offset[nr]) + ++ ~(~0ULL << f->bits_per_field[nr])) ++ : U64_MAX; ++} ++ ++#ifdef HAVE_BCACHEFS_COMPILED_UNPACK ++ ++int bch2_compile_bkey_format(const struct bkey_format *, void *); ++ ++#else ++ ++static inline int bch2_compile_bkey_format(const struct bkey_format *format, ++ void *out) { return 0; } ++ ++#endif ++ ++static inline void bkey_reassemble(struct bkey_i *dst, ++ struct bkey_s_c src) ++{ ++ dst->k = *src.k; ++ memcpy_u64s_small(&dst->v, src.v, bkey_val_u64s(src.k)); ++} ++ ++#define bkey_s_null ((struct bkey_s) { .k = NULL }) ++#define bkey_s_c_null ((struct bkey_s_c) { .k = NULL }) ++ ++#define bkey_s_err(err) ((struct bkey_s) { .k = ERR_PTR(err) }) ++#define bkey_s_c_err(err) ((struct bkey_s_c) { .k = ERR_PTR(err) }) ++ ++static inline struct bkey_s bkey_to_s(struct bkey *k) ++{ ++ return (struct bkey_s) { .k = k, .v = NULL }; ++} ++ ++static inline struct bkey_s_c bkey_to_s_c(const struct bkey *k) ++{ ++ return (struct bkey_s_c) { .k = k, .v = NULL }; ++} ++ ++static inline struct bkey_s bkey_i_to_s(struct bkey_i *k) ++{ ++ return (struct bkey_s) { .k = &k->k, .v = &k->v }; ++} ++ ++static inline struct bkey_s_c bkey_i_to_s_c(const struct bkey_i *k) ++{ ++ return (struct bkey_s_c) { .k = &k->k, .v = &k->v }; ++} ++ ++/* ++ * For a given type of value (e.g. struct bch_extent), generates the types for ++ * bkey + bch_extent - inline, split, split const - and also all the conversion ++ * functions, which also check that the value is of the correct type. ++ * ++ * We use anonymous unions for upcasting - e.g. converting from e.g. a ++ * bkey_i_extent to a bkey_i - since that's always safe, instead of conversion ++ * functions. ++ */ ++#define x(name, ...) \ ++struct bkey_i_##name { \ ++ union { \ ++ struct bkey k; \ ++ struct bkey_i k_i; \ ++ }; \ ++ struct bch_##name v; \ ++}; \ ++ \ ++struct bkey_s_c_##name { \ ++ union { \ ++ struct { \ ++ const struct bkey *k; \ ++ const struct bch_##name *v; \ ++ }; \ ++ struct bkey_s_c s_c; \ ++ }; \ ++}; \ ++ \ ++struct bkey_s_##name { \ ++ union { \ ++ struct { \ ++ struct bkey *k; \ ++ struct bch_##name *v; \ ++ }; \ ++ struct bkey_s_c_##name c; \ ++ struct bkey_s s; \ ++ struct bkey_s_c s_c; \ ++ }; \ ++}; \ ++ \ ++static inline struct bkey_i_##name *bkey_i_to_##name(struct bkey_i *k) \ ++{ \ ++ EBUG_ON(!IS_ERR_OR_NULL(k) && k->k.type != KEY_TYPE_##name); \ ++ return container_of(&k->k, struct bkey_i_##name, k); \ ++} \ ++ \ ++static inline const struct bkey_i_##name * \ ++bkey_i_to_##name##_c(const struct bkey_i *k) \ ++{ \ ++ EBUG_ON(!IS_ERR_OR_NULL(k) && k->k.type != KEY_TYPE_##name); \ ++ return container_of(&k->k, struct bkey_i_##name, k); \ ++} \ ++ \ ++static inline struct bkey_s_##name bkey_s_to_##name(struct bkey_s k) \ ++{ \ ++ EBUG_ON(!IS_ERR_OR_NULL(k.k) && k.k->type != KEY_TYPE_##name); \ ++ return (struct bkey_s_##name) { \ ++ .k = k.k, \ ++ .v = container_of(k.v, struct bch_##name, v), \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_c_##name bkey_s_c_to_##name(struct bkey_s_c k)\ ++{ \ ++ EBUG_ON(!IS_ERR_OR_NULL(k.k) && k.k->type != KEY_TYPE_##name); \ ++ return (struct bkey_s_c_##name) { \ ++ .k = k.k, \ ++ .v = container_of(k.v, struct bch_##name, v), \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_##name name##_i_to_s(struct bkey_i_##name *k)\ ++{ \ ++ return (struct bkey_s_##name) { \ ++ .k = &k->k, \ ++ .v = &k->v, \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_c_##name \ ++name##_i_to_s_c(const struct bkey_i_##name *k) \ ++{ \ ++ return (struct bkey_s_c_##name) { \ ++ .k = &k->k, \ ++ .v = &k->v, \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_##name bkey_i_to_s_##name(struct bkey_i *k) \ ++{ \ ++ EBUG_ON(!IS_ERR_OR_NULL(k) && k->k.type != KEY_TYPE_##name); \ ++ return (struct bkey_s_##name) { \ ++ .k = &k->k, \ ++ .v = container_of(&k->v, struct bch_##name, v), \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_s_c_##name \ ++bkey_i_to_s_c_##name(const struct bkey_i *k) \ ++{ \ ++ EBUG_ON(!IS_ERR_OR_NULL(k) && k->k.type != KEY_TYPE_##name); \ ++ return (struct bkey_s_c_##name) { \ ++ .k = &k->k, \ ++ .v = container_of(&k->v, struct bch_##name, v), \ ++ }; \ ++} \ ++ \ ++static inline struct bkey_i_##name *bkey_##name##_init(struct bkey_i *_k)\ ++{ \ ++ struct bkey_i_##name *k = \ ++ container_of(&_k->k, struct bkey_i_##name, k); \ ++ \ ++ bkey_init(&k->k); \ ++ memset(&k->v, 0, sizeof(k->v)); \ ++ k->k.type = KEY_TYPE_##name; \ ++ set_bkey_val_bytes(&k->k, sizeof(k->v)); \ ++ \ ++ return k; \ ++} ++ ++BCH_BKEY_TYPES(); ++#undef x ++ ++/* byte order helpers */ ++ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ ++static inline unsigned high_word_offset(const struct bkey_format *f) ++{ ++ return f->key_u64s - 1; ++} ++ ++#define high_bit_offset 0 ++#define nth_word(p, n) ((p) - (n)) ++ ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++ ++static inline unsigned high_word_offset(const struct bkey_format *f) ++{ ++ return 0; ++} ++ ++#define high_bit_offset KEY_PACKED_BITS_START ++#define nth_word(p, n) ((p) + (n)) ++ ++#else ++#error edit for your odd byteorder. ++#endif ++ ++#define high_word(f, k) ((u64 *) (k)->_data + high_word_offset(f)) ++#define next_word(p) nth_word(p, 1) ++#define prev_word(p) nth_word(p, -1) ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_bkey_pack_test(void); ++#else ++static inline void bch2_bkey_pack_test(void) {} ++#endif ++ ++#define bkey_fields() \ ++ x(BKEY_FIELD_INODE, p.inode) \ ++ x(BKEY_FIELD_OFFSET, p.offset) \ ++ x(BKEY_FIELD_SNAPSHOT, p.snapshot) \ ++ x(BKEY_FIELD_SIZE, size) \ ++ x(BKEY_FIELD_VERSION_HI, version.hi) \ ++ x(BKEY_FIELD_VERSION_LO, version.lo) ++ ++struct bkey_format_state { ++ u64 field_min[BKEY_NR_FIELDS]; ++ u64 field_max[BKEY_NR_FIELDS]; ++}; ++ ++void bch2_bkey_format_init(struct bkey_format_state *); ++ ++static inline void __bkey_format_add(struct bkey_format_state *s, unsigned field, u64 v) ++{ ++ s->field_min[field] = min(s->field_min[field], v); ++ s->field_max[field] = max(s->field_max[field], v); ++} ++ ++/* ++ * Changes @format so that @k can be successfully packed with @format ++ */ ++static inline void bch2_bkey_format_add_key(struct bkey_format_state *s, const struct bkey *k) ++{ ++#define x(id, field) __bkey_format_add(s, id, k->field); ++ bkey_fields() ++#undef x ++} ++ ++void bch2_bkey_format_add_pos(struct bkey_format_state *, struct bpos); ++struct bkey_format bch2_bkey_format_done(struct bkey_format_state *); ++int bch2_bkey_format_invalid(struct bch_fs *, struct bkey_format *, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_bkey_format_to_text(struct printbuf *, const struct bkey_format *); ++ ++#endif /* _BCACHEFS_BKEY_H */ +diff --git a/fs/bcachefs/bkey_buf.h b/fs/bcachefs/bkey_buf.h +new file mode 100644 +index 000000000000..a30c4ae8eb36 +--- /dev/null ++++ b/fs/bcachefs/bkey_buf.h +@@ -0,0 +1,61 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_BUF_H ++#define _BCACHEFS_BKEY_BUF_H ++ ++#include "bcachefs.h" ++#include "bkey.h" ++ ++struct bkey_buf { ++ struct bkey_i *k; ++ u64 onstack[12]; ++}; ++ ++static inline void bch2_bkey_buf_realloc(struct bkey_buf *s, ++ struct bch_fs *c, unsigned u64s) ++{ ++ if (s->k == (void *) s->onstack && ++ u64s > ARRAY_SIZE(s->onstack)) { ++ s->k = mempool_alloc(&c->large_bkey_pool, GFP_NOFS); ++ memcpy(s->k, s->onstack, sizeof(s->onstack)); ++ } ++} ++ ++static inline void bch2_bkey_buf_reassemble(struct bkey_buf *s, ++ struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ bch2_bkey_buf_realloc(s, c, k.k->u64s); ++ bkey_reassemble(s->k, k); ++} ++ ++static inline void bch2_bkey_buf_copy(struct bkey_buf *s, ++ struct bch_fs *c, ++ struct bkey_i *src) ++{ ++ bch2_bkey_buf_realloc(s, c, src->k.u64s); ++ bkey_copy(s->k, src); ++} ++ ++static inline void bch2_bkey_buf_unpack(struct bkey_buf *s, ++ struct bch_fs *c, ++ struct btree *b, ++ struct bkey_packed *src) ++{ ++ bch2_bkey_buf_realloc(s, c, BKEY_U64s + ++ bkeyp_val_u64s(&b->format, src)); ++ bch2_bkey_unpack(b, s->k, src); ++} ++ ++static inline void bch2_bkey_buf_init(struct bkey_buf *s) ++{ ++ s->k = (void *) s->onstack; ++} ++ ++static inline void bch2_bkey_buf_exit(struct bkey_buf *s, struct bch_fs *c) ++{ ++ if (s->k != (void *) s->onstack) ++ mempool_free(s->k, &c->large_bkey_pool); ++ s->k = NULL; ++} ++ ++#endif /* _BCACHEFS_BKEY_BUF_H */ +diff --git a/fs/bcachefs/bkey_cmp.h b/fs/bcachefs/bkey_cmp.h +new file mode 100644 +index 000000000000..5f42a6e69360 +--- /dev/null ++++ b/fs/bcachefs/bkey_cmp.h +@@ -0,0 +1,129 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_CMP_H ++#define _BCACHEFS_BKEY_CMP_H ++ ++#include "bkey.h" ++ ++#ifdef CONFIG_X86_64 ++static inline int __bkey_cmp_bits(const u64 *l, const u64 *r, ++ unsigned nr_key_bits) ++{ ++ long d0, d1, d2, d3; ++ int cmp; ++ ++ /* we shouldn't need asm for this, but gcc is being retarded: */ ++ ++ asm(".intel_syntax noprefix;" ++ "xor eax, eax;" ++ "xor edx, edx;" ++ "1:;" ++ "mov r8, [rdi];" ++ "mov r9, [rsi];" ++ "sub ecx, 64;" ++ "jl 2f;" ++ ++ "cmp r8, r9;" ++ "jnz 3f;" ++ ++ "lea rdi, [rdi - 8];" ++ "lea rsi, [rsi - 8];" ++ "jmp 1b;" ++ ++ "2:;" ++ "not ecx;" ++ "shr r8, 1;" ++ "shr r9, 1;" ++ "shr r8, cl;" ++ "shr r9, cl;" ++ "cmp r8, r9;" ++ ++ "3:\n" ++ "seta al;" ++ "setb dl;" ++ "sub eax, edx;" ++ ".att_syntax prefix;" ++ : "=&D" (d0), "=&S" (d1), "=&d" (d2), "=&c" (d3), "=&a" (cmp) ++ : "0" (l), "1" (r), "3" (nr_key_bits) ++ : "r8", "r9", "cc", "memory"); ++ ++ return cmp; ++} ++#else ++static inline int __bkey_cmp_bits(const u64 *l, const u64 *r, ++ unsigned nr_key_bits) ++{ ++ u64 l_v, r_v; ++ ++ if (!nr_key_bits) ++ return 0; ++ ++ /* for big endian, skip past header */ ++ nr_key_bits += high_bit_offset; ++ l_v = *l & (~0ULL >> high_bit_offset); ++ r_v = *r & (~0ULL >> high_bit_offset); ++ ++ while (1) { ++ if (nr_key_bits < 64) { ++ l_v >>= 64 - nr_key_bits; ++ r_v >>= 64 - nr_key_bits; ++ nr_key_bits = 0; ++ } else { ++ nr_key_bits -= 64; ++ } ++ ++ if (!nr_key_bits || l_v != r_v) ++ break; ++ ++ l = next_word(l); ++ r = next_word(r); ++ ++ l_v = *l; ++ r_v = *r; ++ } ++ ++ return cmp_int(l_v, r_v); ++} ++#endif ++ ++static inline __pure __flatten ++int __bch2_bkey_cmp_packed_format_checked_inlined(const struct bkey_packed *l, ++ const struct bkey_packed *r, ++ const struct btree *b) ++{ ++ const struct bkey_format *f = &b->format; ++ int ret; ++ ++ EBUG_ON(!bkey_packed(l) || !bkey_packed(r)); ++ EBUG_ON(b->nr_key_bits != bkey_format_key_bits(f)); ++ ++ ret = __bkey_cmp_bits(high_word(f, l), ++ high_word(f, r), ++ b->nr_key_bits); ++ ++ EBUG_ON(ret != bpos_cmp(bkey_unpack_pos(b, l), ++ bkey_unpack_pos(b, r))); ++ return ret; ++} ++ ++static inline __pure __flatten ++int bch2_bkey_cmp_packed_inlined(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bkey_packed *r) ++{ ++ struct bkey unpacked; ++ ++ if (likely(bkey_packed(l) && bkey_packed(r))) ++ return __bch2_bkey_cmp_packed_format_checked_inlined(l, r, b); ++ ++ if (bkey_packed(l)) { ++ __bkey_unpack_key_format_checked(b, &unpacked, l); ++ l = (void *) &unpacked; ++ } else if (bkey_packed(r)) { ++ __bkey_unpack_key_format_checked(b, &unpacked, r); ++ r = (void *) &unpacked; ++ } ++ ++ return bpos_cmp(((struct bkey *) l)->p, ((struct bkey *) r)->p); ++} ++ ++#endif /* _BCACHEFS_BKEY_CMP_H */ +diff --git a/fs/bcachefs/bkey_methods.c b/fs/bcachefs/bkey_methods.c +new file mode 100644 +index 000000000000..d9fb1fc81f1e +--- /dev/null ++++ b/fs/bcachefs/bkey_methods.c +@@ -0,0 +1,458 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "backpointers.h" ++#include "bkey_methods.h" ++#include "btree_types.h" ++#include "alloc_background.h" ++#include "dirent.h" ++#include "ec.h" ++#include "error.h" ++#include "extents.h" ++#include "inode.h" ++#include "io_misc.h" ++#include "lru.h" ++#include "quota.h" ++#include "reflink.h" ++#include "snapshot.h" ++#include "subvolume.h" ++#include "xattr.h" ++ ++const char * const bch2_bkey_types[] = { ++#define x(name, nr) #name, ++ BCH_BKEY_TYPES() ++#undef x ++ NULL ++}; ++ ++static int deleted_key_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, struct printbuf *err) ++{ ++ return 0; ++} ++ ++#define bch2_bkey_ops_deleted ((struct bkey_ops) { \ ++ .key_invalid = deleted_key_invalid, \ ++}) ++ ++#define bch2_bkey_ops_whiteout ((struct bkey_ops) { \ ++ .key_invalid = deleted_key_invalid, \ ++}) ++ ++static int empty_val_key_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, struct printbuf *err) ++{ ++ if (bkey_val_bytes(k.k)) { ++ prt_printf(err, "incorrect value size (%zu != 0)", ++ bkey_val_bytes(k.k)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++#define bch2_bkey_ops_error ((struct bkey_ops) { \ ++ .key_invalid = empty_val_key_invalid, \ ++}) ++ ++static int key_type_cookie_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, struct printbuf *err) ++{ ++ return 0; ++} ++ ++#define bch2_bkey_ops_cookie ((struct bkey_ops) { \ ++ .key_invalid = key_type_cookie_invalid, \ ++ .min_val_size = 8, \ ++}) ++ ++#define bch2_bkey_ops_hash_whiteout ((struct bkey_ops) {\ ++ .key_invalid = empty_val_key_invalid, \ ++}) ++ ++static int key_type_inline_data_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, struct printbuf *err) ++{ ++ return 0; ++} ++ ++static void key_type_inline_data_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_inline_data d = bkey_s_c_to_inline_data(k); ++ unsigned datalen = bkey_inline_data_bytes(k.k); ++ ++ prt_printf(out, "datalen %u: %*phN", ++ datalen, min(datalen, 32U), d.v->data); ++} ++ ++#define bch2_bkey_ops_inline_data ((struct bkey_ops) { \ ++ .key_invalid = key_type_inline_data_invalid, \ ++ .val_to_text = key_type_inline_data_to_text, \ ++}) ++ ++static int key_type_set_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, struct printbuf *err) ++{ ++ if (bkey_val_bytes(k.k)) { ++ prt_printf(err, "incorrect value size (%zu != %zu)", ++ bkey_val_bytes(k.k), sizeof(struct bch_cookie)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++static bool key_type_set_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) ++{ ++ bch2_key_resize(l.k, l.k->size + r.k->size); ++ return true; ++} ++ ++#define bch2_bkey_ops_set ((struct bkey_ops) { \ ++ .key_invalid = key_type_set_invalid, \ ++ .key_merge = key_type_set_merge, \ ++}) ++ ++const struct bkey_ops bch2_bkey_ops[] = { ++#define x(name, nr) [KEY_TYPE_##name] = bch2_bkey_ops_##name, ++ BCH_BKEY_TYPES() ++#undef x ++}; ++ ++const struct bkey_ops bch2_bkey_null_ops = { ++}; ++ ++int bch2_bkey_val_invalid(struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ const struct bkey_ops *ops = bch2_bkey_type_ops(k.k->type); ++ ++ if (bkey_val_bytes(k.k) < ops->min_val_size) { ++ prt_printf(err, "bad val size (%zu < %u)", ++ bkey_val_bytes(k.k), ops->min_val_size); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (!ops->key_invalid) ++ return 0; ++ ++ return ops->key_invalid(c, k, flags, err); ++} ++ ++static u64 bch2_key_types_allowed[] = { ++#define x(name, nr, flags, keys) [BKEY_TYPE_##name] = BIT_ULL(KEY_TYPE_deleted)|keys, ++ BCH_BTREE_IDS() ++#undef x ++ [BKEY_TYPE_btree] = ++ BIT_ULL(KEY_TYPE_deleted)| ++ BIT_ULL(KEY_TYPE_btree_ptr)| ++ BIT_ULL(KEY_TYPE_btree_ptr_v2), ++}; ++ ++int __bch2_bkey_invalid(struct bch_fs *c, struct bkey_s_c k, ++ enum btree_node_type type, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ if (k.k->u64s < BKEY_U64s) { ++ prt_printf(err, "u64s too small (%u < %zu)", k.k->u64s, BKEY_U64s); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (flags & BKEY_INVALID_COMMIT && ++ !(bch2_key_types_allowed[type] & BIT_ULL(k.k->type))) { ++ prt_printf(err, "invalid key type for btree %s (%s)", ++ bch2_btree_ids[type], bch2_bkey_types[k.k->type]); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (btree_node_type_is_extents(type) && !bkey_whiteout(k.k)) { ++ if (k.k->size == 0) { ++ prt_printf(err, "size == 0"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (k.k->size > k.k->p.offset) { ++ prt_printf(err, "size greater than offset (%u > %llu)", ++ k.k->size, k.k->p.offset); ++ return -BCH_ERR_invalid_bkey; ++ } ++ } else { ++ if (k.k->size) { ++ prt_printf(err, "size != 0"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ } ++ ++ if (type != BKEY_TYPE_btree) { ++ if (!btree_type_has_snapshots((enum btree_id) type) && ++ k.k->p.snapshot) { ++ prt_printf(err, "nonzero snapshot"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (btree_type_has_snapshots((enum btree_id) type) && ++ !k.k->p.snapshot) { ++ prt_printf(err, "snapshot == 0"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (bkey_eq(k.k->p, POS_MAX)) { ++ prt_printf(err, "key at POS_MAX"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ } ++ ++ return 0; ++} ++ ++int bch2_bkey_invalid(struct bch_fs *c, struct bkey_s_c k, ++ enum btree_node_type type, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ return __bch2_bkey_invalid(c, k, type, flags, err) ?: ++ bch2_bkey_val_invalid(c, k, flags, err); ++} ++ ++int bch2_bkey_in_btree_node(struct btree *b, struct bkey_s_c k, ++ struct printbuf *err) ++{ ++ if (bpos_lt(k.k->p, b->data->min_key)) { ++ prt_printf(err, "key before start of btree node"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (bpos_gt(k.k->p, b->data->max_key)) { ++ prt_printf(err, "key past end of btree node"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_bpos_to_text(struct printbuf *out, struct bpos pos) ++{ ++ if (bpos_eq(pos, POS_MIN)) ++ prt_printf(out, "POS_MIN"); ++ else if (bpos_eq(pos, POS_MAX)) ++ prt_printf(out, "POS_MAX"); ++ else if (bpos_eq(pos, SPOS_MAX)) ++ prt_printf(out, "SPOS_MAX"); ++ else { ++ if (pos.inode == U64_MAX) ++ prt_printf(out, "U64_MAX"); ++ else ++ prt_printf(out, "%llu", pos.inode); ++ prt_printf(out, ":"); ++ if (pos.offset == U64_MAX) ++ prt_printf(out, "U64_MAX"); ++ else ++ prt_printf(out, "%llu", pos.offset); ++ prt_printf(out, ":"); ++ if (pos.snapshot == U32_MAX) ++ prt_printf(out, "U32_MAX"); ++ else ++ prt_printf(out, "%u", pos.snapshot); ++ } ++} ++ ++void bch2_bkey_to_text(struct printbuf *out, const struct bkey *k) ++{ ++ if (k) { ++ prt_printf(out, "u64s %u type ", k->u64s); ++ ++ if (k->type < KEY_TYPE_MAX) ++ prt_printf(out, "%s ", bch2_bkey_types[k->type]); ++ else ++ prt_printf(out, "%u ", k->type); ++ ++ bch2_bpos_to_text(out, k->p); ++ ++ prt_printf(out, " len %u ver %llu", k->size, k->version.lo); ++ } else { ++ prt_printf(out, "(null)"); ++ } ++} ++ ++void bch2_val_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ const struct bkey_ops *ops = bch2_bkey_type_ops(k.k->type); ++ ++ if (likely(ops->val_to_text)) ++ ops->val_to_text(out, c, k); ++} ++ ++void bch2_bkey_val_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ bch2_bkey_to_text(out, k.k); ++ ++ if (bkey_val_bytes(k.k)) { ++ prt_printf(out, ": "); ++ bch2_val_to_text(out, c, k); ++ } ++} ++ ++void bch2_bkey_swab_val(struct bkey_s k) ++{ ++ const struct bkey_ops *ops = bch2_bkey_type_ops(k.k->type); ++ ++ if (ops->swab) ++ ops->swab(k); ++} ++ ++bool bch2_bkey_normalize(struct bch_fs *c, struct bkey_s k) ++{ ++ const struct bkey_ops *ops = bch2_bkey_type_ops(k.k->type); ++ ++ return ops->key_normalize ++ ? ops->key_normalize(c, k) ++ : false; ++} ++ ++bool bch2_bkey_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) ++{ ++ const struct bkey_ops *ops = bch2_bkey_type_ops(l.k->type); ++ ++ return ops->key_merge && ++ bch2_bkey_maybe_mergable(l.k, r.k) && ++ (u64) l.k->size + r.k->size <= KEY_SIZE_MAX && ++ !bch2_key_merging_disabled && ++ ops->key_merge(c, l, r); ++} ++ ++static const struct old_bkey_type { ++ u8 btree_node_type; ++ u8 old; ++ u8 new; ++} bkey_renumber_table[] = { ++ {BKEY_TYPE_btree, 128, KEY_TYPE_btree_ptr }, ++ {BKEY_TYPE_extents, 128, KEY_TYPE_extent }, ++ {BKEY_TYPE_extents, 129, KEY_TYPE_extent }, ++ {BKEY_TYPE_extents, 130, KEY_TYPE_reservation }, ++ {BKEY_TYPE_inodes, 128, KEY_TYPE_inode }, ++ {BKEY_TYPE_inodes, 130, KEY_TYPE_inode_generation }, ++ {BKEY_TYPE_dirents, 128, KEY_TYPE_dirent }, ++ {BKEY_TYPE_dirents, 129, KEY_TYPE_hash_whiteout }, ++ {BKEY_TYPE_xattrs, 128, KEY_TYPE_xattr }, ++ {BKEY_TYPE_xattrs, 129, KEY_TYPE_hash_whiteout }, ++ {BKEY_TYPE_alloc, 128, KEY_TYPE_alloc }, ++ {BKEY_TYPE_quotas, 128, KEY_TYPE_quota }, ++}; ++ ++void bch2_bkey_renumber(enum btree_node_type btree_node_type, ++ struct bkey_packed *k, ++ int write) ++{ ++ const struct old_bkey_type *i; ++ ++ for (i = bkey_renumber_table; ++ i < bkey_renumber_table + ARRAY_SIZE(bkey_renumber_table); ++ i++) ++ if (btree_node_type == i->btree_node_type && ++ k->type == (write ? i->new : i->old)) { ++ k->type = write ? i->old : i->new; ++ break; ++ } ++} ++ ++void __bch2_bkey_compat(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, ++ struct bkey_format *f, ++ struct bkey_packed *k) ++{ ++ const struct bkey_ops *ops; ++ struct bkey uk; ++ unsigned nr_compat = 5; ++ int i; ++ ++ /* ++ * Do these operations in reverse order in the write path: ++ */ ++ ++ for (i = 0; i < nr_compat; i++) ++ switch (!write ? i : nr_compat - 1 - i) { ++ case 0: ++ if (big_endian != CPU_BIG_ENDIAN) ++ bch2_bkey_swab_key(f, k); ++ break; ++ case 1: ++ if (version < bcachefs_metadata_version_bkey_renumber) ++ bch2_bkey_renumber(__btree_node_type(level, btree_id), k, write); ++ break; ++ case 2: ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id == BTREE_ID_inodes) { ++ if (!bkey_packed(k)) { ++ struct bkey_i *u = packed_to_bkey(k); ++ ++ swap(u->k.p.inode, u->k.p.offset); ++ } else if (f->bits_per_field[BKEY_FIELD_INODE] && ++ f->bits_per_field[BKEY_FIELD_OFFSET]) { ++ struct bkey_format tmp = *f, *in = f, *out = &tmp; ++ ++ swap(tmp.bits_per_field[BKEY_FIELD_INODE], ++ tmp.bits_per_field[BKEY_FIELD_OFFSET]); ++ swap(tmp.field_offset[BKEY_FIELD_INODE], ++ tmp.field_offset[BKEY_FIELD_OFFSET]); ++ ++ if (!write) ++ swap(in, out); ++ ++ uk = __bch2_bkey_unpack_key(in, k); ++ swap(uk.p.inode, uk.p.offset); ++ BUG_ON(!bch2_bkey_pack_key(k, &uk, out)); ++ } ++ } ++ break; ++ case 3: ++ if (version < bcachefs_metadata_version_snapshot && ++ (level || btree_type_has_snapshots(btree_id))) { ++ struct bkey_i *u = packed_to_bkey(k); ++ ++ if (u) { ++ u->k.p.snapshot = write ++ ? 0 : U32_MAX; ++ } else { ++ u64 min_packed = le64_to_cpu(f->field_offset[BKEY_FIELD_SNAPSHOT]); ++ u64 max_packed = min_packed + ++ ~(~0ULL << f->bits_per_field[BKEY_FIELD_SNAPSHOT]); ++ ++ uk = __bch2_bkey_unpack_key(f, k); ++ uk.p.snapshot = write ++ ? min_packed : min_t(u64, U32_MAX, max_packed); ++ ++ BUG_ON(!bch2_bkey_pack_key(k, &uk, f)); ++ } ++ } ++ ++ break; ++ case 4: { ++ struct bkey_s u; ++ ++ if (!bkey_packed(k)) { ++ u = bkey_i_to_s(packed_to_bkey(k)); ++ } else { ++ uk = __bch2_bkey_unpack_key(f, k); ++ u.k = &uk; ++ u.v = bkeyp_val(f, k); ++ } ++ ++ if (big_endian != CPU_BIG_ENDIAN) ++ bch2_bkey_swab_val(u); ++ ++ ops = bch2_bkey_type_ops(k->type); ++ ++ if (ops->compat) ++ ops->compat(btree_id, version, big_endian, write, u); ++ break; ++ } ++ default: ++ BUG(); ++ } ++} +diff --git a/fs/bcachefs/bkey_methods.h b/fs/bcachefs/bkey_methods.h +new file mode 100644 +index 000000000000..668f595e2fcf +--- /dev/null ++++ b/fs/bcachefs/bkey_methods.h +@@ -0,0 +1,188 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_METHODS_H ++#define _BCACHEFS_BKEY_METHODS_H ++ ++#include "bkey.h" ++ ++struct bch_fs; ++struct btree; ++struct btree_trans; ++struct bkey; ++enum btree_node_type; ++ ++extern const char * const bch2_bkey_types[]; ++extern const struct bkey_ops bch2_bkey_null_ops; ++ ++/* ++ * key_invalid: checks validity of @k, returns 0 if good or -EINVAL if bad. If ++ * invalid, entire key will be deleted. ++ * ++ * When invalid, error string is returned via @err. @rw indicates whether key is ++ * being read or written; more aggressive checks can be enabled when rw == WRITE. ++ */ ++struct bkey_ops { ++ int (*key_invalid)(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, struct printbuf *err); ++ void (*val_to_text)(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ void (*swab)(struct bkey_s); ++ bool (*key_normalize)(struct bch_fs *, struct bkey_s); ++ bool (*key_merge)(struct bch_fs *, struct bkey_s, struct bkey_s_c); ++ int (*trans_trigger)(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_i *, unsigned); ++ int (*atomic_trigger)(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_s_c, unsigned); ++ void (*compat)(enum btree_id id, unsigned version, ++ unsigned big_endian, int write, ++ struct bkey_s); ++ ++ /* Size of value type when first created: */ ++ unsigned min_val_size; ++}; ++ ++extern const struct bkey_ops bch2_bkey_ops[]; ++ ++static inline const struct bkey_ops *bch2_bkey_type_ops(enum bch_bkey_type type) ++{ ++ return likely(type < KEY_TYPE_MAX) ++ ? &bch2_bkey_ops[type] ++ : &bch2_bkey_null_ops; ++} ++ ++int bch2_bkey_val_invalid(struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++int __bch2_bkey_invalid(struct bch_fs *, struct bkey_s_c, enum btree_node_type, ++ enum bkey_invalid_flags, struct printbuf *); ++int bch2_bkey_invalid(struct bch_fs *, struct bkey_s_c, enum btree_node_type, ++ enum bkey_invalid_flags, struct printbuf *); ++int bch2_bkey_in_btree_node(struct btree *, struct bkey_s_c, struct printbuf *); ++ ++void bch2_bpos_to_text(struct printbuf *, struct bpos); ++void bch2_bkey_to_text(struct printbuf *, const struct bkey *); ++void bch2_val_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++void bch2_bkey_val_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ ++void bch2_bkey_swab_val(struct bkey_s); ++ ++bool bch2_bkey_normalize(struct bch_fs *, struct bkey_s); ++ ++static inline bool bch2_bkey_maybe_mergable(const struct bkey *l, const struct bkey *r) ++{ ++ return l->type == r->type && ++ !bversion_cmp(l->version, r->version) && ++ bpos_eq(l->p, bkey_start_pos(r)); ++} ++ ++bool bch2_bkey_merge(struct bch_fs *, struct bkey_s, struct bkey_s_c); ++ ++static inline int bch2_mark_key(struct btree_trans *trans, ++ enum btree_id btree, unsigned level, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned flags) ++{ ++ const struct bkey_ops *ops = bch2_bkey_type_ops(old.k->type ?: new.k->type); ++ ++ return ops->atomic_trigger ++ ? ops->atomic_trigger(trans, btree, level, old, new, flags) ++ : 0; ++} ++ ++enum btree_update_flags { ++ __BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE = __BTREE_ITER_FLAGS_END, ++ __BTREE_UPDATE_NOJOURNAL, ++ __BTREE_UPDATE_PREJOURNAL, ++ __BTREE_UPDATE_KEY_CACHE_RECLAIM, ++ ++ __BTREE_TRIGGER_NORUN, /* Don't run triggers at all */ ++ ++ __BTREE_TRIGGER_INSERT, ++ __BTREE_TRIGGER_OVERWRITE, ++ ++ __BTREE_TRIGGER_GC, ++ __BTREE_TRIGGER_BUCKET_INVALIDATE, ++ __BTREE_TRIGGER_NOATOMIC, ++}; ++ ++#define BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE (1U << __BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ++#define BTREE_UPDATE_NOJOURNAL (1U << __BTREE_UPDATE_NOJOURNAL) ++#define BTREE_UPDATE_PREJOURNAL (1U << __BTREE_UPDATE_PREJOURNAL) ++#define BTREE_UPDATE_KEY_CACHE_RECLAIM (1U << __BTREE_UPDATE_KEY_CACHE_RECLAIM) ++ ++#define BTREE_TRIGGER_NORUN (1U << __BTREE_TRIGGER_NORUN) ++ ++#define BTREE_TRIGGER_INSERT (1U << __BTREE_TRIGGER_INSERT) ++#define BTREE_TRIGGER_OVERWRITE (1U << __BTREE_TRIGGER_OVERWRITE) ++ ++#define BTREE_TRIGGER_GC (1U << __BTREE_TRIGGER_GC) ++#define BTREE_TRIGGER_BUCKET_INVALIDATE (1U << __BTREE_TRIGGER_BUCKET_INVALIDATE) ++#define BTREE_TRIGGER_NOATOMIC (1U << __BTREE_TRIGGER_NOATOMIC) ++ ++#define BTREE_TRIGGER_WANTS_OLD_AND_NEW \ ++ ((1U << KEY_TYPE_alloc)| \ ++ (1U << KEY_TYPE_alloc_v2)| \ ++ (1U << KEY_TYPE_alloc_v3)| \ ++ (1U << KEY_TYPE_alloc_v4)| \ ++ (1U << KEY_TYPE_stripe)| \ ++ (1U << KEY_TYPE_inode)| \ ++ (1U << KEY_TYPE_inode_v2)| \ ++ (1U << KEY_TYPE_snapshot)) ++ ++static inline int bch2_trans_mark_key(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_i *new, ++ unsigned flags) ++{ ++ const struct bkey_ops *ops = bch2_bkey_type_ops(old.k->type ?: new->k.type); ++ ++ return ops->trans_trigger ++ ? ops->trans_trigger(trans, btree_id, level, old, new, flags) ++ : 0; ++} ++ ++static inline int bch2_trans_mark_old(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, unsigned flags) ++{ ++ struct bkey_i deleted; ++ ++ bkey_init(&deleted.k); ++ deleted.k.p = old.k->p; ++ ++ return bch2_trans_mark_key(trans, btree_id, level, old, &deleted, ++ BTREE_TRIGGER_OVERWRITE|flags); ++} ++ ++static inline int bch2_trans_mark_new(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_i *new, unsigned flags) ++{ ++ struct bkey_i deleted; ++ ++ bkey_init(&deleted.k); ++ deleted.k.p = new->k.p; ++ ++ return bch2_trans_mark_key(trans, btree_id, level, bkey_i_to_s_c(&deleted), new, ++ BTREE_TRIGGER_INSERT|flags); ++} ++ ++void bch2_bkey_renumber(enum btree_node_type, struct bkey_packed *, int); ++ ++void __bch2_bkey_compat(unsigned, enum btree_id, unsigned, unsigned, ++ int, struct bkey_format *, struct bkey_packed *); ++ ++static inline void bch2_bkey_compat(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, ++ struct bkey_format *f, ++ struct bkey_packed *k) ++{ ++ if (version < bcachefs_metadata_version_current || ++ big_endian != CPU_BIG_ENDIAN) ++ __bch2_bkey_compat(level, btree_id, version, ++ big_endian, write, f, k); ++ ++} ++ ++#endif /* _BCACHEFS_BKEY_METHODS_H */ +diff --git a/fs/bcachefs/bkey_sort.c b/fs/bcachefs/bkey_sort.c +new file mode 100644 +index 000000000000..b9aa027c881b +--- /dev/null ++++ b/fs/bcachefs/bkey_sort.c +@@ -0,0 +1,201 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "bkey_buf.h" ++#include "bkey_cmp.h" ++#include "bkey_sort.h" ++#include "bset.h" ++#include "extents.h" ++ ++typedef int (*sort_cmp_fn)(struct btree *, ++ struct bkey_packed *, ++ struct bkey_packed *); ++ ++static inline bool sort_iter_end(struct sort_iter *iter) ++{ ++ return !iter->used; ++} ++ ++static inline void sort_iter_sift(struct sort_iter *iter, unsigned from, ++ sort_cmp_fn cmp) ++{ ++ unsigned i; ++ ++ for (i = from; ++ i + 1 < iter->used && ++ cmp(iter->b, iter->data[i].k, iter->data[i + 1].k) > 0; ++ i++) ++ swap(iter->data[i], iter->data[i + 1]); ++} ++ ++static inline void sort_iter_sort(struct sort_iter *iter, sort_cmp_fn cmp) ++{ ++ unsigned i = iter->used; ++ ++ while (i--) ++ sort_iter_sift(iter, i, cmp); ++} ++ ++static inline struct bkey_packed *sort_iter_peek(struct sort_iter *iter) ++{ ++ return !sort_iter_end(iter) ? iter->data->k : NULL; ++} ++ ++static inline void sort_iter_advance(struct sort_iter *iter, sort_cmp_fn cmp) ++{ ++ struct sort_iter_set *i = iter->data; ++ ++ BUG_ON(!iter->used); ++ ++ i->k = bkey_p_next(i->k); ++ ++ BUG_ON(i->k > i->end); ++ ++ if (i->k == i->end) ++ array_remove_item(iter->data, iter->used, 0); ++ else ++ sort_iter_sift(iter, 0, cmp); ++} ++ ++static inline struct bkey_packed *sort_iter_next(struct sort_iter *iter, ++ sort_cmp_fn cmp) ++{ ++ struct bkey_packed *ret = sort_iter_peek(iter); ++ ++ if (ret) ++ sort_iter_advance(iter, cmp); ++ ++ return ret; ++} ++ ++/* ++ * If keys compare equal, compare by pointer order: ++ */ ++static inline int key_sort_fix_overlapping_cmp(struct btree *b, ++ struct bkey_packed *l, ++ struct bkey_packed *r) ++{ ++ return bch2_bkey_cmp_packed(b, l, r) ?: ++ cmp_int((unsigned long) l, (unsigned long) r); ++} ++ ++static inline bool should_drop_next_key(struct sort_iter *iter) ++{ ++ /* ++ * key_sort_cmp() ensures that when keys compare equal the older key ++ * comes first; so if l->k compares equal to r->k then l->k is older ++ * and should be dropped. ++ */ ++ return iter->used >= 2 && ++ !bch2_bkey_cmp_packed(iter->b, ++ iter->data[0].k, ++ iter->data[1].k); ++} ++ ++struct btree_nr_keys ++bch2_key_sort_fix_overlapping(struct bch_fs *c, struct bset *dst, ++ struct sort_iter *iter) ++{ ++ struct bkey_packed *out = dst->start; ++ struct bkey_packed *k; ++ struct btree_nr_keys nr; ++ ++ memset(&nr, 0, sizeof(nr)); ++ ++ sort_iter_sort(iter, key_sort_fix_overlapping_cmp); ++ ++ while ((k = sort_iter_peek(iter))) { ++ if (!bkey_deleted(k) && ++ !should_drop_next_key(iter)) { ++ bkey_copy(out, k); ++ btree_keys_account_key_add(&nr, 0, out); ++ out = bkey_p_next(out); ++ } ++ ++ sort_iter_advance(iter, key_sort_fix_overlapping_cmp); ++ } ++ ++ dst->u64s = cpu_to_le16((u64 *) out - dst->_data); ++ return nr; ++} ++ ++/* Sort + repack in a new format: */ ++struct btree_nr_keys ++bch2_sort_repack(struct bset *dst, struct btree *src, ++ struct btree_node_iter *src_iter, ++ struct bkey_format *out_f, ++ bool filter_whiteouts) ++{ ++ struct bkey_format *in_f = &src->format; ++ struct bkey_packed *in, *out = vstruct_last(dst); ++ struct btree_nr_keys nr; ++ bool transform = memcmp(out_f, &src->format, sizeof(*out_f)); ++ ++ memset(&nr, 0, sizeof(nr)); ++ ++ while ((in = bch2_btree_node_iter_next_all(src_iter, src))) { ++ if (filter_whiteouts && bkey_deleted(in)) ++ continue; ++ ++ if (!transform) ++ bkey_copy(out, in); ++ else if (bch2_bkey_transform(out_f, out, bkey_packed(in) ++ ? in_f : &bch2_bkey_format_current, in)) ++ out->format = KEY_FORMAT_LOCAL_BTREE; ++ else ++ bch2_bkey_unpack(src, (void *) out, in); ++ ++ out->needs_whiteout = false; ++ ++ btree_keys_account_key_add(&nr, 0, out); ++ out = bkey_p_next(out); ++ } ++ ++ dst->u64s = cpu_to_le16((u64 *) out - dst->_data); ++ return nr; ++} ++ ++static inline int sort_keys_cmp(struct btree *b, ++ struct bkey_packed *l, ++ struct bkey_packed *r) ++{ ++ return bch2_bkey_cmp_packed_inlined(b, l, r) ?: ++ (int) bkey_deleted(r) - (int) bkey_deleted(l) ?: ++ (int) l->needs_whiteout - (int) r->needs_whiteout; ++} ++ ++unsigned bch2_sort_keys(struct bkey_packed *dst, ++ struct sort_iter *iter, ++ bool filter_whiteouts) ++{ ++ const struct bkey_format *f = &iter->b->format; ++ struct bkey_packed *in, *next, *out = dst; ++ ++ sort_iter_sort(iter, sort_keys_cmp); ++ ++ while ((in = sort_iter_next(iter, sort_keys_cmp))) { ++ bool needs_whiteout = false; ++ ++ if (bkey_deleted(in) && ++ (filter_whiteouts || !in->needs_whiteout)) ++ continue; ++ ++ while ((next = sort_iter_peek(iter)) && ++ !bch2_bkey_cmp_packed_inlined(iter->b, in, next)) { ++ BUG_ON(in->needs_whiteout && ++ next->needs_whiteout); ++ needs_whiteout |= in->needs_whiteout; ++ in = sort_iter_next(iter, sort_keys_cmp); ++ } ++ ++ if (bkey_deleted(in)) { ++ memcpy_u64s_small(out, in, bkeyp_key_u64s(f, in)); ++ set_bkeyp_val_u64s(f, out, 0); ++ } else { ++ bkey_copy(out, in); ++ } ++ out->needs_whiteout |= needs_whiteout; ++ out = bkey_p_next(out); ++ } ++ ++ return (u64 *) out - (u64 *) dst; ++} +diff --git a/fs/bcachefs/bkey_sort.h b/fs/bcachefs/bkey_sort.h +new file mode 100644 +index 000000000000..7c0f0b160f18 +--- /dev/null ++++ b/fs/bcachefs/bkey_sort.h +@@ -0,0 +1,54 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BKEY_SORT_H ++#define _BCACHEFS_BKEY_SORT_H ++ ++struct sort_iter { ++ struct btree *b; ++ unsigned used; ++ unsigned size; ++ ++ struct sort_iter_set { ++ struct bkey_packed *k, *end; ++ } data[]; ++}; ++ ++static inline void sort_iter_init(struct sort_iter *iter, struct btree *b, unsigned size) ++{ ++ iter->b = b; ++ iter->used = 0; ++ iter->size = size; ++} ++ ++struct sort_iter_stack { ++ struct sort_iter iter; ++ struct sort_iter_set sets[MAX_BSETS + 1]; ++}; ++ ++static inline void sort_iter_stack_init(struct sort_iter_stack *iter, struct btree *b) ++{ ++ sort_iter_init(&iter->iter, b, ARRAY_SIZE(iter->sets)); ++} ++ ++static inline void sort_iter_add(struct sort_iter *iter, ++ struct bkey_packed *k, ++ struct bkey_packed *end) ++{ ++ BUG_ON(iter->used >= iter->size); ++ ++ if (k != end) ++ iter->data[iter->used++] = (struct sort_iter_set) { k, end }; ++} ++ ++struct btree_nr_keys ++bch2_key_sort_fix_overlapping(struct bch_fs *, struct bset *, ++ struct sort_iter *); ++ ++struct btree_nr_keys ++bch2_sort_repack(struct bset *, struct btree *, ++ struct btree_node_iter *, ++ struct bkey_format *, bool); ++ ++unsigned bch2_sort_keys(struct bkey_packed *, ++ struct sort_iter *, bool); ++ ++#endif /* _BCACHEFS_BKEY_SORT_H */ +diff --git a/fs/bcachefs/bset.c b/fs/bcachefs/bset.c +new file mode 100644 +index 000000000000..bb73ba9017b0 +--- /dev/null ++++ b/fs/bcachefs/bset.c +@@ -0,0 +1,1592 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Code for working with individual keys, and sorted sets of keys with in a ++ * btree node ++ * ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "btree_cache.h" ++#include "bset.h" ++#include "eytzinger.h" ++#include "trace.h" ++#include "util.h" ++ ++#include ++#include ++#include ++#include ++ ++static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *, ++ struct btree *); ++ ++static inline unsigned __btree_node_iter_used(struct btree_node_iter *iter) ++{ ++ unsigned n = ARRAY_SIZE(iter->data); ++ ++ while (n && __btree_node_iter_set_end(iter, n - 1)) ++ --n; ++ ++ return n; ++} ++ ++struct bset_tree *bch2_bkey_to_bset(struct btree *b, struct bkey_packed *k) ++{ ++ return bch2_bkey_to_bset_inlined(b, k); ++} ++ ++/* ++ * There are never duplicate live keys in the btree - but including keys that ++ * have been flagged as deleted (and will be cleaned up later) we _will_ see ++ * duplicates. ++ * ++ * Thus the sort order is: usual key comparison first, but for keys that compare ++ * equal the deleted key(s) come first, and the (at most one) live version comes ++ * last. ++ * ++ * The main reason for this is insertion: to handle overwrites, we first iterate ++ * over keys that compare equal to our insert key, and then insert immediately ++ * prior to the first key greater than the key we're inserting - our insert ++ * position will be after all keys that compare equal to our insert key, which ++ * by the time we actually do the insert will all be deleted. ++ */ ++ ++void bch2_dump_bset(struct bch_fs *c, struct btree *b, ++ struct bset *i, unsigned set) ++{ ++ struct bkey_packed *_k, *_n; ++ struct bkey uk, n; ++ struct bkey_s_c k; ++ struct printbuf buf = PRINTBUF; ++ ++ if (!i->u64s) ++ return; ++ ++ for (_k = i->start; ++ _k < vstruct_last(i); ++ _k = _n) { ++ _n = bkey_p_next(_k); ++ ++ k = bkey_disassemble(b, _k, &uk); ++ ++ printbuf_reset(&buf); ++ if (c) ++ bch2_bkey_val_to_text(&buf, c, k); ++ else ++ bch2_bkey_to_text(&buf, k.k); ++ printk(KERN_ERR "block %u key %5zu: %s\n", set, ++ _k->_data - i->_data, buf.buf); ++ ++ if (_n == vstruct_last(i)) ++ continue; ++ ++ n = bkey_unpack_key(b, _n); ++ ++ if (bpos_lt(n.p, k.k->p)) { ++ printk(KERN_ERR "Key skipped backwards\n"); ++ continue; ++ } ++ ++ if (!bkey_deleted(k.k) && bpos_eq(n.p, k.k->p)) ++ printk(KERN_ERR "Duplicate keys\n"); ++ } ++ ++ printbuf_exit(&buf); ++} ++ ++void bch2_dump_btree_node(struct bch_fs *c, struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ console_lock(); ++ for_each_bset(b, t) ++ bch2_dump_bset(c, b, bset(b, t), t - b->set); ++ console_unlock(); ++} ++ ++void bch2_dump_btree_node_iter(struct btree *b, ++ struct btree_node_iter *iter) ++{ ++ struct btree_node_iter_set *set; ++ struct printbuf buf = PRINTBUF; ++ ++ printk(KERN_ERR "btree node iter with %u/%u sets:\n", ++ __btree_node_iter_used(iter), b->nsets); ++ ++ btree_node_iter_for_each(iter, set) { ++ struct bkey_packed *k = __btree_node_offset_to_key(b, set->k); ++ struct bset_tree *t = bch2_bkey_to_bset(b, k); ++ struct bkey uk = bkey_unpack_key(b, k); ++ ++ printbuf_reset(&buf); ++ bch2_bkey_to_text(&buf, &uk); ++ printk(KERN_ERR "set %zu key %u: %s\n", ++ t - b->set, set->k, buf.buf); ++ } ++ ++ printbuf_exit(&buf); ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++void __bch2_verify_btree_nr_keys(struct btree *b) ++{ ++ struct bset_tree *t; ++ struct bkey_packed *k; ++ struct btree_nr_keys nr = { 0 }; ++ ++ for_each_bset(b, t) ++ bset_tree_for_each_key(b, t, k) ++ if (!bkey_deleted(k)) ++ btree_keys_account_key_add(&nr, t - b->set, k); ++ ++ BUG_ON(memcmp(&nr, &b->nr, sizeof(nr))); ++} ++ ++static void bch2_btree_node_iter_next_check(struct btree_node_iter *_iter, ++ struct btree *b) ++{ ++ struct btree_node_iter iter = *_iter; ++ const struct bkey_packed *k, *n; ++ ++ k = bch2_btree_node_iter_peek_all(&iter, b); ++ __bch2_btree_node_iter_advance(&iter, b); ++ n = bch2_btree_node_iter_peek_all(&iter, b); ++ ++ bkey_unpack_key(b, k); ++ ++ if (n && ++ bkey_iter_cmp(b, k, n) > 0) { ++ struct btree_node_iter_set *set; ++ struct bkey ku = bkey_unpack_key(b, k); ++ struct bkey nu = bkey_unpack_key(b, n); ++ struct printbuf buf1 = PRINTBUF; ++ struct printbuf buf2 = PRINTBUF; ++ ++ bch2_dump_btree_node(NULL, b); ++ bch2_bkey_to_text(&buf1, &ku); ++ bch2_bkey_to_text(&buf2, &nu); ++ printk(KERN_ERR "out of order/overlapping:\n%s\n%s\n", ++ buf1.buf, buf2.buf); ++ printk(KERN_ERR "iter was:"); ++ ++ btree_node_iter_for_each(_iter, set) { ++ struct bkey_packed *k2 = __btree_node_offset_to_key(b, set->k); ++ struct bset_tree *t = bch2_bkey_to_bset(b, k2); ++ printk(" [%zi %zi]", t - b->set, ++ k2->_data - bset(b, t)->_data); ++ } ++ panic("\n"); ++ } ++} ++ ++void bch2_btree_node_iter_verify(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ struct btree_node_iter_set *set, *s2; ++ struct bkey_packed *k, *p; ++ struct bset_tree *t; ++ ++ if (bch2_btree_node_iter_end(iter)) ++ return; ++ ++ /* Verify no duplicates: */ ++ btree_node_iter_for_each(iter, set) { ++ BUG_ON(set->k > set->end); ++ btree_node_iter_for_each(iter, s2) ++ BUG_ON(set != s2 && set->end == s2->end); ++ } ++ ++ /* Verify that set->end is correct: */ ++ btree_node_iter_for_each(iter, set) { ++ for_each_bset(b, t) ++ if (set->end == t->end_offset) ++ goto found; ++ BUG(); ++found: ++ BUG_ON(set->k < btree_bkey_first_offset(t) || ++ set->k >= t->end_offset); ++ } ++ ++ /* Verify iterator is sorted: */ ++ btree_node_iter_for_each(iter, set) ++ BUG_ON(set != iter->data && ++ btree_node_iter_cmp(b, set[-1], set[0]) > 0); ++ ++ k = bch2_btree_node_iter_peek_all(iter, b); ++ ++ for_each_bset(b, t) { ++ if (iter->data[0].end == t->end_offset) ++ continue; ++ ++ p = bch2_bkey_prev_all(b, t, ++ bch2_btree_node_iter_bset_pos(iter, b, t)); ++ ++ BUG_ON(p && bkey_iter_cmp(b, k, p) < 0); ++ } ++} ++ ++void bch2_verify_insert_pos(struct btree *b, struct bkey_packed *where, ++ struct bkey_packed *insert, unsigned clobber_u64s) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset(b, where); ++ struct bkey_packed *prev = bch2_bkey_prev_all(b, t, where); ++ struct bkey_packed *next = (void *) ((u64 *) where->_data + clobber_u64s); ++ struct printbuf buf1 = PRINTBUF; ++ struct printbuf buf2 = PRINTBUF; ++#if 0 ++ BUG_ON(prev && ++ bkey_iter_cmp(b, prev, insert) > 0); ++#else ++ if (prev && ++ bkey_iter_cmp(b, prev, insert) > 0) { ++ struct bkey k1 = bkey_unpack_key(b, prev); ++ struct bkey k2 = bkey_unpack_key(b, insert); ++ ++ bch2_dump_btree_node(NULL, b); ++ bch2_bkey_to_text(&buf1, &k1); ++ bch2_bkey_to_text(&buf2, &k2); ++ ++ panic("prev > insert:\n" ++ "prev key %s\n" ++ "insert key %s\n", ++ buf1.buf, buf2.buf); ++ } ++#endif ++#if 0 ++ BUG_ON(next != btree_bkey_last(b, t) && ++ bkey_iter_cmp(b, insert, next) > 0); ++#else ++ if (next != btree_bkey_last(b, t) && ++ bkey_iter_cmp(b, insert, next) > 0) { ++ struct bkey k1 = bkey_unpack_key(b, insert); ++ struct bkey k2 = bkey_unpack_key(b, next); ++ ++ bch2_dump_btree_node(NULL, b); ++ bch2_bkey_to_text(&buf1, &k1); ++ bch2_bkey_to_text(&buf2, &k2); ++ ++ panic("insert > next:\n" ++ "insert key %s\n" ++ "next key %s\n", ++ buf1.buf, buf2.buf); ++ } ++#endif ++} ++ ++#else ++ ++static inline void bch2_btree_node_iter_next_check(struct btree_node_iter *iter, ++ struct btree *b) {} ++ ++#endif ++ ++/* Auxiliary search trees */ ++ ++#define BFLOAT_FAILED_UNPACKED U8_MAX ++#define BFLOAT_FAILED U8_MAX ++ ++struct bkey_float { ++ u8 exponent; ++ u8 key_offset; ++ u16 mantissa; ++}; ++#define BKEY_MANTISSA_BITS 16 ++ ++static unsigned bkey_float_byte_offset(unsigned idx) ++{ ++ return idx * sizeof(struct bkey_float); ++} ++ ++struct ro_aux_tree { ++ u8 nothing[0]; ++ struct bkey_float f[]; ++}; ++ ++struct rw_aux_tree { ++ u16 offset; ++ struct bpos k; ++}; ++ ++static unsigned bset_aux_tree_buf_end(const struct bset_tree *t) ++{ ++ BUG_ON(t->aux_data_offset == U16_MAX); ++ ++ switch (bset_aux_tree_type(t)) { ++ case BSET_NO_AUX_TREE: ++ return t->aux_data_offset; ++ case BSET_RO_AUX_TREE: ++ return t->aux_data_offset + ++ DIV_ROUND_UP(t->size * sizeof(struct bkey_float) + ++ t->size * sizeof(u8), 8); ++ case BSET_RW_AUX_TREE: ++ return t->aux_data_offset + ++ DIV_ROUND_UP(sizeof(struct rw_aux_tree) * t->size, 8); ++ default: ++ BUG(); ++ } ++} ++ ++static unsigned bset_aux_tree_buf_start(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ return t == b->set ++ ? DIV_ROUND_UP(b->unpack_fn_len, 8) ++ : bset_aux_tree_buf_end(t - 1); ++} ++ ++static void *__aux_tree_base(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ return b->aux_data + t->aux_data_offset * 8; ++} ++ ++static struct ro_aux_tree *ro_aux_tree_base(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); ++ ++ return __aux_tree_base(b, t); ++} ++ ++static u8 *ro_aux_tree_prev(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RO_AUX_TREE); ++ ++ return __aux_tree_base(b, t) + bkey_float_byte_offset(t->size); ++} ++ ++static struct bkey_float *bkey_float(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned idx) ++{ ++ return ro_aux_tree_base(b, t)->f + idx; ++} ++ ++static void bset_aux_tree_verify(const struct btree *b) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ const struct bset_tree *t; ++ ++ for_each_bset(b, t) { ++ if (t->aux_data_offset == U16_MAX) ++ continue; ++ ++ BUG_ON(t != b->set && ++ t[-1].aux_data_offset == U16_MAX); ++ ++ BUG_ON(t->aux_data_offset < bset_aux_tree_buf_start(b, t)); ++ BUG_ON(t->aux_data_offset > btree_aux_data_u64s(b)); ++ BUG_ON(bset_aux_tree_buf_end(t) > btree_aux_data_u64s(b)); ++ } ++#endif ++} ++ ++void bch2_btree_keys_init(struct btree *b) ++{ ++ unsigned i; ++ ++ b->nsets = 0; ++ memset(&b->nr, 0, sizeof(b->nr)); ++ ++ for (i = 0; i < MAX_BSETS; i++) ++ b->set[i].data_offset = U16_MAX; ++ ++ bch2_bset_set_no_aux_tree(b, b->set); ++} ++ ++/* Binary tree stuff for auxiliary search trees */ ++ ++/* ++ * Cacheline/offset <-> bkey pointer arithmetic: ++ * ++ * t->tree is a binary search tree in an array; each node corresponds to a key ++ * in one cacheline in t->set (BSET_CACHELINE bytes). ++ * ++ * This means we don't have to store the full index of the key that a node in ++ * the binary tree points to; eytzinger1_to_inorder() gives us the cacheline, and ++ * then bkey_float->m gives us the offset within that cacheline, in units of 8 ++ * bytes. ++ * ++ * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to ++ * make this work. ++ * ++ * To construct the bfloat for an arbitrary key we need to know what the key ++ * immediately preceding it is: we have to check if the two keys differ in the ++ * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size ++ * of the previous key so we can walk backwards to it from t->tree[j]'s key. ++ */ ++ ++static inline void *bset_cacheline(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned cacheline) ++{ ++ return (void *) round_down((unsigned long) btree_bkey_first(b, t), ++ L1_CACHE_BYTES) + ++ cacheline * BSET_CACHELINE; ++} ++ ++static struct bkey_packed *cacheline_to_bkey(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned cacheline, ++ unsigned offset) ++{ ++ return bset_cacheline(b, t, cacheline) + offset * 8; ++} ++ ++static unsigned bkey_to_cacheline(const struct btree *b, ++ const struct bset_tree *t, ++ const struct bkey_packed *k) ++{ ++ return ((void *) k - bset_cacheline(b, t, 0)) / BSET_CACHELINE; ++} ++ ++static ssize_t __bkey_to_cacheline_offset(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned cacheline, ++ const struct bkey_packed *k) ++{ ++ return (u64 *) k - (u64 *) bset_cacheline(b, t, cacheline); ++} ++ ++static unsigned bkey_to_cacheline_offset(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned cacheline, ++ const struct bkey_packed *k) ++{ ++ size_t m = __bkey_to_cacheline_offset(b, t, cacheline, k); ++ ++ EBUG_ON(m > U8_MAX); ++ return m; ++} ++ ++static inline struct bkey_packed *tree_to_bkey(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned j) ++{ ++ return cacheline_to_bkey(b, t, ++ __eytzinger1_to_inorder(j, t->size - 1, t->extra), ++ bkey_float(b, t, j)->key_offset); ++} ++ ++static struct bkey_packed *tree_to_prev_bkey(const struct btree *b, ++ const struct bset_tree *t, ++ unsigned j) ++{ ++ unsigned prev_u64s = ro_aux_tree_prev(b, t)[j]; ++ ++ return (void *) ((u64 *) tree_to_bkey(b, t, j)->_data - prev_u64s); ++} ++ ++static struct rw_aux_tree *rw_aux_tree(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); ++ ++ return __aux_tree_base(b, t); ++} ++ ++/* ++ * For the write set - the one we're currently inserting keys into - we don't ++ * maintain a full search tree, we just keep a simple lookup table in t->prev. ++ */ ++static struct bkey_packed *rw_aux_to_bkey(const struct btree *b, ++ struct bset_tree *t, ++ unsigned j) ++{ ++ return __btree_node_offset_to_key(b, rw_aux_tree(b, t)[j].offset); ++} ++ ++static void rw_aux_tree_set(const struct btree *b, struct bset_tree *t, ++ unsigned j, struct bkey_packed *k) ++{ ++ EBUG_ON(k >= btree_bkey_last(b, t)); ++ ++ rw_aux_tree(b, t)[j] = (struct rw_aux_tree) { ++ .offset = __btree_node_key_to_offset(b, k), ++ .k = bkey_unpack_pos(b, k), ++ }; ++} ++ ++static void bch2_bset_verify_rw_aux_tree(struct btree *b, ++ struct bset_tree *t) ++{ ++ struct bkey_packed *k = btree_bkey_first(b, t); ++ unsigned j = 0; ++ ++ if (!bch2_expensive_debug_checks) ++ return; ++ ++ BUG_ON(bset_has_ro_aux_tree(t)); ++ ++ if (!bset_has_rw_aux_tree(t)) ++ return; ++ ++ BUG_ON(t->size < 1); ++ BUG_ON(rw_aux_to_bkey(b, t, j) != k); ++ ++ goto start; ++ while (1) { ++ if (rw_aux_to_bkey(b, t, j) == k) { ++ BUG_ON(!bpos_eq(rw_aux_tree(b, t)[j].k, ++ bkey_unpack_pos(b, k))); ++start: ++ if (++j == t->size) ++ break; ++ ++ BUG_ON(rw_aux_tree(b, t)[j].offset <= ++ rw_aux_tree(b, t)[j - 1].offset); ++ } ++ ++ k = bkey_p_next(k); ++ BUG_ON(k >= btree_bkey_last(b, t)); ++ } ++} ++ ++/* returns idx of first entry >= offset: */ ++static unsigned rw_aux_tree_bsearch(struct btree *b, ++ struct bset_tree *t, ++ unsigned offset) ++{ ++ unsigned bset_offs = offset - btree_bkey_first_offset(t); ++ unsigned bset_u64s = t->end_offset - btree_bkey_first_offset(t); ++ unsigned idx = bset_u64s ? bset_offs * t->size / bset_u64s : 0; ++ ++ EBUG_ON(bset_aux_tree_type(t) != BSET_RW_AUX_TREE); ++ EBUG_ON(!t->size); ++ EBUG_ON(idx > t->size); ++ ++ while (idx < t->size && ++ rw_aux_tree(b, t)[idx].offset < offset) ++ idx++; ++ ++ while (idx && ++ rw_aux_tree(b, t)[idx - 1].offset >= offset) ++ idx--; ++ ++ EBUG_ON(idx < t->size && ++ rw_aux_tree(b, t)[idx].offset < offset); ++ EBUG_ON(idx && rw_aux_tree(b, t)[idx - 1].offset >= offset); ++ EBUG_ON(idx + 1 < t->size && ++ rw_aux_tree(b, t)[idx].offset == ++ rw_aux_tree(b, t)[idx + 1].offset); ++ ++ return idx; ++} ++ ++static inline unsigned bkey_mantissa(const struct bkey_packed *k, ++ const struct bkey_float *f, ++ unsigned idx) ++{ ++ u64 v; ++ ++ EBUG_ON(!bkey_packed(k)); ++ ++ v = get_unaligned((u64 *) (((u8 *) k->_data) + (f->exponent >> 3))); ++ ++ /* ++ * In little endian, we're shifting off low bits (and then the bits we ++ * want are at the low end), in big endian we're shifting off high bits ++ * (and then the bits we want are at the high end, so we shift them ++ * back down): ++ */ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ v >>= f->exponent & 7; ++#else ++ v >>= 64 - (f->exponent & 7) - BKEY_MANTISSA_BITS; ++#endif ++ return (u16) v; ++} ++ ++static __always_inline void make_bfloat(struct btree *b, struct bset_tree *t, ++ unsigned j, ++ struct bkey_packed *min_key, ++ struct bkey_packed *max_key) ++{ ++ struct bkey_float *f = bkey_float(b, t, j); ++ struct bkey_packed *m = tree_to_bkey(b, t, j); ++ struct bkey_packed *l = is_power_of_2(j) ++ ? min_key ++ : tree_to_prev_bkey(b, t, j >> ffs(j)); ++ struct bkey_packed *r = is_power_of_2(j + 1) ++ ? max_key ++ : tree_to_bkey(b, t, j >> (ffz(j) + 1)); ++ unsigned mantissa; ++ int shift, exponent, high_bit; ++ ++ /* ++ * for failed bfloats, the lookup code falls back to comparing against ++ * the original key. ++ */ ++ ++ if (!bkey_packed(l) || !bkey_packed(r) || !bkey_packed(m) || ++ !b->nr_key_bits) { ++ f->exponent = BFLOAT_FAILED_UNPACKED; ++ return; ++ } ++ ++ /* ++ * The greatest differing bit of l and r is the first bit we must ++ * include in the bfloat mantissa we're creating in order to do ++ * comparisons - that bit always becomes the high bit of ++ * bfloat->mantissa, and thus the exponent we're calculating here is ++ * the position of what will become the low bit in bfloat->mantissa: ++ * ++ * Note that this may be negative - we may be running off the low end ++ * of the key: we handle this later: ++ */ ++ high_bit = max(bch2_bkey_greatest_differing_bit(b, l, r), ++ min_t(unsigned, BKEY_MANTISSA_BITS, b->nr_key_bits) - 1); ++ exponent = high_bit - (BKEY_MANTISSA_BITS - 1); ++ ++ /* ++ * Then we calculate the actual shift value, from the start of the key ++ * (k->_data), to get the key bits starting at exponent: ++ */ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ shift = (int) (b->format.key_u64s * 64 - b->nr_key_bits) + exponent; ++ ++ EBUG_ON(shift + BKEY_MANTISSA_BITS > b->format.key_u64s * 64); ++#else ++ shift = high_bit_offset + ++ b->nr_key_bits - ++ exponent - ++ BKEY_MANTISSA_BITS; ++ ++ EBUG_ON(shift < KEY_PACKED_BITS_START); ++#endif ++ EBUG_ON(shift < 0 || shift >= BFLOAT_FAILED); ++ ++ f->exponent = shift; ++ mantissa = bkey_mantissa(m, f, j); ++ ++ /* ++ * If we've got garbage bits, set them to all 1s - it's legal for the ++ * bfloat to compare larger than the original key, but not smaller: ++ */ ++ if (exponent < 0) ++ mantissa |= ~(~0U << -exponent); ++ ++ f->mantissa = mantissa; ++} ++ ++/* bytes remaining - only valid for last bset: */ ++static unsigned __bset_tree_capacity(const struct btree *b, const struct bset_tree *t) ++{ ++ bset_aux_tree_verify(b); ++ ++ return btree_aux_data_bytes(b) - t->aux_data_offset * sizeof(u64); ++} ++ ++static unsigned bset_ro_tree_capacity(const struct btree *b, const struct bset_tree *t) ++{ ++ return __bset_tree_capacity(b, t) / ++ (sizeof(struct bkey_float) + sizeof(u8)); ++} ++ ++static unsigned bset_rw_tree_capacity(const struct btree *b, const struct bset_tree *t) ++{ ++ return __bset_tree_capacity(b, t) / sizeof(struct rw_aux_tree); ++} ++ ++static noinline void __build_rw_aux_tree(struct btree *b, struct bset_tree *t) ++{ ++ struct bkey_packed *k; ++ ++ t->size = 1; ++ t->extra = BSET_RW_AUX_TREE_VAL; ++ rw_aux_tree(b, t)[0].offset = ++ __btree_node_key_to_offset(b, btree_bkey_first(b, t)); ++ ++ bset_tree_for_each_key(b, t, k) { ++ if (t->size == bset_rw_tree_capacity(b, t)) ++ break; ++ ++ if ((void *) k - (void *) rw_aux_to_bkey(b, t, t->size - 1) > ++ L1_CACHE_BYTES) ++ rw_aux_tree_set(b, t, t->size++, k); ++ } ++} ++ ++static noinline void __build_ro_aux_tree(struct btree *b, struct bset_tree *t) ++{ ++ struct bkey_packed *prev = NULL, *k = btree_bkey_first(b, t); ++ struct bkey_i min_key, max_key; ++ unsigned j, cacheline = 1; ++ ++ t->size = min(bkey_to_cacheline(b, t, btree_bkey_last(b, t)), ++ bset_ro_tree_capacity(b, t)); ++retry: ++ if (t->size < 2) { ++ t->size = 0; ++ t->extra = BSET_NO_AUX_TREE_VAL; ++ return; ++ } ++ ++ t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1; ++ ++ /* First we figure out where the first key in each cacheline is */ ++ eytzinger1_for_each(j, t->size - 1) { ++ while (bkey_to_cacheline(b, t, k) < cacheline) ++ prev = k, k = bkey_p_next(k); ++ ++ if (k >= btree_bkey_last(b, t)) { ++ /* XXX: this path sucks */ ++ t->size--; ++ goto retry; ++ } ++ ++ ro_aux_tree_prev(b, t)[j] = prev->u64s; ++ bkey_float(b, t, j)->key_offset = ++ bkey_to_cacheline_offset(b, t, cacheline++, k); ++ ++ EBUG_ON(tree_to_prev_bkey(b, t, j) != prev); ++ EBUG_ON(tree_to_bkey(b, t, j) != k); ++ } ++ ++ while (k != btree_bkey_last(b, t)) ++ prev = k, k = bkey_p_next(k); ++ ++ if (!bkey_pack_pos(bkey_to_packed(&min_key), b->data->min_key, b)) { ++ bkey_init(&min_key.k); ++ min_key.k.p = b->data->min_key; ++ } ++ ++ if (!bkey_pack_pos(bkey_to_packed(&max_key), b->data->max_key, b)) { ++ bkey_init(&max_key.k); ++ max_key.k.p = b->data->max_key; ++ } ++ ++ /* Then we build the tree */ ++ eytzinger1_for_each(j, t->size - 1) ++ make_bfloat(b, t, j, ++ bkey_to_packed(&min_key), ++ bkey_to_packed(&max_key)); ++} ++ ++static void bset_alloc_tree(struct btree *b, struct bset_tree *t) ++{ ++ struct bset_tree *i; ++ ++ for (i = b->set; i != t; i++) ++ BUG_ON(bset_has_rw_aux_tree(i)); ++ ++ bch2_bset_set_no_aux_tree(b, t); ++ ++ /* round up to next cacheline: */ ++ t->aux_data_offset = round_up(bset_aux_tree_buf_start(b, t), ++ SMP_CACHE_BYTES / sizeof(u64)); ++ ++ bset_aux_tree_verify(b); ++} ++ ++void bch2_bset_build_aux_tree(struct btree *b, struct bset_tree *t, ++ bool writeable) ++{ ++ if (writeable ++ ? bset_has_rw_aux_tree(t) ++ : bset_has_ro_aux_tree(t)) ++ return; ++ ++ bset_alloc_tree(b, t); ++ ++ if (!__bset_tree_capacity(b, t)) ++ return; ++ ++ if (writeable) ++ __build_rw_aux_tree(b, t); ++ else ++ __build_ro_aux_tree(b, t); ++ ++ bset_aux_tree_verify(b); ++} ++ ++void bch2_bset_init_first(struct btree *b, struct bset *i) ++{ ++ struct bset_tree *t; ++ ++ BUG_ON(b->nsets); ++ ++ memset(i, 0, sizeof(*i)); ++ get_random_bytes(&i->seq, sizeof(i->seq)); ++ SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); ++ ++ t = &b->set[b->nsets++]; ++ set_btree_bset(b, t, i); ++} ++ ++void bch2_bset_init_next(struct bch_fs *c, struct btree *b, ++ struct btree_node_entry *bne) ++{ ++ struct bset *i = &bne->keys; ++ struct bset_tree *t; ++ ++ BUG_ON(bset_byte_offset(b, bne) >= btree_bytes(c)); ++ BUG_ON((void *) bne < (void *) btree_bkey_last(b, bset_tree_last(b))); ++ BUG_ON(b->nsets >= MAX_BSETS); ++ ++ memset(i, 0, sizeof(*i)); ++ i->seq = btree_bset_first(b)->seq; ++ SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); ++ ++ t = &b->set[b->nsets++]; ++ set_btree_bset(b, t, i); ++} ++ ++/* ++ * find _some_ key in the same bset as @k that precedes @k - not necessarily the ++ * immediate predecessor: ++ */ ++static struct bkey_packed *__bkey_prev(struct btree *b, struct bset_tree *t, ++ struct bkey_packed *k) ++{ ++ struct bkey_packed *p; ++ unsigned offset; ++ int j; ++ ++ EBUG_ON(k < btree_bkey_first(b, t) || ++ k > btree_bkey_last(b, t)); ++ ++ if (k == btree_bkey_first(b, t)) ++ return NULL; ++ ++ switch (bset_aux_tree_type(t)) { ++ case BSET_NO_AUX_TREE: ++ p = btree_bkey_first(b, t); ++ break; ++ case BSET_RO_AUX_TREE: ++ j = min_t(unsigned, t->size - 1, bkey_to_cacheline(b, t, k)); ++ ++ do { ++ p = j ? tree_to_bkey(b, t, ++ __inorder_to_eytzinger1(j--, ++ t->size - 1, t->extra)) ++ : btree_bkey_first(b, t); ++ } while (p >= k); ++ break; ++ case BSET_RW_AUX_TREE: ++ offset = __btree_node_key_to_offset(b, k); ++ j = rw_aux_tree_bsearch(b, t, offset); ++ p = j ? rw_aux_to_bkey(b, t, j - 1) ++ : btree_bkey_first(b, t); ++ break; ++ } ++ ++ return p; ++} ++ ++struct bkey_packed *bch2_bkey_prev_filter(struct btree *b, ++ struct bset_tree *t, ++ struct bkey_packed *k, ++ unsigned min_key_type) ++{ ++ struct bkey_packed *p, *i, *ret = NULL, *orig_k = k; ++ ++ while ((p = __bkey_prev(b, t, k)) && !ret) { ++ for (i = p; i != k; i = bkey_p_next(i)) ++ if (i->type >= min_key_type) ++ ret = i; ++ ++ k = p; ++ } ++ ++ if (bch2_expensive_debug_checks) { ++ BUG_ON(ret >= orig_k); ++ ++ for (i = ret ++ ? bkey_p_next(ret) ++ : btree_bkey_first(b, t); ++ i != orig_k; ++ i = bkey_p_next(i)) ++ BUG_ON(i->type >= min_key_type); ++ } ++ ++ return ret; ++} ++ ++/* Insert */ ++ ++static void bch2_bset_fix_lookup_table(struct btree *b, ++ struct bset_tree *t, ++ struct bkey_packed *_where, ++ unsigned clobber_u64s, ++ unsigned new_u64s) ++{ ++ int shift = new_u64s - clobber_u64s; ++ unsigned l, j, where = __btree_node_key_to_offset(b, _where); ++ ++ EBUG_ON(bset_has_ro_aux_tree(t)); ++ ++ if (!bset_has_rw_aux_tree(t)) ++ return; ++ ++ /* returns first entry >= where */ ++ l = rw_aux_tree_bsearch(b, t, where); ++ ++ if (!l) /* never delete first entry */ ++ l++; ++ else if (l < t->size && ++ where < t->end_offset && ++ rw_aux_tree(b, t)[l].offset == where) ++ rw_aux_tree_set(b, t, l++, _where); ++ ++ /* l now > where */ ++ ++ for (j = l; ++ j < t->size && ++ rw_aux_tree(b, t)[j].offset < where + clobber_u64s; ++ j++) ++ ; ++ ++ if (j < t->size && ++ rw_aux_tree(b, t)[j].offset + shift == ++ rw_aux_tree(b, t)[l - 1].offset) ++ j++; ++ ++ memmove(&rw_aux_tree(b, t)[l], ++ &rw_aux_tree(b, t)[j], ++ (void *) &rw_aux_tree(b, t)[t->size] - ++ (void *) &rw_aux_tree(b, t)[j]); ++ t->size -= j - l; ++ ++ for (j = l; j < t->size; j++) ++ rw_aux_tree(b, t)[j].offset += shift; ++ ++ EBUG_ON(l < t->size && ++ rw_aux_tree(b, t)[l].offset == ++ rw_aux_tree(b, t)[l - 1].offset); ++ ++ if (t->size < bset_rw_tree_capacity(b, t) && ++ (l < t->size ++ ? rw_aux_tree(b, t)[l].offset ++ : t->end_offset) - ++ rw_aux_tree(b, t)[l - 1].offset > ++ L1_CACHE_BYTES / sizeof(u64)) { ++ struct bkey_packed *start = rw_aux_to_bkey(b, t, l - 1); ++ struct bkey_packed *end = l < t->size ++ ? rw_aux_to_bkey(b, t, l) ++ : btree_bkey_last(b, t); ++ struct bkey_packed *k = start; ++ ++ while (1) { ++ k = bkey_p_next(k); ++ if (k == end) ++ break; ++ ++ if ((void *) k - (void *) start >= L1_CACHE_BYTES) { ++ memmove(&rw_aux_tree(b, t)[l + 1], ++ &rw_aux_tree(b, t)[l], ++ (void *) &rw_aux_tree(b, t)[t->size] - ++ (void *) &rw_aux_tree(b, t)[l]); ++ t->size++; ++ rw_aux_tree_set(b, t, l, k); ++ break; ++ } ++ } ++ } ++ ++ bch2_bset_verify_rw_aux_tree(b, t); ++ bset_aux_tree_verify(b); ++} ++ ++void bch2_bset_insert(struct btree *b, ++ struct btree_node_iter *iter, ++ struct bkey_packed *where, ++ struct bkey_i *insert, ++ unsigned clobber_u64s) ++{ ++ struct bkey_format *f = &b->format; ++ struct bset_tree *t = bset_tree_last(b); ++ struct bkey_packed packed, *src = bkey_to_packed(insert); ++ ++ bch2_bset_verify_rw_aux_tree(b, t); ++ bch2_verify_insert_pos(b, where, bkey_to_packed(insert), clobber_u64s); ++ ++ if (bch2_bkey_pack_key(&packed, &insert->k, f)) ++ src = &packed; ++ ++ if (!bkey_deleted(&insert->k)) ++ btree_keys_account_key_add(&b->nr, t - b->set, src); ++ ++ if (src->u64s != clobber_u64s) { ++ u64 *src_p = (u64 *) where->_data + clobber_u64s; ++ u64 *dst_p = (u64 *) where->_data + src->u64s; ++ ++ EBUG_ON((int) le16_to_cpu(bset(b, t)->u64s) < ++ (int) clobber_u64s - src->u64s); ++ ++ memmove_u64s(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); ++ le16_add_cpu(&bset(b, t)->u64s, src->u64s - clobber_u64s); ++ set_btree_bset_end(b, t); ++ } ++ ++ memcpy_u64s_small(where, src, ++ bkeyp_key_u64s(f, src)); ++ memcpy_u64s(bkeyp_val(f, where), &insert->v, ++ bkeyp_val_u64s(f, src)); ++ ++ if (src->u64s != clobber_u64s) ++ bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, src->u64s); ++ ++ bch2_verify_btree_nr_keys(b); ++} ++ ++void bch2_bset_delete(struct btree *b, ++ struct bkey_packed *where, ++ unsigned clobber_u64s) ++{ ++ struct bset_tree *t = bset_tree_last(b); ++ u64 *src_p = (u64 *) where->_data + clobber_u64s; ++ u64 *dst_p = where->_data; ++ ++ bch2_bset_verify_rw_aux_tree(b, t); ++ ++ EBUG_ON(le16_to_cpu(bset(b, t)->u64s) < clobber_u64s); ++ ++ memmove_u64s_down(dst_p, src_p, btree_bkey_last(b, t)->_data - src_p); ++ le16_add_cpu(&bset(b, t)->u64s, -clobber_u64s); ++ set_btree_bset_end(b, t); ++ ++ bch2_bset_fix_lookup_table(b, t, where, clobber_u64s, 0); ++} ++ ++/* Lookup */ ++ ++__flatten ++static struct bkey_packed *bset_search_write_set(const struct btree *b, ++ struct bset_tree *t, ++ struct bpos *search) ++{ ++ unsigned l = 0, r = t->size; ++ ++ while (l + 1 != r) { ++ unsigned m = (l + r) >> 1; ++ ++ if (bpos_lt(rw_aux_tree(b, t)[m].k, *search)) ++ l = m; ++ else ++ r = m; ++ } ++ ++ return rw_aux_to_bkey(b, t, l); ++} ++ ++static inline void prefetch_four_cachelines(void *p) ++{ ++#ifdef CONFIG_X86_64 ++ asm("prefetcht0 (-127 + 64 * 0)(%0);" ++ "prefetcht0 (-127 + 64 * 1)(%0);" ++ "prefetcht0 (-127 + 64 * 2)(%0);" ++ "prefetcht0 (-127 + 64 * 3)(%0);" ++ : ++ : "r" (p + 127)); ++#else ++ prefetch(p + L1_CACHE_BYTES * 0); ++ prefetch(p + L1_CACHE_BYTES * 1); ++ prefetch(p + L1_CACHE_BYTES * 2); ++ prefetch(p + L1_CACHE_BYTES * 3); ++#endif ++} ++ ++static inline bool bkey_mantissa_bits_dropped(const struct btree *b, ++ const struct bkey_float *f, ++ unsigned idx) ++{ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++ unsigned key_bits_start = b->format.key_u64s * 64 - b->nr_key_bits; ++ ++ return f->exponent > key_bits_start; ++#else ++ unsigned key_bits_end = high_bit_offset + b->nr_key_bits; ++ ++ return f->exponent + BKEY_MANTISSA_BITS < key_bits_end; ++#endif ++} ++ ++__flatten ++static struct bkey_packed *bset_search_tree(const struct btree *b, ++ const struct bset_tree *t, ++ const struct bpos *search, ++ const struct bkey_packed *packed_search) ++{ ++ struct ro_aux_tree *base = ro_aux_tree_base(b, t); ++ struct bkey_float *f; ++ struct bkey_packed *k; ++ unsigned inorder, n = 1, l, r; ++ int cmp; ++ ++ do { ++ if (likely(n << 4 < t->size)) ++ prefetch(&base->f[n << 4]); ++ ++ f = &base->f[n]; ++ if (unlikely(f->exponent >= BFLOAT_FAILED)) ++ goto slowpath; ++ ++ l = f->mantissa; ++ r = bkey_mantissa(packed_search, f, n); ++ ++ if (unlikely(l == r) && bkey_mantissa_bits_dropped(b, f, n)) ++ goto slowpath; ++ ++ n = n * 2 + (l < r); ++ continue; ++slowpath: ++ k = tree_to_bkey(b, t, n); ++ cmp = bkey_cmp_p_or_unp(b, k, packed_search, search); ++ if (!cmp) ++ return k; ++ ++ n = n * 2 + (cmp < 0); ++ } while (n < t->size); ++ ++ inorder = __eytzinger1_to_inorder(n >> 1, t->size - 1, t->extra); ++ ++ /* ++ * n would have been the node we recursed to - the low bit tells us if ++ * we recursed left or recursed right. ++ */ ++ if (likely(!(n & 1))) { ++ --inorder; ++ if (unlikely(!inorder)) ++ return btree_bkey_first(b, t); ++ ++ f = &base->f[eytzinger1_prev(n >> 1, t->size - 1)]; ++ } ++ ++ return cacheline_to_bkey(b, t, inorder, f->key_offset); ++} ++ ++static __always_inline __flatten ++struct bkey_packed *__bch2_bset_search(struct btree *b, ++ struct bset_tree *t, ++ struct bpos *search, ++ const struct bkey_packed *lossy_packed_search) ++{ ++ ++ /* ++ * First, we search for a cacheline, then lastly we do a linear search ++ * within that cacheline. ++ * ++ * To search for the cacheline, there's three different possibilities: ++ * * The set is too small to have a search tree, so we just do a linear ++ * search over the whole set. ++ * * The set is the one we're currently inserting into; keeping a full ++ * auxiliary search tree up to date would be too expensive, so we ++ * use a much simpler lookup table to do a binary search - ++ * bset_search_write_set(). ++ * * Or we use the auxiliary search tree we constructed earlier - ++ * bset_search_tree() ++ */ ++ ++ switch (bset_aux_tree_type(t)) { ++ case BSET_NO_AUX_TREE: ++ return btree_bkey_first(b, t); ++ case BSET_RW_AUX_TREE: ++ return bset_search_write_set(b, t, search); ++ case BSET_RO_AUX_TREE: ++ return bset_search_tree(b, t, search, lossy_packed_search); ++ default: ++ BUG(); ++ } ++} ++ ++static __always_inline __flatten ++struct bkey_packed *bch2_bset_search_linear(struct btree *b, ++ struct bset_tree *t, ++ struct bpos *search, ++ struct bkey_packed *packed_search, ++ const struct bkey_packed *lossy_packed_search, ++ struct bkey_packed *m) ++{ ++ if (lossy_packed_search) ++ while (m != btree_bkey_last(b, t) && ++ bkey_iter_cmp_p_or_unp(b, m, ++ lossy_packed_search, search) < 0) ++ m = bkey_p_next(m); ++ ++ if (!packed_search) ++ while (m != btree_bkey_last(b, t) && ++ bkey_iter_pos_cmp(b, m, search) < 0) ++ m = bkey_p_next(m); ++ ++ if (bch2_expensive_debug_checks) { ++ struct bkey_packed *prev = bch2_bkey_prev_all(b, t, m); ++ ++ BUG_ON(prev && ++ bkey_iter_cmp_p_or_unp(b, prev, ++ packed_search, search) >= 0); ++ } ++ ++ return m; ++} ++ ++/* Btree node iterator */ ++ ++static inline void __bch2_btree_node_iter_push(struct btree_node_iter *iter, ++ struct btree *b, ++ const struct bkey_packed *k, ++ const struct bkey_packed *end) ++{ ++ if (k != end) { ++ struct btree_node_iter_set *pos; ++ ++ btree_node_iter_for_each(iter, pos) ++ ; ++ ++ BUG_ON(pos >= iter->data + ARRAY_SIZE(iter->data)); ++ *pos = (struct btree_node_iter_set) { ++ __btree_node_key_to_offset(b, k), ++ __btree_node_key_to_offset(b, end) ++ }; ++ } ++} ++ ++void bch2_btree_node_iter_push(struct btree_node_iter *iter, ++ struct btree *b, ++ const struct bkey_packed *k, ++ const struct bkey_packed *end) ++{ ++ __bch2_btree_node_iter_push(iter, b, k, end); ++ bch2_btree_node_iter_sort(iter, b); ++} ++ ++noinline __flatten __cold ++static void btree_node_iter_init_pack_failed(struct btree_node_iter *iter, ++ struct btree *b, struct bpos *search) ++{ ++ struct bkey_packed *k; ++ ++ trace_bkey_pack_pos_fail(search); ++ ++ bch2_btree_node_iter_init_from_start(iter, b); ++ ++ while ((k = bch2_btree_node_iter_peek(iter, b)) && ++ bkey_iter_pos_cmp(b, k, search) < 0) ++ bch2_btree_node_iter_advance(iter, b); ++} ++ ++/** ++ * bch2_btree_node_iter_init - initialize a btree node iterator, starting from a ++ * given position ++ * ++ * @iter: iterator to initialize ++ * @b: btree node to search ++ * @search: search key ++ * ++ * Main entry point to the lookup code for individual btree nodes: ++ * ++ * NOTE: ++ * ++ * When you don't filter out deleted keys, btree nodes _do_ contain duplicate ++ * keys. This doesn't matter for most code, but it does matter for lookups. ++ * ++ * Some adjacent keys with a string of equal keys: ++ * i j k k k k l m ++ * ++ * If you search for k, the lookup code isn't guaranteed to return you any ++ * specific k. The lookup code is conceptually doing a binary search and ++ * iterating backwards is very expensive so if the pivot happens to land at the ++ * last k that's what you'll get. ++ * ++ * This works out ok, but it's something to be aware of: ++ * ++ * - For non extents, we guarantee that the live key comes last - see ++ * btree_node_iter_cmp(), keys_out_of_order(). So the duplicates you don't ++ * see will only be deleted keys you don't care about. ++ * ++ * - For extents, deleted keys sort last (see the comment at the top of this ++ * file). But when you're searching for extents, you actually want the first ++ * key strictly greater than your search key - an extent that compares equal ++ * to the search key is going to have 0 sectors after the search key. ++ * ++ * But this does mean that we can't just search for ++ * bpos_successor(start_of_range) to get the first extent that overlaps with ++ * the range we want - if we're unlucky and there's an extent that ends ++ * exactly where we searched, then there could be a deleted key at the same ++ * position and we'd get that when we search instead of the preceding extent ++ * we needed. ++ * ++ * So we've got to search for start_of_range, then after the lookup iterate ++ * past any extents that compare equal to the position we searched for. ++ */ ++__flatten ++void bch2_btree_node_iter_init(struct btree_node_iter *iter, ++ struct btree *b, struct bpos *search) ++{ ++ struct bkey_packed p, *packed_search = NULL; ++ struct btree_node_iter_set *pos = iter->data; ++ struct bkey_packed *k[MAX_BSETS]; ++ unsigned i; ++ ++ EBUG_ON(bpos_lt(*search, b->data->min_key)); ++ EBUG_ON(bpos_gt(*search, b->data->max_key)); ++ bset_aux_tree_verify(b); ++ ++ memset(iter, 0, sizeof(*iter)); ++ ++ switch (bch2_bkey_pack_pos_lossy(&p, *search, b)) { ++ case BKEY_PACK_POS_EXACT: ++ packed_search = &p; ++ break; ++ case BKEY_PACK_POS_SMALLER: ++ packed_search = NULL; ++ break; ++ case BKEY_PACK_POS_FAIL: ++ btree_node_iter_init_pack_failed(iter, b, search); ++ return; ++ } ++ ++ for (i = 0; i < b->nsets; i++) { ++ k[i] = __bch2_bset_search(b, b->set + i, search, &p); ++ prefetch_four_cachelines(k[i]); ++ } ++ ++ for (i = 0; i < b->nsets; i++) { ++ struct bset_tree *t = b->set + i; ++ struct bkey_packed *end = btree_bkey_last(b, t); ++ ++ k[i] = bch2_bset_search_linear(b, t, search, ++ packed_search, &p, k[i]); ++ if (k[i] != end) ++ *pos++ = (struct btree_node_iter_set) { ++ __btree_node_key_to_offset(b, k[i]), ++ __btree_node_key_to_offset(b, end) ++ }; ++ } ++ ++ bch2_btree_node_iter_sort(iter, b); ++} ++ ++void bch2_btree_node_iter_init_from_start(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ memset(iter, 0, sizeof(*iter)); ++ ++ for_each_bset(b, t) ++ __bch2_btree_node_iter_push(iter, b, ++ btree_bkey_first(b, t), ++ btree_bkey_last(b, t)); ++ bch2_btree_node_iter_sort(iter, b); ++} ++ ++struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *iter, ++ struct btree *b, ++ struct bset_tree *t) ++{ ++ struct btree_node_iter_set *set; ++ ++ btree_node_iter_for_each(iter, set) ++ if (set->end == t->end_offset) ++ return __btree_node_offset_to_key(b, set->k); ++ ++ return btree_bkey_last(b, t); ++} ++ ++static inline bool btree_node_iter_sort_two(struct btree_node_iter *iter, ++ struct btree *b, ++ unsigned first) ++{ ++ bool ret; ++ ++ if ((ret = (btree_node_iter_cmp(b, ++ iter->data[first], ++ iter->data[first + 1]) > 0))) ++ swap(iter->data[first], iter->data[first + 1]); ++ return ret; ++} ++ ++void bch2_btree_node_iter_sort(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ /* unrolled bubble sort: */ ++ ++ if (!__btree_node_iter_set_end(iter, 2)) { ++ btree_node_iter_sort_two(iter, b, 0); ++ btree_node_iter_sort_two(iter, b, 1); ++ } ++ ++ if (!__btree_node_iter_set_end(iter, 1)) ++ btree_node_iter_sort_two(iter, b, 0); ++} ++ ++void bch2_btree_node_iter_set_drop(struct btree_node_iter *iter, ++ struct btree_node_iter_set *set) ++{ ++ struct btree_node_iter_set *last = ++ iter->data + ARRAY_SIZE(iter->data) - 1; ++ ++ memmove(&set[0], &set[1], (void *) last - (void *) set); ++ *last = (struct btree_node_iter_set) { 0, 0 }; ++} ++ ++static inline void __bch2_btree_node_iter_advance(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ iter->data->k += __bch2_btree_node_iter_peek_all(iter, b)->u64s; ++ ++ EBUG_ON(iter->data->k > iter->data->end); ++ ++ if (unlikely(__btree_node_iter_set_end(iter, 0))) { ++ /* avoid an expensive memmove call: */ ++ iter->data[0] = iter->data[1]; ++ iter->data[1] = iter->data[2]; ++ iter->data[2] = (struct btree_node_iter_set) { 0, 0 }; ++ return; ++ } ++ ++ if (__btree_node_iter_set_end(iter, 1)) ++ return; ++ ++ if (!btree_node_iter_sort_two(iter, b, 0)) ++ return; ++ ++ if (__btree_node_iter_set_end(iter, 2)) ++ return; ++ ++ btree_node_iter_sort_two(iter, b, 1); ++} ++ ++void bch2_btree_node_iter_advance(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ if (bch2_expensive_debug_checks) { ++ bch2_btree_node_iter_verify(iter, b); ++ bch2_btree_node_iter_next_check(iter, b); ++ } ++ ++ __bch2_btree_node_iter_advance(iter, b); ++} ++ ++/* ++ * Expensive: ++ */ ++struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ struct bkey_packed *k, *prev = NULL; ++ struct btree_node_iter_set *set; ++ struct bset_tree *t; ++ unsigned end = 0; ++ ++ if (bch2_expensive_debug_checks) ++ bch2_btree_node_iter_verify(iter, b); ++ ++ for_each_bset(b, t) { ++ k = bch2_bkey_prev_all(b, t, ++ bch2_btree_node_iter_bset_pos(iter, b, t)); ++ if (k && ++ (!prev || bkey_iter_cmp(b, k, prev) > 0)) { ++ prev = k; ++ end = t->end_offset; ++ } ++ } ++ ++ if (!prev) ++ return NULL; ++ ++ /* ++ * We're manually memmoving instead of just calling sort() to ensure the ++ * prev we picked ends up in slot 0 - sort won't necessarily put it ++ * there because of duplicate deleted keys: ++ */ ++ btree_node_iter_for_each(iter, set) ++ if (set->end == end) ++ goto found; ++ ++ BUG_ON(set != &iter->data[__btree_node_iter_used(iter)]); ++found: ++ BUG_ON(set >= iter->data + ARRAY_SIZE(iter->data)); ++ ++ memmove(&iter->data[1], ++ &iter->data[0], ++ (void *) set - (void *) &iter->data[0]); ++ ++ iter->data[0].k = __btree_node_key_to_offset(b, prev); ++ iter->data[0].end = end; ++ ++ if (bch2_expensive_debug_checks) ++ bch2_btree_node_iter_verify(iter, b); ++ return prev; ++} ++ ++struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ struct bkey_packed *prev; ++ ++ do { ++ prev = bch2_btree_node_iter_prev_all(iter, b); ++ } while (prev && bkey_deleted(prev)); ++ ++ return prev; ++} ++ ++struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *iter, ++ struct btree *b, ++ struct bkey *u) ++{ ++ struct bkey_packed *k = bch2_btree_node_iter_peek(iter, b); ++ ++ return k ? bkey_disassemble(b, k, u) : bkey_s_c_null; ++} ++ ++/* Mergesort */ ++ ++void bch2_btree_keys_stats(const struct btree *b, struct bset_stats *stats) ++{ ++ const struct bset_tree *t; ++ ++ for_each_bset(b, t) { ++ enum bset_aux_tree_type type = bset_aux_tree_type(t); ++ size_t j; ++ ++ stats->sets[type].nr++; ++ stats->sets[type].bytes += le16_to_cpu(bset(b, t)->u64s) * ++ sizeof(u64); ++ ++ if (bset_has_ro_aux_tree(t)) { ++ stats->floats += t->size - 1; ++ ++ for (j = 1; j < t->size; j++) ++ stats->failed += ++ bkey_float(b, t, j)->exponent == ++ BFLOAT_FAILED; ++ } ++ } ++} ++ ++void bch2_bfloat_to_text(struct printbuf *out, struct btree *b, ++ struct bkey_packed *k) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset(b, k); ++ struct bkey uk; ++ unsigned j, inorder; ++ ++ if (!bset_has_ro_aux_tree(t)) ++ return; ++ ++ inorder = bkey_to_cacheline(b, t, k); ++ if (!inorder || inorder >= t->size) ++ return; ++ ++ j = __inorder_to_eytzinger1(inorder, t->size - 1, t->extra); ++ if (k != tree_to_bkey(b, t, j)) ++ return; ++ ++ switch (bkey_float(b, t, j)->exponent) { ++ case BFLOAT_FAILED: ++ uk = bkey_unpack_key(b, k); ++ prt_printf(out, ++ " failed unpacked at depth %u\n" ++ "\t", ++ ilog2(j)); ++ bch2_bpos_to_text(out, uk.p); ++ prt_printf(out, "\n"); ++ break; ++ } ++} +diff --git a/fs/bcachefs/bset.h b/fs/bcachefs/bset.h +new file mode 100644 +index 000000000000..632c2b8c5460 +--- /dev/null ++++ b/fs/bcachefs/bset.h +@@ -0,0 +1,541 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BSET_H ++#define _BCACHEFS_BSET_H ++ ++#include ++#include ++ ++#include "bcachefs.h" ++#include "bkey.h" ++#include "bkey_methods.h" ++#include "btree_types.h" ++#include "util.h" /* for time_stats */ ++#include "vstructs.h" ++ ++/* ++ * BKEYS: ++ * ++ * A bkey contains a key, a size field, a variable number of pointers, and some ++ * ancillary flag bits. ++ * ++ * We use two different functions for validating bkeys, bkey_invalid and ++ * bkey_deleted(). ++ * ++ * The one exception to the rule that ptr_invalid() filters out invalid keys is ++ * that it also filters out keys of size 0 - these are keys that have been ++ * completely overwritten. It'd be safe to delete these in memory while leaving ++ * them on disk, just unnecessary work - so we filter them out when resorting ++ * instead. ++ * ++ * We can't filter out stale keys when we're resorting, because garbage ++ * collection needs to find them to ensure bucket gens don't wrap around - ++ * unless we're rewriting the btree node those stale keys still exist on disk. ++ * ++ * We also implement functions here for removing some number of sectors from the ++ * front or the back of a bkey - this is mainly used for fixing overlapping ++ * extents, by removing the overlapping sectors from the older key. ++ * ++ * BSETS: ++ * ++ * A bset is an array of bkeys laid out contiguously in memory in sorted order, ++ * along with a header. A btree node is made up of a number of these, written at ++ * different times. ++ * ++ * There could be many of them on disk, but we never allow there to be more than ++ * 4 in memory - we lazily resort as needed. ++ * ++ * We implement code here for creating and maintaining auxiliary search trees ++ * (described below) for searching an individial bset, and on top of that we ++ * implement a btree iterator. ++ * ++ * BTREE ITERATOR: ++ * ++ * Most of the code in bcache doesn't care about an individual bset - it needs ++ * to search entire btree nodes and iterate over them in sorted order. ++ * ++ * The btree iterator code serves both functions; it iterates through the keys ++ * in a btree node in sorted order, starting from either keys after a specific ++ * point (if you pass it a search key) or the start of the btree node. ++ * ++ * AUXILIARY SEARCH TREES: ++ * ++ * Since keys are variable length, we can't use a binary search on a bset - we ++ * wouldn't be able to find the start of the next key. But binary searches are ++ * slow anyways, due to terrible cache behaviour; bcache originally used binary ++ * searches and that code topped out at under 50k lookups/second. ++ * ++ * So we need to construct some sort of lookup table. Since we only insert keys ++ * into the last (unwritten) set, most of the keys within a given btree node are ++ * usually in sets that are mostly constant. We use two different types of ++ * lookup tables to take advantage of this. ++ * ++ * Both lookup tables share in common that they don't index every key in the ++ * set; they index one key every BSET_CACHELINE bytes, and then a linear search ++ * is used for the rest. ++ * ++ * For sets that have been written to disk and are no longer being inserted ++ * into, we construct a binary search tree in an array - traversing a binary ++ * search tree in an array gives excellent locality of reference and is very ++ * fast, since both children of any node are adjacent to each other in memory ++ * (and their grandchildren, and great grandchildren...) - this means ++ * prefetching can be used to great effect. ++ * ++ * It's quite useful performance wise to keep these nodes small - not just ++ * because they're more likely to be in L2, but also because we can prefetch ++ * more nodes on a single cacheline and thus prefetch more iterations in advance ++ * when traversing this tree. ++ * ++ * Nodes in the auxiliary search tree must contain both a key to compare against ++ * (we don't want to fetch the key from the set, that would defeat the purpose), ++ * and a pointer to the key. We use a few tricks to compress both of these. ++ * ++ * To compress the pointer, we take advantage of the fact that one node in the ++ * search tree corresponds to precisely BSET_CACHELINE bytes in the set. We have ++ * a function (to_inorder()) that takes the index of a node in a binary tree and ++ * returns what its index would be in an inorder traversal, so we only have to ++ * store the low bits of the offset. ++ * ++ * The key is 84 bits (KEY_DEV + key->key, the offset on the device). To ++ * compress that, we take advantage of the fact that when we're traversing the ++ * search tree at every iteration we know that both our search key and the key ++ * we're looking for lie within some range - bounded by our previous ++ * comparisons. (We special case the start of a search so that this is true even ++ * at the root of the tree). ++ * ++ * So we know the key we're looking for is between a and b, and a and b don't ++ * differ higher than bit 50, we don't need to check anything higher than bit ++ * 50. ++ * ++ * We don't usually need the rest of the bits, either; we only need enough bits ++ * to partition the key range we're currently checking. Consider key n - the ++ * key our auxiliary search tree node corresponds to, and key p, the key ++ * immediately preceding n. The lowest bit we need to store in the auxiliary ++ * search tree is the highest bit that differs between n and p. ++ * ++ * Note that this could be bit 0 - we might sometimes need all 80 bits to do the ++ * comparison. But we'd really like our nodes in the auxiliary search tree to be ++ * of fixed size. ++ * ++ * The solution is to make them fixed size, and when we're constructing a node ++ * check if p and n differed in the bits we needed them to. If they don't we ++ * flag that node, and when doing lookups we fallback to comparing against the ++ * real key. As long as this doesn't happen to often (and it seems to reliably ++ * happen a bit less than 1% of the time), we win - even on failures, that key ++ * is then more likely to be in cache than if we were doing binary searches all ++ * the way, since we're touching so much less memory. ++ * ++ * The keys in the auxiliary search tree are stored in (software) floating ++ * point, with an exponent and a mantissa. The exponent needs to be big enough ++ * to address all the bits in the original key, but the number of bits in the ++ * mantissa is somewhat arbitrary; more bits just gets us fewer failures. ++ * ++ * We need 7 bits for the exponent and 3 bits for the key's offset (since keys ++ * are 8 byte aligned); using 22 bits for the mantissa means a node is 4 bytes. ++ * We need one node per 128 bytes in the btree node, which means the auxiliary ++ * search trees take up 3% as much memory as the btree itself. ++ * ++ * Constructing these auxiliary search trees is moderately expensive, and we ++ * don't want to be constantly rebuilding the search tree for the last set ++ * whenever we insert another key into it. For the unwritten set, we use a much ++ * simpler lookup table - it's just a flat array, so index i in the lookup table ++ * corresponds to the i range of BSET_CACHELINE bytes in the set. Indexing ++ * within each byte range works the same as with the auxiliary search trees. ++ * ++ * These are much easier to keep up to date when we insert a key - we do it ++ * somewhat lazily; when we shift a key up we usually just increment the pointer ++ * to it, only when it would overflow do we go to the trouble of finding the ++ * first key in that range of bytes again. ++ */ ++ ++enum bset_aux_tree_type { ++ BSET_NO_AUX_TREE, ++ BSET_RO_AUX_TREE, ++ BSET_RW_AUX_TREE, ++}; ++ ++#define BSET_TREE_NR_TYPES 3 ++ ++#define BSET_NO_AUX_TREE_VAL (U16_MAX) ++#define BSET_RW_AUX_TREE_VAL (U16_MAX - 1) ++ ++static inline enum bset_aux_tree_type bset_aux_tree_type(const struct bset_tree *t) ++{ ++ switch (t->extra) { ++ case BSET_NO_AUX_TREE_VAL: ++ EBUG_ON(t->size); ++ return BSET_NO_AUX_TREE; ++ case BSET_RW_AUX_TREE_VAL: ++ EBUG_ON(!t->size); ++ return BSET_RW_AUX_TREE; ++ default: ++ EBUG_ON(!t->size); ++ return BSET_RO_AUX_TREE; ++ } ++} ++ ++/* ++ * BSET_CACHELINE was originally intended to match the hardware cacheline size - ++ * it used to be 64, but I realized the lookup code would touch slightly less ++ * memory if it was 128. ++ * ++ * It definites the number of bytes (in struct bset) per struct bkey_float in ++ * the auxiliar search tree - when we're done searching the bset_float tree we ++ * have this many bytes left that we do a linear search over. ++ * ++ * Since (after level 5) every level of the bset_tree is on a new cacheline, ++ * we're touching one fewer cacheline in the bset tree in exchange for one more ++ * cacheline in the linear search - but the linear search might stop before it ++ * gets to the second cacheline. ++ */ ++ ++#define BSET_CACHELINE 256 ++ ++static inline size_t btree_keys_cachelines(const struct btree *b) ++{ ++ return (1U << b->byte_order) / BSET_CACHELINE; ++} ++ ++static inline size_t btree_aux_data_bytes(const struct btree *b) ++{ ++ return btree_keys_cachelines(b) * 8; ++} ++ ++static inline size_t btree_aux_data_u64s(const struct btree *b) ++{ ++ return btree_aux_data_bytes(b) / sizeof(u64); ++} ++ ++#define for_each_bset(_b, _t) \ ++ for (_t = (_b)->set; _t < (_b)->set + (_b)->nsets; _t++) ++ ++#define bset_tree_for_each_key(_b, _t, _k) \ ++ for (_k = btree_bkey_first(_b, _t); \ ++ _k != btree_bkey_last(_b, _t); \ ++ _k = bkey_p_next(_k)) ++ ++static inline bool bset_has_ro_aux_tree(const struct bset_tree *t) ++{ ++ return bset_aux_tree_type(t) == BSET_RO_AUX_TREE; ++} ++ ++static inline bool bset_has_rw_aux_tree(struct bset_tree *t) ++{ ++ return bset_aux_tree_type(t) == BSET_RW_AUX_TREE; ++} ++ ++static inline void bch2_bset_set_no_aux_tree(struct btree *b, ++ struct bset_tree *t) ++{ ++ BUG_ON(t < b->set); ++ ++ for (; t < b->set + ARRAY_SIZE(b->set); t++) { ++ t->size = 0; ++ t->extra = BSET_NO_AUX_TREE_VAL; ++ t->aux_data_offset = U16_MAX; ++ } ++} ++ ++static inline void btree_node_set_format(struct btree *b, ++ struct bkey_format f) ++{ ++ int len; ++ ++ b->format = f; ++ b->nr_key_bits = bkey_format_key_bits(&f); ++ ++ len = bch2_compile_bkey_format(&b->format, b->aux_data); ++ BUG_ON(len < 0 || len > U8_MAX); ++ ++ b->unpack_fn_len = len; ++ ++ bch2_bset_set_no_aux_tree(b, b->set); ++} ++ ++static inline struct bset *bset_next_set(struct btree *b, ++ unsigned block_bytes) ++{ ++ struct bset *i = btree_bset_last(b); ++ ++ EBUG_ON(!is_power_of_2(block_bytes)); ++ ++ return ((void *) i) + round_up(vstruct_bytes(i), block_bytes); ++} ++ ++void bch2_btree_keys_init(struct btree *); ++ ++void bch2_bset_init_first(struct btree *, struct bset *); ++void bch2_bset_init_next(struct bch_fs *, struct btree *, ++ struct btree_node_entry *); ++void bch2_bset_build_aux_tree(struct btree *, struct bset_tree *, bool); ++ ++void bch2_bset_insert(struct btree *, struct btree_node_iter *, ++ struct bkey_packed *, struct bkey_i *, unsigned); ++void bch2_bset_delete(struct btree *, struct bkey_packed *, unsigned); ++ ++/* Bkey utility code */ ++ ++/* packed or unpacked */ ++static inline int bkey_cmp_p_or_unp(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bkey_packed *r_packed, ++ const struct bpos *r) ++{ ++ EBUG_ON(r_packed && !bkey_packed(r_packed)); ++ ++ if (unlikely(!bkey_packed(l))) ++ return bpos_cmp(packed_to_bkey_c(l)->p, *r); ++ ++ if (likely(r_packed)) ++ return __bch2_bkey_cmp_packed_format_checked(l, r_packed, b); ++ ++ return __bch2_bkey_cmp_left_packed_format_checked(b, l, r); ++} ++ ++static inline struct bset_tree * ++bch2_bkey_to_bset_inlined(struct btree *b, struct bkey_packed *k) ++{ ++ unsigned offset = __btree_node_key_to_offset(b, k); ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) ++ if (offset <= t->end_offset) { ++ EBUG_ON(offset < btree_bkey_first_offset(t)); ++ return t; ++ } ++ ++ BUG(); ++} ++ ++struct bset_tree *bch2_bkey_to_bset(struct btree *, struct bkey_packed *); ++ ++struct bkey_packed *bch2_bkey_prev_filter(struct btree *, struct bset_tree *, ++ struct bkey_packed *, unsigned); ++ ++static inline struct bkey_packed * ++bch2_bkey_prev_all(struct btree *b, struct bset_tree *t, struct bkey_packed *k) ++{ ++ return bch2_bkey_prev_filter(b, t, k, 0); ++} ++ ++static inline struct bkey_packed * ++bch2_bkey_prev(struct btree *b, struct bset_tree *t, struct bkey_packed *k) ++{ ++ return bch2_bkey_prev_filter(b, t, k, 1); ++} ++ ++/* Btree key iteration */ ++ ++void bch2_btree_node_iter_push(struct btree_node_iter *, struct btree *, ++ const struct bkey_packed *, ++ const struct bkey_packed *); ++void bch2_btree_node_iter_init(struct btree_node_iter *, struct btree *, ++ struct bpos *); ++void bch2_btree_node_iter_init_from_start(struct btree_node_iter *, ++ struct btree *); ++struct bkey_packed *bch2_btree_node_iter_bset_pos(struct btree_node_iter *, ++ struct btree *, ++ struct bset_tree *); ++ ++void bch2_btree_node_iter_sort(struct btree_node_iter *, struct btree *); ++void bch2_btree_node_iter_set_drop(struct btree_node_iter *, ++ struct btree_node_iter_set *); ++void bch2_btree_node_iter_advance(struct btree_node_iter *, struct btree *); ++ ++#define btree_node_iter_for_each(_iter, _set) \ ++ for (_set = (_iter)->data; \ ++ _set < (_iter)->data + ARRAY_SIZE((_iter)->data) && \ ++ (_set)->k != (_set)->end; \ ++ _set++) ++ ++static inline bool __btree_node_iter_set_end(struct btree_node_iter *iter, ++ unsigned i) ++{ ++ return iter->data[i].k == iter->data[i].end; ++} ++ ++static inline bool bch2_btree_node_iter_end(struct btree_node_iter *iter) ++{ ++ return __btree_node_iter_set_end(iter, 0); ++} ++ ++/* ++ * When keys compare equal, deleted keys compare first: ++ * ++ * XXX: only need to compare pointers for keys that are both within a ++ * btree_node_iterator - we need to break ties for prev() to work correctly ++ */ ++static inline int bkey_iter_cmp(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bkey_packed *r) ++{ ++ return bch2_bkey_cmp_packed(b, l, r) ++ ?: (int) bkey_deleted(r) - (int) bkey_deleted(l) ++ ?: cmp_int(l, r); ++} ++ ++static inline int btree_node_iter_cmp(const struct btree *b, ++ struct btree_node_iter_set l, ++ struct btree_node_iter_set r) ++{ ++ return bkey_iter_cmp(b, ++ __btree_node_offset_to_key(b, l.k), ++ __btree_node_offset_to_key(b, r.k)); ++} ++ ++/* These assume r (the search key) is not a deleted key: */ ++static inline int bkey_iter_pos_cmp(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bpos *r) ++{ ++ return bkey_cmp_left_packed(b, l, r) ++ ?: -((int) bkey_deleted(l)); ++} ++ ++static inline int bkey_iter_cmp_p_or_unp(const struct btree *b, ++ const struct bkey_packed *l, ++ const struct bkey_packed *r_packed, ++ const struct bpos *r) ++{ ++ return bkey_cmp_p_or_unp(b, l, r_packed, r) ++ ?: -((int) bkey_deleted(l)); ++} ++ ++static inline struct bkey_packed * ++__bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, ++ struct btree *b) ++{ ++ return __btree_node_offset_to_key(b, iter->data->k); ++} ++ ++static inline struct bkey_packed * ++bch2_btree_node_iter_peek_all(struct btree_node_iter *iter, struct btree *b) ++{ ++ return !bch2_btree_node_iter_end(iter) ++ ? __btree_node_offset_to_key(b, iter->data->k) ++ : NULL; ++} ++ ++static inline struct bkey_packed * ++bch2_btree_node_iter_peek(struct btree_node_iter *iter, struct btree *b) ++{ ++ struct bkey_packed *k; ++ ++ while ((k = bch2_btree_node_iter_peek_all(iter, b)) && ++ bkey_deleted(k)) ++ bch2_btree_node_iter_advance(iter, b); ++ ++ return k; ++} ++ ++static inline struct bkey_packed * ++bch2_btree_node_iter_next_all(struct btree_node_iter *iter, struct btree *b) ++{ ++ struct bkey_packed *ret = bch2_btree_node_iter_peek_all(iter, b); ++ ++ if (ret) ++ bch2_btree_node_iter_advance(iter, b); ++ ++ return ret; ++} ++ ++struct bkey_packed *bch2_btree_node_iter_prev_all(struct btree_node_iter *, ++ struct btree *); ++struct bkey_packed *bch2_btree_node_iter_prev(struct btree_node_iter *, ++ struct btree *); ++ ++struct bkey_s_c bch2_btree_node_iter_peek_unpack(struct btree_node_iter *, ++ struct btree *, ++ struct bkey *); ++ ++#define for_each_btree_node_key(b, k, iter) \ ++ for (bch2_btree_node_iter_init_from_start((iter), (b)); \ ++ (k = bch2_btree_node_iter_peek((iter), (b))); \ ++ bch2_btree_node_iter_advance(iter, b)) ++ ++#define for_each_btree_node_key_unpack(b, k, iter, unpacked) \ ++ for (bch2_btree_node_iter_init_from_start((iter), (b)); \ ++ (k = bch2_btree_node_iter_peek_unpack((iter), (b), (unpacked))).k;\ ++ bch2_btree_node_iter_advance(iter, b)) ++ ++/* Accounting: */ ++ ++static inline void btree_keys_account_key(struct btree_nr_keys *n, ++ unsigned bset, ++ struct bkey_packed *k, ++ int sign) ++{ ++ n->live_u64s += k->u64s * sign; ++ n->bset_u64s[bset] += k->u64s * sign; ++ ++ if (bkey_packed(k)) ++ n->packed_keys += sign; ++ else ++ n->unpacked_keys += sign; ++} ++ ++static inline void btree_keys_account_val_delta(struct btree *b, ++ struct bkey_packed *k, ++ int delta) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset(b, k); ++ ++ b->nr.live_u64s += delta; ++ b->nr.bset_u64s[t - b->set] += delta; ++} ++ ++#define btree_keys_account_key_add(_nr, _bset_idx, _k) \ ++ btree_keys_account_key(_nr, _bset_idx, _k, 1) ++#define btree_keys_account_key_drop(_nr, _bset_idx, _k) \ ++ btree_keys_account_key(_nr, _bset_idx, _k, -1) ++ ++#define btree_account_key_add(_b, _k) \ ++ btree_keys_account_key(&(_b)->nr, \ ++ bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, 1) ++#define btree_account_key_drop(_b, _k) \ ++ btree_keys_account_key(&(_b)->nr, \ ++ bch2_bkey_to_bset(_b, _k) - (_b)->set, _k, -1) ++ ++struct bset_stats { ++ struct { ++ size_t nr, bytes; ++ } sets[BSET_TREE_NR_TYPES]; ++ ++ size_t floats; ++ size_t failed; ++}; ++ ++void bch2_btree_keys_stats(const struct btree *, struct bset_stats *); ++void bch2_bfloat_to_text(struct printbuf *, struct btree *, ++ struct bkey_packed *); ++ ++/* Debug stuff */ ++ ++void bch2_dump_bset(struct bch_fs *, struct btree *, struct bset *, unsigned); ++void bch2_dump_btree_node(struct bch_fs *, struct btree *); ++void bch2_dump_btree_node_iter(struct btree *, struct btree_node_iter *); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++void __bch2_verify_btree_nr_keys(struct btree *); ++void bch2_btree_node_iter_verify(struct btree_node_iter *, struct btree *); ++void bch2_verify_insert_pos(struct btree *, struct bkey_packed *, ++ struct bkey_packed *, unsigned); ++ ++#else ++ ++static inline void __bch2_verify_btree_nr_keys(struct btree *b) {} ++static inline void bch2_btree_node_iter_verify(struct btree_node_iter *iter, ++ struct btree *b) {} ++static inline void bch2_verify_insert_pos(struct btree *b, ++ struct bkey_packed *where, ++ struct bkey_packed *insert, ++ unsigned clobber_u64s) {} ++#endif ++ ++static inline void bch2_verify_btree_nr_keys(struct btree *b) ++{ ++ if (bch2_debug_check_btree_accounting) ++ __bch2_verify_btree_nr_keys(b); ++} ++ ++#endif /* _BCACHEFS_BSET_H */ +diff --git a/fs/bcachefs/btree_cache.c b/fs/bcachefs/btree_cache.c +new file mode 100644 +index 000000000000..82cf243aa288 +--- /dev/null ++++ b/fs/bcachefs/btree_cache.c +@@ -0,0 +1,1202 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_buf.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_locking.h" ++#include "debug.h" ++#include "errcode.h" ++#include "error.h" ++#include "trace.h" ++ ++#include ++#include ++ ++const char * const bch2_btree_node_flags[] = { ++#define x(f) #f, ++ BTREE_FLAGS() ++#undef x ++ NULL ++}; ++ ++void bch2_recalc_btree_reserve(struct bch_fs *c) ++{ ++ unsigned i, reserve = 16; ++ ++ if (!c->btree_roots_known[0].b) ++ reserve += 8; ++ ++ for (i = 0; i < btree_id_nr_alive(c); i++) { ++ struct btree_root *r = bch2_btree_id_root(c, i); ++ ++ if (r->b) ++ reserve += min_t(unsigned, 1, r->b->c.level) * 8; ++ } ++ ++ c->btree_cache.reserve = reserve; ++} ++ ++static inline unsigned btree_cache_can_free(struct btree_cache *bc) ++{ ++ return max_t(int, 0, bc->used - bc->reserve); ++} ++ ++static void btree_node_to_freedlist(struct btree_cache *bc, struct btree *b) ++{ ++ if (b->c.lock.readers) ++ list_move(&b->list, &bc->freed_pcpu); ++ else ++ list_move(&b->list, &bc->freed_nonpcpu); ++} ++ ++static void btree_node_data_free(struct bch_fs *c, struct btree *b) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ ++ EBUG_ON(btree_node_write_in_flight(b)); ++ ++ clear_btree_node_just_written(b); ++ ++ kvpfree(b->data, btree_bytes(c)); ++ b->data = NULL; ++#ifdef __KERNEL__ ++ kvfree(b->aux_data); ++#else ++ munmap(b->aux_data, btree_aux_data_bytes(b)); ++#endif ++ b->aux_data = NULL; ++ ++ bc->used--; ++ ++ btree_node_to_freedlist(bc, b); ++} ++ ++static int bch2_btree_cache_cmp_fn(struct rhashtable_compare_arg *arg, ++ const void *obj) ++{ ++ const struct btree *b = obj; ++ const u64 *v = arg->key; ++ ++ return b->hash_val == *v ? 0 : 1; ++} ++ ++static const struct rhashtable_params bch_btree_cache_params = { ++ .head_offset = offsetof(struct btree, hash), ++ .key_offset = offsetof(struct btree, hash_val), ++ .key_len = sizeof(u64), ++ .obj_cmpfn = bch2_btree_cache_cmp_fn, ++}; ++ ++static int btree_node_data_alloc(struct bch_fs *c, struct btree *b, gfp_t gfp) ++{ ++ BUG_ON(b->data || b->aux_data); ++ ++ b->data = kvpmalloc(btree_bytes(c), gfp); ++ if (!b->data) ++ return -BCH_ERR_ENOMEM_btree_node_mem_alloc; ++#ifdef __KERNEL__ ++ b->aux_data = kvmalloc(btree_aux_data_bytes(b), gfp); ++#else ++ b->aux_data = mmap(NULL, btree_aux_data_bytes(b), ++ PROT_READ|PROT_WRITE|PROT_EXEC, ++ MAP_PRIVATE|MAP_ANONYMOUS, 0, 0); ++ if (b->aux_data == MAP_FAILED) ++ b->aux_data = NULL; ++#endif ++ if (!b->aux_data) { ++ kvpfree(b->data, btree_bytes(c)); ++ b->data = NULL; ++ return -BCH_ERR_ENOMEM_btree_node_mem_alloc; ++ } ++ ++ return 0; ++} ++ ++static struct btree *__btree_node_mem_alloc(struct bch_fs *c, gfp_t gfp) ++{ ++ struct btree *b; ++ ++ b = kzalloc(sizeof(struct btree), gfp); ++ if (!b) ++ return NULL; ++ ++ bkey_btree_ptr_init(&b->key); ++ INIT_LIST_HEAD(&b->list); ++ INIT_LIST_HEAD(&b->write_blocked); ++ b->byte_order = ilog2(btree_bytes(c)); ++ return b; ++} ++ ++struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ ++ b = __btree_node_mem_alloc(c, GFP_KERNEL); ++ if (!b) ++ return NULL; ++ ++ if (btree_node_data_alloc(c, b, GFP_KERNEL)) { ++ kfree(b); ++ return NULL; ++ } ++ ++ bch2_btree_lock_init(&b->c, 0); ++ ++ bc->used++; ++ list_add(&b->list, &bc->freeable); ++ return b; ++} ++ ++/* Btree in memory cache - hash table */ ++ ++void bch2_btree_node_hash_remove(struct btree_cache *bc, struct btree *b) ++{ ++ int ret = rhashtable_remove_fast(&bc->table, &b->hash, bch_btree_cache_params); ++ ++ BUG_ON(ret); ++ ++ /* Cause future lookups for this node to fail: */ ++ b->hash_val = 0; ++} ++ ++int __bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b) ++{ ++ BUG_ON(b->hash_val); ++ b->hash_val = btree_ptr_hash_val(&b->key); ++ ++ return rhashtable_lookup_insert_fast(&bc->table, &b->hash, ++ bch_btree_cache_params); ++} ++ ++int bch2_btree_node_hash_insert(struct btree_cache *bc, struct btree *b, ++ unsigned level, enum btree_id id) ++{ ++ int ret; ++ ++ b->c.level = level; ++ b->c.btree_id = id; ++ ++ mutex_lock(&bc->lock); ++ ret = __bch2_btree_node_hash_insert(bc, b); ++ if (!ret) ++ list_add_tail(&b->list, &bc->live); ++ mutex_unlock(&bc->lock); ++ ++ return ret; ++} ++ ++__flatten ++static inline struct btree *btree_cache_find(struct btree_cache *bc, ++ const struct bkey_i *k) ++{ ++ u64 v = btree_ptr_hash_val(k); ++ ++ return rhashtable_lookup_fast(&bc->table, &v, bch_btree_cache_params); ++} ++ ++/* ++ * this version is for btree nodes that have already been freed (we're not ++ * reaping a real btree node) ++ */ ++static int __btree_node_reclaim(struct bch_fs *c, struct btree *b, bool flush) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ int ret = 0; ++ ++ lockdep_assert_held(&bc->lock); ++wait_on_io: ++ if (b->flags & ((1U << BTREE_NODE_dirty)| ++ (1U << BTREE_NODE_read_in_flight)| ++ (1U << BTREE_NODE_write_in_flight))) { ++ if (!flush) ++ return -BCH_ERR_ENOMEM_btree_node_reclaim; ++ ++ /* XXX: waiting on IO with btree cache lock held */ ++ bch2_btree_node_wait_on_read(b); ++ bch2_btree_node_wait_on_write(b); ++ } ++ ++ if (!six_trylock_intent(&b->c.lock)) ++ return -BCH_ERR_ENOMEM_btree_node_reclaim; ++ ++ if (!six_trylock_write(&b->c.lock)) ++ goto out_unlock_intent; ++ ++ /* recheck under lock */ ++ if (b->flags & ((1U << BTREE_NODE_read_in_flight)| ++ (1U << BTREE_NODE_write_in_flight))) { ++ if (!flush) ++ goto out_unlock; ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ goto wait_on_io; ++ } ++ ++ if (btree_node_noevict(b) || ++ btree_node_write_blocked(b) || ++ btree_node_will_make_reachable(b)) ++ goto out_unlock; ++ ++ if (btree_node_dirty(b)) { ++ if (!flush) ++ goto out_unlock; ++ /* ++ * Using the underscore version because we don't want to compact ++ * bsets after the write, since this node is about to be evicted ++ * - unless btree verify mode is enabled, since it runs out of ++ * the post write cleanup: ++ */ ++ if (bch2_verify_btree_ondisk) ++ bch2_btree_node_write(c, b, SIX_LOCK_intent, ++ BTREE_WRITE_cache_reclaim); ++ else ++ __bch2_btree_node_write(c, b, ++ BTREE_WRITE_cache_reclaim); ++ ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ goto wait_on_io; ++ } ++out: ++ if (b->hash_val && !ret) ++ trace_and_count(c, btree_cache_reap, c, b); ++ return ret; ++out_unlock: ++ six_unlock_write(&b->c.lock); ++out_unlock_intent: ++ six_unlock_intent(&b->c.lock); ++ ret = -BCH_ERR_ENOMEM_btree_node_reclaim; ++ goto out; ++} ++ ++static int btree_node_reclaim(struct bch_fs *c, struct btree *b) ++{ ++ return __btree_node_reclaim(c, b, false); ++} ++ ++static int btree_node_write_and_reclaim(struct bch_fs *c, struct btree *b) ++{ ++ return __btree_node_reclaim(c, b, true); ++} ++ ++static unsigned long bch2_btree_cache_scan(struct shrinker *shrink, ++ struct shrink_control *sc) ++{ ++ struct bch_fs *c = container_of(shrink, struct bch_fs, ++ btree_cache.shrink); ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b, *t; ++ unsigned long nr = sc->nr_to_scan; ++ unsigned long can_free = 0; ++ unsigned long freed = 0; ++ unsigned long touched = 0; ++ unsigned i, flags; ++ unsigned long ret = SHRINK_STOP; ++ bool trigger_writes = atomic_read(&bc->dirty) + nr >= ++ bc->used * 3 / 4; ++ ++ if (bch2_btree_shrinker_disabled) ++ return SHRINK_STOP; ++ ++ mutex_lock(&bc->lock); ++ flags = memalloc_nofs_save(); ++ ++ /* ++ * It's _really_ critical that we don't free too many btree nodes - we ++ * have to always leave ourselves a reserve. The reserve is how we ++ * guarantee that allocating memory for a new btree node can always ++ * succeed, so that inserting keys into the btree can always succeed and ++ * IO can always make forward progress: ++ */ ++ can_free = btree_cache_can_free(bc); ++ nr = min_t(unsigned long, nr, can_free); ++ ++ i = 0; ++ list_for_each_entry_safe(b, t, &bc->freeable, list) { ++ /* ++ * Leave a few nodes on the freeable list, so that a btree split ++ * won't have to hit the system allocator: ++ */ ++ if (++i <= 3) ++ continue; ++ ++ touched++; ++ ++ if (touched >= nr) ++ goto out; ++ ++ if (!btree_node_reclaim(c, b)) { ++ btree_node_data_free(c, b); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ freed++; ++ } ++ } ++restart: ++ list_for_each_entry_safe(b, t, &bc->live, list) { ++ touched++; ++ ++ if (btree_node_accessed(b)) { ++ clear_btree_node_accessed(b); ++ } else if (!btree_node_reclaim(c, b)) { ++ freed++; ++ btree_node_data_free(c, b); ++ ++ bch2_btree_node_hash_remove(bc, b); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ ++ if (freed == nr) ++ goto out_rotate; ++ } else if (trigger_writes && ++ btree_node_dirty(b) && ++ !btree_node_will_make_reachable(b) && ++ !btree_node_write_blocked(b) && ++ six_trylock_read(&b->c.lock)) { ++ list_move(&bc->live, &b->list); ++ mutex_unlock(&bc->lock); ++ __bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim); ++ six_unlock_read(&b->c.lock); ++ if (touched >= nr) ++ goto out_nounlock; ++ mutex_lock(&bc->lock); ++ goto restart; ++ } ++ ++ if (touched >= nr) ++ break; ++ } ++out_rotate: ++ if (&t->list != &bc->live) ++ list_move_tail(&bc->live, &t->list); ++out: ++ mutex_unlock(&bc->lock); ++out_nounlock: ++ ret = freed; ++ memalloc_nofs_restore(flags); ++ trace_and_count(c, btree_cache_scan, sc->nr_to_scan, can_free, ret); ++ return ret; ++} ++ ++static unsigned long bch2_btree_cache_count(struct shrinker *shrink, ++ struct shrink_control *sc) ++{ ++ struct bch_fs *c = container_of(shrink, struct bch_fs, ++ btree_cache.shrink); ++ struct btree_cache *bc = &c->btree_cache; ++ ++ if (bch2_btree_shrinker_disabled) ++ return 0; ++ ++ return btree_cache_can_free(bc); ++} ++ ++void bch2_fs_btree_cache_exit(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ unsigned i, flags; ++ ++ unregister_shrinker(&bc->shrink); ++ ++ /* vfree() can allocate memory: */ ++ flags = memalloc_nofs_save(); ++ mutex_lock(&bc->lock); ++ ++ if (c->verify_data) ++ list_move(&c->verify_data->list, &bc->live); ++ ++ kvpfree(c->verify_ondisk, btree_bytes(c)); ++ ++ for (i = 0; i < btree_id_nr_alive(c); i++) { ++ struct btree_root *r = bch2_btree_id_root(c, i); ++ ++ if (r->b) ++ list_add(&r->b->list, &bc->live); ++ } ++ ++ list_splice(&bc->freeable, &bc->live); ++ ++ while (!list_empty(&bc->live)) { ++ b = list_first_entry(&bc->live, struct btree, list); ++ ++ BUG_ON(btree_node_read_in_flight(b) || ++ btree_node_write_in_flight(b)); ++ ++ if (btree_node_dirty(b)) ++ bch2_btree_complete_write(c, b, btree_current_write(b)); ++ clear_btree_node_dirty_acct(c, b); ++ ++ btree_node_data_free(c, b); ++ } ++ ++ BUG_ON(atomic_read(&c->btree_cache.dirty)); ++ ++ list_splice(&bc->freed_pcpu, &bc->freed_nonpcpu); ++ ++ while (!list_empty(&bc->freed_nonpcpu)) { ++ b = list_first_entry(&bc->freed_nonpcpu, struct btree, list); ++ list_del(&b->list); ++ six_lock_exit(&b->c.lock); ++ kfree(b); ++ } ++ ++ mutex_unlock(&bc->lock); ++ memalloc_nofs_restore(flags); ++ ++ if (bc->table_init_done) ++ rhashtable_destroy(&bc->table); ++} ++ ++int bch2_fs_btree_cache_init(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ unsigned i; ++ int ret = 0; ++ ++ ret = rhashtable_init(&bc->table, &bch_btree_cache_params); ++ if (ret) ++ goto err; ++ ++ bc->table_init_done = true; ++ ++ bch2_recalc_btree_reserve(c); ++ ++ for (i = 0; i < bc->reserve; i++) ++ if (!__bch2_btree_node_mem_alloc(c)) ++ goto err; ++ ++ list_splice_init(&bc->live, &bc->freeable); ++ ++ mutex_init(&c->verify_lock); ++ ++ bc->shrink.count_objects = bch2_btree_cache_count; ++ bc->shrink.scan_objects = bch2_btree_cache_scan; ++ bc->shrink.seeks = 4; ++ ret = register_shrinker(&bc->shrink, "%s/btree_cache", c->name); ++ if (ret) ++ goto err; ++ ++ return 0; ++err: ++ return -BCH_ERR_ENOMEM_fs_btree_cache_init; ++} ++ ++void bch2_fs_btree_cache_init_early(struct btree_cache *bc) ++{ ++ mutex_init(&bc->lock); ++ INIT_LIST_HEAD(&bc->live); ++ INIT_LIST_HEAD(&bc->freeable); ++ INIT_LIST_HEAD(&bc->freed_pcpu); ++ INIT_LIST_HEAD(&bc->freed_nonpcpu); ++} ++ ++/* ++ * We can only have one thread cannibalizing other cached btree nodes at a time, ++ * or we'll deadlock. We use an open coded mutex to ensure that, which a ++ * cannibalize_bucket() will take. This means every time we unlock the root of ++ * the btree, we need to release this lock if we have it held. ++ */ ++void bch2_btree_cache_cannibalize_unlock(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ ++ if (bc->alloc_lock == current) { ++ trace_and_count(c, btree_cache_cannibalize_unlock, c); ++ bc->alloc_lock = NULL; ++ closure_wake_up(&bc->alloc_wait); ++ } ++} ++ ++int bch2_btree_cache_cannibalize_lock(struct bch_fs *c, struct closure *cl) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct task_struct *old; ++ ++ old = cmpxchg(&bc->alloc_lock, NULL, current); ++ if (old == NULL || old == current) ++ goto success; ++ ++ if (!cl) { ++ trace_and_count(c, btree_cache_cannibalize_lock_fail, c); ++ return -BCH_ERR_ENOMEM_btree_cache_cannibalize_lock; ++ } ++ ++ closure_wait(&bc->alloc_wait, cl); ++ ++ /* Try again, after adding ourselves to waitlist */ ++ old = cmpxchg(&bc->alloc_lock, NULL, current); ++ if (old == NULL || old == current) { ++ /* We raced */ ++ closure_wake_up(&bc->alloc_wait); ++ goto success; ++ } ++ ++ trace_and_count(c, btree_cache_cannibalize_lock_fail, c); ++ return -BCH_ERR_btree_cache_cannibalize_lock_blocked; ++ ++success: ++ trace_and_count(c, btree_cache_cannibalize_lock, c); ++ return 0; ++} ++ ++static struct btree *btree_node_cannibalize(struct bch_fs *c) ++{ ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ ++ list_for_each_entry_reverse(b, &bc->live, list) ++ if (!btree_node_reclaim(c, b)) ++ return b; ++ ++ while (1) { ++ list_for_each_entry_reverse(b, &bc->live, list) ++ if (!btree_node_write_and_reclaim(c, b)) ++ return b; ++ ++ /* ++ * Rare case: all nodes were intent-locked. ++ * Just busy-wait. ++ */ ++ WARN_ONCE(1, "btree cache cannibalize failed\n"); ++ cond_resched(); ++ } ++} ++ ++struct btree *bch2_btree_node_mem_alloc(struct btree_trans *trans, bool pcpu_read_locks) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_cache *bc = &c->btree_cache; ++ struct list_head *freed = pcpu_read_locks ++ ? &bc->freed_pcpu ++ : &bc->freed_nonpcpu; ++ struct btree *b, *b2; ++ u64 start_time = local_clock(); ++ unsigned flags; ++ ++ flags = memalloc_nofs_save(); ++ mutex_lock(&bc->lock); ++ ++ /* ++ * We never free struct btree itself, just the memory that holds the on ++ * disk node. Check the freed list before allocating a new one: ++ */ ++ list_for_each_entry(b, freed, list) ++ if (!btree_node_reclaim(c, b)) { ++ list_del_init(&b->list); ++ goto got_node; ++ } ++ ++ b = __btree_node_mem_alloc(c, GFP_NOWAIT|__GFP_NOWARN); ++ if (!b) { ++ mutex_unlock(&bc->lock); ++ bch2_trans_unlock(trans); ++ b = __btree_node_mem_alloc(c, GFP_KERNEL); ++ if (!b) ++ goto err; ++ mutex_lock(&bc->lock); ++ } ++ ++ bch2_btree_lock_init(&b->c, pcpu_read_locks ? SIX_LOCK_INIT_PCPU : 0); ++ ++ BUG_ON(!six_trylock_intent(&b->c.lock)); ++ BUG_ON(!six_trylock_write(&b->c.lock)); ++got_node: ++ ++ /* ++ * btree_free() doesn't free memory; it sticks the node on the end of ++ * the list. Check if there's any freed nodes there: ++ */ ++ list_for_each_entry(b2, &bc->freeable, list) ++ if (!btree_node_reclaim(c, b2)) { ++ swap(b->data, b2->data); ++ swap(b->aux_data, b2->aux_data); ++ btree_node_to_freedlist(bc, b2); ++ six_unlock_write(&b2->c.lock); ++ six_unlock_intent(&b2->c.lock); ++ goto got_mem; ++ } ++ ++ mutex_unlock(&bc->lock); ++ ++ if (btree_node_data_alloc(c, b, GFP_NOWAIT|__GFP_NOWARN)) { ++ bch2_trans_unlock(trans); ++ if (btree_node_data_alloc(c, b, GFP_KERNEL|__GFP_NOWARN)) ++ goto err; ++ } ++ ++ mutex_lock(&bc->lock); ++ bc->used++; ++got_mem: ++ mutex_unlock(&bc->lock); ++ ++ BUG_ON(btree_node_hashed(b)); ++ BUG_ON(btree_node_dirty(b)); ++ BUG_ON(btree_node_write_in_flight(b)); ++out: ++ b->flags = 0; ++ b->written = 0; ++ b->nsets = 0; ++ b->sib_u64s[0] = 0; ++ b->sib_u64s[1] = 0; ++ b->whiteout_u64s = 0; ++ bch2_btree_keys_init(b); ++ set_btree_node_accessed(b); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_mem_alloc], ++ start_time); ++ ++ memalloc_nofs_restore(flags); ++ return b; ++err: ++ mutex_lock(&bc->lock); ++ ++ /* Try to cannibalize another cached btree node: */ ++ if (bc->alloc_lock == current) { ++ b2 = btree_node_cannibalize(c); ++ clear_btree_node_just_written(b2); ++ bch2_btree_node_hash_remove(bc, b2); ++ ++ if (b) { ++ swap(b->data, b2->data); ++ swap(b->aux_data, b2->aux_data); ++ btree_node_to_freedlist(bc, b2); ++ six_unlock_write(&b2->c.lock); ++ six_unlock_intent(&b2->c.lock); ++ } else { ++ b = b2; ++ list_del_init(&b->list); ++ } ++ ++ mutex_unlock(&bc->lock); ++ ++ trace_and_count(c, btree_cache_cannibalize, c); ++ goto out; ++ } ++ ++ mutex_unlock(&bc->lock); ++ memalloc_nofs_restore(flags); ++ return ERR_PTR(-BCH_ERR_ENOMEM_btree_node_mem_alloc); ++} ++ ++/* Slowpath, don't want it inlined into btree_iter_traverse() */ ++static noinline struct btree *bch2_btree_node_fill(struct btree_trans *trans, ++ struct btree_path *path, ++ const struct bkey_i *k, ++ enum btree_id btree_id, ++ unsigned level, ++ enum six_lock_type lock_type, ++ bool sync) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ u32 seq; ++ ++ BUG_ON(level + 1 >= BTREE_MAX_DEPTH); ++ /* ++ * Parent node must be locked, else we could read in a btree node that's ++ * been freed: ++ */ ++ if (path && !bch2_btree_node_relock(trans, path, level + 1)) { ++ trace_and_count(c, trans_restart_relock_parent_for_fill, trans, _THIS_IP_, path); ++ return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_relock)); ++ } ++ ++ b = bch2_btree_node_mem_alloc(trans, level != 0); ++ ++ if (bch2_err_matches(PTR_ERR_OR_ZERO(b), ENOMEM)) { ++ trans->memory_allocation_failure = true; ++ trace_and_count(c, trans_restart_memory_allocation_failure, trans, _THIS_IP_, path); ++ return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_fill_mem_alloc_fail)); ++ } ++ ++ if (IS_ERR(b)) ++ return b; ++ ++ /* ++ * Btree nodes read in from disk should not have the accessed bit set ++ * initially, so that linear scans don't thrash the cache: ++ */ ++ clear_btree_node_accessed(b); ++ ++ bkey_copy(&b->key, k); ++ if (bch2_btree_node_hash_insert(bc, b, level, btree_id)) { ++ /* raced with another fill: */ ++ ++ /* mark as unhashed... */ ++ b->hash_val = 0; ++ ++ mutex_lock(&bc->lock); ++ list_add(&b->list, &bc->freeable); ++ mutex_unlock(&bc->lock); ++ ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ return NULL; ++ } ++ ++ set_btree_node_read_in_flight(b); ++ ++ six_unlock_write(&b->c.lock); ++ seq = six_lock_seq(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ ++ /* Unlock before doing IO: */ ++ if (path && sync) ++ bch2_trans_unlock_noassert(trans); ++ ++ bch2_btree_node_read(c, b, sync); ++ ++ if (!sync) ++ return NULL; ++ ++ if (path) { ++ int ret = bch2_trans_relock(trans) ?: ++ bch2_btree_path_relock_intent(trans, path); ++ if (ret) { ++ BUG_ON(!trans->restarted); ++ return ERR_PTR(ret); ++ } ++ } ++ ++ if (!six_relock_type(&b->c.lock, lock_type, seq)) { ++ if (path) ++ trace_and_count(c, trans_restart_relock_after_fill, trans, _THIS_IP_, path); ++ return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_after_fill)); ++ } ++ ++ return b; ++} ++ ++static noinline void btree_bad_header(struct bch_fs *c, struct btree *b) ++{ ++ struct printbuf buf = PRINTBUF; ++ ++ if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_allocations) ++ return; ++ ++ prt_printf(&buf, ++ "btree node header doesn't match ptr\n" ++ "btree %s level %u\n" ++ "ptr: ", ++ bch2_btree_ids[b->c.btree_id], b->c.level); ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); ++ ++ prt_printf(&buf, "\nheader: btree %s level %llu\n" ++ "min ", ++ bch2_btree_ids[BTREE_NODE_ID(b->data)], ++ BTREE_NODE_LEVEL(b->data)); ++ bch2_bpos_to_text(&buf, b->data->min_key); ++ ++ prt_printf(&buf, "\nmax "); ++ bch2_bpos_to_text(&buf, b->data->max_key); ++ ++ bch2_fs_inconsistent(c, "%s", buf.buf); ++ printbuf_exit(&buf); ++} ++ ++static inline void btree_check_header(struct bch_fs *c, struct btree *b) ++{ ++ if (b->c.btree_id != BTREE_NODE_ID(b->data) || ++ b->c.level != BTREE_NODE_LEVEL(b->data) || ++ !bpos_eq(b->data->max_key, b->key.k.p) || ++ (b->key.k.type == KEY_TYPE_btree_ptr_v2 && ++ !bpos_eq(b->data->min_key, ++ bkey_i_to_btree_ptr_v2(&b->key)->v.min_key))) ++ btree_bad_header(c, b); ++} ++ ++static struct btree *__bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path, ++ const struct bkey_i *k, unsigned level, ++ enum six_lock_type lock_type, ++ unsigned long trace_ip) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ struct bset_tree *t; ++ bool need_relock = false; ++ int ret; ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++retry: ++ b = btree_cache_find(bc, k); ++ if (unlikely(!b)) { ++ /* ++ * We must have the parent locked to call bch2_btree_node_fill(), ++ * else we could read in a btree node from disk that's been ++ * freed: ++ */ ++ b = bch2_btree_node_fill(trans, path, k, path->btree_id, ++ level, lock_type, true); ++ need_relock = true; ++ ++ /* We raced and found the btree node in the cache */ ++ if (!b) ++ goto retry; ++ ++ if (IS_ERR(b)) ++ return b; ++ } else { ++ if (btree_node_read_locked(path, level + 1)) ++ btree_node_unlock(trans, path, level + 1); ++ ++ ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ return ERR_PTR(ret); ++ ++ BUG_ON(ret); ++ ++ if (unlikely(b->hash_val != btree_ptr_hash_val(k) || ++ b->c.level != level || ++ race_fault())) { ++ six_unlock_type(&b->c.lock, lock_type); ++ if (bch2_btree_node_relock(trans, path, level + 1)) ++ goto retry; ++ ++ trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path); ++ return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused)); ++ } ++ ++ /* avoid atomic set bit if it's not needed: */ ++ if (!btree_node_accessed(b)) ++ set_btree_node_accessed(b); ++ } ++ ++ if (unlikely(btree_node_read_in_flight(b))) { ++ u32 seq = six_lock_seq(&b->c.lock); ++ ++ six_unlock_type(&b->c.lock, lock_type); ++ bch2_trans_unlock(trans); ++ need_relock = true; ++ ++ bch2_btree_node_wait_on_read(b); ++ ++ /* ++ * should_be_locked is not set on this path yet, so we need to ++ * relock it specifically: ++ */ ++ if (!six_relock_type(&b->c.lock, lock_type, seq)) ++ goto retry; ++ } ++ ++ if (unlikely(need_relock)) { ++ ret = bch2_trans_relock(trans) ?: ++ bch2_btree_path_relock_intent(trans, path); ++ if (ret) { ++ six_unlock_type(&b->c.lock, lock_type); ++ return ERR_PTR(ret); ++ } ++ } ++ ++ prefetch(b->aux_data); ++ ++ for_each_bset(b, t) { ++ void *p = (u64 *) b->aux_data + t->aux_data_offset; ++ ++ prefetch(p + L1_CACHE_BYTES * 0); ++ prefetch(p + L1_CACHE_BYTES * 1); ++ prefetch(p + L1_CACHE_BYTES * 2); ++ } ++ ++ if (unlikely(btree_node_read_error(b))) { ++ six_unlock_type(&b->c.lock, lock_type); ++ return ERR_PTR(-EIO); ++ } ++ ++ EBUG_ON(b->c.btree_id != path->btree_id); ++ EBUG_ON(BTREE_NODE_LEVEL(b->data) != level); ++ btree_check_header(c, b); ++ ++ return b; ++} ++ ++/** ++ * bch2_btree_node_get - find a btree node in the cache and lock it, reading it ++ * in from disk if necessary. ++ * ++ * @trans: btree transaction object ++ * @path: btree_path being traversed ++ * @k: pointer to btree node (generally KEY_TYPE_btree_ptr_v2) ++ * @level: level of btree node being looked up (0 == leaf node) ++ * @lock_type: SIX_LOCK_read or SIX_LOCK_intent ++ * @trace_ip: ip of caller of btree iterator code (i.e. caller of bch2_btree_iter_peek()) ++ * ++ * The btree node will have either a read or a write lock held, depending on ++ * the @write parameter. ++ * ++ * Returns: btree node or ERR_PTR() ++ */ ++struct btree *bch2_btree_node_get(struct btree_trans *trans, struct btree_path *path, ++ const struct bkey_i *k, unsigned level, ++ enum six_lock_type lock_type, ++ unsigned long trace_ip) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *b; ++ struct bset_tree *t; ++ int ret; ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++ ++ b = btree_node_mem_ptr(k); ++ ++ /* ++ * Check b->hash_val _before_ calling btree_node_lock() - this might not ++ * be the node we want anymore, and trying to lock the wrong node could ++ * cause an unneccessary transaction restart: ++ */ ++ if (unlikely(!c->opts.btree_node_mem_ptr_optimization || ++ !b || ++ b->hash_val != btree_ptr_hash_val(k))) ++ return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip); ++ ++ if (btree_node_read_locked(path, level + 1)) ++ btree_node_unlock(trans, path, level + 1); ++ ++ ret = btree_node_lock(trans, path, &b->c, level, lock_type, trace_ip); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ return ERR_PTR(ret); ++ ++ BUG_ON(ret); ++ ++ if (unlikely(b->hash_val != btree_ptr_hash_val(k) || ++ b->c.level != level || ++ race_fault())) { ++ six_unlock_type(&b->c.lock, lock_type); ++ if (bch2_btree_node_relock(trans, path, level + 1)) ++ return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip); ++ ++ trace_and_count(c, trans_restart_btree_node_reused, trans, trace_ip, path); ++ return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_lock_node_reused)); ++ } ++ ++ if (unlikely(btree_node_read_in_flight(b))) { ++ six_unlock_type(&b->c.lock, lock_type); ++ return __bch2_btree_node_get(trans, path, k, level, lock_type, trace_ip); ++ } ++ ++ prefetch(b->aux_data); ++ ++ for_each_bset(b, t) { ++ void *p = (u64 *) b->aux_data + t->aux_data_offset; ++ ++ prefetch(p + L1_CACHE_BYTES * 0); ++ prefetch(p + L1_CACHE_BYTES * 1); ++ prefetch(p + L1_CACHE_BYTES * 2); ++ } ++ ++ /* avoid atomic set bit if it's not needed: */ ++ if (!btree_node_accessed(b)) ++ set_btree_node_accessed(b); ++ ++ if (unlikely(btree_node_read_error(b))) { ++ six_unlock_type(&b->c.lock, lock_type); ++ return ERR_PTR(-EIO); ++ } ++ ++ EBUG_ON(b->c.btree_id != path->btree_id); ++ EBUG_ON(BTREE_NODE_LEVEL(b->data) != level); ++ btree_check_header(c, b); ++ ++ return b; ++} ++ ++struct btree *bch2_btree_node_get_noiter(struct btree_trans *trans, ++ const struct bkey_i *k, ++ enum btree_id btree_id, ++ unsigned level, ++ bool nofill) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ struct bset_tree *t; ++ int ret; ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++ ++ if (c->opts.btree_node_mem_ptr_optimization) { ++ b = btree_node_mem_ptr(k); ++ if (b) ++ goto lock_node; ++ } ++retry: ++ b = btree_cache_find(bc, k); ++ if (unlikely(!b)) { ++ if (nofill) ++ goto out; ++ ++ b = bch2_btree_node_fill(trans, NULL, k, btree_id, ++ level, SIX_LOCK_read, true); ++ ++ /* We raced and found the btree node in the cache */ ++ if (!b) ++ goto retry; ++ ++ if (IS_ERR(b) && ++ !bch2_btree_cache_cannibalize_lock(c, NULL)) ++ goto retry; ++ ++ if (IS_ERR(b)) ++ goto out; ++ } else { ++lock_node: ++ ret = btree_node_lock_nopath(trans, &b->c, SIX_LOCK_read, _THIS_IP_); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ return ERR_PTR(ret); ++ ++ BUG_ON(ret); ++ ++ if (unlikely(b->hash_val != btree_ptr_hash_val(k) || ++ b->c.btree_id != btree_id || ++ b->c.level != level)) { ++ six_unlock_read(&b->c.lock); ++ goto retry; ++ } ++ } ++ ++ /* XXX: waiting on IO with btree locks held: */ ++ __bch2_btree_node_wait_on_read(b); ++ ++ prefetch(b->aux_data); ++ ++ for_each_bset(b, t) { ++ void *p = (u64 *) b->aux_data + t->aux_data_offset; ++ ++ prefetch(p + L1_CACHE_BYTES * 0); ++ prefetch(p + L1_CACHE_BYTES * 1); ++ prefetch(p + L1_CACHE_BYTES * 2); ++ } ++ ++ /* avoid atomic set bit if it's not needed: */ ++ if (!btree_node_accessed(b)) ++ set_btree_node_accessed(b); ++ ++ if (unlikely(btree_node_read_error(b))) { ++ six_unlock_read(&b->c.lock); ++ b = ERR_PTR(-EIO); ++ goto out; ++ } ++ ++ EBUG_ON(b->c.btree_id != btree_id); ++ EBUG_ON(BTREE_NODE_LEVEL(b->data) != level); ++ btree_check_header(c, b); ++out: ++ bch2_btree_cache_cannibalize_unlock(c); ++ return b; ++} ++ ++int bch2_btree_node_prefetch(struct btree_trans *trans, ++ struct btree_path *path, ++ const struct bkey_i *k, ++ enum btree_id btree_id, unsigned level) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ ++ BUG_ON(trans && !btree_node_locked(path, level + 1)); ++ BUG_ON(level >= BTREE_MAX_DEPTH); ++ ++ b = btree_cache_find(bc, k); ++ if (b) ++ return 0; ++ ++ b = bch2_btree_node_fill(trans, path, k, btree_id, ++ level, SIX_LOCK_read, false); ++ return PTR_ERR_OR_ZERO(b); ++} ++ ++void bch2_btree_node_evict(struct btree_trans *trans, const struct bkey_i *k) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_cache *bc = &c->btree_cache; ++ struct btree *b; ++ ++ b = btree_cache_find(bc, k); ++ if (!b) ++ return; ++wait_on_io: ++ /* not allowed to wait on io with btree locks held: */ ++ ++ /* XXX we're called from btree_gc which will be holding other btree ++ * nodes locked ++ */ ++ __bch2_btree_node_wait_on_read(b); ++ __bch2_btree_node_wait_on_write(b); ++ ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); ++ ++ if (btree_node_dirty(b)) { ++ __bch2_btree_node_write(c, b, BTREE_WRITE_cache_reclaim); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ goto wait_on_io; ++ } ++ ++ BUG_ON(btree_node_dirty(b)); ++ ++ mutex_lock(&bc->lock); ++ btree_node_data_free(c, b); ++ bch2_btree_node_hash_remove(bc, b); ++ mutex_unlock(&bc->lock); ++ ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++} ++ ++void bch2_btree_node_to_text(struct printbuf *out, struct bch_fs *c, ++ const struct btree *b) ++{ ++ struct bset_stats stats; ++ ++ memset(&stats, 0, sizeof(stats)); ++ ++ bch2_btree_keys_stats(b, &stats); ++ ++ prt_printf(out, "l %u ", b->c.level); ++ bch2_bpos_to_text(out, b->data->min_key); ++ prt_printf(out, " - "); ++ bch2_bpos_to_text(out, b->data->max_key); ++ prt_printf(out, ":\n" ++ " ptrs: "); ++ bch2_val_to_text(out, c, bkey_i_to_s_c(&b->key)); ++ prt_newline(out); ++ ++ prt_printf(out, ++ " format: "); ++ bch2_bkey_format_to_text(out, &b->format); ++ ++ prt_printf(out, ++ " unpack fn len: %u\n" ++ " bytes used %zu/%zu (%zu%% full)\n" ++ " sib u64s: %u, %u (merge threshold %u)\n" ++ " nr packed keys %u\n" ++ " nr unpacked keys %u\n" ++ " floats %zu\n" ++ " failed unpacked %zu\n", ++ b->unpack_fn_len, ++ b->nr.live_u64s * sizeof(u64), ++ btree_bytes(c) - sizeof(struct btree_node), ++ b->nr.live_u64s * 100 / btree_max_u64s(c), ++ b->sib_u64s[0], ++ b->sib_u64s[1], ++ c->btree_foreground_merge_threshold, ++ b->nr.packed_keys, ++ b->nr.unpacked_keys, ++ stats.floats, ++ stats.failed); ++} ++ ++void bch2_btree_cache_to_text(struct printbuf *out, const struct bch_fs *c) ++{ ++ prt_printf(out, "nr nodes:\t\t%u\n", c->btree_cache.used); ++ prt_printf(out, "nr dirty:\t\t%u\n", atomic_read(&c->btree_cache.dirty)); ++ prt_printf(out, "cannibalize lock:\t%p\n", c->btree_cache.alloc_lock); ++} +diff --git a/fs/bcachefs/btree_cache.h b/fs/bcachefs/btree_cache.h +new file mode 100644 +index 000000000000..1e562b6efa62 +--- /dev/null ++++ b/fs/bcachefs/btree_cache.h +@@ -0,0 +1,130 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_CACHE_H ++#define _BCACHEFS_BTREE_CACHE_H ++ ++#include "bcachefs.h" ++#include "btree_types.h" ++#include "bkey_methods.h" ++ ++extern const char * const bch2_btree_node_flags[]; ++ ++struct btree_iter; ++ ++void bch2_recalc_btree_reserve(struct bch_fs *); ++ ++void bch2_btree_node_hash_remove(struct btree_cache *, struct btree *); ++int __bch2_btree_node_hash_insert(struct btree_cache *, struct btree *); ++int bch2_btree_node_hash_insert(struct btree_cache *, struct btree *, ++ unsigned, enum btree_id); ++ ++void bch2_btree_cache_cannibalize_unlock(struct bch_fs *); ++int bch2_btree_cache_cannibalize_lock(struct bch_fs *, struct closure *); ++ ++struct btree *__bch2_btree_node_mem_alloc(struct bch_fs *); ++struct btree *bch2_btree_node_mem_alloc(struct btree_trans *, bool); ++ ++struct btree *bch2_btree_node_get(struct btree_trans *, struct btree_path *, ++ const struct bkey_i *, unsigned, ++ enum six_lock_type, unsigned long); ++ ++struct btree *bch2_btree_node_get_noiter(struct btree_trans *, const struct bkey_i *, ++ enum btree_id, unsigned, bool); ++ ++int bch2_btree_node_prefetch(struct btree_trans *, struct btree_path *, ++ const struct bkey_i *, enum btree_id, unsigned); ++ ++void bch2_btree_node_evict(struct btree_trans *, const struct bkey_i *); ++ ++void bch2_fs_btree_cache_exit(struct bch_fs *); ++int bch2_fs_btree_cache_init(struct bch_fs *); ++void bch2_fs_btree_cache_init_early(struct btree_cache *); ++ ++static inline u64 btree_ptr_hash_val(const struct bkey_i *k) ++{ ++ switch (k->k.type) { ++ case KEY_TYPE_btree_ptr: ++ return *((u64 *) bkey_i_to_btree_ptr_c(k)->v.start); ++ case KEY_TYPE_btree_ptr_v2: ++ /* ++ * The cast/deref is only necessary to avoid sparse endianness ++ * warnings: ++ */ ++ return *((u64 *) &bkey_i_to_btree_ptr_v2_c(k)->v.seq); ++ default: ++ return 0; ++ } ++} ++ ++static inline struct btree *btree_node_mem_ptr(const struct bkey_i *k) ++{ ++ return k->k.type == KEY_TYPE_btree_ptr_v2 ++ ? (void *)(unsigned long)bkey_i_to_btree_ptr_v2_c(k)->v.mem_ptr ++ : NULL; ++} ++ ++/* is btree node in hash table? */ ++static inline bool btree_node_hashed(struct btree *b) ++{ ++ return b->hash_val != 0; ++} ++ ++#define for_each_cached_btree(_b, _c, _tbl, _iter, _pos) \ ++ for ((_tbl) = rht_dereference_rcu((_c)->btree_cache.table.tbl, \ ++ &(_c)->btree_cache.table), \ ++ _iter = 0; _iter < (_tbl)->size; _iter++) \ ++ rht_for_each_entry_rcu((_b), (_pos), _tbl, _iter, hash) ++ ++static inline size_t btree_bytes(struct bch_fs *c) ++{ ++ return c->opts.btree_node_size; ++} ++ ++static inline size_t btree_max_u64s(struct bch_fs *c) ++{ ++ return (btree_bytes(c) - sizeof(struct btree_node)) / sizeof(u64); ++} ++ ++static inline size_t btree_pages(struct bch_fs *c) ++{ ++ return btree_bytes(c) / PAGE_SIZE; ++} ++ ++static inline unsigned btree_blocks(struct bch_fs *c) ++{ ++ return btree_sectors(c) >> c->block_bits; ++} ++ ++#define BTREE_SPLIT_THRESHOLD(c) (btree_max_u64s(c) * 2 / 3) ++ ++#define BTREE_FOREGROUND_MERGE_THRESHOLD(c) (btree_max_u64s(c) * 1 / 3) ++#define BTREE_FOREGROUND_MERGE_HYSTERESIS(c) \ ++ (BTREE_FOREGROUND_MERGE_THRESHOLD(c) + \ ++ (BTREE_FOREGROUND_MERGE_THRESHOLD(c) >> 2)) ++ ++static inline unsigned btree_id_nr_alive(struct bch_fs *c) ++{ ++ return BTREE_ID_NR + c->btree_roots_extra.nr; ++} ++ ++static inline struct btree_root *bch2_btree_id_root(struct bch_fs *c, unsigned id) ++{ ++ if (likely(id < BTREE_ID_NR)) { ++ return &c->btree_roots_known[id]; ++ } else { ++ unsigned idx = id - BTREE_ID_NR; ++ ++ EBUG_ON(idx >= c->btree_roots_extra.nr); ++ return &c->btree_roots_extra.data[idx]; ++ } ++} ++ ++static inline struct btree *btree_node_root(struct bch_fs *c, struct btree *b) ++{ ++ return bch2_btree_id_root(c, b->c.btree_id)->b; ++} ++ ++void bch2_btree_node_to_text(struct printbuf *, struct bch_fs *, ++ const struct btree *); ++void bch2_btree_cache_to_text(struct printbuf *, const struct bch_fs *); ++ ++#endif /* _BCACHEFS_BTREE_CACHE_H */ +diff --git a/fs/bcachefs/btree_gc.c b/fs/bcachefs/btree_gc.c +new file mode 100644 +index 000000000000..693ed067b1a7 +--- /dev/null ++++ b/fs/bcachefs/btree_gc.c +@@ -0,0 +1,2111 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Copyright (C) 2010 Kent Overstreet ++ * Copyright (C) 2014 Datera Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "bkey_methods.h" ++#include "bkey_buf.h" ++#include "btree_journal_iter.h" ++#include "btree_key_cache.h" ++#include "btree_locking.h" ++#include "btree_update_interior.h" ++#include "btree_io.h" ++#include "btree_gc.h" ++#include "buckets.h" ++#include "clock.h" ++#include "debug.h" ++#include "ec.h" ++#include "error.h" ++#include "extents.h" ++#include "journal.h" ++#include "keylist.h" ++#include "move.h" ++#include "recovery.h" ++#include "reflink.h" ++#include "replicas.h" ++#include "super-io.h" ++#include "trace.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#define DROP_THIS_NODE 10 ++#define DROP_PREV_NODE 11 ++ ++static bool should_restart_for_topology_repair(struct bch_fs *c) ++{ ++ return c->opts.fix_errors != FSCK_FIX_no && ++ !(c->recovery_passes_complete & BIT_ULL(BCH_RECOVERY_PASS_check_topology)); ++} ++ ++static inline void __gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) ++{ ++ preempt_disable(); ++ write_seqcount_begin(&c->gc_pos_lock); ++ c->gc_pos = new_pos; ++ write_seqcount_end(&c->gc_pos_lock); ++ preempt_enable(); ++} ++ ++static inline void gc_pos_set(struct bch_fs *c, struct gc_pos new_pos) ++{ ++ BUG_ON(gc_pos_cmp(new_pos, c->gc_pos) <= 0); ++ __gc_pos_set(c, new_pos); ++} ++ ++/* ++ * Missing: if an interior btree node is empty, we need to do something - ++ * perhaps just kill it ++ */ ++static int bch2_gc_check_topology(struct bch_fs *c, ++ struct btree *b, ++ struct bkey_buf *prev, ++ struct bkey_buf cur, ++ bool is_last) ++{ ++ struct bpos node_start = b->data->min_key; ++ struct bpos node_end = b->data->max_key; ++ struct bpos expected_start = bkey_deleted(&prev->k->k) ++ ? node_start ++ : bpos_successor(prev->k->k.p); ++ struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; ++ int ret = 0; ++ ++ if (cur.k->k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(cur.k); ++ ++ if (!bpos_eq(expected_start, bp->v.min_key)) { ++ bch2_topology_error(c); ++ ++ if (bkey_deleted(&prev->k->k)) { ++ prt_printf(&buf1, "start of node: "); ++ bch2_bpos_to_text(&buf1, node_start); ++ } else { ++ bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(prev->k)); ++ } ++ bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(cur.k)); ++ ++ if (__fsck_err(c, ++ FSCK_CAN_FIX| ++ FSCK_CAN_IGNORE| ++ FSCK_NO_RATELIMIT, ++ "btree node with incorrect min_key at btree %s level %u:\n" ++ " prev %s\n" ++ " cur %s", ++ bch2_btree_ids[b->c.btree_id], b->c.level, ++ buf1.buf, buf2.buf) && ++ should_restart_for_topology_repair(c)) { ++ bch_info(c, "Halting mark and sweep to start topology repair pass"); ++ ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); ++ goto err; ++ } else { ++ set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); ++ } ++ } ++ } ++ ++ if (is_last && !bpos_eq(cur.k->k.p, node_end)) { ++ bch2_topology_error(c); ++ ++ printbuf_reset(&buf1); ++ printbuf_reset(&buf2); ++ ++ bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(cur.k)); ++ bch2_bpos_to_text(&buf2, node_end); ++ ++ if (__fsck_err(c, ++ FSCK_CAN_FIX| ++ FSCK_CAN_IGNORE| ++ FSCK_NO_RATELIMIT, ++ "btree node with incorrect max_key at btree %s level %u:\n" ++ " %s\n" ++ " expected %s", ++ bch2_btree_ids[b->c.btree_id], b->c.level, ++ buf1.buf, buf2.buf) && ++ should_restart_for_topology_repair(c)) { ++ bch_info(c, "Halting mark and sweep to start topology repair pass"); ++ ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); ++ goto err; ++ } else { ++ set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); ++ } ++ } ++ ++ bch2_bkey_buf_copy(prev, c, cur.k); ++err: ++fsck_err: ++ printbuf_exit(&buf2); ++ printbuf_exit(&buf1); ++ return ret; ++} ++ ++static void btree_ptr_to_v2(struct btree *b, struct bkey_i_btree_ptr_v2 *dst) ++{ ++ switch (b->key.k.type) { ++ case KEY_TYPE_btree_ptr: { ++ struct bkey_i_btree_ptr *src = bkey_i_to_btree_ptr(&b->key); ++ ++ dst->k.p = src->k.p; ++ dst->v.mem_ptr = 0; ++ dst->v.seq = b->data->keys.seq; ++ dst->v.sectors_written = 0; ++ dst->v.flags = 0; ++ dst->v.min_key = b->data->min_key; ++ set_bkey_val_bytes(&dst->k, sizeof(dst->v) + bkey_val_bytes(&src->k)); ++ memcpy(dst->v.start, src->v.start, bkey_val_bytes(&src->k)); ++ break; ++ } ++ case KEY_TYPE_btree_ptr_v2: ++ bkey_copy(&dst->k_i, &b->key); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++static void bch2_btree_node_update_key_early(struct btree_trans *trans, ++ enum btree_id btree, unsigned level, ++ struct bkey_s_c old, struct bkey_i *new) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *b; ++ struct bkey_buf tmp; ++ int ret; ++ ++ bch2_bkey_buf_init(&tmp); ++ bch2_bkey_buf_reassemble(&tmp, c, old); ++ ++ b = bch2_btree_node_get_noiter(trans, tmp.k, btree, level, true); ++ if (!IS_ERR_OR_NULL(b)) { ++ mutex_lock(&c->btree_cache.lock); ++ ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ ++ bkey_copy(&b->key, new); ++ ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); ++ BUG_ON(ret); ++ ++ mutex_unlock(&c->btree_cache.lock); ++ six_unlock_read(&b->c.lock); ++ } ++ ++ bch2_bkey_buf_exit(&tmp, c); ++} ++ ++static int set_node_min(struct bch_fs *c, struct btree *b, struct bpos new_min) ++{ ++ struct bkey_i_btree_ptr_v2 *new; ++ int ret; ++ ++ new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL); ++ if (!new) ++ return -BCH_ERR_ENOMEM_gc_repair_key; ++ ++ btree_ptr_to_v2(b, new); ++ b->data->min_key = new_min; ++ new->v.min_key = new_min; ++ SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ++ ++ ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i); ++ if (ret) { ++ kfree(new); ++ return ret; ++ } ++ ++ bch2_btree_node_drop_keys_outside_node(b); ++ bkey_copy(&b->key, &new->k_i); ++ return 0; ++} ++ ++static int set_node_max(struct bch_fs *c, struct btree *b, struct bpos new_max) ++{ ++ struct bkey_i_btree_ptr_v2 *new; ++ int ret; ++ ++ ret = bch2_journal_key_delete(c, b->c.btree_id, b->c.level + 1, b->key.k.p); ++ if (ret) ++ return ret; ++ ++ new = kmalloc_array(BKEY_BTREE_PTR_U64s_MAX, sizeof(u64), GFP_KERNEL); ++ if (!new) ++ return -BCH_ERR_ENOMEM_gc_repair_key; ++ ++ btree_ptr_to_v2(b, new); ++ b->data->max_key = new_max; ++ new->k.p = new_max; ++ SET_BTREE_PTR_RANGE_UPDATED(&new->v, true); ++ ++ ret = bch2_journal_key_insert_take(c, b->c.btree_id, b->c.level + 1, &new->k_i); ++ if (ret) { ++ kfree(new); ++ return ret; ++ } ++ ++ bch2_btree_node_drop_keys_outside_node(b); ++ ++ mutex_lock(&c->btree_cache.lock); ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ ++ bkey_copy(&b->key, &new->k_i); ++ ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); ++ BUG_ON(ret); ++ mutex_unlock(&c->btree_cache.lock); ++ return 0; ++} ++ ++static int btree_repair_node_boundaries(struct bch_fs *c, struct btree *b, ++ struct btree *prev, struct btree *cur) ++{ ++ struct bpos expected_start = !prev ++ ? b->data->min_key ++ : bpos_successor(prev->key.k.p); ++ struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; ++ int ret = 0; ++ ++ if (!prev) { ++ prt_printf(&buf1, "start of node: "); ++ bch2_bpos_to_text(&buf1, b->data->min_key); ++ } else { ++ bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&prev->key)); ++ } ++ ++ bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(&cur->key)); ++ ++ if (prev && ++ bpos_gt(expected_start, cur->data->min_key) && ++ BTREE_NODE_SEQ(cur->data) > BTREE_NODE_SEQ(prev->data)) { ++ /* cur overwrites prev: */ ++ ++ if (mustfix_fsck_err_on(bpos_ge(prev->data->min_key, ++ cur->data->min_key), c, ++ "btree node overwritten by next node at btree %s level %u:\n" ++ " node %s\n" ++ " next %s", ++ bch2_btree_ids[b->c.btree_id], b->c.level, ++ buf1.buf, buf2.buf)) { ++ ret = DROP_PREV_NODE; ++ goto out; ++ } ++ ++ if (mustfix_fsck_err_on(!bpos_eq(prev->key.k.p, ++ bpos_predecessor(cur->data->min_key)), c, ++ "btree node with incorrect max_key at btree %s level %u:\n" ++ " node %s\n" ++ " next %s", ++ bch2_btree_ids[b->c.btree_id], b->c.level, ++ buf1.buf, buf2.buf)) ++ ret = set_node_max(c, prev, ++ bpos_predecessor(cur->data->min_key)); ++ } else { ++ /* prev overwrites cur: */ ++ ++ if (mustfix_fsck_err_on(bpos_ge(expected_start, ++ cur->data->max_key), c, ++ "btree node overwritten by prev node at btree %s level %u:\n" ++ " prev %s\n" ++ " node %s", ++ bch2_btree_ids[b->c.btree_id], b->c.level, ++ buf1.buf, buf2.buf)) { ++ ret = DROP_THIS_NODE; ++ goto out; ++ } ++ ++ if (mustfix_fsck_err_on(!bpos_eq(expected_start, cur->data->min_key), c, ++ "btree node with incorrect min_key at btree %s level %u:\n" ++ " prev %s\n" ++ " node %s", ++ bch2_btree_ids[b->c.btree_id], b->c.level, ++ buf1.buf, buf2.buf)) ++ ret = set_node_min(c, cur, expected_start); ++ } ++out: ++fsck_err: ++ printbuf_exit(&buf2); ++ printbuf_exit(&buf1); ++ return ret; ++} ++ ++static int btree_repair_node_end(struct bch_fs *c, struct btree *b, ++ struct btree *child) ++{ ++ struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; ++ int ret = 0; ++ ++ bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(&child->key)); ++ bch2_bpos_to_text(&buf2, b->key.k.p); ++ ++ if (mustfix_fsck_err_on(!bpos_eq(child->key.k.p, b->key.k.p), c, ++ "btree node with incorrect max_key at btree %s level %u:\n" ++ " %s\n" ++ " expected %s", ++ bch2_btree_ids[b->c.btree_id], b->c.level, ++ buf1.buf, buf2.buf)) { ++ ret = set_node_max(c, child, b->key.k.p); ++ if (ret) ++ goto err; ++ } ++err: ++fsck_err: ++ printbuf_exit(&buf2); ++ printbuf_exit(&buf1); ++ return ret; ++} ++ ++static int bch2_btree_repair_topology_recurse(struct btree_trans *trans, struct btree *b) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_and_journal_iter iter; ++ struct bkey_s_c k; ++ struct bkey_buf prev_k, cur_k; ++ struct btree *prev = NULL, *cur = NULL; ++ bool have_child, dropped_children = false; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ if (!b->c.level) ++ return 0; ++again: ++ prev = NULL; ++ have_child = dropped_children = false; ++ bch2_bkey_buf_init(&prev_k); ++ bch2_bkey_buf_init(&cur_k); ++ bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); ++ ++ while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { ++ BUG_ON(bpos_lt(k.k->p, b->data->min_key)); ++ BUG_ON(bpos_gt(k.k->p, b->data->max_key)); ++ ++ bch2_btree_and_journal_iter_advance(&iter); ++ bch2_bkey_buf_reassemble(&cur_k, c, k); ++ ++ cur = bch2_btree_node_get_noiter(trans, cur_k.k, ++ b->c.btree_id, b->c.level - 1, ++ false); ++ ret = PTR_ERR_OR_ZERO(cur); ++ ++ printbuf_reset(&buf); ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur_k.k)); ++ ++ if (mustfix_fsck_err_on(ret == -EIO, c, ++ "Topology repair: unreadable btree node at btree %s level %u:\n" ++ " %s", ++ bch2_btree_ids[b->c.btree_id], ++ b->c.level - 1, ++ buf.buf)) { ++ bch2_btree_node_evict(trans, cur_k.k); ++ ret = bch2_journal_key_delete(c, b->c.btree_id, ++ b->c.level, cur_k.k->k.p); ++ cur = NULL; ++ if (ret) ++ break; ++ continue; ++ } ++ ++ if (ret) { ++ bch_err_msg(c, ret, "getting btree node"); ++ break; ++ } ++ ++ ret = btree_repair_node_boundaries(c, b, prev, cur); ++ ++ if (ret == DROP_THIS_NODE) { ++ six_unlock_read(&cur->c.lock); ++ bch2_btree_node_evict(trans, cur_k.k); ++ ret = bch2_journal_key_delete(c, b->c.btree_id, ++ b->c.level, cur_k.k->k.p); ++ cur = NULL; ++ if (ret) ++ break; ++ continue; ++ } ++ ++ if (prev) ++ six_unlock_read(&prev->c.lock); ++ prev = NULL; ++ ++ if (ret == DROP_PREV_NODE) { ++ bch2_btree_node_evict(trans, prev_k.k); ++ ret = bch2_journal_key_delete(c, b->c.btree_id, ++ b->c.level, prev_k.k->k.p); ++ if (ret) ++ break; ++ ++ bch2_btree_and_journal_iter_exit(&iter); ++ bch2_bkey_buf_exit(&prev_k, c); ++ bch2_bkey_buf_exit(&cur_k, c); ++ goto again; ++ } else if (ret) ++ break; ++ ++ prev = cur; ++ cur = NULL; ++ bch2_bkey_buf_copy(&prev_k, c, cur_k.k); ++ } ++ ++ if (!ret && !IS_ERR_OR_NULL(prev)) { ++ BUG_ON(cur); ++ ret = btree_repair_node_end(c, b, prev); ++ } ++ ++ if (!IS_ERR_OR_NULL(prev)) ++ six_unlock_read(&prev->c.lock); ++ prev = NULL; ++ if (!IS_ERR_OR_NULL(cur)) ++ six_unlock_read(&cur->c.lock); ++ cur = NULL; ++ ++ if (ret) ++ goto err; ++ ++ bch2_btree_and_journal_iter_exit(&iter); ++ bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); ++ ++ while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { ++ bch2_bkey_buf_reassemble(&cur_k, c, k); ++ bch2_btree_and_journal_iter_advance(&iter); ++ ++ cur = bch2_btree_node_get_noiter(trans, cur_k.k, ++ b->c.btree_id, b->c.level - 1, ++ false); ++ ret = PTR_ERR_OR_ZERO(cur); ++ ++ if (ret) { ++ bch_err_msg(c, ret, "getting btree node"); ++ goto err; ++ } ++ ++ ret = bch2_btree_repair_topology_recurse(trans, cur); ++ six_unlock_read(&cur->c.lock); ++ cur = NULL; ++ ++ if (ret == DROP_THIS_NODE) { ++ bch2_btree_node_evict(trans, cur_k.k); ++ ret = bch2_journal_key_delete(c, b->c.btree_id, ++ b->c.level, cur_k.k->k.p); ++ dropped_children = true; ++ } ++ ++ if (ret) ++ goto err; ++ ++ have_child = true; ++ } ++ ++ printbuf_reset(&buf); ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); ++ ++ if (mustfix_fsck_err_on(!have_child, c, ++ "empty interior btree node at btree %s level %u\n" ++ " %s", ++ bch2_btree_ids[b->c.btree_id], ++ b->c.level, buf.buf)) ++ ret = DROP_THIS_NODE; ++err: ++fsck_err: ++ if (!IS_ERR_OR_NULL(prev)) ++ six_unlock_read(&prev->c.lock); ++ if (!IS_ERR_OR_NULL(cur)) ++ six_unlock_read(&cur->c.lock); ++ ++ bch2_btree_and_journal_iter_exit(&iter); ++ bch2_bkey_buf_exit(&prev_k, c); ++ bch2_bkey_buf_exit(&cur_k, c); ++ ++ if (!ret && dropped_children) ++ goto again; ++ ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++int bch2_check_topology(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree *b; ++ unsigned i; ++ int ret = 0; ++ ++ for (i = 0; i < btree_id_nr_alive(c) && !ret; i++) { ++ struct btree_root *r = bch2_btree_id_root(c, i); ++ ++ if (!r->alive) ++ continue; ++ ++ b = r->b; ++ if (btree_node_fake(b)) ++ continue; ++ ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); ++ ret = bch2_btree_repair_topology_recurse(trans, b); ++ six_unlock_read(&b->c.lock); ++ ++ if (ret == DROP_THIS_NODE) { ++ bch_err(c, "empty btree root - repair unimplemented"); ++ ret = -BCH_ERR_fsck_repair_unimplemented; ++ } ++ } ++ ++ bch2_trans_put(trans); ++ ++ return ret; ++} ++ ++static int bch2_check_fix_ptrs(struct btree_trans *trans, enum btree_id btree_id, ++ unsigned level, bool is_root, ++ struct bkey_s_c *k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_ptrs_c ptrs_c = bch2_bkey_ptrs_c(*k); ++ const union bch_extent_entry *entry_c; ++ struct extent_ptr_decoded p = { 0 }; ++ bool do_update = false; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ /* ++ * XXX ++ * use check_bucket_ref here ++ */ ++ bkey_for_each_ptr_decode(k->k, ptrs_c, p, entry_c) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); ++ struct bucket *g = PTR_GC_BUCKET(ca, &p.ptr); ++ enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, &entry_c->ptr); ++ ++ if (!g->gen_valid && ++ (c->opts.reconstruct_alloc || ++ fsck_err(c, "bucket %u:%zu data type %s ptr gen %u missing in alloc btree\n" ++ "while marking %s", ++ p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), ++ bch2_data_types[ptr_data_type(k->k, &p.ptr)], ++ p.ptr.gen, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) { ++ if (!p.ptr.cached) { ++ g->gen_valid = true; ++ g->gen = p.ptr.gen; ++ } else { ++ do_update = true; ++ } ++ } ++ ++ if (gen_cmp(p.ptr.gen, g->gen) > 0 && ++ (c->opts.reconstruct_alloc || ++ fsck_err(c, "bucket %u:%zu data type %s ptr gen in the future: %u > %u\n" ++ "while marking %s", ++ p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), ++ bch2_data_types[ptr_data_type(k->k, &p.ptr)], ++ p.ptr.gen, g->gen, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) { ++ if (!p.ptr.cached) { ++ g->gen_valid = true; ++ g->gen = p.ptr.gen; ++ g->data_type = 0; ++ g->dirty_sectors = 0; ++ g->cached_sectors = 0; ++ set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); ++ } else { ++ do_update = true; ++ } ++ } ++ ++ if (gen_cmp(g->gen, p.ptr.gen) > BUCKET_GC_GEN_MAX && ++ (c->opts.reconstruct_alloc || ++ fsck_err(c, "bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n" ++ "while marking %s", ++ p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), g->gen, ++ bch2_data_types[ptr_data_type(k->k, &p.ptr)], ++ p.ptr.gen, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) ++ do_update = true; ++ ++ if (!p.ptr.cached && gen_cmp(p.ptr.gen, g->gen) < 0 && ++ (c->opts.reconstruct_alloc || ++ fsck_err(c, "bucket %u:%zu data type %s stale dirty ptr: %u < %u\n" ++ "while marking %s", ++ p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), ++ bch2_data_types[ptr_data_type(k->k, &p.ptr)], ++ p.ptr.gen, g->gen, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, *k), buf.buf)))) ++ do_update = true; ++ ++ if (data_type != BCH_DATA_btree && p.ptr.gen != g->gen) ++ continue; ++ ++ if (fsck_err_on(bucket_data_type(g->data_type) && ++ bucket_data_type(g->data_type) != data_type, c, ++ "bucket %u:%zu different types of data in same bucket: %s, %s\n" ++ "while marking %s", ++ p.ptr.dev, PTR_BUCKET_NR(ca, &p.ptr), ++ bch2_data_types[g->data_type], ++ bch2_data_types[data_type], ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, *k), buf.buf))) { ++ if (data_type == BCH_DATA_btree) { ++ g->data_type = data_type; ++ set_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); ++ } else { ++ do_update = true; ++ } ++ } ++ ++ if (p.has_ec) { ++ struct gc_stripe *m = genradix_ptr(&c->gc_stripes, p.ec.idx); ++ ++ if (fsck_err_on(!m || !m->alive, c, ++ "pointer to nonexistent stripe %llu\n" ++ "while marking %s", ++ (u64) p.ec.idx, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, *k), buf.buf))) ++ do_update = true; ++ ++ if (fsck_err_on(m && m->alive && !bch2_ptr_matches_stripe_m(m, p), c, ++ "pointer does not match stripe %llu\n" ++ "while marking %s", ++ (u64) p.ec.idx, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, *k), buf.buf))) ++ do_update = true; ++ } ++ } ++ ++ if (do_update) { ++ struct bkey_ptrs ptrs; ++ union bch_extent_entry *entry; ++ struct bch_extent_ptr *ptr; ++ struct bkey_i *new; ++ ++ if (is_root) { ++ bch_err(c, "cannot update btree roots yet"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ new = kmalloc(bkey_bytes(k->k), GFP_KERNEL); ++ if (!new) { ++ bch_err_msg(c, ret, "allocating new key"); ++ ret = -BCH_ERR_ENOMEM_gc_repair_key; ++ goto err; ++ } ++ ++ bkey_reassemble(new, *k); ++ ++ if (level) { ++ /* ++ * We don't want to drop btree node pointers - if the ++ * btree node isn't there anymore, the read path will ++ * sort it out: ++ */ ++ ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); ++ bkey_for_each_ptr(ptrs, ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bucket *g = PTR_GC_BUCKET(ca, ptr); ++ ++ ptr->gen = g->gen; ++ } ++ } else { ++ bch2_bkey_drop_ptrs(bkey_i_to_s(new), ptr, ({ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bucket *g = PTR_GC_BUCKET(ca, ptr); ++ enum bch_data_type data_type = bch2_bkey_ptr_data_type(*k, ptr); ++ ++ (ptr->cached && ++ (!g->gen_valid || gen_cmp(ptr->gen, g->gen) > 0)) || ++ (!ptr->cached && ++ gen_cmp(ptr->gen, g->gen) < 0) || ++ gen_cmp(g->gen, ptr->gen) > BUCKET_GC_GEN_MAX || ++ (g->data_type && ++ g->data_type != data_type); ++ })); ++again: ++ ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); ++ bkey_extent_entry_for_each(ptrs, entry) { ++ if (extent_entry_type(entry) == BCH_EXTENT_ENTRY_stripe_ptr) { ++ struct gc_stripe *m = genradix_ptr(&c->gc_stripes, ++ entry->stripe_ptr.idx); ++ union bch_extent_entry *next_ptr; ++ ++ bkey_extent_entry_for_each_from(ptrs, next_ptr, entry) ++ if (extent_entry_type(next_ptr) == BCH_EXTENT_ENTRY_ptr) ++ goto found; ++ next_ptr = NULL; ++found: ++ if (!next_ptr) { ++ bch_err(c, "aieee, found stripe ptr with no data ptr"); ++ continue; ++ } ++ ++ if (!m || !m->alive || ++ !__bch2_ptr_matches_stripe(&m->ptrs[entry->stripe_ptr.block], ++ &next_ptr->ptr, ++ m->sectors)) { ++ bch2_bkey_extent_entry_drop(new, entry); ++ goto again; ++ } ++ } ++ } ++ } ++ ++ ret = bch2_journal_key_insert_take(c, btree_id, level, new); ++ if (ret) { ++ kfree(new); ++ goto err; ++ } ++ ++ if (level) ++ bch2_btree_node_update_key_early(trans, btree_id, level - 1, *k, new); ++ ++ if (0) { ++ printbuf_reset(&buf); ++ bch2_bkey_val_to_text(&buf, c, *k); ++ bch_info(c, "updated %s", buf.buf); ++ ++ printbuf_reset(&buf); ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(new)); ++ bch_info(c, "new key %s", buf.buf); ++ } ++ ++ *k = bkey_i_to_s_c(new); ++ } ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++/* marking of btree keys/nodes: */ ++ ++static int bch2_gc_mark_key(struct btree_trans *trans, enum btree_id btree_id, ++ unsigned level, bool is_root, ++ struct bkey_s_c *k, ++ bool initial) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey deleted = KEY(0, 0, 0); ++ struct bkey_s_c old = (struct bkey_s_c) { &deleted, NULL }; ++ unsigned flags = ++ BTREE_TRIGGER_GC| ++ (initial ? BTREE_TRIGGER_NOATOMIC : 0); ++ int ret = 0; ++ ++ deleted.p = k->k->p; ++ ++ if (initial) { ++ BUG_ON(bch2_journal_seq_verify && ++ k->k->version.lo > atomic64_read(&c->journal.seq)); ++ ++ ret = bch2_check_fix_ptrs(trans, btree_id, level, is_root, k); ++ if (ret) ++ goto err; ++ ++ if (fsck_err_on(k->k->version.lo > atomic64_read(&c->key_version), c, ++ "key version number higher than recorded: %llu > %llu", ++ k->k->version.lo, ++ atomic64_read(&c->key_version))) ++ atomic64_set(&c->key_version, k->k->version.lo); ++ } ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_mark_key(trans, btree_id, level, old, *k, flags)); ++fsck_err: ++err: ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int btree_gc_mark_node(struct btree_trans *trans, struct btree *b, bool initial) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_node_iter iter; ++ struct bkey unpacked; ++ struct bkey_s_c k; ++ struct bkey_buf prev, cur; ++ int ret = 0; ++ ++ if (!btree_node_type_needs_gc(btree_node_type(b))) ++ return 0; ++ ++ bch2_btree_node_iter_init_from_start(&iter, b); ++ bch2_bkey_buf_init(&prev); ++ bch2_bkey_buf_init(&cur); ++ bkey_init(&prev.k->k); ++ ++ while ((k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked)).k) { ++ ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, false, ++ &k, initial); ++ if (ret) ++ break; ++ ++ bch2_btree_node_iter_advance(&iter, b); ++ ++ if (b->c.level) { ++ bch2_bkey_buf_reassemble(&cur, c, k); ++ ++ ret = bch2_gc_check_topology(c, b, &prev, cur, ++ bch2_btree_node_iter_end(&iter)); ++ if (ret) ++ break; ++ } ++ } ++ ++ bch2_bkey_buf_exit(&cur, c); ++ bch2_bkey_buf_exit(&prev, c); ++ return ret; ++} ++ ++static int bch2_gc_btree(struct btree_trans *trans, enum btree_id btree_id, ++ bool initial, bool metadata_only) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct btree *b; ++ unsigned depth = metadata_only ? 1 : 0; ++ int ret = 0; ++ ++ gc_pos_set(c, gc_pos_btree(btree_id, POS_MIN, 0)); ++ ++ __for_each_btree_node(trans, iter, btree_id, POS_MIN, ++ 0, depth, BTREE_ITER_PREFETCH, b, ret) { ++ bch2_verify_btree_nr_keys(b); ++ ++ gc_pos_set(c, gc_pos_btree_node(b)); ++ ++ ret = btree_gc_mark_node(trans, b, initial); ++ if (ret) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) ++ return ret; ++ ++ mutex_lock(&c->btree_root_lock); ++ b = bch2_btree_id_root(c, btree_id)->b; ++ if (!btree_node_fake(b)) { ++ struct bkey_s_c k = bkey_i_to_s_c(&b->key); ++ ++ ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1, ++ true, &k, initial); ++ } ++ gc_pos_set(c, gc_pos_btree_root(b->c.btree_id)); ++ mutex_unlock(&c->btree_root_lock); ++ ++ return ret; ++} ++ ++static int bch2_gc_btree_init_recurse(struct btree_trans *trans, struct btree *b, ++ unsigned target_depth) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_and_journal_iter iter; ++ struct bkey_s_c k; ++ struct bkey_buf cur, prev; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); ++ bch2_bkey_buf_init(&prev); ++ bch2_bkey_buf_init(&cur); ++ bkey_init(&prev.k->k); ++ ++ while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { ++ BUG_ON(bpos_lt(k.k->p, b->data->min_key)); ++ BUG_ON(bpos_gt(k.k->p, b->data->max_key)); ++ ++ ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level, ++ false, &k, true); ++ if (ret) ++ goto fsck_err; ++ ++ if (b->c.level) { ++ bch2_bkey_buf_reassemble(&cur, c, k); ++ k = bkey_i_to_s_c(cur.k); ++ ++ bch2_btree_and_journal_iter_advance(&iter); ++ ++ ret = bch2_gc_check_topology(c, b, ++ &prev, cur, ++ !bch2_btree_and_journal_iter_peek(&iter).k); ++ if (ret) ++ goto fsck_err; ++ } else { ++ bch2_btree_and_journal_iter_advance(&iter); ++ } ++ } ++ ++ if (b->c.level > target_depth) { ++ bch2_btree_and_journal_iter_exit(&iter); ++ bch2_btree_and_journal_iter_init_node_iter(&iter, c, b); ++ ++ while ((k = bch2_btree_and_journal_iter_peek(&iter)).k) { ++ struct btree *child; ++ ++ bch2_bkey_buf_reassemble(&cur, c, k); ++ bch2_btree_and_journal_iter_advance(&iter); ++ ++ child = bch2_btree_node_get_noiter(trans, cur.k, ++ b->c.btree_id, b->c.level - 1, ++ false); ++ ret = PTR_ERR_OR_ZERO(child); ++ ++ if (ret == -EIO) { ++ bch2_topology_error(c); ++ ++ if (__fsck_err(c, ++ FSCK_CAN_FIX| ++ FSCK_CAN_IGNORE| ++ FSCK_NO_RATELIMIT, ++ "Unreadable btree node at btree %s level %u:\n" ++ " %s", ++ bch2_btree_ids[b->c.btree_id], ++ b->c.level - 1, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(cur.k)), buf.buf)) && ++ should_restart_for_topology_repair(c)) { ++ bch_info(c, "Halting mark and sweep to start topology repair pass"); ++ ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology); ++ goto fsck_err; ++ } else { ++ /* Continue marking when opted to not ++ * fix the error: */ ++ ret = 0; ++ set_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags); ++ continue; ++ } ++ } else if (ret) { ++ bch_err_msg(c, ret, "getting btree node"); ++ break; ++ } ++ ++ ret = bch2_gc_btree_init_recurse(trans, child, ++ target_depth); ++ six_unlock_read(&child->c.lock); ++ ++ if (ret) ++ break; ++ } ++ } ++fsck_err: ++ bch2_bkey_buf_exit(&cur, c); ++ bch2_bkey_buf_exit(&prev, c); ++ bch2_btree_and_journal_iter_exit(&iter); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int bch2_gc_btree_init(struct btree_trans *trans, ++ enum btree_id btree_id, ++ bool metadata_only) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *b; ++ unsigned target_depth = metadata_only ? 1 : 0; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ b = bch2_btree_id_root(c, btree_id)->b; ++ ++ if (btree_node_fake(b)) ++ return 0; ++ ++ six_lock_read(&b->c.lock, NULL, NULL); ++ printbuf_reset(&buf); ++ bch2_bpos_to_text(&buf, b->data->min_key); ++ if (mustfix_fsck_err_on(!bpos_eq(b->data->min_key, POS_MIN), c, ++ "btree root with incorrect min_key: %s", buf.buf)) { ++ bch_err(c, "repair unimplemented"); ++ ret = -BCH_ERR_fsck_repair_unimplemented; ++ goto fsck_err; ++ } ++ ++ printbuf_reset(&buf); ++ bch2_bpos_to_text(&buf, b->data->max_key); ++ if (mustfix_fsck_err_on(!bpos_eq(b->data->max_key, SPOS_MAX), c, ++ "btree root with incorrect max_key: %s", buf.buf)) { ++ bch_err(c, "repair unimplemented"); ++ ret = -BCH_ERR_fsck_repair_unimplemented; ++ goto fsck_err; ++ } ++ ++ if (b->c.level >= target_depth) ++ ret = bch2_gc_btree_init_recurse(trans, b, target_depth); ++ ++ if (!ret) { ++ struct bkey_s_c k = bkey_i_to_s_c(&b->key); ++ ++ ret = bch2_gc_mark_key(trans, b->c.btree_id, b->c.level + 1, true, ++ &k, true); ++ } ++fsck_err: ++ six_unlock_read(&b->c.lock); ++ ++ if (ret < 0) ++ bch_err_fn(c, ret); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static inline int btree_id_gc_phase_cmp(enum btree_id l, enum btree_id r) ++{ ++ return (int) btree_id_to_gc_phase(l) - ++ (int) btree_id_to_gc_phase(r); ++} ++ ++static int bch2_gc_btrees(struct bch_fs *c, bool initial, bool metadata_only) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ enum btree_id ids[BTREE_ID_NR]; ++ unsigned i; ++ int ret = 0; ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ ids[i] = i; ++ bubble_sort(ids, BTREE_ID_NR, btree_id_gc_phase_cmp); ++ ++ for (i = 0; i < BTREE_ID_NR && !ret; i++) ++ ret = initial ++ ? bch2_gc_btree_init(trans, ids[i], metadata_only) ++ : bch2_gc_btree(trans, ids[i], initial, metadata_only); ++ ++ for (i = BTREE_ID_NR; i < btree_id_nr_alive(c) && !ret; i++) { ++ if (!bch2_btree_id_root(c, i)->alive) ++ continue; ++ ++ ret = initial ++ ? bch2_gc_btree_init(trans, i, metadata_only) ++ : bch2_gc_btree(trans, i, initial, metadata_only); ++ } ++ ++ if (ret < 0) ++ bch_err_fn(c, ret); ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static void mark_metadata_sectors(struct bch_fs *c, struct bch_dev *ca, ++ u64 start, u64 end, ++ enum bch_data_type type, ++ unsigned flags) ++{ ++ u64 b = sector_to_bucket(ca, start); ++ ++ do { ++ unsigned sectors = ++ min_t(u64, bucket_to_sector(ca, b + 1), end) - start; ++ ++ bch2_mark_metadata_bucket(c, ca, b, type, sectors, ++ gc_phase(GC_PHASE_SB), flags); ++ b++; ++ start += sectors; ++ } while (start < end); ++} ++ ++static void bch2_mark_dev_superblock(struct bch_fs *c, struct bch_dev *ca, ++ unsigned flags) ++{ ++ struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; ++ unsigned i; ++ u64 b; ++ ++ for (i = 0; i < layout->nr_superblocks; i++) { ++ u64 offset = le64_to_cpu(layout->sb_offset[i]); ++ ++ if (offset == BCH_SB_SECTOR) ++ mark_metadata_sectors(c, ca, 0, BCH_SB_SECTOR, ++ BCH_DATA_sb, flags); ++ ++ mark_metadata_sectors(c, ca, offset, ++ offset + (1 << layout->sb_max_size_bits), ++ BCH_DATA_sb, flags); ++ } ++ ++ for (i = 0; i < ca->journal.nr; i++) { ++ b = ca->journal.buckets[i]; ++ bch2_mark_metadata_bucket(c, ca, b, BCH_DATA_journal, ++ ca->mi.bucket_size, ++ gc_phase(GC_PHASE_SB), flags); ++ } ++} ++ ++static void bch2_mark_superblocks(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ mutex_lock(&c->sb_lock); ++ gc_pos_set(c, gc_phase(GC_PHASE_SB)); ++ ++ for_each_online_member(ca, c, i) ++ bch2_mark_dev_superblock(c, ca, BTREE_TRIGGER_GC); ++ mutex_unlock(&c->sb_lock); ++} ++ ++#if 0 ++/* Also see bch2_pending_btree_node_free_insert_done() */ ++static void bch2_mark_pending_btree_node_frees(struct bch_fs *c) ++{ ++ struct btree_update *as; ++ struct pending_btree_node_free *d; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ gc_pos_set(c, gc_phase(GC_PHASE_PENDING_DELETE)); ++ ++ for_each_pending_btree_node_free(c, as, d) ++ if (d->index_update_done) ++ bch2_mark_key(c, bkey_i_to_s_c(&d->key), BTREE_TRIGGER_GC); ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++#endif ++ ++static void bch2_gc_free(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ genradix_free(&c->reflink_gc_table); ++ genradix_free(&c->gc_stripes); ++ ++ for_each_member_device(ca, c, i) { ++ kvpfree(rcu_dereference_protected(ca->buckets_gc, 1), ++ sizeof(struct bucket_array) + ++ ca->mi.nbuckets * sizeof(struct bucket)); ++ ca->buckets_gc = NULL; ++ ++ free_percpu(ca->usage_gc); ++ ca->usage_gc = NULL; ++ } ++ ++ free_percpu(c->usage_gc); ++ c->usage_gc = NULL; ++} ++ ++static int bch2_gc_done(struct bch_fs *c, ++ bool initial, bool metadata_only) ++{ ++ struct bch_dev *ca = NULL; ++ struct printbuf buf = PRINTBUF; ++ bool verify = !metadata_only && ++ !c->opts.reconstruct_alloc && ++ (!initial || (c->sb.compat & (1ULL << BCH_COMPAT_alloc_info))); ++ unsigned i, dev; ++ int ret = 0; ++ ++ percpu_down_write(&c->mark_lock); ++ ++#define copy_field(_f, _msg, ...) \ ++ if (dst->_f != src->_f && \ ++ (!verify || \ ++ fsck_err(c, _msg ": got %llu, should be %llu" \ ++ , ##__VA_ARGS__, dst->_f, src->_f))) \ ++ dst->_f = src->_f ++#define copy_dev_field(_f, _msg, ...) \ ++ copy_field(_f, "dev %u has wrong " _msg, dev, ##__VA_ARGS__) ++#define copy_fs_field(_f, _msg, ...) \ ++ copy_field(_f, "fs has wrong " _msg, ##__VA_ARGS__) ++ ++ for (i = 0; i < ARRAY_SIZE(c->usage); i++) ++ bch2_fs_usage_acc_to_base(c, i); ++ ++ for_each_member_device(ca, c, dev) { ++ struct bch_dev_usage *dst = ca->usage_base; ++ struct bch_dev_usage *src = (void *) ++ bch2_acc_percpu_u64s((u64 __percpu *) ca->usage_gc, ++ dev_usage_u64s()); ++ ++ copy_dev_field(buckets_ec, "buckets_ec"); ++ ++ for (i = 0; i < BCH_DATA_NR; i++) { ++ copy_dev_field(d[i].buckets, "%s buckets", bch2_data_types[i]); ++ copy_dev_field(d[i].sectors, "%s sectors", bch2_data_types[i]); ++ copy_dev_field(d[i].fragmented, "%s fragmented", bch2_data_types[i]); ++ } ++ } ++ ++ { ++ unsigned nr = fs_usage_u64s(c); ++ struct bch_fs_usage *dst = c->usage_base; ++ struct bch_fs_usage *src = (void *) ++ bch2_acc_percpu_u64s((u64 __percpu *) c->usage_gc, nr); ++ ++ copy_fs_field(hidden, "hidden"); ++ copy_fs_field(btree, "btree"); ++ ++ if (!metadata_only) { ++ copy_fs_field(data, "data"); ++ copy_fs_field(cached, "cached"); ++ copy_fs_field(reserved, "reserved"); ++ copy_fs_field(nr_inodes,"nr_inodes"); ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) ++ copy_fs_field(persistent_reserved[i], ++ "persistent_reserved[%i]", i); ++ } ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ if (metadata_only && ++ (e->data_type == BCH_DATA_user || ++ e->data_type == BCH_DATA_cached)) ++ continue; ++ ++ printbuf_reset(&buf); ++ bch2_replicas_entry_to_text(&buf, e); ++ ++ copy_fs_field(replicas[i], "%s", buf.buf); ++ } ++ } ++ ++#undef copy_fs_field ++#undef copy_dev_field ++#undef copy_stripe_field ++#undef copy_field ++fsck_err: ++ if (ca) ++ percpu_ref_put(&ca->ref); ++ if (ret) ++ bch_err_fn(c, ret); ++ ++ percpu_up_write(&c->mark_lock); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int bch2_gc_start(struct bch_fs *c) ++{ ++ struct bch_dev *ca = NULL; ++ unsigned i; ++ ++ BUG_ON(c->usage_gc); ++ ++ c->usage_gc = __alloc_percpu_gfp(fs_usage_u64s(c) * sizeof(u64), ++ sizeof(u64), GFP_KERNEL); ++ if (!c->usage_gc) { ++ bch_err(c, "error allocating c->usage_gc"); ++ return -BCH_ERR_ENOMEM_gc_start; ++ } ++ ++ for_each_member_device(ca, c, i) { ++ BUG_ON(ca->usage_gc); ++ ++ ca->usage_gc = alloc_percpu(struct bch_dev_usage); ++ if (!ca->usage_gc) { ++ bch_err(c, "error allocating ca->usage_gc"); ++ percpu_ref_put(&ca->ref); ++ return -BCH_ERR_ENOMEM_gc_start; ++ } ++ ++ this_cpu_write(ca->usage_gc->d[BCH_DATA_free].buckets, ++ ca->mi.nbuckets - ca->mi.first_bucket); ++ } ++ ++ return 0; ++} ++ ++static int bch2_gc_reset(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ for_each_member_device(ca, c, i) { ++ free_percpu(ca->usage_gc); ++ ca->usage_gc = NULL; ++ } ++ ++ free_percpu(c->usage_gc); ++ c->usage_gc = NULL; ++ ++ return bch2_gc_start(c); ++} ++ ++/* returns true if not equal */ ++static inline bool bch2_alloc_v4_cmp(struct bch_alloc_v4 l, ++ struct bch_alloc_v4 r) ++{ ++ return l.gen != r.gen || ++ l.oldest_gen != r.oldest_gen || ++ l.data_type != r.data_type || ++ l.dirty_sectors != r.dirty_sectors || ++ l.cached_sectors != r.cached_sectors || ++ l.stripe_redundancy != r.stripe_redundancy || ++ l.stripe != r.stripe; ++} ++ ++static int bch2_alloc_write_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ bool metadata_only) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, iter->pos.inode); ++ struct bucket gc, *b; ++ struct bkey_i_alloc_v4 *a; ++ struct bch_alloc_v4 old_convert, new; ++ const struct bch_alloc_v4 *old; ++ enum bch_data_type type; ++ int ret; ++ ++ if (bkey_ge(iter->pos, POS(ca->dev_idx, ca->mi.nbuckets))) ++ return 1; ++ ++ old = bch2_alloc_to_v4(k, &old_convert); ++ new = *old; ++ ++ percpu_down_read(&c->mark_lock); ++ b = gc_bucket(ca, iter->pos.offset); ++ ++ /* ++ * b->data_type doesn't yet include need_discard & need_gc_gen states - ++ * fix that here: ++ */ ++ type = __alloc_data_type(b->dirty_sectors, ++ b->cached_sectors, ++ b->stripe, ++ *old, ++ b->data_type); ++ if (b->data_type != type) { ++ struct bch_dev_usage *u; ++ ++ preempt_disable(); ++ u = this_cpu_ptr(ca->usage_gc); ++ u->d[b->data_type].buckets--; ++ b->data_type = type; ++ u->d[b->data_type].buckets++; ++ preempt_enable(); ++ } ++ ++ gc = *b; ++ percpu_up_read(&c->mark_lock); ++ ++ if (metadata_only && ++ gc.data_type != BCH_DATA_sb && ++ gc.data_type != BCH_DATA_journal && ++ gc.data_type != BCH_DATA_btree) ++ return 0; ++ ++ if (gen_after(old->gen, gc.gen)) ++ return 0; ++ ++ if (c->opts.reconstruct_alloc || ++ fsck_err_on(new.data_type != gc.data_type, c, ++ "bucket %llu:%llu gen %u has wrong data_type" ++ ": got %s, should be %s", ++ iter->pos.inode, iter->pos.offset, ++ gc.gen, ++ bch2_data_types[new.data_type], ++ bch2_data_types[gc.data_type])) ++ new.data_type = gc.data_type; ++ ++#define copy_bucket_field(_f) \ ++ if (c->opts.reconstruct_alloc || \ ++ fsck_err_on(new._f != gc._f, c, \ ++ "bucket %llu:%llu gen %u data type %s has wrong " #_f \ ++ ": got %u, should be %u", \ ++ iter->pos.inode, iter->pos.offset, \ ++ gc.gen, \ ++ bch2_data_types[gc.data_type], \ ++ new._f, gc._f)) \ ++ new._f = gc._f; \ ++ ++ copy_bucket_field(gen); ++ copy_bucket_field(dirty_sectors); ++ copy_bucket_field(cached_sectors); ++ copy_bucket_field(stripe_redundancy); ++ copy_bucket_field(stripe); ++#undef copy_bucket_field ++ ++ if (!bch2_alloc_v4_cmp(*old, new)) ++ return 0; ++ ++ a = bch2_alloc_to_v4_mut(trans, k); ++ ret = PTR_ERR_OR_ZERO(a); ++ if (ret) ++ return ret; ++ ++ a->v = new; ++ ++ /* ++ * The trigger normally makes sure this is set, but we're not running ++ * triggers: ++ */ ++ if (a->v.data_type == BCH_DATA_cached && !a->v.io_time[READ]) ++ a->v.io_time[READ] = max_t(u64, 1, atomic64_read(&c->io_clock[READ].now)); ++ ++ ret = bch2_trans_update(trans, iter, &a->k_i, BTREE_TRIGGER_NORUN); ++fsck_err: ++ return ret; ++} ++ ++static int bch2_gc_alloc_done(struct bch_fs *c, bool metadata_only) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_dev *ca; ++ unsigned i; ++ int ret = 0; ++ ++ for_each_member_device(ca, c, i) { ++ ret = for_each_btree_key_commit(trans, iter, BTREE_ID_alloc, ++ POS(ca->dev_idx, ca->mi.first_bucket), ++ BTREE_ITER_SLOTS|BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_LAZY_RW, ++ bch2_alloc_write_key(trans, &iter, k, metadata_only)); ++ ++ if (ret < 0) { ++ bch_err_fn(c, ret); ++ percpu_ref_put(&ca->ref); ++ break; ++ } ++ } ++ ++ bch2_trans_put(trans); ++ return ret < 0 ? ret : 0; ++} ++ ++static int bch2_gc_alloc_start(struct bch_fs *c, bool metadata_only) ++{ ++ struct bch_dev *ca; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bucket *g; ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a; ++ unsigned i; ++ int ret; ++ ++ for_each_member_device(ca, c, i) { ++ struct bucket_array *buckets = kvpmalloc(sizeof(struct bucket_array) + ++ ca->mi.nbuckets * sizeof(struct bucket), ++ GFP_KERNEL|__GFP_ZERO); ++ if (!buckets) { ++ percpu_ref_put(&ca->ref); ++ bch_err(c, "error allocating ca->buckets[gc]"); ++ ret = -BCH_ERR_ENOMEM_gc_alloc_start; ++ goto err; ++ } ++ ++ buckets->first_bucket = ca->mi.first_bucket; ++ buckets->nbuckets = ca->mi.nbuckets; ++ rcu_assign_pointer(ca->buckets_gc, buckets); ++ } ++ ++ for_each_btree_key(trans, iter, BTREE_ID_alloc, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ret) { ++ ca = bch_dev_bkey_exists(c, k.k->p.inode); ++ g = gc_bucket(ca, k.k->p.offset); ++ ++ a = bch2_alloc_to_v4(k, &a_convert); ++ ++ g->gen_valid = 1; ++ g->gen = a->gen; ++ ++ if (metadata_only && ++ (a->data_type == BCH_DATA_user || ++ a->data_type == BCH_DATA_cached || ++ a->data_type == BCH_DATA_parity)) { ++ g->data_type = a->data_type; ++ g->dirty_sectors = a->dirty_sectors; ++ g->cached_sectors = a->cached_sectors; ++ g->stripe = a->stripe; ++ g->stripe_redundancy = a->stripe_redundancy; ++ } ++ } ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ bch2_trans_put(trans); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static void bch2_gc_alloc_reset(struct bch_fs *c, bool metadata_only) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ for_each_member_device(ca, c, i) { ++ struct bucket_array *buckets = gc_bucket_array(ca); ++ struct bucket *g; ++ ++ for_each_bucket(g, buckets) { ++ if (metadata_only && ++ (g->data_type == BCH_DATA_user || ++ g->data_type == BCH_DATA_cached || ++ g->data_type == BCH_DATA_parity)) ++ continue; ++ g->data_type = 0; ++ g->dirty_sectors = 0; ++ g->cached_sectors = 0; ++ } ++ } ++} ++ ++static int bch2_gc_write_reflink_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ size_t *idx) ++{ ++ struct bch_fs *c = trans->c; ++ const __le64 *refcount = bkey_refcount_c(k); ++ struct printbuf buf = PRINTBUF; ++ struct reflink_gc *r; ++ int ret = 0; ++ ++ if (!refcount) ++ return 0; ++ ++ while ((r = genradix_ptr(&c->reflink_gc_table, *idx)) && ++ r->offset < k.k->p.offset) ++ ++*idx; ++ ++ if (!r || ++ r->offset != k.k->p.offset || ++ r->size != k.k->size) { ++ bch_err(c, "unexpected inconsistency walking reflink table at gc finish"); ++ return -EINVAL; ++ } ++ ++ if (fsck_err_on(r->refcount != le64_to_cpu(*refcount), c, ++ "reflink key has wrong refcount:\n" ++ " %s\n" ++ " should be %u", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf), ++ r->refcount)) { ++ struct bkey_i *new = bch2_bkey_make_mut(trans, iter, &k, 0); ++ ++ ret = PTR_ERR_OR_ZERO(new); ++ if (ret) ++ return ret; ++ ++ if (!r->refcount) ++ new->k.type = KEY_TYPE_deleted; ++ else ++ *bkey_refcount(new) = cpu_to_le64(r->refcount); ++ } ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int bch2_gc_reflink_done(struct bch_fs *c, bool metadata_only) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ size_t idx = 0; ++ int ret = 0; ++ ++ if (metadata_only) ++ return 0; ++ ++ trans = bch2_trans_get(c); ++ ++ ret = for_each_btree_key_commit(trans, iter, ++ BTREE_ID_reflink, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL, ++ bch2_gc_write_reflink_key(trans, &iter, k, &idx)); ++ ++ c->reflink_gc_nr = 0; ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int bch2_gc_reflink_start(struct bch_fs *c, ++ bool metadata_only) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct reflink_gc *r; ++ int ret = 0; ++ ++ if (metadata_only) ++ return 0; ++ ++ trans = bch2_trans_get(c); ++ c->reflink_gc_nr = 0; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_reflink, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ret) { ++ const __le64 *refcount = bkey_refcount_c(k); ++ ++ if (!refcount) ++ continue; ++ ++ r = genradix_ptr_alloc(&c->reflink_gc_table, c->reflink_gc_nr++, ++ GFP_KERNEL); ++ if (!r) { ++ ret = -BCH_ERR_ENOMEM_gc_reflink_start; ++ break; ++ } ++ ++ r->offset = k.k->p.offset; ++ r->size = k.k->size; ++ r->refcount = 0; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static void bch2_gc_reflink_reset(struct bch_fs *c, bool metadata_only) ++{ ++ struct genradix_iter iter; ++ struct reflink_gc *r; ++ ++ genradix_for_each(&c->reflink_gc_table, iter, r) ++ r->refcount = 0; ++} ++ ++static int bch2_gc_write_stripes_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct printbuf buf = PRINTBUF; ++ const struct bch_stripe *s; ++ struct gc_stripe *m; ++ bool bad = false; ++ unsigned i; ++ int ret = 0; ++ ++ if (k.k->type != KEY_TYPE_stripe) ++ return 0; ++ ++ s = bkey_s_c_to_stripe(k).v; ++ m = genradix_ptr(&c->gc_stripes, k.k->p.offset); ++ ++ for (i = 0; i < s->nr_blocks; i++) { ++ u32 old = stripe_blockcount_get(s, i); ++ u32 new = (m ? m->block_sectors[i] : 0); ++ ++ if (old != new) { ++ prt_printf(&buf, "stripe block %u has wrong sector count: got %u, should be %u\n", ++ i, old, new); ++ bad = true; ++ } ++ } ++ ++ if (bad) ++ bch2_bkey_val_to_text(&buf, c, k); ++ ++ if (fsck_err_on(bad, c, "%s", buf.buf)) { ++ struct bkey_i_stripe *new; ++ ++ new = bch2_trans_kmalloc(trans, bkey_bytes(k.k)); ++ ret = PTR_ERR_OR_ZERO(new); ++ if (ret) ++ return ret; ++ ++ bkey_reassemble(&new->k_i, k); ++ ++ for (i = 0; i < new->v.nr_blocks; i++) ++ stripe_blockcount_set(&new->v, i, m ? m->block_sectors[i] : 0); ++ ++ ret = bch2_trans_update(trans, iter, &new->k_i, 0); ++ } ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int bch2_gc_stripes_done(struct bch_fs *c, bool metadata_only) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ if (metadata_only) ++ return 0; ++ ++ trans = bch2_trans_get(c); ++ ++ ret = for_each_btree_key_commit(trans, iter, ++ BTREE_ID_stripes, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL, ++ bch2_gc_write_stripes_key(trans, &iter, k)); ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static void bch2_gc_stripes_reset(struct bch_fs *c, bool metadata_only) ++{ ++ genradix_free(&c->gc_stripes); ++} ++ ++/** ++ * bch2_gc - walk _all_ references to buckets, and recompute them: ++ * ++ * @c: filesystem object ++ * @initial: are we in recovery? ++ * @metadata_only: are we just checking metadata references, or everything? ++ * ++ * Returns: 0 on success, or standard errcode on failure ++ * ++ * Order matters here: ++ * - Concurrent GC relies on the fact that we have a total ordering for ++ * everything that GC walks - see gc_will_visit_node(), ++ * gc_will_visit_root() ++ * ++ * - also, references move around in the course of index updates and ++ * various other crap: everything needs to agree on the ordering ++ * references are allowed to move around in - e.g., we're allowed to ++ * start with a reference owned by an open_bucket (the allocator) and ++ * move it to the btree, but not the reverse. ++ * ++ * This is necessary to ensure that gc doesn't miss references that ++ * move around - if references move backwards in the ordering GC ++ * uses, GC could skip past them ++ */ ++int bch2_gc(struct bch_fs *c, bool initial, bool metadata_only) ++{ ++ unsigned iter = 0; ++ int ret; ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ down_write(&c->gc_lock); ++ ++ bch2_btree_interior_updates_flush(c); ++ ++ ret = bch2_gc_start(c) ?: ++ bch2_gc_alloc_start(c, metadata_only) ?: ++ bch2_gc_reflink_start(c, metadata_only); ++ if (ret) ++ goto out; ++again: ++ gc_pos_set(c, gc_phase(GC_PHASE_START)); ++ ++ bch2_mark_superblocks(c); ++ ++ ret = bch2_gc_btrees(c, initial, metadata_only); ++ ++ if (ret) ++ goto out; ++ ++#if 0 ++ bch2_mark_pending_btree_node_frees(c); ++#endif ++ c->gc_count++; ++ ++ if (test_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags) || ++ (!iter && bch2_test_restart_gc)) { ++ if (iter++ > 2) { ++ bch_info(c, "Unable to fix bucket gens, looping"); ++ ret = -EINVAL; ++ goto out; ++ } ++ ++ /* ++ * XXX: make sure gens we fixed got saved ++ */ ++ bch_info(c, "Second GC pass needed, restarting:"); ++ clear_bit(BCH_FS_NEED_ANOTHER_GC, &c->flags); ++ __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); ++ ++ bch2_gc_stripes_reset(c, metadata_only); ++ bch2_gc_alloc_reset(c, metadata_only); ++ bch2_gc_reflink_reset(c, metadata_only); ++ ret = bch2_gc_reset(c); ++ if (ret) ++ goto out; ++ ++ /* flush fsck errors, reset counters */ ++ bch2_flush_fsck_errs(c); ++ goto again; ++ } ++out: ++ if (!ret) { ++ bch2_journal_block(&c->journal); ++ ++ ret = bch2_gc_stripes_done(c, metadata_only) ?: ++ bch2_gc_reflink_done(c, metadata_only) ?: ++ bch2_gc_alloc_done(c, metadata_only) ?: ++ bch2_gc_done(c, initial, metadata_only); ++ ++ bch2_journal_unblock(&c->journal); ++ } ++ ++ percpu_down_write(&c->mark_lock); ++ /* Indicates that gc is no longer in progress: */ ++ __gc_pos_set(c, gc_phase(GC_PHASE_NOT_RUNNING)); ++ ++ bch2_gc_free(c); ++ percpu_up_write(&c->mark_lock); ++ ++ up_write(&c->gc_lock); ++ ++ /* ++ * At startup, allocations can happen directly instead of via the ++ * allocator thread - issue wakeup in case they blocked on gc_lock: ++ */ ++ closure_wake_up(&c->freelist_wait); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int gc_btree_gens_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ struct bkey_i *u; ++ int ret; ++ ++ percpu_down_read(&c->mark_lock); ++ bkey_for_each_ptr(ptrs, ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ if (ptr_stale(ca, ptr) > 16) { ++ percpu_up_read(&c->mark_lock); ++ goto update; ++ } ++ } ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ u8 *gen = &ca->oldest_gen[PTR_BUCKET_NR(ca, ptr)]; ++ ++ if (gen_after(*gen, ptr->gen)) ++ *gen = ptr->gen; ++ } ++ percpu_up_read(&c->mark_lock); ++ return 0; ++update: ++ u = bch2_bkey_make_mut(trans, iter, &k, 0); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ return ret; ++ ++ bch2_extent_normalize(c, bkey_i_to_s(u)); ++ return 0; ++} ++ ++static int bch2_alloc_write_oldest_gen(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(trans->c, iter->pos.inode); ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k, &a_convert); ++ struct bkey_i_alloc_v4 *a_mut; ++ int ret; ++ ++ if (a->oldest_gen == ca->oldest_gen[iter->pos.offset]) ++ return 0; ++ ++ a_mut = bch2_alloc_to_v4_mut(trans, k); ++ ret = PTR_ERR_OR_ZERO(a_mut); ++ if (ret) ++ return ret; ++ ++ a_mut->v.oldest_gen = ca->oldest_gen[iter->pos.offset]; ++ a_mut->v.data_type = alloc_data_type(a_mut->v, a_mut->v.data_type); ++ ++ return bch2_trans_update(trans, iter, &a_mut->k_i, 0); ++} ++ ++int bch2_gc_gens(struct bch_fs *c) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_dev *ca; ++ u64 b, start_time = local_clock(); ++ unsigned i; ++ int ret; ++ ++ /* ++ * Ideally we would be using state_lock and not gc_lock here, but that ++ * introduces a deadlock in the RO path - we currently take the state ++ * lock at the start of going RO, thus the gc thread may get stuck: ++ */ ++ if (!mutex_trylock(&c->gc_gens_lock)) ++ return 0; ++ ++ trace_and_count(c, gc_gens_start, c); ++ down_read(&c->gc_lock); ++ trans = bch2_trans_get(c); ++ ++ for_each_member_device(ca, c, i) { ++ struct bucket_gens *gens; ++ ++ BUG_ON(ca->oldest_gen); ++ ++ ca->oldest_gen = kvmalloc(ca->mi.nbuckets, GFP_KERNEL); ++ if (!ca->oldest_gen) { ++ percpu_ref_put(&ca->ref); ++ ret = -BCH_ERR_ENOMEM_gc_gens; ++ goto err; ++ } ++ ++ gens = bucket_gens(ca); ++ ++ for (b = gens->first_bucket; ++ b < gens->nbuckets; b++) ++ ca->oldest_gen[b] = gens->b[b]; ++ } ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ if (btree_type_has_ptrs(i)) { ++ c->gc_gens_btree = i; ++ c->gc_gens_pos = POS_MIN; ++ ++ ret = for_each_btree_key_commit(trans, iter, i, ++ POS_MIN, ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, ++ k, ++ NULL, NULL, ++ BTREE_INSERT_NOFAIL, ++ gc_btree_gens_key(trans, &iter, k)); ++ if (ret && !bch2_err_matches(ret, EROFS)) ++ bch_err_fn(c, ret); ++ if (ret) ++ goto err; ++ } ++ ++ ret = for_each_btree_key_commit(trans, iter, BTREE_ID_alloc, ++ POS_MIN, ++ BTREE_ITER_PREFETCH, ++ k, ++ NULL, NULL, ++ BTREE_INSERT_NOFAIL, ++ bch2_alloc_write_oldest_gen(trans, &iter, k)); ++ if (ret && !bch2_err_matches(ret, EROFS)) ++ bch_err_fn(c, ret); ++ if (ret) ++ goto err; ++ ++ c->gc_gens_btree = 0; ++ c->gc_gens_pos = POS_MIN; ++ ++ c->gc_count++; ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_gc], start_time); ++ trace_and_count(c, gc_gens_end, c); ++err: ++ for_each_member_device(ca, c, i) { ++ kvfree(ca->oldest_gen); ++ ca->oldest_gen = NULL; ++ } ++ ++ bch2_trans_put(trans); ++ up_read(&c->gc_lock); ++ mutex_unlock(&c->gc_gens_lock); ++ return ret; ++} ++ ++static int bch2_gc_thread(void *arg) ++{ ++ struct bch_fs *c = arg; ++ struct io_clock *clock = &c->io_clock[WRITE]; ++ unsigned long last = atomic64_read(&clock->now); ++ unsigned last_kick = atomic_read(&c->kick_gc); ++ int ret; ++ ++ set_freezable(); ++ ++ while (1) { ++ while (1) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ ++ if (kthread_should_stop()) { ++ __set_current_state(TASK_RUNNING); ++ return 0; ++ } ++ ++ if (atomic_read(&c->kick_gc) != last_kick) ++ break; ++ ++ if (c->btree_gc_periodic) { ++ unsigned long next = last + c->capacity / 16; ++ ++ if (atomic64_read(&clock->now) >= next) ++ break; ++ ++ bch2_io_clock_schedule_timeout(clock, next); ++ } else { ++ schedule(); ++ } ++ ++ try_to_freeze(); ++ } ++ __set_current_state(TASK_RUNNING); ++ ++ last = atomic64_read(&clock->now); ++ last_kick = atomic_read(&c->kick_gc); ++ ++ /* ++ * Full gc is currently incompatible with btree key cache: ++ */ ++#if 0 ++ ret = bch2_gc(c, false, false); ++#else ++ ret = bch2_gc_gens(c); ++#endif ++ if (ret < 0) ++ bch_err_fn(c, ret); ++ ++ debug_check_no_locks_held(); ++ } ++ ++ return 0; ++} ++ ++void bch2_gc_thread_stop(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ p = c->gc_thread; ++ c->gc_thread = NULL; ++ ++ if (p) { ++ kthread_stop(p); ++ put_task_struct(p); ++ } ++} ++ ++int bch2_gc_thread_start(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ if (c->gc_thread) ++ return 0; ++ ++ p = kthread_create(bch2_gc_thread, c, "bch-gc/%s", c->name); ++ if (IS_ERR(p)) { ++ bch_err_fn(c, PTR_ERR(p)); ++ return PTR_ERR(p); ++ } ++ ++ get_task_struct(p); ++ c->gc_thread = p; ++ wake_up_process(p); ++ return 0; ++} +diff --git a/fs/bcachefs/btree_gc.h b/fs/bcachefs/btree_gc.h +new file mode 100644 +index 000000000000..607575f83a00 +--- /dev/null ++++ b/fs/bcachefs/btree_gc.h +@@ -0,0 +1,114 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_GC_H ++#define _BCACHEFS_BTREE_GC_H ++ ++#include "bkey.h" ++#include "btree_types.h" ++ ++int bch2_check_topology(struct bch_fs *); ++int bch2_gc(struct bch_fs *, bool, bool); ++int bch2_gc_gens(struct bch_fs *); ++void bch2_gc_thread_stop(struct bch_fs *); ++int bch2_gc_thread_start(struct bch_fs *); ++ ++/* ++ * For concurrent mark and sweep (with other index updates), we define a total ++ * ordering of _all_ references GC walks: ++ * ++ * Note that some references will have the same GC position as others - e.g. ++ * everything within the same btree node; in those cases we're relying on ++ * whatever locking exists for where those references live, i.e. the write lock ++ * on a btree node. ++ * ++ * That locking is also required to ensure GC doesn't pass the updater in ++ * between the updater adding/removing the reference and updating the GC marks; ++ * without that, we would at best double count sometimes. ++ * ++ * That part is important - whenever calling bch2_mark_pointers(), a lock _must_ ++ * be held that prevents GC from passing the position the updater is at. ++ * ++ * (What about the start of gc, when we're clearing all the marks? GC clears the ++ * mark with the gc pos seqlock held, and bch_mark_bucket checks against the gc ++ * position inside its cmpxchg loop, so crap magically works). ++ */ ++ ++/* Position of (the start of) a gc phase: */ ++static inline struct gc_pos gc_phase(enum gc_phase phase) ++{ ++ return (struct gc_pos) { ++ .phase = phase, ++ .pos = POS_MIN, ++ .level = 0, ++ }; ++} ++ ++static inline int gc_pos_cmp(struct gc_pos l, struct gc_pos r) ++{ ++ return cmp_int(l.phase, r.phase) ?: ++ bpos_cmp(l.pos, r.pos) ?: ++ cmp_int(l.level, r.level); ++} ++ ++static inline enum gc_phase btree_id_to_gc_phase(enum btree_id id) ++{ ++ switch (id) { ++#define x(name, v, ...) case BTREE_ID_##name: return GC_PHASE_BTREE_##name; ++ BCH_BTREE_IDS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++static inline struct gc_pos gc_pos_btree(enum btree_id id, ++ struct bpos pos, unsigned level) ++{ ++ return (struct gc_pos) { ++ .phase = btree_id_to_gc_phase(id), ++ .pos = pos, ++ .level = level, ++ }; ++} ++ ++/* ++ * GC position of the pointers within a btree node: note, _not_ for &b->key ++ * itself, that lives in the parent node: ++ */ ++static inline struct gc_pos gc_pos_btree_node(struct btree *b) ++{ ++ return gc_pos_btree(b->c.btree_id, b->key.k.p, b->c.level); ++} ++ ++/* ++ * GC position of the pointer to a btree root: we don't use ++ * gc_pos_pointer_to_btree_node() here to avoid a potential race with ++ * btree_split() increasing the tree depth - the new root will have level > the ++ * old root and thus have a greater gc position than the old root, but that ++ * would be incorrect since once gc has marked the root it's not coming back. ++ */ ++static inline struct gc_pos gc_pos_btree_root(enum btree_id id) ++{ ++ return gc_pos_btree(id, SPOS_MAX, BTREE_MAX_DEPTH); ++} ++ ++static inline bool gc_visited(struct bch_fs *c, struct gc_pos pos) ++{ ++ unsigned seq; ++ bool ret; ++ ++ do { ++ seq = read_seqcount_begin(&c->gc_pos_lock); ++ ret = gc_pos_cmp(pos, c->gc_pos) <= 0; ++ } while (read_seqcount_retry(&c->gc_pos_lock, seq)); ++ ++ return ret; ++} ++ ++static inline void bch2_do_gc_gens(struct bch_fs *c) ++{ ++ atomic_inc(&c->kick_gc); ++ if (c->gc_thread) ++ wake_up_process(c->gc_thread); ++} ++ ++#endif /* _BCACHEFS_BTREE_GC_H */ +diff --git a/fs/bcachefs/btree_io.c b/fs/bcachefs/btree_io.c +new file mode 100644 +index 000000000000..a869cf6ac7c6 +--- /dev/null ++++ b/fs/bcachefs/btree_io.c +@@ -0,0 +1,2223 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "bkey_sort.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "debug.h" ++#include "error.h" ++#include "extents.h" ++#include "io_write.h" ++#include "journal_reclaim.h" ++#include "journal_seq_blacklist.h" ++#include "recovery.h" ++#include "super-io.h" ++#include "trace.h" ++ ++#include ++ ++void bch2_btree_node_io_unlock(struct btree *b) ++{ ++ EBUG_ON(!btree_node_write_in_flight(b)); ++ ++ clear_btree_node_write_in_flight_inner(b); ++ clear_btree_node_write_in_flight(b); ++ wake_up_bit(&b->flags, BTREE_NODE_write_in_flight); ++} ++ ++void bch2_btree_node_io_lock(struct btree *b) ++{ ++ bch2_assert_btree_nodes_not_locked(); ++ ++ wait_on_bit_lock_io(&b->flags, BTREE_NODE_write_in_flight, ++ TASK_UNINTERRUPTIBLE); ++} ++ ++void __bch2_btree_node_wait_on_read(struct btree *b) ++{ ++ wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, ++ TASK_UNINTERRUPTIBLE); ++} ++ ++void __bch2_btree_node_wait_on_write(struct btree *b) ++{ ++ wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight, ++ TASK_UNINTERRUPTIBLE); ++} ++ ++void bch2_btree_node_wait_on_read(struct btree *b) ++{ ++ bch2_assert_btree_nodes_not_locked(); ++ ++ wait_on_bit_io(&b->flags, BTREE_NODE_read_in_flight, ++ TASK_UNINTERRUPTIBLE); ++} ++ ++void bch2_btree_node_wait_on_write(struct btree *b) ++{ ++ bch2_assert_btree_nodes_not_locked(); ++ ++ wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight, ++ TASK_UNINTERRUPTIBLE); ++} ++ ++static void verify_no_dups(struct btree *b, ++ struct bkey_packed *start, ++ struct bkey_packed *end) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bkey_packed *k, *p; ++ ++ if (start == end) ++ return; ++ ++ for (p = start, k = bkey_p_next(start); ++ k != end; ++ p = k, k = bkey_p_next(k)) { ++ struct bkey l = bkey_unpack_key(b, p); ++ struct bkey r = bkey_unpack_key(b, k); ++ ++ BUG_ON(bpos_ge(l.p, bkey_start_pos(&r))); ++ } ++#endif ++} ++ ++static void set_needs_whiteout(struct bset *i, int v) ++{ ++ struct bkey_packed *k; ++ ++ for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) ++ k->needs_whiteout = v; ++} ++ ++static void btree_bounce_free(struct bch_fs *c, size_t size, ++ bool used_mempool, void *p) ++{ ++ if (used_mempool) ++ mempool_free(p, &c->btree_bounce_pool); ++ else ++ vpfree(p, size); ++} ++ ++static void *btree_bounce_alloc(struct bch_fs *c, size_t size, ++ bool *used_mempool) ++{ ++ unsigned flags = memalloc_nofs_save(); ++ void *p; ++ ++ BUG_ON(size > btree_bytes(c)); ++ ++ *used_mempool = false; ++ p = vpmalloc(size, __GFP_NOWARN|GFP_NOWAIT); ++ if (!p) { ++ *used_mempool = true; ++ p = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS); ++ } ++ memalloc_nofs_restore(flags); ++ return p; ++} ++ ++static void sort_bkey_ptrs(const struct btree *bt, ++ struct bkey_packed **ptrs, unsigned nr) ++{ ++ unsigned n = nr, a = nr / 2, b, c, d; ++ ++ if (!a) ++ return; ++ ++ /* Heap sort: see lib/sort.c: */ ++ while (1) { ++ if (a) ++ a--; ++ else if (--n) ++ swap(ptrs[0], ptrs[n]); ++ else ++ break; ++ ++ for (b = a; c = 2 * b + 1, (d = c + 1) < n;) ++ b = bch2_bkey_cmp_packed(bt, ++ ptrs[c], ++ ptrs[d]) >= 0 ? c : d; ++ if (d == n) ++ b = c; ++ ++ while (b != a && ++ bch2_bkey_cmp_packed(bt, ++ ptrs[a], ++ ptrs[b]) >= 0) ++ b = (b - 1) / 2; ++ c = b; ++ while (b != a) { ++ b = (b - 1) / 2; ++ swap(ptrs[b], ptrs[c]); ++ } ++ } ++} ++ ++static void bch2_sort_whiteouts(struct bch_fs *c, struct btree *b) ++{ ++ struct bkey_packed *new_whiteouts, **ptrs, **ptrs_end, *k; ++ bool used_mempool = false; ++ size_t bytes = b->whiteout_u64s * sizeof(u64); ++ ++ if (!b->whiteout_u64s) ++ return; ++ ++ new_whiteouts = btree_bounce_alloc(c, bytes, &used_mempool); ++ ++ ptrs = ptrs_end = ((void *) new_whiteouts + bytes); ++ ++ for (k = unwritten_whiteouts_start(c, b); ++ k != unwritten_whiteouts_end(c, b); ++ k = bkey_p_next(k)) ++ *--ptrs = k; ++ ++ sort_bkey_ptrs(b, ptrs, ptrs_end - ptrs); ++ ++ k = new_whiteouts; ++ ++ while (ptrs != ptrs_end) { ++ bkey_copy(k, *ptrs); ++ k = bkey_p_next(k); ++ ptrs++; ++ } ++ ++ verify_no_dups(b, new_whiteouts, ++ (void *) ((u64 *) new_whiteouts + b->whiteout_u64s)); ++ ++ memcpy_u64s(unwritten_whiteouts_start(c, b), ++ new_whiteouts, b->whiteout_u64s); ++ ++ btree_bounce_free(c, bytes, used_mempool, new_whiteouts); ++} ++ ++static bool should_compact_bset(struct btree *b, struct bset_tree *t, ++ bool compacting, enum compact_mode mode) ++{ ++ if (!bset_dead_u64s(b, t)) ++ return false; ++ ++ switch (mode) { ++ case COMPACT_LAZY: ++ return should_compact_bset_lazy(b, t) || ++ (compacting && !bset_written(b, bset(b, t))); ++ case COMPACT_ALL: ++ return true; ++ default: ++ BUG(); ++ } ++} ++ ++static bool bch2_drop_whiteouts(struct btree *b, enum compact_mode mode) ++{ ++ struct bset_tree *t; ++ bool ret = false; ++ ++ for_each_bset(b, t) { ++ struct bset *i = bset(b, t); ++ struct bkey_packed *k, *n, *out, *start, *end; ++ struct btree_node_entry *src = NULL, *dst = NULL; ++ ++ if (t != b->set && !bset_written(b, i)) { ++ src = container_of(i, struct btree_node_entry, keys); ++ dst = max(write_block(b), ++ (void *) btree_bkey_last(b, t - 1)); ++ } ++ ++ if (src != dst) ++ ret = true; ++ ++ if (!should_compact_bset(b, t, ret, mode)) { ++ if (src != dst) { ++ memmove(dst, src, sizeof(*src) + ++ le16_to_cpu(src->keys.u64s) * ++ sizeof(u64)); ++ i = &dst->keys; ++ set_btree_bset(b, t, i); ++ } ++ continue; ++ } ++ ++ start = btree_bkey_first(b, t); ++ end = btree_bkey_last(b, t); ++ ++ if (src != dst) { ++ memmove(dst, src, sizeof(*src)); ++ i = &dst->keys; ++ set_btree_bset(b, t, i); ++ } ++ ++ out = i->start; ++ ++ for (k = start; k != end; k = n) { ++ n = bkey_p_next(k); ++ ++ if (!bkey_deleted(k)) { ++ bkey_copy(out, k); ++ out = bkey_p_next(out); ++ } else { ++ BUG_ON(k->needs_whiteout); ++ } ++ } ++ ++ i->u64s = cpu_to_le16((u64 *) out - i->_data); ++ set_btree_bset_end(b, t); ++ bch2_bset_set_no_aux_tree(b, t); ++ ret = true; ++ } ++ ++ bch2_verify_btree_nr_keys(b); ++ ++ bch2_btree_build_aux_trees(b); ++ ++ return ret; ++} ++ ++bool bch2_compact_whiteouts(struct bch_fs *c, struct btree *b, ++ enum compact_mode mode) ++{ ++ return bch2_drop_whiteouts(b, mode); ++} ++ ++static void btree_node_sort(struct bch_fs *c, struct btree *b, ++ unsigned start_idx, ++ unsigned end_idx, ++ bool filter_whiteouts) ++{ ++ struct btree_node *out; ++ struct sort_iter_stack sort_iter; ++ struct bset_tree *t; ++ struct bset *start_bset = bset(b, &b->set[start_idx]); ++ bool used_mempool = false; ++ u64 start_time, seq = 0; ++ unsigned i, u64s = 0, bytes, shift = end_idx - start_idx - 1; ++ bool sorting_entire_node = start_idx == 0 && ++ end_idx == b->nsets; ++ ++ sort_iter_stack_init(&sort_iter, b); ++ ++ for (t = b->set + start_idx; ++ t < b->set + end_idx; ++ t++) { ++ u64s += le16_to_cpu(bset(b, t)->u64s); ++ sort_iter_add(&sort_iter.iter, ++ btree_bkey_first(b, t), ++ btree_bkey_last(b, t)); ++ } ++ ++ bytes = sorting_entire_node ++ ? btree_bytes(c) ++ : __vstruct_bytes(struct btree_node, u64s); ++ ++ out = btree_bounce_alloc(c, bytes, &used_mempool); ++ ++ start_time = local_clock(); ++ ++ u64s = bch2_sort_keys(out->keys.start, &sort_iter.iter, filter_whiteouts); ++ ++ out->keys.u64s = cpu_to_le16(u64s); ++ ++ BUG_ON(vstruct_end(&out->keys) > (void *) out + bytes); ++ ++ if (sorting_entire_node) ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], ++ start_time); ++ ++ /* Make sure we preserve bset journal_seq: */ ++ for (t = b->set + start_idx; t < b->set + end_idx; t++) ++ seq = max(seq, le64_to_cpu(bset(b, t)->journal_seq)); ++ start_bset->journal_seq = cpu_to_le64(seq); ++ ++ if (sorting_entire_node) { ++ u64s = le16_to_cpu(out->keys.u64s); ++ ++ BUG_ON(bytes != btree_bytes(c)); ++ ++ /* ++ * Our temporary buffer is the same size as the btree node's ++ * buffer, we can just swap buffers instead of doing a big ++ * memcpy() ++ */ ++ *out = *b->data; ++ out->keys.u64s = cpu_to_le16(u64s); ++ swap(out, b->data); ++ set_btree_bset(b, b->set, &b->data->keys); ++ } else { ++ start_bset->u64s = out->keys.u64s; ++ memcpy_u64s(start_bset->start, ++ out->keys.start, ++ le16_to_cpu(out->keys.u64s)); ++ } ++ ++ for (i = start_idx + 1; i < end_idx; i++) ++ b->nr.bset_u64s[start_idx] += ++ b->nr.bset_u64s[i]; ++ ++ b->nsets -= shift; ++ ++ for (i = start_idx + 1; i < b->nsets; i++) { ++ b->nr.bset_u64s[i] = b->nr.bset_u64s[i + shift]; ++ b->set[i] = b->set[i + shift]; ++ } ++ ++ for (i = b->nsets; i < MAX_BSETS; i++) ++ b->nr.bset_u64s[i] = 0; ++ ++ set_btree_bset_end(b, &b->set[start_idx]); ++ bch2_bset_set_no_aux_tree(b, &b->set[start_idx]); ++ ++ btree_bounce_free(c, bytes, used_mempool, out); ++ ++ bch2_verify_btree_nr_keys(b); ++} ++ ++void bch2_btree_sort_into(struct bch_fs *c, ++ struct btree *dst, ++ struct btree *src) ++{ ++ struct btree_nr_keys nr; ++ struct btree_node_iter src_iter; ++ u64 start_time = local_clock(); ++ ++ BUG_ON(dst->nsets != 1); ++ ++ bch2_bset_set_no_aux_tree(dst, dst->set); ++ ++ bch2_btree_node_iter_init_from_start(&src_iter, src); ++ ++ nr = bch2_sort_repack(btree_bset_first(dst), ++ src, &src_iter, ++ &dst->format, ++ true); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_sort], ++ start_time); ++ ++ set_btree_bset_end(dst, dst->set); ++ ++ dst->nr.live_u64s += nr.live_u64s; ++ dst->nr.bset_u64s[0] += nr.bset_u64s[0]; ++ dst->nr.packed_keys += nr.packed_keys; ++ dst->nr.unpacked_keys += nr.unpacked_keys; ++ ++ bch2_verify_btree_nr_keys(dst); ++} ++ ++/* ++ * We're about to add another bset to the btree node, so if there's currently ++ * too many bsets - sort some of them together: ++ */ ++static bool btree_node_compact(struct bch_fs *c, struct btree *b) ++{ ++ unsigned unwritten_idx; ++ bool ret = false; ++ ++ for (unwritten_idx = 0; ++ unwritten_idx < b->nsets; ++ unwritten_idx++) ++ if (!bset_written(b, bset(b, &b->set[unwritten_idx]))) ++ break; ++ ++ if (b->nsets - unwritten_idx > 1) { ++ btree_node_sort(c, b, unwritten_idx, ++ b->nsets, false); ++ ret = true; ++ } ++ ++ if (unwritten_idx > 1) { ++ btree_node_sort(c, b, 0, unwritten_idx, false); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++void bch2_btree_build_aux_trees(struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) ++ bch2_bset_build_aux_tree(b, t, ++ !bset_written(b, bset(b, t)) && ++ t == bset_tree_last(b)); ++} ++ ++/* ++ * If we have MAX_BSETS (3) bsets, should we sort them all down to just one? ++ * ++ * The first bset is going to be of similar order to the size of the node, the ++ * last bset is bounded by btree_write_set_buffer(), which is set to keep the ++ * memmove on insert from being too expensive: the middle bset should, ideally, ++ * be the geometric mean of the first and the last. ++ * ++ * Returns true if the middle bset is greater than that geometric mean: ++ */ ++static inline bool should_compact_all(struct bch_fs *c, struct btree *b) ++{ ++ unsigned mid_u64s_bits = ++ (ilog2(btree_max_u64s(c)) + BTREE_WRITE_SET_U64s_BITS) / 2; ++ ++ return bset_u64s(&b->set[1]) > 1U << mid_u64s_bits; ++} ++ ++/* ++ * @bch_btree_init_next - initialize a new (unwritten) bset that can then be ++ * inserted into ++ * ++ * Safe to call if there already is an unwritten bset - will only add a new bset ++ * if @b doesn't already have one. ++ * ++ * Returns true if we sorted (i.e. invalidated iterators ++ */ ++void bch2_btree_init_next(struct btree_trans *trans, struct btree *b) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_node_entry *bne; ++ bool reinit_iter = false; ++ ++ EBUG_ON(!six_lock_counts(&b->c.lock).n[SIX_LOCK_write]); ++ BUG_ON(bset_written(b, bset(b, &b->set[1]))); ++ BUG_ON(btree_node_just_written(b)); ++ ++ if (b->nsets == MAX_BSETS && ++ !btree_node_write_in_flight(b) && ++ should_compact_all(c, b)) { ++ bch2_btree_node_write(c, b, SIX_LOCK_write, ++ BTREE_WRITE_init_next_bset); ++ reinit_iter = true; ++ } ++ ++ if (b->nsets == MAX_BSETS && ++ btree_node_compact(c, b)) ++ reinit_iter = true; ++ ++ BUG_ON(b->nsets >= MAX_BSETS); ++ ++ bne = want_new_bset(c, b); ++ if (bne) ++ bch2_bset_init_next(c, b, bne); ++ ++ bch2_btree_build_aux_trees(b); ++ ++ if (reinit_iter) ++ bch2_trans_node_reinit_iter(trans, b); ++} ++ ++static void btree_pos_to_text(struct printbuf *out, struct bch_fs *c, ++ struct btree *b) ++{ ++ prt_printf(out, "%s level %u/%u\n ", ++ bch2_btree_ids[b->c.btree_id], ++ b->c.level, ++ bch2_btree_id_root(c, b->c.btree_id)->level); ++ bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key)); ++} ++ ++static void btree_err_msg(struct printbuf *out, struct bch_fs *c, ++ struct bch_dev *ca, ++ struct btree *b, struct bset *i, ++ unsigned offset, int write) ++{ ++ prt_printf(out, bch2_log_msg(c, "%s"), ++ write == READ ++ ? "error validating btree node " ++ : "corrupt btree node before write "); ++ if (ca) ++ prt_printf(out, "on %s ", ca->name); ++ prt_printf(out, "at btree "); ++ btree_pos_to_text(out, c, b); ++ ++ prt_printf(out, "\n node offset %u", b->written); ++ if (i) ++ prt_printf(out, " bset u64s %u", le16_to_cpu(i->u64s)); ++ prt_str(out, ": "); ++} ++ ++__printf(8, 9) ++static int __btree_err(int ret, ++ struct bch_fs *c, ++ struct bch_dev *ca, ++ struct btree *b, ++ struct bset *i, ++ int write, ++ bool have_retry, ++ const char *fmt, ...) ++{ ++ struct printbuf out = PRINTBUF; ++ va_list args; ++ ++ btree_err_msg(&out, c, ca, b, i, b->written, write); ++ ++ va_start(args, fmt); ++ prt_vprintf(&out, fmt, args); ++ va_end(args); ++ ++ if (write == WRITE) { ++ bch2_print_string_as_lines(KERN_ERR, out.buf); ++ ret = c->opts.errors == BCH_ON_ERROR_continue ++ ? 0 ++ : -BCH_ERR_fsck_errors_not_fixed; ++ goto out; ++ } ++ ++ if (!have_retry && ret == -BCH_ERR_btree_node_read_err_want_retry) ++ ret = -BCH_ERR_btree_node_read_err_fixable; ++ if (!have_retry && ret == -BCH_ERR_btree_node_read_err_must_retry) ++ ret = -BCH_ERR_btree_node_read_err_bad_node; ++ ++ switch (ret) { ++ case -BCH_ERR_btree_node_read_err_fixable: ++ mustfix_fsck_err(c, "%s", out.buf); ++ ret = -BCH_ERR_fsck_fix; ++ break; ++ case -BCH_ERR_btree_node_read_err_want_retry: ++ case -BCH_ERR_btree_node_read_err_must_retry: ++ bch2_print_string_as_lines(KERN_ERR, out.buf); ++ break; ++ case -BCH_ERR_btree_node_read_err_bad_node: ++ bch2_print_string_as_lines(KERN_ERR, out.buf); ++ bch2_topology_error(c); ++ ret = bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_check_topology) ?: -EIO; ++ break; ++ case -BCH_ERR_btree_node_read_err_incompatible: ++ bch2_print_string_as_lines(KERN_ERR, out.buf); ++ ret = -BCH_ERR_fsck_errors_not_fixed; ++ break; ++ default: ++ BUG(); ++ } ++out: ++fsck_err: ++ printbuf_exit(&out); ++ return ret; ++} ++ ++#define btree_err(type, c, ca, b, i, msg, ...) \ ++({ \ ++ int _ret = __btree_err(type, c, ca, b, i, write, have_retry, msg, ##__VA_ARGS__);\ ++ \ ++ if (_ret != -BCH_ERR_fsck_fix) { \ ++ ret = _ret; \ ++ goto fsck_err; \ ++ } \ ++ \ ++ *saw_error = true; \ ++}) ++ ++#define btree_err_on(cond, ...) ((cond) ? btree_err(__VA_ARGS__) : false) ++ ++/* ++ * When btree topology repair changes the start or end of a node, that might ++ * mean we have to drop keys that are no longer inside the node: ++ */ ++__cold ++void bch2_btree_node_drop_keys_outside_node(struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) { ++ struct bset *i = bset(b, t); ++ struct bkey_packed *k; ++ ++ for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) ++ if (bkey_cmp_left_packed(b, k, &b->data->min_key) >= 0) ++ break; ++ ++ if (k != i->start) { ++ unsigned shift = (u64 *) k - (u64 *) i->start; ++ ++ memmove_u64s_down(i->start, k, ++ (u64 *) vstruct_end(i) - (u64 *) k); ++ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - shift); ++ set_btree_bset_end(b, t); ++ } ++ ++ for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) ++ if (bkey_cmp_left_packed(b, k, &b->data->max_key) > 0) ++ break; ++ ++ if (k != vstruct_last(i)) { ++ i->u64s = cpu_to_le16((u64 *) k - (u64 *) i->start); ++ set_btree_bset_end(b, t); ++ } ++ } ++ ++ /* ++ * Always rebuild search trees: eytzinger search tree nodes directly ++ * depend on the values of min/max key: ++ */ ++ bch2_bset_set_no_aux_tree(b, b->set); ++ bch2_btree_build_aux_trees(b); ++ ++ struct bkey_s_c k; ++ struct bkey unpacked; ++ struct btree_node_iter iter; ++ for_each_btree_node_key_unpack(b, k, &iter, &unpacked) { ++ BUG_ON(bpos_lt(k.k->p, b->data->min_key)); ++ BUG_ON(bpos_gt(k.k->p, b->data->max_key)); ++ } ++} ++ ++static int validate_bset(struct bch_fs *c, struct bch_dev *ca, ++ struct btree *b, struct bset *i, ++ unsigned offset, unsigned sectors, ++ int write, bool have_retry, bool *saw_error) ++{ ++ unsigned version = le16_to_cpu(i->version); ++ struct printbuf buf1 = PRINTBUF; ++ struct printbuf buf2 = PRINTBUF; ++ int ret = 0; ++ ++ btree_err_on(!bch2_version_compatible(version), ++ -BCH_ERR_btree_node_read_err_incompatible, c, ca, b, i, ++ "unsupported bset version %u.%u", ++ BCH_VERSION_MAJOR(version), ++ BCH_VERSION_MINOR(version)); ++ ++ if (btree_err_on(version < c->sb.version_min, ++ -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, ++ "bset version %u older than superblock version_min %u", ++ version, c->sb.version_min)) { ++ mutex_lock(&c->sb_lock); ++ c->disk_sb.sb->version_min = cpu_to_le16(version); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ if (btree_err_on(BCH_VERSION_MAJOR(version) > ++ BCH_VERSION_MAJOR(c->sb.version), ++ -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, ++ "bset version %u newer than superblock version %u", ++ version, c->sb.version)) { ++ mutex_lock(&c->sb_lock); ++ c->disk_sb.sb->version = cpu_to_le16(version); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ btree_err_on(BSET_SEPARATE_WHITEOUTS(i), ++ -BCH_ERR_btree_node_read_err_incompatible, c, ca, b, i, ++ "BSET_SEPARATE_WHITEOUTS no longer supported"); ++ ++ if (btree_err_on(offset + sectors > btree_sectors(c), ++ -BCH_ERR_btree_node_read_err_fixable, c, ca, b, i, ++ "bset past end of btree node")) { ++ i->u64s = 0; ++ ret = 0; ++ goto out; ++ } ++ ++ btree_err_on(offset && !i->u64s, ++ -BCH_ERR_btree_node_read_err_fixable, c, ca, b, i, ++ "empty bset"); ++ ++ btree_err_on(BSET_OFFSET(i) && ++ BSET_OFFSET(i) != offset, ++ -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, ++ "bset at wrong sector offset"); ++ ++ if (!offset) { ++ struct btree_node *bn = ++ container_of(i, struct btree_node, keys); ++ /* These indicate that we read the wrong btree node: */ ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bch_btree_ptr_v2 *bp = ++ &bkey_i_to_btree_ptr_v2(&b->key)->v; ++ ++ /* XXX endianness */ ++ btree_err_on(bp->seq != bn->keys.seq, ++ -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, ++ "incorrect sequence number (wrong btree node)"); ++ } ++ ++ btree_err_on(BTREE_NODE_ID(bn) != b->c.btree_id, ++ -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i, ++ "incorrect btree id"); ++ ++ btree_err_on(BTREE_NODE_LEVEL(bn) != b->c.level, ++ -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i, ++ "incorrect level"); ++ ++ if (!write) ++ compat_btree_node(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, bn); ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bch_btree_ptr_v2 *bp = ++ &bkey_i_to_btree_ptr_v2(&b->key)->v; ++ ++ if (BTREE_PTR_RANGE_UPDATED(bp)) { ++ b->data->min_key = bp->min_key; ++ b->data->max_key = b->key.k.p; ++ } ++ ++ btree_err_on(!bpos_eq(b->data->min_key, bp->min_key), ++ -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, ++ "incorrect min_key: got %s should be %s", ++ (printbuf_reset(&buf1), ++ bch2_bpos_to_text(&buf1, bn->min_key), buf1.buf), ++ (printbuf_reset(&buf2), ++ bch2_bpos_to_text(&buf2, bp->min_key), buf2.buf)); ++ } ++ ++ btree_err_on(!bpos_eq(bn->max_key, b->key.k.p), ++ -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, i, ++ "incorrect max key %s", ++ (printbuf_reset(&buf1), ++ bch2_bpos_to_text(&buf1, bn->max_key), buf1.buf)); ++ ++ if (write) ++ compat_btree_node(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, bn); ++ ++ btree_err_on(bch2_bkey_format_invalid(c, &bn->format, write, &buf1), ++ -BCH_ERR_btree_node_read_err_bad_node, c, ca, b, i, ++ "invalid bkey format: %s\n %s", buf1.buf, ++ (printbuf_reset(&buf2), ++ bch2_bkey_format_to_text(&buf2, &bn->format), buf2.buf)); ++ printbuf_reset(&buf1); ++ ++ compat_bformat(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, ++ &bn->format); ++ } ++out: ++fsck_err: ++ printbuf_exit(&buf2); ++ printbuf_exit(&buf1); ++ return ret; ++} ++ ++static int bset_key_invalid(struct bch_fs *c, struct btree *b, ++ struct bkey_s_c k, ++ bool updated_range, int rw, ++ struct printbuf *err) ++{ ++ return __bch2_bkey_invalid(c, k, btree_node_type(b), READ, err) ?: ++ (!updated_range ? bch2_bkey_in_btree_node(b, k, err) : 0) ?: ++ (rw == WRITE ? bch2_bkey_val_invalid(c, k, READ, err) : 0); ++} ++ ++static int validate_bset_keys(struct bch_fs *c, struct btree *b, ++ struct bset *i, int write, ++ bool have_retry, bool *saw_error) ++{ ++ unsigned version = le16_to_cpu(i->version); ++ struct bkey_packed *k, *prev = NULL; ++ struct printbuf buf = PRINTBUF; ++ bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 && ++ BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v); ++ int ret = 0; ++ ++ for (k = i->start; ++ k != vstruct_last(i);) { ++ struct bkey_s u; ++ struct bkey tmp; ++ ++ if (btree_err_on(bkey_p_next(k) > vstruct_last(i), ++ -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, ++ "key extends past end of bset")) { ++ i->u64s = cpu_to_le16((u64 *) k - i->_data); ++ break; ++ } ++ ++ if (btree_err_on(k->format > KEY_FORMAT_CURRENT, ++ -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, ++ "invalid bkey format %u", k->format)) { ++ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); ++ memmove_u64s_down(k, bkey_p_next(k), ++ (u64 *) vstruct_end(i) - (u64 *) k); ++ continue; ++ } ++ ++ /* XXX: validate k->u64s */ ++ if (!write) ++ bch2_bkey_compat(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, ++ &b->format, k); ++ ++ u = __bkey_disassemble(b, k, &tmp); ++ ++ printbuf_reset(&buf); ++ if (bset_key_invalid(c, b, u.s_c, updated_range, write, &buf)) { ++ printbuf_reset(&buf); ++ prt_printf(&buf, "invalid bkey: "); ++ bset_key_invalid(c, b, u.s_c, updated_range, write, &buf); ++ prt_printf(&buf, "\n "); ++ bch2_bkey_val_to_text(&buf, c, u.s_c); ++ ++ btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf); ++ ++ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); ++ memmove_u64s_down(k, bkey_p_next(k), ++ (u64 *) vstruct_end(i) - (u64 *) k); ++ continue; ++ } ++ ++ if (write) ++ bch2_bkey_compat(b->c.level, b->c.btree_id, version, ++ BSET_BIG_ENDIAN(i), write, ++ &b->format, k); ++ ++ if (prev && bkey_iter_cmp(b, prev, k) > 0) { ++ struct bkey up = bkey_unpack_key(b, prev); ++ ++ printbuf_reset(&buf); ++ prt_printf(&buf, "keys out of order: "); ++ bch2_bkey_to_text(&buf, &up); ++ prt_printf(&buf, " > "); ++ bch2_bkey_to_text(&buf, u.k); ++ ++ bch2_dump_bset(c, b, i, 0); ++ ++ if (btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf)) { ++ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); ++ memmove_u64s_down(k, bkey_p_next(k), ++ (u64 *) vstruct_end(i) - (u64 *) k); ++ continue; ++ } ++ } ++ ++ prev = k; ++ k = bkey_p_next(k); ++ } ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++int bch2_btree_node_read_done(struct bch_fs *c, struct bch_dev *ca, ++ struct btree *b, bool have_retry, bool *saw_error) ++{ ++ struct btree_node_entry *bne; ++ struct sort_iter *iter; ++ struct btree_node *sorted; ++ struct bkey_packed *k; ++ struct bch_extent_ptr *ptr; ++ struct bset *i; ++ bool used_mempool, blacklisted; ++ bool updated_range = b->key.k.type == KEY_TYPE_btree_ptr_v2 && ++ BTREE_PTR_RANGE_UPDATED(&bkey_i_to_btree_ptr_v2(&b->key)->v); ++ unsigned u64s; ++ unsigned ptr_written = btree_ptr_sectors_written(&b->key); ++ struct printbuf buf = PRINTBUF; ++ int ret = 0, retry_read = 0, write = READ; ++ ++ b->version_ondisk = U16_MAX; ++ /* We might get called multiple times on read retry: */ ++ b->written = 0; ++ ++ iter = mempool_alloc(&c->fill_iter, GFP_NOFS); ++ sort_iter_init(iter, b, (btree_blocks(c) + 1) * 2); ++ ++ if (bch2_meta_read_fault("btree")) ++ btree_err(-BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, ++ "dynamic fault"); ++ ++ btree_err_on(le64_to_cpu(b->data->magic) != bset_magic(c), ++ -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, ++ "bad magic: want %llx, got %llx", ++ bset_magic(c), le64_to_cpu(b->data->magic)); ++ ++ btree_err_on(!b->data->keys.seq, ++ -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, ++ "bad btree header: seq 0"); ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bch_btree_ptr_v2 *bp = ++ &bkey_i_to_btree_ptr_v2(&b->key)->v; ++ ++ btree_err_on(b->data->keys.seq != bp->seq, ++ -BCH_ERR_btree_node_read_err_must_retry, c, ca, b, NULL, ++ "got wrong btree node (seq %llx want %llx)", ++ b->data->keys.seq, bp->seq); ++ } ++ ++ while (b->written < (ptr_written ?: btree_sectors(c))) { ++ unsigned sectors; ++ struct nonce nonce; ++ struct bch_csum csum; ++ bool first = !b->written; ++ ++ if (!b->written) { ++ i = &b->data->keys; ++ ++ btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)), ++ -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, ++ "unknown checksum type %llu", ++ BSET_CSUM_TYPE(i)); ++ ++ nonce = btree_nonce(i, b->written << 9); ++ csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, b->data); ++ ++ btree_err_on(bch2_crc_cmp(csum, b->data->csum), ++ -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, ++ "invalid checksum"); ++ ++ ret = bset_encrypt(c, i, b->written << 9); ++ if (bch2_fs_fatal_err_on(ret, c, ++ "error decrypting btree node: %i", ret)) ++ goto fsck_err; ++ ++ btree_err_on(btree_node_type_is_extents(btree_node_type(b)) && ++ !BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data), ++ -BCH_ERR_btree_node_read_err_incompatible, c, NULL, b, NULL, ++ "btree node does not have NEW_EXTENT_OVERWRITE set"); ++ ++ sectors = vstruct_sectors(b->data, c->block_bits); ++ } else { ++ bne = write_block(b); ++ i = &bne->keys; ++ ++ if (i->seq != b->data->keys.seq) ++ break; ++ ++ btree_err_on(!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i)), ++ -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, ++ "unknown checksum type %llu", ++ BSET_CSUM_TYPE(i)); ++ ++ nonce = btree_nonce(i, b->written << 9); ++ csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); ++ ++ btree_err_on(bch2_crc_cmp(csum, bne->csum), ++ -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, i, ++ "invalid checksum"); ++ ++ ret = bset_encrypt(c, i, b->written << 9); ++ if (bch2_fs_fatal_err_on(ret, c, ++ "error decrypting btree node: %i\n", ret)) ++ goto fsck_err; ++ ++ sectors = vstruct_sectors(bne, c->block_bits); ++ } ++ ++ b->version_ondisk = min(b->version_ondisk, ++ le16_to_cpu(i->version)); ++ ++ ret = validate_bset(c, ca, b, i, b->written, sectors, ++ READ, have_retry, saw_error); ++ if (ret) ++ goto fsck_err; ++ ++ if (!b->written) ++ btree_node_set_format(b, b->data->format); ++ ++ ret = validate_bset_keys(c, b, i, READ, have_retry, saw_error); ++ if (ret) ++ goto fsck_err; ++ ++ SET_BSET_BIG_ENDIAN(i, CPU_BIG_ENDIAN); ++ ++ blacklisted = bch2_journal_seq_is_blacklisted(c, ++ le64_to_cpu(i->journal_seq), ++ true); ++ ++ btree_err_on(blacklisted && first, ++ -BCH_ERR_btree_node_read_err_fixable, c, ca, b, i, ++ "first btree node bset has blacklisted journal seq (%llu)", ++ le64_to_cpu(i->journal_seq)); ++ ++ btree_err_on(blacklisted && ptr_written, ++ -BCH_ERR_btree_node_read_err_fixable, c, ca, b, i, ++ "found blacklisted bset (journal seq %llu) in btree node at offset %u-%u/%u", ++ le64_to_cpu(i->journal_seq), ++ b->written, b->written + sectors, ptr_written); ++ ++ b->written += sectors; ++ ++ if (blacklisted && !first) ++ continue; ++ ++ sort_iter_add(iter, ++ vstruct_idx(i, 0), ++ vstruct_last(i)); ++ } ++ ++ if (ptr_written) { ++ btree_err_on(b->written < ptr_written, ++ -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, NULL, ++ "btree node data missing: expected %u sectors, found %u", ++ ptr_written, b->written); ++ } else { ++ for (bne = write_block(b); ++ bset_byte_offset(b, bne) < btree_bytes(c); ++ bne = (void *) bne + block_bytes(c)) ++ btree_err_on(bne->keys.seq == b->data->keys.seq && ++ !bch2_journal_seq_is_blacklisted(c, ++ le64_to_cpu(bne->keys.journal_seq), ++ true), ++ -BCH_ERR_btree_node_read_err_want_retry, c, ca, b, NULL, ++ "found bset signature after last bset"); ++ } ++ ++ sorted = btree_bounce_alloc(c, btree_bytes(c), &used_mempool); ++ sorted->keys.u64s = 0; ++ ++ set_btree_bset(b, b->set, &b->data->keys); ++ ++ b->nr = bch2_key_sort_fix_overlapping(c, &sorted->keys, iter); ++ ++ u64s = le16_to_cpu(sorted->keys.u64s); ++ *sorted = *b->data; ++ sorted->keys.u64s = cpu_to_le16(u64s); ++ swap(sorted, b->data); ++ set_btree_bset(b, b->set, &b->data->keys); ++ b->nsets = 1; ++ ++ BUG_ON(b->nr.live_u64s != u64s); ++ ++ btree_bounce_free(c, btree_bytes(c), used_mempool, sorted); ++ ++ if (updated_range) ++ bch2_btree_node_drop_keys_outside_node(b); ++ ++ i = &b->data->keys; ++ for (k = i->start; k != vstruct_last(i);) { ++ struct bkey tmp; ++ struct bkey_s u = __bkey_disassemble(b, k, &tmp); ++ ++ printbuf_reset(&buf); ++ ++ if (bch2_bkey_val_invalid(c, u.s_c, READ, &buf) || ++ (bch2_inject_invalid_keys && ++ !bversion_cmp(u.k->version, MAX_VERSION))) { ++ printbuf_reset(&buf); ++ ++ prt_printf(&buf, "invalid bkey: "); ++ bch2_bkey_val_invalid(c, u.s_c, READ, &buf); ++ prt_printf(&buf, "\n "); ++ bch2_bkey_val_to_text(&buf, c, u.s_c); ++ ++ btree_err(-BCH_ERR_btree_node_read_err_fixable, c, NULL, b, i, "%s", buf.buf); ++ ++ btree_keys_account_key_drop(&b->nr, 0, k); ++ ++ i->u64s = cpu_to_le16(le16_to_cpu(i->u64s) - k->u64s); ++ memmove_u64s_down(k, bkey_p_next(k), ++ (u64 *) vstruct_end(i) - (u64 *) k); ++ set_btree_bset_end(b, b->set); ++ continue; ++ } ++ ++ if (u.k->type == KEY_TYPE_btree_ptr_v2) { ++ struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(u); ++ ++ bp.v->mem_ptr = 0; ++ } ++ ++ k = bkey_p_next(k); ++ } ++ ++ bch2_bset_build_aux_tree(b, b->set, false); ++ ++ set_needs_whiteout(btree_bset_first(b), true); ++ ++ btree_node_reset_sib_u64s(b); ++ ++ bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&b->key)), ptr) { ++ struct bch_dev *ca2 = bch_dev_bkey_exists(c, ptr->dev); ++ ++ if (ca2->mi.state != BCH_MEMBER_STATE_rw) ++ set_btree_node_need_rewrite(b); ++ } ++ ++ if (!ptr_written) ++ set_btree_node_need_rewrite(b); ++out: ++ mempool_free(iter, &c->fill_iter); ++ printbuf_exit(&buf); ++ return retry_read; ++fsck_err: ++ if (ret == -BCH_ERR_btree_node_read_err_want_retry || ++ ret == -BCH_ERR_btree_node_read_err_must_retry) ++ retry_read = 1; ++ else ++ set_btree_node_read_error(b); ++ goto out; ++} ++ ++static void btree_node_read_work(struct work_struct *work) ++{ ++ struct btree_read_bio *rb = ++ container_of(work, struct btree_read_bio, work); ++ struct bch_fs *c = rb->c; ++ struct btree *b = rb->b; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); ++ struct bio *bio = &rb->bio; ++ struct bch_io_failures failed = { .nr = 0 }; ++ struct printbuf buf = PRINTBUF; ++ bool saw_error = false; ++ bool retry = false; ++ bool can_retry; ++ ++ goto start; ++ while (1) { ++ retry = true; ++ bch_info(c, "retrying read"); ++ ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); ++ rb->have_ioref = bch2_dev_get_ioref(ca, READ); ++ bio_reset(bio, NULL, REQ_OP_READ|REQ_SYNC|REQ_META); ++ bio->bi_iter.bi_sector = rb->pick.ptr.offset; ++ bio->bi_iter.bi_size = btree_bytes(c); ++ ++ if (rb->have_ioref) { ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ submit_bio_wait(bio); ++ } else { ++ bio->bi_status = BLK_STS_REMOVED; ++ } ++start: ++ printbuf_reset(&buf); ++ btree_pos_to_text(&buf, c, b); ++ bch2_dev_io_err_on(bio->bi_status, ca, "btree read error %s for %s", ++ bch2_blk_status_to_str(bio->bi_status), buf.buf); ++ if (rb->have_ioref) ++ percpu_ref_put(&ca->io_ref); ++ rb->have_ioref = false; ++ ++ bch2_mark_io_failure(&failed, &rb->pick); ++ ++ can_retry = bch2_bkey_pick_read_device(c, ++ bkey_i_to_s_c(&b->key), ++ &failed, &rb->pick) > 0; ++ ++ if (!bio->bi_status && ++ !bch2_btree_node_read_done(c, ca, b, can_retry, &saw_error)) { ++ if (retry) ++ bch_info(c, "retry success"); ++ break; ++ } ++ ++ saw_error = true; ++ ++ if (!can_retry) { ++ set_btree_node_read_error(b); ++ break; ++ } ++ } ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_read], ++ rb->start_time); ++ bio_put(&rb->bio); ++ ++ if (saw_error && !btree_node_read_error(b)) { ++ printbuf_reset(&buf); ++ bch2_bpos_to_text(&buf, b->key.k.p); ++ bch_info(c, "%s: rewriting btree node at btree=%s level=%u %s due to error", ++ __func__, bch2_btree_ids[b->c.btree_id], b->c.level, buf.buf); ++ ++ bch2_btree_node_rewrite_async(c, b); ++ } ++ ++ printbuf_exit(&buf); ++ clear_btree_node_read_in_flight(b); ++ wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); ++} ++ ++static void btree_node_read_endio(struct bio *bio) ++{ ++ struct btree_read_bio *rb = ++ container_of(bio, struct btree_read_bio, bio); ++ struct bch_fs *c = rb->c; ++ ++ if (rb->have_ioref) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); ++ ++ bch2_latency_acct(ca, rb->start_time, READ); ++ } ++ ++ queue_work(c->io_complete_wq, &rb->work); ++} ++ ++struct btree_node_read_all { ++ struct closure cl; ++ struct bch_fs *c; ++ struct btree *b; ++ unsigned nr; ++ void *buf[BCH_REPLICAS_MAX]; ++ struct bio *bio[BCH_REPLICAS_MAX]; ++ blk_status_t err[BCH_REPLICAS_MAX]; ++}; ++ ++static unsigned btree_node_sectors_written(struct bch_fs *c, void *data) ++{ ++ struct btree_node *bn = data; ++ struct btree_node_entry *bne; ++ unsigned offset = 0; ++ ++ if (le64_to_cpu(bn->magic) != bset_magic(c)) ++ return 0; ++ ++ while (offset < btree_sectors(c)) { ++ if (!offset) { ++ offset += vstruct_sectors(bn, c->block_bits); ++ } else { ++ bne = data + (offset << 9); ++ if (bne->keys.seq != bn->keys.seq) ++ break; ++ offset += vstruct_sectors(bne, c->block_bits); ++ } ++ } ++ ++ return offset; ++} ++ ++static bool btree_node_has_extra_bsets(struct bch_fs *c, unsigned offset, void *data) ++{ ++ struct btree_node *bn = data; ++ struct btree_node_entry *bne; ++ ++ if (!offset) ++ return false; ++ ++ while (offset < btree_sectors(c)) { ++ bne = data + (offset << 9); ++ if (bne->keys.seq == bn->keys.seq) ++ return true; ++ offset++; ++ } ++ ++ return false; ++ return offset; ++} ++ ++static void btree_node_read_all_replicas_done(struct closure *cl) ++{ ++ struct btree_node_read_all *ra = ++ container_of(cl, struct btree_node_read_all, cl); ++ struct bch_fs *c = ra->c; ++ struct btree *b = ra->b; ++ struct printbuf buf = PRINTBUF; ++ bool dump_bset_maps = false; ++ bool have_retry = false; ++ int ret = 0, best = -1, write = READ; ++ unsigned i, written = 0, written2 = 0; ++ __le64 seq = b->key.k.type == KEY_TYPE_btree_ptr_v2 ++ ? bkey_i_to_btree_ptr_v2(&b->key)->v.seq : 0; ++ bool _saw_error = false, *saw_error = &_saw_error; ++ ++ for (i = 0; i < ra->nr; i++) { ++ struct btree_node *bn = ra->buf[i]; ++ ++ if (ra->err[i]) ++ continue; ++ ++ if (le64_to_cpu(bn->magic) != bset_magic(c) || ++ (seq && seq != bn->keys.seq)) ++ continue; ++ ++ if (best < 0) { ++ best = i; ++ written = btree_node_sectors_written(c, bn); ++ continue; ++ } ++ ++ written2 = btree_node_sectors_written(c, ra->buf[i]); ++ if (btree_err_on(written2 != written, -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL, ++ "btree node sectors written mismatch: %u != %u", ++ written, written2) || ++ btree_err_on(btree_node_has_extra_bsets(c, written2, ra->buf[i]), ++ -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL, ++ "found bset signature after last bset") || ++ btree_err_on(memcmp(ra->buf[best], ra->buf[i], written << 9), ++ -BCH_ERR_btree_node_read_err_fixable, c, NULL, b, NULL, ++ "btree node replicas content mismatch")) ++ dump_bset_maps = true; ++ ++ if (written2 > written) { ++ written = written2; ++ best = i; ++ } ++ } ++fsck_err: ++ if (dump_bset_maps) { ++ for (i = 0; i < ra->nr; i++) { ++ struct btree_node *bn = ra->buf[i]; ++ struct btree_node_entry *bne = NULL; ++ unsigned offset = 0, sectors; ++ bool gap = false; ++ ++ if (ra->err[i]) ++ continue; ++ ++ printbuf_reset(&buf); ++ ++ while (offset < btree_sectors(c)) { ++ if (!offset) { ++ sectors = vstruct_sectors(bn, c->block_bits); ++ } else { ++ bne = ra->buf[i] + (offset << 9); ++ if (bne->keys.seq != bn->keys.seq) ++ break; ++ sectors = vstruct_sectors(bne, c->block_bits); ++ } ++ ++ prt_printf(&buf, " %u-%u", offset, offset + sectors); ++ if (bne && bch2_journal_seq_is_blacklisted(c, ++ le64_to_cpu(bne->keys.journal_seq), false)) ++ prt_printf(&buf, "*"); ++ offset += sectors; ++ } ++ ++ while (offset < btree_sectors(c)) { ++ bne = ra->buf[i] + (offset << 9); ++ if (bne->keys.seq == bn->keys.seq) { ++ if (!gap) ++ prt_printf(&buf, " GAP"); ++ gap = true; ++ ++ sectors = vstruct_sectors(bne, c->block_bits); ++ prt_printf(&buf, " %u-%u", offset, offset + sectors); ++ if (bch2_journal_seq_is_blacklisted(c, ++ le64_to_cpu(bne->keys.journal_seq), false)) ++ prt_printf(&buf, "*"); ++ } ++ offset++; ++ } ++ ++ bch_err(c, "replica %u:%s", i, buf.buf); ++ } ++ } ++ ++ if (best >= 0) { ++ memcpy(b->data, ra->buf[best], btree_bytes(c)); ++ ret = bch2_btree_node_read_done(c, NULL, b, false, saw_error); ++ } else { ++ ret = -1; ++ } ++ ++ if (ret) ++ set_btree_node_read_error(b); ++ else if (*saw_error) ++ bch2_btree_node_rewrite_async(c, b); ++ ++ for (i = 0; i < ra->nr; i++) { ++ mempool_free(ra->buf[i], &c->btree_bounce_pool); ++ bio_put(ra->bio[i]); ++ } ++ ++ closure_debug_destroy(&ra->cl); ++ kfree(ra); ++ printbuf_exit(&buf); ++ ++ clear_btree_node_read_in_flight(b); ++ wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); ++} ++ ++static void btree_node_read_all_replicas_endio(struct bio *bio) ++{ ++ struct btree_read_bio *rb = ++ container_of(bio, struct btree_read_bio, bio); ++ struct bch_fs *c = rb->c; ++ struct btree_node_read_all *ra = rb->ra; ++ ++ if (rb->have_ioref) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rb->pick.ptr.dev); ++ ++ bch2_latency_acct(ca, rb->start_time, READ); ++ } ++ ++ ra->err[rb->idx] = bio->bi_status; ++ closure_put(&ra->cl); ++} ++ ++/* ++ * XXX This allocates multiple times from the same mempools, and can deadlock ++ * under sufficient memory pressure (but is only a debug path) ++ */ ++static int btree_node_read_all_replicas(struct bch_fs *c, struct btree *b, bool sync) ++{ ++ struct bkey_s_c k = bkey_i_to_s_c(&b->key); ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded pick; ++ struct btree_node_read_all *ra; ++ unsigned i; ++ ++ ra = kzalloc(sizeof(*ra), GFP_NOFS); ++ if (!ra) ++ return -BCH_ERR_ENOMEM_btree_node_read_all_replicas; ++ ++ closure_init(&ra->cl, NULL); ++ ra->c = c; ++ ra->b = b; ++ ra->nr = bch2_bkey_nr_ptrs(k); ++ ++ for (i = 0; i < ra->nr; i++) { ++ ra->buf[i] = mempool_alloc(&c->btree_bounce_pool, GFP_NOFS); ++ ra->bio[i] = bio_alloc_bioset(NULL, ++ buf_pages(ra->buf[i], btree_bytes(c)), ++ REQ_OP_READ|REQ_SYNC|REQ_META, ++ GFP_NOFS, ++ &c->btree_bio); ++ } ++ ++ i = 0; ++ bkey_for_each_ptr_decode(k.k, ptrs, pick, entry) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, pick.ptr.dev); ++ struct btree_read_bio *rb = ++ container_of(ra->bio[i], struct btree_read_bio, bio); ++ rb->c = c; ++ rb->b = b; ++ rb->ra = ra; ++ rb->start_time = local_clock(); ++ rb->have_ioref = bch2_dev_get_ioref(ca, READ); ++ rb->idx = i; ++ rb->pick = pick; ++ rb->bio.bi_iter.bi_sector = pick.ptr.offset; ++ rb->bio.bi_end_io = btree_node_read_all_replicas_endio; ++ bch2_bio_map(&rb->bio, ra->buf[i], btree_bytes(c)); ++ ++ if (rb->have_ioref) { ++ this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree], ++ bio_sectors(&rb->bio)); ++ bio_set_dev(&rb->bio, ca->disk_sb.bdev); ++ ++ closure_get(&ra->cl); ++ submit_bio(&rb->bio); ++ } else { ++ ra->err[i] = BLK_STS_REMOVED; ++ } ++ ++ i++; ++ } ++ ++ if (sync) { ++ closure_sync(&ra->cl); ++ btree_node_read_all_replicas_done(&ra->cl); ++ } else { ++ continue_at(&ra->cl, btree_node_read_all_replicas_done, ++ c->io_complete_wq); ++ } ++ ++ return 0; ++} ++ ++void bch2_btree_node_read(struct bch_fs *c, struct btree *b, ++ bool sync) ++{ ++ struct extent_ptr_decoded pick; ++ struct btree_read_bio *rb; ++ struct bch_dev *ca; ++ struct bio *bio; ++ int ret; ++ ++ trace_and_count(c, btree_node_read, c, b); ++ ++ if (bch2_verify_all_btree_replicas && ++ !btree_node_read_all_replicas(c, b, sync)) ++ return; ++ ++ ret = bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key), ++ NULL, &pick); ++ ++ if (ret <= 0) { ++ struct printbuf buf = PRINTBUF; ++ ++ prt_str(&buf, "btree node read error: no device to read from\n at "); ++ btree_pos_to_text(&buf, c, b); ++ bch_err(c, "%s", buf.buf); ++ ++ if (c->recovery_passes_explicit & BIT_ULL(BCH_RECOVERY_PASS_check_topology) && ++ c->curr_recovery_pass > BCH_RECOVERY_PASS_check_topology) ++ bch2_fatal_error(c); ++ ++ set_btree_node_read_error(b); ++ clear_btree_node_read_in_flight(b); ++ wake_up_bit(&b->flags, BTREE_NODE_read_in_flight); ++ printbuf_exit(&buf); ++ return; ++ } ++ ++ ca = bch_dev_bkey_exists(c, pick.ptr.dev); ++ ++ bio = bio_alloc_bioset(NULL, ++ buf_pages(b->data, btree_bytes(c)), ++ REQ_OP_READ|REQ_SYNC|REQ_META, ++ GFP_NOFS, ++ &c->btree_bio); ++ rb = container_of(bio, struct btree_read_bio, bio); ++ rb->c = c; ++ rb->b = b; ++ rb->ra = NULL; ++ rb->start_time = local_clock(); ++ rb->have_ioref = bch2_dev_get_ioref(ca, READ); ++ rb->pick = pick; ++ INIT_WORK(&rb->work, btree_node_read_work); ++ bio->bi_iter.bi_sector = pick.ptr.offset; ++ bio->bi_end_io = btree_node_read_endio; ++ bch2_bio_map(bio, b->data, btree_bytes(c)); ++ ++ if (rb->have_ioref) { ++ this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_btree], ++ bio_sectors(bio)); ++ bio_set_dev(bio, ca->disk_sb.bdev); ++ ++ if (sync) { ++ submit_bio_wait(bio); ++ ++ btree_node_read_work(&rb->work); ++ } else { ++ submit_bio(bio); ++ } ++ } else { ++ bio->bi_status = BLK_STS_REMOVED; ++ ++ if (sync) ++ btree_node_read_work(&rb->work); ++ else ++ queue_work(c->io_complete_wq, &rb->work); ++ } ++} ++ ++static int __bch2_btree_root_read(struct btree_trans *trans, enum btree_id id, ++ const struct bkey_i *k, unsigned level) ++{ ++ struct bch_fs *c = trans->c; ++ struct closure cl; ++ struct btree *b; ++ int ret; ++ ++ closure_init_stack(&cl); ++ ++ do { ++ ret = bch2_btree_cache_cannibalize_lock(c, &cl); ++ closure_sync(&cl); ++ } while (ret); ++ ++ b = bch2_btree_node_mem_alloc(trans, level != 0); ++ bch2_btree_cache_cannibalize_unlock(c); ++ ++ BUG_ON(IS_ERR(b)); ++ ++ bkey_copy(&b->key, k); ++ BUG_ON(bch2_btree_node_hash_insert(&c->btree_cache, b, level, id)); ++ ++ set_btree_node_read_in_flight(b); ++ ++ bch2_btree_node_read(c, b, true); ++ ++ if (btree_node_read_error(b)) { ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ ++ mutex_lock(&c->btree_cache.lock); ++ list_move(&b->list, &c->btree_cache.freeable); ++ mutex_unlock(&c->btree_cache.lock); ++ ++ ret = -EIO; ++ goto err; ++ } ++ ++ bch2_btree_set_root_for_read(c, b); ++err: ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ ++ return ret; ++} ++ ++int bch2_btree_root_read(struct bch_fs *c, enum btree_id id, ++ const struct bkey_i *k, unsigned level) ++{ ++ return bch2_trans_run(c, __bch2_btree_root_read(trans, id, k, level)); ++} ++ ++void bch2_btree_complete_write(struct bch_fs *c, struct btree *b, ++ struct btree_write *w) ++{ ++ unsigned long old, new, v = READ_ONCE(b->will_make_reachable); ++ ++ do { ++ old = new = v; ++ if (!(old & 1)) ++ break; ++ ++ new &= ~1UL; ++ } while ((v = cmpxchg(&b->will_make_reachable, old, new)) != old); ++ ++ if (old & 1) ++ closure_put(&((struct btree_update *) new)->cl); ++ ++ bch2_journal_pin_drop(&c->journal, &w->journal); ++} ++ ++static void __btree_node_write_done(struct bch_fs *c, struct btree *b) ++{ ++ struct btree_write *w = btree_prev_write(b); ++ unsigned long old, new, v; ++ unsigned type = 0; ++ ++ bch2_btree_complete_write(c, b, w); ++ ++ v = READ_ONCE(b->flags); ++ do { ++ old = new = v; ++ ++ if ((old & (1U << BTREE_NODE_dirty)) && ++ (old & (1U << BTREE_NODE_need_write)) && ++ !(old & (1U << BTREE_NODE_never_write)) && ++ !(old & (1U << BTREE_NODE_write_blocked)) && ++ !(old & (1U << BTREE_NODE_will_make_reachable))) { ++ new &= ~(1U << BTREE_NODE_dirty); ++ new &= ~(1U << BTREE_NODE_need_write); ++ new |= (1U << BTREE_NODE_write_in_flight); ++ new |= (1U << BTREE_NODE_write_in_flight_inner); ++ new |= (1U << BTREE_NODE_just_written); ++ new ^= (1U << BTREE_NODE_write_idx); ++ ++ type = new & BTREE_WRITE_TYPE_MASK; ++ new &= ~BTREE_WRITE_TYPE_MASK; ++ } else { ++ new &= ~(1U << BTREE_NODE_write_in_flight); ++ new &= ~(1U << BTREE_NODE_write_in_flight_inner); ++ } ++ } while ((v = cmpxchg(&b->flags, old, new)) != old); ++ ++ if (new & (1U << BTREE_NODE_write_in_flight)) ++ __bch2_btree_node_write(c, b, BTREE_WRITE_ALREADY_STARTED|type); ++ else ++ wake_up_bit(&b->flags, BTREE_NODE_write_in_flight); ++} ++ ++static void btree_node_write_done(struct bch_fs *c, struct btree *b) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); ++ __btree_node_write_done(c, b); ++ six_unlock_read(&b->c.lock); ++ ++ bch2_trans_put(trans); ++} ++ ++static void btree_node_write_work(struct work_struct *work) ++{ ++ struct btree_write_bio *wbio = ++ container_of(work, struct btree_write_bio, work); ++ struct bch_fs *c = wbio->wbio.c; ++ struct btree *b = wbio->wbio.bio.bi_private; ++ struct bch_extent_ptr *ptr; ++ int ret = 0; ++ ++ btree_bounce_free(c, ++ wbio->data_bytes, ++ wbio->wbio.used_mempool, ++ wbio->data); ++ ++ bch2_bkey_drop_ptrs(bkey_i_to_s(&wbio->key), ptr, ++ bch2_dev_list_has_dev(wbio->wbio.failed, ptr->dev)); ++ ++ if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(&wbio->key))) ++ goto err; ++ ++ if (wbio->wbio.first_btree_write) { ++ if (wbio->wbio.failed.nr) { ++ ++ } ++ } else { ++ ret = bch2_trans_do(c, NULL, NULL, 0, ++ bch2_btree_node_update_key_get_iter(trans, b, &wbio->key, ++ BCH_WATERMARK_reclaim| ++ BTREE_INSERT_JOURNAL_RECLAIM| ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_NOCHECK_RW, ++ !wbio->wbio.failed.nr)); ++ if (ret) ++ goto err; ++ } ++out: ++ bio_put(&wbio->wbio.bio); ++ btree_node_write_done(c, b); ++ return; ++err: ++ set_btree_node_noevict(b); ++ if (!bch2_err_matches(ret, EROFS)) ++ bch2_fs_fatal_error(c, "fatal error writing btree node: %s", bch2_err_str(ret)); ++ goto out; ++} ++ ++static void btree_node_write_endio(struct bio *bio) ++{ ++ struct bch_write_bio *wbio = to_wbio(bio); ++ struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; ++ struct bch_write_bio *orig = parent ?: wbio; ++ struct btree_write_bio *wb = container_of(orig, struct btree_write_bio, wbio); ++ struct bch_fs *c = wbio->c; ++ struct btree *b = wbio->bio.bi_private; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); ++ unsigned long flags; ++ ++ if (wbio->have_ioref) ++ bch2_latency_acct(ca, wbio->submit_time, WRITE); ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "btree write error: %s", ++ bch2_blk_status_to_str(bio->bi_status)) || ++ bch2_meta_write_fault("btree")) { ++ spin_lock_irqsave(&c->btree_write_error_lock, flags); ++ bch2_dev_list_add_dev(&orig->failed, wbio->dev); ++ spin_unlock_irqrestore(&c->btree_write_error_lock, flags); ++ } ++ ++ if (wbio->have_ioref) ++ percpu_ref_put(&ca->io_ref); ++ ++ if (parent) { ++ bio_put(bio); ++ bio_endio(&parent->bio); ++ return; ++ } ++ ++ clear_btree_node_write_in_flight_inner(b); ++ wake_up_bit(&b->flags, BTREE_NODE_write_in_flight_inner); ++ INIT_WORK(&wb->work, btree_node_write_work); ++ queue_work(c->btree_io_complete_wq, &wb->work); ++} ++ ++static int validate_bset_for_write(struct bch_fs *c, struct btree *b, ++ struct bset *i, unsigned sectors) ++{ ++ struct printbuf buf = PRINTBUF; ++ bool saw_error; ++ int ret; ++ ++ ret = bch2_bkey_invalid(c, bkey_i_to_s_c(&b->key), ++ BKEY_TYPE_btree, WRITE, &buf); ++ ++ if (ret) ++ bch2_fs_inconsistent(c, "invalid btree node key before write: %s", buf.buf); ++ printbuf_exit(&buf); ++ if (ret) ++ return ret; ++ ++ ret = validate_bset_keys(c, b, i, WRITE, false, &saw_error) ?: ++ validate_bset(c, NULL, b, i, b->written, sectors, WRITE, false, &saw_error); ++ if (ret) { ++ bch2_inconsistent_error(c); ++ dump_stack(); ++ } ++ ++ return ret; ++} ++ ++static void btree_write_submit(struct work_struct *work) ++{ ++ struct btree_write_bio *wbio = container_of(work, struct btree_write_bio, work); ++ struct bch_extent_ptr *ptr; ++ BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; ++ ++ bkey_copy(&tmp.k, &wbio->key); ++ ++ bkey_for_each_ptr(bch2_bkey_ptrs(bkey_i_to_s(&tmp.k)), ptr) ++ ptr->offset += wbio->sector_offset; ++ ++ bch2_submit_wbio_replicas(&wbio->wbio, wbio->wbio.c, BCH_DATA_btree, ++ &tmp.k, false); ++} ++ ++void __bch2_btree_node_write(struct bch_fs *c, struct btree *b, unsigned flags) ++{ ++ struct btree_write_bio *wbio; ++ struct bset_tree *t; ++ struct bset *i; ++ struct btree_node *bn = NULL; ++ struct btree_node_entry *bne = NULL; ++ struct sort_iter_stack sort_iter; ++ struct nonce nonce; ++ unsigned bytes_to_write, sectors_to_write, bytes, u64s; ++ u64 seq = 0; ++ bool used_mempool; ++ unsigned long old, new; ++ bool validate_before_checksum = false; ++ enum btree_write_type type = flags & BTREE_WRITE_TYPE_MASK; ++ void *data; ++ int ret; ++ ++ if (flags & BTREE_WRITE_ALREADY_STARTED) ++ goto do_write; ++ ++ /* ++ * We may only have a read lock on the btree node - the dirty bit is our ++ * "lock" against racing with other threads that may be trying to start ++ * a write, we do a write iff we clear the dirty bit. Since setting the ++ * dirty bit requires a write lock, we can't race with other threads ++ * redirtying it: ++ */ ++ do { ++ old = new = READ_ONCE(b->flags); ++ ++ if (!(old & (1 << BTREE_NODE_dirty))) ++ return; ++ ++ if ((flags & BTREE_WRITE_ONLY_IF_NEED) && ++ !(old & (1 << BTREE_NODE_need_write))) ++ return; ++ ++ if (old & ++ ((1 << BTREE_NODE_never_write)| ++ (1 << BTREE_NODE_write_blocked))) ++ return; ++ ++ if (b->written && ++ (old & (1 << BTREE_NODE_will_make_reachable))) ++ return; ++ ++ if (old & (1 << BTREE_NODE_write_in_flight)) ++ return; ++ ++ if (flags & BTREE_WRITE_ONLY_IF_NEED) ++ type = new & BTREE_WRITE_TYPE_MASK; ++ new &= ~BTREE_WRITE_TYPE_MASK; ++ ++ new &= ~(1 << BTREE_NODE_dirty); ++ new &= ~(1 << BTREE_NODE_need_write); ++ new |= (1 << BTREE_NODE_write_in_flight); ++ new |= (1 << BTREE_NODE_write_in_flight_inner); ++ new |= (1 << BTREE_NODE_just_written); ++ new ^= (1 << BTREE_NODE_write_idx); ++ } while (cmpxchg_acquire(&b->flags, old, new) != old); ++ ++ if (new & (1U << BTREE_NODE_need_write)) ++ return; ++do_write: ++ BUG_ON((type == BTREE_WRITE_initial) != (b->written == 0)); ++ ++ atomic_dec(&c->btree_cache.dirty); ++ ++ BUG_ON(btree_node_fake(b)); ++ BUG_ON((b->will_make_reachable != 0) != !b->written); ++ ++ BUG_ON(b->written >= btree_sectors(c)); ++ BUG_ON(b->written & (block_sectors(c) - 1)); ++ BUG_ON(bset_written(b, btree_bset_last(b))); ++ BUG_ON(le64_to_cpu(b->data->magic) != bset_magic(c)); ++ BUG_ON(memcmp(&b->data->format, &b->format, sizeof(b->format))); ++ ++ bch2_sort_whiteouts(c, b); ++ ++ sort_iter_stack_init(&sort_iter, b); ++ ++ bytes = !b->written ++ ? sizeof(struct btree_node) ++ : sizeof(struct btree_node_entry); ++ ++ bytes += b->whiteout_u64s * sizeof(u64); ++ ++ for_each_bset(b, t) { ++ i = bset(b, t); ++ ++ if (bset_written(b, i)) ++ continue; ++ ++ bytes += le16_to_cpu(i->u64s) * sizeof(u64); ++ sort_iter_add(&sort_iter.iter, ++ btree_bkey_first(b, t), ++ btree_bkey_last(b, t)); ++ seq = max(seq, le64_to_cpu(i->journal_seq)); ++ } ++ ++ BUG_ON(b->written && !seq); ++ ++ /* bch2_varint_decode may read up to 7 bytes past the end of the buffer: */ ++ bytes += 8; ++ ++ /* buffer must be a multiple of the block size */ ++ bytes = round_up(bytes, block_bytes(c)); ++ ++ data = btree_bounce_alloc(c, bytes, &used_mempool); ++ ++ if (!b->written) { ++ bn = data; ++ *bn = *b->data; ++ i = &bn->keys; ++ } else { ++ bne = data; ++ bne->keys = b->data->keys; ++ i = &bne->keys; ++ } ++ ++ i->journal_seq = cpu_to_le64(seq); ++ i->u64s = 0; ++ ++ sort_iter_add(&sort_iter.iter, ++ unwritten_whiteouts_start(c, b), ++ unwritten_whiteouts_end(c, b)); ++ SET_BSET_SEPARATE_WHITEOUTS(i, false); ++ ++ b->whiteout_u64s = 0; ++ ++ u64s = bch2_sort_keys(i->start, &sort_iter.iter, false); ++ le16_add_cpu(&i->u64s, u64s); ++ ++ BUG_ON(!b->written && i->u64s != b->data->keys.u64s); ++ ++ set_needs_whiteout(i, false); ++ ++ /* do we have data to write? */ ++ if (b->written && !i->u64s) ++ goto nowrite; ++ ++ bytes_to_write = vstruct_end(i) - data; ++ sectors_to_write = round_up(bytes_to_write, block_bytes(c)) >> 9; ++ ++ if (!b->written && ++ b->key.k.type == KEY_TYPE_btree_ptr_v2) ++ BUG_ON(btree_ptr_sectors_written(&b->key) != sectors_to_write); ++ ++ memset(data + bytes_to_write, 0, ++ (sectors_to_write << 9) - bytes_to_write); ++ ++ BUG_ON(b->written + sectors_to_write > btree_sectors(c)); ++ BUG_ON(BSET_BIG_ENDIAN(i) != CPU_BIG_ENDIAN); ++ BUG_ON(i->seq != b->data->keys.seq); ++ ++ i->version = cpu_to_le16(c->sb.version); ++ SET_BSET_OFFSET(i, b->written); ++ SET_BSET_CSUM_TYPE(i, bch2_meta_checksum_type(c)); ++ ++ if (bch2_csum_type_is_encryption(BSET_CSUM_TYPE(i))) ++ validate_before_checksum = true; ++ ++ /* validate_bset will be modifying: */ ++ if (le16_to_cpu(i->version) < bcachefs_metadata_version_current) ++ validate_before_checksum = true; ++ ++ /* if we're going to be encrypting, check metadata validity first: */ ++ if (validate_before_checksum && ++ validate_bset_for_write(c, b, i, sectors_to_write)) ++ goto err; ++ ++ ret = bset_encrypt(c, i, b->written << 9); ++ if (bch2_fs_fatal_err_on(ret, c, ++ "error encrypting btree node: %i\n", ret)) ++ goto err; ++ ++ nonce = btree_nonce(i, b->written << 9); ++ ++ if (bn) ++ bn->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bn); ++ else ++ bne->csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); ++ ++ /* if we're not encrypting, check metadata after checksumming: */ ++ if (!validate_before_checksum && ++ validate_bset_for_write(c, b, i, sectors_to_write)) ++ goto err; ++ ++ /* ++ * We handle btree write errors by immediately halting the journal - ++ * after we've done that, we can't issue any subsequent btree writes ++ * because they might have pointers to new nodes that failed to write. ++ * ++ * Furthermore, there's no point in doing any more btree writes because ++ * with the journal stopped, we're never going to update the journal to ++ * reflect that those writes were done and the data flushed from the ++ * journal: ++ * ++ * Also on journal error, the pending write may have updates that were ++ * never journalled (interior nodes, see btree_update_nodes_written()) - ++ * it's critical that we don't do the write in that case otherwise we ++ * will have updates visible that weren't in the journal: ++ * ++ * Make sure to update b->written so bch2_btree_init_next() doesn't ++ * break: ++ */ ++ if (bch2_journal_error(&c->journal) || ++ c->opts.nochanges) ++ goto err; ++ ++ trace_and_count(c, btree_node_write, b, bytes_to_write, sectors_to_write); ++ ++ wbio = container_of(bio_alloc_bioset(NULL, ++ buf_pages(data, sectors_to_write << 9), ++ REQ_OP_WRITE|REQ_META, ++ GFP_NOFS, ++ &c->btree_bio), ++ struct btree_write_bio, wbio.bio); ++ wbio_init(&wbio->wbio.bio); ++ wbio->data = data; ++ wbio->data_bytes = bytes; ++ wbio->sector_offset = b->written; ++ wbio->wbio.c = c; ++ wbio->wbio.used_mempool = used_mempool; ++ wbio->wbio.first_btree_write = !b->written; ++ wbio->wbio.bio.bi_end_io = btree_node_write_endio; ++ wbio->wbio.bio.bi_private = b; ++ ++ bch2_bio_map(&wbio->wbio.bio, data, sectors_to_write << 9); ++ ++ bkey_copy(&wbio->key, &b->key); ++ ++ b->written += sectors_to_write; ++ ++ if (wbio->key.k.type == KEY_TYPE_btree_ptr_v2) ++ bkey_i_to_btree_ptr_v2(&wbio->key)->v.sectors_written = ++ cpu_to_le16(b->written); ++ ++ atomic64_inc(&c->btree_write_stats[type].nr); ++ atomic64_add(bytes_to_write, &c->btree_write_stats[type].bytes); ++ ++ INIT_WORK(&wbio->work, btree_write_submit); ++ queue_work(c->io_complete_wq, &wbio->work); ++ return; ++err: ++ set_btree_node_noevict(b); ++ b->written += sectors_to_write; ++nowrite: ++ btree_bounce_free(c, bytes, used_mempool, data); ++ __btree_node_write_done(c, b); ++} ++ ++/* ++ * Work that must be done with write lock held: ++ */ ++bool bch2_btree_post_write_cleanup(struct bch_fs *c, struct btree *b) ++{ ++ bool invalidated_iter = false; ++ struct btree_node_entry *bne; ++ struct bset_tree *t; ++ ++ if (!btree_node_just_written(b)) ++ return false; ++ ++ BUG_ON(b->whiteout_u64s); ++ ++ clear_btree_node_just_written(b); ++ ++ /* ++ * Note: immediately after write, bset_written() doesn't work - the ++ * amount of data we had to write after compaction might have been ++ * smaller than the offset of the last bset. ++ * ++ * However, we know that all bsets have been written here, as long as ++ * we're still holding the write lock: ++ */ ++ ++ /* ++ * XXX: decide if we really want to unconditionally sort down to a ++ * single bset: ++ */ ++ if (b->nsets > 1) { ++ btree_node_sort(c, b, 0, b->nsets, true); ++ invalidated_iter = true; ++ } else { ++ invalidated_iter = bch2_drop_whiteouts(b, COMPACT_ALL); ++ } ++ ++ for_each_bset(b, t) ++ set_needs_whiteout(bset(b, t), true); ++ ++ bch2_btree_verify(c, b); ++ ++ /* ++ * If later we don't unconditionally sort down to a single bset, we have ++ * to ensure this is still true: ++ */ ++ BUG_ON((void *) btree_bkey_last(b, bset_tree_last(b)) > write_block(b)); ++ ++ bne = want_new_bset(c, b); ++ if (bne) ++ bch2_bset_init_next(c, b, bne); ++ ++ bch2_btree_build_aux_trees(b); ++ ++ return invalidated_iter; ++} ++ ++/* ++ * Use this one if the node is intent locked: ++ */ ++void bch2_btree_node_write(struct bch_fs *c, struct btree *b, ++ enum six_lock_type lock_type_held, ++ unsigned flags) ++{ ++ if (lock_type_held == SIX_LOCK_intent || ++ (lock_type_held == SIX_LOCK_read && ++ six_lock_tryupgrade(&b->c.lock))) { ++ __bch2_btree_node_write(c, b, flags); ++ ++ /* don't cycle lock unnecessarily: */ ++ if (btree_node_just_written(b) && ++ six_trylock_write(&b->c.lock)) { ++ bch2_btree_post_write_cleanup(c, b); ++ six_unlock_write(&b->c.lock); ++ } ++ ++ if (lock_type_held == SIX_LOCK_read) ++ six_lock_downgrade(&b->c.lock); ++ } else { ++ __bch2_btree_node_write(c, b, flags); ++ if (lock_type_held == SIX_LOCK_write && ++ btree_node_just_written(b)) ++ bch2_btree_post_write_cleanup(c, b); ++ } ++} ++ ++static bool __bch2_btree_flush_all(struct bch_fs *c, unsigned flag) ++{ ++ struct bucket_table *tbl; ++ struct rhash_head *pos; ++ struct btree *b; ++ unsigned i; ++ bool ret = false; ++restart: ++ rcu_read_lock(); ++ for_each_cached_btree(b, c, tbl, i, pos) ++ if (test_bit(flag, &b->flags)) { ++ rcu_read_unlock(); ++ wait_on_bit_io(&b->flags, flag, TASK_UNINTERRUPTIBLE); ++ ret = true; ++ goto restart; ++ } ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++bool bch2_btree_flush_all_reads(struct bch_fs *c) ++{ ++ return __bch2_btree_flush_all(c, BTREE_NODE_read_in_flight); ++} ++ ++bool bch2_btree_flush_all_writes(struct bch_fs *c) ++{ ++ return __bch2_btree_flush_all(c, BTREE_NODE_write_in_flight); ++} ++ ++static const char * const bch2_btree_write_types[] = { ++#define x(t, n) [n] = #t, ++ BCH_BTREE_WRITE_TYPES() ++ NULL ++}; ++ ++void bch2_btree_write_stats_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ printbuf_tabstop_push(out, 20); ++ printbuf_tabstop_push(out, 10); ++ ++ prt_tab(out); ++ prt_str(out, "nr"); ++ prt_tab(out); ++ prt_str(out, "size"); ++ prt_newline(out); ++ ++ for (unsigned i = 0; i < BTREE_WRITE_TYPE_NR; i++) { ++ u64 nr = atomic64_read(&c->btree_write_stats[i].nr); ++ u64 bytes = atomic64_read(&c->btree_write_stats[i].bytes); ++ ++ prt_printf(out, "%s:", bch2_btree_write_types[i]); ++ prt_tab(out); ++ prt_u64(out, nr); ++ prt_tab(out); ++ prt_human_readable_u64(out, nr ? div64_u64(bytes, nr) : 0); ++ prt_newline(out); ++ } ++} +diff --git a/fs/bcachefs/btree_io.h b/fs/bcachefs/btree_io.h +new file mode 100644 +index 000000000000..7e03dd76fb38 +--- /dev/null ++++ b/fs/bcachefs/btree_io.h +@@ -0,0 +1,228 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_IO_H ++#define _BCACHEFS_BTREE_IO_H ++ ++#include "bkey_methods.h" ++#include "bset.h" ++#include "btree_locking.h" ++#include "checksum.h" ++#include "extents.h" ++#include "io_write_types.h" ++ ++struct bch_fs; ++struct btree_write; ++struct btree; ++struct btree_iter; ++struct btree_node_read_all; ++ ++static inline void set_btree_node_dirty_acct(struct bch_fs *c, struct btree *b) ++{ ++ if (!test_and_set_bit(BTREE_NODE_dirty, &b->flags)) ++ atomic_inc(&c->btree_cache.dirty); ++} ++ ++static inline void clear_btree_node_dirty_acct(struct bch_fs *c, struct btree *b) ++{ ++ if (test_and_clear_bit(BTREE_NODE_dirty, &b->flags)) ++ atomic_dec(&c->btree_cache.dirty); ++} ++ ++static inline unsigned btree_ptr_sectors_written(struct bkey_i *k) ++{ ++ return k->k.type == KEY_TYPE_btree_ptr_v2 ++ ? le16_to_cpu(bkey_i_to_btree_ptr_v2(k)->v.sectors_written) ++ : 0; ++} ++ ++struct btree_read_bio { ++ struct bch_fs *c; ++ struct btree *b; ++ struct btree_node_read_all *ra; ++ u64 start_time; ++ unsigned have_ioref:1; ++ unsigned idx:7; ++ struct extent_ptr_decoded pick; ++ struct work_struct work; ++ struct bio bio; ++}; ++ ++struct btree_write_bio { ++ struct work_struct work; ++ __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); ++ void *data; ++ unsigned data_bytes; ++ unsigned sector_offset; ++ struct bch_write_bio wbio; ++}; ++ ++void bch2_btree_node_io_unlock(struct btree *); ++void bch2_btree_node_io_lock(struct btree *); ++void __bch2_btree_node_wait_on_read(struct btree *); ++void __bch2_btree_node_wait_on_write(struct btree *); ++void bch2_btree_node_wait_on_read(struct btree *); ++void bch2_btree_node_wait_on_write(struct btree *); ++ ++enum compact_mode { ++ COMPACT_LAZY, ++ COMPACT_ALL, ++}; ++ ++bool bch2_compact_whiteouts(struct bch_fs *, struct btree *, ++ enum compact_mode); ++ ++static inline bool should_compact_bset_lazy(struct btree *b, ++ struct bset_tree *t) ++{ ++ unsigned total_u64s = bset_u64s(t); ++ unsigned dead_u64s = bset_dead_u64s(b, t); ++ ++ return dead_u64s > 64 && dead_u64s * 3 > total_u64s; ++} ++ ++static inline bool bch2_maybe_compact_whiteouts(struct bch_fs *c, struct btree *b) ++{ ++ struct bset_tree *t; ++ ++ for_each_bset(b, t) ++ if (should_compact_bset_lazy(b, t)) ++ return bch2_compact_whiteouts(c, b, COMPACT_LAZY); ++ ++ return false; ++} ++ ++static inline struct nonce btree_nonce(struct bset *i, unsigned offset) ++{ ++ return (struct nonce) {{ ++ [0] = cpu_to_le32(offset), ++ [1] = ((__le32 *) &i->seq)[0], ++ [2] = ((__le32 *) &i->seq)[1], ++ [3] = ((__le32 *) &i->journal_seq)[0]^BCH_NONCE_BTREE, ++ }}; ++} ++ ++static inline int bset_encrypt(struct bch_fs *c, struct bset *i, unsigned offset) ++{ ++ struct nonce nonce = btree_nonce(i, offset); ++ int ret; ++ ++ if (!offset) { ++ struct btree_node *bn = container_of(i, struct btree_node, keys); ++ unsigned bytes = (void *) &bn->keys - (void *) &bn->flags; ++ ++ ret = bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, ++ &bn->flags, bytes); ++ if (ret) ++ return ret; ++ ++ nonce = nonce_add(nonce, round_up(bytes, CHACHA_BLOCK_SIZE)); ++ } ++ ++ return bch2_encrypt(c, BSET_CSUM_TYPE(i), nonce, i->_data, ++ vstruct_end(i) - (void *) i->_data); ++} ++ ++void bch2_btree_sort_into(struct bch_fs *, struct btree *, struct btree *); ++ ++void bch2_btree_node_drop_keys_outside_node(struct btree *); ++ ++void bch2_btree_build_aux_trees(struct btree *); ++void bch2_btree_init_next(struct btree_trans *, struct btree *); ++ ++int bch2_btree_node_read_done(struct bch_fs *, struct bch_dev *, ++ struct btree *, bool, bool *); ++void bch2_btree_node_read(struct bch_fs *, struct btree *, bool); ++int bch2_btree_root_read(struct bch_fs *, enum btree_id, ++ const struct bkey_i *, unsigned); ++ ++void bch2_btree_complete_write(struct bch_fs *, struct btree *, ++ struct btree_write *); ++ ++bool bch2_btree_post_write_cleanup(struct bch_fs *, struct btree *); ++ ++enum btree_write_flags { ++ __BTREE_WRITE_ONLY_IF_NEED = BTREE_WRITE_TYPE_BITS, ++ __BTREE_WRITE_ALREADY_STARTED, ++}; ++#define BTREE_WRITE_ONLY_IF_NEED BIT(__BTREE_WRITE_ONLY_IF_NEED) ++#define BTREE_WRITE_ALREADY_STARTED BIT(__BTREE_WRITE_ALREADY_STARTED) ++ ++void __bch2_btree_node_write(struct bch_fs *, struct btree *, unsigned); ++void bch2_btree_node_write(struct bch_fs *, struct btree *, ++ enum six_lock_type, unsigned); ++ ++static inline void btree_node_write_if_need(struct bch_fs *c, struct btree *b, ++ enum six_lock_type lock_held) ++{ ++ bch2_btree_node_write(c, b, lock_held, BTREE_WRITE_ONLY_IF_NEED); ++} ++ ++bool bch2_btree_flush_all_reads(struct bch_fs *); ++bool bch2_btree_flush_all_writes(struct bch_fs *); ++ ++static inline void compat_bformat(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, struct bkey_format *f) ++{ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id == BTREE_ID_inodes) { ++ swap(f->bits_per_field[BKEY_FIELD_INODE], ++ f->bits_per_field[BKEY_FIELD_OFFSET]); ++ swap(f->field_offset[BKEY_FIELD_INODE], ++ f->field_offset[BKEY_FIELD_OFFSET]); ++ } ++ ++ if (version < bcachefs_metadata_version_snapshot && ++ (level || btree_type_has_snapshots(btree_id))) { ++ u64 max_packed = ++ ~(~0ULL << f->bits_per_field[BKEY_FIELD_SNAPSHOT]); ++ ++ f->field_offset[BKEY_FIELD_SNAPSHOT] = write ++ ? 0 ++ : cpu_to_le64(U32_MAX - max_packed); ++ } ++} ++ ++static inline void compat_bpos(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, struct bpos *p) ++{ ++ if (big_endian != CPU_BIG_ENDIAN) ++ bch2_bpos_swab(p); ++ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id == BTREE_ID_inodes) ++ swap(p->inode, p->offset); ++} ++ ++static inline void compat_btree_node(unsigned level, enum btree_id btree_id, ++ unsigned version, unsigned big_endian, ++ int write, ++ struct btree_node *bn) ++{ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id_is_extents(btree_id) && ++ !bpos_eq(bn->min_key, POS_MIN) && ++ write) ++ bn->min_key = bpos_nosnap_predecessor(bn->min_key); ++ ++ if (version < bcachefs_metadata_version_snapshot && ++ write) ++ bn->max_key.snapshot = 0; ++ ++ compat_bpos(level, btree_id, version, big_endian, write, &bn->min_key); ++ compat_bpos(level, btree_id, version, big_endian, write, &bn->max_key); ++ ++ if (version < bcachefs_metadata_version_snapshot && ++ !write) ++ bn->max_key.snapshot = U32_MAX; ++ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id_is_extents(btree_id) && ++ !bpos_eq(bn->min_key, POS_MIN) && ++ !write) ++ bn->min_key = bpos_nosnap_successor(bn->min_key); ++} ++ ++void bch2_btree_write_stats_to_text(struct printbuf *, struct bch_fs *); ++ ++#endif /* _BCACHEFS_BTREE_IO_H */ +diff --git a/fs/bcachefs/btree_iter.c b/fs/bcachefs/btree_iter.c +new file mode 100644 +index 000000000000..1d79514754d7 +--- /dev/null ++++ b/fs/bcachefs/btree_iter.c +@@ -0,0 +1,3215 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "bkey_buf.h" ++#include "btree_cache.h" ++#include "btree_iter.h" ++#include "btree_journal_iter.h" ++#include "btree_key_cache.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++#include "debug.h" ++#include "error.h" ++#include "extents.h" ++#include "journal.h" ++#include "replicas.h" ++#include "snapshot.h" ++#include "trace.h" ++ ++#include ++#include ++ ++static inline void btree_path_list_remove(struct btree_trans *, struct btree_path *); ++static inline void btree_path_list_add(struct btree_trans *, struct btree_path *, ++ struct btree_path *); ++ ++static inline unsigned long btree_iter_ip_allocated(struct btree_iter *iter) ++{ ++#ifdef TRACK_PATH_ALLOCATED ++ return iter->ip_allocated; ++#else ++ return 0; ++#endif ++} ++ ++static struct btree_path *btree_path_alloc(struct btree_trans *, struct btree_path *); ++ ++static inline int __btree_path_cmp(const struct btree_path *l, ++ enum btree_id r_btree_id, ++ bool r_cached, ++ struct bpos r_pos, ++ unsigned r_level) ++{ ++ /* ++ * Must match lock ordering as defined by __bch2_btree_node_lock: ++ */ ++ return cmp_int(l->btree_id, r_btree_id) ?: ++ cmp_int((int) l->cached, (int) r_cached) ?: ++ bpos_cmp(l->pos, r_pos) ?: ++ -cmp_int(l->level, r_level); ++} ++ ++static inline int btree_path_cmp(const struct btree_path *l, ++ const struct btree_path *r) ++{ ++ return __btree_path_cmp(l, r->btree_id, r->cached, r->pos, r->level); ++} ++ ++static inline struct bpos bkey_successor(struct btree_iter *iter, struct bpos p) ++{ ++ /* Are we iterating over keys in all snapshots? */ ++ if (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) { ++ p = bpos_successor(p); ++ } else { ++ p = bpos_nosnap_successor(p); ++ p.snapshot = iter->snapshot; ++ } ++ ++ return p; ++} ++ ++static inline struct bpos bkey_predecessor(struct btree_iter *iter, struct bpos p) ++{ ++ /* Are we iterating over keys in all snapshots? */ ++ if (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) { ++ p = bpos_predecessor(p); ++ } else { ++ p = bpos_nosnap_predecessor(p); ++ p.snapshot = iter->snapshot; ++ } ++ ++ return p; ++} ++ ++static inline struct bpos btree_iter_search_key(struct btree_iter *iter) ++{ ++ struct bpos pos = iter->pos; ++ ++ if ((iter->flags & BTREE_ITER_IS_EXTENTS) && ++ !bkey_eq(pos, POS_MAX)) ++ pos = bkey_successor(iter, pos); ++ return pos; ++} ++ ++static inline bool btree_path_pos_before_node(struct btree_path *path, ++ struct btree *b) ++{ ++ return bpos_lt(path->pos, b->data->min_key); ++} ++ ++static inline bool btree_path_pos_after_node(struct btree_path *path, ++ struct btree *b) ++{ ++ return bpos_gt(path->pos, b->key.k.p); ++} ++ ++static inline bool btree_path_pos_in_node(struct btree_path *path, ++ struct btree *b) ++{ ++ return path->btree_id == b->c.btree_id && ++ !btree_path_pos_before_node(path, b) && ++ !btree_path_pos_after_node(path, b); ++} ++ ++/* Btree iterator: */ ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++static void bch2_btree_path_verify_cached(struct btree_trans *trans, ++ struct btree_path *path) ++{ ++ struct bkey_cached *ck; ++ bool locked = btree_node_locked(path, 0); ++ ++ if (!bch2_btree_node_relock(trans, path, 0)) ++ return; ++ ++ ck = (void *) path->l[0].b; ++ BUG_ON(ck->key.btree_id != path->btree_id || ++ !bkey_eq(ck->key.pos, path->pos)); ++ ++ if (!locked) ++ btree_node_unlock(trans, path, 0); ++} ++ ++static void bch2_btree_path_verify_level(struct btree_trans *trans, ++ struct btree_path *path, unsigned level) ++{ ++ struct btree_path_level *l; ++ struct btree_node_iter tmp; ++ bool locked; ++ struct bkey_packed *p, *k; ++ struct printbuf buf1 = PRINTBUF; ++ struct printbuf buf2 = PRINTBUF; ++ struct printbuf buf3 = PRINTBUF; ++ const char *msg; ++ ++ if (!bch2_debug_check_iterators) ++ return; ++ ++ l = &path->l[level]; ++ tmp = l->iter; ++ locked = btree_node_locked(path, level); ++ ++ if (path->cached) { ++ if (!level) ++ bch2_btree_path_verify_cached(trans, path); ++ return; ++ } ++ ++ if (!btree_path_node(path, level)) ++ return; ++ ++ if (!bch2_btree_node_relock_notrace(trans, path, level)) ++ return; ++ ++ BUG_ON(!btree_path_pos_in_node(path, l->b)); ++ ++ bch2_btree_node_iter_verify(&l->iter, l->b); ++ ++ /* ++ * For interior nodes, the iterator will have skipped past deleted keys: ++ */ ++ p = level ++ ? bch2_btree_node_iter_prev(&tmp, l->b) ++ : bch2_btree_node_iter_prev_all(&tmp, l->b); ++ k = bch2_btree_node_iter_peek_all(&l->iter, l->b); ++ ++ if (p && bkey_iter_pos_cmp(l->b, p, &path->pos) >= 0) { ++ msg = "before"; ++ goto err; ++ } ++ ++ if (k && bkey_iter_pos_cmp(l->b, k, &path->pos) < 0) { ++ msg = "after"; ++ goto err; ++ } ++ ++ if (!locked) ++ btree_node_unlock(trans, path, level); ++ return; ++err: ++ bch2_bpos_to_text(&buf1, path->pos); ++ ++ if (p) { ++ struct bkey uk = bkey_unpack_key(l->b, p); ++ ++ bch2_bkey_to_text(&buf2, &uk); ++ } else { ++ prt_printf(&buf2, "(none)"); ++ } ++ ++ if (k) { ++ struct bkey uk = bkey_unpack_key(l->b, k); ++ ++ bch2_bkey_to_text(&buf3, &uk); ++ } else { ++ prt_printf(&buf3, "(none)"); ++ } ++ ++ panic("path should be %s key at level %u:\n" ++ "path pos %s\n" ++ "prev key %s\n" ++ "cur key %s\n", ++ msg, level, buf1.buf, buf2.buf, buf3.buf); ++} ++ ++static void bch2_btree_path_verify(struct btree_trans *trans, ++ struct btree_path *path) ++{ ++ struct bch_fs *c = trans->c; ++ unsigned i; ++ ++ EBUG_ON(path->btree_id >= BTREE_ID_NR); ++ ++ for (i = 0; i < (!path->cached ? BTREE_MAX_DEPTH : 1); i++) { ++ if (!path->l[i].b) { ++ BUG_ON(!path->cached && ++ bch2_btree_id_root(c, path->btree_id)->b->c.level > i); ++ break; ++ } ++ ++ bch2_btree_path_verify_level(trans, path, i); ++ } ++ ++ bch2_btree_path_verify_locks(path); ++} ++ ++void bch2_trans_verify_paths(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ bch2_btree_path_verify(trans, path); ++} ++ ++static void bch2_btree_iter_verify(struct btree_iter *iter) ++{ ++ struct btree_trans *trans = iter->trans; ++ ++ BUG_ON(iter->btree_id >= BTREE_ID_NR); ++ ++ BUG_ON(!!(iter->flags & BTREE_ITER_CACHED) != iter->path->cached); ++ ++ BUG_ON((iter->flags & BTREE_ITER_IS_EXTENTS) && ++ (iter->flags & BTREE_ITER_ALL_SNAPSHOTS)); ++ ++ BUG_ON(!(iter->flags & __BTREE_ITER_ALL_SNAPSHOTS) && ++ (iter->flags & BTREE_ITER_ALL_SNAPSHOTS) && ++ !btree_type_has_snapshots(iter->btree_id)); ++ ++ if (iter->update_path) ++ bch2_btree_path_verify(trans, iter->update_path); ++ bch2_btree_path_verify(trans, iter->path); ++} ++ ++static void bch2_btree_iter_verify_entry_exit(struct btree_iter *iter) ++{ ++ BUG_ON((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && ++ !iter->pos.snapshot); ++ ++ BUG_ON(!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS) && ++ iter->pos.snapshot != iter->snapshot); ++ ++ BUG_ON(bkey_lt(iter->pos, bkey_start_pos(&iter->k)) || ++ bkey_gt(iter->pos, iter->k.p)); ++} ++ ++static int bch2_btree_iter_verify_ret(struct btree_iter *iter, struct bkey_s_c k) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct btree_iter copy; ++ struct bkey_s_c prev; ++ int ret = 0; ++ ++ if (!bch2_debug_check_iterators) ++ return 0; ++ ++ if (!(iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) ++ return 0; ++ ++ if (bkey_err(k) || !k.k) ++ return 0; ++ ++ BUG_ON(!bch2_snapshot_is_ancestor(trans->c, ++ iter->snapshot, ++ k.k->p.snapshot)); ++ ++ bch2_trans_iter_init(trans, ©, iter->btree_id, iter->pos, ++ BTREE_ITER_NOPRESERVE| ++ BTREE_ITER_ALL_SNAPSHOTS); ++ prev = bch2_btree_iter_prev(©); ++ if (!prev.k) ++ goto out; ++ ++ ret = bkey_err(prev); ++ if (ret) ++ goto out; ++ ++ if (bkey_eq(prev.k->p, k.k->p) && ++ bch2_snapshot_is_ancestor(trans->c, iter->snapshot, ++ prev.k->p.snapshot) > 0) { ++ struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; ++ ++ bch2_bkey_to_text(&buf1, k.k); ++ bch2_bkey_to_text(&buf2, prev.k); ++ ++ panic("iter snap %u\n" ++ "k %s\n" ++ "prev %s\n", ++ iter->snapshot, ++ buf1.buf, buf2.buf); ++ } ++out: ++ bch2_trans_iter_exit(trans, ©); ++ return ret; ++} ++ ++void bch2_assert_pos_locked(struct btree_trans *trans, enum btree_id id, ++ struct bpos pos, bool key_cache) ++{ ++ struct btree_path *path; ++ unsigned idx; ++ struct printbuf buf = PRINTBUF; ++ ++ btree_trans_sort_paths(trans); ++ ++ trans_for_each_path_inorder(trans, path, idx) { ++ int cmp = cmp_int(path->btree_id, id) ?: ++ cmp_int(path->cached, key_cache); ++ ++ if (cmp > 0) ++ break; ++ if (cmp < 0) ++ continue; ++ ++ if (!btree_node_locked(path, 0) || ++ !path->should_be_locked) ++ continue; ++ ++ if (!key_cache) { ++ if (bkey_ge(pos, path->l[0].b->data->min_key) && ++ bkey_le(pos, path->l[0].b->key.k.p)) ++ return; ++ } else { ++ if (bkey_eq(pos, path->pos)) ++ return; ++ } ++ } ++ ++ bch2_dump_trans_paths_updates(trans); ++ bch2_bpos_to_text(&buf, pos); ++ ++ panic("not locked: %s %s%s\n", ++ bch2_btree_ids[id], buf.buf, ++ key_cache ? " cached" : ""); ++} ++ ++#else ++ ++static inline void bch2_btree_path_verify_level(struct btree_trans *trans, ++ struct btree_path *path, unsigned l) {} ++static inline void bch2_btree_path_verify(struct btree_trans *trans, ++ struct btree_path *path) {} ++static inline void bch2_btree_iter_verify(struct btree_iter *iter) {} ++static inline void bch2_btree_iter_verify_entry_exit(struct btree_iter *iter) {} ++static inline int bch2_btree_iter_verify_ret(struct btree_iter *iter, struct bkey_s_c k) { return 0; } ++ ++#endif ++ ++/* Btree path: fixups after btree updates */ ++ ++static void btree_node_iter_set_set_pos(struct btree_node_iter *iter, ++ struct btree *b, ++ struct bset_tree *t, ++ struct bkey_packed *k) ++{ ++ struct btree_node_iter_set *set; ++ ++ btree_node_iter_for_each(iter, set) ++ if (set->end == t->end_offset) { ++ set->k = __btree_node_key_to_offset(b, k); ++ bch2_btree_node_iter_sort(iter, b); ++ return; ++ } ++ ++ bch2_btree_node_iter_push(iter, b, k, btree_bkey_last(b, t)); ++} ++ ++static void __bch2_btree_path_fix_key_modified(struct btree_path *path, ++ struct btree *b, ++ struct bkey_packed *where) ++{ ++ struct btree_path_level *l = &path->l[b->c.level]; ++ ++ if (where != bch2_btree_node_iter_peek_all(&l->iter, l->b)) ++ return; ++ ++ if (bkey_iter_pos_cmp(l->b, where, &path->pos) < 0) ++ bch2_btree_node_iter_advance(&l->iter, l->b); ++} ++ ++void bch2_btree_path_fix_key_modified(struct btree_trans *trans, ++ struct btree *b, ++ struct bkey_packed *where) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path_with_node(trans, b, path) { ++ __bch2_btree_path_fix_key_modified(path, b, where); ++ bch2_btree_path_verify_level(trans, path, b->c.level); ++ } ++} ++ ++static void __bch2_btree_node_iter_fix(struct btree_path *path, ++ struct btree *b, ++ struct btree_node_iter *node_iter, ++ struct bset_tree *t, ++ struct bkey_packed *where, ++ unsigned clobber_u64s, ++ unsigned new_u64s) ++{ ++ const struct bkey_packed *end = btree_bkey_last(b, t); ++ struct btree_node_iter_set *set; ++ unsigned offset = __btree_node_key_to_offset(b, where); ++ int shift = new_u64s - clobber_u64s; ++ unsigned old_end = t->end_offset - shift; ++ unsigned orig_iter_pos = node_iter->data[0].k; ++ bool iter_current_key_modified = ++ orig_iter_pos >= offset && ++ orig_iter_pos <= offset + clobber_u64s; ++ ++ btree_node_iter_for_each(node_iter, set) ++ if (set->end == old_end) ++ goto found; ++ ++ /* didn't find the bset in the iterator - might have to readd it: */ ++ if (new_u64s && ++ bkey_iter_pos_cmp(b, where, &path->pos) >= 0) { ++ bch2_btree_node_iter_push(node_iter, b, where, end); ++ goto fixup_done; ++ } else { ++ /* Iterator is after key that changed */ ++ return; ++ } ++found: ++ set->end = t->end_offset; ++ ++ /* Iterator hasn't gotten to the key that changed yet: */ ++ if (set->k < offset) ++ return; ++ ++ if (new_u64s && ++ bkey_iter_pos_cmp(b, where, &path->pos) >= 0) { ++ set->k = offset; ++ } else if (set->k < offset + clobber_u64s) { ++ set->k = offset + new_u64s; ++ if (set->k == set->end) ++ bch2_btree_node_iter_set_drop(node_iter, set); ++ } else { ++ /* Iterator is after key that changed */ ++ set->k = (int) set->k + shift; ++ return; ++ } ++ ++ bch2_btree_node_iter_sort(node_iter, b); ++fixup_done: ++ if (node_iter->data[0].k != orig_iter_pos) ++ iter_current_key_modified = true; ++ ++ /* ++ * When a new key is added, and the node iterator now points to that ++ * key, the iterator might have skipped past deleted keys that should ++ * come after the key the iterator now points to. We have to rewind to ++ * before those deleted keys - otherwise ++ * bch2_btree_node_iter_prev_all() breaks: ++ */ ++ if (!bch2_btree_node_iter_end(node_iter) && ++ iter_current_key_modified && ++ b->c.level) { ++ struct bkey_packed *k, *k2, *p; ++ ++ k = bch2_btree_node_iter_peek_all(node_iter, b); ++ ++ for_each_bset(b, t) { ++ bool set_pos = false; ++ ++ if (node_iter->data[0].end == t->end_offset) ++ continue; ++ ++ k2 = bch2_btree_node_iter_bset_pos(node_iter, b, t); ++ ++ while ((p = bch2_bkey_prev_all(b, t, k2)) && ++ bkey_iter_cmp(b, k, p) < 0) { ++ k2 = p; ++ set_pos = true; ++ } ++ ++ if (set_pos) ++ btree_node_iter_set_set_pos(node_iter, ++ b, t, k2); ++ } ++ } ++} ++ ++void bch2_btree_node_iter_fix(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b, ++ struct btree_node_iter *node_iter, ++ struct bkey_packed *where, ++ unsigned clobber_u64s, ++ unsigned new_u64s) ++{ ++ struct bset_tree *t = bch2_bkey_to_bset_inlined(b, where); ++ struct btree_path *linked; ++ ++ if (node_iter != &path->l[b->c.level].iter) { ++ __bch2_btree_node_iter_fix(path, b, node_iter, t, ++ where, clobber_u64s, new_u64s); ++ ++ if (bch2_debug_check_iterators) ++ bch2_btree_node_iter_verify(node_iter, b); ++ } ++ ++ trans_for_each_path_with_node(trans, b, linked) { ++ __bch2_btree_node_iter_fix(linked, b, ++ &linked->l[b->c.level].iter, t, ++ where, clobber_u64s, new_u64s); ++ bch2_btree_path_verify_level(trans, linked, b->c.level); ++ } ++} ++ ++/* Btree path level: pointer to a particular btree node and node iter */ ++ ++static inline struct bkey_s_c __btree_iter_unpack(struct bch_fs *c, ++ struct btree_path_level *l, ++ struct bkey *u, ++ struct bkey_packed *k) ++{ ++ if (unlikely(!k)) { ++ /* ++ * signal to bch2_btree_iter_peek_slot() that we're currently at ++ * a hole ++ */ ++ u->type = KEY_TYPE_deleted; ++ return bkey_s_c_null; ++ } ++ ++ return bkey_disassemble(l->b, k, u); ++} ++ ++static inline struct bkey_s_c btree_path_level_peek_all(struct bch_fs *c, ++ struct btree_path_level *l, ++ struct bkey *u) ++{ ++ return __btree_iter_unpack(c, l, u, ++ bch2_btree_node_iter_peek_all(&l->iter, l->b)); ++} ++ ++static inline struct bkey_s_c btree_path_level_peek(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree_path_level *l, ++ struct bkey *u) ++{ ++ struct bkey_s_c k = __btree_iter_unpack(trans->c, l, u, ++ bch2_btree_node_iter_peek(&l->iter, l->b)); ++ ++ path->pos = k.k ? k.k->p : l->b->key.k.p; ++ trans->paths_sorted = false; ++ bch2_btree_path_verify_level(trans, path, l - path->l); ++ return k; ++} ++ ++static inline struct bkey_s_c btree_path_level_prev(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree_path_level *l, ++ struct bkey *u) ++{ ++ struct bkey_s_c k = __btree_iter_unpack(trans->c, l, u, ++ bch2_btree_node_iter_prev(&l->iter, l->b)); ++ ++ path->pos = k.k ? k.k->p : l->b->data->min_key; ++ trans->paths_sorted = false; ++ bch2_btree_path_verify_level(trans, path, l - path->l); ++ return k; ++} ++ ++static inline bool btree_path_advance_to_pos(struct btree_path *path, ++ struct btree_path_level *l, ++ int max_advance) ++{ ++ struct bkey_packed *k; ++ int nr_advanced = 0; ++ ++ while ((k = bch2_btree_node_iter_peek_all(&l->iter, l->b)) && ++ bkey_iter_pos_cmp(l->b, k, &path->pos) < 0) { ++ if (max_advance > 0 && nr_advanced >= max_advance) ++ return false; ++ ++ bch2_btree_node_iter_advance(&l->iter, l->b); ++ nr_advanced++; ++ } ++ ++ return true; ++} ++ ++static inline void __btree_path_level_init(struct btree_path *path, ++ unsigned level) ++{ ++ struct btree_path_level *l = &path->l[level]; ++ ++ bch2_btree_node_iter_init(&l->iter, l->b, &path->pos); ++ ++ /* ++ * Iterators to interior nodes should always be pointed at the first non ++ * whiteout: ++ */ ++ if (level) ++ bch2_btree_node_iter_peek(&l->iter, l->b); ++} ++ ++void bch2_btree_path_level_init(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b) ++{ ++ BUG_ON(path->cached); ++ ++ EBUG_ON(!btree_path_pos_in_node(path, b)); ++ ++ path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); ++ path->l[b->c.level].b = b; ++ __btree_path_level_init(path, b->c.level); ++} ++ ++/* Btree path: fixups after btree node updates: */ ++ ++static void bch2_trans_revalidate_updates_in_node(struct btree_trans *trans, struct btree *b) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i; ++ ++ trans_for_each_update(trans, i) ++ if (!i->cached && ++ i->level == b->c.level && ++ i->btree_id == b->c.btree_id && ++ bpos_cmp(i->k->k.p, b->data->min_key) >= 0 && ++ bpos_cmp(i->k->k.p, b->data->max_key) <= 0) { ++ i->old_v = bch2_btree_path_peek_slot(i->path, &i->old_k).v; ++ ++ if (unlikely(trans->journal_replay_not_finished)) { ++ struct bkey_i *j_k = ++ bch2_journal_keys_peek_slot(c, i->btree_id, i->level, ++ i->k->k.p); ++ ++ if (j_k) { ++ i->old_k = j_k->k; ++ i->old_v = &j_k->v; ++ } ++ } ++ } ++} ++ ++/* ++ * A btree node is being replaced - update the iterator to point to the new ++ * node: ++ */ ++void bch2_trans_node_add(struct btree_trans *trans, struct btree *b) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ if (path->uptodate == BTREE_ITER_UPTODATE && ++ !path->cached && ++ btree_path_pos_in_node(path, b)) { ++ enum btree_node_locked_type t = ++ btree_lock_want(path, b->c.level); ++ ++ if (t != BTREE_NODE_UNLOCKED) { ++ btree_node_unlock(trans, path, b->c.level); ++ six_lock_increment(&b->c.lock, (enum six_lock_type) t); ++ mark_btree_node_locked(trans, path, b->c.level, t); ++ } ++ ++ bch2_btree_path_level_init(trans, path, b); ++ } ++ ++ bch2_trans_revalidate_updates_in_node(trans, b); ++} ++ ++/* ++ * A btree node has been modified in such a way as to invalidate iterators - fix ++ * them: ++ */ ++void bch2_trans_node_reinit_iter(struct btree_trans *trans, struct btree *b) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path_with_node(trans, b, path) ++ __btree_path_level_init(path, b->c.level); ++ ++ bch2_trans_revalidate_updates_in_node(trans, b); ++} ++ ++/* Btree path: traverse, set_pos: */ ++ ++static inline int btree_path_lock_root(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned depth_want, ++ unsigned long trace_ip) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *b, **rootp = &bch2_btree_id_root(c, path->btree_id)->b; ++ enum six_lock_type lock_type; ++ unsigned i; ++ int ret; ++ ++ EBUG_ON(path->nodes_locked); ++ ++ while (1) { ++ b = READ_ONCE(*rootp); ++ path->level = READ_ONCE(b->c.level); ++ ++ if (unlikely(path->level < depth_want)) { ++ /* ++ * the root is at a lower depth than the depth we want: ++ * got to the end of the btree, or we're walking nodes ++ * greater than some depth and there are no nodes >= ++ * that depth ++ */ ++ path->level = depth_want; ++ for (i = path->level; i < BTREE_MAX_DEPTH; i++) ++ path->l[i].b = NULL; ++ return 1; ++ } ++ ++ lock_type = __btree_lock_want(path, path->level); ++ ret = btree_node_lock(trans, path, &b->c, ++ path->level, lock_type, trace_ip); ++ if (unlikely(ret)) { ++ if (bch2_err_matches(ret, BCH_ERR_lock_fail_root_changed)) ++ continue; ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ return ret; ++ BUG(); ++ } ++ ++ if (likely(b == READ_ONCE(*rootp) && ++ b->c.level == path->level && ++ !race_fault())) { ++ for (i = 0; i < path->level; i++) ++ path->l[i].b = ERR_PTR(-BCH_ERR_no_btree_node_lock_root); ++ path->l[path->level].b = b; ++ for (i = path->level + 1; i < BTREE_MAX_DEPTH; i++) ++ path->l[i].b = NULL; ++ ++ mark_btree_node_locked(trans, path, path->level, ++ (enum btree_node_locked_type) lock_type); ++ bch2_btree_path_level_init(trans, path, b); ++ return 0; ++ } ++ ++ six_unlock_type(&b->c.lock, lock_type); ++ } ++} ++ ++noinline ++static int btree_path_prefetch(struct btree_trans *trans, struct btree_path *path) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_path_level *l = path_l(path); ++ struct btree_node_iter node_iter = l->iter; ++ struct bkey_packed *k; ++ struct bkey_buf tmp; ++ unsigned nr = test_bit(BCH_FS_STARTED, &c->flags) ++ ? (path->level > 1 ? 0 : 2) ++ : (path->level > 1 ? 1 : 16); ++ bool was_locked = btree_node_locked(path, path->level); ++ int ret = 0; ++ ++ bch2_bkey_buf_init(&tmp); ++ ++ while (nr-- && !ret) { ++ if (!bch2_btree_node_relock(trans, path, path->level)) ++ break; ++ ++ bch2_btree_node_iter_advance(&node_iter, l->b); ++ k = bch2_btree_node_iter_peek(&node_iter, l->b); ++ if (!k) ++ break; ++ ++ bch2_bkey_buf_unpack(&tmp, c, l->b, k); ++ ret = bch2_btree_node_prefetch(trans, path, tmp.k, path->btree_id, ++ path->level - 1); ++ } ++ ++ if (!was_locked) ++ btree_node_unlock(trans, path, path->level); ++ ++ bch2_bkey_buf_exit(&tmp, c); ++ return ret; ++} ++ ++static int btree_path_prefetch_j(struct btree_trans *trans, struct btree_path *path, ++ struct btree_and_journal_iter *jiter) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k; ++ struct bkey_buf tmp; ++ unsigned nr = test_bit(BCH_FS_STARTED, &c->flags) ++ ? (path->level > 1 ? 0 : 2) ++ : (path->level > 1 ? 1 : 16); ++ bool was_locked = btree_node_locked(path, path->level); ++ int ret = 0; ++ ++ bch2_bkey_buf_init(&tmp); ++ ++ while (nr-- && !ret) { ++ if (!bch2_btree_node_relock(trans, path, path->level)) ++ break; ++ ++ bch2_btree_and_journal_iter_advance(jiter); ++ k = bch2_btree_and_journal_iter_peek(jiter); ++ if (!k.k) ++ break; ++ ++ bch2_bkey_buf_reassemble(&tmp, c, k); ++ ret = bch2_btree_node_prefetch(trans, path, tmp.k, path->btree_id, ++ path->level - 1); ++ } ++ ++ if (!was_locked) ++ btree_node_unlock(trans, path, path->level); ++ ++ bch2_bkey_buf_exit(&tmp, c); ++ return ret; ++} ++ ++static noinline void btree_node_mem_ptr_set(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned plevel, struct btree *b) ++{ ++ struct btree_path_level *l = &path->l[plevel]; ++ bool locked = btree_node_locked(path, plevel); ++ struct bkey_packed *k; ++ struct bch_btree_ptr_v2 *bp; ++ ++ if (!bch2_btree_node_relock(trans, path, plevel)) ++ return; ++ ++ k = bch2_btree_node_iter_peek_all(&l->iter, l->b); ++ BUG_ON(k->type != KEY_TYPE_btree_ptr_v2); ++ ++ bp = (void *) bkeyp_val(&l->b->format, k); ++ bp->mem_ptr = (unsigned long)b; ++ ++ if (!locked) ++ btree_node_unlock(trans, path, plevel); ++} ++ ++static noinline int btree_node_iter_and_journal_peek(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned flags, ++ struct bkey_buf *out) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_path_level *l = path_l(path); ++ struct btree_and_journal_iter jiter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ __bch2_btree_and_journal_iter_init_node_iter(&jiter, c, l->b, l->iter, path->pos); ++ ++ k = bch2_btree_and_journal_iter_peek(&jiter); ++ ++ bch2_bkey_buf_reassemble(out, c, k); ++ ++ if (flags & BTREE_ITER_PREFETCH) ++ ret = btree_path_prefetch_j(trans, path, &jiter); ++ ++ bch2_btree_and_journal_iter_exit(&jiter); ++ return ret; ++} ++ ++static __always_inline int btree_path_down(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned flags, ++ unsigned long trace_ip) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_path_level *l = path_l(path); ++ struct btree *b; ++ unsigned level = path->level - 1; ++ enum six_lock_type lock_type = __btree_lock_want(path, level); ++ struct bkey_buf tmp; ++ int ret; ++ ++ EBUG_ON(!btree_node_locked(path, path->level)); ++ ++ bch2_bkey_buf_init(&tmp); ++ ++ if (unlikely(trans->journal_replay_not_finished)) { ++ ret = btree_node_iter_and_journal_peek(trans, path, flags, &tmp); ++ if (ret) ++ goto err; ++ } else { ++ bch2_bkey_buf_unpack(&tmp, c, l->b, ++ bch2_btree_node_iter_peek(&l->iter, l->b)); ++ ++ if (flags & BTREE_ITER_PREFETCH) { ++ ret = btree_path_prefetch(trans, path); ++ if (ret) ++ goto err; ++ } ++ } ++ ++ b = bch2_btree_node_get(trans, path, tmp.k, level, lock_type, trace_ip); ++ ret = PTR_ERR_OR_ZERO(b); ++ if (unlikely(ret)) ++ goto err; ++ ++ if (likely(!trans->journal_replay_not_finished && ++ tmp.k->k.type == KEY_TYPE_btree_ptr_v2) && ++ unlikely(b != btree_node_mem_ptr(tmp.k))) ++ btree_node_mem_ptr_set(trans, path, level + 1, b); ++ ++ if (btree_node_read_locked(path, level + 1)) ++ btree_node_unlock(trans, path, level + 1); ++ ++ mark_btree_node_locked(trans, path, level, ++ (enum btree_node_locked_type) lock_type); ++ path->level = level; ++ bch2_btree_path_level_init(trans, path, b); ++ ++ bch2_btree_path_verify_locks(path); ++err: ++ bch2_bkey_buf_exit(&tmp, c); ++ return ret; ++} ++ ++ ++static int bch2_btree_path_traverse_all(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_path *path; ++ unsigned long trace_ip = _RET_IP_; ++ int i, ret = 0; ++ ++ if (trans->in_traverse_all) ++ return -BCH_ERR_transaction_restart_in_traverse_all; ++ ++ trans->in_traverse_all = true; ++retry_all: ++ trans->restarted = 0; ++ trans->last_restarted_ip = 0; ++ ++ trans_for_each_path(trans, path) ++ path->should_be_locked = false; ++ ++ btree_trans_sort_paths(trans); ++ ++ bch2_trans_unlock(trans); ++ cond_resched(); ++ ++ if (unlikely(trans->memory_allocation_failure)) { ++ struct closure cl; ++ ++ closure_init_stack(&cl); ++ ++ do { ++ ret = bch2_btree_cache_cannibalize_lock(c, &cl); ++ closure_sync(&cl); ++ } while (ret); ++ } ++ ++ /* Now, redo traversals in correct order: */ ++ i = 0; ++ while (i < trans->nr_sorted) { ++ path = trans->paths + trans->sorted[i]; ++ ++ /* ++ * Traversing a path can cause another path to be added at about ++ * the same position: ++ */ ++ if (path->uptodate) { ++ __btree_path_get(path, false); ++ ret = bch2_btree_path_traverse_one(trans, path, 0, _THIS_IP_); ++ __btree_path_put(path, false); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || ++ bch2_err_matches(ret, ENOMEM)) ++ goto retry_all; ++ if (ret) ++ goto err; ++ } else { ++ i++; ++ } ++ } ++ ++ /* ++ * We used to assert that all paths had been traversed here ++ * (path->uptodate < BTREE_ITER_NEED_TRAVERSE); however, since ++ * path->should_be_locked is not set yet, we might have unlocked and ++ * then failed to relock a path - that's fine. ++ */ ++err: ++ bch2_btree_cache_cannibalize_unlock(c); ++ ++ trans->in_traverse_all = false; ++ ++ trace_and_count(c, trans_traverse_all, trans, trace_ip); ++ return ret; ++} ++ ++static inline bool btree_path_check_pos_in_node(struct btree_path *path, ++ unsigned l, int check_pos) ++{ ++ if (check_pos < 0 && btree_path_pos_before_node(path, path->l[l].b)) ++ return false; ++ if (check_pos > 0 && btree_path_pos_after_node(path, path->l[l].b)) ++ return false; ++ return true; ++} ++ ++static inline bool btree_path_good_node(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned l, int check_pos) ++{ ++ return is_btree_node(path, l) && ++ bch2_btree_node_relock(trans, path, l) && ++ btree_path_check_pos_in_node(path, l, check_pos); ++} ++ ++static void btree_path_set_level_down(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned new_level) ++{ ++ unsigned l; ++ ++ path->level = new_level; ++ ++ for (l = path->level + 1; l < BTREE_MAX_DEPTH; l++) ++ if (btree_lock_want(path, l) == BTREE_NODE_UNLOCKED) ++ btree_node_unlock(trans, path, l); ++ ++ btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); ++ bch2_btree_path_verify(trans, path); ++} ++ ++static noinline unsigned __btree_path_up_until_good_node(struct btree_trans *trans, ++ struct btree_path *path, ++ int check_pos) ++{ ++ unsigned i, l = path->level; ++again: ++ while (btree_path_node(path, l) && ++ !btree_path_good_node(trans, path, l, check_pos)) ++ __btree_path_set_level_up(trans, path, l++); ++ ++ /* If we need intent locks, take them too: */ ++ for (i = l + 1; ++ i < path->locks_want && btree_path_node(path, i); ++ i++) ++ if (!bch2_btree_node_relock(trans, path, i)) { ++ while (l <= i) ++ __btree_path_set_level_up(trans, path, l++); ++ goto again; ++ } ++ ++ return l; ++} ++ ++static inline unsigned btree_path_up_until_good_node(struct btree_trans *trans, ++ struct btree_path *path, ++ int check_pos) ++{ ++ return likely(btree_node_locked(path, path->level) && ++ btree_path_check_pos_in_node(path, path->level, check_pos)) ++ ? path->level ++ : __btree_path_up_until_good_node(trans, path, check_pos); ++} ++ ++/* ++ * This is the main state machine for walking down the btree - walks down to a ++ * specified depth ++ * ++ * Returns 0 on success, -EIO on error (error reading in a btree node). ++ * ++ * On error, caller (peek_node()/peek_key()) must return NULL; the error is ++ * stashed in the iterator and returned from bch2_trans_exit(). ++ */ ++int bch2_btree_path_traverse_one(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned flags, ++ unsigned long trace_ip) ++{ ++ unsigned depth_want = path->level; ++ int ret = -((int) trans->restarted); ++ ++ if (unlikely(ret)) ++ goto out; ++ ++ /* ++ * Ensure we obey path->should_be_locked: if it's set, we can't unlock ++ * and re-traverse the path without a transaction restart: ++ */ ++ if (path->should_be_locked) { ++ ret = bch2_btree_path_relock(trans, path, trace_ip); ++ goto out; ++ } ++ ++ if (path->cached) { ++ ret = bch2_btree_path_traverse_cached(trans, path, flags); ++ goto out; ++ } ++ ++ if (unlikely(path->level >= BTREE_MAX_DEPTH)) ++ goto out; ++ ++ path->level = btree_path_up_until_good_node(trans, path, 0); ++ ++ EBUG_ON(btree_path_node(path, path->level) && ++ !btree_node_locked(path, path->level)); ++ ++ /* ++ * Note: path->nodes[path->level] may be temporarily NULL here - that ++ * would indicate to other code that we got to the end of the btree, ++ * here it indicates that relocking the root failed - it's critical that ++ * btree_path_lock_root() comes next and that it can't fail ++ */ ++ while (path->level > depth_want) { ++ ret = btree_path_node(path, path->level) ++ ? btree_path_down(trans, path, flags, trace_ip) ++ : btree_path_lock_root(trans, path, depth_want, trace_ip); ++ if (unlikely(ret)) { ++ if (ret == 1) { ++ /* ++ * No nodes at this level - got to the end of ++ * the btree: ++ */ ++ ret = 0; ++ goto out; ++ } ++ ++ __bch2_btree_path_unlock(trans, path); ++ path->level = depth_want; ++ path->l[path->level].b = ERR_PTR(ret); ++ goto out; ++ } ++ } ++ ++ path->uptodate = BTREE_ITER_UPTODATE; ++out: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart) != !!trans->restarted) ++ panic("ret %s (%i) trans->restarted %s (%i)\n", ++ bch2_err_str(ret), ret, ++ bch2_err_str(trans->restarted), trans->restarted); ++ bch2_btree_path_verify(trans, path); ++ return ret; ++} ++ ++static inline void btree_path_copy(struct btree_trans *trans, struct btree_path *dst, ++ struct btree_path *src) ++{ ++ unsigned i, offset = offsetof(struct btree_path, pos); ++ ++ memcpy((void *) dst + offset, ++ (void *) src + offset, ++ sizeof(struct btree_path) - offset); ++ ++ for (i = 0; i < BTREE_MAX_DEPTH; i++) { ++ unsigned t = btree_node_locked_type(dst, i); ++ ++ if (t != BTREE_NODE_UNLOCKED) ++ six_lock_increment(&dst->l[i].b->c.lock, t); ++ } ++} ++ ++static struct btree_path *btree_path_clone(struct btree_trans *trans, struct btree_path *src, ++ bool intent) ++{ ++ struct btree_path *new = btree_path_alloc(trans, src); ++ ++ btree_path_copy(trans, new, src); ++ __btree_path_get(new, intent); ++ return new; ++} ++ ++__flatten ++struct btree_path *__bch2_btree_path_make_mut(struct btree_trans *trans, ++ struct btree_path *path, bool intent, ++ unsigned long ip) ++{ ++ __btree_path_put(path, intent); ++ path = btree_path_clone(trans, path, intent); ++ path->preserve = false; ++ return path; ++} ++ ++struct btree_path * __must_check ++__bch2_btree_path_set_pos(struct btree_trans *trans, ++ struct btree_path *path, struct bpos new_pos, ++ bool intent, unsigned long ip, int cmp) ++{ ++ unsigned level = path->level; ++ ++ bch2_trans_verify_not_in_restart(trans); ++ EBUG_ON(!path->ref); ++ ++ path = bch2_btree_path_make_mut(trans, path, intent, ip); ++ ++ path->pos = new_pos; ++ trans->paths_sorted = false; ++ ++ if (unlikely(path->cached)) { ++ btree_node_unlock(trans, path, 0); ++ path->l[0].b = ERR_PTR(-BCH_ERR_no_btree_node_up); ++ btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); ++ goto out; ++ } ++ ++ level = btree_path_up_until_good_node(trans, path, cmp); ++ ++ if (btree_path_node(path, level)) { ++ struct btree_path_level *l = &path->l[level]; ++ ++ BUG_ON(!btree_node_locked(path, level)); ++ /* ++ * We might have to skip over many keys, or just a few: try ++ * advancing the node iterator, and if we have to skip over too ++ * many keys just reinit it (or if we're rewinding, since that ++ * is expensive). ++ */ ++ if (cmp < 0 || ++ !btree_path_advance_to_pos(path, l, 8)) ++ bch2_btree_node_iter_init(&l->iter, l->b, &path->pos); ++ ++ /* ++ * Iterators to interior nodes should always be pointed at the first non ++ * whiteout: ++ */ ++ if (unlikely(level)) ++ bch2_btree_node_iter_peek(&l->iter, l->b); ++ } ++ ++ if (unlikely(level != path->level)) { ++ btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); ++ __bch2_btree_path_unlock(trans, path); ++ } ++out: ++ bch2_btree_path_verify(trans, path); ++ return path; ++} ++ ++/* Btree path: main interface: */ ++ ++static struct btree_path *have_path_at_pos(struct btree_trans *trans, struct btree_path *path) ++{ ++ struct btree_path *sib; ++ ++ sib = prev_btree_path(trans, path); ++ if (sib && !btree_path_cmp(sib, path)) ++ return sib; ++ ++ sib = next_btree_path(trans, path); ++ if (sib && !btree_path_cmp(sib, path)) ++ return sib; ++ ++ return NULL; ++} ++ ++static struct btree_path *have_node_at_pos(struct btree_trans *trans, struct btree_path *path) ++{ ++ struct btree_path *sib; ++ ++ sib = prev_btree_path(trans, path); ++ if (sib && sib->level == path->level && path_l(sib)->b == path_l(path)->b) ++ return sib; ++ ++ sib = next_btree_path(trans, path); ++ if (sib && sib->level == path->level && path_l(sib)->b == path_l(path)->b) ++ return sib; ++ ++ return NULL; ++} ++ ++static inline void __bch2_path_free(struct btree_trans *trans, struct btree_path *path) ++{ ++ __bch2_btree_path_unlock(trans, path); ++ btree_path_list_remove(trans, path); ++ trans->paths_allocated &= ~(1ULL << path->idx); ++} ++ ++void bch2_path_put(struct btree_trans *trans, struct btree_path *path, bool intent) ++{ ++ struct btree_path *dup; ++ ++ EBUG_ON(trans->paths + path->idx != path); ++ EBUG_ON(!path->ref); ++ ++ if (!__btree_path_put(path, intent)) ++ return; ++ ++ dup = path->preserve ++ ? have_path_at_pos(trans, path) ++ : have_node_at_pos(trans, path); ++ ++ if (!dup && !(!path->preserve && !is_btree_node(path, path->level))) ++ return; ++ ++ if (path->should_be_locked && ++ !trans->restarted && ++ (!dup || !bch2_btree_path_relock_norestart(trans, dup, _THIS_IP_))) ++ return; ++ ++ if (dup) { ++ dup->preserve |= path->preserve; ++ dup->should_be_locked |= path->should_be_locked; ++ } ++ ++ __bch2_path_free(trans, path); ++} ++ ++static void bch2_path_put_nokeep(struct btree_trans *trans, struct btree_path *path, ++ bool intent) ++{ ++ EBUG_ON(trans->paths + path->idx != path); ++ EBUG_ON(!path->ref); ++ ++ if (!__btree_path_put(path, intent)) ++ return; ++ ++ __bch2_path_free(trans, path); ++} ++ ++void __noreturn bch2_trans_restart_error(struct btree_trans *trans, u32 restart_count) ++{ ++ panic("trans->restart_count %u, should be %u, last restarted by %pS\n", ++ trans->restart_count, restart_count, ++ (void *) trans->last_begin_ip); ++} ++ ++void __noreturn bch2_trans_in_restart_error(struct btree_trans *trans) ++{ ++ panic("in transaction restart: %s, last restarted by %pS\n", ++ bch2_err_str(trans->restarted), ++ (void *) trans->last_restarted_ip); ++} ++ ++noinline __cold ++void bch2_trans_updates_to_text(struct printbuf *buf, struct btree_trans *trans) ++{ ++ struct btree_insert_entry *i; ++ struct btree_write_buffered_key *wb; ++ ++ prt_printf(buf, "transaction updates for %s journal seq %llu", ++ trans->fn, trans->journal_res.seq); ++ prt_newline(buf); ++ printbuf_indent_add(buf, 2); ++ ++ trans_for_each_update(trans, i) { ++ struct bkey_s_c old = { &i->old_k, i->old_v }; ++ ++ prt_printf(buf, "update: btree=%s cached=%u %pS", ++ bch2_btree_ids[i->btree_id], ++ i->cached, ++ (void *) i->ip_allocated); ++ prt_newline(buf); ++ ++ prt_printf(buf, " old "); ++ bch2_bkey_val_to_text(buf, trans->c, old); ++ prt_newline(buf); ++ ++ prt_printf(buf, " new "); ++ bch2_bkey_val_to_text(buf, trans->c, bkey_i_to_s_c(i->k)); ++ prt_newline(buf); ++ } ++ ++ trans_for_each_wb_update(trans, wb) { ++ prt_printf(buf, "update: btree=%s wb=1 %pS", ++ bch2_btree_ids[wb->btree], ++ (void *) i->ip_allocated); ++ prt_newline(buf); ++ ++ prt_printf(buf, " new "); ++ bch2_bkey_val_to_text(buf, trans->c, bkey_i_to_s_c(&wb->k)); ++ prt_newline(buf); ++ } ++ ++ printbuf_indent_sub(buf, 2); ++} ++ ++noinline __cold ++void bch2_dump_trans_updates(struct btree_trans *trans) ++{ ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_trans_updates_to_text(&buf, trans); ++ bch2_print_string_as_lines(KERN_ERR, buf.buf); ++ printbuf_exit(&buf); ++} ++ ++noinline __cold ++void bch2_btree_path_to_text(struct printbuf *out, struct btree_path *path) ++{ ++ prt_printf(out, "path: idx %2u ref %u:%u %c %c btree=%s l=%u pos ", ++ path->idx, path->ref, path->intent_ref, ++ path->preserve ? 'P' : ' ', ++ path->should_be_locked ? 'S' : ' ', ++ bch2_btree_ids[path->btree_id], ++ path->level); ++ bch2_bpos_to_text(out, path->pos); ++ ++ prt_printf(out, " locks %u", path->nodes_locked); ++#ifdef TRACK_PATH_ALLOCATED ++ prt_printf(out, " %pS", (void *) path->ip_allocated); ++#endif ++ prt_newline(out); ++} ++ ++static noinline __cold ++void __bch2_trans_paths_to_text(struct printbuf *out, struct btree_trans *trans, ++ bool nosort) ++{ ++ struct btree_path *path; ++ unsigned idx; ++ ++ if (!nosort) ++ btree_trans_sort_paths(trans); ++ ++ trans_for_each_path_inorder(trans, path, idx) ++ bch2_btree_path_to_text(out, path); ++} ++ ++noinline __cold ++void bch2_trans_paths_to_text(struct printbuf *out, struct btree_trans *trans) ++{ ++ __bch2_trans_paths_to_text(out, trans, false); ++} ++ ++static noinline __cold ++void __bch2_dump_trans_paths_updates(struct btree_trans *trans, bool nosort) ++{ ++ struct printbuf buf = PRINTBUF; ++ ++ __bch2_trans_paths_to_text(&buf, trans, nosort); ++ bch2_trans_updates_to_text(&buf, trans); ++ ++ bch2_print_string_as_lines(KERN_ERR, buf.buf); ++ printbuf_exit(&buf); ++} ++ ++noinline __cold ++void bch2_dump_trans_paths_updates(struct btree_trans *trans) ++{ ++ __bch2_dump_trans_paths_updates(trans, false); ++} ++ ++noinline __cold ++static void bch2_trans_update_max_paths(struct btree_trans *trans) ++{ ++ struct btree_transaction_stats *s = btree_trans_stats(trans); ++ struct printbuf buf = PRINTBUF; ++ ++ if (!s) ++ return; ++ ++ bch2_trans_paths_to_text(&buf, trans); ++ ++ if (!buf.allocation_failure) { ++ mutex_lock(&s->lock); ++ if (s->nr_max_paths < hweight64(trans->paths_allocated)) { ++ s->nr_max_paths = trans->nr_max_paths = ++ hweight64(trans->paths_allocated); ++ swap(s->max_paths_text, buf.buf); ++ } ++ mutex_unlock(&s->lock); ++ } ++ ++ printbuf_exit(&buf); ++ ++ trans->nr_max_paths = hweight64(trans->paths_allocated); ++} ++ ++static noinline void btree_path_overflow(struct btree_trans *trans) ++{ ++ bch2_dump_trans_paths_updates(trans); ++ panic("trans path overflow\n"); ++} ++ ++static inline struct btree_path *btree_path_alloc(struct btree_trans *trans, ++ struct btree_path *pos) ++{ ++ struct btree_path *path; ++ unsigned idx; ++ ++ if (unlikely(trans->paths_allocated == ++ ~((~0ULL << 1) << (BTREE_ITER_MAX - 1)))) ++ btree_path_overflow(trans); ++ ++ idx = __ffs64(~trans->paths_allocated); ++ ++ /* ++ * Do this before marking the new path as allocated, since it won't be ++ * initialized yet: ++ */ ++ if (unlikely(idx > trans->nr_max_paths)) ++ bch2_trans_update_max_paths(trans); ++ ++ trans->paths_allocated |= 1ULL << idx; ++ ++ path = &trans->paths[idx]; ++ path->idx = idx; ++ path->ref = 0; ++ path->intent_ref = 0; ++ path->nodes_locked = 0; ++ ++ btree_path_list_add(trans, pos, path); ++ trans->paths_sorted = false; ++ return path; ++} ++ ++struct btree_path *bch2_path_get(struct btree_trans *trans, ++ enum btree_id btree_id, struct bpos pos, ++ unsigned locks_want, unsigned level, ++ unsigned flags, unsigned long ip) ++{ ++ struct btree_path *path, *path_pos = NULL; ++ bool cached = flags & BTREE_ITER_CACHED; ++ bool intent = flags & BTREE_ITER_INTENT; ++ int i; ++ ++ bch2_trans_verify_not_in_restart(trans); ++ bch2_trans_verify_locks(trans); ++ ++ btree_trans_sort_paths(trans); ++ ++ trans_for_each_path_inorder(trans, path, i) { ++ if (__btree_path_cmp(path, ++ btree_id, ++ cached, ++ pos, ++ level) > 0) ++ break; ++ ++ path_pos = path; ++ } ++ ++ if (path_pos && ++ path_pos->cached == cached && ++ path_pos->btree_id == btree_id && ++ path_pos->level == level) { ++ __btree_path_get(path_pos, intent); ++ path = bch2_btree_path_set_pos(trans, path_pos, pos, intent, ip); ++ } else { ++ path = btree_path_alloc(trans, path_pos); ++ path_pos = NULL; ++ ++ __btree_path_get(path, intent); ++ path->pos = pos; ++ path->btree_id = btree_id; ++ path->cached = cached; ++ path->uptodate = BTREE_ITER_NEED_TRAVERSE; ++ path->should_be_locked = false; ++ path->level = level; ++ path->locks_want = locks_want; ++ path->nodes_locked = 0; ++ for (i = 0; i < ARRAY_SIZE(path->l); i++) ++ path->l[i].b = ERR_PTR(-BCH_ERR_no_btree_node_init); ++#ifdef TRACK_PATH_ALLOCATED ++ path->ip_allocated = ip; ++#endif ++ trans->paths_sorted = false; ++ } ++ ++ if (!(flags & BTREE_ITER_NOPRESERVE)) ++ path->preserve = true; ++ ++ if (path->intent_ref) ++ locks_want = max(locks_want, level + 1); ++ ++ /* ++ * If the path has locks_want greater than requested, we don't downgrade ++ * it here - on transaction restart because btree node split needs to ++ * upgrade locks, we might be putting/getting the iterator again. ++ * Downgrading iterators only happens via bch2_trans_downgrade(), after ++ * a successful transaction commit. ++ */ ++ ++ locks_want = min(locks_want, BTREE_MAX_DEPTH); ++ if (locks_want > path->locks_want) ++ bch2_btree_path_upgrade_noupgrade_sibs(trans, path, locks_want); ++ ++ return path; ++} ++ ++struct bkey_s_c bch2_btree_path_peek_slot(struct btree_path *path, struct bkey *u) ++{ ++ ++ struct btree_path_level *l = path_l(path); ++ struct bkey_packed *_k; ++ struct bkey_s_c k; ++ ++ if (unlikely(!l->b)) ++ return bkey_s_c_null; ++ ++ EBUG_ON(path->uptodate != BTREE_ITER_UPTODATE); ++ EBUG_ON(!btree_node_locked(path, path->level)); ++ ++ if (!path->cached) { ++ _k = bch2_btree_node_iter_peek_all(&l->iter, l->b); ++ k = _k ? bkey_disassemble(l->b, _k, u) : bkey_s_c_null; ++ ++ EBUG_ON(k.k && bkey_deleted(k.k) && bpos_eq(k.k->p, path->pos)); ++ ++ if (!k.k || !bpos_eq(path->pos, k.k->p)) ++ goto hole; ++ } else { ++ struct bkey_cached *ck = (void *) path->l[0].b; ++ ++ EBUG_ON(ck && ++ (path->btree_id != ck->key.btree_id || ++ !bkey_eq(path->pos, ck->key.pos))); ++ if (!ck || !ck->valid) ++ return bkey_s_c_null; ++ ++ *u = ck->k->k; ++ k = bkey_i_to_s_c(ck->k); ++ } ++ ++ return k; ++hole: ++ bkey_init(u); ++ u->p = path->pos; ++ return (struct bkey_s_c) { u, NULL }; ++} ++ ++/* Btree iterators: */ ++ ++int __must_check ++__bch2_btree_iter_traverse(struct btree_iter *iter) ++{ ++ return bch2_btree_path_traverse(iter->trans, iter->path, iter->flags); ++} ++ ++int __must_check ++bch2_btree_iter_traverse(struct btree_iter *iter) ++{ ++ int ret; ++ ++ iter->path = bch2_btree_path_set_pos(iter->trans, iter->path, ++ btree_iter_search_key(iter), ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ ++ ret = bch2_btree_path_traverse(iter->trans, iter->path, iter->flags); ++ if (ret) ++ return ret; ++ ++ btree_path_set_should_be_locked(iter->path); ++ return 0; ++} ++ ++/* Iterate across nodes (leaf and interior nodes) */ ++ ++struct btree *bch2_btree_iter_peek_node(struct btree_iter *iter) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct btree *b = NULL; ++ int ret; ++ ++ EBUG_ON(iter->path->cached); ++ bch2_btree_iter_verify(iter); ++ ++ ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); ++ if (ret) ++ goto err; ++ ++ b = btree_path_node(iter->path, iter->path->level); ++ if (!b) ++ goto out; ++ ++ BUG_ON(bpos_lt(b->key.k.p, iter->pos)); ++ ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos = b->key.k.p; ++ ++ iter->path = bch2_btree_path_set_pos(trans, iter->path, b->key.k.p, ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ btree_path_set_should_be_locked(iter->path); ++out: ++ bch2_btree_iter_verify_entry_exit(iter); ++ bch2_btree_iter_verify(iter); ++ ++ return b; ++err: ++ b = ERR_PTR(ret); ++ goto out; ++} ++ ++struct btree *bch2_btree_iter_peek_node_and_restart(struct btree_iter *iter) ++{ ++ struct btree *b; ++ ++ while (b = bch2_btree_iter_peek_node(iter), ++ bch2_err_matches(PTR_ERR_OR_ZERO(b), BCH_ERR_transaction_restart)) ++ bch2_trans_begin(iter->trans); ++ ++ return b; ++} ++ ++struct btree *bch2_btree_iter_next_node(struct btree_iter *iter) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct btree_path *path = iter->path; ++ struct btree *b = NULL; ++ int ret; ++ ++ bch2_trans_verify_not_in_restart(trans); ++ EBUG_ON(iter->path->cached); ++ bch2_btree_iter_verify(iter); ++ ++ /* already at end? */ ++ if (!btree_path_node(path, path->level)) ++ return NULL; ++ ++ /* got to end? */ ++ if (!btree_path_node(path, path->level + 1)) { ++ btree_path_set_level_up(trans, path); ++ return NULL; ++ } ++ ++ if (!bch2_btree_node_relock(trans, path, path->level + 1)) { ++ __bch2_btree_path_unlock(trans, path); ++ path->l[path->level].b = ERR_PTR(-BCH_ERR_no_btree_node_relock); ++ path->l[path->level + 1].b = ERR_PTR(-BCH_ERR_no_btree_node_relock); ++ btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); ++ trace_and_count(trans->c, trans_restart_relock_next_node, trans, _THIS_IP_, path); ++ ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_relock); ++ goto err; ++ } ++ ++ b = btree_path_node(path, path->level + 1); ++ ++ if (bpos_eq(iter->pos, b->key.k.p)) { ++ __btree_path_set_level_up(trans, path, path->level++); ++ } else { ++ /* ++ * Haven't gotten to the end of the parent node: go back down to ++ * the next child node ++ */ ++ path = iter->path = ++ bch2_btree_path_set_pos(trans, path, bpos_successor(iter->pos), ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ ++ btree_path_set_level_down(trans, path, iter->min_depth); ++ ++ ret = bch2_btree_path_traverse(trans, path, iter->flags); ++ if (ret) ++ goto err; ++ ++ b = path->l[path->level].b; ++ } ++ ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos = b->key.k.p; ++ ++ iter->path = bch2_btree_path_set_pos(trans, iter->path, b->key.k.p, ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ btree_path_set_should_be_locked(iter->path); ++ BUG_ON(iter->path->uptodate); ++out: ++ bch2_btree_iter_verify_entry_exit(iter); ++ bch2_btree_iter_verify(iter); ++ ++ return b; ++err: ++ b = ERR_PTR(ret); ++ goto out; ++} ++ ++/* Iterate across keys (in leaf nodes only) */ ++ ++inline bool bch2_btree_iter_advance(struct btree_iter *iter) ++{ ++ if (likely(!(iter->flags & BTREE_ITER_ALL_LEVELS))) { ++ struct bpos pos = iter->k.p; ++ bool ret = !(iter->flags & BTREE_ITER_ALL_SNAPSHOTS ++ ? bpos_eq(pos, SPOS_MAX) ++ : bkey_eq(pos, SPOS_MAX)); ++ ++ if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) ++ pos = bkey_successor(iter, pos); ++ bch2_btree_iter_set_pos(iter, pos); ++ return ret; ++ } else { ++ if (!btree_path_node(iter->path, iter->path->level)) ++ return true; ++ ++ iter->advanced = true; ++ return false; ++ } ++} ++ ++inline bool bch2_btree_iter_rewind(struct btree_iter *iter) ++{ ++ struct bpos pos = bkey_start_pos(&iter->k); ++ bool ret = !(iter->flags & BTREE_ITER_ALL_SNAPSHOTS ++ ? bpos_eq(pos, POS_MIN) ++ : bkey_eq(pos, POS_MIN)); ++ ++ if (ret && !(iter->flags & BTREE_ITER_IS_EXTENTS)) ++ pos = bkey_predecessor(iter, pos); ++ bch2_btree_iter_set_pos(iter, pos); ++ return ret; ++} ++ ++static noinline ++struct bkey_i *__bch2_btree_trans_peek_updates(struct btree_iter *iter) ++{ ++ struct btree_insert_entry *i; ++ struct bkey_i *ret = NULL; ++ ++ trans_for_each_update(iter->trans, i) { ++ if (i->btree_id < iter->btree_id) ++ continue; ++ if (i->btree_id > iter->btree_id) ++ break; ++ if (bpos_lt(i->k->k.p, iter->path->pos)) ++ continue; ++ if (i->key_cache_already_flushed) ++ continue; ++ if (!ret || bpos_lt(i->k->k.p, ret->k.p)) ++ ret = i->k; ++ } ++ ++ return ret; ++} ++ ++static inline struct bkey_i *btree_trans_peek_updates(struct btree_iter *iter) ++{ ++ return iter->flags & BTREE_ITER_WITH_UPDATES ++ ? __bch2_btree_trans_peek_updates(iter) ++ : NULL; ++} ++ ++static struct bkey_i *bch2_btree_journal_peek(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bpos end_pos) ++{ ++ struct bkey_i *k; ++ ++ if (bpos_lt(iter->path->pos, iter->journal_pos)) ++ iter->journal_idx = 0; ++ ++ k = bch2_journal_keys_peek_upto(trans->c, iter->btree_id, ++ iter->path->level, ++ iter->path->pos, ++ end_pos, ++ &iter->journal_idx); ++ ++ iter->journal_pos = k ? k->k.p : end_pos; ++ return k; ++} ++ ++static noinline ++struct bkey_s_c btree_trans_peek_slot_journal(struct btree_trans *trans, ++ struct btree_iter *iter) ++{ ++ struct bkey_i *k = bch2_btree_journal_peek(trans, iter, iter->path->pos); ++ ++ if (k) { ++ iter->k = k->k; ++ return bkey_i_to_s_c(k); ++ } else { ++ return bkey_s_c_null; ++ } ++} ++ ++static noinline ++struct bkey_s_c btree_trans_peek_journal(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bkey_i *next_journal = ++ bch2_btree_journal_peek(trans, iter, ++ k.k ? k.k->p : path_l(iter->path)->b->key.k.p); ++ ++ if (next_journal) { ++ iter->k = next_journal->k; ++ k = bkey_i_to_s_c(next_journal); ++ } ++ ++ return k; ++} ++ ++/* ++ * Checks btree key cache for key at iter->pos and returns it if present, or ++ * bkey_s_c_null: ++ */ ++static noinline ++struct bkey_s_c btree_trans_peek_key_cache(struct btree_iter *iter, struct bpos pos) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct bch_fs *c = trans->c; ++ struct bkey u; ++ struct bkey_s_c k; ++ int ret; ++ ++ if ((iter->flags & BTREE_ITER_KEY_CACHE_FILL) && ++ bpos_eq(iter->pos, pos)) ++ return bkey_s_c_null; ++ ++ if (!bch2_btree_key_cache_find(c, iter->btree_id, pos)) ++ return bkey_s_c_null; ++ ++ if (!iter->key_cache_path) ++ iter->key_cache_path = bch2_path_get(trans, iter->btree_id, pos, ++ iter->flags & BTREE_ITER_INTENT, 0, ++ iter->flags|BTREE_ITER_CACHED| ++ BTREE_ITER_CACHED_NOFILL, ++ _THIS_IP_); ++ ++ iter->key_cache_path = bch2_btree_path_set_pos(trans, iter->key_cache_path, pos, ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ ++ ret = bch2_btree_path_traverse(trans, iter->key_cache_path, ++ iter->flags|BTREE_ITER_CACHED) ?: ++ bch2_btree_path_relock(trans, iter->path, _THIS_IP_); ++ if (unlikely(ret)) ++ return bkey_s_c_err(ret); ++ ++ btree_path_set_should_be_locked(iter->key_cache_path); ++ ++ k = bch2_btree_path_peek_slot(iter->key_cache_path, &u); ++ if (k.k && !bkey_err(k)) { ++ iter->k = u; ++ k.k = &iter->k; ++ } ++ return k; ++} ++ ++static struct bkey_s_c __bch2_btree_iter_peek(struct btree_iter *iter, struct bpos search_key) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct bkey_i *next_update; ++ struct bkey_s_c k, k2; ++ int ret; ++ ++ EBUG_ON(iter->path->cached); ++ bch2_btree_iter_verify(iter); ++ ++ while (1) { ++ struct btree_path_level *l; ++ ++ iter->path = bch2_btree_path_set_pos(trans, iter->path, search_key, ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ ++ ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); ++ if (unlikely(ret)) { ++ /* ensure that iter->k is consistent with iter->pos: */ ++ bch2_btree_iter_set_pos(iter, iter->pos); ++ k = bkey_s_c_err(ret); ++ goto out; ++ } ++ ++ l = path_l(iter->path); ++ ++ if (unlikely(!l->b)) { ++ /* No btree nodes at requested level: */ ++ bch2_btree_iter_set_pos(iter, SPOS_MAX); ++ k = bkey_s_c_null; ++ goto out; ++ } ++ ++ btree_path_set_should_be_locked(iter->path); ++ ++ k = btree_path_level_peek_all(trans->c, l, &iter->k); ++ ++ if (unlikely(iter->flags & BTREE_ITER_WITH_KEY_CACHE) && ++ k.k && ++ (k2 = btree_trans_peek_key_cache(iter, k.k->p)).k) { ++ k = k2; ++ ret = bkey_err(k); ++ if (ret) { ++ bch2_btree_iter_set_pos(iter, iter->pos); ++ goto out; ++ } ++ } ++ ++ if (unlikely(iter->flags & BTREE_ITER_WITH_JOURNAL)) ++ k = btree_trans_peek_journal(trans, iter, k); ++ ++ next_update = btree_trans_peek_updates(iter); ++ ++ if (next_update && ++ bpos_le(next_update->k.p, ++ k.k ? k.k->p : l->b->key.k.p)) { ++ iter->k = next_update->k; ++ k = bkey_i_to_s_c(next_update); ++ } ++ ++ if (k.k && bkey_deleted(k.k)) { ++ /* ++ * If we've got a whiteout, and it's after the search ++ * key, advance the search key to the whiteout instead ++ * of just after the whiteout - it might be a btree ++ * whiteout, with a real key at the same position, since ++ * in the btree deleted keys sort before non deleted. ++ */ ++ search_key = !bpos_eq(search_key, k.k->p) ++ ? k.k->p ++ : bpos_successor(k.k->p); ++ continue; ++ } ++ ++ if (likely(k.k)) { ++ break; ++ } else if (likely(!bpos_eq(l->b->key.k.p, SPOS_MAX))) { ++ /* Advance to next leaf node: */ ++ search_key = bpos_successor(l->b->key.k.p); ++ } else { ++ /* End of btree: */ ++ bch2_btree_iter_set_pos(iter, SPOS_MAX); ++ k = bkey_s_c_null; ++ goto out; ++ } ++ } ++out: ++ bch2_btree_iter_verify(iter); ++ ++ return k; ++} ++ ++/** ++ * bch2_btree_iter_peek_upto() - returns first key greater than or equal to ++ * iterator's current position ++ * @iter: iterator to peek from ++ * @end: search limit: returns keys less than or equal to @end ++ * ++ * Returns: key if found, or an error extractable with bkey_err(). ++ */ ++struct bkey_s_c bch2_btree_iter_peek_upto(struct btree_iter *iter, struct bpos end) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct bpos search_key = btree_iter_search_key(iter); ++ struct bkey_s_c k; ++ struct bpos iter_pos; ++ int ret; ++ ++ EBUG_ON(iter->flags & BTREE_ITER_ALL_LEVELS); ++ EBUG_ON((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && bkey_eq(end, POS_MAX)); ++ ++ if (iter->update_path) { ++ bch2_path_put_nokeep(trans, iter->update_path, ++ iter->flags & BTREE_ITER_INTENT); ++ iter->update_path = NULL; ++ } ++ ++ bch2_btree_iter_verify_entry_exit(iter); ++ ++ while (1) { ++ k = __bch2_btree_iter_peek(iter, search_key); ++ if (unlikely(!k.k)) ++ goto end; ++ if (unlikely(bkey_err(k))) ++ goto out_no_locked; ++ ++ /* ++ * iter->pos should be mononotically increasing, and always be ++ * equal to the key we just returned - except extents can ++ * straddle iter->pos: ++ */ ++ if (!(iter->flags & BTREE_ITER_IS_EXTENTS)) ++ iter_pos = k.k->p; ++ else ++ iter_pos = bkey_max(iter->pos, bkey_start_pos(k.k)); ++ ++ if (unlikely(!(iter->flags & BTREE_ITER_IS_EXTENTS) ++ ? bkey_gt(iter_pos, end) ++ : bkey_ge(iter_pos, end))) ++ goto end; ++ ++ if (iter->update_path && ++ !bkey_eq(iter->update_path->pos, k.k->p)) { ++ bch2_path_put_nokeep(trans, iter->update_path, ++ iter->flags & BTREE_ITER_INTENT); ++ iter->update_path = NULL; ++ } ++ ++ if ((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && ++ (iter->flags & BTREE_ITER_INTENT) && ++ !(iter->flags & BTREE_ITER_IS_EXTENTS) && ++ !iter->update_path) { ++ struct bpos pos = k.k->p; ++ ++ if (pos.snapshot < iter->snapshot) { ++ search_key = bpos_successor(k.k->p); ++ continue; ++ } ++ ++ pos.snapshot = iter->snapshot; ++ ++ /* ++ * advance, same as on exit for iter->path, but only up ++ * to snapshot ++ */ ++ __btree_path_get(iter->path, iter->flags & BTREE_ITER_INTENT); ++ iter->update_path = iter->path; ++ ++ iter->update_path = bch2_btree_path_set_pos(trans, ++ iter->update_path, pos, ++ iter->flags & BTREE_ITER_INTENT, ++ _THIS_IP_); ++ ret = bch2_btree_path_traverse(trans, iter->update_path, iter->flags); ++ if (unlikely(ret)) { ++ k = bkey_s_c_err(ret); ++ goto out_no_locked; ++ } ++ } ++ ++ /* ++ * We can never have a key in a leaf node at POS_MAX, so ++ * we don't have to check these successor() calls: ++ */ ++ if ((iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) && ++ !bch2_snapshot_is_ancestor(trans->c, ++ iter->snapshot, ++ k.k->p.snapshot)) { ++ search_key = bpos_successor(k.k->p); ++ continue; ++ } ++ ++ if (bkey_whiteout(k.k) && ++ !(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) { ++ search_key = bkey_successor(iter, k.k->p); ++ continue; ++ } ++ ++ break; ++ } ++ ++ iter->pos = iter_pos; ++ ++ iter->path = bch2_btree_path_set_pos(trans, iter->path, k.k->p, ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ ++ btree_path_set_should_be_locked(iter->path); ++out_no_locked: ++ if (iter->update_path) { ++ ret = bch2_btree_path_relock(trans, iter->update_path, _THIS_IP_); ++ if (unlikely(ret)) ++ k = bkey_s_c_err(ret); ++ else ++ btree_path_set_should_be_locked(iter->update_path); ++ } ++ ++ if (!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) ++ iter->pos.snapshot = iter->snapshot; ++ ++ ret = bch2_btree_iter_verify_ret(iter, k); ++ if (unlikely(ret)) { ++ bch2_btree_iter_set_pos(iter, iter->pos); ++ k = bkey_s_c_err(ret); ++ } ++ ++ bch2_btree_iter_verify_entry_exit(iter); ++ ++ return k; ++end: ++ bch2_btree_iter_set_pos(iter, end); ++ k = bkey_s_c_null; ++ goto out_no_locked; ++} ++ ++/** ++ * bch2_btree_iter_peek_all_levels() - returns the first key greater than or ++ * equal to iterator's current position, returning keys from every level of the ++ * btree. For keys at different levels of the btree that compare equal, the key ++ * from the lower level (leaf) is returned first. ++ * @iter: iterator to peek from ++ * ++ * Returns: key if found, or an error extractable with bkey_err(). ++ */ ++struct bkey_s_c bch2_btree_iter_peek_all_levels(struct btree_iter *iter) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct bkey_s_c k; ++ int ret; ++ ++ EBUG_ON(iter->path->cached); ++ bch2_btree_iter_verify(iter); ++ BUG_ON(iter->path->level < iter->min_depth); ++ BUG_ON(!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)); ++ EBUG_ON(!(iter->flags & BTREE_ITER_ALL_LEVELS)); ++ ++ while (1) { ++ iter->path = bch2_btree_path_set_pos(trans, iter->path, iter->pos, ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ ++ ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); ++ if (unlikely(ret)) { ++ /* ensure that iter->k is consistent with iter->pos: */ ++ bch2_btree_iter_set_pos(iter, iter->pos); ++ k = bkey_s_c_err(ret); ++ goto out_no_locked; ++ } ++ ++ /* Already at end? */ ++ if (!btree_path_node(iter->path, iter->path->level)) { ++ k = bkey_s_c_null; ++ goto out_no_locked; ++ } ++ ++ k = btree_path_level_peek_all(trans->c, ++ &iter->path->l[iter->path->level], &iter->k); ++ ++ /* Check if we should go up to the parent node: */ ++ if (!k.k || ++ (iter->advanced && ++ bpos_eq(path_l(iter->path)->b->key.k.p, iter->pos))) { ++ iter->pos = path_l(iter->path)->b->key.k.p; ++ btree_path_set_level_up(trans, iter->path); ++ iter->advanced = false; ++ continue; ++ } ++ ++ /* ++ * Check if we should go back down to a leaf: ++ * If we're not in a leaf node, we only return the current key ++ * if it exactly matches iter->pos - otherwise we first have to ++ * go back to the leaf: ++ */ ++ if (iter->path->level != iter->min_depth && ++ (iter->advanced || ++ !k.k || ++ !bpos_eq(iter->pos, k.k->p))) { ++ btree_path_set_level_down(trans, iter->path, iter->min_depth); ++ iter->pos = bpos_successor(iter->pos); ++ iter->advanced = false; ++ continue; ++ } ++ ++ /* Check if we should go to the next key: */ ++ if (iter->path->level == iter->min_depth && ++ iter->advanced && ++ k.k && ++ bpos_eq(iter->pos, k.k->p)) { ++ iter->pos = bpos_successor(iter->pos); ++ iter->advanced = false; ++ continue; ++ } ++ ++ if (iter->advanced && ++ iter->path->level == iter->min_depth && ++ !bpos_eq(k.k->p, iter->pos)) ++ iter->advanced = false; ++ ++ BUG_ON(iter->advanced); ++ BUG_ON(!k.k); ++ break; ++ } ++ ++ iter->pos = k.k->p; ++ btree_path_set_should_be_locked(iter->path); ++out_no_locked: ++ bch2_btree_iter_verify(iter); ++ ++ return k; ++} ++ ++/** ++ * bch2_btree_iter_next() - returns first key greater than iterator's current ++ * position ++ * @iter: iterator to peek from ++ * ++ * Returns: key if found, or an error extractable with bkey_err(). ++ */ ++struct bkey_s_c bch2_btree_iter_next(struct btree_iter *iter) ++{ ++ if (!bch2_btree_iter_advance(iter)) ++ return bkey_s_c_null; ++ ++ return bch2_btree_iter_peek(iter); ++} ++ ++/** ++ * bch2_btree_iter_peek_prev() - returns first key less than or equal to ++ * iterator's current position ++ * @iter: iterator to peek from ++ * ++ * Returns: key if found, or an error extractable with bkey_err(). ++ */ ++struct bkey_s_c bch2_btree_iter_peek_prev(struct btree_iter *iter) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct bpos search_key = iter->pos; ++ struct btree_path *saved_path = NULL; ++ struct bkey_s_c k; ++ struct bkey saved_k; ++ const struct bch_val *saved_v; ++ int ret; ++ ++ EBUG_ON(iter->path->cached || iter->path->level); ++ EBUG_ON(iter->flags & BTREE_ITER_WITH_UPDATES); ++ ++ if (iter->flags & BTREE_ITER_WITH_JOURNAL) ++ return bkey_s_c_err(-EIO); ++ ++ bch2_btree_iter_verify(iter); ++ bch2_btree_iter_verify_entry_exit(iter); ++ ++ if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) ++ search_key.snapshot = U32_MAX; ++ ++ while (1) { ++ iter->path = bch2_btree_path_set_pos(trans, iter->path, search_key, ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ ++ ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); ++ if (unlikely(ret)) { ++ /* ensure that iter->k is consistent with iter->pos: */ ++ bch2_btree_iter_set_pos(iter, iter->pos); ++ k = bkey_s_c_err(ret); ++ goto out_no_locked; ++ } ++ ++ k = btree_path_level_peek(trans, iter->path, ++ &iter->path->l[0], &iter->k); ++ if (!k.k || ++ ((iter->flags & BTREE_ITER_IS_EXTENTS) ++ ? bpos_ge(bkey_start_pos(k.k), search_key) ++ : bpos_gt(k.k->p, search_key))) ++ k = btree_path_level_prev(trans, iter->path, ++ &iter->path->l[0], &iter->k); ++ ++ if (likely(k.k)) { ++ if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) { ++ if (k.k->p.snapshot == iter->snapshot) ++ goto got_key; ++ ++ /* ++ * If we have a saved candidate, and we're no ++ * longer at the same _key_ (not pos), return ++ * that candidate ++ */ ++ if (saved_path && !bkey_eq(k.k->p, saved_k.p)) { ++ bch2_path_put_nokeep(trans, iter->path, ++ iter->flags & BTREE_ITER_INTENT); ++ iter->path = saved_path; ++ saved_path = NULL; ++ iter->k = saved_k; ++ k.v = saved_v; ++ goto got_key; ++ } ++ ++ if (bch2_snapshot_is_ancestor(iter->trans->c, ++ iter->snapshot, ++ k.k->p.snapshot)) { ++ if (saved_path) ++ bch2_path_put_nokeep(trans, saved_path, ++ iter->flags & BTREE_ITER_INTENT); ++ saved_path = btree_path_clone(trans, iter->path, ++ iter->flags & BTREE_ITER_INTENT); ++ saved_k = *k.k; ++ saved_v = k.v; ++ } ++ ++ search_key = bpos_predecessor(k.k->p); ++ continue; ++ } ++got_key: ++ if (bkey_whiteout(k.k) && ++ !(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) { ++ search_key = bkey_predecessor(iter, k.k->p); ++ if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) ++ search_key.snapshot = U32_MAX; ++ continue; ++ } ++ ++ break; ++ } else if (likely(!bpos_eq(iter->path->l[0].b->data->min_key, POS_MIN))) { ++ /* Advance to previous leaf node: */ ++ search_key = bpos_predecessor(iter->path->l[0].b->data->min_key); ++ } else { ++ /* Start of btree: */ ++ bch2_btree_iter_set_pos(iter, POS_MIN); ++ k = bkey_s_c_null; ++ goto out_no_locked; ++ } ++ } ++ ++ EBUG_ON(bkey_gt(bkey_start_pos(k.k), iter->pos)); ++ ++ /* Extents can straddle iter->pos: */ ++ if (bkey_lt(k.k->p, iter->pos)) ++ iter->pos = k.k->p; ++ ++ if (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS) ++ iter->pos.snapshot = iter->snapshot; ++ ++ btree_path_set_should_be_locked(iter->path); ++out_no_locked: ++ if (saved_path) ++ bch2_path_put_nokeep(trans, saved_path, iter->flags & BTREE_ITER_INTENT); ++ ++ bch2_btree_iter_verify_entry_exit(iter); ++ bch2_btree_iter_verify(iter); ++ ++ return k; ++} ++ ++/** ++ * bch2_btree_iter_prev() - returns first key less than iterator's current ++ * position ++ * @iter: iterator to peek from ++ * ++ * Returns: key if found, or an error extractable with bkey_err(). ++ */ ++struct bkey_s_c bch2_btree_iter_prev(struct btree_iter *iter) ++{ ++ if (!bch2_btree_iter_rewind(iter)) ++ return bkey_s_c_null; ++ ++ return bch2_btree_iter_peek_prev(iter); ++} ++ ++struct bkey_s_c bch2_btree_iter_peek_slot(struct btree_iter *iter) ++{ ++ struct btree_trans *trans = iter->trans; ++ struct bpos search_key; ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_btree_iter_verify(iter); ++ bch2_btree_iter_verify_entry_exit(iter); ++ EBUG_ON(iter->flags & BTREE_ITER_ALL_LEVELS); ++ EBUG_ON(iter->path->level && (iter->flags & BTREE_ITER_WITH_KEY_CACHE)); ++ ++ /* extents can't span inode numbers: */ ++ if ((iter->flags & BTREE_ITER_IS_EXTENTS) && ++ unlikely(iter->pos.offset == KEY_OFFSET_MAX)) { ++ if (iter->pos.inode == KEY_INODE_MAX) ++ return bkey_s_c_null; ++ ++ bch2_btree_iter_set_pos(iter, bpos_nosnap_successor(iter->pos)); ++ } ++ ++ search_key = btree_iter_search_key(iter); ++ iter->path = bch2_btree_path_set_pos(trans, iter->path, search_key, ++ iter->flags & BTREE_ITER_INTENT, ++ btree_iter_ip_allocated(iter)); ++ ++ ret = bch2_btree_path_traverse(trans, iter->path, iter->flags); ++ if (unlikely(ret)) { ++ k = bkey_s_c_err(ret); ++ goto out_no_locked; ++ } ++ ++ if ((iter->flags & BTREE_ITER_CACHED) || ++ !(iter->flags & (BTREE_ITER_IS_EXTENTS|BTREE_ITER_FILTER_SNAPSHOTS))) { ++ struct bkey_i *next_update; ++ ++ if ((next_update = btree_trans_peek_updates(iter)) && ++ bpos_eq(next_update->k.p, iter->pos)) { ++ iter->k = next_update->k; ++ k = bkey_i_to_s_c(next_update); ++ goto out; ++ } ++ ++ if (unlikely(iter->flags & BTREE_ITER_WITH_JOURNAL) && ++ (k = btree_trans_peek_slot_journal(trans, iter)).k) ++ goto out; ++ ++ if (unlikely(iter->flags & BTREE_ITER_WITH_KEY_CACHE) && ++ (k = btree_trans_peek_key_cache(iter, iter->pos)).k) { ++ if (!bkey_err(k)) ++ iter->k = *k.k; ++ /* We're not returning a key from iter->path: */ ++ goto out_no_locked; ++ } ++ ++ k = bch2_btree_path_peek_slot(iter->path, &iter->k); ++ if (unlikely(!k.k)) ++ goto out_no_locked; ++ } else { ++ struct bpos next; ++ struct bpos end = iter->pos; ++ ++ if (iter->flags & BTREE_ITER_IS_EXTENTS) ++ end.offset = U64_MAX; ++ ++ EBUG_ON(iter->path->level); ++ ++ if (iter->flags & BTREE_ITER_INTENT) { ++ struct btree_iter iter2; ++ ++ bch2_trans_copy_iter(&iter2, iter); ++ k = bch2_btree_iter_peek_upto(&iter2, end); ++ ++ if (k.k && !bkey_err(k)) { ++ iter->k = iter2.k; ++ k.k = &iter->k; ++ } ++ bch2_trans_iter_exit(trans, &iter2); ++ } else { ++ struct bpos pos = iter->pos; ++ ++ k = bch2_btree_iter_peek_upto(iter, end); ++ if (unlikely(bkey_err(k))) ++ bch2_btree_iter_set_pos(iter, pos); ++ else ++ iter->pos = pos; ++ } ++ ++ if (unlikely(bkey_err(k))) ++ goto out_no_locked; ++ ++ next = k.k ? bkey_start_pos(k.k) : POS_MAX; ++ ++ if (bkey_lt(iter->pos, next)) { ++ bkey_init(&iter->k); ++ iter->k.p = iter->pos; ++ ++ if (iter->flags & BTREE_ITER_IS_EXTENTS) { ++ bch2_key_resize(&iter->k, ++ min_t(u64, KEY_SIZE_MAX, ++ (next.inode == iter->pos.inode ++ ? next.offset ++ : KEY_OFFSET_MAX) - ++ iter->pos.offset)); ++ EBUG_ON(!iter->k.size); ++ } ++ ++ k = (struct bkey_s_c) { &iter->k, NULL }; ++ } ++ } ++out: ++ btree_path_set_should_be_locked(iter->path); ++out_no_locked: ++ bch2_btree_iter_verify_entry_exit(iter); ++ bch2_btree_iter_verify(iter); ++ ret = bch2_btree_iter_verify_ret(iter, k); ++ if (unlikely(ret)) ++ return bkey_s_c_err(ret); ++ ++ return k; ++} ++ ++struct bkey_s_c bch2_btree_iter_next_slot(struct btree_iter *iter) ++{ ++ if (!bch2_btree_iter_advance(iter)) ++ return bkey_s_c_null; ++ ++ return bch2_btree_iter_peek_slot(iter); ++} ++ ++struct bkey_s_c bch2_btree_iter_prev_slot(struct btree_iter *iter) ++{ ++ if (!bch2_btree_iter_rewind(iter)) ++ return bkey_s_c_null; ++ ++ return bch2_btree_iter_peek_slot(iter); ++} ++ ++struct bkey_s_c bch2_btree_iter_peek_and_restart_outlined(struct btree_iter *iter) ++{ ++ struct bkey_s_c k; ++ ++ while (btree_trans_too_many_iters(iter->trans) || ++ (k = bch2_btree_iter_peek_type(iter, iter->flags), ++ bch2_err_matches(bkey_err(k), BCH_ERR_transaction_restart))) ++ bch2_trans_begin(iter->trans); ++ ++ return k; ++} ++ ++/* new transactional stuff: */ ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++static void btree_trans_verify_sorted_refs(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ unsigned i; ++ ++ BUG_ON(trans->nr_sorted != hweight64(trans->paths_allocated)); ++ ++ trans_for_each_path(trans, path) { ++ BUG_ON(path->sorted_idx >= trans->nr_sorted); ++ BUG_ON(trans->sorted[path->sorted_idx] != path->idx); ++ } ++ ++ for (i = 0; i < trans->nr_sorted; i++) { ++ unsigned idx = trans->sorted[i]; ++ ++ EBUG_ON(!(trans->paths_allocated & (1ULL << idx))); ++ BUG_ON(trans->paths[idx].sorted_idx != i); ++ } ++} ++ ++static void btree_trans_verify_sorted(struct btree_trans *trans) ++{ ++ struct btree_path *path, *prev = NULL; ++ unsigned i; ++ ++ if (!bch2_debug_check_iterators) ++ return; ++ ++ trans_for_each_path_inorder(trans, path, i) { ++ if (prev && btree_path_cmp(prev, path) > 0) { ++ __bch2_dump_trans_paths_updates(trans, true); ++ panic("trans paths out of order!\n"); ++ } ++ prev = path; ++ } ++} ++#else ++static inline void btree_trans_verify_sorted_refs(struct btree_trans *trans) {} ++static inline void btree_trans_verify_sorted(struct btree_trans *trans) {} ++#endif ++ ++void __bch2_btree_trans_sort_paths(struct btree_trans *trans) ++{ ++ int i, l = 0, r = trans->nr_sorted, inc = 1; ++ bool swapped; ++ ++ btree_trans_verify_sorted_refs(trans); ++ ++ if (trans->paths_sorted) ++ goto out; ++ ++ /* ++ * Cocktail shaker sort: this is efficient because iterators will be ++ * mostly sorted. ++ */ ++ do { ++ swapped = false; ++ ++ for (i = inc > 0 ? l : r - 2; ++ i + 1 < r && i >= l; ++ i += inc) { ++ if (btree_path_cmp(trans->paths + trans->sorted[i], ++ trans->paths + trans->sorted[i + 1]) > 0) { ++ swap(trans->sorted[i], trans->sorted[i + 1]); ++ trans->paths[trans->sorted[i]].sorted_idx = i; ++ trans->paths[trans->sorted[i + 1]].sorted_idx = i + 1; ++ swapped = true; ++ } ++ } ++ ++ if (inc > 0) ++ --r; ++ else ++ l++; ++ inc = -inc; ++ } while (swapped); ++ ++ trans->paths_sorted = true; ++out: ++ btree_trans_verify_sorted(trans); ++} ++ ++static inline void btree_path_list_remove(struct btree_trans *trans, ++ struct btree_path *path) ++{ ++ unsigned i; ++ ++ EBUG_ON(path->sorted_idx >= trans->nr_sorted); ++#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS ++ trans->nr_sorted--; ++ memmove_u64s_down_small(trans->sorted + path->sorted_idx, ++ trans->sorted + path->sorted_idx + 1, ++ DIV_ROUND_UP(trans->nr_sorted - path->sorted_idx, 8)); ++#else ++ array_remove_item(trans->sorted, trans->nr_sorted, path->sorted_idx); ++#endif ++ for (i = path->sorted_idx; i < trans->nr_sorted; i++) ++ trans->paths[trans->sorted[i]].sorted_idx = i; ++ ++ path->sorted_idx = U8_MAX; ++} ++ ++static inline void btree_path_list_add(struct btree_trans *trans, ++ struct btree_path *pos, ++ struct btree_path *path) ++{ ++ unsigned i; ++ ++ path->sorted_idx = pos ? pos->sorted_idx + 1 : trans->nr_sorted; ++ ++#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS ++ memmove_u64s_up_small(trans->sorted + path->sorted_idx + 1, ++ trans->sorted + path->sorted_idx, ++ DIV_ROUND_UP(trans->nr_sorted - path->sorted_idx, 8)); ++ trans->nr_sorted++; ++ trans->sorted[path->sorted_idx] = path->idx; ++#else ++ array_insert_item(trans->sorted, trans->nr_sorted, path->sorted_idx, path->idx); ++#endif ++ ++ for (i = path->sorted_idx; i < trans->nr_sorted; i++) ++ trans->paths[trans->sorted[i]].sorted_idx = i; ++ ++ btree_trans_verify_sorted_refs(trans); ++} ++ ++void bch2_trans_iter_exit(struct btree_trans *trans, struct btree_iter *iter) ++{ ++ if (iter->update_path) ++ bch2_path_put_nokeep(trans, iter->update_path, ++ iter->flags & BTREE_ITER_INTENT); ++ if (iter->path) ++ bch2_path_put(trans, iter->path, ++ iter->flags & BTREE_ITER_INTENT); ++ if (iter->key_cache_path) ++ bch2_path_put(trans, iter->key_cache_path, ++ iter->flags & BTREE_ITER_INTENT); ++ iter->path = NULL; ++ iter->update_path = NULL; ++ iter->key_cache_path = NULL; ++} ++ ++void bch2_trans_iter_init_outlined(struct btree_trans *trans, ++ struct btree_iter *iter, ++ enum btree_id btree_id, struct bpos pos, ++ unsigned flags) ++{ ++ bch2_trans_iter_init_common(trans, iter, btree_id, pos, 0, 0, ++ bch2_btree_iter_flags(trans, btree_id, flags), ++ _RET_IP_); ++} ++ ++void bch2_trans_node_iter_init(struct btree_trans *trans, ++ struct btree_iter *iter, ++ enum btree_id btree_id, ++ struct bpos pos, ++ unsigned locks_want, ++ unsigned depth, ++ unsigned flags) ++{ ++ flags |= BTREE_ITER_NOT_EXTENTS; ++ flags |= __BTREE_ITER_ALL_SNAPSHOTS; ++ flags |= BTREE_ITER_ALL_SNAPSHOTS; ++ ++ bch2_trans_iter_init_common(trans, iter, btree_id, pos, locks_want, depth, ++ __bch2_btree_iter_flags(trans, btree_id, flags), ++ _RET_IP_); ++ ++ iter->min_depth = depth; ++ ++ BUG_ON(iter->path->locks_want < min(locks_want, BTREE_MAX_DEPTH)); ++ BUG_ON(iter->path->level != depth); ++ BUG_ON(iter->min_depth != depth); ++} ++ ++void bch2_trans_copy_iter(struct btree_iter *dst, struct btree_iter *src) ++{ ++ *dst = *src; ++ if (src->path) ++ __btree_path_get(src->path, src->flags & BTREE_ITER_INTENT); ++ if (src->update_path) ++ __btree_path_get(src->update_path, src->flags & BTREE_ITER_INTENT); ++ dst->key_cache_path = NULL; ++} ++ ++void *__bch2_trans_kmalloc(struct btree_trans *trans, size_t size) ++{ ++ unsigned new_top = trans->mem_top + size; ++ size_t old_bytes = trans->mem_bytes; ++ size_t new_bytes = roundup_pow_of_two(new_top); ++ int ret; ++ void *new_mem; ++ void *p; ++ ++ trans->mem_max = max(trans->mem_max, new_top); ++ ++ WARN_ON_ONCE(new_bytes > BTREE_TRANS_MEM_MAX); ++ ++ new_mem = krealloc(trans->mem, new_bytes, GFP_NOWAIT|__GFP_NOWARN); ++ if (unlikely(!new_mem)) { ++ bch2_trans_unlock(trans); ++ ++ new_mem = krealloc(trans->mem, new_bytes, GFP_KERNEL); ++ if (!new_mem && new_bytes <= BTREE_TRANS_MEM_MAX) { ++ new_mem = mempool_alloc(&trans->c->btree_trans_mem_pool, GFP_KERNEL); ++ new_bytes = BTREE_TRANS_MEM_MAX; ++ kfree(trans->mem); ++ } ++ ++ if (!new_mem) ++ return ERR_PTR(-BCH_ERR_ENOMEM_trans_kmalloc); ++ ++ trans->mem = new_mem; ++ trans->mem_bytes = new_bytes; ++ ++ ret = bch2_trans_relock(trans); ++ if (ret) ++ return ERR_PTR(ret); ++ } ++ ++ trans->mem = new_mem; ++ trans->mem_bytes = new_bytes; ++ ++ if (old_bytes) { ++ trace_and_count(trans->c, trans_restart_mem_realloced, trans, _RET_IP_, new_bytes); ++ return ERR_PTR(btree_trans_restart(trans, BCH_ERR_transaction_restart_mem_realloced)); ++ } ++ ++ p = trans->mem + trans->mem_top; ++ trans->mem_top += size; ++ memset(p, 0, size); ++ return p; ++} ++ ++static noinline void bch2_trans_reset_srcu_lock(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ if (path->cached && !btree_node_locked(path, 0)) ++ path->l[0].b = ERR_PTR(-BCH_ERR_no_btree_node_srcu_reset); ++ ++ srcu_read_unlock(&c->btree_trans_barrier, trans->srcu_idx); ++ trans->srcu_idx = srcu_read_lock(&c->btree_trans_barrier); ++ trans->srcu_lock_time = jiffies; ++} ++ ++/** ++ * bch2_trans_begin() - reset a transaction after a interrupted attempt ++ * @trans: transaction to reset ++ * ++ * Returns: current restart counter, to be used with trans_was_restarted() ++ * ++ * While iterating over nodes or updating nodes a attempt to lock a btree node ++ * may return BCH_ERR_transaction_restart when the trylock fails. When this ++ * occurs bch2_trans_begin() should be called and the transaction retried. ++ */ ++u32 bch2_trans_begin(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ u64 now; ++ ++ bch2_trans_reset_updates(trans); ++ ++ trans->restart_count++; ++ trans->mem_top = 0; ++ ++ trans_for_each_path(trans, path) { ++ path->should_be_locked = false; ++ ++ /* ++ * If the transaction wasn't restarted, we're presuming to be ++ * doing something new: dont keep iterators excpt the ones that ++ * are in use - except for the subvolumes btree: ++ */ ++ if (!trans->restarted && path->btree_id != BTREE_ID_subvolumes) ++ path->preserve = false; ++ ++ /* ++ * XXX: we probably shouldn't be doing this if the transaction ++ * was restarted, but currently we still overflow transaction ++ * iterators if we do that ++ */ ++ if (!path->ref && !path->preserve) ++ __bch2_path_free(trans, path); ++ else ++ path->preserve = false; ++ } ++ ++ now = local_clock(); ++ if (!trans->restarted && ++ (need_resched() || ++ now - trans->last_begin_time > BTREE_TRANS_MAX_LOCK_HOLD_TIME_NS)) { ++ drop_locks_do(trans, (cond_resched(), 0)); ++ now = local_clock(); ++ } ++ trans->last_begin_time = now; ++ ++ if (unlikely(time_after(jiffies, trans->srcu_lock_time + msecs_to_jiffies(10)))) ++ bch2_trans_reset_srcu_lock(trans); ++ ++ trans->last_begin_ip = _RET_IP_; ++ if (trans->restarted) { ++ bch2_btree_path_traverse_all(trans); ++ trans->notrace_relock_fail = false; ++ } ++ ++ return trans->restart_count; ++} ++ ++static struct btree_trans *bch2_trans_alloc(struct bch_fs *c) ++{ ++ struct btree_trans *trans; ++ ++ if (IS_ENABLED(__KERNEL__)) { ++ trans = this_cpu_xchg(c->btree_trans_bufs->trans, NULL); ++ if (trans) ++ return trans; ++ } ++ ++ trans = mempool_alloc(&c->btree_trans_pool, GFP_NOFS); ++ /* ++ * paths need to be zeroed, bch2_check_for_deadlock looks at ++ * paths in other threads ++ */ ++ memset(&trans->paths, 0, sizeof(trans->paths)); ++ return trans; ++} ++ ++const char *bch2_btree_transaction_fns[BCH_TRANSACTIONS_NR]; ++ ++unsigned bch2_trans_get_fn_idx(const char *fn) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(bch2_btree_transaction_fns); i++) ++ if (!bch2_btree_transaction_fns[i] || ++ bch2_btree_transaction_fns[i] == fn) { ++ bch2_btree_transaction_fns[i] = fn; ++ return i; ++ } ++ ++ pr_warn_once("BCH_TRANSACTIONS_NR not big enough!"); ++ return i; ++} ++ ++struct btree_trans *__bch2_trans_get(struct bch_fs *c, unsigned fn_idx) ++ __acquires(&c->btree_trans_barrier) ++{ ++ struct btree_trans *trans; ++ struct btree_transaction_stats *s; ++ ++ trans = bch2_trans_alloc(c); ++ ++ memset(trans, 0, sizeof(*trans)); ++ trans->c = c; ++ trans->fn = fn_idx < ARRAY_SIZE(bch2_btree_transaction_fns) ++ ? bch2_btree_transaction_fns[fn_idx] : NULL; ++ trans->last_begin_time = local_clock(); ++ trans->fn_idx = fn_idx; ++ trans->locking_wait.task = current; ++ trans->journal_replay_not_finished = ++ !test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags); ++ closure_init_stack(&trans->ref); ++ ++ s = btree_trans_stats(trans); ++ if (s && s->max_mem) { ++ unsigned expected_mem_bytes = roundup_pow_of_two(s->max_mem); ++ ++ trans->mem = kmalloc(expected_mem_bytes, GFP_KERNEL); ++ ++ if (!unlikely(trans->mem)) { ++ trans->mem = mempool_alloc(&c->btree_trans_mem_pool, GFP_KERNEL); ++ trans->mem_bytes = BTREE_TRANS_MEM_MAX; ++ } else { ++ trans->mem_bytes = expected_mem_bytes; ++ } ++ } ++ ++ if (s) { ++ trans->nr_max_paths = s->nr_max_paths; ++ trans->wb_updates_size = s->wb_updates_size; ++ } ++ ++ trans->srcu_idx = srcu_read_lock(&c->btree_trans_barrier); ++ trans->srcu_lock_time = jiffies; ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG_TRANSACTIONS)) { ++ struct btree_trans *pos; ++ ++ seqmutex_lock(&c->btree_trans_lock); ++ list_for_each_entry(pos, &c->btree_trans_list, list) { ++ /* ++ * We'd much prefer to be stricter here and completely ++ * disallow multiple btree_trans in the same thread - ++ * but the data move path calls bch2_write when we ++ * already have a btree_trans initialized. ++ */ ++ BUG_ON(trans->locking_wait.task->pid == pos->locking_wait.task->pid && ++ bch2_trans_locked(pos)); ++ ++ if (trans->locking_wait.task->pid < pos->locking_wait.task->pid) { ++ list_add_tail(&trans->list, &pos->list); ++ goto list_add_done; ++ } ++ } ++ list_add_tail(&trans->list, &c->btree_trans_list); ++list_add_done: ++ seqmutex_unlock(&c->btree_trans_lock); ++ } ++ ++ return trans; ++} ++ ++static void check_btree_paths_leaked(struct btree_trans *trans) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bch_fs *c = trans->c; ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ if (path->ref) ++ goto leaked; ++ return; ++leaked: ++ bch_err(c, "btree paths leaked from %s!", trans->fn); ++ trans_for_each_path(trans, path) ++ if (path->ref) ++ printk(KERN_ERR " btree %s %pS\n", ++ bch2_btree_ids[path->btree_id], ++ (void *) path->ip_allocated); ++ /* Be noisy about this: */ ++ bch2_fatal_error(c); ++#endif ++} ++ ++void bch2_trans_put(struct btree_trans *trans) ++ __releases(&c->btree_trans_barrier) ++{ ++ struct btree_insert_entry *i; ++ struct bch_fs *c = trans->c; ++ struct btree_transaction_stats *s = btree_trans_stats(trans); ++ ++ bch2_trans_unlock(trans); ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG_TRANSACTIONS)) { ++ seqmutex_lock(&c->btree_trans_lock); ++ list_del(&trans->list); ++ seqmutex_unlock(&c->btree_trans_lock); ++ } ++ ++ closure_sync(&trans->ref); ++ ++ if (s) ++ s->max_mem = max(s->max_mem, trans->mem_max); ++ ++ trans_for_each_update(trans, i) ++ __btree_path_put(i->path, true); ++ trans->nr_updates = 0; ++ ++ check_btree_paths_leaked(trans); ++ ++ srcu_read_unlock(&c->btree_trans_barrier, trans->srcu_idx); ++ ++ bch2_journal_preres_put(&c->journal, &trans->journal_preres); ++ ++ kfree(trans->extra_journal_entries.data); ++ ++ if (trans->fs_usage_deltas) { ++ if (trans->fs_usage_deltas->size + sizeof(trans->fs_usage_deltas) == ++ REPLICAS_DELTA_LIST_MAX) ++ mempool_free(trans->fs_usage_deltas, ++ &c->replicas_delta_pool); ++ else ++ kfree(trans->fs_usage_deltas); ++ } ++ ++ if (trans->mem_bytes == BTREE_TRANS_MEM_MAX) ++ mempool_free(trans->mem, &c->btree_trans_mem_pool); ++ else ++ kfree(trans->mem); ++ ++ /* Userspace doesn't have a real percpu implementation: */ ++ if (IS_ENABLED(__KERNEL__)) ++ trans = this_cpu_xchg(c->btree_trans_bufs->trans, trans); ++ if (trans) ++ mempool_free(trans, &c->btree_trans_pool); ++} ++ ++static void __maybe_unused ++bch2_btree_bkey_cached_common_to_text(struct printbuf *out, ++ struct btree_bkey_cached_common *b) ++{ ++ struct six_lock_count c = six_lock_counts(&b->lock); ++ struct task_struct *owner; ++ pid_t pid; ++ ++ rcu_read_lock(); ++ owner = READ_ONCE(b->lock.owner); ++ pid = owner ? owner->pid : 0; ++ rcu_read_unlock(); ++ ++ prt_tab(out); ++ prt_printf(out, "%px %c l=%u %s:", b, b->cached ? 'c' : 'b', ++ b->level, bch2_btree_ids[b->btree_id]); ++ bch2_bpos_to_text(out, btree_node_pos(b)); ++ ++ prt_tab(out); ++ prt_printf(out, " locks %u:%u:%u held by pid %u", ++ c.n[0], c.n[1], c.n[2], pid); ++} ++ ++void bch2_btree_trans_to_text(struct printbuf *out, struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ struct btree_bkey_cached_common *b; ++ static char lock_types[] = { 'r', 'i', 'w' }; ++ unsigned l, idx; ++ ++ if (!out->nr_tabstops) { ++ printbuf_tabstop_push(out, 16); ++ printbuf_tabstop_push(out, 32); ++ } ++ ++ prt_printf(out, "%i %s\n", trans->locking_wait.task->pid, trans->fn); ++ ++ trans_for_each_path_safe(trans, path, idx) { ++ if (!path->nodes_locked) ++ continue; ++ ++ prt_printf(out, " path %u %c l=%u %s:", ++ path->idx, ++ path->cached ? 'c' : 'b', ++ path->level, ++ bch2_btree_ids[path->btree_id]); ++ bch2_bpos_to_text(out, path->pos); ++ prt_newline(out); ++ ++ for (l = 0; l < BTREE_MAX_DEPTH; l++) { ++ if (btree_node_locked(path, l) && ++ !IS_ERR_OR_NULL(b = (void *) READ_ONCE(path->l[l].b))) { ++ prt_printf(out, " %c l=%u ", ++ lock_types[btree_node_locked_type(path, l)], l); ++ bch2_btree_bkey_cached_common_to_text(out, b); ++ prt_newline(out); ++ } ++ } ++ } ++ ++ b = READ_ONCE(trans->locking); ++ if (b) { ++ prt_printf(out, " blocked for %lluus on", ++ div_u64(local_clock() - trans->locking_wait.start_time, ++ 1000)); ++ prt_newline(out); ++ prt_printf(out, " %c", lock_types[trans->locking_wait.lock_want]); ++ bch2_btree_bkey_cached_common_to_text(out, b); ++ prt_newline(out); ++ } ++} ++ ++void bch2_fs_btree_iter_exit(struct bch_fs *c) ++{ ++ struct btree_transaction_stats *s; ++ struct btree_trans *trans; ++ int cpu; ++ ++ trans = list_first_entry_or_null(&c->btree_trans_list, struct btree_trans, list); ++ if (trans) ++ panic("%s leaked btree_trans\n", trans->fn); ++ ++ if (c->btree_trans_bufs) ++ for_each_possible_cpu(cpu) ++ kfree(per_cpu_ptr(c->btree_trans_bufs, cpu)->trans); ++ free_percpu(c->btree_trans_bufs); ++ ++ for (s = c->btree_transaction_stats; ++ s < c->btree_transaction_stats + ARRAY_SIZE(c->btree_transaction_stats); ++ s++) { ++ kfree(s->max_paths_text); ++ bch2_time_stats_exit(&s->lock_hold_times); ++ } ++ ++ if (c->btree_trans_barrier_initialized) ++ cleanup_srcu_struct(&c->btree_trans_barrier); ++ mempool_exit(&c->btree_trans_mem_pool); ++ mempool_exit(&c->btree_trans_pool); ++} ++ ++int bch2_fs_btree_iter_init(struct bch_fs *c) ++{ ++ struct btree_transaction_stats *s; ++ int ret; ++ ++ for (s = c->btree_transaction_stats; ++ s < c->btree_transaction_stats + ARRAY_SIZE(c->btree_transaction_stats); ++ s++) { ++ bch2_time_stats_init(&s->lock_hold_times); ++ mutex_init(&s->lock); ++ } ++ ++ INIT_LIST_HEAD(&c->btree_trans_list); ++ seqmutex_init(&c->btree_trans_lock); ++ ++ c->btree_trans_bufs = alloc_percpu(struct btree_trans_buf); ++ if (!c->btree_trans_bufs) ++ return -ENOMEM; ++ ++ ret = mempool_init_kmalloc_pool(&c->btree_trans_pool, 1, ++ sizeof(struct btree_trans)) ?: ++ mempool_init_kmalloc_pool(&c->btree_trans_mem_pool, 1, ++ BTREE_TRANS_MEM_MAX) ?: ++ init_srcu_struct(&c->btree_trans_barrier); ++ if (!ret) ++ c->btree_trans_barrier_initialized = true; ++ return ret; ++} +diff --git a/fs/bcachefs/btree_iter.h b/fs/bcachefs/btree_iter.h +new file mode 100644 +index 000000000000..fbe273453db3 +--- /dev/null ++++ b/fs/bcachefs/btree_iter.h +@@ -0,0 +1,939 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_ITER_H ++#define _BCACHEFS_BTREE_ITER_H ++ ++#include "bset.h" ++#include "btree_types.h" ++#include "trace.h" ++ ++static inline int __bkey_err(const struct bkey *k) ++{ ++ return PTR_ERR_OR_ZERO(k); ++} ++ ++#define bkey_err(_k) __bkey_err((_k).k) ++ ++static inline void __btree_path_get(struct btree_path *path, bool intent) ++{ ++ path->ref++; ++ path->intent_ref += intent; ++} ++ ++static inline bool __btree_path_put(struct btree_path *path, bool intent) ++{ ++ EBUG_ON(!path->ref); ++ EBUG_ON(!path->intent_ref && intent); ++ path->intent_ref -= intent; ++ return --path->ref == 0; ++} ++ ++static inline void btree_path_set_dirty(struct btree_path *path, ++ enum btree_path_uptodate u) ++{ ++ path->uptodate = max_t(unsigned, path->uptodate, u); ++} ++ ++static inline struct btree *btree_path_node(struct btree_path *path, ++ unsigned level) ++{ ++ return level < BTREE_MAX_DEPTH ? path->l[level].b : NULL; ++} ++ ++static inline bool btree_node_lock_seq_matches(const struct btree_path *path, ++ const struct btree *b, unsigned level) ++{ ++ return path->l[level].lock_seq == six_lock_seq(&b->c.lock); ++} ++ ++static inline struct btree *btree_node_parent(struct btree_path *path, ++ struct btree *b) ++{ ++ return btree_path_node(path, b->c.level + 1); ++} ++ ++/* Iterate over paths within a transaction: */ ++ ++void __bch2_btree_trans_sort_paths(struct btree_trans *); ++ ++static inline void btree_trans_sort_paths(struct btree_trans *trans) ++{ ++ if (!IS_ENABLED(CONFIG_BCACHEFS_DEBUG) && ++ trans->paths_sorted) ++ return; ++ __bch2_btree_trans_sort_paths(trans); ++} ++ ++static inline struct btree_path * ++__trans_next_path(struct btree_trans *trans, unsigned idx) ++{ ++ u64 l; ++ ++ if (idx == BTREE_ITER_MAX) ++ return NULL; ++ ++ l = trans->paths_allocated >> idx; ++ if (!l) ++ return NULL; ++ ++ idx += __ffs64(l); ++ EBUG_ON(idx >= BTREE_ITER_MAX); ++ EBUG_ON(trans->paths[idx].idx != idx); ++ return &trans->paths[idx]; ++} ++ ++#define trans_for_each_path_from(_trans, _path, _start) \ ++ for (_path = __trans_next_path((_trans), _start); \ ++ (_path); \ ++ _path = __trans_next_path((_trans), (_path)->idx + 1)) ++ ++#define trans_for_each_path(_trans, _path) \ ++ trans_for_each_path_from(_trans, _path, 0) ++ ++static inline struct btree_path * ++__trans_next_path_safe(struct btree_trans *trans, unsigned *idx) ++{ ++ u64 l; ++ ++ if (*idx == BTREE_ITER_MAX) ++ return NULL; ++ ++ l = trans->paths_allocated >> *idx; ++ if (!l) ++ return NULL; ++ ++ *idx += __ffs64(l); ++ EBUG_ON(*idx >= BTREE_ITER_MAX); ++ return &trans->paths[*idx]; ++} ++ ++/* ++ * This version is intended to be safe for use on a btree_trans that is owned by ++ * another thread, for bch2_btree_trans_to_text(); ++ */ ++#define trans_for_each_path_safe_from(_trans, _path, _idx, _start) \ ++ for (_idx = _start; \ ++ (_path = __trans_next_path_safe((_trans), &_idx)); \ ++ _idx++) ++ ++#define trans_for_each_path_safe(_trans, _path, _idx) \ ++ trans_for_each_path_safe_from(_trans, _path, _idx, 0) ++ ++static inline struct btree_path *next_btree_path(struct btree_trans *trans, struct btree_path *path) ++{ ++ unsigned idx = path ? path->sorted_idx + 1 : 0; ++ ++ EBUG_ON(idx > trans->nr_sorted); ++ ++ return idx < trans->nr_sorted ++ ? trans->paths + trans->sorted[idx] ++ : NULL; ++} ++ ++static inline struct btree_path *prev_btree_path(struct btree_trans *trans, struct btree_path *path) ++{ ++ unsigned idx = path ? path->sorted_idx : trans->nr_sorted; ++ ++ return idx ++ ? trans->paths + trans->sorted[idx - 1] ++ : NULL; ++} ++ ++#define trans_for_each_path_inorder(_trans, _path, _i) \ ++ for (_i = 0; \ ++ ((_path) = (_trans)->paths + trans->sorted[_i]), (_i) < (_trans)->nr_sorted;\ ++ _i++) ++ ++#define trans_for_each_path_inorder_reverse(_trans, _path, _i) \ ++ for (_i = trans->nr_sorted - 1; \ ++ ((_path) = (_trans)->paths + trans->sorted[_i]), (_i) >= 0;\ ++ --_i) ++ ++static inline bool __path_has_node(const struct btree_path *path, ++ const struct btree *b) ++{ ++ return path->l[b->c.level].b == b && ++ btree_node_lock_seq_matches(path, b, b->c.level); ++} ++ ++static inline struct btree_path * ++__trans_next_path_with_node(struct btree_trans *trans, struct btree *b, ++ unsigned idx) ++{ ++ struct btree_path *path = __trans_next_path(trans, idx); ++ ++ while (path && !__path_has_node(path, b)) ++ path = __trans_next_path(trans, path->idx + 1); ++ ++ return path; ++} ++ ++#define trans_for_each_path_with_node(_trans, _b, _path) \ ++ for (_path = __trans_next_path_with_node((_trans), (_b), 0); \ ++ (_path); \ ++ _path = __trans_next_path_with_node((_trans), (_b), \ ++ (_path)->idx + 1)) ++ ++struct btree_path *__bch2_btree_path_make_mut(struct btree_trans *, struct btree_path *, ++ bool, unsigned long); ++ ++static inline struct btree_path * __must_check ++bch2_btree_path_make_mut(struct btree_trans *trans, ++ struct btree_path *path, bool intent, ++ unsigned long ip) ++{ ++ if (path->ref > 1 || path->preserve) ++ path = __bch2_btree_path_make_mut(trans, path, intent, ip); ++ path->should_be_locked = false; ++ return path; ++} ++ ++struct btree_path * __must_check ++__bch2_btree_path_set_pos(struct btree_trans *, struct btree_path *, ++ struct bpos, bool, unsigned long, int); ++ ++static inline struct btree_path * __must_check ++bch2_btree_path_set_pos(struct btree_trans *trans, ++ struct btree_path *path, struct bpos new_pos, ++ bool intent, unsigned long ip) ++{ ++ int cmp = bpos_cmp(new_pos, path->pos); ++ ++ return cmp ++ ? __bch2_btree_path_set_pos(trans, path, new_pos, intent, ip, cmp) ++ : path; ++} ++ ++int __must_check bch2_btree_path_traverse_one(struct btree_trans *, struct btree_path *, ++ unsigned, unsigned long); ++ ++static inline int __must_check bch2_btree_path_traverse(struct btree_trans *trans, ++ struct btree_path *path, unsigned flags) ++{ ++ if (path->uptodate < BTREE_ITER_NEED_RELOCK) ++ return 0; ++ ++ return bch2_btree_path_traverse_one(trans, path, flags, _RET_IP_); ++} ++ ++int __must_check bch2_btree_path_traverse(struct btree_trans *, ++ struct btree_path *, unsigned); ++struct btree_path *bch2_path_get(struct btree_trans *, enum btree_id, struct bpos, ++ unsigned, unsigned, unsigned, unsigned long); ++struct bkey_s_c bch2_btree_path_peek_slot(struct btree_path *, struct bkey *); ++ ++/* ++ * bch2_btree_path_peek_slot() for a cached iterator might return a key in a ++ * different snapshot: ++ */ ++static inline struct bkey_s_c bch2_btree_path_peek_slot_exact(struct btree_path *path, struct bkey *u) ++{ ++ struct bkey_s_c k = bch2_btree_path_peek_slot(path, u); ++ ++ if (k.k && bpos_eq(path->pos, k.k->p)) ++ return k; ++ ++ bkey_init(u); ++ u->p = path->pos; ++ return (struct bkey_s_c) { u, NULL }; ++} ++ ++struct bkey_i *bch2_btree_journal_peek_slot(struct btree_trans *, ++ struct btree_iter *, struct bpos); ++ ++void bch2_btree_path_level_init(struct btree_trans *, struct btree_path *, struct btree *); ++ ++int __bch2_trans_mutex_lock(struct btree_trans *, struct mutex *); ++ ++static inline int bch2_trans_mutex_lock(struct btree_trans *trans, struct mutex *lock) ++{ ++ return mutex_trylock(lock) ++ ? 0 ++ : __bch2_trans_mutex_lock(trans, lock); ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_trans_verify_paths(struct btree_trans *); ++void bch2_assert_pos_locked(struct btree_trans *, enum btree_id, ++ struct bpos, bool); ++#else ++static inline void bch2_trans_verify_paths(struct btree_trans *trans) {} ++static inline void bch2_assert_pos_locked(struct btree_trans *trans, enum btree_id id, ++ struct bpos pos, bool key_cache) {} ++#endif ++ ++void bch2_btree_path_fix_key_modified(struct btree_trans *trans, ++ struct btree *, struct bkey_packed *); ++void bch2_btree_node_iter_fix(struct btree_trans *trans, struct btree_path *, ++ struct btree *, struct btree_node_iter *, ++ struct bkey_packed *, unsigned, unsigned); ++ ++int bch2_btree_path_relock_intent(struct btree_trans *, struct btree_path *); ++ ++void bch2_path_put(struct btree_trans *, struct btree_path *, bool); ++ ++int bch2_trans_relock(struct btree_trans *); ++int bch2_trans_relock_notrace(struct btree_trans *); ++void bch2_trans_unlock(struct btree_trans *); ++bool bch2_trans_locked(struct btree_trans *); ++ ++static inline int trans_was_restarted(struct btree_trans *trans, u32 restart_count) ++{ ++ return restart_count != trans->restart_count ++ ? -BCH_ERR_transaction_restart_nested ++ : 0; ++} ++ ++void __noreturn bch2_trans_restart_error(struct btree_trans *, u32); ++ ++static inline void bch2_trans_verify_not_restarted(struct btree_trans *trans, ++ u32 restart_count) ++{ ++ if (trans_was_restarted(trans, restart_count)) ++ bch2_trans_restart_error(trans, restart_count); ++} ++ ++void __noreturn bch2_trans_in_restart_error(struct btree_trans *); ++ ++static inline void bch2_trans_verify_not_in_restart(struct btree_trans *trans) ++{ ++ if (trans->restarted) ++ bch2_trans_in_restart_error(trans); ++} ++ ++__always_inline ++static int btree_trans_restart_nounlock(struct btree_trans *trans, int err) ++{ ++ BUG_ON(err <= 0); ++ BUG_ON(!bch2_err_matches(-err, BCH_ERR_transaction_restart)); ++ ++ trans->restarted = err; ++ trans->last_restarted_ip = _THIS_IP_; ++ return -err; ++} ++ ++__always_inline ++static int btree_trans_restart(struct btree_trans *trans, int err) ++{ ++ btree_trans_restart_nounlock(trans, err); ++ return -err; ++} ++ ++bool bch2_btree_node_upgrade(struct btree_trans *, ++ struct btree_path *, unsigned); ++ ++void __bch2_btree_path_downgrade(struct btree_trans *, struct btree_path *, unsigned); ++ ++static inline void bch2_btree_path_downgrade(struct btree_trans *trans, ++ struct btree_path *path) ++{ ++ unsigned new_locks_want = path->level + !!path->intent_ref; ++ ++ if (path->locks_want > new_locks_want) ++ __bch2_btree_path_downgrade(trans, path, new_locks_want); ++} ++ ++void bch2_trans_downgrade(struct btree_trans *); ++ ++void bch2_trans_node_add(struct btree_trans *trans, struct btree *); ++void bch2_trans_node_reinit_iter(struct btree_trans *, struct btree *); ++ ++int __must_check __bch2_btree_iter_traverse(struct btree_iter *iter); ++int __must_check bch2_btree_iter_traverse(struct btree_iter *); ++ ++struct btree *bch2_btree_iter_peek_node(struct btree_iter *); ++struct btree *bch2_btree_iter_peek_node_and_restart(struct btree_iter *); ++struct btree *bch2_btree_iter_next_node(struct btree_iter *); ++ ++struct bkey_s_c bch2_btree_iter_peek_upto(struct btree_iter *, struct bpos); ++struct bkey_s_c bch2_btree_iter_next(struct btree_iter *); ++ ++struct bkey_s_c bch2_btree_iter_peek_all_levels(struct btree_iter *); ++ ++static inline struct bkey_s_c bch2_btree_iter_peek(struct btree_iter *iter) ++{ ++ return bch2_btree_iter_peek_upto(iter, SPOS_MAX); ++} ++ ++struct bkey_s_c bch2_btree_iter_peek_prev(struct btree_iter *); ++struct bkey_s_c bch2_btree_iter_prev(struct btree_iter *); ++ ++struct bkey_s_c bch2_btree_iter_peek_slot(struct btree_iter *); ++struct bkey_s_c bch2_btree_iter_next_slot(struct btree_iter *); ++struct bkey_s_c bch2_btree_iter_prev_slot(struct btree_iter *); ++ ++bool bch2_btree_iter_advance(struct btree_iter *); ++bool bch2_btree_iter_rewind(struct btree_iter *); ++ ++static inline void __bch2_btree_iter_set_pos(struct btree_iter *iter, struct bpos new_pos) ++{ ++ iter->k.type = KEY_TYPE_deleted; ++ iter->k.p.inode = iter->pos.inode = new_pos.inode; ++ iter->k.p.offset = iter->pos.offset = new_pos.offset; ++ iter->k.p.snapshot = iter->pos.snapshot = new_pos.snapshot; ++ iter->k.size = 0; ++} ++ ++static inline void bch2_btree_iter_set_pos(struct btree_iter *iter, struct bpos new_pos) ++{ ++ if (unlikely(iter->update_path)) ++ bch2_path_put(iter->trans, iter->update_path, ++ iter->flags & BTREE_ITER_INTENT); ++ iter->update_path = NULL; ++ ++ if (!(iter->flags & BTREE_ITER_ALL_SNAPSHOTS)) ++ new_pos.snapshot = iter->snapshot; ++ ++ __bch2_btree_iter_set_pos(iter, new_pos); ++} ++ ++static inline void bch2_btree_iter_set_pos_to_extent_start(struct btree_iter *iter) ++{ ++ BUG_ON(!(iter->flags & BTREE_ITER_IS_EXTENTS)); ++ iter->pos = bkey_start_pos(&iter->k); ++} ++ ++static inline void bch2_btree_iter_set_snapshot(struct btree_iter *iter, u32 snapshot) ++{ ++ struct bpos pos = iter->pos; ++ ++ iter->snapshot = snapshot; ++ pos.snapshot = snapshot; ++ bch2_btree_iter_set_pos(iter, pos); ++} ++ ++void bch2_trans_iter_exit(struct btree_trans *, struct btree_iter *); ++ ++static inline unsigned __bch2_btree_iter_flags(struct btree_trans *trans, ++ unsigned btree_id, ++ unsigned flags) ++{ ++ if (flags & BTREE_ITER_ALL_LEVELS) ++ flags |= BTREE_ITER_ALL_SNAPSHOTS|__BTREE_ITER_ALL_SNAPSHOTS; ++ ++ if (!(flags & (BTREE_ITER_ALL_SNAPSHOTS|BTREE_ITER_NOT_EXTENTS)) && ++ btree_node_type_is_extents(btree_id)) ++ flags |= BTREE_ITER_IS_EXTENTS; ++ ++ if (!(flags & __BTREE_ITER_ALL_SNAPSHOTS) && ++ !btree_type_has_snapshots(btree_id)) ++ flags &= ~BTREE_ITER_ALL_SNAPSHOTS; ++ ++ if (!(flags & BTREE_ITER_ALL_SNAPSHOTS) && ++ btree_type_has_snapshots(btree_id)) ++ flags |= BTREE_ITER_FILTER_SNAPSHOTS; ++ ++ if (trans->journal_replay_not_finished) ++ flags |= BTREE_ITER_WITH_JOURNAL; ++ ++ return flags; ++} ++ ++static inline unsigned bch2_btree_iter_flags(struct btree_trans *trans, ++ unsigned btree_id, ++ unsigned flags) ++{ ++ if (!btree_id_cached(trans->c, btree_id)) { ++ flags &= ~BTREE_ITER_CACHED; ++ flags &= ~BTREE_ITER_WITH_KEY_CACHE; ++ } else if (!(flags & BTREE_ITER_CACHED)) ++ flags |= BTREE_ITER_WITH_KEY_CACHE; ++ ++ return __bch2_btree_iter_flags(trans, btree_id, flags); ++} ++ ++static inline void bch2_trans_iter_init_common(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned locks_want, ++ unsigned depth, ++ unsigned flags, ++ unsigned long ip) ++{ ++ memset(iter, 0, sizeof(*iter)); ++ iter->trans = trans; ++ iter->btree_id = btree_id; ++ iter->flags = flags; ++ iter->snapshot = pos.snapshot; ++ iter->pos = pos; ++ iter->k.p = pos; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ iter->ip_allocated = ip; ++#endif ++ iter->path = bch2_path_get(trans, btree_id, iter->pos, ++ locks_want, depth, flags, ip); ++} ++ ++void bch2_trans_iter_init_outlined(struct btree_trans *, struct btree_iter *, ++ enum btree_id, struct bpos, unsigned); ++ ++static inline void bch2_trans_iter_init(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags) ++{ ++ if (__builtin_constant_p(btree_id) && ++ __builtin_constant_p(flags)) ++ bch2_trans_iter_init_common(trans, iter, btree_id, pos, 0, 0, ++ bch2_btree_iter_flags(trans, btree_id, flags), ++ _THIS_IP_); ++ else ++ bch2_trans_iter_init_outlined(trans, iter, btree_id, pos, flags); ++} ++ ++void bch2_trans_node_iter_init(struct btree_trans *, struct btree_iter *, ++ enum btree_id, struct bpos, ++ unsigned, unsigned, unsigned); ++void bch2_trans_copy_iter(struct btree_iter *, struct btree_iter *); ++ ++static inline void set_btree_iter_dontneed(struct btree_iter *iter) ++{ ++ if (!iter->trans->restarted) ++ iter->path->preserve = false; ++} ++ ++void *__bch2_trans_kmalloc(struct btree_trans *, size_t); ++ ++static inline void *bch2_trans_kmalloc(struct btree_trans *trans, size_t size) ++{ ++ size = roundup(size, 8); ++ ++ if (likely(trans->mem_top + size <= trans->mem_bytes)) { ++ void *p = trans->mem + trans->mem_top; ++ ++ trans->mem_top += size; ++ memset(p, 0, size); ++ return p; ++ } else { ++ return __bch2_trans_kmalloc(trans, size); ++ } ++} ++ ++static inline void *bch2_trans_kmalloc_nomemzero(struct btree_trans *trans, size_t size) ++{ ++ size = roundup(size, 8); ++ ++ if (likely(trans->mem_top + size <= trans->mem_bytes)) { ++ void *p = trans->mem + trans->mem_top; ++ ++ trans->mem_top += size; ++ return p; ++ } else { ++ return __bch2_trans_kmalloc(trans, size); ++ } ++} ++ ++static inline struct bkey_s_c __bch2_bkey_get_iter(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags, unsigned type) ++{ ++ struct bkey_s_c k; ++ ++ bch2_trans_iter_init(trans, iter, btree_id, pos, flags); ++ k = bch2_btree_iter_peek_slot(iter); ++ ++ if (!bkey_err(k) && type && k.k->type != type) ++ k = bkey_s_c_err(-BCH_ERR_ENOENT_bkey_type_mismatch); ++ if (unlikely(bkey_err(k))) ++ bch2_trans_iter_exit(trans, iter); ++ return k; ++} ++ ++static inline struct bkey_s_c bch2_bkey_get_iter(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags) ++{ ++ return __bch2_bkey_get_iter(trans, iter, btree_id, pos, flags, 0); ++} ++ ++#define bch2_bkey_get_iter_typed(_trans, _iter, _btree_id, _pos, _flags, _type)\ ++ bkey_s_c_to_##_type(__bch2_bkey_get_iter(_trans, _iter, \ ++ _btree_id, _pos, _flags, KEY_TYPE_##_type)) ++ ++static inline int __bch2_bkey_get_val_typed(struct btree_trans *trans, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags, unsigned type, ++ unsigned val_size, void *val) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ k = __bch2_bkey_get_iter(trans, &iter, btree_id, pos, flags, type); ++ ret = bkey_err(k); ++ if (!ret) { ++ unsigned b = min_t(unsigned, bkey_val_bytes(k.k), val_size); ++ ++ memcpy(val, k.v, b); ++ if (unlikely(b < sizeof(*val))) ++ memset((void *) val + b, 0, sizeof(*val) - b); ++ bch2_trans_iter_exit(trans, &iter); ++ } ++ ++ return ret; ++} ++ ++#define bch2_bkey_get_val_typed(_trans, _btree_id, _pos, _flags, _type, _val)\ ++ __bch2_bkey_get_val_typed(_trans, _btree_id, _pos, _flags, \ ++ KEY_TYPE_##_type, sizeof(*_val), _val) ++ ++u32 bch2_trans_begin(struct btree_trans *); ++ ++/* ++ * XXX ++ * this does not handle transaction restarts from bch2_btree_iter_next_node() ++ * correctly ++ */ ++#define __for_each_btree_node(_trans, _iter, _btree_id, _start, \ ++ _locks_want, _depth, _flags, _b, _ret) \ ++ for (bch2_trans_node_iter_init((_trans), &(_iter), (_btree_id), \ ++ _start, _locks_want, _depth, _flags); \ ++ (_b) = bch2_btree_iter_peek_node_and_restart(&(_iter)), \ ++ !((_ret) = PTR_ERR_OR_ZERO(_b)) && (_b); \ ++ (_b) = bch2_btree_iter_next_node(&(_iter))) ++ ++#define for_each_btree_node(_trans, _iter, _btree_id, _start, \ ++ _flags, _b, _ret) \ ++ __for_each_btree_node(_trans, _iter, _btree_id, _start, \ ++ 0, 0, _flags, _b, _ret) ++ ++static inline struct bkey_s_c bch2_btree_iter_peek_prev_type(struct btree_iter *iter, ++ unsigned flags) ++{ ++ BUG_ON(flags & BTREE_ITER_ALL_LEVELS); ++ ++ return flags & BTREE_ITER_SLOTS ? bch2_btree_iter_peek_slot(iter) : ++ bch2_btree_iter_peek_prev(iter); ++} ++ ++static inline struct bkey_s_c bch2_btree_iter_peek_type(struct btree_iter *iter, ++ unsigned flags) ++{ ++ return flags & BTREE_ITER_ALL_LEVELS ? bch2_btree_iter_peek_all_levels(iter) : ++ flags & BTREE_ITER_SLOTS ? bch2_btree_iter_peek_slot(iter) : ++ bch2_btree_iter_peek(iter); ++} ++ ++static inline struct bkey_s_c bch2_btree_iter_peek_upto_type(struct btree_iter *iter, ++ struct bpos end, ++ unsigned flags) ++{ ++ if (!(flags & BTREE_ITER_SLOTS)) ++ return bch2_btree_iter_peek_upto(iter, end); ++ ++ if (bkey_gt(iter->pos, end)) ++ return bkey_s_c_null; ++ ++ return bch2_btree_iter_peek_slot(iter); ++} ++ ++static inline int btree_trans_too_many_iters(struct btree_trans *trans) ++{ ++ if (hweight64(trans->paths_allocated) > BTREE_ITER_MAX - 8) { ++ trace_and_count(trans->c, trans_restart_too_many_iters, trans, _THIS_IP_); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_too_many_iters); ++ } ++ ++ return 0; ++} ++ ++struct bkey_s_c bch2_btree_iter_peek_and_restart_outlined(struct btree_iter *); ++ ++static inline struct bkey_s_c ++__bch2_btree_iter_peek_and_restart(struct btree_trans *trans, ++ struct btree_iter *iter, unsigned flags) ++{ ++ struct bkey_s_c k; ++ ++ while (btree_trans_too_many_iters(trans) || ++ (k = bch2_btree_iter_peek_type(iter, flags), ++ bch2_err_matches(bkey_err(k), BCH_ERR_transaction_restart))) ++ bch2_trans_begin(trans); ++ ++ return k; ++} ++ ++static inline struct bkey_s_c ++__bch2_btree_iter_peek_upto_and_restart(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bpos end, ++ unsigned flags) ++{ ++ struct bkey_s_c k; ++ ++ while (btree_trans_too_many_iters(trans) || ++ (k = bch2_btree_iter_peek_upto_type(iter, end, flags), ++ bch2_err_matches(bkey_err(k), BCH_ERR_transaction_restart))) ++ bch2_trans_begin(trans); ++ ++ return k; ++} ++ ++#define lockrestart_do(_trans, _do) \ ++({ \ ++ u32 _restart_count; \ ++ int _ret2; \ ++ \ ++ do { \ ++ _restart_count = bch2_trans_begin(_trans); \ ++ _ret2 = (_do); \ ++ } while (bch2_err_matches(_ret2, BCH_ERR_transaction_restart)); \ ++ \ ++ if (!_ret2) \ ++ bch2_trans_verify_not_restarted(_trans, _restart_count);\ ++ \ ++ _ret2; \ ++}) ++ ++/* ++ * nested_lockrestart_do(), nested_commit_do(): ++ * ++ * These are like lockrestart_do() and commit_do(), with two differences: ++ * ++ * - We don't call bch2_trans_begin() unless we had a transaction restart ++ * - We return -BCH_ERR_transaction_restart_nested if we succeeded after a ++ * transaction restart ++ */ ++#define nested_lockrestart_do(_trans, _do) \ ++({ \ ++ u32 _restart_count, _orig_restart_count; \ ++ int _ret2; \ ++ \ ++ _restart_count = _orig_restart_count = (_trans)->restart_count; \ ++ \ ++ while (bch2_err_matches(_ret2 = (_do), BCH_ERR_transaction_restart))\ ++ _restart_count = bch2_trans_begin(_trans); \ ++ \ ++ if (!_ret2) \ ++ bch2_trans_verify_not_restarted(_trans, _restart_count);\ ++ \ ++ _ret2 ?: trans_was_restarted(_trans, _restart_count); \ ++}) ++ ++#define for_each_btree_key2(_trans, _iter, _btree_id, \ ++ _start, _flags, _k, _do) \ ++({ \ ++ int _ret3 = 0; \ ++ \ ++ bch2_trans_iter_init((_trans), &(_iter), (_btree_id), \ ++ (_start), (_flags)); \ ++ \ ++ while (1) { \ ++ u32 _restart_count = bch2_trans_begin(_trans); \ ++ \ ++ _ret3 = 0; \ ++ (_k) = bch2_btree_iter_peek_type(&(_iter), (_flags)); \ ++ if (!(_k).k) \ ++ break; \ ++ \ ++ _ret3 = bkey_err(_k) ?: (_do); \ ++ if (bch2_err_matches(_ret3, BCH_ERR_transaction_restart))\ ++ continue; \ ++ if (_ret3) \ ++ break; \ ++ bch2_trans_verify_not_restarted(_trans, _restart_count);\ ++ if (!bch2_btree_iter_advance(&(_iter))) \ ++ break; \ ++ } \ ++ \ ++ bch2_trans_iter_exit((_trans), &(_iter)); \ ++ _ret3; \ ++}) ++ ++#define for_each_btree_key2_upto(_trans, _iter, _btree_id, \ ++ _start, _end, _flags, _k, _do) \ ++({ \ ++ int _ret3 = 0; \ ++ \ ++ bch2_trans_iter_init((_trans), &(_iter), (_btree_id), \ ++ (_start), (_flags)); \ ++ \ ++ while (1) { \ ++ u32 _restart_count = bch2_trans_begin(_trans); \ ++ \ ++ _ret3 = 0; \ ++ (_k) = bch2_btree_iter_peek_upto_type(&(_iter), _end, (_flags));\ ++ if (!(_k).k) \ ++ break; \ ++ \ ++ _ret3 = bkey_err(_k) ?: (_do); \ ++ if (bch2_err_matches(_ret3, BCH_ERR_transaction_restart))\ ++ continue; \ ++ if (_ret3) \ ++ break; \ ++ bch2_trans_verify_not_restarted(_trans, _restart_count);\ ++ if (!bch2_btree_iter_advance(&(_iter))) \ ++ break; \ ++ } \ ++ \ ++ bch2_trans_iter_exit((_trans), &(_iter)); \ ++ _ret3; \ ++}) ++ ++#define for_each_btree_key_reverse(_trans, _iter, _btree_id, \ ++ _start, _flags, _k, _do) \ ++({ \ ++ int _ret3 = 0; \ ++ \ ++ bch2_trans_iter_init((_trans), &(_iter), (_btree_id), \ ++ (_start), (_flags)); \ ++ \ ++ while (1) { \ ++ u32 _restart_count = bch2_trans_begin(_trans); \ ++ (_k) = bch2_btree_iter_peek_prev_type(&(_iter), (_flags));\ ++ if (!(_k).k) { \ ++ _ret3 = 0; \ ++ break; \ ++ } \ ++ \ ++ _ret3 = bkey_err(_k) ?: (_do); \ ++ if (bch2_err_matches(_ret3, BCH_ERR_transaction_restart))\ ++ continue; \ ++ if (_ret3) \ ++ break; \ ++ bch2_trans_verify_not_restarted(_trans, _restart_count);\ ++ if (!bch2_btree_iter_rewind(&(_iter))) \ ++ break; \ ++ } \ ++ \ ++ bch2_trans_iter_exit((_trans), &(_iter)); \ ++ _ret3; \ ++}) ++ ++#define for_each_btree_key_commit(_trans, _iter, _btree_id, \ ++ _start, _iter_flags, _k, \ ++ _disk_res, _journal_seq, _commit_flags,\ ++ _do) \ ++ for_each_btree_key2(_trans, _iter, _btree_id, _start, _iter_flags, _k,\ ++ (_do) ?: bch2_trans_commit(_trans, (_disk_res),\ ++ (_journal_seq), (_commit_flags))) ++ ++#define for_each_btree_key_reverse_commit(_trans, _iter, _btree_id, \ ++ _start, _iter_flags, _k, \ ++ _disk_res, _journal_seq, _commit_flags,\ ++ _do) \ ++ for_each_btree_key_reverse(_trans, _iter, _btree_id, _start, _iter_flags, _k,\ ++ (_do) ?: bch2_trans_commit(_trans, (_disk_res),\ ++ (_journal_seq), (_commit_flags))) ++ ++#define for_each_btree_key_upto_commit(_trans, _iter, _btree_id, \ ++ _start, _end, _iter_flags, _k, \ ++ _disk_res, _journal_seq, _commit_flags,\ ++ _do) \ ++ for_each_btree_key2_upto(_trans, _iter, _btree_id, _start, _end, _iter_flags, _k,\ ++ (_do) ?: bch2_trans_commit(_trans, (_disk_res),\ ++ (_journal_seq), (_commit_flags))) ++ ++#define for_each_btree_key(_trans, _iter, _btree_id, \ ++ _start, _flags, _k, _ret) \ ++ for (bch2_trans_iter_init((_trans), &(_iter), (_btree_id), \ ++ (_start), (_flags)); \ ++ (_k) = __bch2_btree_iter_peek_and_restart((_trans), &(_iter), _flags),\ ++ !((_ret) = bkey_err(_k)) && (_k).k; \ ++ bch2_btree_iter_advance(&(_iter))) ++ ++#define for_each_btree_key_upto(_trans, _iter, _btree_id, \ ++ _start, _end, _flags, _k, _ret) \ ++ for (bch2_trans_iter_init((_trans), &(_iter), (_btree_id), \ ++ (_start), (_flags)); \ ++ (_k) = __bch2_btree_iter_peek_upto_and_restart((_trans), \ ++ &(_iter), _end, _flags),\ ++ !((_ret) = bkey_err(_k)) && (_k).k; \ ++ bch2_btree_iter_advance(&(_iter))) ++ ++#define for_each_btree_key_norestart(_trans, _iter, _btree_id, \ ++ _start, _flags, _k, _ret) \ ++ for (bch2_trans_iter_init((_trans), &(_iter), (_btree_id), \ ++ (_start), (_flags)); \ ++ (_k) = bch2_btree_iter_peek_type(&(_iter), _flags), \ ++ !((_ret) = bkey_err(_k)) && (_k).k; \ ++ bch2_btree_iter_advance(&(_iter))) ++ ++#define for_each_btree_key_upto_norestart(_trans, _iter, _btree_id, \ ++ _start, _end, _flags, _k, _ret) \ ++ for (bch2_trans_iter_init((_trans), &(_iter), (_btree_id), \ ++ (_start), (_flags)); \ ++ (_k) = bch2_btree_iter_peek_upto_type(&(_iter), _end, _flags),\ ++ !((_ret) = bkey_err(_k)) && (_k).k; \ ++ bch2_btree_iter_advance(&(_iter))) ++ ++#define for_each_btree_key_continue(_trans, _iter, _flags, _k, _ret) \ ++ for (; \ ++ (_k) = __bch2_btree_iter_peek_and_restart((_trans), &(_iter), _flags),\ ++ !((_ret) = bkey_err(_k)) && (_k).k; \ ++ bch2_btree_iter_advance(&(_iter))) ++ ++#define for_each_btree_key_continue_norestart(_iter, _flags, _k, _ret) \ ++ for (; \ ++ (_k) = bch2_btree_iter_peek_type(&(_iter), _flags), \ ++ !((_ret) = bkey_err(_k)) && (_k).k; \ ++ bch2_btree_iter_advance(&(_iter))) ++ ++#define for_each_btree_key_upto_continue_norestart(_iter, _end, _flags, _k, _ret)\ ++ for (; \ ++ (_k) = bch2_btree_iter_peek_upto_type(&(_iter), _end, _flags), \ ++ !((_ret) = bkey_err(_k)) && (_k).k; \ ++ bch2_btree_iter_advance(&(_iter))) ++ ++#define drop_locks_do(_trans, _do) \ ++({ \ ++ bch2_trans_unlock(_trans); \ ++ _do ?: bch2_trans_relock(_trans); \ ++}) ++ ++#define allocate_dropping_locks_errcode(_trans, _do) \ ++({ \ ++ gfp_t _gfp = GFP_NOWAIT|__GFP_NOWARN; \ ++ int _ret = _do; \ ++ \ ++ if (bch2_err_matches(_ret, ENOMEM)) { \ ++ _gfp = GFP_KERNEL; \ ++ _ret = drop_locks_do(trans, _do); \ ++ } \ ++ _ret; \ ++}) ++ ++#define allocate_dropping_locks(_trans, _ret, _do) \ ++({ \ ++ gfp_t _gfp = GFP_NOWAIT|__GFP_NOWARN; \ ++ typeof(_do) _p = _do; \ ++ \ ++ _ret = 0; \ ++ if (unlikely(!_p)) { \ ++ _gfp = GFP_KERNEL; \ ++ _ret = drop_locks_do(trans, ((_p = _do), 0)); \ ++ } \ ++ _p; \ ++}) ++ ++/* new multiple iterator interface: */ ++ ++void bch2_trans_updates_to_text(struct printbuf *, struct btree_trans *); ++void bch2_btree_path_to_text(struct printbuf *, struct btree_path *); ++void bch2_trans_paths_to_text(struct printbuf *, struct btree_trans *); ++void bch2_dump_trans_updates(struct btree_trans *); ++void bch2_dump_trans_paths_updates(struct btree_trans *); ++ ++struct btree_trans *__bch2_trans_get(struct bch_fs *, unsigned); ++void bch2_trans_put(struct btree_trans *); ++ ++extern const char *bch2_btree_transaction_fns[BCH_TRANSACTIONS_NR]; ++unsigned bch2_trans_get_fn_idx(const char *); ++ ++#define bch2_trans_get(_c) \ ++({ \ ++ static unsigned trans_fn_idx; \ ++ \ ++ if (unlikely(!trans_fn_idx)) \ ++ trans_fn_idx = bch2_trans_get_fn_idx(__func__); \ ++ __bch2_trans_get(_c, trans_fn_idx); \ ++}) ++ ++void bch2_btree_trans_to_text(struct printbuf *, struct btree_trans *); ++ ++void bch2_fs_btree_iter_exit(struct bch_fs *); ++int bch2_fs_btree_iter_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_BTREE_ITER_H */ +diff --git a/fs/bcachefs/btree_journal_iter.c b/fs/bcachefs/btree_journal_iter.c +new file mode 100644 +index 000000000000..58a981bcf3aa +--- /dev/null ++++ b/fs/bcachefs/btree_journal_iter.c +@@ -0,0 +1,531 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bset.h" ++#include "btree_journal_iter.h" ++#include "journal_io.h" ++ ++#include ++ ++/* ++ * For managing keys we read from the journal: until journal replay works normal ++ * btree lookups need to be able to find and return keys from the journal where ++ * they overwrite what's in the btree, so we have a special iterator and ++ * operations for the regular btree iter code to use: ++ */ ++ ++static int __journal_key_cmp(enum btree_id l_btree_id, ++ unsigned l_level, ++ struct bpos l_pos, ++ const struct journal_key *r) ++{ ++ return (cmp_int(l_btree_id, r->btree_id) ?: ++ cmp_int(l_level, r->level) ?: ++ bpos_cmp(l_pos, r->k->k.p)); ++} ++ ++static int journal_key_cmp(const struct journal_key *l, const struct journal_key *r) ++{ ++ return __journal_key_cmp(l->btree_id, l->level, l->k->k.p, r); ++} ++ ++static inline size_t idx_to_pos(struct journal_keys *keys, size_t idx) ++{ ++ size_t gap_size = keys->size - keys->nr; ++ ++ if (idx >= keys->gap) ++ idx += gap_size; ++ return idx; ++} ++ ++static inline struct journal_key *idx_to_key(struct journal_keys *keys, size_t idx) ++{ ++ return keys->d + idx_to_pos(keys, idx); ++} ++ ++static size_t __bch2_journal_key_search(struct journal_keys *keys, ++ enum btree_id id, unsigned level, ++ struct bpos pos) ++{ ++ size_t l = 0, r = keys->nr, m; ++ ++ while (l < r) { ++ m = l + ((r - l) >> 1); ++ if (__journal_key_cmp(id, level, pos, idx_to_key(keys, m)) > 0) ++ l = m + 1; ++ else ++ r = m; ++ } ++ ++ BUG_ON(l < keys->nr && ++ __journal_key_cmp(id, level, pos, idx_to_key(keys, l)) > 0); ++ ++ BUG_ON(l && ++ __journal_key_cmp(id, level, pos, idx_to_key(keys, l - 1)) <= 0); ++ ++ return l; ++} ++ ++static size_t bch2_journal_key_search(struct journal_keys *keys, ++ enum btree_id id, unsigned level, ++ struct bpos pos) ++{ ++ return idx_to_pos(keys, __bch2_journal_key_search(keys, id, level, pos)); ++} ++ ++struct bkey_i *bch2_journal_keys_peek_upto(struct bch_fs *c, enum btree_id btree_id, ++ unsigned level, struct bpos pos, ++ struct bpos end_pos, size_t *idx) ++{ ++ struct journal_keys *keys = &c->journal_keys; ++ unsigned iters = 0; ++ struct journal_key *k; ++search: ++ if (!*idx) ++ *idx = __bch2_journal_key_search(keys, btree_id, level, pos); ++ ++ while ((k = *idx < keys->nr ? idx_to_key(keys, *idx) : NULL)) { ++ if (__journal_key_cmp(btree_id, level, end_pos, k) < 0) ++ return NULL; ++ ++ if (__journal_key_cmp(btree_id, level, pos, k) <= 0 && ++ !k->overwritten) ++ return k->k; ++ ++ (*idx)++; ++ iters++; ++ if (iters == 10) { ++ *idx = 0; ++ goto search; ++ } ++ } ++ ++ return NULL; ++} ++ ++struct bkey_i *bch2_journal_keys_peek_slot(struct bch_fs *c, enum btree_id btree_id, ++ unsigned level, struct bpos pos) ++{ ++ size_t idx = 0; ++ ++ return bch2_journal_keys_peek_upto(c, btree_id, level, pos, pos, &idx); ++} ++ ++static void journal_iters_fix(struct bch_fs *c) ++{ ++ struct journal_keys *keys = &c->journal_keys; ++ /* The key we just inserted is immediately before the gap: */ ++ size_t gap_end = keys->gap + (keys->size - keys->nr); ++ struct btree_and_journal_iter *iter; ++ ++ /* ++ * If an iterator points one after the key we just inserted, decrement ++ * the iterator so it points at the key we just inserted - if the ++ * decrement was unnecessary, bch2_btree_and_journal_iter_peek() will ++ * handle that: ++ */ ++ list_for_each_entry(iter, &c->journal_iters, journal.list) ++ if (iter->journal.idx == gap_end) ++ iter->journal.idx = keys->gap - 1; ++} ++ ++static void journal_iters_move_gap(struct bch_fs *c, size_t old_gap, size_t new_gap) ++{ ++ struct journal_keys *keys = &c->journal_keys; ++ struct journal_iter *iter; ++ size_t gap_size = keys->size - keys->nr; ++ ++ list_for_each_entry(iter, &c->journal_iters, list) { ++ if (iter->idx > old_gap) ++ iter->idx -= gap_size; ++ if (iter->idx >= new_gap) ++ iter->idx += gap_size; ++ } ++} ++ ++int bch2_journal_key_insert_take(struct bch_fs *c, enum btree_id id, ++ unsigned level, struct bkey_i *k) ++{ ++ struct journal_key n = { ++ .btree_id = id, ++ .level = level, ++ .k = k, ++ .allocated = true, ++ /* ++ * Ensure these keys are done last by journal replay, to unblock ++ * journal reclaim: ++ */ ++ .journal_seq = U32_MAX, ++ }; ++ struct journal_keys *keys = &c->journal_keys; ++ size_t idx = bch2_journal_key_search(keys, id, level, k->k.p); ++ ++ BUG_ON(test_bit(BCH_FS_RW, &c->flags)); ++ ++ if (idx < keys->size && ++ journal_key_cmp(&n, &keys->d[idx]) == 0) { ++ if (keys->d[idx].allocated) ++ kfree(keys->d[idx].k); ++ keys->d[idx] = n; ++ return 0; ++ } ++ ++ if (idx > keys->gap) ++ idx -= keys->size - keys->nr; ++ ++ if (keys->nr == keys->size) { ++ struct journal_keys new_keys = { ++ .nr = keys->nr, ++ .size = max_t(size_t, keys->size, 8) * 2, ++ }; ++ ++ new_keys.d = kvmalloc_array(new_keys.size, sizeof(new_keys.d[0]), GFP_KERNEL); ++ if (!new_keys.d) { ++ bch_err(c, "%s: error allocating new key array (size %zu)", ++ __func__, new_keys.size); ++ return -BCH_ERR_ENOMEM_journal_key_insert; ++ } ++ ++ /* Since @keys was full, there was no gap: */ ++ memcpy(new_keys.d, keys->d, sizeof(keys->d[0]) * keys->nr); ++ kvfree(keys->d); ++ *keys = new_keys; ++ ++ /* And now the gap is at the end: */ ++ keys->gap = keys->nr; ++ } ++ ++ journal_iters_move_gap(c, keys->gap, idx); ++ ++ move_gap(keys->d, keys->nr, keys->size, keys->gap, idx); ++ keys->gap = idx; ++ ++ keys->nr++; ++ keys->d[keys->gap++] = n; ++ ++ journal_iters_fix(c); ++ ++ return 0; ++} ++ ++/* ++ * Can only be used from the recovery thread while we're still RO - can't be ++ * used once we've got RW, as journal_keys is at that point used by multiple ++ * threads: ++ */ ++int bch2_journal_key_insert(struct bch_fs *c, enum btree_id id, ++ unsigned level, struct bkey_i *k) ++{ ++ struct bkey_i *n; ++ int ret; ++ ++ n = kmalloc(bkey_bytes(&k->k), GFP_KERNEL); ++ if (!n) ++ return -BCH_ERR_ENOMEM_journal_key_insert; ++ ++ bkey_copy(n, k); ++ ret = bch2_journal_key_insert_take(c, id, level, n); ++ if (ret) ++ kfree(n); ++ return ret; ++} ++ ++int bch2_journal_key_delete(struct bch_fs *c, enum btree_id id, ++ unsigned level, struct bpos pos) ++{ ++ struct bkey_i whiteout; ++ ++ bkey_init(&whiteout.k); ++ whiteout.k.p = pos; ++ ++ return bch2_journal_key_insert(c, id, level, &whiteout); ++} ++ ++void bch2_journal_key_overwritten(struct bch_fs *c, enum btree_id btree, ++ unsigned level, struct bpos pos) ++{ ++ struct journal_keys *keys = &c->journal_keys; ++ size_t idx = bch2_journal_key_search(keys, btree, level, pos); ++ ++ if (idx < keys->size && ++ keys->d[idx].btree_id == btree && ++ keys->d[idx].level == level && ++ bpos_eq(keys->d[idx].k->k.p, pos)) ++ keys->d[idx].overwritten = true; ++} ++ ++static void bch2_journal_iter_advance(struct journal_iter *iter) ++{ ++ if (iter->idx < iter->keys->size) { ++ iter->idx++; ++ if (iter->idx == iter->keys->gap) ++ iter->idx += iter->keys->size - iter->keys->nr; ++ } ++} ++ ++static struct bkey_s_c bch2_journal_iter_peek(struct journal_iter *iter) ++{ ++ struct journal_key *k = iter->keys->d + iter->idx; ++ ++ while (k < iter->keys->d + iter->keys->size && ++ k->btree_id == iter->btree_id && ++ k->level == iter->level) { ++ if (!k->overwritten) ++ return bkey_i_to_s_c(k->k); ++ ++ bch2_journal_iter_advance(iter); ++ k = iter->keys->d + iter->idx; ++ } ++ ++ return bkey_s_c_null; ++} ++ ++static void bch2_journal_iter_exit(struct journal_iter *iter) ++{ ++ list_del(&iter->list); ++} ++ ++static void bch2_journal_iter_init(struct bch_fs *c, ++ struct journal_iter *iter, ++ enum btree_id id, unsigned level, ++ struct bpos pos) ++{ ++ iter->btree_id = id; ++ iter->level = level; ++ iter->keys = &c->journal_keys; ++ iter->idx = bch2_journal_key_search(&c->journal_keys, id, level, pos); ++} ++ ++static struct bkey_s_c bch2_journal_iter_peek_btree(struct btree_and_journal_iter *iter) ++{ ++ return bch2_btree_node_iter_peek_unpack(&iter->node_iter, ++ iter->b, &iter->unpacked); ++} ++ ++static void bch2_journal_iter_advance_btree(struct btree_and_journal_iter *iter) ++{ ++ bch2_btree_node_iter_advance(&iter->node_iter, iter->b); ++} ++ ++void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *iter) ++{ ++ if (bpos_eq(iter->pos, SPOS_MAX)) ++ iter->at_end = true; ++ else ++ iter->pos = bpos_successor(iter->pos); ++} ++ ++struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *iter) ++{ ++ struct bkey_s_c btree_k, journal_k, ret; ++again: ++ if (iter->at_end) ++ return bkey_s_c_null; ++ ++ while ((btree_k = bch2_journal_iter_peek_btree(iter)).k && ++ bpos_lt(btree_k.k->p, iter->pos)) ++ bch2_journal_iter_advance_btree(iter); ++ ++ while ((journal_k = bch2_journal_iter_peek(&iter->journal)).k && ++ bpos_lt(journal_k.k->p, iter->pos)) ++ bch2_journal_iter_advance(&iter->journal); ++ ++ ret = journal_k.k && ++ (!btree_k.k || bpos_le(journal_k.k->p, btree_k.k->p)) ++ ? journal_k ++ : btree_k; ++ ++ if (ret.k && iter->b && bpos_gt(ret.k->p, iter->b->data->max_key)) ++ ret = bkey_s_c_null; ++ ++ if (ret.k) { ++ iter->pos = ret.k->p; ++ if (bkey_deleted(ret.k)) { ++ bch2_btree_and_journal_iter_advance(iter); ++ goto again; ++ } ++ } else { ++ iter->pos = SPOS_MAX; ++ iter->at_end = true; ++ } ++ ++ return ret; ++} ++ ++void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *iter) ++{ ++ bch2_journal_iter_exit(&iter->journal); ++} ++ ++void __bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter, ++ struct bch_fs *c, ++ struct btree *b, ++ struct btree_node_iter node_iter, ++ struct bpos pos) ++{ ++ memset(iter, 0, sizeof(*iter)); ++ ++ iter->b = b; ++ iter->node_iter = node_iter; ++ bch2_journal_iter_init(c, &iter->journal, b->c.btree_id, b->c.level, pos); ++ INIT_LIST_HEAD(&iter->journal.list); ++ iter->pos = b->data->min_key; ++ iter->at_end = false; ++} ++ ++/* ++ * this version is used by btree_gc before filesystem has gone RW and ++ * multithreaded, so uses the journal_iters list: ++ */ ++void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *iter, ++ struct bch_fs *c, ++ struct btree *b) ++{ ++ struct btree_node_iter node_iter; ++ ++ bch2_btree_node_iter_init_from_start(&node_iter, b); ++ __bch2_btree_and_journal_iter_init_node_iter(iter, c, b, node_iter, b->data->min_key); ++ list_add(&iter->journal.list, &c->journal_iters); ++} ++ ++/* sort and dedup all keys in the journal: */ ++ ++void bch2_journal_entries_free(struct bch_fs *c) ++{ ++ struct journal_replay **i; ++ struct genradix_iter iter; ++ ++ genradix_for_each(&c->journal_entries, iter, i) ++ if (*i) ++ kvpfree(*i, offsetof(struct journal_replay, j) + ++ vstruct_bytes(&(*i)->j)); ++ genradix_free(&c->journal_entries); ++} ++ ++/* ++ * When keys compare equal, oldest compares first: ++ */ ++static int journal_sort_key_cmp(const void *_l, const void *_r) ++{ ++ const struct journal_key *l = _l; ++ const struct journal_key *r = _r; ++ ++ return journal_key_cmp(l, r) ?: ++ cmp_int(l->journal_seq, r->journal_seq) ?: ++ cmp_int(l->journal_offset, r->journal_offset); ++} ++ ++void bch2_journal_keys_free(struct journal_keys *keys) ++{ ++ struct journal_key *i; ++ ++ move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr); ++ keys->gap = keys->nr; ++ ++ for (i = keys->d; i < keys->d + keys->nr; i++) ++ if (i->allocated) ++ kfree(i->k); ++ ++ kvfree(keys->d); ++ keys->d = NULL; ++ keys->nr = keys->gap = keys->size = 0; ++} ++ ++static void __journal_keys_sort(struct journal_keys *keys) ++{ ++ struct journal_key *src, *dst; ++ ++ sort(keys->d, keys->nr, sizeof(keys->d[0]), journal_sort_key_cmp, NULL); ++ ++ src = dst = keys->d; ++ while (src < keys->d + keys->nr) { ++ while (src + 1 < keys->d + keys->nr && ++ src[0].btree_id == src[1].btree_id && ++ src[0].level == src[1].level && ++ bpos_eq(src[0].k->k.p, src[1].k->k.p)) ++ src++; ++ ++ *dst++ = *src++; ++ } ++ ++ keys->nr = dst - keys->d; ++} ++ ++int bch2_journal_keys_sort(struct bch_fs *c) ++{ ++ struct genradix_iter iter; ++ struct journal_replay *i, **_i; ++ struct jset_entry *entry; ++ struct bkey_i *k; ++ struct journal_keys *keys = &c->journal_keys; ++ size_t nr_keys = 0, nr_read = 0; ++ ++ genradix_for_each(&c->journal_entries, iter, _i) { ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ for_each_jset_key(k, entry, &i->j) ++ nr_keys++; ++ } ++ ++ if (!nr_keys) ++ return 0; ++ ++ keys->size = roundup_pow_of_two(nr_keys); ++ ++ keys->d = kvmalloc_array(keys->size, sizeof(keys->d[0]), GFP_KERNEL); ++ if (!keys->d) { ++ bch_err(c, "Failed to allocate buffer for sorted journal keys (%zu keys); trying slowpath", ++ nr_keys); ++ ++ do { ++ keys->size >>= 1; ++ keys->d = kvmalloc_array(keys->size, sizeof(keys->d[0]), GFP_KERNEL); ++ } while (!keys->d && keys->size > nr_keys / 8); ++ ++ if (!keys->d) { ++ bch_err(c, "Failed to allocate %zu size buffer for sorted journal keys; exiting", ++ keys->size); ++ return -BCH_ERR_ENOMEM_journal_keys_sort; ++ } ++ } ++ ++ genradix_for_each(&c->journal_entries, iter, _i) { ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ cond_resched(); ++ ++ for_each_jset_key(k, entry, &i->j) { ++ if (keys->nr == keys->size) { ++ __journal_keys_sort(keys); ++ ++ if (keys->nr > keys->size * 7 / 8) { ++ bch_err(c, "Too many journal keys for slowpath; have %zu compacted, buf size %zu, processed %zu/%zu", ++ keys->nr, keys->size, nr_read, nr_keys); ++ return -BCH_ERR_ENOMEM_journal_keys_sort; ++ } ++ } ++ ++ keys->d[keys->nr++] = (struct journal_key) { ++ .btree_id = entry->btree_id, ++ .level = entry->level, ++ .k = k, ++ .journal_seq = le64_to_cpu(i->j.seq), ++ .journal_offset = k->_data - i->j._data, ++ }; ++ ++ nr_read++; ++ } ++ } ++ ++ __journal_keys_sort(keys); ++ keys->gap = keys->nr; ++ ++ bch_verbose(c, "Journal keys: %zu read, %zu after sorting and compacting", nr_keys, keys->nr); ++ return 0; ++} +diff --git a/fs/bcachefs/btree_journal_iter.h b/fs/bcachefs/btree_journal_iter.h +new file mode 100644 +index 000000000000..5d64e7e22f26 +--- /dev/null ++++ b/fs/bcachefs/btree_journal_iter.h +@@ -0,0 +1,57 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_JOURNAL_ITER_H ++#define _BCACHEFS_BTREE_JOURNAL_ITER_H ++ ++struct journal_iter { ++ struct list_head list; ++ enum btree_id btree_id; ++ unsigned level; ++ size_t idx; ++ struct journal_keys *keys; ++}; ++ ++/* ++ * Iterate over keys in the btree, with keys from the journal overlaid on top: ++ */ ++ ++struct btree_and_journal_iter { ++ struct btree *b; ++ struct btree_node_iter node_iter; ++ struct bkey unpacked; ++ ++ struct journal_iter journal; ++ struct bpos pos; ++ bool at_end; ++}; ++ ++struct bkey_i *bch2_journal_keys_peek_upto(struct bch_fs *, enum btree_id, ++ unsigned, struct bpos, struct bpos, size_t *); ++struct bkey_i *bch2_journal_keys_peek_slot(struct bch_fs *, enum btree_id, ++ unsigned, struct bpos); ++ ++int bch2_journal_key_insert_take(struct bch_fs *, enum btree_id, ++ unsigned, struct bkey_i *); ++int bch2_journal_key_insert(struct bch_fs *, enum btree_id, ++ unsigned, struct bkey_i *); ++int bch2_journal_key_delete(struct bch_fs *, enum btree_id, ++ unsigned, struct bpos); ++void bch2_journal_key_overwritten(struct bch_fs *, enum btree_id, ++ unsigned, struct bpos); ++ ++void bch2_btree_and_journal_iter_advance(struct btree_and_journal_iter *); ++struct bkey_s_c bch2_btree_and_journal_iter_peek(struct btree_and_journal_iter *); ++ ++void bch2_btree_and_journal_iter_exit(struct btree_and_journal_iter *); ++void __bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *, ++ struct bch_fs *, struct btree *, ++ struct btree_node_iter, struct bpos); ++void bch2_btree_and_journal_iter_init_node_iter(struct btree_and_journal_iter *, ++ struct bch_fs *, ++ struct btree *); ++ ++void bch2_journal_keys_free(struct journal_keys *); ++void bch2_journal_entries_free(struct bch_fs *); ++ ++int bch2_journal_keys_sort(struct bch_fs *); ++ ++#endif /* _BCACHEFS_BTREE_JOURNAL_ITER_H */ +diff --git a/fs/bcachefs/btree_key_cache.c b/fs/bcachefs/btree_key_cache.c +new file mode 100644 +index 000000000000..29a0b566a4fe +--- /dev/null ++++ b/fs/bcachefs/btree_key_cache.c +@@ -0,0 +1,1072 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_cache.h" ++#include "btree_iter.h" ++#include "btree_key_cache.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++#include "errcode.h" ++#include "error.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++#include "trace.h" ++ ++#include ++ ++static inline bool btree_uses_pcpu_readers(enum btree_id id) ++{ ++ return id == BTREE_ID_subvolumes; ++} ++ ++static struct kmem_cache *bch2_key_cache; ++ ++static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg, ++ const void *obj) ++{ ++ const struct bkey_cached *ck = obj; ++ const struct bkey_cached_key *key = arg->key; ++ ++ return ck->key.btree_id != key->btree_id || ++ !bpos_eq(ck->key.pos, key->pos); ++} ++ ++static const struct rhashtable_params bch2_btree_key_cache_params = { ++ .head_offset = offsetof(struct bkey_cached, hash), ++ .key_offset = offsetof(struct bkey_cached, key), ++ .key_len = sizeof(struct bkey_cached_key), ++ .obj_cmpfn = bch2_btree_key_cache_cmp_fn, ++}; ++ ++__flatten ++inline struct bkey_cached * ++bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos) ++{ ++ struct bkey_cached_key key = { ++ .btree_id = btree_id, ++ .pos = pos, ++ }; ++ ++ return rhashtable_lookup_fast(&c->btree_key_cache.table, &key, ++ bch2_btree_key_cache_params); ++} ++ ++static bool bkey_cached_lock_for_evict(struct bkey_cached *ck) ++{ ++ if (!six_trylock_intent(&ck->c.lock)) ++ return false; ++ ++ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ six_unlock_intent(&ck->c.lock); ++ return false; ++ } ++ ++ if (!six_trylock_write(&ck->c.lock)) { ++ six_unlock_intent(&ck->c.lock); ++ return false; ++ } ++ ++ return true; ++} ++ ++static void bkey_cached_evict(struct btree_key_cache *c, ++ struct bkey_cached *ck) ++{ ++ BUG_ON(rhashtable_remove_fast(&c->table, &ck->hash, ++ bch2_btree_key_cache_params)); ++ memset(&ck->key, ~0, sizeof(ck->key)); ++ ++ atomic_long_dec(&c->nr_keys); ++} ++ ++static void bkey_cached_free(struct btree_key_cache *bc, ++ struct bkey_cached *ck) ++{ ++ struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); ++ ++ BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); ++ ++ ck->btree_trans_barrier_seq = ++ start_poll_synchronize_srcu(&c->btree_trans_barrier); ++ ++ if (ck->c.lock.readers) ++ list_move_tail(&ck->list, &bc->freed_pcpu); ++ else ++ list_move_tail(&ck->list, &bc->freed_nonpcpu); ++ atomic_long_inc(&bc->nr_freed); ++ ++ kfree(ck->k); ++ ck->k = NULL; ++ ck->u64s = 0; ++ ++ six_unlock_write(&ck->c.lock); ++ six_unlock_intent(&ck->c.lock); ++} ++ ++#ifdef __KERNEL__ ++static void __bkey_cached_move_to_freelist_ordered(struct btree_key_cache *bc, ++ struct bkey_cached *ck) ++{ ++ struct bkey_cached *pos; ++ ++ list_for_each_entry_reverse(pos, &bc->freed_nonpcpu, list) { ++ if (ULONG_CMP_GE(ck->btree_trans_barrier_seq, ++ pos->btree_trans_barrier_seq)) { ++ list_move(&ck->list, &pos->list); ++ return; ++ } ++ } ++ ++ list_move(&ck->list, &bc->freed_nonpcpu); ++} ++#endif ++ ++static void bkey_cached_move_to_freelist(struct btree_key_cache *bc, ++ struct bkey_cached *ck) ++{ ++ BUG_ON(test_bit(BKEY_CACHED_DIRTY, &ck->flags)); ++ ++ if (!ck->c.lock.readers) { ++#ifdef __KERNEL__ ++ struct btree_key_cache_freelist *f; ++ bool freed = false; ++ ++ preempt_disable(); ++ f = this_cpu_ptr(bc->pcpu_freed); ++ ++ if (f->nr < ARRAY_SIZE(f->objs)) { ++ f->objs[f->nr++] = ck; ++ freed = true; ++ } ++ preempt_enable(); ++ ++ if (!freed) { ++ mutex_lock(&bc->lock); ++ preempt_disable(); ++ f = this_cpu_ptr(bc->pcpu_freed); ++ ++ while (f->nr > ARRAY_SIZE(f->objs) / 2) { ++ struct bkey_cached *ck2 = f->objs[--f->nr]; ++ ++ __bkey_cached_move_to_freelist_ordered(bc, ck2); ++ } ++ preempt_enable(); ++ ++ __bkey_cached_move_to_freelist_ordered(bc, ck); ++ mutex_unlock(&bc->lock); ++ } ++#else ++ mutex_lock(&bc->lock); ++ list_move_tail(&ck->list, &bc->freed_nonpcpu); ++ mutex_unlock(&bc->lock); ++#endif ++ } else { ++ mutex_lock(&bc->lock); ++ list_move_tail(&ck->list, &bc->freed_pcpu); ++ mutex_unlock(&bc->lock); ++ } ++} ++ ++static void bkey_cached_free_fast(struct btree_key_cache *bc, ++ struct bkey_cached *ck) ++{ ++ struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); ++ ++ ck->btree_trans_barrier_seq = ++ start_poll_synchronize_srcu(&c->btree_trans_barrier); ++ ++ list_del_init(&ck->list); ++ atomic_long_inc(&bc->nr_freed); ++ ++ kfree(ck->k); ++ ck->k = NULL; ++ ck->u64s = 0; ++ ++ bkey_cached_move_to_freelist(bc, ck); ++ ++ six_unlock_write(&ck->c.lock); ++ six_unlock_intent(&ck->c.lock); ++} ++ ++static struct bkey_cached * ++bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, ++ bool *was_new) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_key_cache *bc = &c->btree_key_cache; ++ struct bkey_cached *ck = NULL; ++ bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id); ++ int ret; ++ ++ if (!pcpu_readers) { ++#ifdef __KERNEL__ ++ struct btree_key_cache_freelist *f; ++ ++ preempt_disable(); ++ f = this_cpu_ptr(bc->pcpu_freed); ++ if (f->nr) ++ ck = f->objs[--f->nr]; ++ preempt_enable(); ++ ++ if (!ck) { ++ mutex_lock(&bc->lock); ++ preempt_disable(); ++ f = this_cpu_ptr(bc->pcpu_freed); ++ ++ while (!list_empty(&bc->freed_nonpcpu) && ++ f->nr < ARRAY_SIZE(f->objs) / 2) { ++ ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list); ++ list_del_init(&ck->list); ++ f->objs[f->nr++] = ck; ++ } ++ ++ ck = f->nr ? f->objs[--f->nr] : NULL; ++ preempt_enable(); ++ mutex_unlock(&bc->lock); ++ } ++#else ++ mutex_lock(&bc->lock); ++ if (!list_empty(&bc->freed_nonpcpu)) { ++ ck = list_last_entry(&bc->freed_nonpcpu, struct bkey_cached, list); ++ list_del_init(&ck->list); ++ } ++ mutex_unlock(&bc->lock); ++#endif ++ } else { ++ mutex_lock(&bc->lock); ++ if (!list_empty(&bc->freed_pcpu)) { ++ ck = list_last_entry(&bc->freed_pcpu, struct bkey_cached, list); ++ list_del_init(&ck->list); ++ } ++ mutex_unlock(&bc->lock); ++ } ++ ++ if (ck) { ++ ret = btree_node_lock_nopath(trans, &ck->c, SIX_LOCK_intent, _THIS_IP_); ++ if (unlikely(ret)) { ++ bkey_cached_move_to_freelist(bc, ck); ++ return ERR_PTR(ret); ++ } ++ ++ path->l[0].b = (void *) ck; ++ path->l[0].lock_seq = six_lock_seq(&ck->c.lock); ++ mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED); ++ ++ ret = bch2_btree_node_lock_write(trans, path, &ck->c); ++ if (unlikely(ret)) { ++ btree_node_unlock(trans, path, 0); ++ bkey_cached_move_to_freelist(bc, ck); ++ return ERR_PTR(ret); ++ } ++ ++ return ck; ++ } ++ ++ ck = allocate_dropping_locks(trans, ret, ++ kmem_cache_zalloc(bch2_key_cache, _gfp)); ++ if (ret) { ++ kmem_cache_free(bch2_key_cache, ck); ++ return ERR_PTR(ret); ++ } ++ ++ if (!ck) ++ return NULL; ++ ++ INIT_LIST_HEAD(&ck->list); ++ bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0); ++ ++ ck->c.cached = true; ++ BUG_ON(!six_trylock_intent(&ck->c.lock)); ++ BUG_ON(!six_trylock_write(&ck->c.lock)); ++ *was_new = true; ++ return ck; ++} ++ ++static struct bkey_cached * ++bkey_cached_reuse(struct btree_key_cache *c) ++{ ++ struct bucket_table *tbl; ++ struct rhash_head *pos; ++ struct bkey_cached *ck; ++ unsigned i; ++ ++ mutex_lock(&c->lock); ++ rcu_read_lock(); ++ tbl = rht_dereference_rcu(c->table.tbl, &c->table); ++ for (i = 0; i < tbl->size; i++) ++ rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { ++ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) && ++ bkey_cached_lock_for_evict(ck)) { ++ bkey_cached_evict(c, ck); ++ goto out; ++ } ++ } ++ ck = NULL; ++out: ++ rcu_read_unlock(); ++ mutex_unlock(&c->lock); ++ return ck; ++} ++ ++static struct bkey_cached * ++btree_key_cache_create(struct btree_trans *trans, struct btree_path *path) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_key_cache *bc = &c->btree_key_cache; ++ struct bkey_cached *ck; ++ bool was_new = false; ++ ++ ck = bkey_cached_alloc(trans, path, &was_new); ++ if (IS_ERR(ck)) ++ return ck; ++ ++ if (unlikely(!ck)) { ++ ck = bkey_cached_reuse(bc); ++ if (unlikely(!ck)) { ++ bch_err(c, "error allocating memory for key cache item, btree %s", ++ bch2_btree_ids[path->btree_id]); ++ return ERR_PTR(-BCH_ERR_ENOMEM_btree_key_cache_create); ++ } ++ ++ mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED); ++ } ++ ++ ck->c.level = 0; ++ ck->c.btree_id = path->btree_id; ++ ck->key.btree_id = path->btree_id; ++ ck->key.pos = path->pos; ++ ck->valid = false; ++ ck->flags = 1U << BKEY_CACHED_ACCESSED; ++ ++ if (unlikely(rhashtable_lookup_insert_fast(&bc->table, ++ &ck->hash, ++ bch2_btree_key_cache_params))) { ++ /* We raced with another fill: */ ++ ++ if (likely(was_new)) { ++ six_unlock_write(&ck->c.lock); ++ six_unlock_intent(&ck->c.lock); ++ kfree(ck); ++ } else { ++ bkey_cached_free_fast(bc, ck); ++ } ++ ++ mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED); ++ return NULL; ++ } ++ ++ atomic_long_inc(&bc->nr_keys); ++ ++ six_unlock_write(&ck->c.lock); ++ ++ return ck; ++} ++ ++static int btree_key_cache_fill(struct btree_trans *trans, ++ struct btree_path *ck_path, ++ struct bkey_cached *ck) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ unsigned new_u64s = 0; ++ struct bkey_i *new_k = NULL; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, &iter, ck->key.btree_id, ck->key.pos, ++ BTREE_ITER_KEY_CACHE_FILL| ++ BTREE_ITER_CACHED_NOFILL); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (!bch2_btree_node_relock(trans, ck_path, 0)) { ++ trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path); ++ ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill); ++ goto err; ++ } ++ ++ /* ++ * bch2_varint_decode can read past the end of the buffer by at ++ * most 7 bytes (it won't be used): ++ */ ++ new_u64s = k.k->u64s + 1; ++ ++ /* ++ * Allocate some extra space so that the transaction commit path is less ++ * likely to have to reallocate, since that requires a transaction ++ * restart: ++ */ ++ new_u64s = min(256U, (new_u64s * 3) / 2); ++ ++ if (new_u64s > ck->u64s) { ++ new_u64s = roundup_pow_of_two(new_u64s); ++ new_k = kmalloc(new_u64s * sizeof(u64), GFP_NOWAIT|__GFP_NOWARN); ++ if (!new_k) { ++ bch2_trans_unlock(trans); ++ ++ new_k = kmalloc(new_u64s * sizeof(u64), GFP_KERNEL); ++ if (!new_k) { ++ bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u", ++ bch2_btree_ids[ck->key.btree_id], new_u64s); ++ ret = -BCH_ERR_ENOMEM_btree_key_cache_fill; ++ goto err; ++ } ++ ++ if (!bch2_btree_node_relock(trans, ck_path, 0)) { ++ kfree(new_k); ++ trace_and_count(trans->c, trans_restart_relock_key_cache_fill, trans, _THIS_IP_, ck_path); ++ ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_fill); ++ goto err; ++ } ++ ++ ret = bch2_trans_relock(trans); ++ if (ret) { ++ kfree(new_k); ++ goto err; ++ } ++ } ++ } ++ ++ ret = bch2_btree_node_lock_write(trans, ck_path, &ck_path->l[0].b->c); ++ if (ret) { ++ kfree(new_k); ++ goto err; ++ } ++ ++ if (new_k) { ++ kfree(ck->k); ++ ck->u64s = new_u64s; ++ ck->k = new_k; ++ } ++ ++ bkey_reassemble(ck->k, k); ++ ck->valid = true; ++ bch2_btree_node_unlock_write(trans, ck_path, ck_path->l[0].b); ++ ++ /* We're not likely to need this iterator again: */ ++ set_btree_iter_dontneed(&iter); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static noinline int ++bch2_btree_path_traverse_cached_slowpath(struct btree_trans *trans, struct btree_path *path, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_cached *ck; ++ int ret = 0; ++ ++ BUG_ON(path->level); ++ ++ path->l[1].b = NULL; ++ ++ if (bch2_btree_node_relock_notrace(trans, path, 0)) { ++ ck = (void *) path->l[0].b; ++ goto fill; ++ } ++retry: ++ ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos); ++ if (!ck) { ++ ck = btree_key_cache_create(trans, path); ++ ret = PTR_ERR_OR_ZERO(ck); ++ if (ret) ++ goto err; ++ if (!ck) ++ goto retry; ++ ++ mark_btree_node_locked(trans, path, 0, BTREE_NODE_INTENT_LOCKED); ++ path->locks_want = 1; ++ } else { ++ enum six_lock_type lock_want = __btree_lock_want(path, 0); ++ ++ ret = btree_node_lock(trans, path, (void *) ck, 0, ++ lock_want, _THIS_IP_); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto err; ++ ++ BUG_ON(ret); ++ ++ if (ck->key.btree_id != path->btree_id || ++ !bpos_eq(ck->key.pos, path->pos)) { ++ six_unlock_type(&ck->c.lock, lock_want); ++ goto retry; ++ } ++ ++ mark_btree_node_locked(trans, path, 0, ++ (enum btree_node_locked_type) lock_want); ++ } ++ ++ path->l[0].lock_seq = six_lock_seq(&ck->c.lock); ++ path->l[0].b = (void *) ck; ++fill: ++ path->uptodate = BTREE_ITER_UPTODATE; ++ ++ if (!ck->valid && !(flags & BTREE_ITER_CACHED_NOFILL)) { ++ /* ++ * Using the underscore version because we haven't set ++ * path->uptodate yet: ++ */ ++ if (!path->locks_want && ++ !__bch2_btree_path_upgrade(trans, path, 1)) { ++ trace_and_count(trans->c, trans_restart_key_cache_upgrade, trans, _THIS_IP_); ++ ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_upgrade); ++ goto err; ++ } ++ ++ ret = btree_key_cache_fill(trans, path, ck); ++ if (ret) ++ goto err; ++ ++ ret = bch2_btree_path_relock(trans, path, _THIS_IP_); ++ if (ret) ++ goto err; ++ ++ path->uptodate = BTREE_ITER_UPTODATE; ++ } ++ ++ if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) ++ set_bit(BKEY_CACHED_ACCESSED, &ck->flags); ++ ++ BUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0)); ++ BUG_ON(path->uptodate); ++ ++ return ret; ++err: ++ path->uptodate = BTREE_ITER_NEED_TRAVERSE; ++ if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) { ++ btree_node_unlock(trans, path, 0); ++ path->l[0].b = ERR_PTR(ret); ++ } ++ return ret; ++} ++ ++int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_cached *ck; ++ int ret = 0; ++ ++ EBUG_ON(path->level); ++ ++ path->l[1].b = NULL; ++ ++ if (bch2_btree_node_relock_notrace(trans, path, 0)) { ++ ck = (void *) path->l[0].b; ++ goto fill; ++ } ++retry: ++ ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos); ++ if (!ck) { ++ return bch2_btree_path_traverse_cached_slowpath(trans, path, flags); ++ } else { ++ enum six_lock_type lock_want = __btree_lock_want(path, 0); ++ ++ ret = btree_node_lock(trans, path, (void *) ck, 0, ++ lock_want, _THIS_IP_); ++ EBUG_ON(ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart)); ++ ++ if (ret) ++ return ret; ++ ++ if (ck->key.btree_id != path->btree_id || ++ !bpos_eq(ck->key.pos, path->pos)) { ++ six_unlock_type(&ck->c.lock, lock_want); ++ goto retry; ++ } ++ ++ mark_btree_node_locked(trans, path, 0, ++ (enum btree_node_locked_type) lock_want); ++ } ++ ++ path->l[0].lock_seq = six_lock_seq(&ck->c.lock); ++ path->l[0].b = (void *) ck; ++fill: ++ if (!ck->valid) ++ return bch2_btree_path_traverse_cached_slowpath(trans, path, flags); ++ ++ if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) ++ set_bit(BKEY_CACHED_ACCESSED, &ck->flags); ++ ++ path->uptodate = BTREE_ITER_UPTODATE; ++ EBUG_ON(!ck->valid); ++ EBUG_ON(btree_node_locked_type(path, 0) != btree_lock_want(path, 0)); ++ ++ return ret; ++} ++ ++static int btree_key_cache_flush_pos(struct btree_trans *trans, ++ struct bkey_cached_key key, ++ u64 journal_seq, ++ unsigned commit_flags, ++ bool evict) ++{ ++ struct bch_fs *c = trans->c; ++ struct journal *j = &c->journal; ++ struct btree_iter c_iter, b_iter; ++ struct bkey_cached *ck = NULL; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos, ++ BTREE_ITER_SLOTS| ++ BTREE_ITER_INTENT| ++ BTREE_ITER_ALL_SNAPSHOTS); ++ bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos, ++ BTREE_ITER_CACHED| ++ BTREE_ITER_INTENT); ++ b_iter.flags &= ~BTREE_ITER_WITH_KEY_CACHE; ++ ++ ret = bch2_btree_iter_traverse(&c_iter); ++ if (ret) ++ goto out; ++ ++ ck = (void *) c_iter.path->l[0].b; ++ if (!ck) ++ goto out; ++ ++ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ if (evict) ++ goto evict; ++ goto out; ++ } ++ ++ BUG_ON(!ck->valid); ++ ++ if (journal_seq && ck->journal.seq != journal_seq) ++ goto out; ++ ++ /* ++ * Since journal reclaim depends on us making progress here, and the ++ * allocator/copygc depend on journal reclaim making progress, we need ++ * to be using alloc reserves: ++ */ ++ ret = bch2_btree_iter_traverse(&b_iter) ?: ++ bch2_trans_update(trans, &b_iter, ck->k, ++ BTREE_UPDATE_KEY_CACHE_RECLAIM| ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| ++ BTREE_TRIGGER_NORUN) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL| ++ (ck->journal.seq == journal_last_seq(j) ++ ? BCH_WATERMARK_reclaim ++ : 0)| ++ commit_flags); ++ ++ bch2_fs_fatal_err_on(ret && ++ !bch2_err_matches(ret, BCH_ERR_transaction_restart) && ++ !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) && ++ !bch2_journal_error(j), c, ++ "error flushing key cache: %s", bch2_err_str(ret)); ++ if (ret) ++ goto out; ++ ++ bch2_journal_pin_drop(j, &ck->journal); ++ bch2_journal_preres_put(j, &ck->res); ++ ++ BUG_ON(!btree_node_locked(c_iter.path, 0)); ++ ++ if (!evict) { ++ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ clear_bit(BKEY_CACHED_DIRTY, &ck->flags); ++ atomic_long_dec(&c->btree_key_cache.nr_dirty); ++ } ++ } else { ++ struct btree_path *path2; ++evict: ++ trans_for_each_path(trans, path2) ++ if (path2 != c_iter.path) ++ __bch2_btree_path_unlock(trans, path2); ++ ++ bch2_btree_node_lock_write_nofail(trans, c_iter.path, &ck->c); ++ ++ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ clear_bit(BKEY_CACHED_DIRTY, &ck->flags); ++ atomic_long_dec(&c->btree_key_cache.nr_dirty); ++ } ++ ++ mark_btree_node_locked_noreset(c_iter.path, 0, BTREE_NODE_UNLOCKED); ++ bkey_cached_evict(&c->btree_key_cache, ck); ++ bkey_cached_free_fast(&c->btree_key_cache, ck); ++ } ++out: ++ bch2_trans_iter_exit(trans, &b_iter); ++ bch2_trans_iter_exit(trans, &c_iter); ++ return ret; ++} ++ ++int bch2_btree_key_cache_journal_flush(struct journal *j, ++ struct journal_entry_pin *pin, u64 seq) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bkey_cached *ck = ++ container_of(pin, struct bkey_cached, journal); ++ struct bkey_cached_key key; ++ struct btree_trans *trans = bch2_trans_get(c); ++ int srcu_idx = srcu_read_lock(&c->btree_trans_barrier); ++ int ret = 0; ++ ++ btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read); ++ key = ck->key; ++ ++ if (ck->journal.seq != seq || ++ !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ six_unlock_read(&ck->c.lock); ++ goto unlock; ++ } ++ ++ if (ck->seq != seq) { ++ bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal, ++ bch2_btree_key_cache_journal_flush); ++ six_unlock_read(&ck->c.lock); ++ goto unlock; ++ } ++ six_unlock_read(&ck->c.lock); ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ btree_key_cache_flush_pos(trans, key, seq, ++ BTREE_INSERT_JOURNAL_RECLAIM, false)); ++unlock: ++ srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++/* ++ * Flush and evict a key from the key cache: ++ */ ++int bch2_btree_key_cache_flush(struct btree_trans *trans, ++ enum btree_id id, struct bpos pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_cached_key key = { id, pos }; ++ ++ /* Fastpath - assume it won't be found: */ ++ if (!bch2_btree_key_cache_find(c, id, pos)) ++ return 0; ++ ++ return btree_key_cache_flush_pos(trans, key, 0, 0, true); ++} ++ ++bool bch2_btree_insert_key_cached(struct btree_trans *trans, ++ unsigned flags, ++ struct btree_insert_entry *insert_entry) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_cached *ck = (void *) insert_entry->path->l[0].b; ++ struct bkey_i *insert = insert_entry->k; ++ bool kick_reclaim = false; ++ ++ BUG_ON(insert->k.u64s > ck->u64s); ++ ++ if (likely(!(flags & BTREE_INSERT_JOURNAL_REPLAY))) { ++ int difference; ++ ++ BUG_ON(jset_u64s(insert->k.u64s) > trans->journal_preres.u64s); ++ ++ difference = jset_u64s(insert->k.u64s) - ck->res.u64s; ++ if (difference > 0) { ++ trans->journal_preres.u64s -= difference; ++ ck->res.u64s += difference; ++ } ++ } ++ ++ bkey_copy(ck->k, insert); ++ ck->valid = true; ++ ++ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ EBUG_ON(test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags)); ++ set_bit(BKEY_CACHED_DIRTY, &ck->flags); ++ atomic_long_inc(&c->btree_key_cache.nr_dirty); ++ ++ if (bch2_nr_btree_keys_need_flush(c)) ++ kick_reclaim = true; ++ } ++ ++ /* ++ * To minimize lock contention, we only add the journal pin here and ++ * defer pin updates to the flush callback via ->seq. Be careful not to ++ * update ->seq on nojournal commits because we don't want to update the ++ * pin to a seq that doesn't include journal updates on disk. Otherwise ++ * we risk losing the update after a crash. ++ * ++ * The only exception is if the pin is not active in the first place. We ++ * have to add the pin because journal reclaim drives key cache ++ * flushing. The flush callback will not proceed unless ->seq matches ++ * the latest pin, so make sure it starts with a consistent value. ++ */ ++ if (!(insert_entry->flags & BTREE_UPDATE_NOJOURNAL) || ++ !journal_pin_active(&ck->journal)) { ++ ck->seq = trans->journal_res.seq; ++ } ++ bch2_journal_pin_add(&c->journal, trans->journal_res.seq, ++ &ck->journal, bch2_btree_key_cache_journal_flush); ++ ++ if (kick_reclaim) ++ journal_reclaim_kick(&c->journal); ++ return true; ++} ++ ++void bch2_btree_key_cache_drop(struct btree_trans *trans, ++ struct btree_path *path) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_cached *ck = (void *) path->l[0].b; ++ ++ BUG_ON(!ck->valid); ++ ++ /* ++ * We just did an update to the btree, bypassing the key cache: the key ++ * cache key is now stale and must be dropped, even if dirty: ++ */ ++ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ clear_bit(BKEY_CACHED_DIRTY, &ck->flags); ++ atomic_long_dec(&c->btree_key_cache.nr_dirty); ++ bch2_journal_pin_drop(&c->journal, &ck->journal); ++ } ++ ++ ck->valid = false; ++} ++ ++static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink, ++ struct shrink_control *sc) ++{ ++ struct bch_fs *c = container_of(shrink, struct bch_fs, ++ btree_key_cache.shrink); ++ struct btree_key_cache *bc = &c->btree_key_cache; ++ struct bucket_table *tbl; ++ struct bkey_cached *ck, *t; ++ size_t scanned = 0, freed = 0, nr = sc->nr_to_scan; ++ unsigned start, flags; ++ int srcu_idx; ++ ++ mutex_lock(&bc->lock); ++ srcu_idx = srcu_read_lock(&c->btree_trans_barrier); ++ flags = memalloc_nofs_save(); ++ ++ /* ++ * Newest freed entries are at the end of the list - once we hit one ++ * that's too new to be freed, we can bail out: ++ */ ++ list_for_each_entry_safe(ck, t, &bc->freed_nonpcpu, list) { ++ if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, ++ ck->btree_trans_barrier_seq)) ++ break; ++ ++ list_del(&ck->list); ++ six_lock_exit(&ck->c.lock); ++ kmem_cache_free(bch2_key_cache, ck); ++ atomic_long_dec(&bc->nr_freed); ++ scanned++; ++ freed++; ++ } ++ ++ if (scanned >= nr) ++ goto out; ++ ++ list_for_each_entry_safe(ck, t, &bc->freed_pcpu, list) { ++ if (!poll_state_synchronize_srcu(&c->btree_trans_barrier, ++ ck->btree_trans_barrier_seq)) ++ break; ++ ++ list_del(&ck->list); ++ six_lock_exit(&ck->c.lock); ++ kmem_cache_free(bch2_key_cache, ck); ++ atomic_long_dec(&bc->nr_freed); ++ scanned++; ++ freed++; ++ } ++ ++ if (scanned >= nr) ++ goto out; ++ ++ rcu_read_lock(); ++ tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); ++ if (bc->shrink_iter >= tbl->size) ++ bc->shrink_iter = 0; ++ start = bc->shrink_iter; ++ ++ do { ++ struct rhash_head *pos, *next; ++ ++ pos = rht_ptr_rcu(rht_bucket(tbl, bc->shrink_iter)); ++ ++ while (!rht_is_a_nulls(pos)) { ++ next = rht_dereference_bucket_rcu(pos->next, tbl, bc->shrink_iter); ++ ck = container_of(pos, struct bkey_cached, hash); ++ ++ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) ++ goto next; ++ ++ if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) ++ clear_bit(BKEY_CACHED_ACCESSED, &ck->flags); ++ else if (bkey_cached_lock_for_evict(ck)) { ++ bkey_cached_evict(bc, ck); ++ bkey_cached_free(bc, ck); ++ } ++ ++ scanned++; ++ if (scanned >= nr) ++ break; ++next: ++ pos = next; ++ } ++ ++ bc->shrink_iter++; ++ if (bc->shrink_iter >= tbl->size) ++ bc->shrink_iter = 0; ++ } while (scanned < nr && bc->shrink_iter != start); ++ ++ rcu_read_unlock(); ++out: ++ memalloc_nofs_restore(flags); ++ srcu_read_unlock(&c->btree_trans_barrier, srcu_idx); ++ mutex_unlock(&bc->lock); ++ ++ return freed; ++} ++ ++static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink, ++ struct shrink_control *sc) ++{ ++ struct bch_fs *c = container_of(shrink, struct bch_fs, ++ btree_key_cache.shrink); ++ struct btree_key_cache *bc = &c->btree_key_cache; ++ long nr = atomic_long_read(&bc->nr_keys) - ++ atomic_long_read(&bc->nr_dirty); ++ ++ return max(0L, nr); ++} ++ ++void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc) ++{ ++ struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); ++ struct bucket_table *tbl; ++ struct bkey_cached *ck, *n; ++ struct rhash_head *pos; ++ LIST_HEAD(items); ++ unsigned i; ++#ifdef __KERNEL__ ++ int cpu; ++#endif ++ ++ unregister_shrinker(&bc->shrink); ++ ++ mutex_lock(&bc->lock); ++ ++ /* ++ * The loop is needed to guard against racing with rehash: ++ */ ++ while (atomic_long_read(&bc->nr_keys)) { ++ rcu_read_lock(); ++ tbl = rht_dereference_rcu(bc->table.tbl, &bc->table); ++ if (tbl) ++ for (i = 0; i < tbl->size; i++) ++ rht_for_each_entry_rcu(ck, pos, tbl, i, hash) { ++ bkey_cached_evict(bc, ck); ++ list_add(&ck->list, &items); ++ } ++ rcu_read_unlock(); ++ } ++ ++#ifdef __KERNEL__ ++ for_each_possible_cpu(cpu) { ++ struct btree_key_cache_freelist *f = ++ per_cpu_ptr(bc->pcpu_freed, cpu); ++ ++ for (i = 0; i < f->nr; i++) { ++ ck = f->objs[i]; ++ list_add(&ck->list, &items); ++ } ++ } ++#endif ++ ++ list_splice(&bc->freed_pcpu, &items); ++ list_splice(&bc->freed_nonpcpu, &items); ++ ++ mutex_unlock(&bc->lock); ++ ++ list_for_each_entry_safe(ck, n, &items, list) { ++ cond_resched(); ++ ++ bch2_journal_pin_drop(&c->journal, &ck->journal); ++ bch2_journal_preres_put(&c->journal, &ck->res); ++ ++ list_del(&ck->list); ++ kfree(ck->k); ++ six_lock_exit(&ck->c.lock); ++ kmem_cache_free(bch2_key_cache, ck); ++ } ++ ++ if (atomic_long_read(&bc->nr_dirty) && ++ !bch2_journal_error(&c->journal) && ++ test_bit(BCH_FS_WAS_RW, &c->flags)) ++ panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n", ++ atomic_long_read(&bc->nr_dirty)); ++ ++ if (atomic_long_read(&bc->nr_keys)) ++ panic("btree key cache shutdown error: nr_keys nonzero (%li)\n", ++ atomic_long_read(&bc->nr_keys)); ++ ++ if (bc->table_init_done) ++ rhashtable_destroy(&bc->table); ++ ++ free_percpu(bc->pcpu_freed); ++} ++ ++void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c) ++{ ++ mutex_init(&c->lock); ++ INIT_LIST_HEAD(&c->freed_pcpu); ++ INIT_LIST_HEAD(&c->freed_nonpcpu); ++} ++ ++int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc) ++{ ++ struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache); ++ ++#ifdef __KERNEL__ ++ bc->pcpu_freed = alloc_percpu(struct btree_key_cache_freelist); ++ if (!bc->pcpu_freed) ++ return -BCH_ERR_ENOMEM_fs_btree_cache_init; ++#endif ++ ++ if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params)) ++ return -BCH_ERR_ENOMEM_fs_btree_cache_init; ++ ++ bc->table_init_done = true; ++ ++ bc->shrink.seeks = 0; ++ bc->shrink.count_objects = bch2_btree_key_cache_count; ++ bc->shrink.scan_objects = bch2_btree_key_cache_scan; ++ if (register_shrinker(&bc->shrink, "%s/btree_key_cache", c->name)) ++ return -BCH_ERR_ENOMEM_fs_btree_cache_init; ++ return 0; ++} ++ ++void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *c) ++{ ++ prt_printf(out, "nr_freed:\t%lu", atomic_long_read(&c->nr_freed)); ++ prt_newline(out); ++ prt_printf(out, "nr_keys:\t%lu", atomic_long_read(&c->nr_keys)); ++ prt_newline(out); ++ prt_printf(out, "nr_dirty:\t%lu", atomic_long_read(&c->nr_dirty)); ++ prt_newline(out); ++} ++ ++void bch2_btree_key_cache_exit(void) ++{ ++ kmem_cache_destroy(bch2_key_cache); ++} ++ ++int __init bch2_btree_key_cache_init(void) ++{ ++ bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT); ++ if (!bch2_key_cache) ++ return -ENOMEM; ++ ++ return 0; ++} +diff --git a/fs/bcachefs/btree_key_cache.h b/fs/bcachefs/btree_key_cache.h +new file mode 100644 +index 000000000000..be3acde2caa0 +--- /dev/null ++++ b/fs/bcachefs/btree_key_cache.h +@@ -0,0 +1,48 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_KEY_CACHE_H ++#define _BCACHEFS_BTREE_KEY_CACHE_H ++ ++static inline size_t bch2_nr_btree_keys_need_flush(struct bch_fs *c) ++{ ++ size_t nr_dirty = atomic_long_read(&c->btree_key_cache.nr_dirty); ++ size_t nr_keys = atomic_long_read(&c->btree_key_cache.nr_keys); ++ size_t max_dirty = 1024 + nr_keys / 2; ++ ++ return max_t(ssize_t, 0, nr_dirty - max_dirty); ++} ++ ++static inline bool bch2_btree_key_cache_must_wait(struct bch_fs *c) ++{ ++ size_t nr_dirty = atomic_long_read(&c->btree_key_cache.nr_dirty); ++ size_t nr_keys = atomic_long_read(&c->btree_key_cache.nr_keys); ++ size_t max_dirty = 4096 + (nr_keys * 3) / 4; ++ ++ return nr_dirty > max_dirty; ++} ++ ++int bch2_btree_key_cache_journal_flush(struct journal *, ++ struct journal_entry_pin *, u64); ++ ++struct bkey_cached * ++bch2_btree_key_cache_find(struct bch_fs *, enum btree_id, struct bpos); ++ ++int bch2_btree_path_traverse_cached(struct btree_trans *, struct btree_path *, ++ unsigned); ++ ++bool bch2_btree_insert_key_cached(struct btree_trans *, unsigned, ++ struct btree_insert_entry *); ++int bch2_btree_key_cache_flush(struct btree_trans *, ++ enum btree_id, struct bpos); ++void bch2_btree_key_cache_drop(struct btree_trans *, ++ struct btree_path *); ++ ++void bch2_fs_btree_key_cache_exit(struct btree_key_cache *); ++void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *); ++int bch2_fs_btree_key_cache_init(struct btree_key_cache *); ++ ++void bch2_btree_key_cache_to_text(struct printbuf *, struct btree_key_cache *); ++ ++void bch2_btree_key_cache_exit(void); ++int __init bch2_btree_key_cache_init(void); ++ ++#endif /* _BCACHEFS_BTREE_KEY_CACHE_H */ +diff --git a/fs/bcachefs/btree_locking.c b/fs/bcachefs/btree_locking.c +new file mode 100644 +index 000000000000..40c8ed8f7bf1 +--- /dev/null ++++ b/fs/bcachefs/btree_locking.c +@@ -0,0 +1,791 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_locking.h" ++#include "btree_types.h" ++ ++static struct lock_class_key bch2_btree_node_lock_key; ++ ++void bch2_btree_lock_init(struct btree_bkey_cached_common *b, ++ enum six_lock_init_flags flags) ++{ ++ __six_lock_init(&b->lock, "b->c.lock", &bch2_btree_node_lock_key, flags); ++ lockdep_set_novalidate_class(&b->lock); ++} ++ ++#ifdef CONFIG_LOCKDEP ++void bch2_assert_btree_nodes_not_locked(void) ++{ ++#if 0 ++ //Re-enable when lock_class_is_held() is merged: ++ BUG_ON(lock_class_is_held(&bch2_btree_node_lock_key)); ++#endif ++} ++#endif ++ ++/* Btree node locking: */ ++ ++struct six_lock_count bch2_btree_node_lock_counts(struct btree_trans *trans, ++ struct btree_path *skip, ++ struct btree_bkey_cached_common *b, ++ unsigned level) ++{ ++ struct btree_path *path; ++ struct six_lock_count ret; ++ ++ memset(&ret, 0, sizeof(ret)); ++ ++ if (IS_ERR_OR_NULL(b)) ++ return ret; ++ ++ trans_for_each_path(trans, path) ++ if (path != skip && &path->l[level].b->c == b) { ++ int t = btree_node_locked_type(path, level); ++ ++ if (t != BTREE_NODE_UNLOCKED) ++ ret.n[t]++; ++ } ++ ++ return ret; ++} ++ ++/* unlock */ ++ ++void bch2_btree_node_unlock_write(struct btree_trans *trans, ++ struct btree_path *path, struct btree *b) ++{ ++ bch2_btree_node_unlock_write_inlined(trans, path, b); ++} ++ ++/* lock */ ++ ++/* ++ * @trans wants to lock @b with type @type ++ */ ++struct trans_waiting_for_lock { ++ struct btree_trans *trans; ++ struct btree_bkey_cached_common *node_want; ++ enum six_lock_type lock_want; ++ ++ /* for iterating over held locks :*/ ++ u8 path_idx; ++ u8 level; ++ u64 lock_start_time; ++}; ++ ++struct lock_graph { ++ struct trans_waiting_for_lock g[8]; ++ unsigned nr; ++}; ++ ++static noinline void print_cycle(struct printbuf *out, struct lock_graph *g) ++{ ++ struct trans_waiting_for_lock *i; ++ ++ prt_printf(out, "Found lock cycle (%u entries):", g->nr); ++ prt_newline(out); ++ ++ for (i = g->g; i < g->g + g->nr; i++) ++ bch2_btree_trans_to_text(out, i->trans); ++} ++ ++static noinline void print_chain(struct printbuf *out, struct lock_graph *g) ++{ ++ struct trans_waiting_for_lock *i; ++ ++ for (i = g->g; i != g->g + g->nr; i++) { ++ if (i != g->g) ++ prt_str(out, "<- "); ++ prt_printf(out, "%u ", i->trans->locking_wait.task->pid); ++ } ++ prt_newline(out); ++} ++ ++static void lock_graph_up(struct lock_graph *g) ++{ ++ closure_put(&g->g[--g->nr].trans->ref); ++} ++ ++static noinline void lock_graph_pop_all(struct lock_graph *g) ++{ ++ while (g->nr) ++ lock_graph_up(g); ++} ++ ++static void __lock_graph_down(struct lock_graph *g, struct btree_trans *trans) ++{ ++ g->g[g->nr++] = (struct trans_waiting_for_lock) { ++ .trans = trans, ++ .node_want = trans->locking, ++ .lock_want = trans->locking_wait.lock_want, ++ }; ++} ++ ++static void lock_graph_down(struct lock_graph *g, struct btree_trans *trans) ++{ ++ closure_get(&trans->ref); ++ __lock_graph_down(g, trans); ++} ++ ++static bool lock_graph_remove_non_waiters(struct lock_graph *g) ++{ ++ struct trans_waiting_for_lock *i; ++ ++ for (i = g->g + 1; i < g->g + g->nr; i++) ++ if (i->trans->locking != i->node_want || ++ i->trans->locking_wait.start_time != i[-1].lock_start_time) { ++ while (g->g + g->nr > i) ++ lock_graph_up(g); ++ return true; ++ } ++ ++ return false; ++} ++ ++static int abort_lock(struct lock_graph *g, struct trans_waiting_for_lock *i) ++{ ++ if (i == g->g) { ++ trace_and_count(i->trans->c, trans_restart_would_deadlock, i->trans, _RET_IP_); ++ return btree_trans_restart(i->trans, BCH_ERR_transaction_restart_would_deadlock); ++ } else { ++ i->trans->lock_must_abort = true; ++ wake_up_process(i->trans->locking_wait.task); ++ return 0; ++ } ++} ++ ++static int btree_trans_abort_preference(struct btree_trans *trans) ++{ ++ if (trans->lock_may_not_fail) ++ return 0; ++ if (trans->locking_wait.lock_want == SIX_LOCK_write) ++ return 1; ++ if (!trans->in_traverse_all) ++ return 2; ++ return 3; ++} ++ ++static noinline int break_cycle(struct lock_graph *g, struct printbuf *cycle) ++{ ++ struct trans_waiting_for_lock *i, *abort = NULL; ++ unsigned best = 0, pref; ++ int ret; ++ ++ if (lock_graph_remove_non_waiters(g)) ++ return 0; ++ ++ /* Only checking, for debugfs: */ ++ if (cycle) { ++ print_cycle(cycle, g); ++ ret = -1; ++ goto out; ++ } ++ ++ for (i = g->g; i < g->g + g->nr; i++) { ++ pref = btree_trans_abort_preference(i->trans); ++ if (pref > best) { ++ abort = i; ++ best = pref; ++ } ++ } ++ ++ if (unlikely(!best)) { ++ struct printbuf buf = PRINTBUF; ++ ++ prt_printf(&buf, bch2_fmt(g->g->trans->c, "cycle of nofail locks")); ++ ++ for (i = g->g; i < g->g + g->nr; i++) { ++ struct btree_trans *trans = i->trans; ++ ++ bch2_btree_trans_to_text(&buf, trans); ++ ++ prt_printf(&buf, "backtrace:"); ++ prt_newline(&buf); ++ printbuf_indent_add(&buf, 2); ++ bch2_prt_task_backtrace(&buf, trans->locking_wait.task); ++ printbuf_indent_sub(&buf, 2); ++ prt_newline(&buf); ++ } ++ ++ bch2_print_string_as_lines(KERN_ERR, buf.buf); ++ printbuf_exit(&buf); ++ BUG(); ++ } ++ ++ ret = abort_lock(g, abort); ++out: ++ if (ret) ++ while (g->nr) ++ lock_graph_up(g); ++ return ret; ++} ++ ++static int lock_graph_descend(struct lock_graph *g, struct btree_trans *trans, ++ struct printbuf *cycle) ++{ ++ struct btree_trans *orig_trans = g->g->trans; ++ struct trans_waiting_for_lock *i; ++ ++ for (i = g->g; i < g->g + g->nr; i++) ++ if (i->trans == trans) { ++ closure_put(&trans->ref); ++ return break_cycle(g, cycle); ++ } ++ ++ if (g->nr == ARRAY_SIZE(g->g)) { ++ closure_put(&trans->ref); ++ ++ if (orig_trans->lock_may_not_fail) ++ return 0; ++ ++ while (g->nr) ++ lock_graph_up(g); ++ ++ if (cycle) ++ return 0; ++ ++ trace_and_count(trans->c, trans_restart_would_deadlock_recursion_limit, trans, _RET_IP_); ++ return btree_trans_restart(orig_trans, BCH_ERR_transaction_restart_deadlock_recursion_limit); ++ } ++ ++ __lock_graph_down(g, trans); ++ return 0; ++} ++ ++static bool lock_type_conflicts(enum six_lock_type t1, enum six_lock_type t2) ++{ ++ return t1 + t2 > 1; ++} ++ ++int bch2_check_for_deadlock(struct btree_trans *trans, struct printbuf *cycle) ++{ ++ struct lock_graph g; ++ struct trans_waiting_for_lock *top; ++ struct btree_bkey_cached_common *b; ++ struct btree_path *path; ++ unsigned path_idx; ++ int ret; ++ ++ if (trans->lock_must_abort) { ++ if (cycle) ++ return -1; ++ ++ trace_and_count(trans->c, trans_restart_would_deadlock, trans, _RET_IP_); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_would_deadlock); ++ } ++ ++ g.nr = 0; ++ lock_graph_down(&g, trans); ++next: ++ if (!g.nr) ++ return 0; ++ ++ top = &g.g[g.nr - 1]; ++ ++ trans_for_each_path_safe_from(top->trans, path, path_idx, top->path_idx) { ++ if (!path->nodes_locked) ++ continue; ++ ++ if (path_idx != top->path_idx) { ++ top->path_idx = path_idx; ++ top->level = 0; ++ top->lock_start_time = 0; ++ } ++ ++ for (; ++ top->level < BTREE_MAX_DEPTH; ++ top->level++, top->lock_start_time = 0) { ++ int lock_held = btree_node_locked_type(path, top->level); ++ ++ if (lock_held == BTREE_NODE_UNLOCKED) ++ continue; ++ ++ b = &READ_ONCE(path->l[top->level].b)->c; ++ ++ if (IS_ERR_OR_NULL(b)) { ++ /* ++ * If we get here, it means we raced with the ++ * other thread updating its btree_path ++ * structures - which means it can't be blocked ++ * waiting on a lock: ++ */ ++ if (!lock_graph_remove_non_waiters(&g)) { ++ /* ++ * If lock_graph_remove_non_waiters() ++ * didn't do anything, it must be ++ * because we're being called by debugfs ++ * checking for lock cycles, which ++ * invokes us on btree_transactions that ++ * aren't actually waiting on anything. ++ * Just bail out: ++ */ ++ lock_graph_pop_all(&g); ++ } ++ ++ goto next; ++ } ++ ++ if (list_empty_careful(&b->lock.wait_list)) ++ continue; ++ ++ raw_spin_lock(&b->lock.wait_lock); ++ list_for_each_entry(trans, &b->lock.wait_list, locking_wait.list) { ++ BUG_ON(b != trans->locking); ++ ++ if (top->lock_start_time && ++ time_after_eq64(top->lock_start_time, trans->locking_wait.start_time)) ++ continue; ++ ++ top->lock_start_time = trans->locking_wait.start_time; ++ ++ /* Don't check for self deadlock: */ ++ if (trans == top->trans || ++ !lock_type_conflicts(lock_held, trans->locking_wait.lock_want)) ++ continue; ++ ++ closure_get(&trans->ref); ++ raw_spin_unlock(&b->lock.wait_lock); ++ ++ ret = lock_graph_descend(&g, trans, cycle); ++ if (ret) ++ return ret; ++ goto next; ++ ++ } ++ raw_spin_unlock(&b->lock.wait_lock); ++ } ++ } ++ ++ if (g.nr > 1 && cycle) ++ print_chain(cycle, &g); ++ lock_graph_up(&g); ++ goto next; ++} ++ ++int bch2_six_check_for_deadlock(struct six_lock *lock, void *p) ++{ ++ struct btree_trans *trans = p; ++ ++ return bch2_check_for_deadlock(trans, NULL); ++} ++ ++int __bch2_btree_node_lock_write(struct btree_trans *trans, struct btree_path *path, ++ struct btree_bkey_cached_common *b, ++ bool lock_may_not_fail) ++{ ++ int readers = bch2_btree_node_lock_counts(trans, NULL, b, b->level).n[SIX_LOCK_read]; ++ int ret; ++ ++ /* ++ * Must drop our read locks before calling six_lock_write() - ++ * six_unlock() won't do wakeups until the reader count ++ * goes to 0, and it's safe because we have the node intent ++ * locked: ++ */ ++ six_lock_readers_add(&b->lock, -readers); ++ ret = __btree_node_lock_nopath(trans, b, SIX_LOCK_write, ++ lock_may_not_fail, _RET_IP_); ++ six_lock_readers_add(&b->lock, readers); ++ ++ if (ret) ++ mark_btree_node_locked_noreset(path, b->level, BTREE_NODE_INTENT_LOCKED); ++ ++ return ret; ++} ++ ++void bch2_btree_node_lock_write_nofail(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree_bkey_cached_common *b) ++{ ++ struct btree_path *linked; ++ unsigned i; ++ int ret; ++ ++ /* ++ * XXX BIG FAT NOTICE ++ * ++ * Drop all read locks before taking a write lock: ++ * ++ * This is a hack, because bch2_btree_node_lock_write_nofail() is a ++ * hack - but by dropping read locks first, this should never fail, and ++ * we only use this in code paths where whatever read locks we've ++ * already taken are no longer needed: ++ */ ++ ++ trans_for_each_path(trans, linked) { ++ if (!linked->nodes_locked) ++ continue; ++ ++ for (i = 0; i < BTREE_MAX_DEPTH; i++) ++ if (btree_node_read_locked(linked, i)) { ++ btree_node_unlock(trans, linked, i); ++ btree_path_set_dirty(linked, BTREE_ITER_NEED_RELOCK); ++ } ++ } ++ ++ ret = __btree_node_lock_write(trans, path, b, true); ++ BUG_ON(ret); ++} ++ ++/* relock */ ++ ++static inline bool btree_path_get_locks(struct btree_trans *trans, ++ struct btree_path *path, ++ bool upgrade) ++{ ++ unsigned l = path->level; ++ int fail_idx = -1; ++ ++ do { ++ if (!btree_path_node(path, l)) ++ break; ++ ++ if (!(upgrade ++ ? bch2_btree_node_upgrade(trans, path, l) ++ : bch2_btree_node_relock(trans, path, l))) ++ fail_idx = l; ++ ++ l++; ++ } while (l < path->locks_want); ++ ++ /* ++ * When we fail to get a lock, we have to ensure that any child nodes ++ * can't be relocked so bch2_btree_path_traverse has to walk back up to ++ * the node that we failed to relock: ++ */ ++ if (fail_idx >= 0) { ++ __bch2_btree_path_unlock(trans, path); ++ btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); ++ ++ do { ++ path->l[fail_idx].b = upgrade ++ ? ERR_PTR(-BCH_ERR_no_btree_node_upgrade) ++ : ERR_PTR(-BCH_ERR_no_btree_node_relock); ++ --fail_idx; ++ } while (fail_idx >= 0); ++ } ++ ++ if (path->uptodate == BTREE_ITER_NEED_RELOCK) ++ path->uptodate = BTREE_ITER_UPTODATE; ++ ++ bch2_trans_verify_locks(trans); ++ ++ return path->uptodate < BTREE_ITER_NEED_RELOCK; ++} ++ ++bool __bch2_btree_node_relock(struct btree_trans *trans, ++ struct btree_path *path, unsigned level, ++ bool trace) ++{ ++ struct btree *b = btree_path_node(path, level); ++ int want = __btree_lock_want(path, level); ++ ++ if (race_fault()) ++ goto fail; ++ ++ if (six_relock_type(&b->c.lock, want, path->l[level].lock_seq) || ++ (btree_node_lock_seq_matches(path, b, level) && ++ btree_node_lock_increment(trans, &b->c, level, want))) { ++ mark_btree_node_locked(trans, path, level, want); ++ return true; ++ } ++fail: ++ if (trace && !trans->notrace_relock_fail) ++ trace_and_count(trans->c, btree_path_relock_fail, trans, _RET_IP_, path, level); ++ return false; ++} ++ ++/* upgrade */ ++ ++bool bch2_btree_node_upgrade(struct btree_trans *trans, ++ struct btree_path *path, unsigned level) ++{ ++ struct btree *b = path->l[level].b; ++ struct six_lock_count count = bch2_btree_node_lock_counts(trans, path, &b->c, level); ++ ++ if (!is_btree_node(path, level)) ++ return false; ++ ++ switch (btree_lock_want(path, level)) { ++ case BTREE_NODE_UNLOCKED: ++ BUG_ON(btree_node_locked(path, level)); ++ return true; ++ case BTREE_NODE_READ_LOCKED: ++ BUG_ON(btree_node_intent_locked(path, level)); ++ return bch2_btree_node_relock(trans, path, level); ++ case BTREE_NODE_INTENT_LOCKED: ++ break; ++ case BTREE_NODE_WRITE_LOCKED: ++ BUG(); ++ } ++ ++ if (btree_node_intent_locked(path, level)) ++ return true; ++ ++ if (race_fault()) ++ return false; ++ ++ if (btree_node_locked(path, level)) { ++ bool ret; ++ ++ six_lock_readers_add(&b->c.lock, -count.n[SIX_LOCK_read]); ++ ret = six_lock_tryupgrade(&b->c.lock); ++ six_lock_readers_add(&b->c.lock, count.n[SIX_LOCK_read]); ++ ++ if (ret) ++ goto success; ++ } else { ++ if (six_relock_type(&b->c.lock, SIX_LOCK_intent, path->l[level].lock_seq)) ++ goto success; ++ } ++ ++ /* ++ * Do we already have an intent lock via another path? If so, just bump ++ * lock count: ++ */ ++ if (btree_node_lock_seq_matches(path, b, level) && ++ btree_node_lock_increment(trans, &b->c, level, BTREE_NODE_INTENT_LOCKED)) { ++ btree_node_unlock(trans, path, level); ++ goto success; ++ } ++ ++ trace_and_count(trans->c, btree_path_upgrade_fail, trans, _RET_IP_, path, level); ++ return false; ++success: ++ mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); ++ return true; ++} ++ ++/* Btree path locking: */ ++ ++/* ++ * Only for btree_cache.c - only relocks intent locks ++ */ ++int bch2_btree_path_relock_intent(struct btree_trans *trans, ++ struct btree_path *path) ++{ ++ unsigned l; ++ ++ for (l = path->level; ++ l < path->locks_want && btree_path_node(path, l); ++ l++) { ++ if (!bch2_btree_node_relock(trans, path, l)) { ++ __bch2_btree_path_unlock(trans, path); ++ btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); ++ trace_and_count(trans->c, trans_restart_relock_path_intent, trans, _RET_IP_, path); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path_intent); ++ } ++ } ++ ++ return 0; ++} ++ ++__flatten ++bool bch2_btree_path_relock_norestart(struct btree_trans *trans, ++ struct btree_path *path, unsigned long trace_ip) ++{ ++ return btree_path_get_locks(trans, path, false); ++} ++ ++int __bch2_btree_path_relock(struct btree_trans *trans, ++ struct btree_path *path, unsigned long trace_ip) ++{ ++ if (!bch2_btree_path_relock_norestart(trans, path, trace_ip)) { ++ trace_and_count(trans->c, trans_restart_relock_path, trans, trace_ip, path); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock_path); ++ } ++ ++ return 0; ++} ++ ++bool bch2_btree_path_upgrade_noupgrade_sibs(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned new_locks_want) ++{ ++ EBUG_ON(path->locks_want >= new_locks_want); ++ ++ path->locks_want = new_locks_want; ++ ++ return btree_path_get_locks(trans, path, true); ++} ++ ++bool __bch2_btree_path_upgrade(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned new_locks_want) ++{ ++ struct btree_path *linked; ++ ++ if (bch2_btree_path_upgrade_noupgrade_sibs(trans, path, new_locks_want)) ++ return true; ++ ++ /* ++ * XXX: this is ugly - we'd prefer to not be mucking with other ++ * iterators in the btree_trans here. ++ * ++ * On failure to upgrade the iterator, setting iter->locks_want and ++ * calling get_locks() is sufficient to make bch2_btree_path_traverse() ++ * get the locks we want on transaction restart. ++ * ++ * But if this iterator was a clone, on transaction restart what we did ++ * to this iterator isn't going to be preserved. ++ * ++ * Possibly we could add an iterator field for the parent iterator when ++ * an iterator is a copy - for now, we'll just upgrade any other ++ * iterators with the same btree id. ++ * ++ * The code below used to be needed to ensure ancestor nodes get locked ++ * before interior nodes - now that's handled by ++ * bch2_btree_path_traverse_all(). ++ */ ++ if (!path->cached && !trans->in_traverse_all) ++ trans_for_each_path(trans, linked) ++ if (linked != path && ++ linked->cached == path->cached && ++ linked->btree_id == path->btree_id && ++ linked->locks_want < new_locks_want) { ++ linked->locks_want = new_locks_want; ++ btree_path_get_locks(trans, linked, true); ++ } ++ ++ return false; ++} ++ ++void __bch2_btree_path_downgrade(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned new_locks_want) ++{ ++ unsigned l; ++ ++ EBUG_ON(path->locks_want < new_locks_want); ++ ++ path->locks_want = new_locks_want; ++ ++ while (path->nodes_locked && ++ (l = btree_path_highest_level_locked(path)) >= path->locks_want) { ++ if (l > path->level) { ++ btree_node_unlock(trans, path, l); ++ } else { ++ if (btree_node_intent_locked(path, l)) { ++ six_lock_downgrade(&path->l[l].b->c.lock); ++ mark_btree_node_locked_noreset(path, l, BTREE_NODE_READ_LOCKED); ++ } ++ break; ++ } ++ } ++ ++ bch2_btree_path_verify_locks(path); ++} ++ ++/* Btree transaction locking: */ ++ ++void bch2_trans_downgrade(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ bch2_btree_path_downgrade(trans, path); ++} ++ ++int bch2_trans_relock(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ ++ if (unlikely(trans->restarted)) ++ return -((int) trans->restarted); ++ ++ trans_for_each_path(trans, path) ++ if (path->should_be_locked && ++ !bch2_btree_path_relock_norestart(trans, path, _RET_IP_)) { ++ trace_and_count(trans->c, trans_restart_relock, trans, _RET_IP_, path); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock); ++ } ++ return 0; ++} ++ ++int bch2_trans_relock_notrace(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ ++ if (unlikely(trans->restarted)) ++ return -((int) trans->restarted); ++ ++ trans_for_each_path(trans, path) ++ if (path->should_be_locked && ++ !bch2_btree_path_relock_norestart(trans, path, _RET_IP_)) { ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_relock); ++ } ++ return 0; ++} ++ ++void bch2_trans_unlock_noassert(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ __bch2_btree_path_unlock(trans, path); ++} ++ ++void bch2_trans_unlock(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ __bch2_btree_path_unlock(trans, path); ++} ++ ++bool bch2_trans_locked(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ if (path->nodes_locked) ++ return true; ++ return false; ++} ++ ++int __bch2_trans_mutex_lock(struct btree_trans *trans, ++ struct mutex *lock) ++{ ++ int ret = drop_locks_do(trans, (mutex_lock(lock), 0)); ++ ++ if (ret) ++ mutex_unlock(lock); ++ return ret; ++} ++ ++/* Debug */ ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ ++void bch2_btree_path_verify_locks(struct btree_path *path) ++{ ++ unsigned l; ++ ++ if (!path->nodes_locked) { ++ BUG_ON(path->uptodate == BTREE_ITER_UPTODATE && ++ btree_path_node(path, path->level)); ++ return; ++ } ++ ++ for (l = 0; l < BTREE_MAX_DEPTH; l++) { ++ int want = btree_lock_want(path, l); ++ int have = btree_node_locked_type(path, l); ++ ++ BUG_ON(!is_btree_node(path, l) && have != BTREE_NODE_UNLOCKED); ++ ++ BUG_ON(is_btree_node(path, l) && ++ (want == BTREE_NODE_UNLOCKED || ++ have != BTREE_NODE_WRITE_LOCKED) && ++ want != have); ++ } ++} ++ ++void bch2_trans_verify_locks(struct btree_trans *trans) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ bch2_btree_path_verify_locks(path); ++} ++ ++#endif +diff --git a/fs/bcachefs/btree_locking.h b/fs/bcachefs/btree_locking.h +new file mode 100644 +index 000000000000..6231e9ffc5d7 +--- /dev/null ++++ b/fs/bcachefs/btree_locking.h +@@ -0,0 +1,423 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_LOCKING_H ++#define _BCACHEFS_BTREE_LOCKING_H ++ ++/* ++ * Only for internal btree use: ++ * ++ * The btree iterator tracks what locks it wants to take, and what locks it ++ * currently has - here we have wrappers for locking/unlocking btree nodes and ++ * updating the iterator state ++ */ ++ ++#include "btree_iter.h" ++#include "six.h" ++ ++void bch2_btree_lock_init(struct btree_bkey_cached_common *, enum six_lock_init_flags); ++ ++#ifdef CONFIG_LOCKDEP ++void bch2_assert_btree_nodes_not_locked(void); ++#else ++static inline void bch2_assert_btree_nodes_not_locked(void) {} ++#endif ++ ++void bch2_trans_unlock_noassert(struct btree_trans *); ++ ++static inline bool is_btree_node(struct btree_path *path, unsigned l) ++{ ++ return l < BTREE_MAX_DEPTH && !IS_ERR_OR_NULL(path->l[l].b); ++} ++ ++static inline struct btree_transaction_stats *btree_trans_stats(struct btree_trans *trans) ++{ ++ return trans->fn_idx < ARRAY_SIZE(trans->c->btree_transaction_stats) ++ ? &trans->c->btree_transaction_stats[trans->fn_idx] ++ : NULL; ++} ++ ++/* matches six lock types */ ++enum btree_node_locked_type { ++ BTREE_NODE_UNLOCKED = -1, ++ BTREE_NODE_READ_LOCKED = SIX_LOCK_read, ++ BTREE_NODE_INTENT_LOCKED = SIX_LOCK_intent, ++ BTREE_NODE_WRITE_LOCKED = SIX_LOCK_write, ++}; ++ ++static inline int btree_node_locked_type(struct btree_path *path, ++ unsigned level) ++{ ++ return BTREE_NODE_UNLOCKED + ((path->nodes_locked >> (level << 1)) & 3); ++} ++ ++static inline bool btree_node_write_locked(struct btree_path *path, unsigned l) ++{ ++ return btree_node_locked_type(path, l) == BTREE_NODE_WRITE_LOCKED; ++} ++ ++static inline bool btree_node_intent_locked(struct btree_path *path, unsigned l) ++{ ++ return btree_node_locked_type(path, l) == BTREE_NODE_INTENT_LOCKED; ++} ++ ++static inline bool btree_node_read_locked(struct btree_path *path, unsigned l) ++{ ++ return btree_node_locked_type(path, l) == BTREE_NODE_READ_LOCKED; ++} ++ ++static inline bool btree_node_locked(struct btree_path *path, unsigned level) ++{ ++ return btree_node_locked_type(path, level) != BTREE_NODE_UNLOCKED; ++} ++ ++static inline void mark_btree_node_locked_noreset(struct btree_path *path, ++ unsigned level, ++ enum btree_node_locked_type type) ++{ ++ /* relying on this to avoid a branch */ ++ BUILD_BUG_ON(SIX_LOCK_read != 0); ++ BUILD_BUG_ON(SIX_LOCK_intent != 1); ++ ++ path->nodes_locked &= ~(3U << (level << 1)); ++ path->nodes_locked |= (type + 1) << (level << 1); ++} ++ ++static inline void mark_btree_node_unlocked(struct btree_path *path, ++ unsigned level) ++{ ++ EBUG_ON(btree_node_write_locked(path, level)); ++ mark_btree_node_locked_noreset(path, level, BTREE_NODE_UNLOCKED); ++} ++ ++static inline void mark_btree_node_locked(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned level, ++ enum btree_node_locked_type type) ++{ ++ mark_btree_node_locked_noreset(path, level, (enum btree_node_locked_type) type); ++#ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS ++ path->l[level].lock_taken_time = local_clock(); ++#endif ++} ++ ++static inline enum six_lock_type __btree_lock_want(struct btree_path *path, int level) ++{ ++ return level < path->locks_want ++ ? SIX_LOCK_intent ++ : SIX_LOCK_read; ++} ++ ++static inline enum btree_node_locked_type ++btree_lock_want(struct btree_path *path, int level) ++{ ++ if (level < path->level) ++ return BTREE_NODE_UNLOCKED; ++ if (level < path->locks_want) ++ return BTREE_NODE_INTENT_LOCKED; ++ if (level == path->level) ++ return BTREE_NODE_READ_LOCKED; ++ return BTREE_NODE_UNLOCKED; ++} ++ ++static void btree_trans_lock_hold_time_update(struct btree_trans *trans, ++ struct btree_path *path, unsigned level) ++{ ++#ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS ++ struct btree_transaction_stats *s = btree_trans_stats(trans); ++ ++ if (s) ++ __bch2_time_stats_update(&s->lock_hold_times, ++ path->l[level].lock_taken_time, ++ local_clock()); ++#endif ++} ++ ++/* unlock: */ ++ ++static inline void btree_node_unlock(struct btree_trans *trans, ++ struct btree_path *path, unsigned level) ++{ ++ int lock_type = btree_node_locked_type(path, level); ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++ ++ if (lock_type != BTREE_NODE_UNLOCKED) { ++ six_unlock_type(&path->l[level].b->c.lock, lock_type); ++ btree_trans_lock_hold_time_update(trans, path, level); ++ } ++ mark_btree_node_unlocked(path, level); ++} ++ ++static inline int btree_path_lowest_level_locked(struct btree_path *path) ++{ ++ return __ffs(path->nodes_locked) >> 1; ++} ++ ++static inline int btree_path_highest_level_locked(struct btree_path *path) ++{ ++ return __fls(path->nodes_locked) >> 1; ++} ++ ++static inline void __bch2_btree_path_unlock(struct btree_trans *trans, ++ struct btree_path *path) ++{ ++ btree_path_set_dirty(path, BTREE_ITER_NEED_RELOCK); ++ ++ while (path->nodes_locked) ++ btree_node_unlock(trans, path, btree_path_lowest_level_locked(path)); ++} ++ ++/* ++ * Updates the saved lock sequence number, so that bch2_btree_node_relock() will ++ * succeed: ++ */ ++static inline void ++bch2_btree_node_unlock_write_inlined(struct btree_trans *trans, struct btree_path *path, ++ struct btree *b) ++{ ++ struct btree_path *linked; ++ ++ EBUG_ON(path->l[b->c.level].b != b); ++ EBUG_ON(path->l[b->c.level].lock_seq != six_lock_seq(&b->c.lock)); ++ EBUG_ON(btree_node_locked_type(path, b->c.level) != SIX_LOCK_write); ++ ++ mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); ++ ++ trans_for_each_path_with_node(trans, b, linked) ++ linked->l[b->c.level].lock_seq++; ++ ++ six_unlock_write(&b->c.lock); ++} ++ ++void bch2_btree_node_unlock_write(struct btree_trans *, ++ struct btree_path *, struct btree *); ++ ++int bch2_six_check_for_deadlock(struct six_lock *lock, void *p); ++ ++/* lock: */ ++ ++static inline int __btree_node_lock_nopath(struct btree_trans *trans, ++ struct btree_bkey_cached_common *b, ++ enum six_lock_type type, ++ bool lock_may_not_fail, ++ unsigned long ip) ++{ ++ int ret; ++ ++ trans->lock_may_not_fail = lock_may_not_fail; ++ trans->lock_must_abort = false; ++ trans->locking = b; ++ ++ ret = six_lock_ip_waiter(&b->lock, type, &trans->locking_wait, ++ bch2_six_check_for_deadlock, trans, ip); ++ WRITE_ONCE(trans->locking, NULL); ++ WRITE_ONCE(trans->locking_wait.start_time, 0); ++ return ret; ++} ++ ++static inline int __must_check ++btree_node_lock_nopath(struct btree_trans *trans, ++ struct btree_bkey_cached_common *b, ++ enum six_lock_type type, ++ unsigned long ip) ++{ ++ return __btree_node_lock_nopath(trans, b, type, false, ip); ++} ++ ++static inline void btree_node_lock_nopath_nofail(struct btree_trans *trans, ++ struct btree_bkey_cached_common *b, ++ enum six_lock_type type) ++{ ++ int ret = __btree_node_lock_nopath(trans, b, type, true, _THIS_IP_); ++ ++ BUG_ON(ret); ++} ++ ++/* ++ * Lock a btree node if we already have it locked on one of our linked ++ * iterators: ++ */ ++static inline bool btree_node_lock_increment(struct btree_trans *trans, ++ struct btree_bkey_cached_common *b, ++ unsigned level, ++ enum btree_node_locked_type want) ++{ ++ struct btree_path *path; ++ ++ trans_for_each_path(trans, path) ++ if (&path->l[level].b->c == b && ++ btree_node_locked_type(path, level) >= want) { ++ six_lock_increment(&b->lock, (enum six_lock_type) want); ++ return true; ++ } ++ ++ return false; ++} ++ ++static inline int btree_node_lock(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree_bkey_cached_common *b, ++ unsigned level, ++ enum six_lock_type type, ++ unsigned long ip) ++{ ++ int ret = 0; ++ ++ EBUG_ON(level >= BTREE_MAX_DEPTH); ++ EBUG_ON(!(trans->paths_allocated & (1ULL << path->idx))); ++ ++ if (likely(six_trylock_type(&b->lock, type)) || ++ btree_node_lock_increment(trans, b, level, (enum btree_node_locked_type) type) || ++ !(ret = btree_node_lock_nopath(trans, b, type, btree_path_ip_allocated(path)))) { ++#ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS ++ path->l[b->level].lock_taken_time = local_clock(); ++#endif ++ } ++ ++ return ret; ++} ++ ++int __bch2_btree_node_lock_write(struct btree_trans *, struct btree_path *, ++ struct btree_bkey_cached_common *b, bool); ++ ++static inline int __btree_node_lock_write(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree_bkey_cached_common *b, ++ bool lock_may_not_fail) ++{ ++ EBUG_ON(&path->l[b->level].b->c != b); ++ EBUG_ON(path->l[b->level].lock_seq != six_lock_seq(&b->lock)); ++ EBUG_ON(!btree_node_intent_locked(path, b->level)); ++ ++ /* ++ * six locks are unfair, and read locks block while a thread wants a ++ * write lock: thus, we need to tell the cycle detector we have a write ++ * lock _before_ taking the lock: ++ */ ++ mark_btree_node_locked_noreset(path, b->level, BTREE_NODE_WRITE_LOCKED); ++ ++ return likely(six_trylock_write(&b->lock)) ++ ? 0 ++ : __bch2_btree_node_lock_write(trans, path, b, lock_may_not_fail); ++} ++ ++static inline int __must_check ++bch2_btree_node_lock_write(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree_bkey_cached_common *b) ++{ ++ return __btree_node_lock_write(trans, path, b, false); ++} ++ ++void bch2_btree_node_lock_write_nofail(struct btree_trans *, ++ struct btree_path *, ++ struct btree_bkey_cached_common *); ++ ++/* relock: */ ++ ++bool bch2_btree_path_relock_norestart(struct btree_trans *, ++ struct btree_path *, unsigned long); ++int __bch2_btree_path_relock(struct btree_trans *, ++ struct btree_path *, unsigned long); ++ ++static inline int bch2_btree_path_relock(struct btree_trans *trans, ++ struct btree_path *path, unsigned long trace_ip) ++{ ++ return btree_node_locked(path, path->level) ++ ? 0 ++ : __bch2_btree_path_relock(trans, path, trace_ip); ++} ++ ++bool __bch2_btree_node_relock(struct btree_trans *, struct btree_path *, unsigned, bool trace); ++ ++static inline bool bch2_btree_node_relock(struct btree_trans *trans, ++ struct btree_path *path, unsigned level) ++{ ++ EBUG_ON(btree_node_locked(path, level) && ++ !btree_node_write_locked(path, level) && ++ btree_node_locked_type(path, level) != __btree_lock_want(path, level)); ++ ++ return likely(btree_node_locked(path, level)) || ++ (!IS_ERR_OR_NULL(path->l[level].b) && ++ __bch2_btree_node_relock(trans, path, level, true)); ++} ++ ++static inline bool bch2_btree_node_relock_notrace(struct btree_trans *trans, ++ struct btree_path *path, unsigned level) ++{ ++ EBUG_ON(btree_node_locked(path, level) && ++ !btree_node_write_locked(path, level) && ++ btree_node_locked_type(path, level) != __btree_lock_want(path, level)); ++ ++ return likely(btree_node_locked(path, level)) || ++ (!IS_ERR_OR_NULL(path->l[level].b) && ++ __bch2_btree_node_relock(trans, path, level, false)); ++} ++ ++/* upgrade */ ++ ++bool bch2_btree_path_upgrade_noupgrade_sibs(struct btree_trans *, ++ struct btree_path *, unsigned); ++bool __bch2_btree_path_upgrade(struct btree_trans *, ++ struct btree_path *, unsigned); ++ ++static inline int bch2_btree_path_upgrade(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned new_locks_want) ++{ ++ unsigned old_locks_want = path->locks_want; ++ ++ new_locks_want = min(new_locks_want, BTREE_MAX_DEPTH); ++ ++ if (path->locks_want < new_locks_want ++ ? __bch2_btree_path_upgrade(trans, path, new_locks_want) ++ : path->uptodate == BTREE_ITER_UPTODATE) ++ return 0; ++ ++ trace_and_count(trans->c, trans_restart_upgrade, trans, _THIS_IP_, path, ++ old_locks_want, new_locks_want); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_upgrade); ++} ++ ++/* misc: */ ++ ++static inline void btree_path_set_should_be_locked(struct btree_path *path) ++{ ++ EBUG_ON(!btree_node_locked(path, path->level)); ++ EBUG_ON(path->uptodate); ++ ++ path->should_be_locked = true; ++} ++ ++static inline void __btree_path_set_level_up(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned l) ++{ ++ btree_node_unlock(trans, path, l); ++ path->l[l].b = ERR_PTR(-BCH_ERR_no_btree_node_up); ++} ++ ++static inline void btree_path_set_level_up(struct btree_trans *trans, ++ struct btree_path *path) ++{ ++ __btree_path_set_level_up(trans, path, path->level++); ++ btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE); ++} ++ ++/* debug */ ++ ++struct six_lock_count bch2_btree_node_lock_counts(struct btree_trans *, ++ struct btree_path *, ++ struct btree_bkey_cached_common *b, ++ unsigned); ++ ++int bch2_check_for_deadlock(struct btree_trans *, struct printbuf *); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_btree_path_verify_locks(struct btree_path *); ++void bch2_trans_verify_locks(struct btree_trans *); ++#else ++static inline void bch2_btree_path_verify_locks(struct btree_path *path) {} ++static inline void bch2_trans_verify_locks(struct btree_trans *trans) {} ++#endif ++ ++#endif /* _BCACHEFS_BTREE_LOCKING_H */ +diff --git a/fs/bcachefs/btree_trans_commit.c b/fs/bcachefs/btree_trans_commit.c +new file mode 100644 +index 000000000000..04c1f4610972 +--- /dev/null ++++ b/fs/bcachefs/btree_trans_commit.c +@@ -0,0 +1,1150 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_gc.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_journal_iter.h" ++#include "btree_key_cache.h" ++#include "btree_update_interior.h" ++#include "btree_write_buffer.h" ++#include "buckets.h" ++#include "errcode.h" ++#include "error.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++#include "replicas.h" ++#include "snapshot.h" ++ ++#include ++ ++static void verify_update_old_key(struct btree_trans *trans, struct btree_insert_entry *i) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bch_fs *c = trans->c; ++ struct bkey u; ++ struct bkey_s_c k = bch2_btree_path_peek_slot_exact(i->path, &u); ++ ++ if (unlikely(trans->journal_replay_not_finished)) { ++ struct bkey_i *j_k = ++ bch2_journal_keys_peek_slot(c, i->btree_id, i->level, i->k->k.p); ++ ++ if (j_k) ++ k = bkey_i_to_s_c(j_k); ++ } ++ ++ u = *k.k; ++ u.needs_whiteout = i->old_k.needs_whiteout; ++ ++ BUG_ON(memcmp(&i->old_k, &u, sizeof(struct bkey))); ++ BUG_ON(i->old_v != k.v); ++#endif ++} ++ ++static inline struct btree_path_level *insert_l(struct btree_insert_entry *i) ++{ ++ return i->path->l + i->level; ++} ++ ++static inline bool same_leaf_as_prev(struct btree_trans *trans, ++ struct btree_insert_entry *i) ++{ ++ return i != trans->updates && ++ insert_l(&i[0])->b == insert_l(&i[-1])->b; ++} ++ ++static inline bool same_leaf_as_next(struct btree_trans *trans, ++ struct btree_insert_entry *i) ++{ ++ return i + 1 < trans->updates + trans->nr_updates && ++ insert_l(&i[0])->b == insert_l(&i[1])->b; ++} ++ ++inline void bch2_btree_node_prep_for_write(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b) ++{ ++ struct bch_fs *c = trans->c; ++ ++ if (unlikely(btree_node_just_written(b)) && ++ bch2_btree_post_write_cleanup(c, b)) ++ bch2_trans_node_reinit_iter(trans, b); ++ ++ /* ++ * If the last bset has been written, or if it's gotten too big - start ++ * a new bset to insert into: ++ */ ++ if (want_new_bset(c, b)) ++ bch2_btree_init_next(trans, b); ++} ++ ++/* Inserting into a given leaf node (last stage of insert): */ ++ ++/* Handle overwrites and do insert, for non extents: */ ++bool bch2_btree_bset_insert_key(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b, ++ struct btree_node_iter *node_iter, ++ struct bkey_i *insert) ++{ ++ struct bkey_packed *k; ++ unsigned clobber_u64s = 0, new_u64s = 0; ++ ++ EBUG_ON(btree_node_just_written(b)); ++ EBUG_ON(bset_written(b, btree_bset_last(b))); ++ EBUG_ON(bkey_deleted(&insert->k) && bkey_val_u64s(&insert->k)); ++ EBUG_ON(bpos_lt(insert->k.p, b->data->min_key)); ++ EBUG_ON(bpos_gt(insert->k.p, b->data->max_key)); ++ EBUG_ON(insert->k.u64s > ++ bch_btree_keys_u64s_remaining(trans->c, b)); ++ EBUG_ON(!b->c.level && !bpos_eq(insert->k.p, path->pos)); ++ ++ k = bch2_btree_node_iter_peek_all(node_iter, b); ++ if (k && bkey_cmp_left_packed(b, k, &insert->k.p)) ++ k = NULL; ++ ++ /* @k is the key being overwritten/deleted, if any: */ ++ EBUG_ON(k && bkey_deleted(k)); ++ ++ /* Deleting, but not found? nothing to do: */ ++ if (bkey_deleted(&insert->k) && !k) ++ return false; ++ ++ if (bkey_deleted(&insert->k)) { ++ /* Deleting: */ ++ btree_account_key_drop(b, k); ++ k->type = KEY_TYPE_deleted; ++ ++ if (k->needs_whiteout) ++ push_whiteout(trans->c, b, insert->k.p); ++ k->needs_whiteout = false; ++ ++ if (k >= btree_bset_last(b)->start) { ++ clobber_u64s = k->u64s; ++ bch2_bset_delete(b, k, clobber_u64s); ++ goto fix_iter; ++ } else { ++ bch2_btree_path_fix_key_modified(trans, b, k); ++ } ++ ++ return true; ++ } ++ ++ if (k) { ++ /* Overwriting: */ ++ btree_account_key_drop(b, k); ++ k->type = KEY_TYPE_deleted; ++ ++ insert->k.needs_whiteout = k->needs_whiteout; ++ k->needs_whiteout = false; ++ ++ if (k >= btree_bset_last(b)->start) { ++ clobber_u64s = k->u64s; ++ goto overwrite; ++ } else { ++ bch2_btree_path_fix_key_modified(trans, b, k); ++ } ++ } ++ ++ k = bch2_btree_node_iter_bset_pos(node_iter, b, bset_tree_last(b)); ++overwrite: ++ bch2_bset_insert(b, node_iter, k, insert, clobber_u64s); ++ new_u64s = k->u64s; ++fix_iter: ++ if (clobber_u64s != new_u64s) ++ bch2_btree_node_iter_fix(trans, path, b, node_iter, k, ++ clobber_u64s, new_u64s); ++ return true; ++} ++ ++static int __btree_node_flush(struct journal *j, struct journal_entry_pin *pin, ++ unsigned i, u64 seq) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct btree_write *w = container_of(pin, struct btree_write, journal); ++ struct btree *b = container_of(w, struct btree, writes[i]); ++ struct btree_trans *trans = bch2_trans_get(c); ++ unsigned long old, new, v; ++ unsigned idx = w - b->writes; ++ ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); ++ v = READ_ONCE(b->flags); ++ ++ do { ++ old = new = v; ++ ++ if (!(old & (1 << BTREE_NODE_dirty)) || ++ !!(old & (1 << BTREE_NODE_write_idx)) != idx || ++ w->journal.seq != seq) ++ break; ++ ++ new &= ~BTREE_WRITE_TYPE_MASK; ++ new |= BTREE_WRITE_journal_reclaim; ++ new |= 1 << BTREE_NODE_need_write; ++ } while ((v = cmpxchg(&b->flags, old, new)) != old); ++ ++ btree_node_write_if_need(c, b, SIX_LOCK_read); ++ six_unlock_read(&b->c.lock); ++ ++ bch2_trans_put(trans); ++ return 0; ++} ++ ++int bch2_btree_node_flush0(struct journal *j, struct journal_entry_pin *pin, u64 seq) ++{ ++ return __btree_node_flush(j, pin, 0, seq); ++} ++ ++int bch2_btree_node_flush1(struct journal *j, struct journal_entry_pin *pin, u64 seq) ++{ ++ return __btree_node_flush(j, pin, 1, seq); ++} ++ ++inline void bch2_btree_add_journal_pin(struct bch_fs *c, ++ struct btree *b, u64 seq) ++{ ++ struct btree_write *w = btree_current_write(b); ++ ++ bch2_journal_pin_add(&c->journal, seq, &w->journal, ++ btree_node_write_idx(b) == 0 ++ ? bch2_btree_node_flush0 ++ : bch2_btree_node_flush1); ++} ++ ++/** ++ * bch2_btree_insert_key_leaf() - insert a key one key into a leaf node ++ * @trans: btree transaction object ++ * @path: path pointing to @insert's pos ++ * @insert: key to insert ++ * @journal_seq: sequence number of journal reservation ++ */ ++inline void bch2_btree_insert_key_leaf(struct btree_trans *trans, ++ struct btree_path *path, ++ struct bkey_i *insert, ++ u64 journal_seq) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *b = path_l(path)->b; ++ struct bset_tree *t = bset_tree_last(b); ++ struct bset *i = bset(b, t); ++ int old_u64s = bset_u64s(t); ++ int old_live_u64s = b->nr.live_u64s; ++ int live_u64s_added, u64s_added; ++ ++ if (unlikely(!bch2_btree_bset_insert_key(trans, path, b, ++ &path_l(path)->iter, insert))) ++ return; ++ ++ i->journal_seq = cpu_to_le64(max(journal_seq, le64_to_cpu(i->journal_seq))); ++ ++ bch2_btree_add_journal_pin(c, b, journal_seq); ++ ++ if (unlikely(!btree_node_dirty(b))) { ++ EBUG_ON(test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags)); ++ set_btree_node_dirty_acct(c, b); ++ } ++ ++ live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; ++ u64s_added = (int) bset_u64s(t) - old_u64s; ++ ++ if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) ++ b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); ++ if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) ++ b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); ++ ++ if (u64s_added > live_u64s_added && ++ bch2_maybe_compact_whiteouts(c, b)) ++ bch2_trans_node_reinit_iter(trans, b); ++} ++ ++/* Cached btree updates: */ ++ ++/* Normal update interface: */ ++ ++static inline void btree_insert_entry_checks(struct btree_trans *trans, ++ struct btree_insert_entry *i) ++{ ++ BUG_ON(!bpos_eq(i->k->k.p, i->path->pos)); ++ BUG_ON(i->cached != i->path->cached); ++ BUG_ON(i->level != i->path->level); ++ BUG_ON(i->btree_id != i->path->btree_id); ++ EBUG_ON(!i->level && ++ !(i->flags & BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) && ++ test_bit(JOURNAL_REPLAY_DONE, &trans->c->journal.flags) && ++ i->k->k.p.snapshot && ++ bch2_snapshot_is_internal_node(trans->c, i->k->k.p.snapshot)); ++} ++ ++static noinline int ++bch2_trans_journal_preres_get_cold(struct btree_trans *trans, unsigned flags, ++ unsigned long trace_ip) ++{ ++ return drop_locks_do(trans, ++ bch2_journal_preres_get(&trans->c->journal, ++ &trans->journal_preres, ++ trans->journal_preres_u64s, ++ (flags & BCH_WATERMARK_MASK))); ++} ++ ++static __always_inline int bch2_trans_journal_res_get(struct btree_trans *trans, ++ unsigned flags) ++{ ++ return bch2_journal_res_get(&trans->c->journal, &trans->journal_res, ++ trans->journal_u64s, flags); ++} ++ ++#define JSET_ENTRY_LOG_U64s 4 ++ ++static noinline void journal_transaction_name(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ struct journal *j = &c->journal; ++ struct jset_entry *entry = ++ bch2_journal_add_entry(j, &trans->journal_res, ++ BCH_JSET_ENTRY_log, 0, 0, ++ JSET_ENTRY_LOG_U64s); ++ struct jset_entry_log *l = ++ container_of(entry, struct jset_entry_log, entry); ++ ++ strncpy(l->d, trans->fn, JSET_ENTRY_LOG_U64s * sizeof(u64)); ++} ++ ++static inline int btree_key_can_insert(struct btree_trans *trans, ++ struct btree *b, unsigned u64s) ++{ ++ struct bch_fs *c = trans->c; ++ ++ if (!bch2_btree_node_insert_fits(c, b, u64s)) ++ return -BCH_ERR_btree_insert_btree_node_full; ++ ++ return 0; ++} ++ ++static int btree_key_can_insert_cached(struct btree_trans *trans, unsigned flags, ++ struct btree_path *path, unsigned u64s) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_cached *ck = (void *) path->l[0].b; ++ struct btree_insert_entry *i; ++ unsigned new_u64s; ++ struct bkey_i *new_k; ++ ++ EBUG_ON(path->level); ++ ++ if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) && ++ bch2_btree_key_cache_must_wait(c) && ++ !(flags & BTREE_INSERT_JOURNAL_RECLAIM)) ++ return -BCH_ERR_btree_insert_need_journal_reclaim; ++ ++ /* ++ * bch2_varint_decode can read past the end of the buffer by at most 7 ++ * bytes (it won't be used): ++ */ ++ u64s += 1; ++ ++ if (u64s <= ck->u64s) ++ return 0; ++ ++ new_u64s = roundup_pow_of_two(u64s); ++ new_k = krealloc(ck->k, new_u64s * sizeof(u64), GFP_NOFS); ++ if (!new_k) { ++ bch_err(c, "error allocating memory for key cache key, btree %s u64s %u", ++ bch2_btree_ids[path->btree_id], new_u64s); ++ return -BCH_ERR_ENOMEM_btree_key_cache_insert; ++ } ++ ++ trans_for_each_update(trans, i) ++ if (i->old_v == &ck->k->v) ++ i->old_v = &new_k->v; ++ ++ ck->u64s = new_u64s; ++ ck->k = new_k; ++ return 0; ++} ++ ++/* Triggers: */ ++ ++static int run_one_mem_trigger(struct btree_trans *trans, ++ struct btree_insert_entry *i, ++ unsigned flags) ++{ ++ struct bkey_s_c old = { &i->old_k, i->old_v }; ++ struct bkey_i *new = i->k; ++ const struct bkey_ops *old_ops = bch2_bkey_type_ops(old.k->type); ++ const struct bkey_ops *new_ops = bch2_bkey_type_ops(i->k->k.type); ++ int ret; ++ ++ verify_update_old_key(trans, i); ++ ++ if (unlikely(flags & BTREE_TRIGGER_NORUN)) ++ return 0; ++ ++ if (!btree_node_type_needs_gc((enum btree_node_type) i->btree_id)) ++ return 0; ++ ++ if (old_ops->atomic_trigger == new_ops->atomic_trigger && ++ ((1U << old.k->type) & BTREE_TRIGGER_WANTS_OLD_AND_NEW)) { ++ ret = bch2_mark_key(trans, i->btree_id, i->level, ++ old, bkey_i_to_s_c(new), ++ BTREE_TRIGGER_INSERT|BTREE_TRIGGER_OVERWRITE|flags); ++ } else { ++ struct bkey _deleted = KEY(0, 0, 0); ++ struct bkey_s_c deleted = (struct bkey_s_c) { &_deleted, NULL }; ++ ++ _deleted.p = i->path->pos; ++ ++ ret = bch2_mark_key(trans, i->btree_id, i->level, ++ deleted, bkey_i_to_s_c(new), ++ BTREE_TRIGGER_INSERT|flags) ?: ++ bch2_mark_key(trans, i->btree_id, i->level, ++ old, deleted, ++ BTREE_TRIGGER_OVERWRITE|flags); ++ } ++ ++ return ret; ++} ++ ++static int run_one_trans_trigger(struct btree_trans *trans, struct btree_insert_entry *i, ++ bool overwrite) ++{ ++ /* ++ * Transactional triggers create new btree_insert_entries, so we can't ++ * pass them a pointer to a btree_insert_entry, that memory is going to ++ * move: ++ */ ++ struct bkey old_k = i->old_k; ++ struct bkey_s_c old = { &old_k, i->old_v }; ++ const struct bkey_ops *old_ops = bch2_bkey_type_ops(old.k->type); ++ const struct bkey_ops *new_ops = bch2_bkey_type_ops(i->k->k.type); ++ ++ verify_update_old_key(trans, i); ++ ++ if ((i->flags & BTREE_TRIGGER_NORUN) || ++ !(BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << i->bkey_type))) ++ return 0; ++ ++ if (!i->insert_trigger_run && ++ !i->overwrite_trigger_run && ++ old_ops->trans_trigger == new_ops->trans_trigger && ++ ((1U << old.k->type) & BTREE_TRIGGER_WANTS_OLD_AND_NEW)) { ++ i->overwrite_trigger_run = true; ++ i->insert_trigger_run = true; ++ return bch2_trans_mark_key(trans, i->btree_id, i->level, old, i->k, ++ BTREE_TRIGGER_INSERT| ++ BTREE_TRIGGER_OVERWRITE| ++ i->flags) ?: 1; ++ } else if (overwrite && !i->overwrite_trigger_run) { ++ i->overwrite_trigger_run = true; ++ return bch2_trans_mark_old(trans, i->btree_id, i->level, old, i->flags) ?: 1; ++ } else if (!overwrite && !i->insert_trigger_run) { ++ i->insert_trigger_run = true; ++ return bch2_trans_mark_new(trans, i->btree_id, i->level, i->k, i->flags) ?: 1; ++ } else { ++ return 0; ++ } ++} ++ ++static int run_btree_triggers(struct btree_trans *trans, enum btree_id btree_id, ++ struct btree_insert_entry *btree_id_start) ++{ ++ struct btree_insert_entry *i; ++ bool trans_trigger_run; ++ int ret, overwrite; ++ ++ for (overwrite = 1; overwrite >= 0; --overwrite) { ++ ++ /* ++ * Running triggers will append more updates to the list of updates as ++ * we're walking it: ++ */ ++ do { ++ trans_trigger_run = false; ++ ++ for (i = btree_id_start; ++ i < trans->updates + trans->nr_updates && i->btree_id <= btree_id; ++ i++) { ++ if (i->btree_id != btree_id) ++ continue; ++ ++ ret = run_one_trans_trigger(trans, i, overwrite); ++ if (ret < 0) ++ return ret; ++ if (ret) ++ trans_trigger_run = true; ++ } ++ } while (trans_trigger_run); ++ } ++ ++ return 0; ++} ++ ++static int bch2_trans_commit_run_triggers(struct btree_trans *trans) ++{ ++ struct btree_insert_entry *i = NULL, *btree_id_start = trans->updates; ++ unsigned btree_id = 0; ++ int ret = 0; ++ ++ /* ++ * ++ * For a given btree, this algorithm runs insert triggers before ++ * overwrite triggers: this is so that when extents are being moved ++ * (e.g. by FALLOCATE_FL_INSERT_RANGE), we don't drop references before ++ * they are re-added. ++ */ ++ for (btree_id = 0; btree_id < BTREE_ID_NR; btree_id++) { ++ if (btree_id == BTREE_ID_alloc) ++ continue; ++ ++ while (btree_id_start < trans->updates + trans->nr_updates && ++ btree_id_start->btree_id < btree_id) ++ btree_id_start++; ++ ++ ret = run_btree_triggers(trans, btree_id, btree_id_start); ++ if (ret) ++ return ret; ++ } ++ ++ trans_for_each_update(trans, i) { ++ if (i->btree_id > BTREE_ID_alloc) ++ break; ++ if (i->btree_id == BTREE_ID_alloc) { ++ ret = run_btree_triggers(trans, BTREE_ID_alloc, i); ++ if (ret) ++ return ret; ++ break; ++ } ++ } ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ trans_for_each_update(trans, i) ++ BUG_ON(!(i->flags & BTREE_TRIGGER_NORUN) && ++ (BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS & (1U << i->bkey_type)) && ++ (!i->insert_trigger_run || !i->overwrite_trigger_run)); ++#endif ++ return 0; ++} ++ ++static noinline int bch2_trans_commit_run_gc_triggers(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i; ++ int ret = 0; ++ ++ trans_for_each_update(trans, i) { ++ /* ++ * XXX: synchronization of cached update triggers with gc ++ * XXX: synchronization of interior node updates with gc ++ */ ++ BUG_ON(i->cached || i->level); ++ ++ if (gc_visited(c, gc_pos_btree_node(insert_l(i)->b))) { ++ ret = run_one_mem_trigger(trans, i, i->flags|BTREE_TRIGGER_GC); ++ if (ret) ++ break; ++ } ++ } ++ ++ return ret; ++} ++ ++static inline int ++bch2_trans_commit_write_locked(struct btree_trans *trans, unsigned flags, ++ struct btree_insert_entry **stopped_at, ++ unsigned long trace_ip) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i; ++ struct btree_write_buffered_key *wb; ++ struct btree_trans_commit_hook *h; ++ unsigned u64s = 0; ++ int ret; ++ ++ if (race_fault()) { ++ trace_and_count(c, trans_restart_fault_inject, trans, trace_ip); ++ return btree_trans_restart_nounlock(trans, BCH_ERR_transaction_restart_fault_inject); ++ } ++ ++ /* ++ * Check if the insert will fit in the leaf node with the write lock ++ * held, otherwise another thread could write the node changing the ++ * amount of space available: ++ */ ++ ++ prefetch(&trans->c->journal.flags); ++ ++ trans_for_each_update(trans, i) { ++ /* Multiple inserts might go to same leaf: */ ++ if (!same_leaf_as_prev(trans, i)) ++ u64s = 0; ++ ++ u64s += i->k->k.u64s; ++ ret = !i->cached ++ ? btree_key_can_insert(trans, insert_l(i)->b, u64s) ++ : btree_key_can_insert_cached(trans, flags, i->path, u64s); ++ if (ret) { ++ *stopped_at = i; ++ return ret; ++ } ++ } ++ ++ if (trans->nr_wb_updates && ++ trans->nr_wb_updates + c->btree_write_buffer.state.nr > c->btree_write_buffer.size) ++ return -BCH_ERR_btree_insert_need_flush_buffer; ++ ++ /* ++ * Don't get journal reservation until after we know insert will ++ * succeed: ++ */ ++ if (likely(!(flags & BTREE_INSERT_JOURNAL_REPLAY))) { ++ ret = bch2_trans_journal_res_get(trans, ++ (flags & BCH_WATERMARK_MASK)| ++ JOURNAL_RES_GET_NONBLOCK); ++ if (ret) ++ return ret; ++ ++ if (unlikely(trans->journal_transaction_names)) ++ journal_transaction_name(trans); ++ } else { ++ trans->journal_res.seq = c->journal.replay_journal_seq; ++ } ++ ++ /* ++ * Not allowed to fail after we've gotten our journal reservation - we ++ * have to use it: ++ */ ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) && ++ !(flags & BTREE_INSERT_JOURNAL_REPLAY)) { ++ if (bch2_journal_seq_verify) ++ trans_for_each_update(trans, i) ++ i->k->k.version.lo = trans->journal_res.seq; ++ else if (bch2_inject_invalid_keys) ++ trans_for_each_update(trans, i) ++ i->k->k.version = MAX_VERSION; ++ } ++ ++ if (trans->fs_usage_deltas && ++ bch2_trans_fs_usage_apply(trans, trans->fs_usage_deltas)) ++ return -BCH_ERR_btree_insert_need_mark_replicas; ++ ++ if (trans->nr_wb_updates) { ++ EBUG_ON(flags & BTREE_INSERT_JOURNAL_REPLAY); ++ ++ ret = bch2_btree_insert_keys_write_buffer(trans); ++ if (ret) ++ goto revert_fs_usage; ++ } ++ ++ h = trans->hooks; ++ while (h) { ++ ret = h->fn(trans, h); ++ if (ret) ++ goto revert_fs_usage; ++ h = h->next; ++ } ++ ++ trans_for_each_update(trans, i) ++ if (BTREE_NODE_TYPE_HAS_MEM_TRIGGERS & (1U << i->bkey_type)) { ++ ret = run_one_mem_trigger(trans, i, i->flags); ++ if (ret) ++ goto fatal_err; ++ } ++ ++ if (unlikely(c->gc_pos.phase)) { ++ ret = bch2_trans_commit_run_gc_triggers(trans); ++ if (ret) ++ goto fatal_err; ++ } ++ ++ if (unlikely(trans->extra_journal_entries.nr)) { ++ memcpy_u64s_small(journal_res_entry(&c->journal, &trans->journal_res), ++ trans->extra_journal_entries.data, ++ trans->extra_journal_entries.nr); ++ ++ trans->journal_res.offset += trans->extra_journal_entries.nr; ++ trans->journal_res.u64s -= trans->extra_journal_entries.nr; ++ } ++ ++ if (likely(!(flags & BTREE_INSERT_JOURNAL_REPLAY))) { ++ struct journal *j = &c->journal; ++ struct jset_entry *entry; ++ ++ trans_for_each_update(trans, i) { ++ if (i->key_cache_already_flushed) ++ continue; ++ ++ if (i->flags & BTREE_UPDATE_NOJOURNAL) ++ continue; ++ ++ verify_update_old_key(trans, i); ++ ++ if (trans->journal_transaction_names) { ++ entry = bch2_journal_add_entry(j, &trans->journal_res, ++ BCH_JSET_ENTRY_overwrite, ++ i->btree_id, i->level, ++ i->old_k.u64s); ++ bkey_reassemble(&entry->start[0], ++ (struct bkey_s_c) { &i->old_k, i->old_v }); ++ } ++ ++ entry = bch2_journal_add_entry(j, &trans->journal_res, ++ BCH_JSET_ENTRY_btree_keys, ++ i->btree_id, i->level, ++ i->k->k.u64s); ++ bkey_copy(&entry->start[0], i->k); ++ } ++ ++ trans_for_each_wb_update(trans, wb) { ++ entry = bch2_journal_add_entry(j, &trans->journal_res, ++ BCH_JSET_ENTRY_btree_keys, ++ wb->btree, 0, ++ wb->k.k.u64s); ++ bkey_copy(&entry->start[0], &wb->k); ++ } ++ ++ if (trans->journal_seq) ++ *trans->journal_seq = trans->journal_res.seq; ++ } ++ ++ trans_for_each_update(trans, i) { ++ i->k->k.needs_whiteout = false; ++ ++ if (!i->cached) { ++ u64 seq = trans->journal_res.seq; ++ ++ if (i->flags & BTREE_UPDATE_PREJOURNAL) ++ seq = i->seq; ++ ++ bch2_btree_insert_key_leaf(trans, i->path, i->k, seq); ++ } else if (!i->key_cache_already_flushed) ++ bch2_btree_insert_key_cached(trans, flags, i); ++ else { ++ bch2_btree_key_cache_drop(trans, i->path); ++ btree_path_set_dirty(i->path, BTREE_ITER_NEED_TRAVERSE); ++ } ++ } ++ ++ return 0; ++fatal_err: ++ bch2_fatal_error(c); ++revert_fs_usage: ++ if (trans->fs_usage_deltas) ++ bch2_trans_fs_usage_revert(trans, trans->fs_usage_deltas); ++ return ret; ++} ++ ++static noinline int trans_lock_write_fail(struct btree_trans *trans, struct btree_insert_entry *i) ++{ ++ while (--i >= trans->updates) { ++ if (same_leaf_as_prev(trans, i)) ++ continue; ++ ++ bch2_btree_node_unlock_write(trans, i->path, insert_l(i)->b); ++ } ++ ++ trace_and_count(trans->c, trans_restart_would_deadlock_write, trans); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_would_deadlock_write); ++} ++ ++static inline int trans_lock_write(struct btree_trans *trans) ++{ ++ struct btree_insert_entry *i; ++ ++ trans_for_each_update(trans, i) { ++ if (same_leaf_as_prev(trans, i)) ++ continue; ++ ++ if (bch2_btree_node_lock_write(trans, i->path, &insert_l(i)->b->c)) ++ return trans_lock_write_fail(trans, i); ++ ++ if (!i->cached) ++ bch2_btree_node_prep_for_write(trans, i->path, insert_l(i)->b); ++ } ++ ++ return 0; ++} ++ ++static noinline void bch2_drop_overwrites_from_journal(struct btree_trans *trans) ++{ ++ struct btree_insert_entry *i; ++ struct btree_write_buffered_key *wb; ++ ++ trans_for_each_update(trans, i) ++ bch2_journal_key_overwritten(trans->c, i->btree_id, i->level, i->k->k.p); ++ ++ trans_for_each_wb_update(trans, wb) ++ bch2_journal_key_overwritten(trans->c, wb->btree, 0, wb->k.k.p); ++} ++ ++static noinline int bch2_trans_commit_bkey_invalid(struct btree_trans *trans, unsigned flags, ++ struct btree_insert_entry *i, ++ struct printbuf *err) ++{ ++ struct bch_fs *c = trans->c; ++ int rw = (flags & BTREE_INSERT_JOURNAL_REPLAY) ? READ : WRITE; ++ ++ printbuf_reset(err); ++ prt_printf(err, "invalid bkey on insert from %s -> %ps", ++ trans->fn, (void *) i->ip_allocated); ++ prt_newline(err); ++ printbuf_indent_add(err, 2); ++ ++ bch2_bkey_val_to_text(err, c, bkey_i_to_s_c(i->k)); ++ prt_newline(err); ++ ++ bch2_bkey_invalid(c, bkey_i_to_s_c(i->k), ++ i->bkey_type, rw, err); ++ bch2_print_string_as_lines(KERN_ERR, err->buf); ++ ++ bch2_inconsistent_error(c); ++ bch2_dump_trans_updates(trans); ++ ++ return -EINVAL; ++} ++ ++/* ++ * Get journal reservation, take write locks, and attempt to do btree update(s): ++ */ ++static inline int do_bch2_trans_commit(struct btree_trans *trans, unsigned flags, ++ struct btree_insert_entry **stopped_at, ++ unsigned long trace_ip) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i; ++ int ret = 0, u64s_delta = 0; ++ ++ trans_for_each_update(trans, i) { ++ if (i->cached) ++ continue; ++ ++ u64s_delta += !bkey_deleted(&i->k->k) ? i->k->k.u64s : 0; ++ u64s_delta -= i->old_btree_u64s; ++ ++ if (!same_leaf_as_next(trans, i)) { ++ if (u64s_delta <= 0) { ++ ret = bch2_foreground_maybe_merge(trans, i->path, ++ i->level, flags); ++ if (unlikely(ret)) ++ return ret; ++ } ++ ++ u64s_delta = 0; ++ } ++ } ++ ++ ret = bch2_journal_preres_get(&c->journal, ++ &trans->journal_preres, trans->journal_preres_u64s, ++ (flags & BCH_WATERMARK_MASK)|JOURNAL_RES_GET_NONBLOCK); ++ if (unlikely(ret == -BCH_ERR_journal_preres_get_blocked)) ++ ret = bch2_trans_journal_preres_get_cold(trans, flags, trace_ip); ++ if (unlikely(ret)) ++ return ret; ++ ++ ret = trans_lock_write(trans); ++ if (unlikely(ret)) ++ return ret; ++ ++ ret = bch2_trans_commit_write_locked(trans, flags, stopped_at, trace_ip); ++ ++ if (!ret && unlikely(trans->journal_replay_not_finished)) ++ bch2_drop_overwrites_from_journal(trans); ++ ++ trans_for_each_update(trans, i) ++ if (!same_leaf_as_prev(trans, i)) ++ bch2_btree_node_unlock_write_inlined(trans, i->path, ++ insert_l(i)->b); ++ ++ if (!ret && trans->journal_pin) ++ bch2_journal_pin_add(&c->journal, trans->journal_res.seq, ++ trans->journal_pin, NULL); ++ ++ /* ++ * Drop journal reservation after dropping write locks, since dropping ++ * the journal reservation may kick off a journal write: ++ */ ++ bch2_journal_res_put(&c->journal, &trans->journal_res); ++ ++ if (unlikely(ret)) ++ return ret; ++ ++ bch2_trans_downgrade(trans); ++ ++ return 0; ++} ++ ++static int journal_reclaim_wait_done(struct bch_fs *c) ++{ ++ int ret = bch2_journal_error(&c->journal) ?: ++ !bch2_btree_key_cache_must_wait(c); ++ ++ if (!ret) ++ journal_reclaim_kick(&c->journal); ++ return ret; ++} ++ ++static noinline ++int bch2_trans_commit_error(struct btree_trans *trans, unsigned flags, ++ struct btree_insert_entry *i, ++ int ret, unsigned long trace_ip) ++{ ++ struct bch_fs *c = trans->c; ++ ++ switch (ret) { ++ case -BCH_ERR_btree_insert_btree_node_full: ++ ret = bch2_btree_split_leaf(trans, i->path, flags); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ trace_and_count(c, trans_restart_btree_node_split, trans, trace_ip, i->path); ++ break; ++ case -BCH_ERR_btree_insert_need_mark_replicas: ++ ret = drop_locks_do(trans, ++ bch2_replicas_delta_list_mark(c, trans->fs_usage_deltas)); ++ break; ++ case -BCH_ERR_journal_res_get_blocked: ++ /* ++ * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK ++ * flag ++ */ ++ if ((flags & BTREE_INSERT_JOURNAL_RECLAIM) && ++ (flags & BCH_WATERMARK_MASK) != BCH_WATERMARK_reclaim) { ++ ret = -BCH_ERR_journal_reclaim_would_deadlock; ++ break; ++ } ++ ++ ret = drop_locks_do(trans, ++ bch2_trans_journal_res_get(trans, ++ (flags & BCH_WATERMARK_MASK)| ++ JOURNAL_RES_GET_CHECK)); ++ break; ++ case -BCH_ERR_btree_insert_need_journal_reclaim: ++ bch2_trans_unlock(trans); ++ ++ trace_and_count(c, trans_blocked_journal_reclaim, trans, trace_ip); ++ ++ wait_event_freezable(c->journal.reclaim_wait, ++ (ret = journal_reclaim_wait_done(c))); ++ if (ret < 0) ++ break; ++ ++ ret = bch2_trans_relock(trans); ++ break; ++ case -BCH_ERR_btree_insert_need_flush_buffer: { ++ struct btree_write_buffer *wb = &c->btree_write_buffer; ++ ++ ret = 0; ++ ++ if (wb->state.nr > wb->size * 3 / 4) { ++ bch2_trans_unlock(trans); ++ mutex_lock(&wb->flush_lock); ++ ++ if (wb->state.nr > wb->size * 3 / 4) { ++ bch2_trans_begin(trans); ++ ret = __bch2_btree_write_buffer_flush(trans, ++ flags|BTREE_INSERT_NOCHECK_RW, true); ++ if (!ret) { ++ trace_and_count(c, trans_restart_write_buffer_flush, trans, _THIS_IP_); ++ ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_write_buffer_flush); ++ } ++ } else { ++ mutex_unlock(&wb->flush_lock); ++ ret = bch2_trans_relock(trans); ++ } ++ } ++ break; ++ } ++ default: ++ BUG_ON(ret >= 0); ++ break; ++ } ++ ++ BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart) != !!trans->restarted); ++ ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOSPC) && ++ !(flags & BTREE_INSERT_NOWAIT) && ++ (flags & BTREE_INSERT_NOFAIL), c, ++ "%s: incorrectly got %s\n", __func__, bch2_err_str(ret)); ++ ++ return ret; ++} ++ ++static noinline int ++bch2_trans_commit_get_rw_cold(struct btree_trans *trans, unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ int ret; ++ ++ if (likely(!(flags & BTREE_INSERT_LAZY_RW)) || ++ test_bit(BCH_FS_STARTED, &c->flags)) ++ return -BCH_ERR_erofs_trans_commit; ++ ++ ret = drop_locks_do(trans, bch2_fs_read_write_early(c)); ++ if (ret) ++ return ret; ++ ++ bch2_write_ref_get(c, BCH_WRITE_REF_trans); ++ return 0; ++} ++ ++/* ++ * This is for updates done in the early part of fsck - btree_gc - before we've ++ * gone RW. we only add the new key to the list of keys for journal replay to ++ * do. ++ */ ++static noinline int ++do_bch2_trans_commit_to_journal_replay(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i; ++ int ret = 0; ++ ++ trans_for_each_update(trans, i) { ++ ret = bch2_journal_key_insert(c, i->btree_id, i->level, i->k); ++ if (ret) ++ break; ++ } ++ ++ return ret; ++} ++ ++int __bch2_trans_commit(struct btree_trans *trans, unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i = NULL; ++ struct btree_write_buffered_key *wb; ++ unsigned u64s; ++ int ret = 0; ++ ++ if (!trans->nr_updates && ++ !trans->nr_wb_updates && ++ !trans->extra_journal_entries.nr) ++ goto out_reset; ++ ++ if (flags & BTREE_INSERT_GC_LOCK_HELD) ++ lockdep_assert_held(&c->gc_lock); ++ ++ ret = bch2_trans_commit_run_triggers(trans); ++ if (ret) ++ goto out_reset; ++ ++ trans_for_each_update(trans, i) { ++ struct printbuf buf = PRINTBUF; ++ enum bkey_invalid_flags invalid_flags = 0; ++ ++ if (!(flags & BTREE_INSERT_JOURNAL_REPLAY)) ++ invalid_flags |= BKEY_INVALID_WRITE|BKEY_INVALID_COMMIT; ++ ++ if (unlikely(bch2_bkey_invalid(c, bkey_i_to_s_c(i->k), ++ i->bkey_type, invalid_flags, &buf))) ++ ret = bch2_trans_commit_bkey_invalid(trans, flags, i, &buf); ++ btree_insert_entry_checks(trans, i); ++ printbuf_exit(&buf); ++ ++ if (ret) ++ return ret; ++ } ++ ++ if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) { ++ ret = do_bch2_trans_commit_to_journal_replay(trans); ++ goto out_reset; ++ } ++ ++ if (!(flags & BTREE_INSERT_NOCHECK_RW) && ++ unlikely(!bch2_write_ref_tryget(c, BCH_WRITE_REF_trans))) { ++ ret = bch2_trans_commit_get_rw_cold(trans, flags); ++ if (ret) ++ goto out_reset; ++ } ++ ++ if (c->btree_write_buffer.state.nr > c->btree_write_buffer.size / 2 && ++ mutex_trylock(&c->btree_write_buffer.flush_lock)) { ++ bch2_trans_begin(trans); ++ bch2_trans_unlock(trans); ++ ++ ret = __bch2_btree_write_buffer_flush(trans, ++ flags|BTREE_INSERT_NOCHECK_RW, true); ++ if (!ret) { ++ trace_and_count(c, trans_restart_write_buffer_flush, trans, _THIS_IP_); ++ ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_write_buffer_flush); ++ } ++ goto out; ++ } ++ ++ EBUG_ON(test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags)); ++ ++ memset(&trans->journal_preres, 0, sizeof(trans->journal_preres)); ++ ++ trans->journal_u64s = trans->extra_journal_entries.nr; ++ trans->journal_preres_u64s = 0; ++ ++ trans->journal_transaction_names = READ_ONCE(c->opts.journal_transaction_names); ++ ++ if (trans->journal_transaction_names) ++ trans->journal_u64s += jset_u64s(JSET_ENTRY_LOG_U64s); ++ ++ trans_for_each_update(trans, i) { ++ EBUG_ON(!i->path->should_be_locked); ++ ++ ret = bch2_btree_path_upgrade(trans, i->path, i->level + 1); ++ if (unlikely(ret)) ++ goto out; ++ ++ EBUG_ON(!btree_node_intent_locked(i->path, i->level)); ++ ++ if (i->key_cache_already_flushed) ++ continue; ++ ++ /* we're going to journal the key being updated: */ ++ u64s = jset_u64s(i->k->k.u64s); ++ if (i->cached && ++ likely(!(flags & BTREE_INSERT_JOURNAL_REPLAY))) ++ trans->journal_preres_u64s += u64s; ++ ++ if (i->flags & BTREE_UPDATE_NOJOURNAL) ++ continue; ++ ++ trans->journal_u64s += u64s; ++ ++ /* and we're also going to log the overwrite: */ ++ if (trans->journal_transaction_names) ++ trans->journal_u64s += jset_u64s(i->old_k.u64s); ++ } ++ ++ trans_for_each_wb_update(trans, wb) ++ trans->journal_u64s += jset_u64s(wb->k.k.u64s); ++ ++ if (trans->extra_journal_res) { ++ ret = bch2_disk_reservation_add(c, trans->disk_res, ++ trans->extra_journal_res, ++ (flags & BTREE_INSERT_NOFAIL) ++ ? BCH_DISK_RESERVATION_NOFAIL : 0); ++ if (ret) ++ goto err; ++ } ++retry: ++ bch2_trans_verify_not_in_restart(trans); ++ memset(&trans->journal_res, 0, sizeof(trans->journal_res)); ++ ++ ret = do_bch2_trans_commit(trans, flags, &i, _RET_IP_); ++ ++ /* make sure we didn't drop or screw up locks: */ ++ bch2_trans_verify_locks(trans); ++ ++ if (ret) ++ goto err; ++ ++ trace_and_count(c, transaction_commit, trans, _RET_IP_); ++out: ++ bch2_journal_preres_put(&c->journal, &trans->journal_preres); ++ ++ if (likely(!(flags & BTREE_INSERT_NOCHECK_RW))) ++ bch2_write_ref_put(c, BCH_WRITE_REF_trans); ++out_reset: ++ bch2_trans_reset_updates(trans); ++ ++ return ret; ++err: ++ ret = bch2_trans_commit_error(trans, flags, i, ret, _RET_IP_); ++ if (ret) ++ goto out; ++ ++ goto retry; ++} +diff --git a/fs/bcachefs/btree_types.h b/fs/bcachefs/btree_types.h +new file mode 100644 +index 000000000000..c9a38e254949 +--- /dev/null ++++ b/fs/bcachefs/btree_types.h +@@ -0,0 +1,739 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_TYPES_H ++#define _BCACHEFS_BTREE_TYPES_H ++ ++#include ++#include ++ ++//#include "bkey_methods.h" ++#include "buckets_types.h" ++#include "darray.h" ++#include "errcode.h" ++#include "journal_types.h" ++#include "replicas_types.h" ++#include "six.h" ++ ++struct open_bucket; ++struct btree_update; ++struct btree_trans; ++ ++#define MAX_BSETS 3U ++ ++struct btree_nr_keys { ++ ++ /* ++ * Amount of live metadata (i.e. size of node after a compaction) in ++ * units of u64s ++ */ ++ u16 live_u64s; ++ u16 bset_u64s[MAX_BSETS]; ++ ++ /* live keys only: */ ++ u16 packed_keys; ++ u16 unpacked_keys; ++}; ++ ++struct bset_tree { ++ /* ++ * We construct a binary tree in an array as if the array ++ * started at 1, so that things line up on the same cachelines ++ * better: see comments in bset.c at cacheline_to_bkey() for ++ * details ++ */ ++ ++ /* size of the binary tree and prev array */ ++ u16 size; ++ ++ /* function of size - precalculated for to_inorder() */ ++ u16 extra; ++ ++ u16 data_offset; ++ u16 aux_data_offset; ++ u16 end_offset; ++}; ++ ++struct btree_write { ++ struct journal_entry_pin journal; ++}; ++ ++struct btree_alloc { ++ struct open_buckets ob; ++ __BKEY_PADDED(k, BKEY_BTREE_PTR_VAL_U64s_MAX); ++}; ++ ++struct btree_bkey_cached_common { ++ struct six_lock lock; ++ u8 level; ++ u8 btree_id; ++ bool cached; ++}; ++ ++struct btree { ++ struct btree_bkey_cached_common c; ++ ++ struct rhash_head hash; ++ u64 hash_val; ++ ++ unsigned long flags; ++ u16 written; ++ u8 nsets; ++ u8 nr_key_bits; ++ u16 version_ondisk; ++ ++ struct bkey_format format; ++ ++ struct btree_node *data; ++ void *aux_data; ++ ++ /* ++ * Sets of sorted keys - the real btree node - plus a binary search tree ++ * ++ * set[0] is special; set[0]->tree, set[0]->prev and set[0]->data point ++ * to the memory we have allocated for this btree node. Additionally, ++ * set[0]->data points to the entire btree node as it exists on disk. ++ */ ++ struct bset_tree set[MAX_BSETS]; ++ ++ struct btree_nr_keys nr; ++ u16 sib_u64s[2]; ++ u16 whiteout_u64s; ++ u8 byte_order; ++ u8 unpack_fn_len; ++ ++ struct btree_write writes[2]; ++ ++ /* Key/pointer for this btree node */ ++ __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); ++ ++ /* ++ * XXX: add a delete sequence number, so when bch2_btree_node_relock() ++ * fails because the lock sequence number has changed - i.e. the ++ * contents were modified - we can still relock the node if it's still ++ * the one we want, without redoing the traversal ++ */ ++ ++ /* ++ * For asynchronous splits/interior node updates: ++ * When we do a split, we allocate new child nodes and update the parent ++ * node to point to them: we update the parent in memory immediately, ++ * but then we must wait until the children have been written out before ++ * the update to the parent can be written - this is a list of the ++ * btree_updates that are blocking this node from being ++ * written: ++ */ ++ struct list_head write_blocked; ++ ++ /* ++ * Also for asynchronous splits/interior node updates: ++ * If a btree node isn't reachable yet, we don't want to kick off ++ * another write - because that write also won't yet be reachable and ++ * marking it as completed before it's reachable would be incorrect: ++ */ ++ unsigned long will_make_reachable; ++ ++ struct open_buckets ob; ++ ++ /* lru list */ ++ struct list_head list; ++}; ++ ++struct btree_cache { ++ struct rhashtable table; ++ bool table_init_done; ++ /* ++ * We never free a struct btree, except on shutdown - we just put it on ++ * the btree_cache_freed list and reuse it later. This simplifies the ++ * code, and it doesn't cost us much memory as the memory usage is ++ * dominated by buffers that hold the actual btree node data and those ++ * can be freed - and the number of struct btrees allocated is ++ * effectively bounded. ++ * ++ * btree_cache_freeable effectively is a small cache - we use it because ++ * high order page allocations can be rather expensive, and it's quite ++ * common to delete and allocate btree nodes in quick succession. It ++ * should never grow past ~2-3 nodes in practice. ++ */ ++ struct mutex lock; ++ struct list_head live; ++ struct list_head freeable; ++ struct list_head freed_pcpu; ++ struct list_head freed_nonpcpu; ++ ++ /* Number of elements in live + freeable lists */ ++ unsigned used; ++ unsigned reserve; ++ atomic_t dirty; ++ struct shrinker shrink; ++ ++ /* ++ * If we need to allocate memory for a new btree node and that ++ * allocation fails, we can cannibalize another node in the btree cache ++ * to satisfy the allocation - lock to guarantee only one thread does ++ * this at a time: ++ */ ++ struct task_struct *alloc_lock; ++ struct closure_waitlist alloc_wait; ++}; ++ ++struct btree_node_iter { ++ struct btree_node_iter_set { ++ u16 k, end; ++ } data[MAX_BSETS]; ++}; ++ ++/* ++ * Iterate over all possible positions, synthesizing deleted keys for holes: ++ */ ++static const __maybe_unused u16 BTREE_ITER_SLOTS = 1 << 0; ++static const __maybe_unused u16 BTREE_ITER_ALL_LEVELS = 1 << 1; ++/* ++ * Indicates that intent locks should be taken on leaf nodes, because we expect ++ * to be doing updates: ++ */ ++static const __maybe_unused u16 BTREE_ITER_INTENT = 1 << 2; ++/* ++ * Causes the btree iterator code to prefetch additional btree nodes from disk: ++ */ ++static const __maybe_unused u16 BTREE_ITER_PREFETCH = 1 << 3; ++/* ++ * Used in bch2_btree_iter_traverse(), to indicate whether we're searching for ++ * @pos or the first key strictly greater than @pos ++ */ ++static const __maybe_unused u16 BTREE_ITER_IS_EXTENTS = 1 << 4; ++static const __maybe_unused u16 BTREE_ITER_NOT_EXTENTS = 1 << 5; ++static const __maybe_unused u16 BTREE_ITER_CACHED = 1 << 6; ++static const __maybe_unused u16 BTREE_ITER_WITH_KEY_CACHE = 1 << 7; ++static const __maybe_unused u16 BTREE_ITER_WITH_UPDATES = 1 << 8; ++static const __maybe_unused u16 BTREE_ITER_WITH_JOURNAL = 1 << 9; ++static const __maybe_unused u16 __BTREE_ITER_ALL_SNAPSHOTS = 1 << 10; ++static const __maybe_unused u16 BTREE_ITER_ALL_SNAPSHOTS = 1 << 11; ++static const __maybe_unused u16 BTREE_ITER_FILTER_SNAPSHOTS = 1 << 12; ++static const __maybe_unused u16 BTREE_ITER_NOPRESERVE = 1 << 13; ++static const __maybe_unused u16 BTREE_ITER_CACHED_NOFILL = 1 << 14; ++static const __maybe_unused u16 BTREE_ITER_KEY_CACHE_FILL = 1 << 15; ++#define __BTREE_ITER_FLAGS_END 16 ++ ++enum btree_path_uptodate { ++ BTREE_ITER_UPTODATE = 0, ++ BTREE_ITER_NEED_RELOCK = 1, ++ BTREE_ITER_NEED_TRAVERSE = 2, ++}; ++ ++#if defined(CONFIG_BCACHEFS_LOCK_TIME_STATS) || defined(CONFIG_BCACHEFS_DEBUG) ++#define TRACK_PATH_ALLOCATED ++#endif ++ ++struct btree_path { ++ u8 idx; ++ u8 sorted_idx; ++ u8 ref; ++ u8 intent_ref; ++ ++ /* btree_iter_copy starts here: */ ++ struct bpos pos; ++ ++ enum btree_id btree_id:5; ++ bool cached:1; ++ bool preserve:1; ++ enum btree_path_uptodate uptodate:2; ++ /* ++ * When true, failing to relock this path will cause the transaction to ++ * restart: ++ */ ++ bool should_be_locked:1; ++ unsigned level:3, ++ locks_want:3; ++ u8 nodes_locked; ++ ++ struct btree_path_level { ++ struct btree *b; ++ struct btree_node_iter iter; ++ u32 lock_seq; ++#ifdef CONFIG_BCACHEFS_LOCK_TIME_STATS ++ u64 lock_taken_time; ++#endif ++ } l[BTREE_MAX_DEPTH]; ++#ifdef TRACK_PATH_ALLOCATED ++ unsigned long ip_allocated; ++#endif ++}; ++ ++static inline struct btree_path_level *path_l(struct btree_path *path) ++{ ++ return path->l + path->level; ++} ++ ++static inline unsigned long btree_path_ip_allocated(struct btree_path *path) ++{ ++#ifdef TRACK_PATH_ALLOCATED ++ return path->ip_allocated; ++#else ++ return _THIS_IP_; ++#endif ++} ++ ++/* ++ * @pos - iterator's current position ++ * @level - current btree depth ++ * @locks_want - btree level below which we start taking intent locks ++ * @nodes_locked - bitmask indicating which nodes in @nodes are locked ++ * @nodes_intent_locked - bitmask indicating which locks are intent locks ++ */ ++struct btree_iter { ++ struct btree_trans *trans; ++ struct btree_path *path; ++ struct btree_path *update_path; ++ struct btree_path *key_cache_path; ++ ++ enum btree_id btree_id:8; ++ unsigned min_depth:3; ++ unsigned advanced:1; ++ ++ /* btree_iter_copy starts here: */ ++ u16 flags; ++ ++ /* When we're filtering by snapshot, the snapshot ID we're looking for: */ ++ unsigned snapshot; ++ ++ struct bpos pos; ++ /* ++ * Current unpacked key - so that bch2_btree_iter_next()/ ++ * bch2_btree_iter_next_slot() can correctly advance pos. ++ */ ++ struct bkey k; ++ ++ /* BTREE_ITER_WITH_JOURNAL: */ ++ size_t journal_idx; ++ struct bpos journal_pos; ++#ifdef TRACK_PATH_ALLOCATED ++ unsigned long ip_allocated; ++#endif ++}; ++ ++struct btree_key_cache_freelist { ++ struct bkey_cached *objs[16]; ++ unsigned nr; ++}; ++ ++struct btree_key_cache { ++ struct mutex lock; ++ struct rhashtable table; ++ bool table_init_done; ++ struct list_head freed_pcpu; ++ struct list_head freed_nonpcpu; ++ struct shrinker shrink; ++ unsigned shrink_iter; ++ struct btree_key_cache_freelist __percpu *pcpu_freed; ++ ++ atomic_long_t nr_freed; ++ atomic_long_t nr_keys; ++ atomic_long_t nr_dirty; ++}; ++ ++struct bkey_cached_key { ++ u32 btree_id; ++ struct bpos pos; ++} __packed __aligned(4); ++ ++#define BKEY_CACHED_ACCESSED 0 ++#define BKEY_CACHED_DIRTY 1 ++ ++struct bkey_cached { ++ struct btree_bkey_cached_common c; ++ ++ unsigned long flags; ++ u16 u64s; ++ bool valid; ++ u32 btree_trans_barrier_seq; ++ struct bkey_cached_key key; ++ ++ struct rhash_head hash; ++ struct list_head list; ++ ++ struct journal_preres res; ++ struct journal_entry_pin journal; ++ u64 seq; ++ ++ struct bkey_i *k; ++}; ++ ++static inline struct bpos btree_node_pos(struct btree_bkey_cached_common *b) ++{ ++ return !b->cached ++ ? container_of(b, struct btree, c)->key.k.p ++ : container_of(b, struct bkey_cached, c)->key.pos; ++} ++ ++struct btree_insert_entry { ++ unsigned flags; ++ u8 bkey_type; ++ enum btree_id btree_id:8; ++ u8 level:4; ++ bool cached:1; ++ bool insert_trigger_run:1; ++ bool overwrite_trigger_run:1; ++ bool key_cache_already_flushed:1; ++ /* ++ * @old_k may be a key from the journal; @old_btree_u64s always refers ++ * to the size of the key being overwritten in the btree: ++ */ ++ u8 old_btree_u64s; ++ struct bkey_i *k; ++ struct btree_path *path; ++ u64 seq; ++ /* key being overwritten: */ ++ struct bkey old_k; ++ const struct bch_val *old_v; ++ unsigned long ip_allocated; ++}; ++ ++#ifndef CONFIG_LOCKDEP ++#define BTREE_ITER_MAX 64 ++#else ++#define BTREE_ITER_MAX 32 ++#endif ++ ++struct btree_trans_commit_hook; ++typedef int (btree_trans_commit_hook_fn)(struct btree_trans *, struct btree_trans_commit_hook *); ++ ++struct btree_trans_commit_hook { ++ btree_trans_commit_hook_fn *fn; ++ struct btree_trans_commit_hook *next; ++}; ++ ++#define BTREE_TRANS_MEM_MAX (1U << 16) ++ ++#define BTREE_TRANS_MAX_LOCK_HOLD_TIME_NS 10000 ++ ++struct btree_trans { ++ struct bch_fs *c; ++ const char *fn; ++ struct closure ref; ++ struct list_head list; ++ u64 last_begin_time; ++ ++ u8 lock_may_not_fail; ++ u8 lock_must_abort; ++ struct btree_bkey_cached_common *locking; ++ struct six_lock_waiter locking_wait; ++ ++ int srcu_idx; ++ ++ u8 fn_idx; ++ u8 nr_sorted; ++ u8 nr_updates; ++ u8 nr_wb_updates; ++ u8 wb_updates_size; ++ bool used_mempool:1; ++ bool in_traverse_all:1; ++ bool paths_sorted:1; ++ bool memory_allocation_failure:1; ++ bool journal_transaction_names:1; ++ bool journal_replay_not_finished:1; ++ bool notrace_relock_fail:1; ++ enum bch_errcode restarted:16; ++ u32 restart_count; ++ unsigned long last_begin_ip; ++ unsigned long last_restarted_ip; ++ unsigned long srcu_lock_time; ++ ++ /* ++ * For when bch2_trans_update notices we'll be splitting a compressed ++ * extent: ++ */ ++ unsigned extra_journal_res; ++ unsigned nr_max_paths; ++ ++ u64 paths_allocated; ++ ++ unsigned mem_top; ++ unsigned mem_max; ++ unsigned mem_bytes; ++ void *mem; ++ ++ u8 sorted[BTREE_ITER_MAX + 8]; ++ struct btree_path paths[BTREE_ITER_MAX]; ++ struct btree_insert_entry updates[BTREE_ITER_MAX]; ++ struct btree_write_buffered_key *wb_updates; ++ ++ /* update path: */ ++ struct btree_trans_commit_hook *hooks; ++ darray_u64 extra_journal_entries; ++ struct journal_entry_pin *journal_pin; ++ ++ struct journal_res journal_res; ++ struct journal_preres journal_preres; ++ u64 *journal_seq; ++ struct disk_reservation *disk_res; ++ unsigned journal_u64s; ++ unsigned journal_preres_u64s; ++ struct replicas_delta_list *fs_usage_deltas; ++}; ++ ++#define BCH_BTREE_WRITE_TYPES() \ ++ x(initial, 0) \ ++ x(init_next_bset, 1) \ ++ x(cache_reclaim, 2) \ ++ x(journal_reclaim, 3) \ ++ x(interior, 4) ++ ++enum btree_write_type { ++#define x(t, n) BTREE_WRITE_##t, ++ BCH_BTREE_WRITE_TYPES() ++#undef x ++ BTREE_WRITE_TYPE_NR, ++}; ++ ++#define BTREE_WRITE_TYPE_MASK (roundup_pow_of_two(BTREE_WRITE_TYPE_NR) - 1) ++#define BTREE_WRITE_TYPE_BITS ilog2(roundup_pow_of_two(BTREE_WRITE_TYPE_NR)) ++ ++#define BTREE_FLAGS() \ ++ x(read_in_flight) \ ++ x(read_error) \ ++ x(dirty) \ ++ x(need_write) \ ++ x(write_blocked) \ ++ x(will_make_reachable) \ ++ x(noevict) \ ++ x(write_idx) \ ++ x(accessed) \ ++ x(write_in_flight) \ ++ x(write_in_flight_inner) \ ++ x(just_written) \ ++ x(dying) \ ++ x(fake) \ ++ x(need_rewrite) \ ++ x(never_write) ++ ++enum btree_flags { ++ /* First bits for btree node write type */ ++ BTREE_NODE_FLAGS_START = BTREE_WRITE_TYPE_BITS - 1, ++#define x(flag) BTREE_NODE_##flag, ++ BTREE_FLAGS() ++#undef x ++}; ++ ++#define x(flag) \ ++static inline bool btree_node_ ## flag(struct btree *b) \ ++{ return test_bit(BTREE_NODE_ ## flag, &b->flags); } \ ++ \ ++static inline void set_btree_node_ ## flag(struct btree *b) \ ++{ set_bit(BTREE_NODE_ ## flag, &b->flags); } \ ++ \ ++static inline void clear_btree_node_ ## flag(struct btree *b) \ ++{ clear_bit(BTREE_NODE_ ## flag, &b->flags); } ++ ++BTREE_FLAGS() ++#undef x ++ ++static inline struct btree_write *btree_current_write(struct btree *b) ++{ ++ return b->writes + btree_node_write_idx(b); ++} ++ ++static inline struct btree_write *btree_prev_write(struct btree *b) ++{ ++ return b->writes + (btree_node_write_idx(b) ^ 1); ++} ++ ++static inline struct bset_tree *bset_tree_last(struct btree *b) ++{ ++ EBUG_ON(!b->nsets); ++ return b->set + b->nsets - 1; ++} ++ ++static inline void * ++__btree_node_offset_to_ptr(const struct btree *b, u16 offset) ++{ ++ return (void *) ((u64 *) b->data + 1 + offset); ++} ++ ++static inline u16 ++__btree_node_ptr_to_offset(const struct btree *b, const void *p) ++{ ++ u16 ret = (u64 *) p - 1 - (u64 *) b->data; ++ ++ EBUG_ON(__btree_node_offset_to_ptr(b, ret) != p); ++ return ret; ++} ++ ++static inline struct bset *bset(const struct btree *b, ++ const struct bset_tree *t) ++{ ++ return __btree_node_offset_to_ptr(b, t->data_offset); ++} ++ ++static inline void set_btree_bset_end(struct btree *b, struct bset_tree *t) ++{ ++ t->end_offset = ++ __btree_node_ptr_to_offset(b, vstruct_last(bset(b, t))); ++} ++ ++static inline void set_btree_bset(struct btree *b, struct bset_tree *t, ++ const struct bset *i) ++{ ++ t->data_offset = __btree_node_ptr_to_offset(b, i); ++ set_btree_bset_end(b, t); ++} ++ ++static inline struct bset *btree_bset_first(struct btree *b) ++{ ++ return bset(b, b->set); ++} ++ ++static inline struct bset *btree_bset_last(struct btree *b) ++{ ++ return bset(b, bset_tree_last(b)); ++} ++ ++static inline u16 ++__btree_node_key_to_offset(const struct btree *b, const struct bkey_packed *k) ++{ ++ return __btree_node_ptr_to_offset(b, k); ++} ++ ++static inline struct bkey_packed * ++__btree_node_offset_to_key(const struct btree *b, u16 k) ++{ ++ return __btree_node_offset_to_ptr(b, k); ++} ++ ++static inline unsigned btree_bkey_first_offset(const struct bset_tree *t) ++{ ++ return t->data_offset + offsetof(struct bset, _data) / sizeof(u64); ++} ++ ++#define btree_bkey_first(_b, _t) \ ++({ \ ++ EBUG_ON(bset(_b, _t)->start != \ ++ __btree_node_offset_to_key(_b, btree_bkey_first_offset(_t)));\ ++ \ ++ bset(_b, _t)->start; \ ++}) ++ ++#define btree_bkey_last(_b, _t) \ ++({ \ ++ EBUG_ON(__btree_node_offset_to_key(_b, (_t)->end_offset) != \ ++ vstruct_last(bset(_b, _t))); \ ++ \ ++ __btree_node_offset_to_key(_b, (_t)->end_offset); \ ++}) ++ ++static inline unsigned bset_u64s(struct bset_tree *t) ++{ ++ return t->end_offset - t->data_offset - ++ sizeof(struct bset) / sizeof(u64); ++} ++ ++static inline unsigned bset_dead_u64s(struct btree *b, struct bset_tree *t) ++{ ++ return bset_u64s(t) - b->nr.bset_u64s[t - b->set]; ++} ++ ++static inline unsigned bset_byte_offset(struct btree *b, void *i) ++{ ++ return i - (void *) b->data; ++} ++ ++enum btree_node_type { ++#define x(kwd, val, ...) BKEY_TYPE_##kwd = val, ++ BCH_BTREE_IDS() ++#undef x ++ BKEY_TYPE_btree, ++}; ++ ++/* Type of a key in btree @id at level @level: */ ++static inline enum btree_node_type __btree_node_type(unsigned level, enum btree_id id) ++{ ++ return level ? BKEY_TYPE_btree : (enum btree_node_type) id; ++} ++ ++/* Type of keys @b contains: */ ++static inline enum btree_node_type btree_node_type(struct btree *b) ++{ ++ return __btree_node_type(b->c.level, b->c.btree_id); ++} ++ ++#define BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS \ ++ (BIT(BKEY_TYPE_extents)| \ ++ BIT(BKEY_TYPE_alloc)| \ ++ BIT(BKEY_TYPE_inodes)| \ ++ BIT(BKEY_TYPE_stripes)| \ ++ BIT(BKEY_TYPE_reflink)| \ ++ BIT(BKEY_TYPE_btree)) ++ ++#define BTREE_NODE_TYPE_HAS_MEM_TRIGGERS \ ++ (BIT(BKEY_TYPE_alloc)| \ ++ BIT(BKEY_TYPE_inodes)| \ ++ BIT(BKEY_TYPE_stripes)| \ ++ BIT(BKEY_TYPE_snapshots)) ++ ++#define BTREE_NODE_TYPE_HAS_TRIGGERS \ ++ (BTREE_NODE_TYPE_HAS_TRANS_TRIGGERS| \ ++ BTREE_NODE_TYPE_HAS_MEM_TRIGGERS) ++ ++static inline bool btree_node_type_needs_gc(enum btree_node_type type) ++{ ++ return BTREE_NODE_TYPE_HAS_TRIGGERS & (1U << type); ++} ++ ++static inline bool btree_node_type_is_extents(enum btree_node_type type) ++{ ++ const unsigned mask = 0 ++#define x(name, nr, flags, ...) |((!!((flags) & BTREE_ID_EXTENTS)) << nr) ++ BCH_BTREE_IDS() ++#undef x ++ ; ++ ++ return (1U << type) & mask; ++} ++ ++static inline bool btree_id_is_extents(enum btree_id btree) ++{ ++ return btree_node_type_is_extents((enum btree_node_type) btree); ++} ++ ++static inline bool btree_type_has_snapshots(enum btree_id id) ++{ ++ const unsigned mask = 0 ++#define x(name, nr, flags, ...) |((!!((flags) & BTREE_ID_SNAPSHOTS)) << nr) ++ BCH_BTREE_IDS() ++#undef x ++ ; ++ ++ return (1U << id) & mask; ++} ++ ++static inline bool btree_type_has_ptrs(enum btree_id id) ++{ ++ const unsigned mask = 0 ++#define x(name, nr, flags, ...) |((!!((flags) & BTREE_ID_DATA)) << nr) ++ BCH_BTREE_IDS() ++#undef x ++ ; ++ ++ return (1U << id) & mask; ++} ++ ++struct btree_root { ++ struct btree *b; ++ ++ /* On disk root - see async splits: */ ++ __BKEY_PADDED(key, BKEY_BTREE_PTR_VAL_U64s_MAX); ++ u8 level; ++ u8 alive; ++ s8 error; ++}; ++ ++enum btree_gc_coalesce_fail_reason { ++ BTREE_GC_COALESCE_FAIL_RESERVE_GET, ++ BTREE_GC_COALESCE_FAIL_KEYLIST_REALLOC, ++ BTREE_GC_COALESCE_FAIL_FORMAT_FITS, ++}; ++ ++enum btree_node_sibling { ++ btree_prev_sib, ++ btree_next_sib, ++}; ++ ++#endif /* _BCACHEFS_BTREE_TYPES_H */ +diff --git a/fs/bcachefs/btree_update.c b/fs/bcachefs/btree_update.c +new file mode 100644 +index 000000000000..324767c0ddcc +--- /dev/null ++++ b/fs/bcachefs/btree_update.c +@@ -0,0 +1,933 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_update.h" ++#include "btree_iter.h" ++#include "btree_journal_iter.h" ++#include "btree_locking.h" ++#include "buckets.h" ++#include "debug.h" ++#include "errcode.h" ++#include "error.h" ++#include "extents.h" ++#include "keylist.h" ++#include "snapshot.h" ++#include "trace.h" ++ ++static inline int btree_insert_entry_cmp(const struct btree_insert_entry *l, ++ const struct btree_insert_entry *r) ++{ ++ return cmp_int(l->btree_id, r->btree_id) ?: ++ cmp_int(l->cached, r->cached) ?: ++ -cmp_int(l->level, r->level) ?: ++ bpos_cmp(l->k->k.p, r->k->k.p); ++} ++ ++static int __must_check ++bch2_trans_update_by_path(struct btree_trans *, struct btree_path *, ++ struct bkey_i *, enum btree_update_flags, ++ unsigned long ip); ++ ++static noinline int extent_front_merge(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ struct bkey_i **insert, ++ enum btree_update_flags flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_i *update; ++ int ret; ++ ++ update = bch2_bkey_make_mut_noupdate(trans, k); ++ ret = PTR_ERR_OR_ZERO(update); ++ if (ret) ++ return ret; ++ ++ if (!bch2_bkey_merge(c, bkey_i_to_s(update), bkey_i_to_s_c(*insert))) ++ return 0; ++ ++ ret = bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p) ?: ++ bch2_key_has_snapshot_overwrites(trans, iter->btree_id, (*insert)->k.p); ++ if (ret < 0) ++ return ret; ++ if (ret) ++ return 0; ++ ++ ret = bch2_btree_delete_at(trans, iter, flags); ++ if (ret) ++ return ret; ++ ++ *insert = update; ++ return 0; ++} ++ ++static noinline int extent_back_merge(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ int ret; ++ ++ ret = bch2_key_has_snapshot_overwrites(trans, iter->btree_id, insert->k.p) ?: ++ bch2_key_has_snapshot_overwrites(trans, iter->btree_id, k.k->p); ++ if (ret < 0) ++ return ret; ++ if (ret) ++ return 0; ++ ++ bch2_bkey_merge(c, bkey_i_to_s(insert), k); ++ return 0; ++} ++ ++/* ++ * When deleting, check if we need to emit a whiteout (because we're overwriting ++ * something in an ancestor snapshot) ++ */ ++static int need_whiteout_for_snapshot(struct btree_trans *trans, ++ enum btree_id btree_id, struct bpos pos) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ u32 snapshot = pos.snapshot; ++ int ret; ++ ++ if (!bch2_snapshot_parent(trans->c, pos.snapshot)) ++ return 0; ++ ++ pos.snapshot++; ++ ++ for_each_btree_key_norestart(trans, iter, btree_id, pos, ++ BTREE_ITER_ALL_SNAPSHOTS| ++ BTREE_ITER_NOPRESERVE, k, ret) { ++ if (!bkey_eq(k.k->p, pos)) ++ break; ++ ++ if (bch2_snapshot_is_ancestor(trans->c, snapshot, ++ k.k->p.snapshot)) { ++ ret = !bkey_whiteout(k.k); ++ break; ++ } ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret; ++} ++ ++int __bch2_insert_snapshot_whiteouts(struct btree_trans *trans, ++ enum btree_id id, ++ struct bpos old_pos, ++ struct bpos new_pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter old_iter, new_iter = { NULL }; ++ struct bkey_s_c old_k, new_k; ++ snapshot_id_list s; ++ struct bkey_i *update; ++ int ret = 0; ++ ++ if (!bch2_snapshot_has_children(c, old_pos.snapshot)) ++ return 0; ++ ++ darray_init(&s); ++ ++ bch2_trans_iter_init(trans, &old_iter, id, old_pos, ++ BTREE_ITER_NOT_EXTENTS| ++ BTREE_ITER_ALL_SNAPSHOTS); ++ while ((old_k = bch2_btree_iter_prev(&old_iter)).k && ++ !(ret = bkey_err(old_k)) && ++ bkey_eq(old_pos, old_k.k->p)) { ++ struct bpos whiteout_pos = ++ SPOS(new_pos.inode, new_pos.offset, old_k.k->p.snapshot);; ++ ++ if (!bch2_snapshot_is_ancestor(c, old_k.k->p.snapshot, old_pos.snapshot) || ++ snapshot_list_has_ancestor(c, &s, old_k.k->p.snapshot)) ++ continue; ++ ++ new_k = bch2_bkey_get_iter(trans, &new_iter, id, whiteout_pos, ++ BTREE_ITER_NOT_EXTENTS| ++ BTREE_ITER_INTENT); ++ ret = bkey_err(new_k); ++ if (ret) ++ break; ++ ++ if (new_k.k->type == KEY_TYPE_deleted) { ++ update = bch2_trans_kmalloc(trans, sizeof(struct bkey_i)); ++ ret = PTR_ERR_OR_ZERO(update); ++ if (ret) ++ break; ++ ++ bkey_init(&update->k); ++ update->k.p = whiteout_pos; ++ update->k.type = KEY_TYPE_whiteout; ++ ++ ret = bch2_trans_update(trans, &new_iter, update, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ } ++ bch2_trans_iter_exit(trans, &new_iter); ++ ++ ret = snapshot_list_add(c, &s, old_k.k->p.snapshot); ++ if (ret) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &new_iter); ++ bch2_trans_iter_exit(trans, &old_iter); ++ darray_exit(&s); ++ ++ return ret; ++} ++ ++int bch2_trans_update_extent_overwrite(struct btree_trans *trans, ++ struct btree_iter *iter, ++ enum btree_update_flags flags, ++ struct bkey_s_c old, ++ struct bkey_s_c new) ++{ ++ enum btree_id btree_id = iter->btree_id; ++ struct bkey_i *update; ++ struct bpos new_start = bkey_start_pos(new.k); ++ bool front_split = bkey_lt(bkey_start_pos(old.k), new_start); ++ bool back_split = bkey_gt(old.k->p, new.k->p); ++ int ret = 0, compressed_sectors; ++ ++ /* ++ * If we're going to be splitting a compressed extent, note it ++ * so that __bch2_trans_commit() can increase our disk ++ * reservation: ++ */ ++ if (((front_split && back_split) || ++ ((front_split || back_split) && old.k->p.snapshot != new.k->p.snapshot)) && ++ (compressed_sectors = bch2_bkey_sectors_compressed(old))) ++ trans->extra_journal_res += compressed_sectors; ++ ++ if (front_split) { ++ update = bch2_bkey_make_mut_noupdate(trans, old); ++ if ((ret = PTR_ERR_OR_ZERO(update))) ++ return ret; ++ ++ bch2_cut_back(new_start, update); ++ ++ ret = bch2_insert_snapshot_whiteouts(trans, btree_id, ++ old.k->p, update->k.p) ?: ++ bch2_btree_insert_nonextent(trans, btree_id, update, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags); ++ if (ret) ++ return ret; ++ } ++ ++ /* If we're overwriting in a different snapshot - middle split: */ ++ if (old.k->p.snapshot != new.k->p.snapshot && ++ (front_split || back_split)) { ++ update = bch2_bkey_make_mut_noupdate(trans, old); ++ if ((ret = PTR_ERR_OR_ZERO(update))) ++ return ret; ++ ++ bch2_cut_front(new_start, update); ++ bch2_cut_back(new.k->p, update); ++ ++ ret = bch2_insert_snapshot_whiteouts(trans, btree_id, ++ old.k->p, update->k.p) ?: ++ bch2_btree_insert_nonextent(trans, btree_id, update, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags); ++ if (ret) ++ return ret; ++ } ++ ++ if (bkey_le(old.k->p, new.k->p)) { ++ update = bch2_trans_kmalloc(trans, sizeof(*update)); ++ if ((ret = PTR_ERR_OR_ZERO(update))) ++ return ret; ++ ++ bkey_init(&update->k); ++ update->k.p = old.k->p; ++ update->k.p.snapshot = new.k->p.snapshot; ++ ++ if (new.k->p.snapshot != old.k->p.snapshot) { ++ update->k.type = KEY_TYPE_whiteout; ++ } else if (btree_type_has_snapshots(btree_id)) { ++ ret = need_whiteout_for_snapshot(trans, btree_id, update->k.p); ++ if (ret < 0) ++ return ret; ++ if (ret) ++ update->k.type = KEY_TYPE_whiteout; ++ } ++ ++ ret = bch2_btree_insert_nonextent(trans, btree_id, update, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE|flags); ++ if (ret) ++ return ret; ++ } ++ ++ if (back_split) { ++ update = bch2_bkey_make_mut_noupdate(trans, old); ++ if ((ret = PTR_ERR_OR_ZERO(update))) ++ return ret; ++ ++ bch2_cut_front(new.k->p, update); ++ ++ ret = bch2_trans_update_by_path(trans, iter->path, update, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| ++ flags, _RET_IP_); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int bch2_trans_update_extent(struct btree_trans *trans, ++ struct btree_iter *orig_iter, ++ struct bkey_i *insert, ++ enum btree_update_flags flags) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ enum btree_id btree_id = orig_iter->btree_id; ++ int ret = 0; ++ ++ bch2_trans_iter_init(trans, &iter, btree_id, bkey_start_pos(&insert->k), ++ BTREE_ITER_INTENT| ++ BTREE_ITER_WITH_UPDATES| ++ BTREE_ITER_NOT_EXTENTS); ++ k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX)); ++ if ((ret = bkey_err(k))) ++ goto err; ++ if (!k.k) ++ goto out; ++ ++ if (bkey_eq(k.k->p, bkey_start_pos(&insert->k))) { ++ if (bch2_bkey_maybe_mergable(k.k, &insert->k)) { ++ ret = extent_front_merge(trans, &iter, k, &insert, flags); ++ if (ret) ++ goto err; ++ } ++ ++ goto next; ++ } ++ ++ while (bkey_gt(insert->k.p, bkey_start_pos(k.k))) { ++ bool done = bkey_lt(insert->k.p, k.k->p); ++ ++ ret = bch2_trans_update_extent_overwrite(trans, &iter, flags, k, bkey_i_to_s_c(insert)); ++ if (ret) ++ goto err; ++ ++ if (done) ++ goto out; ++next: ++ bch2_btree_iter_advance(&iter); ++ k = bch2_btree_iter_peek_upto(&iter, POS(insert->k.p.inode, U64_MAX)); ++ if ((ret = bkey_err(k))) ++ goto err; ++ if (!k.k) ++ goto out; ++ } ++ ++ if (bch2_bkey_maybe_mergable(&insert->k, k.k)) { ++ ret = extent_back_merge(trans, &iter, insert, k); ++ if (ret) ++ goto err; ++ } ++out: ++ if (!bkey_deleted(&insert->k)) ++ ret = bch2_btree_insert_nonextent(trans, btree_id, insert, flags); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret; ++} ++ ++static noinline int flush_new_cached_update(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree_insert_entry *i, ++ enum btree_update_flags flags, ++ unsigned long ip) ++{ ++ struct btree_path *btree_path; ++ struct bkey k; ++ int ret; ++ ++ btree_path = bch2_path_get(trans, path->btree_id, path->pos, 1, 0, ++ BTREE_ITER_INTENT, _THIS_IP_); ++ ret = bch2_btree_path_traverse(trans, btree_path, 0); ++ if (ret) ++ goto out; ++ ++ /* ++ * The old key in the insert entry might actually refer to an existing ++ * key in the btree that has been deleted from cache and not yet ++ * flushed. Check for this and skip the flush so we don't run triggers ++ * against a stale key. ++ */ ++ bch2_btree_path_peek_slot_exact(btree_path, &k); ++ if (!bkey_deleted(&k)) ++ goto out; ++ ++ i->key_cache_already_flushed = true; ++ i->flags |= BTREE_TRIGGER_NORUN; ++ ++ btree_path_set_should_be_locked(btree_path); ++ ret = bch2_trans_update_by_path(trans, btree_path, i->k, flags, ip); ++out: ++ bch2_path_put(trans, btree_path, true); ++ return ret; ++} ++ ++static int __must_check ++bch2_trans_update_by_path(struct btree_trans *trans, struct btree_path *path, ++ struct bkey_i *k, enum btree_update_flags flags, ++ unsigned long ip) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_insert_entry *i, n; ++ u64 seq = 0; ++ int cmp; ++ ++ EBUG_ON(!path->should_be_locked); ++ EBUG_ON(trans->nr_updates >= BTREE_ITER_MAX); ++ EBUG_ON(!bpos_eq(k->k.p, path->pos)); ++ ++ /* ++ * The transaction journal res hasn't been allocated at this point. ++ * That occurs at commit time. Reuse the seq field to pass in the seq ++ * of a prejournaled key. ++ */ ++ if (flags & BTREE_UPDATE_PREJOURNAL) ++ seq = trans->journal_res.seq; ++ ++ n = (struct btree_insert_entry) { ++ .flags = flags, ++ .bkey_type = __btree_node_type(path->level, path->btree_id), ++ .btree_id = path->btree_id, ++ .level = path->level, ++ .cached = path->cached, ++ .path = path, ++ .k = k, ++ .seq = seq, ++ .ip_allocated = ip, ++ }; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ trans_for_each_update(trans, i) ++ BUG_ON(i != trans->updates && ++ btree_insert_entry_cmp(i - 1, i) >= 0); ++#endif ++ ++ /* ++ * Pending updates are kept sorted: first, find position of new update, ++ * then delete/trim any updates the new update overwrites: ++ */ ++ trans_for_each_update(trans, i) { ++ cmp = btree_insert_entry_cmp(&n, i); ++ if (cmp <= 0) ++ break; ++ } ++ ++ if (!cmp && i < trans->updates + trans->nr_updates) { ++ EBUG_ON(i->insert_trigger_run || i->overwrite_trigger_run); ++ ++ bch2_path_put(trans, i->path, true); ++ i->flags = n.flags; ++ i->cached = n.cached; ++ i->k = n.k; ++ i->path = n.path; ++ i->seq = n.seq; ++ i->ip_allocated = n.ip_allocated; ++ } else { ++ array_insert_item(trans->updates, trans->nr_updates, ++ i - trans->updates, n); ++ ++ i->old_v = bch2_btree_path_peek_slot_exact(path, &i->old_k).v; ++ i->old_btree_u64s = !bkey_deleted(&i->old_k) ? i->old_k.u64s : 0; ++ ++ if (unlikely(trans->journal_replay_not_finished)) { ++ struct bkey_i *j_k = ++ bch2_journal_keys_peek_slot(c, n.btree_id, n.level, k->k.p); ++ ++ if (j_k) { ++ i->old_k = j_k->k; ++ i->old_v = &j_k->v; ++ } ++ } ++ } ++ ++ __btree_path_get(i->path, true); ++ ++ /* ++ * If a key is present in the key cache, it must also exist in the ++ * btree - this is necessary for cache coherency. When iterating over ++ * a btree that's cached in the key cache, the btree iter code checks ++ * the key cache - but the key has to exist in the btree for that to ++ * work: ++ */ ++ if (path->cached && bkey_deleted(&i->old_k)) ++ return flush_new_cached_update(trans, path, i, flags, ip); ++ ++ return 0; ++} ++ ++static noinline int bch2_trans_update_get_key_cache(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct btree_path *path) ++{ ++ if (!iter->key_cache_path || ++ !iter->key_cache_path->should_be_locked || ++ !bpos_eq(iter->key_cache_path->pos, iter->pos)) { ++ struct bkey_cached *ck; ++ int ret; ++ ++ if (!iter->key_cache_path) ++ iter->key_cache_path = ++ bch2_path_get(trans, path->btree_id, path->pos, 1, 0, ++ BTREE_ITER_INTENT| ++ BTREE_ITER_CACHED, _THIS_IP_); ++ ++ iter->key_cache_path = ++ bch2_btree_path_set_pos(trans, iter->key_cache_path, path->pos, ++ iter->flags & BTREE_ITER_INTENT, ++ _THIS_IP_); ++ ++ ret = bch2_btree_path_traverse(trans, iter->key_cache_path, ++ BTREE_ITER_CACHED); ++ if (unlikely(ret)) ++ return ret; ++ ++ ck = (void *) iter->key_cache_path->l[0].b; ++ ++ if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) { ++ trace_and_count(trans->c, trans_restart_key_cache_raced, trans, _RET_IP_); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_key_cache_raced); ++ } ++ ++ btree_path_set_should_be_locked(iter->key_cache_path); ++ } ++ ++ return 0; ++} ++ ++int __must_check bch2_trans_update(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_i *k, enum btree_update_flags flags) ++{ ++ struct btree_path *path = iter->update_path ?: iter->path; ++ int ret; ++ ++ if (iter->flags & BTREE_ITER_IS_EXTENTS) ++ return bch2_trans_update_extent(trans, iter, k, flags); ++ ++ if (bkey_deleted(&k->k) && ++ !(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) && ++ (iter->flags & BTREE_ITER_FILTER_SNAPSHOTS)) { ++ ret = need_whiteout_for_snapshot(trans, iter->btree_id, k->k.p); ++ if (unlikely(ret < 0)) ++ return ret; ++ ++ if (ret) ++ k->k.type = KEY_TYPE_whiteout; ++ } ++ ++ /* ++ * Ensure that updates to cached btrees go to the key cache: ++ */ ++ if (!(flags & BTREE_UPDATE_KEY_CACHE_RECLAIM) && ++ !path->cached && ++ !path->level && ++ btree_id_cached(trans->c, path->btree_id)) { ++ ret = bch2_trans_update_get_key_cache(trans, iter, path); ++ if (ret) ++ return ret; ++ ++ path = iter->key_cache_path; ++ } ++ ++ return bch2_trans_update_by_path(trans, path, k, flags, _RET_IP_); ++} ++ ++/* ++ * Add a transaction update for a key that has already been journaled. ++ */ ++int __must_check bch2_trans_update_seq(struct btree_trans *trans, u64 seq, ++ struct btree_iter *iter, struct bkey_i *k, ++ enum btree_update_flags flags) ++{ ++ trans->journal_res.seq = seq; ++ return bch2_trans_update(trans, iter, k, flags|BTREE_UPDATE_NOJOURNAL| ++ BTREE_UPDATE_PREJOURNAL); ++} ++ ++int __must_check bch2_trans_update_buffered(struct btree_trans *trans, ++ enum btree_id btree, ++ struct bkey_i *k) ++{ ++ struct btree_write_buffered_key *i; ++ int ret; ++ ++ EBUG_ON(trans->nr_wb_updates > trans->wb_updates_size); ++ EBUG_ON(k->k.u64s > BTREE_WRITE_BUFERED_U64s_MAX); ++ ++ trans_for_each_wb_update(trans, i) { ++ if (i->btree == btree && bpos_eq(i->k.k.p, k->k.p)) { ++ bkey_copy(&i->k, k); ++ return 0; ++ } ++ } ++ ++ if (!trans->wb_updates || ++ trans->nr_wb_updates == trans->wb_updates_size) { ++ struct btree_write_buffered_key *u; ++ ++ if (trans->nr_wb_updates == trans->wb_updates_size) { ++ struct btree_transaction_stats *s = btree_trans_stats(trans); ++ ++ BUG_ON(trans->wb_updates_size > U8_MAX / 2); ++ trans->wb_updates_size = max(1, trans->wb_updates_size * 2); ++ if (s) ++ s->wb_updates_size = trans->wb_updates_size; ++ } ++ ++ u = bch2_trans_kmalloc_nomemzero(trans, ++ trans->wb_updates_size * ++ sizeof(struct btree_write_buffered_key)); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ return ret; ++ ++ if (trans->nr_wb_updates) ++ memcpy(u, trans->wb_updates, trans->nr_wb_updates * ++ sizeof(struct btree_write_buffered_key)); ++ trans->wb_updates = u; ++ } ++ ++ trans->wb_updates[trans->nr_wb_updates] = (struct btree_write_buffered_key) { ++ .btree = btree, ++ }; ++ ++ bkey_copy(&trans->wb_updates[trans->nr_wb_updates].k, k); ++ trans->nr_wb_updates++; ++ ++ return 0; ++} ++ ++int bch2_bkey_get_empty_slot(struct btree_trans *trans, struct btree_iter *iter, ++ enum btree_id btree, struct bpos end) ++{ ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ bch2_trans_iter_init(trans, iter, btree, POS_MAX, BTREE_ITER_INTENT); ++ k = bch2_btree_iter_prev(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ bch2_btree_iter_advance(iter); ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ BUG_ON(k.k->type != KEY_TYPE_deleted); ++ ++ if (bkey_gt(k.k->p, end)) { ++ ret = -BCH_ERR_ENOSPC_btree_slot; ++ goto err; ++ } ++ ++ return 0; ++err: ++ bch2_trans_iter_exit(trans, iter); ++ return ret; ++} ++ ++void bch2_trans_commit_hook(struct btree_trans *trans, ++ struct btree_trans_commit_hook *h) ++{ ++ h->next = trans->hooks; ++ trans->hooks = h; ++} ++ ++int bch2_btree_insert_nonextent(struct btree_trans *trans, ++ enum btree_id btree, struct bkey_i *k, ++ enum btree_update_flags flags) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, btree, k->k.p, ++ BTREE_ITER_CACHED| ++ BTREE_ITER_NOT_EXTENTS| ++ BTREE_ITER_INTENT); ++ ret = bch2_btree_iter_traverse(&iter) ?: ++ bch2_trans_update(trans, &iter, k, flags); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_btree_insert_trans(struct btree_trans *trans, enum btree_id id, ++ struct bkey_i *k, enum btree_update_flags flags) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, id, bkey_start_pos(&k->k), ++ BTREE_ITER_CACHED| ++ BTREE_ITER_INTENT); ++ ret = bch2_btree_iter_traverse(&iter) ?: ++ bch2_trans_update(trans, &iter, k, flags); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++/** ++ * bch2_btree_insert - insert keys into the extent btree ++ * @c: pointer to struct bch_fs ++ * @id: btree to insert into ++ * @k: key to insert ++ * @disk_res: must be non-NULL whenever inserting or potentially ++ * splitting data extents ++ * @flags: transaction commit flags ++ * ++ * Returns: 0 on success, error code on failure ++ */ ++int bch2_btree_insert(struct bch_fs *c, enum btree_id id, struct bkey_i *k, ++ struct disk_reservation *disk_res, int flags) ++{ ++ return bch2_trans_do(c, disk_res, NULL, flags, ++ bch2_btree_insert_trans(trans, id, k, 0)); ++} ++ ++int bch2_btree_delete_extent_at(struct btree_trans *trans, struct btree_iter *iter, ++ unsigned len, unsigned update_flags) ++{ ++ struct bkey_i *k; ++ ++ k = bch2_trans_kmalloc(trans, sizeof(*k)); ++ if (IS_ERR(k)) ++ return PTR_ERR(k); ++ ++ bkey_init(&k->k); ++ k->k.p = iter->pos; ++ bch2_key_resize(&k->k, len); ++ return bch2_trans_update(trans, iter, k, update_flags); ++} ++ ++int bch2_btree_delete_at(struct btree_trans *trans, ++ struct btree_iter *iter, unsigned update_flags) ++{ ++ return bch2_btree_delete_extent_at(trans, iter, 0, update_flags); ++} ++ ++int bch2_btree_delete_at_buffered(struct btree_trans *trans, ++ enum btree_id btree, struct bpos pos) ++{ ++ struct bkey_i *k; ++ ++ k = bch2_trans_kmalloc(trans, sizeof(*k)); ++ if (IS_ERR(k)) ++ return PTR_ERR(k); ++ ++ bkey_init(&k->k); ++ k->k.p = pos; ++ return bch2_trans_update_buffered(trans, btree, k); ++} ++ ++int bch2_btree_delete(struct btree_trans *trans, ++ enum btree_id btree, struct bpos pos, ++ unsigned update_flags) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, btree, pos, ++ BTREE_ITER_CACHED| ++ BTREE_ITER_INTENT); ++ ret = bch2_btree_iter_traverse(&iter) ?: ++ bch2_btree_delete_at(trans, &iter, update_flags); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret; ++} ++ ++int bch2_btree_delete_range_trans(struct btree_trans *trans, enum btree_id id, ++ struct bpos start, struct bpos end, ++ unsigned update_flags, ++ u64 *journal_seq) ++{ ++ u32 restart_count = trans->restart_count; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ bch2_trans_iter_init(trans, &iter, id, start, BTREE_ITER_INTENT); ++ while ((k = bch2_btree_iter_peek_upto(&iter, end)).k) { ++ struct disk_reservation disk_res = ++ bch2_disk_reservation_init(trans->c, 0); ++ struct bkey_i delete; ++ ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ bkey_init(&delete.k); ++ ++ /* ++ * This could probably be more efficient for extents: ++ */ ++ ++ /* ++ * For extents, iter.pos won't necessarily be the same as ++ * bkey_start_pos(k.k) (for non extents they always will be the ++ * same). It's important that we delete starting from iter.pos ++ * because the range we want to delete could start in the middle ++ * of k. ++ * ++ * (bch2_btree_iter_peek() does guarantee that iter.pos >= ++ * bkey_start_pos(k.k)). ++ */ ++ delete.k.p = iter.pos; ++ ++ if (iter.flags & BTREE_ITER_IS_EXTENTS) ++ bch2_key_resize(&delete.k, ++ bpos_min(end, k.k->p).offset - ++ iter.pos.offset); ++ ++ ret = bch2_trans_update(trans, &iter, &delete, update_flags) ?: ++ bch2_trans_commit(trans, &disk_res, journal_seq, ++ BTREE_INSERT_NOFAIL); ++ bch2_disk_reservation_put(trans->c, &disk_res); ++err: ++ /* ++ * the bch2_trans_begin() call is in a weird place because we ++ * need to call it after every transaction commit, to avoid path ++ * overflow, but don't want to call it if the delete operation ++ * is a no-op and we have no work to do: ++ */ ++ bch2_trans_begin(trans); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ ret = 0; ++ if (ret) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret ?: trans_was_restarted(trans, restart_count); ++} ++ ++/* ++ * bch_btree_delete_range - delete everything within a given range ++ * ++ * Range is a half open interval - [start, end) ++ */ ++int bch2_btree_delete_range(struct bch_fs *c, enum btree_id id, ++ struct bpos start, struct bpos end, ++ unsigned update_flags, ++ u64 *journal_seq) ++{ ++ int ret = bch2_trans_run(c, ++ bch2_btree_delete_range_trans(trans, id, start, end, ++ update_flags, journal_seq)); ++ if (ret == -BCH_ERR_transaction_restart_nested) ++ ret = 0; ++ return ret; ++} ++ ++int bch2_btree_bit_mod(struct btree_trans *trans, enum btree_id btree, ++ struct bpos pos, bool set) ++{ ++ struct bkey_i *k; ++ int ret = 0; ++ ++ k = bch2_trans_kmalloc_nomemzero(trans, sizeof(*k)); ++ ret = PTR_ERR_OR_ZERO(k); ++ if (unlikely(ret)) ++ return ret; ++ ++ bkey_init(&k->k); ++ k->k.type = set ? KEY_TYPE_set : KEY_TYPE_deleted; ++ k->k.p = pos; ++ ++ return bch2_trans_update_buffered(trans, btree, k); ++} ++ ++__printf(2, 0) ++static int __bch2_trans_log_msg(darray_u64 *entries, const char *fmt, va_list args) ++{ ++ struct printbuf buf = PRINTBUF; ++ struct jset_entry_log *l; ++ unsigned u64s; ++ int ret; ++ ++ prt_vprintf(&buf, fmt, args); ++ ret = buf.allocation_failure ? -BCH_ERR_ENOMEM_trans_log_msg : 0; ++ if (ret) ++ goto err; ++ ++ u64s = DIV_ROUND_UP(buf.pos, sizeof(u64)); ++ ++ ret = darray_make_room(entries, jset_u64s(u64s)); ++ if (ret) ++ goto err; ++ ++ l = (void *) &darray_top(*entries); ++ l->entry.u64s = cpu_to_le16(u64s); ++ l->entry.btree_id = 0; ++ l->entry.level = 1; ++ l->entry.type = BCH_JSET_ENTRY_log; ++ l->entry.pad[0] = 0; ++ l->entry.pad[1] = 0; ++ l->entry.pad[2] = 0; ++ memcpy(l->d, buf.buf, buf.pos); ++ while (buf.pos & 7) ++ l->d[buf.pos++] = '\0'; ++ ++ entries->nr += jset_u64s(u64s); ++err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++__printf(3, 0) ++static int ++__bch2_fs_log_msg(struct bch_fs *c, unsigned commit_flags, const char *fmt, ++ va_list args) ++{ ++ int ret; ++ ++ if (!test_bit(JOURNAL_STARTED, &c->journal.flags)) { ++ ret = __bch2_trans_log_msg(&c->journal.early_journal_entries, fmt, args); ++ } else { ++ ret = bch2_trans_do(c, NULL, NULL, ++ BTREE_INSERT_LAZY_RW|commit_flags, ++ __bch2_trans_log_msg(&trans->extra_journal_entries, fmt, args)); ++ } ++ ++ return ret; ++} ++ ++__printf(2, 3) ++int bch2_fs_log_msg(struct bch_fs *c, const char *fmt, ...) ++{ ++ va_list args; ++ int ret; ++ ++ va_start(args, fmt); ++ ret = __bch2_fs_log_msg(c, 0, fmt, args); ++ va_end(args); ++ return ret; ++} ++ ++/* ++ * Use for logging messages during recovery to enable reserved space and avoid ++ * blocking. ++ */ ++__printf(2, 3) ++int bch2_journal_log_msg(struct bch_fs *c, const char *fmt, ...) ++{ ++ va_list args; ++ int ret; ++ ++ va_start(args, fmt); ++ ret = __bch2_fs_log_msg(c, BCH_WATERMARK_reclaim, fmt, args); ++ va_end(args); ++ return ret; ++} +diff --git a/fs/bcachefs/btree_update.h b/fs/bcachefs/btree_update.h +new file mode 100644 +index 000000000000..9816d2286540 +--- /dev/null ++++ b/fs/bcachefs/btree_update.h +@@ -0,0 +1,340 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_UPDATE_H ++#define _BCACHEFS_BTREE_UPDATE_H ++ ++#include "btree_iter.h" ++#include "journal.h" ++ ++struct bch_fs; ++struct btree; ++ ++void bch2_btree_node_prep_for_write(struct btree_trans *, ++ struct btree_path *, struct btree *); ++bool bch2_btree_bset_insert_key(struct btree_trans *, struct btree_path *, ++ struct btree *, struct btree_node_iter *, ++ struct bkey_i *); ++ ++int bch2_btree_node_flush0(struct journal *, struct journal_entry_pin *, u64); ++int bch2_btree_node_flush1(struct journal *, struct journal_entry_pin *, u64); ++void bch2_btree_add_journal_pin(struct bch_fs *, struct btree *, u64); ++ ++void bch2_btree_insert_key_leaf(struct btree_trans *, struct btree_path *, ++ struct bkey_i *, u64); ++ ++enum btree_insert_flags { ++ /* First bits for bch_watermark: */ ++ __BTREE_INSERT_NOFAIL = BCH_WATERMARK_BITS, ++ __BTREE_INSERT_NOCHECK_RW, ++ __BTREE_INSERT_LAZY_RW, ++ __BTREE_INSERT_JOURNAL_REPLAY, ++ __BTREE_INSERT_JOURNAL_RECLAIM, ++ __BTREE_INSERT_NOWAIT, ++ __BTREE_INSERT_GC_LOCK_HELD, ++ __BCH_HASH_SET_MUST_CREATE, ++ __BCH_HASH_SET_MUST_REPLACE, ++}; ++ ++/* Don't check for -ENOSPC: */ ++#define BTREE_INSERT_NOFAIL BIT(__BTREE_INSERT_NOFAIL) ++ ++#define BTREE_INSERT_NOCHECK_RW BIT(__BTREE_INSERT_NOCHECK_RW) ++#define BTREE_INSERT_LAZY_RW BIT(__BTREE_INSERT_LAZY_RW) ++ ++/* Insert is for journal replay - don't get journal reservations: */ ++#define BTREE_INSERT_JOURNAL_REPLAY BIT(__BTREE_INSERT_JOURNAL_REPLAY) ++ ++/* Insert is being called from journal reclaim path: */ ++#define BTREE_INSERT_JOURNAL_RECLAIM BIT(__BTREE_INSERT_JOURNAL_RECLAIM) ++ ++/* Don't block on allocation failure (for new btree nodes: */ ++#define BTREE_INSERT_NOWAIT BIT(__BTREE_INSERT_NOWAIT) ++#define BTREE_INSERT_GC_LOCK_HELD BIT(__BTREE_INSERT_GC_LOCK_HELD) ++ ++#define BCH_HASH_SET_MUST_CREATE BIT(__BCH_HASH_SET_MUST_CREATE) ++#define BCH_HASH_SET_MUST_REPLACE BIT(__BCH_HASH_SET_MUST_REPLACE) ++ ++int bch2_btree_delete_extent_at(struct btree_trans *, struct btree_iter *, ++ unsigned, unsigned); ++int bch2_btree_delete_at(struct btree_trans *, struct btree_iter *, unsigned); ++int bch2_btree_delete_at_buffered(struct btree_trans *, enum btree_id, struct bpos); ++int bch2_btree_delete(struct btree_trans *, enum btree_id, struct bpos, unsigned); ++ ++int bch2_btree_insert_nonextent(struct btree_trans *, enum btree_id, ++ struct bkey_i *, enum btree_update_flags); ++ ++int bch2_btree_insert_trans(struct btree_trans *, enum btree_id, struct bkey_i *, ++ enum btree_update_flags); ++int bch2_btree_insert(struct bch_fs *, enum btree_id, struct bkey_i *, ++ struct disk_reservation *, int flags); ++ ++int bch2_btree_delete_range_trans(struct btree_trans *, enum btree_id, ++ struct bpos, struct bpos, unsigned, u64 *); ++int bch2_btree_delete_range(struct bch_fs *, enum btree_id, ++ struct bpos, struct bpos, unsigned, u64 *); ++ ++int bch2_btree_bit_mod(struct btree_trans *, enum btree_id, struct bpos, bool); ++ ++int __bch2_insert_snapshot_whiteouts(struct btree_trans *, enum btree_id, ++ struct bpos, struct bpos); ++ ++/* ++ * For use when splitting extents in existing snapshots: ++ * ++ * If @old_pos is an interior snapshot node, iterate over descendent snapshot ++ * nodes: for every descendent snapshot in whiche @old_pos is overwritten and ++ * not visible, emit a whiteout at @new_pos. ++ */ ++static inline int bch2_insert_snapshot_whiteouts(struct btree_trans *trans, ++ enum btree_id btree, ++ struct bpos old_pos, ++ struct bpos new_pos) ++{ ++ if (!btree_type_has_snapshots(btree) || ++ bkey_eq(old_pos, new_pos)) ++ return 0; ++ ++ return __bch2_insert_snapshot_whiteouts(trans, btree, old_pos, new_pos); ++} ++ ++int bch2_trans_update_extent_overwrite(struct btree_trans *, struct btree_iter *, ++ enum btree_update_flags, ++ struct bkey_s_c, struct bkey_s_c); ++ ++int bch2_bkey_get_empty_slot(struct btree_trans *, struct btree_iter *, ++ enum btree_id, struct bpos); ++ ++int __must_check bch2_trans_update(struct btree_trans *, struct btree_iter *, ++ struct bkey_i *, enum btree_update_flags); ++int __must_check bch2_trans_update_seq(struct btree_trans *, u64, struct btree_iter *, ++ struct bkey_i *, enum btree_update_flags); ++int __must_check bch2_trans_update_buffered(struct btree_trans *, ++ enum btree_id, struct bkey_i *); ++ ++void bch2_trans_commit_hook(struct btree_trans *, ++ struct btree_trans_commit_hook *); ++int __bch2_trans_commit(struct btree_trans *, unsigned); ++ ++__printf(2, 3) int bch2_fs_log_msg(struct bch_fs *, const char *, ...); ++__printf(2, 3) int bch2_journal_log_msg(struct bch_fs *, const char *, ...); ++ ++/** ++ * bch2_trans_commit - insert keys at given iterator positions ++ * ++ * This is main entry point for btree updates. ++ * ++ * Return values: ++ * -EROFS: filesystem read only ++ * -EIO: journal or btree node IO error ++ */ ++static inline int bch2_trans_commit(struct btree_trans *trans, ++ struct disk_reservation *disk_res, ++ u64 *journal_seq, ++ unsigned flags) ++{ ++ trans->disk_res = disk_res; ++ trans->journal_seq = journal_seq; ++ ++ return __bch2_trans_commit(trans, flags); ++} ++ ++#define commit_do(_trans, _disk_res, _journal_seq, _flags, _do) \ ++ lockrestart_do(_trans, _do ?: bch2_trans_commit(_trans, (_disk_res),\ ++ (_journal_seq), (_flags))) ++ ++#define nested_commit_do(_trans, _disk_res, _journal_seq, _flags, _do) \ ++ nested_lockrestart_do(_trans, _do ?: bch2_trans_commit(_trans, (_disk_res),\ ++ (_journal_seq), (_flags))) ++ ++#define bch2_trans_run(_c, _do) \ ++({ \ ++ struct btree_trans *trans = bch2_trans_get(_c); \ ++ int _ret = (_do); \ ++ bch2_trans_put(trans); \ ++ _ret; \ ++}) ++ ++#define bch2_trans_do(_c, _disk_res, _journal_seq, _flags, _do) \ ++ bch2_trans_run(_c, commit_do(trans, _disk_res, _journal_seq, _flags, _do)) ++ ++#define trans_for_each_update(_trans, _i) \ ++ for ((_i) = (_trans)->updates; \ ++ (_i) < (_trans)->updates + (_trans)->nr_updates; \ ++ (_i)++) ++ ++#define trans_for_each_wb_update(_trans, _i) \ ++ for ((_i) = (_trans)->wb_updates; \ ++ (_i) < (_trans)->wb_updates + (_trans)->nr_wb_updates; \ ++ (_i)++) ++ ++static inline void bch2_trans_reset_updates(struct btree_trans *trans) ++{ ++ struct btree_insert_entry *i; ++ ++ trans_for_each_update(trans, i) ++ bch2_path_put(trans, i->path, true); ++ ++ trans->extra_journal_res = 0; ++ trans->nr_updates = 0; ++ trans->nr_wb_updates = 0; ++ trans->wb_updates = NULL; ++ trans->hooks = NULL; ++ trans->extra_journal_entries.nr = 0; ++ ++ if (trans->fs_usage_deltas) { ++ trans->fs_usage_deltas->used = 0; ++ memset((void *) trans->fs_usage_deltas + ++ offsetof(struct replicas_delta_list, memset_start), 0, ++ (void *) &trans->fs_usage_deltas->memset_end - ++ (void *) &trans->fs_usage_deltas->memset_start); ++ } ++} ++ ++static inline struct bkey_i *__bch2_bkey_make_mut_noupdate(struct btree_trans *trans, struct bkey_s_c k, ++ unsigned type, unsigned min_bytes) ++{ ++ unsigned bytes = max_t(unsigned, min_bytes, bkey_bytes(k.k)); ++ struct bkey_i *mut; ++ ++ if (type && k.k->type != type) ++ return ERR_PTR(-ENOENT); ++ ++ mut = bch2_trans_kmalloc_nomemzero(trans, bytes); ++ if (!IS_ERR(mut)) { ++ bkey_reassemble(mut, k); ++ ++ if (unlikely(bytes > bkey_bytes(k.k))) { ++ memset((void *) mut + bkey_bytes(k.k), 0, ++ bytes - bkey_bytes(k.k)); ++ mut->k.u64s = DIV_ROUND_UP(bytes, sizeof(u64)); ++ } ++ } ++ return mut; ++} ++ ++static inline struct bkey_i *bch2_bkey_make_mut_noupdate(struct btree_trans *trans, struct bkey_s_c k) ++{ ++ return __bch2_bkey_make_mut_noupdate(trans, k, 0, 0); ++} ++ ++#define bch2_bkey_make_mut_noupdate_typed(_trans, _k, _type) \ ++ bkey_i_to_##_type(__bch2_bkey_make_mut_noupdate(_trans, _k, \ ++ KEY_TYPE_##_type, sizeof(struct bkey_i_##_type))) ++ ++static inline struct bkey_i *__bch2_bkey_make_mut(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c *k, unsigned flags, ++ unsigned type, unsigned min_bytes) ++{ ++ struct bkey_i *mut = __bch2_bkey_make_mut_noupdate(trans, *k, type, min_bytes); ++ int ret; ++ ++ if (IS_ERR(mut)) ++ return mut; ++ ++ ret = bch2_trans_update(trans, iter, mut, flags); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ *k = bkey_i_to_s_c(mut); ++ return mut; ++} ++ ++static inline struct bkey_i *bch2_bkey_make_mut(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c *k, unsigned flags) ++{ ++ return __bch2_bkey_make_mut(trans, iter, k, flags, 0, 0); ++} ++ ++#define bch2_bkey_make_mut_typed(_trans, _iter, _k, _flags, _type) \ ++ bkey_i_to_##_type(__bch2_bkey_make_mut(_trans, _iter, _k, _flags,\ ++ KEY_TYPE_##_type, sizeof(struct bkey_i_##_type))) ++ ++static inline struct bkey_i *__bch2_bkey_get_mut_noupdate(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags, unsigned type, unsigned min_bytes) ++{ ++ struct bkey_s_c k = __bch2_bkey_get_iter(trans, iter, ++ btree_id, pos, flags|BTREE_ITER_INTENT, type); ++ struct bkey_i *ret = IS_ERR(k.k) ++ ? ERR_CAST(k.k) ++ : __bch2_bkey_make_mut_noupdate(trans, k, 0, min_bytes); ++ if (IS_ERR(ret)) ++ bch2_trans_iter_exit(trans, iter); ++ return ret; ++} ++ ++static inline struct bkey_i *bch2_bkey_get_mut_noupdate(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags) ++{ ++ return __bch2_bkey_get_mut_noupdate(trans, iter, btree_id, pos, flags, 0, 0); ++} ++ ++static inline struct bkey_i *__bch2_bkey_get_mut(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags, unsigned type, unsigned min_bytes) ++{ ++ struct bkey_i *mut = __bch2_bkey_get_mut_noupdate(trans, iter, ++ btree_id, pos, flags|BTREE_ITER_INTENT, type, min_bytes); ++ int ret; ++ ++ if (IS_ERR(mut)) ++ return mut; ++ ++ ret = bch2_trans_update(trans, iter, mut, flags); ++ if (ret) { ++ bch2_trans_iter_exit(trans, iter); ++ return ERR_PTR(ret); ++ } ++ ++ return mut; ++} ++ ++static inline struct bkey_i *bch2_bkey_get_mut_minsize(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags, unsigned min_bytes) ++{ ++ return __bch2_bkey_get_mut(trans, iter, btree_id, pos, flags, 0, min_bytes); ++} ++ ++static inline struct bkey_i *bch2_bkey_get_mut(struct btree_trans *trans, ++ struct btree_iter *iter, ++ unsigned btree_id, struct bpos pos, ++ unsigned flags) ++{ ++ return __bch2_bkey_get_mut(trans, iter, btree_id, pos, flags, 0, 0); ++} ++ ++#define bch2_bkey_get_mut_typed(_trans, _iter, _btree_id, _pos, _flags, _type)\ ++ bkey_i_to_##_type(__bch2_bkey_get_mut(_trans, _iter, \ ++ _btree_id, _pos, _flags, \ ++ KEY_TYPE_##_type, sizeof(struct bkey_i_##_type))) ++ ++static inline struct bkey_i *__bch2_bkey_alloc(struct btree_trans *trans, struct btree_iter *iter, ++ unsigned flags, unsigned type, unsigned val_size) ++{ ++ struct bkey_i *k = bch2_trans_kmalloc(trans, sizeof(*k) + val_size); ++ int ret; ++ ++ if (IS_ERR(k)) ++ return k; ++ ++ bkey_init(&k->k); ++ k->k.p = iter->pos; ++ k->k.type = type; ++ set_bkey_val_bytes(&k->k, val_size); ++ ++ ret = bch2_trans_update(trans, iter, k, flags); ++ if (unlikely(ret)) ++ return ERR_PTR(ret); ++ return k; ++} ++ ++#define bch2_bkey_alloc(_trans, _iter, _flags, _type) \ ++ bkey_i_to_##_type(__bch2_bkey_alloc(_trans, _iter, _flags, \ ++ KEY_TYPE_##_type, sizeof(struct bch_##_type))) ++ ++#endif /* _BCACHEFS_BTREE_UPDATE_H */ +diff --git a/fs/bcachefs/btree_update_interior.c b/fs/bcachefs/btree_update_interior.c +new file mode 100644 +index 000000000000..7dbf6b6c7f34 +--- /dev/null ++++ b/fs/bcachefs/btree_update_interior.c +@@ -0,0 +1,2480 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_methods.h" ++#include "btree_cache.h" ++#include "btree_gc.h" ++#include "btree_journal_iter.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_locking.h" ++#include "buckets.h" ++#include "clock.h" ++#include "error.h" ++#include "extents.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++#include "keylist.h" ++#include "replicas.h" ++#include "super-io.h" ++#include "trace.h" ++ ++#include ++ ++static int bch2_btree_insert_node(struct btree_update *, struct btree_trans *, ++ struct btree_path *, struct btree *, ++ struct keylist *, unsigned); ++static void bch2_btree_update_add_new_node(struct btree_update *, struct btree *); ++ ++static struct btree_path *get_unlocked_mut_path(struct btree_trans *trans, ++ enum btree_id btree_id, ++ unsigned level, ++ struct bpos pos) ++{ ++ struct btree_path *path; ++ ++ path = bch2_path_get(trans, btree_id, pos, level + 1, level, ++ BTREE_ITER_NOPRESERVE| ++ BTREE_ITER_INTENT, _RET_IP_); ++ path = bch2_btree_path_make_mut(trans, path, true, _RET_IP_); ++ bch2_btree_path_downgrade(trans, path); ++ __bch2_btree_path_unlock(trans, path); ++ return path; ++} ++ ++/* Debug code: */ ++ ++/* ++ * Verify that child nodes correctly span parent node's range: ++ */ ++static void btree_node_interior_verify(struct bch_fs *c, struct btree *b) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ struct bpos next_node = b->data->min_key; ++ struct btree_node_iter iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_btree_ptr_v2 bp; ++ struct bkey unpacked; ++ struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; ++ ++ BUG_ON(!b->c.level); ++ ++ if (!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) ++ return; ++ ++ bch2_btree_node_iter_init_from_start(&iter, b); ++ ++ while (1) { ++ k = bch2_btree_node_iter_peek_unpack(&iter, b, &unpacked); ++ if (k.k->type != KEY_TYPE_btree_ptr_v2) ++ break; ++ bp = bkey_s_c_to_btree_ptr_v2(k); ++ ++ if (!bpos_eq(next_node, bp.v->min_key)) { ++ bch2_dump_btree_node(c, b); ++ bch2_bpos_to_text(&buf1, next_node); ++ bch2_bpos_to_text(&buf2, bp.v->min_key); ++ panic("expected next min_key %s got %s\n", buf1.buf, buf2.buf); ++ } ++ ++ bch2_btree_node_iter_advance(&iter, b); ++ ++ if (bch2_btree_node_iter_end(&iter)) { ++ if (!bpos_eq(k.k->p, b->key.k.p)) { ++ bch2_dump_btree_node(c, b); ++ bch2_bpos_to_text(&buf1, b->key.k.p); ++ bch2_bpos_to_text(&buf2, k.k->p); ++ panic("expected end %s got %s\n", buf1.buf, buf2.buf); ++ } ++ break; ++ } ++ ++ next_node = bpos_successor(k.k->p); ++ } ++#endif ++} ++ ++/* Calculate ideal packed bkey format for new btree nodes: */ ++ ++void __bch2_btree_calc_format(struct bkey_format_state *s, struct btree *b) ++{ ++ struct bkey_packed *k; ++ struct bset_tree *t; ++ struct bkey uk; ++ ++ for_each_bset(b, t) ++ bset_tree_for_each_key(b, t, k) ++ if (!bkey_deleted(k)) { ++ uk = bkey_unpack_key(b, k); ++ bch2_bkey_format_add_key(s, &uk); ++ } ++} ++ ++static struct bkey_format bch2_btree_calc_format(struct btree *b) ++{ ++ struct bkey_format_state s; ++ ++ bch2_bkey_format_init(&s); ++ bch2_bkey_format_add_pos(&s, b->data->min_key); ++ bch2_bkey_format_add_pos(&s, b->data->max_key); ++ __bch2_btree_calc_format(&s, b); ++ ++ return bch2_bkey_format_done(&s); ++} ++ ++static size_t btree_node_u64s_with_format(struct btree *b, ++ struct bkey_format *new_f) ++{ ++ struct bkey_format *old_f = &b->format; ++ ++ /* stupid integer promotion rules */ ++ ssize_t delta = ++ (((int) new_f->key_u64s - old_f->key_u64s) * ++ (int) b->nr.packed_keys) + ++ (((int) new_f->key_u64s - BKEY_U64s) * ++ (int) b->nr.unpacked_keys); ++ ++ BUG_ON(delta + b->nr.live_u64s < 0); ++ ++ return b->nr.live_u64s + delta; ++} ++ ++/** ++ * bch2_btree_node_format_fits - check if we could rewrite node with a new format ++ * ++ * @c: filesystem handle ++ * @b: btree node to rewrite ++ * @new_f: bkey format to translate keys to ++ * ++ * Returns: true if all re-packed keys will be able to fit in a new node. ++ * ++ * Assumes all keys will successfully pack with the new format. ++ */ ++bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *b, ++ struct bkey_format *new_f) ++{ ++ size_t u64s = btree_node_u64s_with_format(b, new_f); ++ ++ return __vstruct_bytes(struct btree_node, u64s) < btree_bytes(c); ++} ++ ++/* Btree node freeing/allocation: */ ++ ++static void __btree_node_free(struct bch_fs *c, struct btree *b) ++{ ++ trace_and_count(c, btree_node_free, c, b); ++ ++ BUG_ON(btree_node_write_blocked(b)); ++ BUG_ON(btree_node_dirty(b)); ++ BUG_ON(btree_node_need_write(b)); ++ BUG_ON(b == btree_node_root(c, b)); ++ BUG_ON(b->ob.nr); ++ BUG_ON(!list_empty(&b->write_blocked)); ++ BUG_ON(b->will_make_reachable); ++ ++ clear_btree_node_noevict(b); ++ ++ mutex_lock(&c->btree_cache.lock); ++ list_move(&b->list, &c->btree_cache.freeable); ++ mutex_unlock(&c->btree_cache.lock); ++} ++ ++static void bch2_btree_node_free_inmem(struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b) ++{ ++ struct bch_fs *c = trans->c; ++ unsigned level = b->c.level; ++ ++ bch2_btree_node_lock_write_nofail(trans, path, &b->c); ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ __btree_node_free(c, b); ++ six_unlock_write(&b->c.lock); ++ mark_btree_node_locked_noreset(path, level, BTREE_NODE_INTENT_LOCKED); ++ ++ trans_for_each_path(trans, path) ++ if (path->l[level].b == b) { ++ btree_node_unlock(trans, path, level); ++ path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); ++ } ++} ++ ++static void bch2_btree_node_free_never_used(struct btree_update *as, ++ struct btree_trans *trans, ++ struct btree *b) ++{ ++ struct bch_fs *c = as->c; ++ struct prealloc_nodes *p = &as->prealloc_nodes[b->c.lock.readers != NULL]; ++ struct btree_path *path; ++ unsigned level = b->c.level; ++ ++ BUG_ON(!list_empty(&b->write_blocked)); ++ BUG_ON(b->will_make_reachable != (1UL|(unsigned long) as)); ++ ++ b->will_make_reachable = 0; ++ closure_put(&as->cl); ++ ++ clear_btree_node_will_make_reachable(b); ++ clear_btree_node_accessed(b); ++ clear_btree_node_dirty_acct(c, b); ++ clear_btree_node_need_write(b); ++ ++ mutex_lock(&c->btree_cache.lock); ++ list_del_init(&b->list); ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ mutex_unlock(&c->btree_cache.lock); ++ ++ BUG_ON(p->nr >= ARRAY_SIZE(p->b)); ++ p->b[p->nr++] = b; ++ ++ six_unlock_intent(&b->c.lock); ++ ++ trans_for_each_path(trans, path) ++ if (path->l[level].b == b) { ++ btree_node_unlock(trans, path, level); ++ path->l[level].b = ERR_PTR(-BCH_ERR_no_btree_node_init); ++ } ++} ++ ++static struct btree *__bch2_btree_node_alloc(struct btree_trans *trans, ++ struct disk_reservation *res, ++ struct closure *cl, ++ bool interior_node, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct write_point *wp; ++ struct btree *b; ++ BKEY_PADDED_ONSTACK(k, BKEY_BTREE_PTR_VAL_U64s_MAX) tmp; ++ struct open_buckets obs = { .nr = 0 }; ++ struct bch_devs_list devs_have = (struct bch_devs_list) { 0 }; ++ enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; ++ unsigned nr_reserve = watermark > BCH_WATERMARK_reclaim ++ ? BTREE_NODE_RESERVE ++ : 0; ++ int ret; ++ ++ mutex_lock(&c->btree_reserve_cache_lock); ++ if (c->btree_reserve_cache_nr > nr_reserve) { ++ struct btree_alloc *a = ++ &c->btree_reserve_cache[--c->btree_reserve_cache_nr]; ++ ++ obs = a->ob; ++ bkey_copy(&tmp.k, &a->k); ++ mutex_unlock(&c->btree_reserve_cache_lock); ++ goto mem_alloc; ++ } ++ mutex_unlock(&c->btree_reserve_cache_lock); ++ ++retry: ++ ret = bch2_alloc_sectors_start_trans(trans, ++ c->opts.metadata_target ?: ++ c->opts.foreground_target, ++ 0, ++ writepoint_ptr(&c->btree_write_point), ++ &devs_have, ++ res->nr_replicas, ++ c->opts.metadata_replicas_required, ++ watermark, 0, cl, &wp); ++ if (unlikely(ret)) ++ return ERR_PTR(ret); ++ ++ if (wp->sectors_free < btree_sectors(c)) { ++ struct open_bucket *ob; ++ unsigned i; ++ ++ open_bucket_for_each(c, &wp->ptrs, ob, i) ++ if (ob->sectors_free < btree_sectors(c)) ++ ob->sectors_free = 0; ++ ++ bch2_alloc_sectors_done(c, wp); ++ goto retry; ++ } ++ ++ bkey_btree_ptr_v2_init(&tmp.k); ++ bch2_alloc_sectors_append_ptrs(c, wp, &tmp.k, btree_sectors(c), false); ++ ++ bch2_open_bucket_get(c, wp, &obs); ++ bch2_alloc_sectors_done(c, wp); ++mem_alloc: ++ b = bch2_btree_node_mem_alloc(trans, interior_node); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ ++ /* we hold cannibalize_lock: */ ++ BUG_ON(IS_ERR(b)); ++ BUG_ON(b->ob.nr); ++ ++ bkey_copy(&b->key, &tmp.k); ++ b->ob = obs; ++ ++ return b; ++} ++ ++static struct btree *bch2_btree_node_alloc(struct btree_update *as, ++ struct btree_trans *trans, ++ unsigned level) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *b; ++ struct prealloc_nodes *p = &as->prealloc_nodes[!!level]; ++ int ret; ++ ++ BUG_ON(level >= BTREE_MAX_DEPTH); ++ BUG_ON(!p->nr); ++ ++ b = p->b[--p->nr]; ++ ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); ++ ++ set_btree_node_accessed(b); ++ set_btree_node_dirty_acct(c, b); ++ set_btree_node_need_write(b); ++ ++ bch2_bset_init_first(b, &b->data->keys); ++ b->c.level = level; ++ b->c.btree_id = as->btree_id; ++ b->version_ondisk = c->sb.version; ++ ++ memset(&b->nr, 0, sizeof(b->nr)); ++ b->data->magic = cpu_to_le64(bset_magic(c)); ++ memset(&b->data->_ptr, 0, sizeof(b->data->_ptr)); ++ b->data->flags = 0; ++ SET_BTREE_NODE_ID(b->data, as->btree_id); ++ SET_BTREE_NODE_LEVEL(b->data, level); ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ struct bkey_i_btree_ptr_v2 *bp = bkey_i_to_btree_ptr_v2(&b->key); ++ ++ bp->v.mem_ptr = 0; ++ bp->v.seq = b->data->keys.seq; ++ bp->v.sectors_written = 0; ++ } ++ ++ SET_BTREE_NODE_NEW_EXTENT_OVERWRITE(b->data, true); ++ ++ bch2_btree_build_aux_trees(b); ++ ++ ret = bch2_btree_node_hash_insert(&c->btree_cache, b, level, as->btree_id); ++ BUG_ON(ret); ++ ++ trace_and_count(c, btree_node_alloc, c, b); ++ bch2_increment_clock(c, btree_sectors(c), WRITE); ++ return b; ++} ++ ++static void btree_set_min(struct btree *b, struct bpos pos) ++{ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) ++ bkey_i_to_btree_ptr_v2(&b->key)->v.min_key = pos; ++ b->data->min_key = pos; ++} ++ ++static void btree_set_max(struct btree *b, struct bpos pos) ++{ ++ b->key.k.p = pos; ++ b->data->max_key = pos; ++} ++ ++static struct btree *bch2_btree_node_alloc_replacement(struct btree_update *as, ++ struct btree_trans *trans, ++ struct btree *b) ++{ ++ struct btree *n = bch2_btree_node_alloc(as, trans, b->c.level); ++ struct bkey_format format = bch2_btree_calc_format(b); ++ ++ /* ++ * The keys might expand with the new format - if they wouldn't fit in ++ * the btree node anymore, use the old format for now: ++ */ ++ if (!bch2_btree_node_format_fits(as->c, b, &format)) ++ format = b->format; ++ ++ SET_BTREE_NODE_SEQ(n->data, BTREE_NODE_SEQ(b->data) + 1); ++ ++ btree_set_min(n, b->data->min_key); ++ btree_set_max(n, b->data->max_key); ++ ++ n->data->format = format; ++ btree_node_set_format(n, format); ++ ++ bch2_btree_sort_into(as->c, n, b); ++ ++ btree_node_reset_sib_u64s(n); ++ return n; ++} ++ ++static struct btree *__btree_root_alloc(struct btree_update *as, ++ struct btree_trans *trans, unsigned level) ++{ ++ struct btree *b = bch2_btree_node_alloc(as, trans, level); ++ ++ btree_set_min(b, POS_MIN); ++ btree_set_max(b, SPOS_MAX); ++ b->data->format = bch2_btree_calc_format(b); ++ ++ btree_node_set_format(b, b->data->format); ++ bch2_btree_build_aux_trees(b); ++ ++ return b; ++} ++ ++static void bch2_btree_reserve_put(struct btree_update *as, struct btree_trans *trans) ++{ ++ struct bch_fs *c = as->c; ++ struct prealloc_nodes *p; ++ ++ for (p = as->prealloc_nodes; ++ p < as->prealloc_nodes + ARRAY_SIZE(as->prealloc_nodes); ++ p++) { ++ while (p->nr) { ++ struct btree *b = p->b[--p->nr]; ++ ++ mutex_lock(&c->btree_reserve_cache_lock); ++ ++ if (c->btree_reserve_cache_nr < ++ ARRAY_SIZE(c->btree_reserve_cache)) { ++ struct btree_alloc *a = ++ &c->btree_reserve_cache[c->btree_reserve_cache_nr++]; ++ ++ a->ob = b->ob; ++ b->ob.nr = 0; ++ bkey_copy(&a->k, &b->key); ++ } else { ++ bch2_open_buckets_put(c, &b->ob); ++ } ++ ++ mutex_unlock(&c->btree_reserve_cache_lock); ++ ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_write); ++ __btree_node_free(c, b); ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ } ++ } ++} ++ ++static int bch2_btree_reserve_get(struct btree_trans *trans, ++ struct btree_update *as, ++ unsigned nr_nodes[2], ++ unsigned flags, ++ struct closure *cl) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *b; ++ unsigned interior; ++ int ret = 0; ++ ++ BUG_ON(nr_nodes[0] + nr_nodes[1] > BTREE_RESERVE_MAX); ++ ++ /* ++ * Protects reaping from the btree node cache and using the btree node ++ * open bucket reserve: ++ * ++ * BTREE_INSERT_NOWAIT only applies to btree node allocation, not ++ * blocking on this lock: ++ */ ++ ret = bch2_btree_cache_cannibalize_lock(c, cl); ++ if (ret) ++ return ret; ++ ++ for (interior = 0; interior < 2; interior++) { ++ struct prealloc_nodes *p = as->prealloc_nodes + interior; ++ ++ while (p->nr < nr_nodes[interior]) { ++ b = __bch2_btree_node_alloc(trans, &as->disk_res, ++ flags & BTREE_INSERT_NOWAIT ? NULL : cl, ++ interior, flags); ++ if (IS_ERR(b)) { ++ ret = PTR_ERR(b); ++ goto err; ++ } ++ ++ p->b[p->nr++] = b; ++ } ++ } ++err: ++ bch2_btree_cache_cannibalize_unlock(c); ++ return ret; ++} ++ ++/* Asynchronous interior node update machinery */ ++ ++static void bch2_btree_update_free(struct btree_update *as, struct btree_trans *trans) ++{ ++ struct bch_fs *c = as->c; ++ ++ if (as->took_gc_lock) ++ up_read(&c->gc_lock); ++ as->took_gc_lock = false; ++ ++ bch2_journal_preres_put(&c->journal, &as->journal_preres); ++ ++ bch2_journal_pin_drop(&c->journal, &as->journal); ++ bch2_journal_pin_flush(&c->journal, &as->journal); ++ bch2_disk_reservation_put(c, &as->disk_res); ++ bch2_btree_reserve_put(as, trans); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_total], ++ as->start_time); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_del(&as->unwritten_list); ++ list_del(&as->list); ++ ++ closure_debug_destroy(&as->cl); ++ mempool_free(as, &c->btree_interior_update_pool); ++ ++ /* ++ * Have to do the wakeup with btree_interior_update_lock still held, ++ * since being on btree_interior_update_list is our ref on @c: ++ */ ++ closure_wake_up(&c->btree_interior_update_wait); ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++ ++static void btree_update_add_key(struct btree_update *as, ++ struct keylist *keys, struct btree *b) ++{ ++ struct bkey_i *k = &b->key; ++ ++ BUG_ON(bch2_keylist_u64s(keys) + k->k.u64s > ++ ARRAY_SIZE(as->_old_keys)); ++ ++ bkey_copy(keys->top, k); ++ bkey_i_to_btree_ptr_v2(keys->top)->v.mem_ptr = b->c.level + 1; ++ ++ bch2_keylist_push(keys); ++} ++ ++/* ++ * The transactional part of an interior btree node update, where we journal the ++ * update we did to the interior node and update alloc info: ++ */ ++static int btree_update_nodes_written_trans(struct btree_trans *trans, ++ struct btree_update *as) ++{ ++ struct bkey_i *k; ++ int ret; ++ ++ ret = darray_make_room(&trans->extra_journal_entries, as->journal_u64s); ++ if (ret) ++ return ret; ++ ++ memcpy(&darray_top(trans->extra_journal_entries), ++ as->journal_entries, ++ as->journal_u64s * sizeof(u64)); ++ trans->extra_journal_entries.nr += as->journal_u64s; ++ ++ trans->journal_pin = &as->journal; ++ ++ for_each_keylist_key(&as->old_keys, k) { ++ unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; ++ ++ ret = bch2_trans_mark_old(trans, as->btree_id, level, bkey_i_to_s_c(k), 0); ++ if (ret) ++ return ret; ++ } ++ ++ for_each_keylist_key(&as->new_keys, k) { ++ unsigned level = bkey_i_to_btree_ptr_v2(k)->v.mem_ptr; ++ ++ ret = bch2_trans_mark_new(trans, as->btree_id, level, k, 0); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static void btree_update_nodes_written(struct btree_update *as) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *b; ++ struct btree_trans *trans = bch2_trans_get(c); ++ u64 journal_seq = 0; ++ unsigned i; ++ int ret; ++ ++ /* ++ * If we're already in an error state, it might be because a btree node ++ * was never written, and we might be trying to free that same btree ++ * node here, but it won't have been marked as allocated and we'll see ++ * spurious disk usage inconsistencies in the transactional part below ++ * if we don't skip it: ++ */ ++ ret = bch2_journal_error(&c->journal); ++ if (ret) ++ goto err; ++ ++ /* ++ * Wait for any in flight writes to finish before we free the old nodes ++ * on disk: ++ */ ++ for (i = 0; i < as->nr_old_nodes; i++) { ++ __le64 seq; ++ ++ b = as->old_nodes[i]; ++ ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); ++ seq = b->data ? b->data->keys.seq : 0; ++ six_unlock_read(&b->c.lock); ++ ++ if (seq == as->old_nodes_seq[i]) ++ wait_on_bit_io(&b->flags, BTREE_NODE_write_in_flight_inner, ++ TASK_UNINTERRUPTIBLE); ++ } ++ ++ /* ++ * We did an update to a parent node where the pointers we added pointed ++ * to child nodes that weren't written yet: now, the child nodes have ++ * been written so we can write out the update to the interior node. ++ */ ++ ++ /* ++ * We can't call into journal reclaim here: we'd block on the journal ++ * reclaim lock, but we may need to release the open buckets we have ++ * pinned in order for other btree updates to make forward progress, and ++ * journal reclaim does btree updates when flushing bkey_cached entries, ++ * which may require allocations as well. ++ */ ++ ret = commit_do(trans, &as->disk_res, &journal_seq, ++ BCH_WATERMARK_reclaim| ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_JOURNAL_RECLAIM, ++ btree_update_nodes_written_trans(trans, as)); ++ bch2_trans_unlock(trans); ++ ++ bch2_fs_fatal_err_on(ret && !bch2_journal_error(&c->journal), c, ++ "%s(): error %s", __func__, bch2_err_str(ret)); ++err: ++ if (as->b) { ++ struct btree_path *path; ++ ++ b = as->b; ++ path = get_unlocked_mut_path(trans, as->btree_id, b->c.level, b->key.k.p); ++ /* ++ * @b is the node we did the final insert into: ++ * ++ * On failure to get a journal reservation, we still have to ++ * unblock the write and allow most of the write path to happen ++ * so that shutdown works, but the i->journal_seq mechanism ++ * won't work to prevent the btree write from being visible (we ++ * didn't get a journal sequence number) - instead ++ * __bch2_btree_node_write() doesn't do the actual write if ++ * we're in journal error state: ++ */ ++ ++ /* ++ * Ensure transaction is unlocked before using ++ * btree_node_lock_nopath() (the use of which is always suspect, ++ * we need to work on removing this in the future) ++ * ++ * It should be, but get_unlocked_mut_path() -> bch2_path_get() ++ * calls bch2_path_upgrade(), before we call path_make_mut(), so ++ * we may rarely end up with a locked path besides the one we ++ * have here: ++ */ ++ bch2_trans_unlock(trans); ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_intent); ++ mark_btree_node_locked(trans, path, b->c.level, BTREE_NODE_INTENT_LOCKED); ++ path->l[b->c.level].lock_seq = six_lock_seq(&b->c.lock); ++ path->l[b->c.level].b = b; ++ ++ bch2_btree_node_lock_write_nofail(trans, path, &b->c); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ ++ list_del(&as->write_blocked_list); ++ if (list_empty(&b->write_blocked)) ++ clear_btree_node_write_blocked(b); ++ ++ /* ++ * Node might have been freed, recheck under ++ * btree_interior_update_lock: ++ */ ++ if (as->b == b) { ++ BUG_ON(!b->c.level); ++ BUG_ON(!btree_node_dirty(b)); ++ ++ if (!ret) { ++ struct bset *last = btree_bset_last(b); ++ ++ last->journal_seq = cpu_to_le64( ++ max(journal_seq, ++ le64_to_cpu(last->journal_seq))); ++ ++ bch2_btree_add_journal_pin(c, b, journal_seq); ++ } else { ++ /* ++ * If we didn't get a journal sequence number we ++ * can't write this btree node, because recovery ++ * won't know to ignore this write: ++ */ ++ set_btree_node_never_write(b); ++ } ++ } ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ mark_btree_node_locked_noreset(path, b->c.level, BTREE_NODE_INTENT_LOCKED); ++ six_unlock_write(&b->c.lock); ++ ++ btree_node_write_if_need(c, b, SIX_LOCK_intent); ++ btree_node_unlock(trans, path, b->c.level); ++ bch2_path_put(trans, path, true); ++ } ++ ++ bch2_journal_pin_drop(&c->journal, &as->journal); ++ ++ bch2_journal_preres_put(&c->journal, &as->journal_preres); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ for (i = 0; i < as->nr_new_nodes; i++) { ++ b = as->new_nodes[i]; ++ ++ BUG_ON(b->will_make_reachable != (unsigned long) as); ++ b->will_make_reachable = 0; ++ clear_btree_node_will_make_reachable(b); ++ } ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ for (i = 0; i < as->nr_new_nodes; i++) { ++ b = as->new_nodes[i]; ++ ++ btree_node_lock_nopath_nofail(trans, &b->c, SIX_LOCK_read); ++ btree_node_write_if_need(c, b, SIX_LOCK_read); ++ six_unlock_read(&b->c.lock); ++ } ++ ++ for (i = 0; i < as->nr_open_buckets; i++) ++ bch2_open_bucket_put(c, c->open_buckets + as->open_buckets[i]); ++ ++ bch2_btree_update_free(as, trans); ++ bch2_trans_put(trans); ++} ++ ++static void btree_interior_update_work(struct work_struct *work) ++{ ++ struct bch_fs *c = ++ container_of(work, struct bch_fs, btree_interior_update_work); ++ struct btree_update *as; ++ ++ while (1) { ++ mutex_lock(&c->btree_interior_update_lock); ++ as = list_first_entry_or_null(&c->btree_interior_updates_unwritten, ++ struct btree_update, unwritten_list); ++ if (as && !as->nodes_written) ++ as = NULL; ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ if (!as) ++ break; ++ ++ btree_update_nodes_written(as); ++ } ++} ++ ++static void btree_update_set_nodes_written(struct closure *cl) ++{ ++ struct btree_update *as = container_of(cl, struct btree_update, cl); ++ struct bch_fs *c = as->c; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ as->nodes_written = true; ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ queue_work(c->btree_interior_update_worker, &c->btree_interior_update_work); ++} ++ ++/* ++ * We're updating @b with pointers to nodes that haven't finished writing yet: ++ * block @b from being written until @as completes ++ */ ++static void btree_update_updated_node(struct btree_update *as, struct btree *b) ++{ ++ struct bch_fs *c = as->c; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); ++ ++ BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); ++ BUG_ON(!btree_node_dirty(b)); ++ BUG_ON(!b->c.level); ++ ++ as->mode = BTREE_INTERIOR_UPDATING_NODE; ++ as->b = b; ++ ++ set_btree_node_write_blocked(b); ++ list_add(&as->write_blocked_list, &b->write_blocked); ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++ ++static void btree_update_reparent(struct btree_update *as, ++ struct btree_update *child) ++{ ++ struct bch_fs *c = as->c; ++ ++ lockdep_assert_held(&c->btree_interior_update_lock); ++ ++ child->b = NULL; ++ child->mode = BTREE_INTERIOR_UPDATING_AS; ++ ++ bch2_journal_pin_copy(&c->journal, &as->journal, &child->journal, NULL); ++} ++ ++static void btree_update_updated_root(struct btree_update *as, struct btree *b) ++{ ++ struct bkey_i *insert = &b->key; ++ struct bch_fs *c = as->c; ++ ++ BUG_ON(as->mode != BTREE_INTERIOR_NO_UPDATE); ++ ++ BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > ++ ARRAY_SIZE(as->journal_entries)); ++ ++ as->journal_u64s += ++ journal_entry_set((void *) &as->journal_entries[as->journal_u64s], ++ BCH_JSET_ENTRY_btree_root, ++ b->c.btree_id, b->c.level, ++ insert, insert->k.u64s); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_add_tail(&as->unwritten_list, &c->btree_interior_updates_unwritten); ++ ++ as->mode = BTREE_INTERIOR_UPDATING_ROOT; ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++ ++/* ++ * bch2_btree_update_add_new_node: ++ * ++ * This causes @as to wait on @b to be written, before it gets to ++ * bch2_btree_update_nodes_written ++ * ++ * Additionally, it sets b->will_make_reachable to prevent any additional writes ++ * to @b from happening besides the first until @b is reachable on disk ++ * ++ * And it adds @b to the list of @as's new nodes, so that we can update sector ++ * counts in bch2_btree_update_nodes_written: ++ */ ++static void bch2_btree_update_add_new_node(struct btree_update *as, struct btree *b) ++{ ++ struct bch_fs *c = as->c; ++ ++ closure_get(&as->cl); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ BUG_ON(as->nr_new_nodes >= ARRAY_SIZE(as->new_nodes)); ++ BUG_ON(b->will_make_reachable); ++ ++ as->new_nodes[as->nr_new_nodes++] = b; ++ b->will_make_reachable = 1UL|(unsigned long) as; ++ set_btree_node_will_make_reachable(b); ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ btree_update_add_key(as, &as->new_keys, b); ++ ++ if (b->key.k.type == KEY_TYPE_btree_ptr_v2) { ++ unsigned bytes = vstruct_end(&b->data->keys) - (void *) b->data; ++ unsigned sectors = round_up(bytes, block_bytes(c)) >> 9; ++ ++ bkey_i_to_btree_ptr_v2(&b->key)->v.sectors_written = ++ cpu_to_le16(sectors); ++ } ++} ++ ++/* ++ * returns true if @b was a new node ++ */ ++static void btree_update_drop_new_node(struct bch_fs *c, struct btree *b) ++{ ++ struct btree_update *as; ++ unsigned long v; ++ unsigned i; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ /* ++ * When b->will_make_reachable != 0, it owns a ref on as->cl that's ++ * dropped when it gets written by bch2_btree_complete_write - the ++ * xchg() is for synchronization with bch2_btree_complete_write: ++ */ ++ v = xchg(&b->will_make_reachable, 0); ++ clear_btree_node_will_make_reachable(b); ++ as = (struct btree_update *) (v & ~1UL); ++ ++ if (!as) { ++ mutex_unlock(&c->btree_interior_update_lock); ++ return; ++ } ++ ++ for (i = 0; i < as->nr_new_nodes; i++) ++ if (as->new_nodes[i] == b) ++ goto found; ++ ++ BUG(); ++found: ++ array_remove_item(as->new_nodes, as->nr_new_nodes, i); ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ if (v & 1) ++ closure_put(&as->cl); ++} ++ ++static void bch2_btree_update_get_open_buckets(struct btree_update *as, struct btree *b) ++{ ++ while (b->ob.nr) ++ as->open_buckets[as->nr_open_buckets++] = ++ b->ob.v[--b->ob.nr]; ++} ++ ++/* ++ * @b is being split/rewritten: it may have pointers to not-yet-written btree ++ * nodes and thus outstanding btree_updates - redirect @b's ++ * btree_updates to point to this btree_update: ++ */ ++static void bch2_btree_interior_update_will_free_node(struct btree_update *as, ++ struct btree *b) ++{ ++ struct bch_fs *c = as->c; ++ struct btree_update *p, *n; ++ struct btree_write *w; ++ ++ set_btree_node_dying(b); ++ ++ if (btree_node_fake(b)) ++ return; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ ++ /* ++ * Does this node have any btree_update operations preventing ++ * it from being written? ++ * ++ * If so, redirect them to point to this btree_update: we can ++ * write out our new nodes, but we won't make them visible until those ++ * operations complete ++ */ ++ list_for_each_entry_safe(p, n, &b->write_blocked, write_blocked_list) { ++ list_del_init(&p->write_blocked_list); ++ btree_update_reparent(as, p); ++ ++ /* ++ * for flush_held_btree_writes() waiting on updates to flush or ++ * nodes to be writeable: ++ */ ++ closure_wake_up(&c->btree_interior_update_wait); ++ } ++ ++ clear_btree_node_dirty_acct(c, b); ++ clear_btree_node_need_write(b); ++ clear_btree_node_write_blocked(b); ++ ++ /* ++ * Does this node have unwritten data that has a pin on the journal? ++ * ++ * If so, transfer that pin to the btree_update operation - ++ * note that if we're freeing multiple nodes, we only need to keep the ++ * oldest pin of any of the nodes we're freeing. We'll release the pin ++ * when the new nodes are persistent and reachable on disk: ++ */ ++ w = btree_current_write(b); ++ bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); ++ bch2_journal_pin_drop(&c->journal, &w->journal); ++ ++ w = btree_prev_write(b); ++ bch2_journal_pin_copy(&c->journal, &as->journal, &w->journal, NULL); ++ bch2_journal_pin_drop(&c->journal, &w->journal); ++ ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ /* ++ * Is this a node that isn't reachable on disk yet? ++ * ++ * Nodes that aren't reachable yet have writes blocked until they're ++ * reachable - now that we've cancelled any pending writes and moved ++ * things waiting on that write to wait on this update, we can drop this ++ * node from the list of nodes that the other update is making ++ * reachable, prior to freeing it: ++ */ ++ btree_update_drop_new_node(c, b); ++ ++ btree_update_add_key(as, &as->old_keys, b); ++ ++ as->old_nodes[as->nr_old_nodes] = b; ++ as->old_nodes_seq[as->nr_old_nodes] = b->data->keys.seq; ++ as->nr_old_nodes++; ++} ++ ++static void bch2_btree_update_done(struct btree_update *as, struct btree_trans *trans) ++{ ++ struct bch_fs *c = as->c; ++ u64 start_time = as->start_time; ++ ++ BUG_ON(as->mode == BTREE_INTERIOR_NO_UPDATE); ++ ++ if (as->took_gc_lock) ++ up_read(&as->c->gc_lock); ++ as->took_gc_lock = false; ++ ++ bch2_btree_reserve_put(as, trans); ++ ++ continue_at(&as->cl, btree_update_set_nodes_written, ++ as->c->btree_interior_update_worker); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_interior_update_foreground], ++ start_time); ++} ++ ++static struct btree_update * ++bch2_btree_update_start(struct btree_trans *trans, struct btree_path *path, ++ unsigned level, bool split, unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_update *as; ++ u64 start_time = local_clock(); ++ int disk_res_flags = (flags & BTREE_INSERT_NOFAIL) ++ ? BCH_DISK_RESERVATION_NOFAIL : 0; ++ unsigned nr_nodes[2] = { 0, 0 }; ++ unsigned update_level = level; ++ enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; ++ unsigned journal_flags = 0; ++ int ret = 0; ++ u32 restart_count = trans->restart_count; ++ ++ BUG_ON(!path->should_be_locked); ++ ++ if (watermark == BCH_WATERMARK_copygc) ++ watermark = BCH_WATERMARK_btree_copygc; ++ if (watermark < BCH_WATERMARK_btree) ++ watermark = BCH_WATERMARK_btree; ++ ++ flags &= ~BCH_WATERMARK_MASK; ++ flags |= watermark; ++ ++ if (flags & BTREE_INSERT_JOURNAL_RECLAIM) ++ journal_flags |= JOURNAL_RES_GET_NONBLOCK; ++ journal_flags |= watermark; ++ ++ while (1) { ++ nr_nodes[!!update_level] += 1 + split; ++ update_level++; ++ ++ ret = bch2_btree_path_upgrade(trans, path, update_level + 1); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ if (!btree_path_node(path, update_level)) { ++ /* Allocating new root? */ ++ nr_nodes[1] += split; ++ update_level = BTREE_MAX_DEPTH; ++ break; ++ } ++ ++ if (bch2_btree_node_insert_fits(c, path->l[update_level].b, ++ BKEY_BTREE_PTR_U64s_MAX * (1 + split))) ++ break; ++ ++ split = path->l[update_level].b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c); ++ } ++ ++ if (flags & BTREE_INSERT_GC_LOCK_HELD) ++ lockdep_assert_held(&c->gc_lock); ++ else if (!down_read_trylock(&c->gc_lock)) { ++ ret = drop_locks_do(trans, (down_read(&c->gc_lock), 0)); ++ if (ret) { ++ up_read(&c->gc_lock); ++ return ERR_PTR(ret); ++ } ++ } ++ ++ as = mempool_alloc(&c->btree_interior_update_pool, GFP_NOFS); ++ memset(as, 0, sizeof(*as)); ++ closure_init(&as->cl, NULL); ++ as->c = c; ++ as->start_time = start_time; ++ as->mode = BTREE_INTERIOR_NO_UPDATE; ++ as->took_gc_lock = !(flags & BTREE_INSERT_GC_LOCK_HELD); ++ as->btree_id = path->btree_id; ++ as->update_level = update_level; ++ INIT_LIST_HEAD(&as->list); ++ INIT_LIST_HEAD(&as->unwritten_list); ++ INIT_LIST_HEAD(&as->write_blocked_list); ++ bch2_keylist_init(&as->old_keys, as->_old_keys); ++ bch2_keylist_init(&as->new_keys, as->_new_keys); ++ bch2_keylist_init(&as->parent_keys, as->inline_keys); ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_add_tail(&as->list, &c->btree_interior_update_list); ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ /* ++ * We don't want to allocate if we're in an error state, that can cause ++ * deadlock on emergency shutdown due to open buckets getting stuck in ++ * the btree_reserve_cache after allocator shutdown has cleared it out. ++ * This check needs to come after adding us to the btree_interior_update ++ * list but before calling bch2_btree_reserve_get, to synchronize with ++ * __bch2_fs_read_only(). ++ */ ++ ret = bch2_journal_error(&c->journal); ++ if (ret) ++ goto err; ++ ++ ret = bch2_journal_preres_get(&c->journal, &as->journal_preres, ++ BTREE_UPDATE_JOURNAL_RES, ++ journal_flags|JOURNAL_RES_GET_NONBLOCK); ++ if (ret) { ++ if (flags & BTREE_INSERT_JOURNAL_RECLAIM) { ++ ret = -BCH_ERR_journal_reclaim_would_deadlock; ++ goto err; ++ } ++ ++ ret = drop_locks_do(trans, ++ bch2_journal_preres_get(&c->journal, &as->journal_preres, ++ BTREE_UPDATE_JOURNAL_RES, ++ journal_flags)); ++ if (ret == -BCH_ERR_journal_preres_get_blocked) { ++ trace_and_count(c, trans_restart_journal_preres_get, trans, _RET_IP_, journal_flags); ++ ret = btree_trans_restart(trans, BCH_ERR_transaction_restart_journal_preres_get); ++ } ++ if (ret) ++ goto err; ++ } ++ ++ ret = bch2_disk_reservation_get(c, &as->disk_res, ++ (nr_nodes[0] + nr_nodes[1]) * btree_sectors(c), ++ c->opts.metadata_replicas, ++ disk_res_flags); ++ if (ret) ++ goto err; ++ ++ ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, NULL); ++ if (bch2_err_matches(ret, ENOSPC) || ++ bch2_err_matches(ret, ENOMEM)) { ++ struct closure cl; ++ ++ /* ++ * XXX: this should probably be a separate BTREE_INSERT_NONBLOCK ++ * flag ++ */ ++ if (bch2_err_matches(ret, ENOSPC) && ++ (flags & BTREE_INSERT_JOURNAL_RECLAIM) && ++ watermark != BCH_WATERMARK_reclaim) { ++ ret = -BCH_ERR_journal_reclaim_would_deadlock; ++ goto err; ++ } ++ ++ closure_init_stack(&cl); ++ ++ do { ++ ret = bch2_btree_reserve_get(trans, as, nr_nodes, flags, &cl); ++ ++ bch2_trans_unlock(trans); ++ closure_sync(&cl); ++ } while (bch2_err_matches(ret, BCH_ERR_operation_blocked)); ++ } ++ ++ if (ret) { ++ trace_and_count(c, btree_reserve_get_fail, trans->fn, ++ _RET_IP_, nr_nodes[0] + nr_nodes[1], ret); ++ goto err; ++ } ++ ++ ret = bch2_trans_relock(trans); ++ if (ret) ++ goto err; ++ ++ bch2_trans_verify_not_restarted(trans, restart_count); ++ return as; ++err: ++ bch2_btree_update_free(as, trans); ++ return ERR_PTR(ret); ++} ++ ++/* Btree root updates: */ ++ ++static void bch2_btree_set_root_inmem(struct bch_fs *c, struct btree *b) ++{ ++ /* Root nodes cannot be reaped */ ++ mutex_lock(&c->btree_cache.lock); ++ list_del_init(&b->list); ++ mutex_unlock(&c->btree_cache.lock); ++ ++ mutex_lock(&c->btree_root_lock); ++ BUG_ON(btree_node_root(c, b) && ++ (b->c.level < btree_node_root(c, b)->c.level || ++ !btree_node_dying(btree_node_root(c, b)))); ++ ++ bch2_btree_id_root(c, b->c.btree_id)->b = b; ++ mutex_unlock(&c->btree_root_lock); ++ ++ bch2_recalc_btree_reserve(c); ++} ++ ++static void bch2_btree_set_root(struct btree_update *as, ++ struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *old; ++ ++ trace_and_count(c, btree_node_set_root, c, b); ++ ++ old = btree_node_root(c, b); ++ ++ /* ++ * Ensure no one is using the old root while we switch to the ++ * new root: ++ */ ++ bch2_btree_node_lock_write_nofail(trans, path, &old->c); ++ ++ bch2_btree_set_root_inmem(c, b); ++ ++ btree_update_updated_root(as, b); ++ ++ /* ++ * Unlock old root after new root is visible: ++ * ++ * The new root isn't persistent, but that's ok: we still have ++ * an intent lock on the new root, and any updates that would ++ * depend on the new root would have to update the new root. ++ */ ++ bch2_btree_node_unlock_write(trans, path, old); ++} ++ ++/* Interior node updates: */ ++ ++static void bch2_insert_fixup_btree_ptr(struct btree_update *as, ++ struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b, ++ struct btree_node_iter *node_iter, ++ struct bkey_i *insert) ++{ ++ struct bch_fs *c = as->c; ++ struct bkey_packed *k; ++ struct printbuf buf = PRINTBUF; ++ unsigned long old, new, v; ++ ++ BUG_ON(insert->k.type == KEY_TYPE_btree_ptr_v2 && ++ !btree_ptr_sectors_written(insert)); ++ ++ if (unlikely(!test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags))) ++ bch2_journal_key_overwritten(c, b->c.btree_id, b->c.level, insert->k.p); ++ ++ if (bch2_bkey_invalid(c, bkey_i_to_s_c(insert), ++ btree_node_type(b), WRITE, &buf) ?: ++ bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf)) { ++ printbuf_reset(&buf); ++ prt_printf(&buf, "inserting invalid bkey\n "); ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); ++ prt_printf(&buf, "\n "); ++ bch2_bkey_invalid(c, bkey_i_to_s_c(insert), ++ btree_node_type(b), WRITE, &buf); ++ bch2_bkey_in_btree_node(b, bkey_i_to_s_c(insert), &buf); ++ ++ bch2_fs_inconsistent(c, "%s", buf.buf); ++ dump_stack(); ++ } ++ ++ BUG_ON(as->journal_u64s + jset_u64s(insert->k.u64s) > ++ ARRAY_SIZE(as->journal_entries)); ++ ++ as->journal_u64s += ++ journal_entry_set((void *) &as->journal_entries[as->journal_u64s], ++ BCH_JSET_ENTRY_btree_keys, ++ b->c.btree_id, b->c.level, ++ insert, insert->k.u64s); ++ ++ while ((k = bch2_btree_node_iter_peek_all(node_iter, b)) && ++ bkey_iter_pos_cmp(b, k, &insert->k.p) < 0) ++ bch2_btree_node_iter_advance(node_iter, b); ++ ++ bch2_btree_bset_insert_key(trans, path, b, node_iter, insert); ++ set_btree_node_dirty_acct(c, b); ++ ++ v = READ_ONCE(b->flags); ++ do { ++ old = new = v; ++ ++ new &= ~BTREE_WRITE_TYPE_MASK; ++ new |= BTREE_WRITE_interior; ++ new |= 1 << BTREE_NODE_need_write; ++ } while ((v = cmpxchg(&b->flags, old, new)) != old); ++ ++ printbuf_exit(&buf); ++} ++ ++static void ++__bch2_btree_insert_keys_interior(struct btree_update *as, ++ struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b, ++ struct btree_node_iter node_iter, ++ struct keylist *keys) ++{ ++ struct bkey_i *insert = bch2_keylist_front(keys); ++ struct bkey_packed *k; ++ ++ BUG_ON(btree_node_type(b) != BKEY_TYPE_btree); ++ ++ while ((k = bch2_btree_node_iter_prev_all(&node_iter, b)) && ++ (bkey_cmp_left_packed(b, k, &insert->k.p) >= 0)) ++ ; ++ ++ while (!bch2_keylist_empty(keys)) { ++ insert = bch2_keylist_front(keys); ++ ++ if (bpos_gt(insert->k.p, b->key.k.p)) ++ break; ++ ++ bch2_insert_fixup_btree_ptr(as, trans, path, b, &node_iter, insert); ++ bch2_keylist_pop_front(keys); ++ } ++} ++ ++/* ++ * Move keys from n1 (original replacement node, now lower node) to n2 (higher ++ * node) ++ */ ++static void __btree_split_node(struct btree_update *as, ++ struct btree_trans *trans, ++ struct btree *b, ++ struct btree *n[2]) ++{ ++ struct bkey_packed *k; ++ struct bpos n1_pos = POS_MIN; ++ struct btree_node_iter iter; ++ struct bset *bsets[2]; ++ struct bkey_format_state format[2]; ++ struct bkey_packed *out[2]; ++ struct bkey uk; ++ unsigned u64s, n1_u64s = (b->nr.live_u64s * 3) / 5; ++ int i; ++ ++ for (i = 0; i < 2; i++) { ++ BUG_ON(n[i]->nsets != 1); ++ ++ bsets[i] = btree_bset_first(n[i]); ++ out[i] = bsets[i]->start; ++ ++ SET_BTREE_NODE_SEQ(n[i]->data, BTREE_NODE_SEQ(b->data) + 1); ++ bch2_bkey_format_init(&format[i]); ++ } ++ ++ u64s = 0; ++ for_each_btree_node_key(b, k, &iter) { ++ if (bkey_deleted(k)) ++ continue; ++ ++ i = u64s >= n1_u64s; ++ u64s += k->u64s; ++ uk = bkey_unpack_key(b, k); ++ if (!i) ++ n1_pos = uk.p; ++ bch2_bkey_format_add_key(&format[i], &uk); ++ } ++ ++ btree_set_min(n[0], b->data->min_key); ++ btree_set_max(n[0], n1_pos); ++ btree_set_min(n[1], bpos_successor(n1_pos)); ++ btree_set_max(n[1], b->data->max_key); ++ ++ for (i = 0; i < 2; i++) { ++ bch2_bkey_format_add_pos(&format[i], n[i]->data->min_key); ++ bch2_bkey_format_add_pos(&format[i], n[i]->data->max_key); ++ ++ n[i]->data->format = bch2_bkey_format_done(&format[i]); ++ btree_node_set_format(n[i], n[i]->data->format); ++ } ++ ++ u64s = 0; ++ for_each_btree_node_key(b, k, &iter) { ++ if (bkey_deleted(k)) ++ continue; ++ ++ i = u64s >= n1_u64s; ++ u64s += k->u64s; ++ ++ if (bch2_bkey_transform(&n[i]->format, out[i], bkey_packed(k) ++ ? &b->format: &bch2_bkey_format_current, k)) ++ out[i]->format = KEY_FORMAT_LOCAL_BTREE; ++ else ++ bch2_bkey_unpack(b, (void *) out[i], k); ++ ++ out[i]->needs_whiteout = false; ++ ++ btree_keys_account_key_add(&n[i]->nr, 0, out[i]); ++ out[i] = bkey_p_next(out[i]); ++ } ++ ++ for (i = 0; i < 2; i++) { ++ bsets[i]->u64s = cpu_to_le16((u64 *) out[i] - bsets[i]->_data); ++ ++ BUG_ON(!bsets[i]->u64s); ++ ++ set_btree_bset_end(n[i], n[i]->set); ++ ++ btree_node_reset_sib_u64s(n[i]); ++ ++ bch2_verify_btree_nr_keys(n[i]); ++ ++ if (b->c.level) ++ btree_node_interior_verify(as->c, n[i]); ++ } ++} ++ ++/* ++ * For updates to interior nodes, we've got to do the insert before we split ++ * because the stuff we're inserting has to be inserted atomically. Post split, ++ * the keys might have to go in different nodes and the split would no longer be ++ * atomic. ++ * ++ * Worse, if the insert is from btree node coalescing, if we do the insert after ++ * we do the split (and pick the pivot) - the pivot we pick might be between ++ * nodes that were coalesced, and thus in the middle of a child node post ++ * coalescing: ++ */ ++static void btree_split_insert_keys(struct btree_update *as, ++ struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b, ++ struct keylist *keys) ++{ ++ if (!bch2_keylist_empty(keys) && ++ bpos_le(bch2_keylist_front(keys)->k.p, b->data->max_key)) { ++ struct btree_node_iter node_iter; ++ ++ bch2_btree_node_iter_init(&node_iter, b, &bch2_keylist_front(keys)->k.p); ++ ++ __bch2_btree_insert_keys_interior(as, trans, path, b, node_iter, keys); ++ ++ btree_node_interior_verify(as->c, b); ++ } ++} ++ ++static int btree_split(struct btree_update *as, struct btree_trans *trans, ++ struct btree_path *path, struct btree *b, ++ struct keylist *keys, unsigned flags) ++{ ++ struct bch_fs *c = as->c; ++ struct btree *parent = btree_node_parent(path, b); ++ struct btree *n1, *n2 = NULL, *n3 = NULL; ++ struct btree_path *path1 = NULL, *path2 = NULL; ++ u64 start_time = local_clock(); ++ int ret = 0; ++ ++ BUG_ON(!parent && (b != btree_node_root(c, b))); ++ BUG_ON(parent && !btree_node_intent_locked(path, b->c.level + 1)); ++ ++ bch2_btree_interior_update_will_free_node(as, b); ++ ++ if (b->nr.live_u64s > BTREE_SPLIT_THRESHOLD(c)) { ++ struct btree *n[2]; ++ ++ trace_and_count(c, btree_node_split, c, b); ++ ++ n[0] = n1 = bch2_btree_node_alloc(as, trans, b->c.level); ++ n[1] = n2 = bch2_btree_node_alloc(as, trans, b->c.level); ++ ++ __btree_split_node(as, trans, b, n); ++ ++ if (keys) { ++ btree_split_insert_keys(as, trans, path, n1, keys); ++ btree_split_insert_keys(as, trans, path, n2, keys); ++ BUG_ON(!bch2_keylist_empty(keys)); ++ } ++ ++ bch2_btree_build_aux_trees(n2); ++ bch2_btree_build_aux_trees(n1); ++ ++ bch2_btree_update_add_new_node(as, n1); ++ bch2_btree_update_add_new_node(as, n2); ++ six_unlock_write(&n2->c.lock); ++ six_unlock_write(&n1->c.lock); ++ ++ path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); ++ six_lock_increment(&n1->c.lock, SIX_LOCK_intent); ++ mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); ++ bch2_btree_path_level_init(trans, path1, n1); ++ ++ path2 = get_unlocked_mut_path(trans, path->btree_id, n2->c.level, n2->key.k.p); ++ six_lock_increment(&n2->c.lock, SIX_LOCK_intent); ++ mark_btree_node_locked(trans, path2, n2->c.level, BTREE_NODE_INTENT_LOCKED); ++ bch2_btree_path_level_init(trans, path2, n2); ++ ++ /* ++ * Note that on recursive parent_keys == keys, so we ++ * can't start adding new keys to parent_keys before emptying it ++ * out (which we did with btree_split_insert_keys() above) ++ */ ++ bch2_keylist_add(&as->parent_keys, &n1->key); ++ bch2_keylist_add(&as->parent_keys, &n2->key); ++ ++ if (!parent) { ++ /* Depth increases, make a new root */ ++ n3 = __btree_root_alloc(as, trans, b->c.level + 1); ++ ++ bch2_btree_update_add_new_node(as, n3); ++ six_unlock_write(&n3->c.lock); ++ ++ path2->locks_want++; ++ BUG_ON(btree_node_locked(path2, n3->c.level)); ++ six_lock_increment(&n3->c.lock, SIX_LOCK_intent); ++ mark_btree_node_locked(trans, path2, n3->c.level, BTREE_NODE_INTENT_LOCKED); ++ bch2_btree_path_level_init(trans, path2, n3); ++ ++ n3->sib_u64s[0] = U16_MAX; ++ n3->sib_u64s[1] = U16_MAX; ++ ++ btree_split_insert_keys(as, trans, path, n3, &as->parent_keys); ++ } ++ } else { ++ trace_and_count(c, btree_node_compact, c, b); ++ ++ n1 = bch2_btree_node_alloc_replacement(as, trans, b); ++ ++ if (keys) { ++ btree_split_insert_keys(as, trans, path, n1, keys); ++ BUG_ON(!bch2_keylist_empty(keys)); ++ } ++ ++ bch2_btree_build_aux_trees(n1); ++ bch2_btree_update_add_new_node(as, n1); ++ six_unlock_write(&n1->c.lock); ++ ++ path1 = get_unlocked_mut_path(trans, path->btree_id, n1->c.level, n1->key.k.p); ++ six_lock_increment(&n1->c.lock, SIX_LOCK_intent); ++ mark_btree_node_locked(trans, path1, n1->c.level, BTREE_NODE_INTENT_LOCKED); ++ bch2_btree_path_level_init(trans, path1, n1); ++ ++ if (parent) ++ bch2_keylist_add(&as->parent_keys, &n1->key); ++ } ++ ++ /* New nodes all written, now make them visible: */ ++ ++ if (parent) { ++ /* Split a non root node */ ++ ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); ++ if (ret) ++ goto err; ++ } else if (n3) { ++ bch2_btree_set_root(as, trans, path, n3); ++ } else { ++ /* Root filled up but didn't need to be split */ ++ bch2_btree_set_root(as, trans, path, n1); ++ } ++ ++ if (n3) { ++ bch2_btree_update_get_open_buckets(as, n3); ++ bch2_btree_node_write(c, n3, SIX_LOCK_intent, 0); ++ } ++ if (n2) { ++ bch2_btree_update_get_open_buckets(as, n2); ++ bch2_btree_node_write(c, n2, SIX_LOCK_intent, 0); ++ } ++ bch2_btree_update_get_open_buckets(as, n1); ++ bch2_btree_node_write(c, n1, SIX_LOCK_intent, 0); ++ ++ /* ++ * The old node must be freed (in memory) _before_ unlocking the new ++ * nodes - else another thread could re-acquire a read lock on the old ++ * node after another thread has locked and updated the new node, thus ++ * seeing stale data: ++ */ ++ bch2_btree_node_free_inmem(trans, path, b); ++ ++ if (n3) ++ bch2_trans_node_add(trans, n3); ++ if (n2) ++ bch2_trans_node_add(trans, n2); ++ bch2_trans_node_add(trans, n1); ++ ++ if (n3) ++ six_unlock_intent(&n3->c.lock); ++ if (n2) ++ six_unlock_intent(&n2->c.lock); ++ six_unlock_intent(&n1->c.lock); ++out: ++ if (path2) { ++ __bch2_btree_path_unlock(trans, path2); ++ bch2_path_put(trans, path2, true); ++ } ++ if (path1) { ++ __bch2_btree_path_unlock(trans, path1); ++ bch2_path_put(trans, path1, true); ++ } ++ ++ bch2_trans_verify_locks(trans); ++ ++ bch2_time_stats_update(&c->times[n2 ++ ? BCH_TIME_btree_node_split ++ : BCH_TIME_btree_node_compact], ++ start_time); ++ return ret; ++err: ++ if (n3) ++ bch2_btree_node_free_never_used(as, trans, n3); ++ if (n2) ++ bch2_btree_node_free_never_used(as, trans, n2); ++ bch2_btree_node_free_never_used(as, trans, n1); ++ goto out; ++} ++ ++static void ++bch2_btree_insert_keys_interior(struct btree_update *as, ++ struct btree_trans *trans, ++ struct btree_path *path, ++ struct btree *b, ++ struct keylist *keys) ++{ ++ struct btree_path *linked; ++ ++ __bch2_btree_insert_keys_interior(as, trans, path, b, ++ path->l[b->c.level].iter, keys); ++ ++ btree_update_updated_node(as, b); ++ ++ trans_for_each_path_with_node(trans, b, linked) ++ bch2_btree_node_iter_peek(&linked->l[b->c.level].iter, b); ++ ++ bch2_trans_verify_paths(trans); ++} ++ ++/** ++ * bch2_btree_insert_node - insert bkeys into a given btree node ++ * ++ * @as: btree_update object ++ * @trans: btree_trans object ++ * @path: path that points to current node ++ * @b: node to insert keys into ++ * @keys: list of keys to insert ++ * @flags: transaction commit flags ++ * ++ * Returns: 0 on success, typically transaction restart error on failure ++ * ++ * Inserts as many keys as it can into a given btree node, splitting it if full. ++ * If a split occurred, this function will return early. This can only happen ++ * for leaf nodes -- inserts into interior nodes have to be atomic. ++ */ ++static int bch2_btree_insert_node(struct btree_update *as, struct btree_trans *trans, ++ struct btree_path *path, struct btree *b, ++ struct keylist *keys, unsigned flags) ++{ ++ struct bch_fs *c = as->c; ++ int old_u64s = le16_to_cpu(btree_bset_last(b)->u64s); ++ int old_live_u64s = b->nr.live_u64s; ++ int live_u64s_added, u64s_added; ++ int ret; ++ ++ lockdep_assert_held(&c->gc_lock); ++ BUG_ON(!btree_node_intent_locked(path, b->c.level)); ++ BUG_ON(!b->c.level); ++ BUG_ON(!as || as->b); ++ bch2_verify_keylist_sorted(keys); ++ ++ ret = bch2_btree_node_lock_write(trans, path, &b->c); ++ if (ret) ++ return ret; ++ ++ bch2_btree_node_prep_for_write(trans, path, b); ++ ++ if (!bch2_btree_node_insert_fits(c, b, bch2_keylist_u64s(keys))) { ++ bch2_btree_node_unlock_write(trans, path, b); ++ goto split; ++ } ++ ++ btree_node_interior_verify(c, b); ++ ++ bch2_btree_insert_keys_interior(as, trans, path, b, keys); ++ ++ live_u64s_added = (int) b->nr.live_u64s - old_live_u64s; ++ u64s_added = (int) le16_to_cpu(btree_bset_last(b)->u64s) - old_u64s; ++ ++ if (b->sib_u64s[0] != U16_MAX && live_u64s_added < 0) ++ b->sib_u64s[0] = max(0, (int) b->sib_u64s[0] + live_u64s_added); ++ if (b->sib_u64s[1] != U16_MAX && live_u64s_added < 0) ++ b->sib_u64s[1] = max(0, (int) b->sib_u64s[1] + live_u64s_added); ++ ++ if (u64s_added > live_u64s_added && ++ bch2_maybe_compact_whiteouts(c, b)) ++ bch2_trans_node_reinit_iter(trans, b); ++ ++ bch2_btree_node_unlock_write(trans, path, b); ++ ++ btree_node_interior_verify(c, b); ++ return 0; ++split: ++ /* ++ * We could attempt to avoid the transaction restart, by calling ++ * bch2_btree_path_upgrade() and allocating more nodes: ++ */ ++ if (b->c.level >= as->update_level) { ++ trace_and_count(c, trans_restart_split_race, trans, _THIS_IP_, b); ++ return btree_trans_restart(trans, BCH_ERR_transaction_restart_split_race); ++ } ++ ++ return btree_split(as, trans, path, b, keys, flags); ++} ++ ++int bch2_btree_split_leaf(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned flags) ++{ ++ struct btree *b = path_l(path)->b; ++ struct btree_update *as; ++ unsigned l; ++ int ret = 0; ++ ++ as = bch2_btree_update_start(trans, path, path->level, ++ true, flags); ++ if (IS_ERR(as)) ++ return PTR_ERR(as); ++ ++ ret = btree_split(as, trans, path, b, NULL, flags); ++ if (ret) { ++ bch2_btree_update_free(as, trans); ++ return ret; ++ } ++ ++ bch2_btree_update_done(as, trans); ++ ++ for (l = path->level + 1; btree_node_intent_locked(path, l) && !ret; l++) ++ ret = bch2_foreground_maybe_merge(trans, path, l, flags); ++ ++ return ret; ++} ++ ++int __bch2_foreground_maybe_merge(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned level, ++ unsigned flags, ++ enum btree_node_sibling sib) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_path *sib_path = NULL, *new_path = NULL; ++ struct btree_update *as; ++ struct bkey_format_state new_s; ++ struct bkey_format new_f; ++ struct bkey_i delete; ++ struct btree *b, *m, *n, *prev, *next, *parent; ++ struct bpos sib_pos; ++ size_t sib_u64s; ++ u64 start_time = local_clock(); ++ int ret = 0; ++ ++ BUG_ON(!path->should_be_locked); ++ BUG_ON(!btree_node_locked(path, level)); ++ ++ b = path->l[level].b; ++ ++ if ((sib == btree_prev_sib && bpos_eq(b->data->min_key, POS_MIN)) || ++ (sib == btree_next_sib && bpos_eq(b->data->max_key, SPOS_MAX))) { ++ b->sib_u64s[sib] = U16_MAX; ++ return 0; ++ } ++ ++ sib_pos = sib == btree_prev_sib ++ ? bpos_predecessor(b->data->min_key) ++ : bpos_successor(b->data->max_key); ++ ++ sib_path = bch2_path_get(trans, path->btree_id, sib_pos, ++ U8_MAX, level, BTREE_ITER_INTENT, _THIS_IP_); ++ ret = bch2_btree_path_traverse(trans, sib_path, false); ++ if (ret) ++ goto err; ++ ++ btree_path_set_should_be_locked(sib_path); ++ ++ m = sib_path->l[level].b; ++ ++ if (btree_node_parent(path, b) != ++ btree_node_parent(sib_path, m)) { ++ b->sib_u64s[sib] = U16_MAX; ++ goto out; ++ } ++ ++ if (sib == btree_prev_sib) { ++ prev = m; ++ next = b; ++ } else { ++ prev = b; ++ next = m; ++ } ++ ++ if (!bpos_eq(bpos_successor(prev->data->max_key), next->data->min_key)) { ++ struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; ++ ++ bch2_bpos_to_text(&buf1, prev->data->max_key); ++ bch2_bpos_to_text(&buf2, next->data->min_key); ++ bch_err(c, ++ "%s(): btree topology error:\n" ++ " prev ends at %s\n" ++ " next starts at %s", ++ __func__, buf1.buf, buf2.buf); ++ printbuf_exit(&buf1); ++ printbuf_exit(&buf2); ++ bch2_topology_error(c); ++ ret = -EIO; ++ goto err; ++ } ++ ++ bch2_bkey_format_init(&new_s); ++ bch2_bkey_format_add_pos(&new_s, prev->data->min_key); ++ __bch2_btree_calc_format(&new_s, prev); ++ __bch2_btree_calc_format(&new_s, next); ++ bch2_bkey_format_add_pos(&new_s, next->data->max_key); ++ new_f = bch2_bkey_format_done(&new_s); ++ ++ sib_u64s = btree_node_u64s_with_format(b, &new_f) + ++ btree_node_u64s_with_format(m, &new_f); ++ ++ if (sib_u64s > BTREE_FOREGROUND_MERGE_HYSTERESIS(c)) { ++ sib_u64s -= BTREE_FOREGROUND_MERGE_HYSTERESIS(c); ++ sib_u64s /= 2; ++ sib_u64s += BTREE_FOREGROUND_MERGE_HYSTERESIS(c); ++ } ++ ++ sib_u64s = min(sib_u64s, btree_max_u64s(c)); ++ sib_u64s = min(sib_u64s, (size_t) U16_MAX - 1); ++ b->sib_u64s[sib] = sib_u64s; ++ ++ if (b->sib_u64s[sib] > c->btree_foreground_merge_threshold) ++ goto out; ++ ++ parent = btree_node_parent(path, b); ++ as = bch2_btree_update_start(trans, path, level, false, ++ BTREE_INSERT_NOFAIL|flags); ++ ret = PTR_ERR_OR_ZERO(as); ++ if (ret) ++ goto err; ++ ++ trace_and_count(c, btree_node_merge, c, b); ++ ++ bch2_btree_interior_update_will_free_node(as, b); ++ bch2_btree_interior_update_will_free_node(as, m); ++ ++ n = bch2_btree_node_alloc(as, trans, b->c.level); ++ ++ SET_BTREE_NODE_SEQ(n->data, ++ max(BTREE_NODE_SEQ(b->data), ++ BTREE_NODE_SEQ(m->data)) + 1); ++ ++ btree_set_min(n, prev->data->min_key); ++ btree_set_max(n, next->data->max_key); ++ ++ n->data->format = new_f; ++ btree_node_set_format(n, new_f); ++ ++ bch2_btree_sort_into(c, n, prev); ++ bch2_btree_sort_into(c, n, next); ++ ++ bch2_btree_build_aux_trees(n); ++ bch2_btree_update_add_new_node(as, n); ++ six_unlock_write(&n->c.lock); ++ ++ new_path = get_unlocked_mut_path(trans, path->btree_id, n->c.level, n->key.k.p); ++ six_lock_increment(&n->c.lock, SIX_LOCK_intent); ++ mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); ++ bch2_btree_path_level_init(trans, new_path, n); ++ ++ bkey_init(&delete.k); ++ delete.k.p = prev->key.k.p; ++ bch2_keylist_add(&as->parent_keys, &delete); ++ bch2_keylist_add(&as->parent_keys, &n->key); ++ ++ bch2_trans_verify_paths(trans); ++ ++ ret = bch2_btree_insert_node(as, trans, path, parent, &as->parent_keys, flags); ++ if (ret) ++ goto err_free_update; ++ ++ bch2_trans_verify_paths(trans); ++ ++ bch2_btree_update_get_open_buckets(as, n); ++ bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); ++ ++ bch2_btree_node_free_inmem(trans, path, b); ++ bch2_btree_node_free_inmem(trans, sib_path, m); ++ ++ bch2_trans_node_add(trans, n); ++ ++ bch2_trans_verify_paths(trans); ++ ++ six_unlock_intent(&n->c.lock); ++ ++ bch2_btree_update_done(as, trans); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_btree_node_merge], start_time); ++out: ++err: ++ if (new_path) ++ bch2_path_put(trans, new_path, true); ++ bch2_path_put(trans, sib_path, true); ++ bch2_trans_verify_locks(trans); ++ return ret; ++err_free_update: ++ bch2_btree_node_free_never_used(as, trans, n); ++ bch2_btree_update_free(as, trans); ++ goto out; ++} ++ ++int bch2_btree_node_rewrite(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct btree *b, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_path *new_path = NULL; ++ struct btree *n, *parent; ++ struct btree_update *as; ++ int ret; ++ ++ flags |= BTREE_INSERT_NOFAIL; ++ ++ parent = btree_node_parent(iter->path, b); ++ as = bch2_btree_update_start(trans, iter->path, b->c.level, ++ false, flags); ++ ret = PTR_ERR_OR_ZERO(as); ++ if (ret) ++ goto out; ++ ++ bch2_btree_interior_update_will_free_node(as, b); ++ ++ n = bch2_btree_node_alloc_replacement(as, trans, b); ++ ++ bch2_btree_build_aux_trees(n); ++ bch2_btree_update_add_new_node(as, n); ++ six_unlock_write(&n->c.lock); ++ ++ new_path = get_unlocked_mut_path(trans, iter->btree_id, n->c.level, n->key.k.p); ++ six_lock_increment(&n->c.lock, SIX_LOCK_intent); ++ mark_btree_node_locked(trans, new_path, n->c.level, BTREE_NODE_INTENT_LOCKED); ++ bch2_btree_path_level_init(trans, new_path, n); ++ ++ trace_and_count(c, btree_node_rewrite, c, b); ++ ++ if (parent) { ++ bch2_keylist_add(&as->parent_keys, &n->key); ++ ret = bch2_btree_insert_node(as, trans, iter->path, parent, ++ &as->parent_keys, flags); ++ if (ret) ++ goto err; ++ } else { ++ bch2_btree_set_root(as, trans, iter->path, n); ++ } ++ ++ bch2_btree_update_get_open_buckets(as, n); ++ bch2_btree_node_write(c, n, SIX_LOCK_intent, 0); ++ ++ bch2_btree_node_free_inmem(trans, iter->path, b); ++ ++ bch2_trans_node_add(trans, n); ++ six_unlock_intent(&n->c.lock); ++ ++ bch2_btree_update_done(as, trans); ++out: ++ if (new_path) ++ bch2_path_put(trans, new_path, true); ++ bch2_btree_path_downgrade(trans, iter->path); ++ return ret; ++err: ++ bch2_btree_node_free_never_used(as, trans, n); ++ bch2_btree_update_free(as, trans); ++ goto out; ++} ++ ++struct async_btree_rewrite { ++ struct bch_fs *c; ++ struct work_struct work; ++ struct list_head list; ++ enum btree_id btree_id; ++ unsigned level; ++ struct bpos pos; ++ __le64 seq; ++}; ++ ++static int async_btree_node_rewrite_trans(struct btree_trans *trans, ++ struct async_btree_rewrite *a) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct btree *b; ++ int ret; ++ ++ bch2_trans_node_iter_init(trans, &iter, a->btree_id, a->pos, ++ BTREE_MAX_DEPTH, a->level, 0); ++ b = bch2_btree_iter_peek_node(&iter); ++ ret = PTR_ERR_OR_ZERO(b); ++ if (ret) ++ goto out; ++ ++ if (!b || b->data->keys.seq != a->seq) { ++ struct printbuf buf = PRINTBUF; ++ ++ if (b) ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); ++ else ++ prt_str(&buf, "(null"); ++ bch_info(c, "%s: node to rewrite not found:, searching for seq %llu, got\n%s", ++ __func__, a->seq, buf.buf); ++ printbuf_exit(&buf); ++ goto out; ++ } ++ ++ ret = bch2_btree_node_rewrite(trans, &iter, b, 0); ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret; ++} ++ ++static void async_btree_node_rewrite_work(struct work_struct *work) ++{ ++ struct async_btree_rewrite *a = ++ container_of(work, struct async_btree_rewrite, work); ++ struct bch_fs *c = a->c; ++ int ret; ++ ++ ret = bch2_trans_do(c, NULL, NULL, 0, ++ async_btree_node_rewrite_trans(trans, a)); ++ if (ret) ++ bch_err_fn(c, ret); ++ bch2_write_ref_put(c, BCH_WRITE_REF_node_rewrite); ++ kfree(a); ++} ++ ++void bch2_btree_node_rewrite_async(struct bch_fs *c, struct btree *b) ++{ ++ struct async_btree_rewrite *a; ++ int ret; ++ ++ a = kmalloc(sizeof(*a), GFP_NOFS); ++ if (!a) { ++ bch_err(c, "%s: error allocating memory", __func__); ++ return; ++ } ++ ++ a->c = c; ++ a->btree_id = b->c.btree_id; ++ a->level = b->c.level; ++ a->pos = b->key.k.p; ++ a->seq = b->data->keys.seq; ++ INIT_WORK(&a->work, async_btree_node_rewrite_work); ++ ++ if (unlikely(!test_bit(BCH_FS_MAY_GO_RW, &c->flags))) { ++ mutex_lock(&c->pending_node_rewrites_lock); ++ list_add(&a->list, &c->pending_node_rewrites); ++ mutex_unlock(&c->pending_node_rewrites_lock); ++ return; ++ } ++ ++ if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_node_rewrite)) { ++ if (test_bit(BCH_FS_STARTED, &c->flags)) { ++ bch_err(c, "%s: error getting c->writes ref", __func__); ++ kfree(a); ++ return; ++ } ++ ++ ret = bch2_fs_read_write_early(c); ++ if (ret) { ++ bch_err_msg(c, ret, "going read-write"); ++ kfree(a); ++ return; ++ } ++ ++ bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); ++ } ++ ++ queue_work(c->btree_interior_update_worker, &a->work); ++} ++ ++void bch2_do_pending_node_rewrites(struct bch_fs *c) ++{ ++ struct async_btree_rewrite *a, *n; ++ ++ mutex_lock(&c->pending_node_rewrites_lock); ++ list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { ++ list_del(&a->list); ++ ++ bch2_write_ref_get(c, BCH_WRITE_REF_node_rewrite); ++ queue_work(c->btree_interior_update_worker, &a->work); ++ } ++ mutex_unlock(&c->pending_node_rewrites_lock); ++} ++ ++void bch2_free_pending_node_rewrites(struct bch_fs *c) ++{ ++ struct async_btree_rewrite *a, *n; ++ ++ mutex_lock(&c->pending_node_rewrites_lock); ++ list_for_each_entry_safe(a, n, &c->pending_node_rewrites, list) { ++ list_del(&a->list); ++ ++ kfree(a); ++ } ++ mutex_unlock(&c->pending_node_rewrites_lock); ++} ++ ++static int __bch2_btree_node_update_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct btree *b, struct btree *new_hash, ++ struct bkey_i *new_key, ++ unsigned commit_flags, ++ bool skip_triggers) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter2 = { NULL }; ++ struct btree *parent; ++ int ret; ++ ++ if (!skip_triggers) { ++ ret = bch2_trans_mark_old(trans, b->c.btree_id, b->c.level + 1, ++ bkey_i_to_s_c(&b->key), 0); ++ if (ret) ++ return ret; ++ ++ ret = bch2_trans_mark_new(trans, b->c.btree_id, b->c.level + 1, ++ new_key, 0); ++ if (ret) ++ return ret; ++ } ++ ++ if (new_hash) { ++ bkey_copy(&new_hash->key, new_key); ++ ret = bch2_btree_node_hash_insert(&c->btree_cache, ++ new_hash, b->c.level, b->c.btree_id); ++ BUG_ON(ret); ++ } ++ ++ parent = btree_node_parent(iter->path, b); ++ if (parent) { ++ bch2_trans_copy_iter(&iter2, iter); ++ ++ iter2.path = bch2_btree_path_make_mut(trans, iter2.path, ++ iter2.flags & BTREE_ITER_INTENT, ++ _THIS_IP_); ++ ++ BUG_ON(iter2.path->level != b->c.level); ++ BUG_ON(!bpos_eq(iter2.path->pos, new_key->k.p)); ++ ++ btree_path_set_level_up(trans, iter2.path); ++ ++ trans->paths_sorted = false; ++ ++ ret = bch2_btree_iter_traverse(&iter2) ?: ++ bch2_trans_update(trans, &iter2, new_key, BTREE_TRIGGER_NORUN); ++ if (ret) ++ goto err; ++ } else { ++ BUG_ON(btree_node_root(c, b) != b); ++ ++ ret = darray_make_room(&trans->extra_journal_entries, ++ jset_u64s(new_key->k.u64s)); ++ if (ret) ++ return ret; ++ ++ journal_entry_set((void *) &darray_top(trans->extra_journal_entries), ++ BCH_JSET_ENTRY_btree_root, ++ b->c.btree_id, b->c.level, ++ new_key, new_key->k.u64s); ++ trans->extra_journal_entries.nr += jset_u64s(new_key->k.u64s); ++ } ++ ++ ret = bch2_trans_commit(trans, NULL, NULL, commit_flags); ++ if (ret) ++ goto err; ++ ++ bch2_btree_node_lock_write_nofail(trans, iter->path, &b->c); ++ ++ if (new_hash) { ++ mutex_lock(&c->btree_cache.lock); ++ bch2_btree_node_hash_remove(&c->btree_cache, new_hash); ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ ++ bkey_copy(&b->key, new_key); ++ ret = __bch2_btree_node_hash_insert(&c->btree_cache, b); ++ BUG_ON(ret); ++ mutex_unlock(&c->btree_cache.lock); ++ } else { ++ bkey_copy(&b->key, new_key); ++ } ++ ++ bch2_btree_node_unlock_write(trans, iter->path, b); ++out: ++ bch2_trans_iter_exit(trans, &iter2); ++ return ret; ++err: ++ if (new_hash) { ++ mutex_lock(&c->btree_cache.lock); ++ bch2_btree_node_hash_remove(&c->btree_cache, b); ++ mutex_unlock(&c->btree_cache.lock); ++ } ++ goto out; ++} ++ ++int bch2_btree_node_update_key(struct btree_trans *trans, struct btree_iter *iter, ++ struct btree *b, struct bkey_i *new_key, ++ unsigned commit_flags, bool skip_triggers) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree *new_hash = NULL; ++ struct btree_path *path = iter->path; ++ struct closure cl; ++ int ret = 0; ++ ++ ret = bch2_btree_path_upgrade(trans, path, b->c.level + 1); ++ if (ret) ++ return ret; ++ ++ closure_init_stack(&cl); ++ ++ /* ++ * check btree_ptr_hash_val() after @b is locked by ++ * btree_iter_traverse(): ++ */ ++ if (btree_ptr_hash_val(new_key) != b->hash_val) { ++ ret = bch2_btree_cache_cannibalize_lock(c, &cl); ++ if (ret) { ++ ret = drop_locks_do(trans, (closure_sync(&cl), 0)); ++ if (ret) ++ return ret; ++ } ++ ++ new_hash = bch2_btree_node_mem_alloc(trans, false); ++ } ++ ++ path->intent_ref++; ++ ret = __bch2_btree_node_update_key(trans, iter, b, new_hash, new_key, ++ commit_flags, skip_triggers); ++ --path->intent_ref; ++ ++ if (new_hash) { ++ mutex_lock(&c->btree_cache.lock); ++ list_move(&new_hash->list, &c->btree_cache.freeable); ++ mutex_unlock(&c->btree_cache.lock); ++ ++ six_unlock_write(&new_hash->c.lock); ++ six_unlock_intent(&new_hash->c.lock); ++ } ++ closure_sync(&cl); ++ bch2_btree_cache_cannibalize_unlock(c); ++ return ret; ++} ++ ++int bch2_btree_node_update_key_get_iter(struct btree_trans *trans, ++ struct btree *b, struct bkey_i *new_key, ++ unsigned commit_flags, bool skip_triggers) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ bch2_trans_node_iter_init(trans, &iter, b->c.btree_id, b->key.k.p, ++ BTREE_MAX_DEPTH, b->c.level, ++ BTREE_ITER_INTENT); ++ ret = bch2_btree_iter_traverse(&iter); ++ if (ret) ++ goto out; ++ ++ /* has node been freed? */ ++ if (iter.path->l[b->c.level].b != b) { ++ /* node has been freed: */ ++ BUG_ON(!btree_node_dying(b)); ++ goto out; ++ } ++ ++ BUG_ON(!btree_node_hashed(b)); ++ ++ ret = bch2_btree_node_update_key(trans, &iter, b, new_key, ++ commit_flags, skip_triggers); ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++/* Init code: */ ++ ++/* ++ * Only for filesystem bringup, when first reading the btree roots or allocating ++ * btree roots when initializing a new filesystem: ++ */ ++void bch2_btree_set_root_for_read(struct bch_fs *c, struct btree *b) ++{ ++ BUG_ON(btree_node_root(c, b)); ++ ++ bch2_btree_set_root_inmem(c, b); ++} ++ ++static int __bch2_btree_root_alloc(struct btree_trans *trans, enum btree_id id) ++{ ++ struct bch_fs *c = trans->c; ++ struct closure cl; ++ struct btree *b; ++ int ret; ++ ++ closure_init_stack(&cl); ++ ++ do { ++ ret = bch2_btree_cache_cannibalize_lock(c, &cl); ++ closure_sync(&cl); ++ } while (ret); ++ ++ b = bch2_btree_node_mem_alloc(trans, false); ++ bch2_btree_cache_cannibalize_unlock(c); ++ ++ set_btree_node_fake(b); ++ set_btree_node_need_rewrite(b); ++ b->c.level = 0; ++ b->c.btree_id = id; ++ ++ bkey_btree_ptr_init(&b->key); ++ b->key.k.p = SPOS_MAX; ++ *((u64 *) bkey_i_to_btree_ptr(&b->key)->v.start) = U64_MAX - id; ++ ++ bch2_bset_init_first(b, &b->data->keys); ++ bch2_btree_build_aux_trees(b); ++ ++ b->data->flags = 0; ++ btree_set_min(b, POS_MIN); ++ btree_set_max(b, SPOS_MAX); ++ b->data->format = bch2_btree_calc_format(b); ++ btree_node_set_format(b, b->data->format); ++ ++ ret = bch2_btree_node_hash_insert(&c->btree_cache, b, ++ b->c.level, b->c.btree_id); ++ BUG_ON(ret); ++ ++ bch2_btree_set_root_inmem(c, b); ++ ++ six_unlock_write(&b->c.lock); ++ six_unlock_intent(&b->c.lock); ++ return 0; ++} ++ ++void bch2_btree_root_alloc(struct bch_fs *c, enum btree_id id) ++{ ++ bch2_trans_run(c, __bch2_btree_root_alloc(trans, id)); ++} ++ ++void bch2_btree_updates_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct btree_update *as; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ list_for_each_entry(as, &c->btree_interior_update_list, list) ++ prt_printf(out, "%p m %u w %u r %u j %llu\n", ++ as, ++ as->mode, ++ as->nodes_written, ++ closure_nr_remaining(&as->cl), ++ as->journal.seq); ++ mutex_unlock(&c->btree_interior_update_lock); ++} ++ ++static bool bch2_btree_interior_updates_pending(struct bch_fs *c) ++{ ++ bool ret; ++ ++ mutex_lock(&c->btree_interior_update_lock); ++ ret = !list_empty(&c->btree_interior_update_list); ++ mutex_unlock(&c->btree_interior_update_lock); ++ ++ return ret; ++} ++ ++bool bch2_btree_interior_updates_flush(struct bch_fs *c) ++{ ++ bool ret = bch2_btree_interior_updates_pending(c); ++ ++ if (ret) ++ closure_wait_event(&c->btree_interior_update_wait, ++ !bch2_btree_interior_updates_pending(c)); ++ return ret; ++} ++ ++void bch2_journal_entry_to_btree_root(struct bch_fs *c, struct jset_entry *entry) ++{ ++ struct btree_root *r = bch2_btree_id_root(c, entry->btree_id); ++ ++ mutex_lock(&c->btree_root_lock); ++ ++ r->level = entry->level; ++ r->alive = true; ++ bkey_copy(&r->key, &entry->start[0]); ++ ++ mutex_unlock(&c->btree_root_lock); ++} ++ ++struct jset_entry * ++bch2_btree_roots_to_journal_entries(struct bch_fs *c, ++ struct jset_entry *start, ++ struct jset_entry *end) ++{ ++ struct jset_entry *entry; ++ unsigned long have = 0; ++ unsigned i; ++ ++ for (entry = start; entry < end; entry = vstruct_next(entry)) ++ if (entry->type == BCH_JSET_ENTRY_btree_root) ++ __set_bit(entry->btree_id, &have); ++ ++ mutex_lock(&c->btree_root_lock); ++ ++ for (i = 0; i < btree_id_nr_alive(c); i++) { ++ struct btree_root *r = bch2_btree_id_root(c, i); ++ ++ if (r->alive && !test_bit(i, &have)) { ++ journal_entry_set(end, BCH_JSET_ENTRY_btree_root, ++ i, r->level, &r->key, r->key.k.u64s); ++ end = vstruct_next(end); ++ } ++ } ++ ++ mutex_unlock(&c->btree_root_lock); ++ ++ return end; ++} ++ ++void bch2_fs_btree_interior_update_exit(struct bch_fs *c) ++{ ++ if (c->btree_interior_update_worker) ++ destroy_workqueue(c->btree_interior_update_worker); ++ mempool_exit(&c->btree_interior_update_pool); ++} ++ ++void bch2_fs_btree_interior_update_init_early(struct bch_fs *c) ++{ ++ mutex_init(&c->btree_reserve_cache_lock); ++ INIT_LIST_HEAD(&c->btree_interior_update_list); ++ INIT_LIST_HEAD(&c->btree_interior_updates_unwritten); ++ mutex_init(&c->btree_interior_update_lock); ++ INIT_WORK(&c->btree_interior_update_work, btree_interior_update_work); ++ ++ INIT_LIST_HEAD(&c->pending_node_rewrites); ++ mutex_init(&c->pending_node_rewrites_lock); ++} ++ ++int bch2_fs_btree_interior_update_init(struct bch_fs *c) ++{ ++ c->btree_interior_update_worker = ++ alloc_workqueue("btree_update", WQ_UNBOUND|WQ_MEM_RECLAIM, 1); ++ if (!c->btree_interior_update_worker) ++ return -BCH_ERR_ENOMEM_btree_interior_update_worker_init; ++ ++ if (mempool_init_kmalloc_pool(&c->btree_interior_update_pool, 1, ++ sizeof(struct btree_update))) ++ return -BCH_ERR_ENOMEM_btree_interior_update_pool_init; ++ ++ return 0; ++} +diff --git a/fs/bcachefs/btree_update_interior.h b/fs/bcachefs/btree_update_interior.h +new file mode 100644 +index 000000000000..5e0a467fe905 +--- /dev/null ++++ b/fs/bcachefs/btree_update_interior.h +@@ -0,0 +1,337 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_UPDATE_INTERIOR_H ++#define _BCACHEFS_BTREE_UPDATE_INTERIOR_H ++ ++#include "btree_cache.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++ ++void __bch2_btree_calc_format(struct bkey_format_state *, struct btree *); ++bool bch2_btree_node_format_fits(struct bch_fs *c, struct btree *, ++ struct bkey_format *); ++ ++#define BTREE_UPDATE_NODES_MAX ((BTREE_MAX_DEPTH - 2) * 2 + GC_MERGE_NODES) ++ ++#define BTREE_UPDATE_JOURNAL_RES (BTREE_UPDATE_NODES_MAX * (BKEY_BTREE_PTR_U64s_MAX + 1)) ++ ++/* ++ * Tracks an in progress split/rewrite of a btree node and the update to the ++ * parent node: ++ * ++ * When we split/rewrite a node, we do all the updates in memory without ++ * waiting for any writes to complete - we allocate the new node(s) and update ++ * the parent node, possibly recursively up to the root. ++ * ++ * The end result is that we have one or more new nodes being written - ++ * possibly several, if there were multiple splits - and then a write (updating ++ * an interior node) which will make all these new nodes visible. ++ * ++ * Additionally, as we split/rewrite nodes we free the old nodes - but the old ++ * nodes can't be freed (their space on disk can't be reclaimed) until the ++ * update to the interior node that makes the new node visible completes - ++ * until then, the old nodes are still reachable on disk. ++ * ++ */ ++struct btree_update { ++ struct closure cl; ++ struct bch_fs *c; ++ u64 start_time; ++ ++ struct list_head list; ++ struct list_head unwritten_list; ++ ++ /* What kind of update are we doing? */ ++ enum { ++ BTREE_INTERIOR_NO_UPDATE, ++ BTREE_INTERIOR_UPDATING_NODE, ++ BTREE_INTERIOR_UPDATING_ROOT, ++ BTREE_INTERIOR_UPDATING_AS, ++ } mode; ++ ++ unsigned nodes_written:1; ++ unsigned took_gc_lock:1; ++ ++ enum btree_id btree_id; ++ unsigned update_level; ++ ++ struct disk_reservation disk_res; ++ struct journal_preres journal_preres; ++ ++ /* ++ * BTREE_INTERIOR_UPDATING_NODE: ++ * The update that made the new nodes visible was a regular update to an ++ * existing interior node - @b. We can't write out the update to @b ++ * until the new nodes we created are finished writing, so we block @b ++ * from writing by putting this btree_interior update on the ++ * @b->write_blocked list with @write_blocked_list: ++ */ ++ struct btree *b; ++ struct list_head write_blocked_list; ++ ++ /* ++ * We may be freeing nodes that were dirty, and thus had journal entries ++ * pinned: we need to transfer the oldest of those pins to the ++ * btree_update operation, and release it when the new node(s) ++ * are all persistent and reachable: ++ */ ++ struct journal_entry_pin journal; ++ ++ /* Preallocated nodes we reserve when we start the update: */ ++ struct prealloc_nodes { ++ struct btree *b[BTREE_UPDATE_NODES_MAX]; ++ unsigned nr; ++ } prealloc_nodes[2]; ++ ++ /* Nodes being freed: */ ++ struct keylist old_keys; ++ u64 _old_keys[BTREE_UPDATE_NODES_MAX * ++ BKEY_BTREE_PTR_U64s_MAX]; ++ ++ /* Nodes being added: */ ++ struct keylist new_keys; ++ u64 _new_keys[BTREE_UPDATE_NODES_MAX * ++ BKEY_BTREE_PTR_U64s_MAX]; ++ ++ /* New nodes, that will be made reachable by this update: */ ++ struct btree *new_nodes[BTREE_UPDATE_NODES_MAX]; ++ unsigned nr_new_nodes; ++ ++ struct btree *old_nodes[BTREE_UPDATE_NODES_MAX]; ++ __le64 old_nodes_seq[BTREE_UPDATE_NODES_MAX]; ++ unsigned nr_old_nodes; ++ ++ open_bucket_idx_t open_buckets[BTREE_UPDATE_NODES_MAX * ++ BCH_REPLICAS_MAX]; ++ open_bucket_idx_t nr_open_buckets; ++ ++ unsigned journal_u64s; ++ u64 journal_entries[BTREE_UPDATE_JOURNAL_RES]; ++ ++ /* Only here to reduce stack usage on recursive splits: */ ++ struct keylist parent_keys; ++ /* ++ * Enough room for btree_split's keys without realloc - btree node ++ * pointers never have crc/compression info, so we only need to acount ++ * for the pointers for three keys ++ */ ++ u64 inline_keys[BKEY_BTREE_PTR_U64s_MAX * 3]; ++}; ++ ++struct btree *__bch2_btree_node_alloc_replacement(struct btree_update *, ++ struct btree_trans *, ++ struct btree *, ++ struct bkey_format); ++ ++int bch2_btree_split_leaf(struct btree_trans *, struct btree_path *, unsigned); ++ ++int __bch2_foreground_maybe_merge(struct btree_trans *, struct btree_path *, ++ unsigned, unsigned, enum btree_node_sibling); ++ ++static inline int bch2_foreground_maybe_merge_sibling(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned level, unsigned flags, ++ enum btree_node_sibling sib) ++{ ++ struct btree *b; ++ ++ EBUG_ON(!btree_node_locked(path, level)); ++ ++ b = path->l[level].b; ++ if (b->sib_u64s[sib] > trans->c->btree_foreground_merge_threshold) ++ return 0; ++ ++ return __bch2_foreground_maybe_merge(trans, path, level, flags, sib); ++} ++ ++static inline int bch2_foreground_maybe_merge(struct btree_trans *trans, ++ struct btree_path *path, ++ unsigned level, ++ unsigned flags) ++{ ++ return bch2_foreground_maybe_merge_sibling(trans, path, level, flags, ++ btree_prev_sib) ?: ++ bch2_foreground_maybe_merge_sibling(trans, path, level, flags, ++ btree_next_sib); ++} ++ ++int bch2_btree_node_rewrite(struct btree_trans *, struct btree_iter *, ++ struct btree *, unsigned); ++void bch2_btree_node_rewrite_async(struct bch_fs *, struct btree *); ++int bch2_btree_node_update_key(struct btree_trans *, struct btree_iter *, ++ struct btree *, struct bkey_i *, ++ unsigned, bool); ++int bch2_btree_node_update_key_get_iter(struct btree_trans *, struct btree *, ++ struct bkey_i *, unsigned, bool); ++ ++void bch2_btree_set_root_for_read(struct bch_fs *, struct btree *); ++void bch2_btree_root_alloc(struct bch_fs *, enum btree_id); ++ ++static inline unsigned btree_update_reserve_required(struct bch_fs *c, ++ struct btree *b) ++{ ++ unsigned depth = btree_node_root(c, b)->c.level + 1; ++ ++ /* ++ * Number of nodes we might have to allocate in a worst case btree ++ * split operation - we split all the way up to the root, then allocate ++ * a new root, unless we're already at max depth: ++ */ ++ if (depth < BTREE_MAX_DEPTH) ++ return (depth - b->c.level) * 2 + 1; ++ else ++ return (depth - b->c.level) * 2 - 1; ++} ++ ++static inline void btree_node_reset_sib_u64s(struct btree *b) ++{ ++ b->sib_u64s[0] = b->nr.live_u64s; ++ b->sib_u64s[1] = b->nr.live_u64s; ++} ++ ++static inline void *btree_data_end(struct bch_fs *c, struct btree *b) ++{ ++ return (void *) b->data + btree_bytes(c); ++} ++ ++static inline struct bkey_packed *unwritten_whiteouts_start(struct bch_fs *c, ++ struct btree *b) ++{ ++ return (void *) ((u64 *) btree_data_end(c, b) - b->whiteout_u64s); ++} ++ ++static inline struct bkey_packed *unwritten_whiteouts_end(struct bch_fs *c, ++ struct btree *b) ++{ ++ return btree_data_end(c, b); ++} ++ ++static inline void *write_block(struct btree *b) ++{ ++ return (void *) b->data + (b->written << 9); ++} ++ ++static inline bool __btree_addr_written(struct btree *b, void *p) ++{ ++ return p < write_block(b); ++} ++ ++static inline bool bset_written(struct btree *b, struct bset *i) ++{ ++ return __btree_addr_written(b, i); ++} ++ ++static inline bool bkey_written(struct btree *b, struct bkey_packed *k) ++{ ++ return __btree_addr_written(b, k); ++} ++ ++static inline ssize_t __bch_btree_u64s_remaining(struct bch_fs *c, ++ struct btree *b, ++ void *end) ++{ ++ ssize_t used = bset_byte_offset(b, end) / sizeof(u64) + ++ b->whiteout_u64s; ++ ssize_t total = c->opts.btree_node_size >> 3; ++ ++ /* Always leave one extra u64 for bch2_varint_decode: */ ++ used++; ++ ++ return total - used; ++} ++ ++static inline size_t bch_btree_keys_u64s_remaining(struct bch_fs *c, ++ struct btree *b) ++{ ++ ssize_t remaining = __bch_btree_u64s_remaining(c, b, ++ btree_bkey_last(b, bset_tree_last(b))); ++ ++ BUG_ON(remaining < 0); ++ ++ if (bset_written(b, btree_bset_last(b))) ++ return 0; ++ ++ return remaining; ++} ++ ++#define BTREE_WRITE_SET_U64s_BITS 9 ++ ++static inline unsigned btree_write_set_buffer(struct btree *b) ++{ ++ /* ++ * Could buffer up larger amounts of keys for btrees with larger keys, ++ * pending benchmarking: ++ */ ++ return 8 << BTREE_WRITE_SET_U64s_BITS; ++} ++ ++static inline struct btree_node_entry *want_new_bset(struct bch_fs *c, ++ struct btree *b) ++{ ++ struct bset_tree *t = bset_tree_last(b); ++ struct btree_node_entry *bne = max(write_block(b), ++ (void *) btree_bkey_last(b, bset_tree_last(b))); ++ ssize_t remaining_space = ++ __bch_btree_u64s_remaining(c, b, &bne->keys.start[0]); ++ ++ if (unlikely(bset_written(b, bset(b, t)))) { ++ if (remaining_space > (ssize_t) (block_bytes(c) >> 3)) ++ return bne; ++ } else { ++ if (unlikely(bset_u64s(t) * sizeof(u64) > btree_write_set_buffer(b)) && ++ remaining_space > (ssize_t) (btree_write_set_buffer(b) >> 3)) ++ return bne; ++ } ++ ++ return NULL; ++} ++ ++static inline void push_whiteout(struct bch_fs *c, struct btree *b, ++ struct bpos pos) ++{ ++ struct bkey_packed k; ++ ++ BUG_ON(bch_btree_keys_u64s_remaining(c, b) < BKEY_U64s); ++ EBUG_ON(btree_node_just_written(b)); ++ ++ if (!bkey_pack_pos(&k, pos, b)) { ++ struct bkey *u = (void *) &k; ++ ++ bkey_init(u); ++ u->p = pos; ++ } ++ ++ k.needs_whiteout = true; ++ ++ b->whiteout_u64s += k.u64s; ++ bkey_copy(unwritten_whiteouts_start(c, b), &k); ++} ++ ++/* ++ * write lock must be held on @b (else the dirty bset that we were going to ++ * insert into could be written out from under us) ++ */ ++static inline bool bch2_btree_node_insert_fits(struct bch_fs *c, ++ struct btree *b, unsigned u64s) ++{ ++ if (unlikely(btree_node_need_rewrite(b))) ++ return false; ++ ++ return u64s <= bch_btree_keys_u64s_remaining(c, b); ++} ++ ++void bch2_btree_updates_to_text(struct printbuf *, struct bch_fs *); ++ ++bool bch2_btree_interior_updates_flush(struct bch_fs *); ++ ++void bch2_journal_entry_to_btree_root(struct bch_fs *, struct jset_entry *); ++struct jset_entry *bch2_btree_roots_to_journal_entries(struct bch_fs *, ++ struct jset_entry *, struct jset_entry *); ++ ++void bch2_do_pending_node_rewrites(struct bch_fs *); ++void bch2_free_pending_node_rewrites(struct bch_fs *); ++ ++void bch2_fs_btree_interior_update_exit(struct bch_fs *); ++void bch2_fs_btree_interior_update_init_early(struct bch_fs *); ++int bch2_fs_btree_interior_update_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_BTREE_UPDATE_INTERIOR_H */ +diff --git a/fs/bcachefs/btree_write_buffer.c b/fs/bcachefs/btree_write_buffer.c +new file mode 100644 +index 000000000000..4e6241db518b +--- /dev/null ++++ b/fs/bcachefs/btree_write_buffer.c +@@ -0,0 +1,375 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_write_buffer.h" ++#include "error.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++ ++#include ++ ++static int btree_write_buffered_key_cmp(const void *_l, const void *_r) ++{ ++ const struct btree_write_buffered_key *l = _l; ++ const struct btree_write_buffered_key *r = _r; ++ ++ return cmp_int(l->btree, r->btree) ?: ++ bpos_cmp(l->k.k.p, r->k.k.p) ?: ++ cmp_int(l->journal_seq, r->journal_seq) ?: ++ cmp_int(l->journal_offset, r->journal_offset); ++} ++ ++static int btree_write_buffered_journal_cmp(const void *_l, const void *_r) ++{ ++ const struct btree_write_buffered_key *l = _l; ++ const struct btree_write_buffered_key *r = _r; ++ ++ return cmp_int(l->journal_seq, r->journal_seq); ++} ++ ++static int bch2_btree_write_buffer_flush_one(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct btree_write_buffered_key *wb, ++ unsigned commit_flags, ++ bool *write_locked, ++ size_t *fast) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_path *path; ++ int ret; ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ return ret; ++ ++ path = iter->path; ++ ++ if (!*write_locked) { ++ ret = bch2_btree_node_lock_write(trans, path, &path->l[0].b->c); ++ if (ret) ++ return ret; ++ ++ bch2_btree_node_prep_for_write(trans, path, path->l[0].b); ++ *write_locked = true; ++ } ++ ++ if (!bch2_btree_node_insert_fits(c, path->l[0].b, wb->k.k.u64s)) { ++ bch2_btree_node_unlock_write(trans, path, path->l[0].b); ++ *write_locked = false; ++ goto trans_commit; ++ } ++ ++ bch2_btree_insert_key_leaf(trans, path, &wb->k, wb->journal_seq); ++ (*fast)++; ++ ++ if (path->ref > 1) { ++ /* ++ * We can't clone a path that has write locks: if the path is ++ * shared, unlock before set_pos(), traverse(): ++ */ ++ bch2_btree_node_unlock_write(trans, path, path->l[0].b); ++ *write_locked = false; ++ } ++ return 0; ++trans_commit: ++ return bch2_trans_update_seq(trans, wb->journal_seq, iter, &wb->k, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ commit_flags| ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_JOURNAL_RECLAIM); ++} ++ ++static union btree_write_buffer_state btree_write_buffer_switch(struct btree_write_buffer *wb) ++{ ++ union btree_write_buffer_state old, new; ++ u64 v = READ_ONCE(wb->state.v); ++ ++ do { ++ old.v = new.v = v; ++ ++ new.nr = 0; ++ new.idx++; ++ } while ((v = atomic64_cmpxchg_acquire(&wb->state.counter, old.v, new.v)) != old.v); ++ ++ while (old.idx == 0 ? wb->state.ref0 : wb->state.ref1) ++ cpu_relax(); ++ ++ smp_mb(); ++ ++ return old; ++} ++ ++/* ++ * Update a btree with a write buffered key using the journal seq of the ++ * original write buffer insert. ++ * ++ * It is not safe to rejournal the key once it has been inserted into the write ++ * buffer because that may break recovery ordering. For example, the key may ++ * have already been modified in the active write buffer in a seq that comes ++ * before the current transaction. If we were to journal this key again and ++ * crash, recovery would process updates in the wrong order. ++ */ ++static int ++btree_write_buffered_insert(struct btree_trans *trans, ++ struct btree_write_buffered_key *wb) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, wb->btree, bkey_start_pos(&wb->k.k), ++ BTREE_ITER_CACHED|BTREE_ITER_INTENT); ++ ++ ret = bch2_btree_iter_traverse(&iter) ?: ++ bch2_trans_update_seq(trans, wb->journal_seq, &iter, &wb->k, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int __bch2_btree_write_buffer_flush(struct btree_trans *trans, unsigned commit_flags, ++ bool locked) ++{ ++ struct bch_fs *c = trans->c; ++ struct journal *j = &c->journal; ++ struct btree_write_buffer *wb = &c->btree_write_buffer; ++ struct journal_entry_pin pin; ++ struct btree_write_buffered_key *i, *keys; ++ struct btree_iter iter = { NULL }; ++ size_t nr = 0, skipped = 0, fast = 0, slowpath = 0; ++ bool write_locked = false; ++ union btree_write_buffer_state s; ++ int ret = 0; ++ ++ memset(&pin, 0, sizeof(pin)); ++ ++ if (!locked && !mutex_trylock(&wb->flush_lock)) ++ return 0; ++ ++ bch2_journal_pin_copy(j, &pin, &wb->journal_pin, NULL); ++ bch2_journal_pin_drop(j, &wb->journal_pin); ++ ++ s = btree_write_buffer_switch(wb); ++ keys = wb->keys[s.idx]; ++ nr = s.nr; ++ ++ if (race_fault()) ++ goto slowpath; ++ ++ /* ++ * We first sort so that we can detect and skip redundant updates, and ++ * then we attempt to flush in sorted btree order, as this is most ++ * efficient. ++ * ++ * However, since we're not flushing in the order they appear in the ++ * journal we won't be able to drop our journal pin until everything is ++ * flushed - which means this could deadlock the journal if we weren't ++ * passing BTREE_INSERT_JOURNAL_RECLAIM. This causes the update to fail ++ * if it would block taking a journal reservation. ++ * ++ * If that happens, simply skip the key so we can optimistically insert ++ * as many keys as possible in the fast path. ++ */ ++ sort(keys, nr, sizeof(keys[0]), ++ btree_write_buffered_key_cmp, NULL); ++ ++ for (i = keys; i < keys + nr; i++) { ++ if (i + 1 < keys + nr && ++ i[0].btree == i[1].btree && ++ bpos_eq(i[0].k.k.p, i[1].k.k.p)) { ++ skipped++; ++ i->journal_seq = 0; ++ continue; ++ } ++ ++ if (write_locked && ++ (iter.path->btree_id != i->btree || ++ bpos_gt(i->k.k.p, iter.path->l[0].b->key.k.p))) { ++ bch2_btree_node_unlock_write(trans, iter.path, iter.path->l[0].b); ++ write_locked = false; ++ } ++ ++ if (!iter.path || iter.path->btree_id != i->btree) { ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_iter_init(trans, &iter, i->btree, i->k.k.p, ++ BTREE_ITER_INTENT|BTREE_ITER_ALL_SNAPSHOTS); ++ } ++ ++ bch2_btree_iter_set_pos(&iter, i->k.k.p); ++ iter.path->preserve = false; ++ ++ do { ++ ret = bch2_btree_write_buffer_flush_one(trans, &iter, i, ++ commit_flags, &write_locked, &fast); ++ if (!write_locked) ++ bch2_trans_begin(trans); ++ } while (bch2_err_matches(ret, BCH_ERR_transaction_restart)); ++ ++ if (ret == -BCH_ERR_journal_reclaim_would_deadlock) { ++ slowpath++; ++ continue; ++ } ++ if (ret) ++ break; ++ ++ i->journal_seq = 0; ++ } ++ ++ if (write_locked) ++ bch2_btree_node_unlock_write(trans, iter.path, iter.path->l[0].b); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ trace_write_buffer_flush(trans, nr, skipped, fast, wb->size); ++ ++ if (slowpath) ++ goto slowpath; ++ ++ bch2_fs_fatal_err_on(ret, c, "%s: insert error %s", __func__, bch2_err_str(ret)); ++out: ++ bch2_journal_pin_drop(j, &pin); ++ mutex_unlock(&wb->flush_lock); ++ return ret; ++slowpath: ++ trace_write_buffer_flush_slowpath(trans, i - keys, nr); ++ ++ /* ++ * Now sort the rest by journal seq and bump the journal pin as we go. ++ * The slowpath zapped the seq of keys that were successfully flushed so ++ * we can skip those here. ++ */ ++ sort(keys, nr, sizeof(keys[0]), ++ btree_write_buffered_journal_cmp, ++ NULL); ++ ++ commit_flags &= ~BCH_WATERMARK_MASK; ++ commit_flags |= BCH_WATERMARK_reclaim; ++ ++ for (i = keys; i < keys + nr; i++) { ++ if (!i->journal_seq) ++ continue; ++ ++ if (i->journal_seq > pin.seq) { ++ struct journal_entry_pin pin2; ++ ++ memset(&pin2, 0, sizeof(pin2)); ++ ++ bch2_journal_pin_add(j, i->journal_seq, &pin2, NULL); ++ bch2_journal_pin_drop(j, &pin); ++ bch2_journal_pin_copy(j, &pin, &pin2, NULL); ++ bch2_journal_pin_drop(j, &pin2); ++ } ++ ++ ret = commit_do(trans, NULL, NULL, ++ commit_flags| ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_JOURNAL_RECLAIM, ++ btree_write_buffered_insert(trans, i)); ++ if (bch2_fs_fatal_err_on(ret, c, "%s: insert error %s", __func__, bch2_err_str(ret))) ++ break; ++ } ++ ++ goto out; ++} ++ ++int bch2_btree_write_buffer_flush_sync(struct btree_trans *trans) ++{ ++ bch2_trans_unlock(trans); ++ mutex_lock(&trans->c->btree_write_buffer.flush_lock); ++ return __bch2_btree_write_buffer_flush(trans, 0, true); ++} ++ ++int bch2_btree_write_buffer_flush(struct btree_trans *trans) ++{ ++ return __bch2_btree_write_buffer_flush(trans, 0, false); ++} ++ ++static int bch2_btree_write_buffer_journal_flush(struct journal *j, ++ struct journal_entry_pin *_pin, u64 seq) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct btree_write_buffer *wb = &c->btree_write_buffer; ++ ++ mutex_lock(&wb->flush_lock); ++ ++ return bch2_trans_run(c, ++ __bch2_btree_write_buffer_flush(trans, BTREE_INSERT_NOCHECK_RW, true)); ++} ++ ++static inline u64 btree_write_buffer_ref(int idx) ++{ ++ return ((union btree_write_buffer_state) { ++ .ref0 = idx == 0, ++ .ref1 = idx == 1, ++ }).v; ++} ++ ++int bch2_btree_insert_keys_write_buffer(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_write_buffer *wb = &c->btree_write_buffer; ++ struct btree_write_buffered_key *i; ++ union btree_write_buffer_state old, new; ++ int ret = 0; ++ u64 v; ++ ++ trans_for_each_wb_update(trans, i) { ++ EBUG_ON(i->k.k.u64s > BTREE_WRITE_BUFERED_U64s_MAX); ++ ++ i->journal_seq = trans->journal_res.seq; ++ i->journal_offset = trans->journal_res.offset; ++ } ++ ++ preempt_disable(); ++ v = READ_ONCE(wb->state.v); ++ do { ++ old.v = new.v = v; ++ ++ new.v += btree_write_buffer_ref(new.idx); ++ new.nr += trans->nr_wb_updates; ++ if (new.nr > wb->size) { ++ ret = -BCH_ERR_btree_insert_need_flush_buffer; ++ goto out; ++ } ++ } while ((v = atomic64_cmpxchg_acquire(&wb->state.counter, old.v, new.v)) != old.v); ++ ++ memcpy(wb->keys[new.idx] + old.nr, ++ trans->wb_updates, ++ sizeof(trans->wb_updates[0]) * trans->nr_wb_updates); ++ ++ bch2_journal_pin_add(&c->journal, trans->journal_res.seq, &wb->journal_pin, ++ bch2_btree_write_buffer_journal_flush); ++ ++ atomic64_sub_return_release(btree_write_buffer_ref(new.idx), &wb->state.counter); ++out: ++ preempt_enable(); ++ return ret; ++} ++ ++void bch2_fs_btree_write_buffer_exit(struct bch_fs *c) ++{ ++ struct btree_write_buffer *wb = &c->btree_write_buffer; ++ ++ BUG_ON(wb->state.nr && !bch2_journal_error(&c->journal)); ++ ++ kvfree(wb->keys[1]); ++ kvfree(wb->keys[0]); ++} ++ ++int bch2_fs_btree_write_buffer_init(struct bch_fs *c) ++{ ++ struct btree_write_buffer *wb = &c->btree_write_buffer; ++ ++ mutex_init(&wb->flush_lock); ++ wb->size = c->opts.btree_write_buffer_size; ++ ++ wb->keys[0] = kvmalloc_array(wb->size, sizeof(*wb->keys[0]), GFP_KERNEL); ++ wb->keys[1] = kvmalloc_array(wb->size, sizeof(*wb->keys[1]), GFP_KERNEL); ++ if (!wb->keys[0] || !wb->keys[1]) ++ return -BCH_ERR_ENOMEM_fs_btree_write_buffer_init; ++ ++ return 0; ++} +diff --git a/fs/bcachefs/btree_write_buffer.h b/fs/bcachefs/btree_write_buffer.h +new file mode 100644 +index 000000000000..322df1c8304e +--- /dev/null ++++ b/fs/bcachefs/btree_write_buffer.h +@@ -0,0 +1,14 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_WRITE_BUFFER_H ++#define _BCACHEFS_BTREE_WRITE_BUFFER_H ++ ++int __bch2_btree_write_buffer_flush(struct btree_trans *, unsigned, bool); ++int bch2_btree_write_buffer_flush_sync(struct btree_trans *); ++int bch2_btree_write_buffer_flush(struct btree_trans *); ++ ++int bch2_btree_insert_keys_write_buffer(struct btree_trans *); ++ ++void bch2_fs_btree_write_buffer_exit(struct bch_fs *); ++int bch2_fs_btree_write_buffer_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_BTREE_WRITE_BUFFER_H */ +diff --git a/fs/bcachefs/btree_write_buffer_types.h b/fs/bcachefs/btree_write_buffer_types.h +new file mode 100644 +index 000000000000..99993ba77aea +--- /dev/null ++++ b/fs/bcachefs/btree_write_buffer_types.h +@@ -0,0 +1,44 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_BTREE_WRITE_BUFFER_TYPES_H ++#define _BCACHEFS_BTREE_WRITE_BUFFER_TYPES_H ++ ++#include "journal_types.h" ++ ++#define BTREE_WRITE_BUFERED_VAL_U64s_MAX 4 ++#define BTREE_WRITE_BUFERED_U64s_MAX (BKEY_U64s + BTREE_WRITE_BUFERED_VAL_U64s_MAX) ++ ++struct btree_write_buffered_key { ++ u64 journal_seq; ++ unsigned journal_offset; ++ enum btree_id btree; ++ __BKEY_PADDED(k, BTREE_WRITE_BUFERED_VAL_U64s_MAX); ++}; ++ ++union btree_write_buffer_state { ++ struct { ++ atomic64_t counter; ++ }; ++ ++ struct { ++ u64 v; ++ }; ++ ++ struct { ++ u64 nr:23; ++ u64 idx:1; ++ u64 ref0:20; ++ u64 ref1:20; ++ }; ++}; ++ ++struct btree_write_buffer { ++ struct mutex flush_lock; ++ struct journal_entry_pin journal_pin; ++ ++ union btree_write_buffer_state state; ++ size_t size; ++ ++ struct btree_write_buffered_key *keys[2]; ++}; ++ ++#endif /* _BCACHEFS_BTREE_WRITE_BUFFER_TYPES_H */ +diff --git a/fs/bcachefs/buckets.c b/fs/bcachefs/buckets.c +new file mode 100644 +index 000000000000..a1a4b5feadaa +--- /dev/null ++++ b/fs/bcachefs/buckets.c +@@ -0,0 +1,2106 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Code for manipulating bucket marks for garbage collection. ++ * ++ * Copyright 2014 Datera, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "backpointers.h" ++#include "bset.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "buckets_waiting_for_journal.h" ++#include "ec.h" ++#include "error.h" ++#include "inode.h" ++#include "movinggc.h" ++#include "recovery.h" ++#include "reflink.h" ++#include "replicas.h" ++#include "subvolume.h" ++#include "trace.h" ++ ++#include ++ ++static inline void fs_usage_data_type_to_base(struct bch_fs_usage *fs_usage, ++ enum bch_data_type data_type, ++ s64 sectors) ++{ ++ switch (data_type) { ++ case BCH_DATA_btree: ++ fs_usage->btree += sectors; ++ break; ++ case BCH_DATA_user: ++ case BCH_DATA_parity: ++ fs_usage->data += sectors; ++ break; ++ case BCH_DATA_cached: ++ fs_usage->cached += sectors; ++ break; ++ default: ++ break; ++ } ++} ++ ++void bch2_fs_usage_initialize(struct bch_fs *c) ++{ ++ struct bch_fs_usage *usage; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ percpu_down_write(&c->mark_lock); ++ usage = c->usage_base; ++ ++ for (i = 0; i < ARRAY_SIZE(c->usage); i++) ++ bch2_fs_usage_acc_to_base(c, i); ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) ++ usage->reserved += usage->persistent_reserved[i]; ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ fs_usage_data_type_to_base(usage, e->data_type, usage->replicas[i]); ++ } ++ ++ for_each_member_device(ca, c, i) { ++ struct bch_dev_usage dev = bch2_dev_usage_read(ca); ++ ++ usage->hidden += (dev.d[BCH_DATA_sb].buckets + ++ dev.d[BCH_DATA_journal].buckets) * ++ ca->mi.bucket_size; ++ } ++ ++ percpu_up_write(&c->mark_lock); ++} ++ ++static inline struct bch_dev_usage *dev_usage_ptr(struct bch_dev *ca, ++ unsigned journal_seq, ++ bool gc) ++{ ++ BUG_ON(!gc && !journal_seq); ++ ++ return this_cpu_ptr(gc ++ ? ca->usage_gc ++ : ca->usage[journal_seq & JOURNAL_BUF_MASK]); ++} ++ ++void bch2_dev_usage_read_fast(struct bch_dev *ca, struct bch_dev_usage *usage) ++{ ++ struct bch_fs *c = ca->fs; ++ unsigned seq, i, u64s = dev_usage_u64s(); ++ ++ do { ++ seq = read_seqcount_begin(&c->usage_lock); ++ memcpy(usage, ca->usage_base, u64s * sizeof(u64)); ++ for (i = 0; i < ARRAY_SIZE(ca->usage); i++) ++ acc_u64s_percpu((u64 *) usage, (u64 __percpu *) ca->usage[i], u64s); ++ } while (read_seqcount_retry(&c->usage_lock, seq)); ++} ++ ++u64 bch2_fs_usage_read_one(struct bch_fs *c, u64 *v) ++{ ++ ssize_t offset = v - (u64 *) c->usage_base; ++ unsigned i, seq; ++ u64 ret; ++ ++ BUG_ON(offset < 0 || offset >= fs_usage_u64s(c)); ++ percpu_rwsem_assert_held(&c->mark_lock); ++ ++ do { ++ seq = read_seqcount_begin(&c->usage_lock); ++ ret = *v; ++ ++ for (i = 0; i < ARRAY_SIZE(c->usage); i++) ++ ret += percpu_u64_get((u64 __percpu *) c->usage[i] + offset); ++ } while (read_seqcount_retry(&c->usage_lock, seq)); ++ ++ return ret; ++} ++ ++struct bch_fs_usage_online *bch2_fs_usage_read(struct bch_fs *c) ++{ ++ struct bch_fs_usage_online *ret; ++ unsigned nr_replicas = READ_ONCE(c->replicas.nr); ++ unsigned seq, i; ++retry: ++ ret = kmalloc(__fs_usage_online_u64s(nr_replicas) * sizeof(u64), GFP_KERNEL); ++ if (unlikely(!ret)) ++ return NULL; ++ ++ percpu_down_read(&c->mark_lock); ++ ++ if (nr_replicas != c->replicas.nr) { ++ nr_replicas = c->replicas.nr; ++ percpu_up_read(&c->mark_lock); ++ kfree(ret); ++ goto retry; ++ } ++ ++ ret->online_reserved = percpu_u64_get(c->online_reserved); ++ ++ do { ++ seq = read_seqcount_begin(&c->usage_lock); ++ unsafe_memcpy(&ret->u, c->usage_base, ++ __fs_usage_u64s(nr_replicas) * sizeof(u64), ++ "embedded variable length struct"); ++ for (i = 0; i < ARRAY_SIZE(c->usage); i++) ++ acc_u64s_percpu((u64 *) &ret->u, (u64 __percpu *) c->usage[i], ++ __fs_usage_u64s(nr_replicas)); ++ } while (read_seqcount_retry(&c->usage_lock, seq)); ++ ++ return ret; ++} ++ ++void bch2_fs_usage_acc_to_base(struct bch_fs *c, unsigned idx) ++{ ++ struct bch_dev *ca; ++ unsigned i, u64s = fs_usage_u64s(c); ++ ++ BUG_ON(idx >= ARRAY_SIZE(c->usage)); ++ ++ preempt_disable(); ++ write_seqcount_begin(&c->usage_lock); ++ ++ acc_u64s_percpu((u64 *) c->usage_base, ++ (u64 __percpu *) c->usage[idx], u64s); ++ percpu_memset(c->usage[idx], 0, u64s * sizeof(u64)); ++ ++ rcu_read_lock(); ++ for_each_member_device_rcu(ca, c, i, NULL) { ++ u64s = dev_usage_u64s(); ++ ++ acc_u64s_percpu((u64 *) ca->usage_base, ++ (u64 __percpu *) ca->usage[idx], u64s); ++ percpu_memset(ca->usage[idx], 0, u64s * sizeof(u64)); ++ } ++ rcu_read_unlock(); ++ ++ write_seqcount_end(&c->usage_lock); ++ preempt_enable(); ++} ++ ++void bch2_fs_usage_to_text(struct printbuf *out, ++ struct bch_fs *c, ++ struct bch_fs_usage_online *fs_usage) ++{ ++ unsigned i; ++ ++ prt_printf(out, "capacity:\t\t\t%llu\n", c->capacity); ++ ++ prt_printf(out, "hidden:\t\t\t\t%llu\n", ++ fs_usage->u.hidden); ++ prt_printf(out, "data:\t\t\t\t%llu\n", ++ fs_usage->u.data); ++ prt_printf(out, "cached:\t\t\t\t%llu\n", ++ fs_usage->u.cached); ++ prt_printf(out, "reserved:\t\t\t%llu\n", ++ fs_usage->u.reserved); ++ prt_printf(out, "nr_inodes:\t\t\t%llu\n", ++ fs_usage->u.nr_inodes); ++ prt_printf(out, "online reserved:\t\t%llu\n", ++ fs_usage->online_reserved); ++ ++ for (i = 0; ++ i < ARRAY_SIZE(fs_usage->u.persistent_reserved); ++ i++) { ++ prt_printf(out, "%u replicas:\n", i + 1); ++ prt_printf(out, "\treserved:\t\t%llu\n", ++ fs_usage->u.persistent_reserved[i]); ++ } ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ prt_printf(out, "\t"); ++ bch2_replicas_entry_to_text(out, e); ++ prt_printf(out, ":\t%llu\n", fs_usage->u.replicas[i]); ++ } ++} ++ ++static u64 reserve_factor(u64 r) ++{ ++ return r + (round_up(r, (1 << RESERVE_FACTOR)) >> RESERVE_FACTOR); ++} ++ ++u64 bch2_fs_sectors_used(struct bch_fs *c, struct bch_fs_usage_online *fs_usage) ++{ ++ return min(fs_usage->u.hidden + ++ fs_usage->u.btree + ++ fs_usage->u.data + ++ reserve_factor(fs_usage->u.reserved + ++ fs_usage->online_reserved), ++ c->capacity); ++} ++ ++static struct bch_fs_usage_short ++__bch2_fs_usage_read_short(struct bch_fs *c) ++{ ++ struct bch_fs_usage_short ret; ++ u64 data, reserved; ++ ++ ret.capacity = c->capacity - ++ bch2_fs_usage_read_one(c, &c->usage_base->hidden); ++ ++ data = bch2_fs_usage_read_one(c, &c->usage_base->data) + ++ bch2_fs_usage_read_one(c, &c->usage_base->btree); ++ reserved = bch2_fs_usage_read_one(c, &c->usage_base->reserved) + ++ percpu_u64_get(c->online_reserved); ++ ++ ret.used = min(ret.capacity, data + reserve_factor(reserved)); ++ ret.free = ret.capacity - ret.used; ++ ++ ret.nr_inodes = bch2_fs_usage_read_one(c, &c->usage_base->nr_inodes); ++ ++ return ret; ++} ++ ++struct bch_fs_usage_short ++bch2_fs_usage_read_short(struct bch_fs *c) ++{ ++ struct bch_fs_usage_short ret; ++ ++ percpu_down_read(&c->mark_lock); ++ ret = __bch2_fs_usage_read_short(c); ++ percpu_up_read(&c->mark_lock); ++ ++ return ret; ++} ++ ++void bch2_dev_usage_init(struct bch_dev *ca) ++{ ++ ca->usage_base->d[BCH_DATA_free].buckets = ca->mi.nbuckets - ca->mi.first_bucket; ++} ++ ++static inline int bucket_sectors_fragmented(struct bch_dev *ca, ++ struct bch_alloc_v4 a) ++{ ++ return a.dirty_sectors ++ ? max(0, (int) ca->mi.bucket_size - (int) a.dirty_sectors) ++ : 0; ++} ++ ++static void bch2_dev_usage_update(struct bch_fs *c, struct bch_dev *ca, ++ struct bch_alloc_v4 old, ++ struct bch_alloc_v4 new, ++ u64 journal_seq, bool gc) ++{ ++ struct bch_fs_usage *fs_usage; ++ struct bch_dev_usage *u; ++ ++ preempt_disable(); ++ fs_usage = fs_usage_ptr(c, journal_seq, gc); ++ ++ if (data_type_is_hidden(old.data_type)) ++ fs_usage->hidden -= ca->mi.bucket_size; ++ if (data_type_is_hidden(new.data_type)) ++ fs_usage->hidden += ca->mi.bucket_size; ++ ++ u = dev_usage_ptr(ca, journal_seq, gc); ++ ++ u->d[old.data_type].buckets--; ++ u->d[new.data_type].buckets++; ++ ++ u->buckets_ec -= (int) !!old.stripe; ++ u->buckets_ec += (int) !!new.stripe; ++ ++ u->d[old.data_type].sectors -= old.dirty_sectors; ++ u->d[new.data_type].sectors += new.dirty_sectors; ++ ++ u->d[BCH_DATA_cached].sectors += new.cached_sectors; ++ u->d[BCH_DATA_cached].sectors -= old.cached_sectors; ++ ++ u->d[old.data_type].fragmented -= bucket_sectors_fragmented(ca, old); ++ u->d[new.data_type].fragmented += bucket_sectors_fragmented(ca, new); ++ ++ preempt_enable(); ++} ++ ++static void bch2_dev_usage_update_m(struct bch_fs *c, struct bch_dev *ca, ++ struct bucket old, struct bucket new, ++ u64 journal_seq, bool gc) ++{ ++ struct bch_alloc_v4 old_a = { ++ .gen = old.gen, ++ .data_type = old.data_type, ++ .dirty_sectors = old.dirty_sectors, ++ .cached_sectors = old.cached_sectors, ++ .stripe = old.stripe, ++ }; ++ struct bch_alloc_v4 new_a = { ++ .gen = new.gen, ++ .data_type = new.data_type, ++ .dirty_sectors = new.dirty_sectors, ++ .cached_sectors = new.cached_sectors, ++ .stripe = new.stripe, ++ }; ++ ++ bch2_dev_usage_update(c, ca, old_a, new_a, journal_seq, gc); ++} ++ ++static inline int __update_replicas(struct bch_fs *c, ++ struct bch_fs_usage *fs_usage, ++ struct bch_replicas_entry *r, ++ s64 sectors) ++{ ++ int idx = bch2_replicas_entry_idx(c, r); ++ ++ if (idx < 0) ++ return -1; ++ ++ fs_usage_data_type_to_base(fs_usage, r->data_type, sectors); ++ fs_usage->replicas[idx] += sectors; ++ return 0; ++} ++ ++static inline int update_replicas(struct bch_fs *c, struct bkey_s_c k, ++ struct bch_replicas_entry *r, s64 sectors, ++ unsigned journal_seq, bool gc) ++{ ++ struct bch_fs_usage *fs_usage; ++ int idx, ret = 0; ++ struct printbuf buf = PRINTBUF; ++ ++ percpu_down_read(&c->mark_lock); ++ ++ idx = bch2_replicas_entry_idx(c, r); ++ if (idx < 0 && ++ fsck_err(c, "no replicas entry\n" ++ " while marking %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ percpu_up_read(&c->mark_lock); ++ ret = bch2_mark_replicas(c, r); ++ percpu_down_read(&c->mark_lock); ++ ++ if (ret) ++ goto err; ++ idx = bch2_replicas_entry_idx(c, r); ++ } ++ if (idx < 0) { ++ ret = -1; ++ goto err; ++ } ++ ++ preempt_disable(); ++ fs_usage = fs_usage_ptr(c, journal_seq, gc); ++ fs_usage_data_type_to_base(fs_usage, r->data_type, sectors); ++ fs_usage->replicas[idx] += sectors; ++ preempt_enable(); ++err: ++fsck_err: ++ percpu_up_read(&c->mark_lock); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static inline int update_cached_sectors(struct bch_fs *c, ++ struct bkey_s_c k, ++ unsigned dev, s64 sectors, ++ unsigned journal_seq, bool gc) ++{ ++ struct bch_replicas_padded r; ++ ++ bch2_replicas_entry_cached(&r.e, dev); ++ ++ return update_replicas(c, k, &r.e, sectors, journal_seq, gc); ++} ++ ++static int __replicas_deltas_realloc(struct btree_trans *trans, unsigned more, ++ gfp_t gfp) ++{ ++ struct replicas_delta_list *d = trans->fs_usage_deltas; ++ unsigned new_size = d ? (d->size + more) * 2 : 128; ++ unsigned alloc_size = sizeof(*d) + new_size; ++ ++ WARN_ON_ONCE(alloc_size > REPLICAS_DELTA_LIST_MAX); ++ ++ if (!d || d->used + more > d->size) { ++ d = krealloc(d, alloc_size, gfp|__GFP_ZERO); ++ ++ if (unlikely(!d)) { ++ if (alloc_size > REPLICAS_DELTA_LIST_MAX) ++ return -ENOMEM; ++ ++ d = mempool_alloc(&trans->c->replicas_delta_pool, gfp); ++ if (!d) ++ return -ENOMEM; ++ ++ memset(d, 0, REPLICAS_DELTA_LIST_MAX); ++ ++ if (trans->fs_usage_deltas) ++ memcpy(d, trans->fs_usage_deltas, ++ trans->fs_usage_deltas->size + sizeof(*d)); ++ ++ new_size = REPLICAS_DELTA_LIST_MAX - sizeof(*d); ++ kfree(trans->fs_usage_deltas); ++ } ++ ++ d->size = new_size; ++ trans->fs_usage_deltas = d; ++ } ++ ++ return 0; ++} ++ ++int bch2_replicas_deltas_realloc(struct btree_trans *trans, unsigned more) ++{ ++ return allocate_dropping_locks_errcode(trans, ++ __replicas_deltas_realloc(trans, more, _gfp)); ++} ++ ++static inline int update_replicas_list(struct btree_trans *trans, ++ struct bch_replicas_entry *r, ++ s64 sectors) ++{ ++ struct replicas_delta_list *d; ++ struct replicas_delta *n; ++ unsigned b; ++ int ret; ++ ++ if (!sectors) ++ return 0; ++ ++ b = replicas_entry_bytes(r) + 8; ++ ret = bch2_replicas_deltas_realloc(trans, b); ++ if (ret) ++ return ret; ++ ++ d = trans->fs_usage_deltas; ++ n = (void *) d->d + d->used; ++ n->delta = sectors; ++ unsafe_memcpy((void *) n + offsetof(struct replicas_delta, r), ++ r, replicas_entry_bytes(r), ++ "flexible array member embedded in strcuct with padding"); ++ bch2_replicas_entry_sort(&n->r); ++ d->used += b; ++ return 0; ++} ++ ++static inline int update_cached_sectors_list(struct btree_trans *trans, ++ unsigned dev, s64 sectors) ++{ ++ struct bch_replicas_padded r; ++ ++ bch2_replicas_entry_cached(&r.e, dev); ++ ++ return update_replicas_list(trans, &r.e, sectors); ++} ++ ++int bch2_mark_alloc(struct btree_trans *trans, ++ enum btree_id btree, unsigned level, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned flags) ++{ ++ bool gc = flags & BTREE_TRIGGER_GC; ++ u64 journal_seq = trans->journal_res.seq; ++ u64 bucket_journal_seq; ++ struct bch_fs *c = trans->c; ++ struct bch_alloc_v4 old_a_convert, new_a_convert; ++ const struct bch_alloc_v4 *old_a, *new_a; ++ struct bch_dev *ca; ++ int ret = 0; ++ ++ /* ++ * alloc btree is read in by bch2_alloc_read, not gc: ++ */ ++ if ((flags & BTREE_TRIGGER_GC) && ++ !(flags & BTREE_TRIGGER_BUCKET_INVALIDATE)) ++ return 0; ++ ++ if (bch2_trans_inconsistent_on(!bch2_dev_bucket_exists(c, new.k->p), trans, ++ "alloc key for invalid device or bucket")) ++ return -EIO; ++ ++ ca = bch_dev_bkey_exists(c, new.k->p.inode); ++ ++ old_a = bch2_alloc_to_v4(old, &old_a_convert); ++ new_a = bch2_alloc_to_v4(new, &new_a_convert); ++ ++ bucket_journal_seq = new_a->journal_seq; ++ ++ if ((flags & BTREE_TRIGGER_INSERT) && ++ data_type_is_empty(old_a->data_type) != ++ data_type_is_empty(new_a->data_type) && ++ new.k->type == KEY_TYPE_alloc_v4) { ++ struct bch_alloc_v4 *v = (struct bch_alloc_v4 *) new.v; ++ ++ EBUG_ON(!journal_seq); ++ ++ /* ++ * If the btree updates referring to a bucket weren't flushed ++ * before the bucket became empty again, then the we don't have ++ * to wait on a journal flush before we can reuse the bucket: ++ */ ++ v->journal_seq = bucket_journal_seq = ++ data_type_is_empty(new_a->data_type) && ++ (journal_seq == v->journal_seq || ++ bch2_journal_noflush_seq(&c->journal, v->journal_seq)) ++ ? 0 : journal_seq; ++ } ++ ++ if (!data_type_is_empty(old_a->data_type) && ++ data_type_is_empty(new_a->data_type) && ++ bucket_journal_seq) { ++ ret = bch2_set_bucket_needs_journal_commit(&c->buckets_waiting_for_journal, ++ c->journal.flushed_seq_ondisk, ++ new.k->p.inode, new.k->p.offset, ++ bucket_journal_seq); ++ if (ret) { ++ bch2_fs_fatal_error(c, ++ "error setting bucket_needs_journal_commit: %i", ret); ++ return ret; ++ } ++ } ++ ++ percpu_down_read(&c->mark_lock); ++ if (!gc && new_a->gen != old_a->gen) ++ *bucket_gen(ca, new.k->p.offset) = new_a->gen; ++ ++ bch2_dev_usage_update(c, ca, *old_a, *new_a, journal_seq, gc); ++ ++ if (gc) { ++ struct bucket *g = gc_bucket(ca, new.k->p.offset); ++ ++ bucket_lock(g); ++ ++ g->gen_valid = 1; ++ g->gen = new_a->gen; ++ g->data_type = new_a->data_type; ++ g->stripe = new_a->stripe; ++ g->stripe_redundancy = new_a->stripe_redundancy; ++ g->dirty_sectors = new_a->dirty_sectors; ++ g->cached_sectors = new_a->cached_sectors; ++ ++ bucket_unlock(g); ++ } ++ percpu_up_read(&c->mark_lock); ++ ++ /* ++ * need to know if we're getting called from the invalidate path or ++ * not: ++ */ ++ ++ if ((flags & BTREE_TRIGGER_BUCKET_INVALIDATE) && ++ old_a->cached_sectors) { ++ ret = update_cached_sectors(c, new, ca->dev_idx, ++ -((s64) old_a->cached_sectors), ++ journal_seq, gc); ++ if (ret) { ++ bch2_fs_fatal_error(c, "%s(): no replicas entry while updating cached sectors", ++ __func__); ++ return ret; ++ } ++ } ++ ++ if (new_a->data_type == BCH_DATA_free && ++ (!new_a->journal_seq || new_a->journal_seq < c->journal.flushed_seq_ondisk)) ++ closure_wake_up(&c->freelist_wait); ++ ++ if (new_a->data_type == BCH_DATA_need_discard && ++ (!bucket_journal_seq || bucket_journal_seq < c->journal.flushed_seq_ondisk)) ++ bch2_do_discards(c); ++ ++ if (old_a->data_type != BCH_DATA_cached && ++ new_a->data_type == BCH_DATA_cached && ++ should_invalidate_buckets(ca, bch2_dev_usage_read(ca))) ++ bch2_do_invalidates(c); ++ ++ if (new_a->data_type == BCH_DATA_need_gc_gens) ++ bch2_do_gc_gens(c); ++ ++ return 0; ++} ++ ++int bch2_mark_metadata_bucket(struct bch_fs *c, struct bch_dev *ca, ++ size_t b, enum bch_data_type data_type, ++ unsigned sectors, struct gc_pos pos, ++ unsigned flags) ++{ ++ struct bucket old, new, *g; ++ int ret = 0; ++ ++ BUG_ON(!(flags & BTREE_TRIGGER_GC)); ++ BUG_ON(data_type != BCH_DATA_sb && ++ data_type != BCH_DATA_journal); ++ ++ /* ++ * Backup superblock might be past the end of our normal usable space: ++ */ ++ if (b >= ca->mi.nbuckets) ++ return 0; ++ ++ percpu_down_read(&c->mark_lock); ++ g = gc_bucket(ca, b); ++ ++ bucket_lock(g); ++ old = *g; ++ ++ if (bch2_fs_inconsistent_on(g->data_type && ++ g->data_type != data_type, c, ++ "different types of data in same bucket: %s, %s", ++ bch2_data_types[g->data_type], ++ bch2_data_types[data_type])) { ++ ret = -EIO; ++ goto err; ++ } ++ ++ if (bch2_fs_inconsistent_on((u64) g->dirty_sectors + sectors > ca->mi.bucket_size, c, ++ "bucket %u:%zu gen %u data type %s sector count overflow: %u + %u > bucket size", ++ ca->dev_idx, b, g->gen, ++ bch2_data_types[g->data_type ?: data_type], ++ g->dirty_sectors, sectors)) { ++ ret = -EIO; ++ goto err; ++ } ++ ++ ++ g->data_type = data_type; ++ g->dirty_sectors += sectors; ++ new = *g; ++err: ++ bucket_unlock(g); ++ if (!ret) ++ bch2_dev_usage_update_m(c, ca, old, new, 0, true); ++ percpu_up_read(&c->mark_lock); ++ return ret; ++} ++ ++static int check_bucket_ref(struct btree_trans *trans, ++ struct bkey_s_c k, ++ const struct bch_extent_ptr *ptr, ++ s64 sectors, enum bch_data_type ptr_data_type, ++ u8 b_gen, u8 bucket_data_type, ++ u32 dirty_sectors, u32 cached_sectors) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ size_t bucket_nr = PTR_BUCKET_NR(ca, ptr); ++ u32 bucket_sectors = !ptr->cached ++ ? dirty_sectors ++ : cached_sectors; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ if (bucket_data_type == BCH_DATA_cached) ++ bucket_data_type = BCH_DATA_user; ++ ++ if ((bucket_data_type == BCH_DATA_stripe && ptr_data_type == BCH_DATA_user) || ++ (bucket_data_type == BCH_DATA_user && ptr_data_type == BCH_DATA_stripe)) ++ bucket_data_type = ptr_data_type = BCH_DATA_stripe; ++ ++ if (gen_after(ptr->gen, b_gen)) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u data type %s: ptr gen %u newer than bucket gen\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, b_gen, ++ bch2_data_types[bucket_data_type ?: ptr_data_type], ++ ptr->gen, ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ ret = -EIO; ++ goto err; ++ } ++ ++ if (gen_cmp(b_gen, ptr->gen) > BUCKET_GC_GEN_MAX) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u data type %s: ptr gen %u too stale\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, b_gen, ++ bch2_data_types[bucket_data_type ?: ptr_data_type], ++ ptr->gen, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ ret = -EIO; ++ goto err; ++ } ++ ++ if (b_gen != ptr->gen && !ptr->cached) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u (mem gen %u) data type %s: stale dirty ptr (gen %u)\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, b_gen, ++ *bucket_gen(ca, bucket_nr), ++ bch2_data_types[bucket_data_type ?: ptr_data_type], ++ ptr->gen, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ ret = -EIO; ++ goto err; ++ } ++ ++ if (b_gen != ptr->gen) { ++ ret = 1; ++ goto out; ++ } ++ ++ if (!data_type_is_empty(bucket_data_type) && ++ ptr_data_type && ++ bucket_data_type != ptr_data_type) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u different types of data in same bucket: %s, %s\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, b_gen, ++ bch2_data_types[bucket_data_type], ++ bch2_data_types[ptr_data_type], ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ ret = -EIO; ++ goto err; ++ } ++ ++ if ((u64) bucket_sectors + sectors > U32_MAX) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %u:%zu gen %u data type %s sector count overflow: %u + %lli > U32_MAX\n" ++ "while marking %s", ++ ptr->dev, bucket_nr, b_gen, ++ bch2_data_types[bucket_data_type ?: ptr_data_type], ++ bucket_sectors, sectors, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ ret = -EIO; ++ goto err; ++ } ++out: ++ printbuf_exit(&buf); ++ return ret; ++err: ++ bch2_dump_trans_updates(trans); ++ goto out; ++} ++ ++static int mark_stripe_bucket(struct btree_trans *trans, ++ struct bkey_s_c k, ++ unsigned ptr_idx, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ u64 journal_seq = trans->journal_res.seq; ++ const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; ++ unsigned nr_data = s->nr_blocks - s->nr_redundant; ++ bool parity = ptr_idx >= nr_data; ++ enum bch_data_type data_type = parity ? BCH_DATA_parity : BCH_DATA_stripe; ++ s64 sectors = parity ? le16_to_cpu(s->sectors) : 0; ++ const struct bch_extent_ptr *ptr = s->ptrs + ptr_idx; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ struct bucket old, new, *g; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ BUG_ON(!(flags & BTREE_TRIGGER_GC)); ++ ++ /* * XXX doesn't handle deletion */ ++ ++ percpu_down_read(&c->mark_lock); ++ g = PTR_GC_BUCKET(ca, ptr); ++ ++ if (g->dirty_sectors || ++ (g->stripe && g->stripe != k.k->p.offset)) { ++ bch2_fs_inconsistent(c, ++ "bucket %u:%zu gen %u: multiple stripes using same bucket\n%s", ++ ptr->dev, PTR_BUCKET_NR(ca, ptr), g->gen, ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ bucket_lock(g); ++ old = *g; ++ ++ ret = check_bucket_ref(trans, k, ptr, sectors, data_type, ++ g->gen, g->data_type, ++ g->dirty_sectors, g->cached_sectors); ++ if (ret) ++ goto err; ++ ++ g->data_type = data_type; ++ g->dirty_sectors += sectors; ++ ++ g->stripe = k.k->p.offset; ++ g->stripe_redundancy = s->nr_redundant; ++ new = *g; ++err: ++ bucket_unlock(g); ++ if (!ret) ++ bch2_dev_usage_update_m(c, ca, old, new, journal_seq, true); ++ percpu_up_read(&c->mark_lock); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int __mark_pointer(struct btree_trans *trans, ++ struct bkey_s_c k, ++ const struct bch_extent_ptr *ptr, ++ s64 sectors, enum bch_data_type ptr_data_type, ++ u8 bucket_gen, u8 *bucket_data_type, ++ u32 *dirty_sectors, u32 *cached_sectors) ++{ ++ u32 *dst_sectors = !ptr->cached ++ ? dirty_sectors ++ : cached_sectors; ++ int ret = check_bucket_ref(trans, k, ptr, sectors, ptr_data_type, ++ bucket_gen, *bucket_data_type, ++ *dirty_sectors, *cached_sectors); ++ ++ if (ret) ++ return ret; ++ ++ *dst_sectors += sectors; ++ *bucket_data_type = *dirty_sectors || *cached_sectors ++ ? ptr_data_type : 0; ++ return 0; ++} ++ ++static int bch2_mark_pointer(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c k, ++ struct extent_ptr_decoded p, ++ s64 sectors, ++ unsigned flags) ++{ ++ u64 journal_seq = trans->journal_res.seq; ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, p.ptr.dev); ++ struct bucket old, new, *g; ++ enum bch_data_type data_type = bkey_ptr_data_type(btree_id, level, k, p); ++ u8 bucket_data_type; ++ int ret = 0; ++ ++ BUG_ON(!(flags & BTREE_TRIGGER_GC)); ++ ++ percpu_down_read(&c->mark_lock); ++ g = PTR_GC_BUCKET(ca, &p.ptr); ++ bucket_lock(g); ++ old = *g; ++ ++ bucket_data_type = g->data_type; ++ ret = __mark_pointer(trans, k, &p.ptr, sectors, ++ data_type, g->gen, ++ &bucket_data_type, ++ &g->dirty_sectors, ++ &g->cached_sectors); ++ if (!ret) ++ g->data_type = bucket_data_type; ++ ++ new = *g; ++ bucket_unlock(g); ++ if (!ret) ++ bch2_dev_usage_update_m(c, ca, old, new, journal_seq, true); ++ percpu_up_read(&c->mark_lock); ++ ++ return ret; ++} ++ ++static int bch2_mark_stripe_ptr(struct btree_trans *trans, ++ struct bkey_s_c k, ++ struct bch_extent_stripe_ptr p, ++ enum bch_data_type data_type, ++ s64 sectors, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_replicas_padded r; ++ struct gc_stripe *m; ++ ++ BUG_ON(!(flags & BTREE_TRIGGER_GC)); ++ ++ m = genradix_ptr_alloc(&c->gc_stripes, p.idx, GFP_KERNEL); ++ if (!m) { ++ bch_err(c, "error allocating memory for gc_stripes, idx %llu", ++ (u64) p.idx); ++ return -BCH_ERR_ENOMEM_mark_stripe_ptr; ++ } ++ ++ mutex_lock(&c->ec_stripes_heap_lock); ++ ++ if (!m || !m->alive) { ++ mutex_unlock(&c->ec_stripes_heap_lock); ++ bch_err_ratelimited(c, "pointer to nonexistent stripe %llu", ++ (u64) p.idx); ++ bch2_inconsistent_error(c); ++ return -EIO; ++ } ++ ++ m->block_sectors[p.block] += sectors; ++ ++ r = m->r; ++ mutex_unlock(&c->ec_stripes_heap_lock); ++ ++ r.e.data_type = data_type; ++ update_replicas(c, k, &r.e, sectors, trans->journal_res.seq, true); ++ ++ return 0; ++} ++ ++int bch2_mark_extent(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned flags) ++{ ++ u64 journal_seq = trans->journal_res.seq; ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old : new; ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ struct bch_replicas_padded r; ++ enum bch_data_type data_type = bkey_is_btree_ptr(k.k) ++ ? BCH_DATA_btree ++ : BCH_DATA_user; ++ s64 sectors = bkey_is_btree_ptr(k.k) ++ ? btree_sectors(c) ++ : k.k->size; ++ s64 dirty_sectors = 0; ++ bool stale; ++ int ret; ++ ++ BUG_ON(!(flags & BTREE_TRIGGER_GC)); ++ ++ r.e.data_type = data_type; ++ r.e.nr_devs = 0; ++ r.e.nr_required = 1; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ s64 disk_sectors = ptr_disk_sectors(sectors, p); ++ ++ if (flags & BTREE_TRIGGER_OVERWRITE) ++ disk_sectors = -disk_sectors; ++ ++ ret = bch2_mark_pointer(trans, btree_id, level, k, p, disk_sectors, flags); ++ if (ret < 0) ++ return ret; ++ ++ stale = ret > 0; ++ ++ if (p.ptr.cached) { ++ if (!stale) { ++ ret = update_cached_sectors(c, k, p.ptr.dev, ++ disk_sectors, journal_seq, true); ++ if (ret) { ++ bch2_fs_fatal_error(c, "%s(): no replicas entry while updating cached sectors", ++ __func__); ++ return ret; ++ } ++ } ++ } else if (!p.has_ec) { ++ dirty_sectors += disk_sectors; ++ r.e.devs[r.e.nr_devs++] = p.ptr.dev; ++ } else { ++ ret = bch2_mark_stripe_ptr(trans, k, p.ec, data_type, ++ disk_sectors, flags); ++ if (ret) ++ return ret; ++ ++ /* ++ * There may be other dirty pointers in this extent, but ++ * if so they're not required for mounting if we have an ++ * erasure coded pointer in this extent: ++ */ ++ r.e.nr_required = 0; ++ } ++ } ++ ++ if (r.e.nr_devs) { ++ ret = update_replicas(c, k, &r.e, dirty_sectors, journal_seq, true); ++ if (ret) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, k); ++ bch2_fs_fatal_error(c, "%s(): no replicas entry for %s", __func__, buf.buf); ++ printbuf_exit(&buf); ++ return ret; ++ } ++ } ++ ++ return 0; ++} ++ ++int bch2_mark_stripe(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned flags) ++{ ++ bool gc = flags & BTREE_TRIGGER_GC; ++ u64 journal_seq = trans->journal_res.seq; ++ struct bch_fs *c = trans->c; ++ u64 idx = new.k->p.offset; ++ const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe ++ ? bkey_s_c_to_stripe(old).v : NULL; ++ const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe ++ ? bkey_s_c_to_stripe(new).v : NULL; ++ unsigned i; ++ int ret; ++ ++ BUG_ON(gc && old_s); ++ ++ if (!gc) { ++ struct stripe *m = genradix_ptr(&c->stripes, idx); ++ ++ if (!m) { ++ struct printbuf buf1 = PRINTBUF; ++ struct printbuf buf2 = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf1, c, old); ++ bch2_bkey_val_to_text(&buf2, c, new); ++ bch_err_ratelimited(c, "error marking nonexistent stripe %llu while marking\n" ++ "old %s\n" ++ "new %s", idx, buf1.buf, buf2.buf); ++ printbuf_exit(&buf2); ++ printbuf_exit(&buf1); ++ bch2_inconsistent_error(c); ++ return -1; ++ } ++ ++ if (!new_s) { ++ bch2_stripes_heap_del(c, m, idx); ++ ++ memset(m, 0, sizeof(*m)); ++ } else { ++ m->sectors = le16_to_cpu(new_s->sectors); ++ m->algorithm = new_s->algorithm; ++ m->nr_blocks = new_s->nr_blocks; ++ m->nr_redundant = new_s->nr_redundant; ++ m->blocks_nonempty = 0; ++ ++ for (i = 0; i < new_s->nr_blocks; i++) ++ m->blocks_nonempty += !!stripe_blockcount_get(new_s, i); ++ ++ if (!old_s) ++ bch2_stripes_heap_insert(c, m, idx); ++ else ++ bch2_stripes_heap_update(c, m, idx); ++ } ++ } else { ++ struct gc_stripe *m = ++ genradix_ptr_alloc(&c->gc_stripes, idx, GFP_KERNEL); ++ ++ if (!m) { ++ bch_err(c, "error allocating memory for gc_stripes, idx %llu", ++ idx); ++ return -BCH_ERR_ENOMEM_mark_stripe; ++ } ++ /* ++ * This will be wrong when we bring back runtime gc: we should ++ * be unmarking the old key and then marking the new key ++ */ ++ m->alive = true; ++ m->sectors = le16_to_cpu(new_s->sectors); ++ m->nr_blocks = new_s->nr_blocks; ++ m->nr_redundant = new_s->nr_redundant; ++ ++ for (i = 0; i < new_s->nr_blocks; i++) ++ m->ptrs[i] = new_s->ptrs[i]; ++ ++ bch2_bkey_to_replicas(&m->r.e, new); ++ ++ /* ++ * gc recalculates this field from stripe ptr ++ * references: ++ */ ++ memset(m->block_sectors, 0, sizeof(m->block_sectors)); ++ ++ for (i = 0; i < new_s->nr_blocks; i++) { ++ ret = mark_stripe_bucket(trans, new, i, flags); ++ if (ret) ++ return ret; ++ } ++ ++ ret = update_replicas(c, new, &m->r.e, ++ ((s64) m->sectors * m->nr_redundant), ++ journal_seq, gc); ++ if (ret) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, new); ++ bch2_fs_fatal_error(c, "no replicas entry for %s", buf.buf); ++ printbuf_exit(&buf); ++ return ret; ++ } ++ } ++ ++ return 0; ++} ++ ++int bch2_mark_reservation(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old : new; ++ struct bch_fs_usage *fs_usage; ++ unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; ++ s64 sectors = (s64) k.k->size; ++ ++ BUG_ON(!(flags & BTREE_TRIGGER_GC)); ++ ++ if (flags & BTREE_TRIGGER_OVERWRITE) ++ sectors = -sectors; ++ sectors *= replicas; ++ ++ percpu_down_read(&c->mark_lock); ++ preempt_disable(); ++ ++ fs_usage = fs_usage_ptr(c, trans->journal_res.seq, flags & BTREE_TRIGGER_GC); ++ replicas = clamp_t(unsigned, replicas, 1, ++ ARRAY_SIZE(fs_usage->persistent_reserved)); ++ ++ fs_usage->reserved += sectors; ++ fs_usage->persistent_reserved[replicas - 1] += sectors; ++ ++ preempt_enable(); ++ percpu_up_read(&c->mark_lock); ++ ++ return 0; ++} ++ ++static s64 __bch2_mark_reflink_p(struct btree_trans *trans, ++ struct bkey_s_c_reflink_p p, ++ u64 start, u64 end, ++ u64 *idx, unsigned flags, size_t r_idx) ++{ ++ struct bch_fs *c = trans->c; ++ struct reflink_gc *r; ++ int add = !(flags & BTREE_TRIGGER_OVERWRITE) ? 1 : -1; ++ u64 next_idx = end; ++ s64 ret = 0; ++ struct printbuf buf = PRINTBUF; ++ ++ if (r_idx >= c->reflink_gc_nr) ++ goto not_found; ++ ++ r = genradix_ptr(&c->reflink_gc_table, r_idx); ++ next_idx = min(next_idx, r->offset - r->size); ++ if (*idx < next_idx) ++ goto not_found; ++ ++ BUG_ON((s64) r->refcount + add < 0); ++ ++ r->refcount += add; ++ *idx = r->offset; ++ return 0; ++not_found: ++ if (fsck_err(c, "pointer to missing indirect extent\n" ++ " %s\n" ++ " missing range %llu-%llu", ++ (bch2_bkey_val_to_text(&buf, c, p.s_c), buf.buf), ++ *idx, next_idx)) { ++ struct bkey_i_error *new; ++ ++ new = bch2_trans_kmalloc(trans, sizeof(*new)); ++ ret = PTR_ERR_OR_ZERO(new); ++ if (ret) ++ goto err; ++ ++ bkey_init(&new->k); ++ new->k.type = KEY_TYPE_error; ++ new->k.p = bkey_start_pos(p.k); ++ new->k.p.offset += *idx - start; ++ bch2_key_resize(&new->k, next_idx - *idx); ++ ret = bch2_btree_insert_trans(trans, BTREE_ID_extents, &new->k_i, ++ BTREE_TRIGGER_NORUN); ++ } ++ ++ *idx = next_idx; ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++int bch2_mark_reflink_p(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ? old : new; ++ struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); ++ struct reflink_gc *ref; ++ size_t l, r, m; ++ u64 idx = le64_to_cpu(p.v->idx), start = idx; ++ u64 end = le64_to_cpu(p.v->idx) + p.k->size; ++ int ret = 0; ++ ++ BUG_ON(!(flags & BTREE_TRIGGER_GC)); ++ ++ if (c->sb.version_upgrade_complete >= bcachefs_metadata_version_reflink_p_fix) { ++ idx -= le32_to_cpu(p.v->front_pad); ++ end += le32_to_cpu(p.v->back_pad); ++ } ++ ++ l = 0; ++ r = c->reflink_gc_nr; ++ while (l < r) { ++ m = l + (r - l) / 2; ++ ++ ref = genradix_ptr(&c->reflink_gc_table, m); ++ if (ref->offset <= idx) ++ l = m + 1; ++ else ++ r = m; ++ } ++ ++ while (idx < end && !ret) ++ ret = __bch2_mark_reflink_p(trans, p, start, end, ++ &idx, flags, l++); ++ ++ return ret; ++} ++ ++void bch2_trans_fs_usage_revert(struct btree_trans *trans, ++ struct replicas_delta_list *deltas) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_fs_usage *dst; ++ struct replicas_delta *d, *top = (void *) deltas->d + deltas->used; ++ s64 added = 0; ++ unsigned i; ++ ++ percpu_down_read(&c->mark_lock); ++ preempt_disable(); ++ dst = fs_usage_ptr(c, trans->journal_res.seq, false); ++ ++ /* revert changes: */ ++ for (d = deltas->d; d != top; d = replicas_delta_next(d)) { ++ switch (d->r.data_type) { ++ case BCH_DATA_btree: ++ case BCH_DATA_user: ++ case BCH_DATA_parity: ++ added += d->delta; ++ } ++ BUG_ON(__update_replicas(c, dst, &d->r, -d->delta)); ++ } ++ ++ dst->nr_inodes -= deltas->nr_inodes; ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) { ++ added -= deltas->persistent_reserved[i]; ++ dst->reserved -= deltas->persistent_reserved[i]; ++ dst->persistent_reserved[i] -= deltas->persistent_reserved[i]; ++ } ++ ++ if (added > 0) { ++ trans->disk_res->sectors += added; ++ this_cpu_add(*c->online_reserved, added); ++ } ++ ++ preempt_enable(); ++ percpu_up_read(&c->mark_lock); ++} ++ ++int bch2_trans_fs_usage_apply(struct btree_trans *trans, ++ struct replicas_delta_list *deltas) ++{ ++ struct bch_fs *c = trans->c; ++ static int warned_disk_usage = 0; ++ bool warn = false; ++ unsigned disk_res_sectors = trans->disk_res ? trans->disk_res->sectors : 0; ++ struct replicas_delta *d, *d2; ++ struct replicas_delta *top = (void *) deltas->d + deltas->used; ++ struct bch_fs_usage *dst; ++ s64 added = 0, should_not_have_added; ++ unsigned i; ++ ++ percpu_down_read(&c->mark_lock); ++ preempt_disable(); ++ dst = fs_usage_ptr(c, trans->journal_res.seq, false); ++ ++ for (d = deltas->d; d != top; d = replicas_delta_next(d)) { ++ switch (d->r.data_type) { ++ case BCH_DATA_btree: ++ case BCH_DATA_user: ++ case BCH_DATA_parity: ++ added += d->delta; ++ } ++ ++ if (__update_replicas(c, dst, &d->r, d->delta)) ++ goto need_mark; ++ } ++ ++ dst->nr_inodes += deltas->nr_inodes; ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) { ++ added += deltas->persistent_reserved[i]; ++ dst->reserved += deltas->persistent_reserved[i]; ++ dst->persistent_reserved[i] += deltas->persistent_reserved[i]; ++ } ++ ++ /* ++ * Not allowed to reduce sectors_available except by getting a ++ * reservation: ++ */ ++ should_not_have_added = added - (s64) disk_res_sectors; ++ if (unlikely(should_not_have_added > 0)) { ++ u64 old, new, v = atomic64_read(&c->sectors_available); ++ ++ do { ++ old = v; ++ new = max_t(s64, 0, old - should_not_have_added); ++ } while ((v = atomic64_cmpxchg(&c->sectors_available, ++ old, new)) != old); ++ ++ added -= should_not_have_added; ++ warn = true; ++ } ++ ++ if (added > 0) { ++ trans->disk_res->sectors -= added; ++ this_cpu_sub(*c->online_reserved, added); ++ } ++ ++ preempt_enable(); ++ percpu_up_read(&c->mark_lock); ++ ++ if (unlikely(warn) && !xchg(&warned_disk_usage, 1)) ++ bch2_trans_inconsistent(trans, ++ "disk usage increased %lli more than %u sectors reserved)", ++ should_not_have_added, disk_res_sectors); ++ return 0; ++need_mark: ++ /* revert changes: */ ++ for (d2 = deltas->d; d2 != d; d2 = replicas_delta_next(d2)) ++ BUG_ON(__update_replicas(c, dst, &d2->r, -d2->delta)); ++ ++ preempt_enable(); ++ percpu_up_read(&c->mark_lock); ++ return -1; ++} ++ ++/* trans_mark: */ ++ ++static inline int bch2_trans_mark_pointer(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c k, struct extent_ptr_decoded p, ++ unsigned flags) ++{ ++ bool insert = !(flags & BTREE_TRIGGER_OVERWRITE); ++ struct btree_iter iter; ++ struct bkey_i_alloc_v4 *a; ++ struct bpos bucket; ++ struct bch_backpointer bp; ++ s64 sectors; ++ int ret; ++ ++ bch2_extent_ptr_to_bp(trans->c, btree_id, level, k, p, &bucket, &bp); ++ sectors = bp.bucket_len; ++ if (!insert) ++ sectors = -sectors; ++ ++ a = bch2_trans_start_alloc_update(trans, &iter, bucket); ++ if (IS_ERR(a)) ++ return PTR_ERR(a); ++ ++ ret = __mark_pointer(trans, k, &p.ptr, sectors, bp.data_type, ++ a->v.gen, &a->v.data_type, ++ &a->v.dirty_sectors, &a->v.cached_sectors) ?: ++ bch2_trans_update(trans, &iter, &a->k_i, 0); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) ++ return ret; ++ ++ if (!p.ptr.cached) { ++ ret = bch2_bucket_backpointer_mod(trans, bucket, bp, k, insert); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int bch2_trans_mark_stripe_ptr(struct btree_trans *trans, ++ struct extent_ptr_decoded p, ++ s64 sectors, enum bch_data_type data_type) ++{ ++ struct btree_iter iter; ++ struct bkey_i_stripe *s; ++ struct bch_replicas_padded r; ++ int ret = 0; ++ ++ s = bch2_bkey_get_mut_typed(trans, &iter, ++ BTREE_ID_stripes, POS(0, p.ec.idx), ++ BTREE_ITER_WITH_UPDATES, stripe); ++ ret = PTR_ERR_OR_ZERO(s); ++ if (unlikely(ret)) { ++ bch2_trans_inconsistent_on(bch2_err_matches(ret, ENOENT), trans, ++ "pointer to nonexistent stripe %llu", ++ (u64) p.ec.idx); ++ goto err; ++ } ++ ++ if (!bch2_ptr_matches_stripe(&s->v, p)) { ++ bch2_trans_inconsistent(trans, ++ "stripe pointer doesn't match stripe %llu", ++ (u64) p.ec.idx); ++ ret = -EIO; ++ goto err; ++ } ++ ++ stripe_blockcount_set(&s->v, p.ec.block, ++ stripe_blockcount_get(&s->v, p.ec.block) + ++ sectors); ++ ++ bch2_bkey_to_replicas(&r.e, bkey_i_to_s_c(&s->k_i)); ++ r.e.data_type = data_type; ++ ret = update_replicas_list(trans, &r.e, sectors); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_trans_mark_extent(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_i *new, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ++ ? old ++ : bkey_i_to_s_c(new); ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ struct bch_replicas_padded r; ++ enum bch_data_type data_type = bkey_is_btree_ptr(k.k) ++ ? BCH_DATA_btree ++ : BCH_DATA_user; ++ s64 sectors = bkey_is_btree_ptr(k.k) ++ ? btree_sectors(c) ++ : k.k->size; ++ s64 dirty_sectors = 0; ++ bool stale; ++ int ret = 0; ++ ++ r.e.data_type = data_type; ++ r.e.nr_devs = 0; ++ r.e.nr_required = 1; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ s64 disk_sectors = ptr_disk_sectors(sectors, p); ++ ++ if (flags & BTREE_TRIGGER_OVERWRITE) ++ disk_sectors = -disk_sectors; ++ ++ ret = bch2_trans_mark_pointer(trans, btree_id, level, k, p, flags); ++ if (ret < 0) ++ return ret; ++ ++ stale = ret > 0; ++ ++ if (p.ptr.cached) { ++ if (!stale) { ++ ret = update_cached_sectors_list(trans, p.ptr.dev, ++ disk_sectors); ++ if (ret) ++ return ret; ++ } ++ } else if (!p.has_ec) { ++ dirty_sectors += disk_sectors; ++ r.e.devs[r.e.nr_devs++] = p.ptr.dev; ++ } else { ++ ret = bch2_trans_mark_stripe_ptr(trans, p, ++ disk_sectors, data_type); ++ if (ret) ++ return ret; ++ ++ r.e.nr_required = 0; ++ } ++ } ++ ++ if (r.e.nr_devs) ++ ret = update_replicas_list(trans, &r.e, dirty_sectors); ++ ++ return ret; ++} ++ ++static int bch2_trans_mark_stripe_bucket(struct btree_trans *trans, ++ struct bkey_s_c_stripe s, ++ unsigned idx, bool deleting) ++{ ++ struct bch_fs *c = trans->c; ++ const struct bch_extent_ptr *ptr = &s.v->ptrs[idx]; ++ struct btree_iter iter; ++ struct bkey_i_alloc_v4 *a; ++ enum bch_data_type data_type = idx >= s.v->nr_blocks - s.v->nr_redundant ++ ? BCH_DATA_parity : 0; ++ s64 sectors = data_type ? le16_to_cpu(s.v->sectors) : 0; ++ int ret = 0; ++ ++ if (deleting) ++ sectors = -sectors; ++ ++ a = bch2_trans_start_alloc_update(trans, &iter, PTR_BUCKET_POS(c, ptr)); ++ if (IS_ERR(a)) ++ return PTR_ERR(a); ++ ++ ret = check_bucket_ref(trans, s.s_c, ptr, sectors, data_type, ++ a->v.gen, a->v.data_type, ++ a->v.dirty_sectors, a->v.cached_sectors); ++ if (ret) ++ goto err; ++ ++ if (!deleting) { ++ if (bch2_trans_inconsistent_on(a->v.stripe || ++ a->v.stripe_redundancy, trans, ++ "bucket %llu:%llu gen %u data type %s dirty_sectors %u: multiple stripes using same bucket (%u, %llu)", ++ iter.pos.inode, iter.pos.offset, a->v.gen, ++ bch2_data_types[a->v.data_type], ++ a->v.dirty_sectors, ++ a->v.stripe, s.k->p.offset)) { ++ ret = -EIO; ++ goto err; ++ } ++ ++ if (bch2_trans_inconsistent_on(data_type && a->v.dirty_sectors, trans, ++ "bucket %llu:%llu gen %u data type %s dirty_sectors %u: data already in stripe bucket %llu", ++ iter.pos.inode, iter.pos.offset, a->v.gen, ++ bch2_data_types[a->v.data_type], ++ a->v.dirty_sectors, ++ s.k->p.offset)) { ++ ret = -EIO; ++ goto err; ++ } ++ ++ a->v.stripe = s.k->p.offset; ++ a->v.stripe_redundancy = s.v->nr_redundant; ++ a->v.data_type = BCH_DATA_stripe; ++ } else { ++ if (bch2_trans_inconsistent_on(a->v.stripe != s.k->p.offset || ++ a->v.stripe_redundancy != s.v->nr_redundant, trans, ++ "bucket %llu:%llu gen %u: not marked as stripe when deleting stripe %llu (got %u)", ++ iter.pos.inode, iter.pos.offset, a->v.gen, ++ s.k->p.offset, a->v.stripe)) { ++ ret = -EIO; ++ goto err; ++ } ++ ++ a->v.stripe = 0; ++ a->v.stripe_redundancy = 0; ++ a->v.data_type = alloc_data_type(a->v, BCH_DATA_user); ++ } ++ ++ a->v.dirty_sectors += sectors; ++ if (data_type) ++ a->v.data_type = !deleting ? data_type : 0; ++ ++ ret = bch2_trans_update(trans, &iter, &a->k_i, 0); ++ if (ret) ++ goto err; ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_trans_mark_stripe(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_i *new, ++ unsigned flags) ++{ ++ const struct bch_stripe *old_s = NULL; ++ struct bch_stripe *new_s = NULL; ++ struct bch_replicas_padded r; ++ unsigned i, nr_blocks; ++ int ret = 0; ++ ++ if (old.k->type == KEY_TYPE_stripe) ++ old_s = bkey_s_c_to_stripe(old).v; ++ if (new->k.type == KEY_TYPE_stripe) ++ new_s = &bkey_i_to_stripe(new)->v; ++ ++ /* ++ * If the pointers aren't changing, we don't need to do anything: ++ */ ++ if (new_s && old_s && ++ new_s->nr_blocks == old_s->nr_blocks && ++ new_s->nr_redundant == old_s->nr_redundant && ++ !memcmp(old_s->ptrs, new_s->ptrs, ++ new_s->nr_blocks * sizeof(struct bch_extent_ptr))) ++ return 0; ++ ++ BUG_ON(new_s && old_s && ++ (new_s->nr_blocks != old_s->nr_blocks || ++ new_s->nr_redundant != old_s->nr_redundant)); ++ ++ nr_blocks = new_s ? new_s->nr_blocks : old_s->nr_blocks; ++ ++ if (new_s) { ++ s64 sectors = le16_to_cpu(new_s->sectors); ++ ++ bch2_bkey_to_replicas(&r.e, bkey_i_to_s_c(new)); ++ ret = update_replicas_list(trans, &r.e, sectors * new_s->nr_redundant); ++ if (ret) ++ return ret; ++ } ++ ++ if (old_s) { ++ s64 sectors = -((s64) le16_to_cpu(old_s->sectors)); ++ ++ bch2_bkey_to_replicas(&r.e, old); ++ ret = update_replicas_list(trans, &r.e, sectors * old_s->nr_redundant); ++ if (ret) ++ return ret; ++ } ++ ++ for (i = 0; i < nr_blocks; i++) { ++ if (new_s && old_s && ++ !memcmp(&new_s->ptrs[i], ++ &old_s->ptrs[i], ++ sizeof(new_s->ptrs[i]))) ++ continue; ++ ++ if (new_s) { ++ ret = bch2_trans_mark_stripe_bucket(trans, ++ bkey_i_to_s_c_stripe(new), i, false); ++ if (ret) ++ break; ++ } ++ ++ if (old_s) { ++ ret = bch2_trans_mark_stripe_bucket(trans, ++ bkey_s_c_to_stripe(old), i, true); ++ if (ret) ++ break; ++ } ++ } ++ ++ return ret; ++} ++ ++int bch2_trans_mark_reservation(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, ++ struct bkey_i *new, ++ unsigned flags) ++{ ++ struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ++ ? old ++ : bkey_i_to_s_c(new); ++ unsigned replicas = bkey_s_c_to_reservation(k).v->nr_replicas; ++ s64 sectors = (s64) k.k->size; ++ struct replicas_delta_list *d; ++ int ret; ++ ++ if (flags & BTREE_TRIGGER_OVERWRITE) ++ sectors = -sectors; ++ sectors *= replicas; ++ ++ ret = bch2_replicas_deltas_realloc(trans, 0); ++ if (ret) ++ return ret; ++ ++ d = trans->fs_usage_deltas; ++ replicas = clamp_t(unsigned, replicas, 1, ++ ARRAY_SIZE(d->persistent_reserved)); ++ ++ d->persistent_reserved[replicas - 1] += sectors; ++ return 0; ++} ++ ++static int __bch2_trans_mark_reflink_p(struct btree_trans *trans, ++ struct bkey_s_c_reflink_p p, ++ u64 *idx, unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_i *k; ++ __le64 *refcount; ++ int add = !(flags & BTREE_TRIGGER_OVERWRITE) ? 1 : -1; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ k = bch2_bkey_get_mut_noupdate(trans, &iter, ++ BTREE_ID_reflink, POS(0, *idx), ++ BTREE_ITER_WITH_UPDATES); ++ ret = PTR_ERR_OR_ZERO(k); ++ if (ret) ++ goto err; ++ ++ refcount = bkey_refcount(k); ++ if (!refcount) { ++ bch2_bkey_val_to_text(&buf, c, p.s_c); ++ bch2_trans_inconsistent(trans, ++ "nonexistent indirect extent at %llu while marking\n %s", ++ *idx, buf.buf); ++ ret = -EIO; ++ goto err; ++ } ++ ++ if (!*refcount && (flags & BTREE_TRIGGER_OVERWRITE)) { ++ bch2_bkey_val_to_text(&buf, c, p.s_c); ++ bch2_trans_inconsistent(trans, ++ "indirect extent refcount underflow at %llu while marking\n %s", ++ *idx, buf.buf); ++ ret = -EIO; ++ goto err; ++ } ++ ++ if (flags & BTREE_TRIGGER_INSERT) { ++ struct bch_reflink_p *v = (struct bch_reflink_p *) p.v; ++ u64 pad; ++ ++ pad = max_t(s64, le32_to_cpu(v->front_pad), ++ le64_to_cpu(v->idx) - bkey_start_offset(&k->k)); ++ BUG_ON(pad > U32_MAX); ++ v->front_pad = cpu_to_le32(pad); ++ ++ pad = max_t(s64, le32_to_cpu(v->back_pad), ++ k->k.p.offset - p.k->size - le64_to_cpu(v->idx)); ++ BUG_ON(pad > U32_MAX); ++ v->back_pad = cpu_to_le32(pad); ++ } ++ ++ le64_add_cpu(refcount, add); ++ ++ bch2_btree_iter_set_pos_to_extent_start(&iter); ++ ret = bch2_trans_update(trans, &iter, k, 0); ++ if (ret) ++ goto err; ++ ++ *idx = k->k.p.offset; ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++int bch2_trans_mark_reflink_p(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, ++ struct bkey_i *new, ++ unsigned flags) ++{ ++ struct bkey_s_c k = flags & BTREE_TRIGGER_OVERWRITE ++ ? old ++ : bkey_i_to_s_c(new); ++ struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); ++ u64 idx, end_idx; ++ int ret = 0; ++ ++ if (flags & BTREE_TRIGGER_INSERT) { ++ struct bch_reflink_p *v = (struct bch_reflink_p *) p.v; ++ ++ v->front_pad = v->back_pad = 0; ++ } ++ ++ idx = le64_to_cpu(p.v->idx) - le32_to_cpu(p.v->front_pad); ++ end_idx = le64_to_cpu(p.v->idx) + p.k->size + ++ le32_to_cpu(p.v->back_pad); ++ ++ while (idx < end_idx && !ret) ++ ret = __bch2_trans_mark_reflink_p(trans, p, &idx, flags); ++ ++ return ret; ++} ++ ++static int __bch2_trans_mark_metadata_bucket(struct btree_trans *trans, ++ struct bch_dev *ca, size_t b, ++ enum bch_data_type type, ++ unsigned sectors) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_i_alloc_v4 *a; ++ int ret = 0; ++ ++ /* ++ * Backup superblock might be past the end of our normal usable space: ++ */ ++ if (b >= ca->mi.nbuckets) ++ return 0; ++ ++ a = bch2_trans_start_alloc_update(trans, &iter, POS(ca->dev_idx, b)); ++ if (IS_ERR(a)) ++ return PTR_ERR(a); ++ ++ if (a->v.data_type && type && a->v.data_type != type) { ++ bch2_fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ++ "bucket %llu:%llu gen %u different types of data in same bucket: %s, %s\n" ++ "while marking %s", ++ iter.pos.inode, iter.pos.offset, a->v.gen, ++ bch2_data_types[a->v.data_type], ++ bch2_data_types[type], ++ bch2_data_types[type]); ++ ret = -EIO; ++ goto out; ++ } ++ ++ a->v.data_type = type; ++ a->v.dirty_sectors = sectors; ++ ++ ret = bch2_trans_update(trans, &iter, &a->k_i, 0); ++ if (ret) ++ goto out; ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_trans_mark_metadata_bucket(struct btree_trans *trans, ++ struct bch_dev *ca, size_t b, ++ enum bch_data_type type, ++ unsigned sectors) ++{ ++ return commit_do(trans, NULL, NULL, 0, ++ __bch2_trans_mark_metadata_bucket(trans, ca, b, type, sectors)); ++} ++ ++static int bch2_trans_mark_metadata_sectors(struct btree_trans *trans, ++ struct bch_dev *ca, ++ u64 start, u64 end, ++ enum bch_data_type type, ++ u64 *bucket, unsigned *bucket_sectors) ++{ ++ do { ++ u64 b = sector_to_bucket(ca, start); ++ unsigned sectors = ++ min_t(u64, bucket_to_sector(ca, b + 1), end) - start; ++ ++ if (b != *bucket && *bucket_sectors) { ++ int ret = bch2_trans_mark_metadata_bucket(trans, ca, *bucket, ++ type, *bucket_sectors); ++ if (ret) ++ return ret; ++ ++ *bucket_sectors = 0; ++ } ++ ++ *bucket = b; ++ *bucket_sectors += sectors; ++ start += sectors; ++ } while (start < end); ++ ++ return 0; ++} ++ ++static int __bch2_trans_mark_dev_sb(struct btree_trans *trans, ++ struct bch_dev *ca) ++{ ++ struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; ++ u64 bucket = 0; ++ unsigned i, bucket_sectors = 0; ++ int ret; ++ ++ for (i = 0; i < layout->nr_superblocks; i++) { ++ u64 offset = le64_to_cpu(layout->sb_offset[i]); ++ ++ if (offset == BCH_SB_SECTOR) { ++ ret = bch2_trans_mark_metadata_sectors(trans, ca, ++ 0, BCH_SB_SECTOR, ++ BCH_DATA_sb, &bucket, &bucket_sectors); ++ if (ret) ++ return ret; ++ } ++ ++ ret = bch2_trans_mark_metadata_sectors(trans, ca, offset, ++ offset + (1 << layout->sb_max_size_bits), ++ BCH_DATA_sb, &bucket, &bucket_sectors); ++ if (ret) ++ return ret; ++ } ++ ++ if (bucket_sectors) { ++ ret = bch2_trans_mark_metadata_bucket(trans, ca, ++ bucket, BCH_DATA_sb, bucket_sectors); ++ if (ret) ++ return ret; ++ } ++ ++ for (i = 0; i < ca->journal.nr; i++) { ++ ret = bch2_trans_mark_metadata_bucket(trans, ca, ++ ca->journal.buckets[i], ++ BCH_DATA_journal, ca->mi.bucket_size); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++int bch2_trans_mark_dev_sb(struct bch_fs *c, struct bch_dev *ca) ++{ ++ int ret = bch2_trans_run(c, __bch2_trans_mark_dev_sb(trans, ca)); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* Disk reservations: */ ++ ++#define SECTORS_CACHE 1024 ++ ++int __bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, ++ u64 sectors, int flags) ++{ ++ struct bch_fs_pcpu *pcpu; ++ u64 old, v, get; ++ s64 sectors_available; ++ int ret; ++ ++ percpu_down_read(&c->mark_lock); ++ preempt_disable(); ++ pcpu = this_cpu_ptr(c->pcpu); ++ ++ if (sectors <= pcpu->sectors_available) ++ goto out; ++ ++ v = atomic64_read(&c->sectors_available); ++ do { ++ old = v; ++ get = min((u64) sectors + SECTORS_CACHE, old); ++ ++ if (get < sectors) { ++ preempt_enable(); ++ goto recalculate; ++ } ++ } while ((v = atomic64_cmpxchg(&c->sectors_available, ++ old, old - get)) != old); ++ ++ pcpu->sectors_available += get; ++ ++out: ++ pcpu->sectors_available -= sectors; ++ this_cpu_add(*c->online_reserved, sectors); ++ res->sectors += sectors; ++ ++ preempt_enable(); ++ percpu_up_read(&c->mark_lock); ++ return 0; ++ ++recalculate: ++ mutex_lock(&c->sectors_available_lock); ++ ++ percpu_u64_set(&c->pcpu->sectors_available, 0); ++ sectors_available = avail_factor(__bch2_fs_usage_read_short(c).free); ++ ++ if (sectors <= sectors_available || ++ (flags & BCH_DISK_RESERVATION_NOFAIL)) { ++ atomic64_set(&c->sectors_available, ++ max_t(s64, 0, sectors_available - sectors)); ++ this_cpu_add(*c->online_reserved, sectors); ++ res->sectors += sectors; ++ ret = 0; ++ } else { ++ atomic64_set(&c->sectors_available, sectors_available); ++ ret = -BCH_ERR_ENOSPC_disk_reservation; ++ } ++ ++ mutex_unlock(&c->sectors_available_lock); ++ percpu_up_read(&c->mark_lock); ++ ++ return ret; ++} ++ ++/* Startup/shutdown: */ ++ ++static void bucket_gens_free_rcu(struct rcu_head *rcu) ++{ ++ struct bucket_gens *buckets = ++ container_of(rcu, struct bucket_gens, rcu); ++ ++ kvpfree(buckets, sizeof(*buckets) + buckets->nbuckets); ++} ++ ++int bch2_dev_buckets_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) ++{ ++ struct bucket_gens *bucket_gens = NULL, *old_bucket_gens = NULL; ++ unsigned long *buckets_nouse = NULL; ++ bool resize = ca->bucket_gens != NULL; ++ int ret; ++ ++ if (!(bucket_gens = kvpmalloc(sizeof(struct bucket_gens) + nbuckets, ++ GFP_KERNEL|__GFP_ZERO))) { ++ ret = -BCH_ERR_ENOMEM_bucket_gens; ++ goto err; ++ } ++ ++ if ((c->opts.buckets_nouse && ++ !(buckets_nouse = kvpmalloc(BITS_TO_LONGS(nbuckets) * ++ sizeof(unsigned long), ++ GFP_KERNEL|__GFP_ZERO)))) { ++ ret = -BCH_ERR_ENOMEM_buckets_nouse; ++ goto err; ++ } ++ ++ bucket_gens->first_bucket = ca->mi.first_bucket; ++ bucket_gens->nbuckets = nbuckets; ++ ++ bch2_copygc_stop(c); ++ ++ if (resize) { ++ down_write(&c->gc_lock); ++ down_write(&ca->bucket_lock); ++ percpu_down_write(&c->mark_lock); ++ } ++ ++ old_bucket_gens = rcu_dereference_protected(ca->bucket_gens, 1); ++ ++ if (resize) { ++ size_t n = min(bucket_gens->nbuckets, old_bucket_gens->nbuckets); ++ ++ memcpy(bucket_gens->b, ++ old_bucket_gens->b, ++ n); ++ if (buckets_nouse) ++ memcpy(buckets_nouse, ++ ca->buckets_nouse, ++ BITS_TO_LONGS(n) * sizeof(unsigned long)); ++ } ++ ++ rcu_assign_pointer(ca->bucket_gens, bucket_gens); ++ bucket_gens = old_bucket_gens; ++ ++ swap(ca->buckets_nouse, buckets_nouse); ++ ++ nbuckets = ca->mi.nbuckets; ++ ++ if (resize) { ++ percpu_up_write(&c->mark_lock); ++ up_write(&ca->bucket_lock); ++ up_write(&c->gc_lock); ++ } ++ ++ ret = 0; ++err: ++ kvpfree(buckets_nouse, ++ BITS_TO_LONGS(nbuckets) * sizeof(unsigned long)); ++ if (bucket_gens) ++ call_rcu(&bucket_gens->rcu, bucket_gens_free_rcu); ++ ++ return ret; ++} ++ ++void bch2_dev_buckets_free(struct bch_dev *ca) ++{ ++ unsigned i; ++ ++ kvpfree(ca->buckets_nouse, ++ BITS_TO_LONGS(ca->mi.nbuckets) * sizeof(unsigned long)); ++ kvpfree(rcu_dereference_protected(ca->bucket_gens, 1), ++ sizeof(struct bucket_gens) + ca->mi.nbuckets); ++ ++ for (i = 0; i < ARRAY_SIZE(ca->usage); i++) ++ free_percpu(ca->usage[i]); ++ kfree(ca->usage_base); ++} ++ ++int bch2_dev_buckets_alloc(struct bch_fs *c, struct bch_dev *ca) ++{ ++ unsigned i; ++ ++ ca->usage_base = kzalloc(sizeof(struct bch_dev_usage), GFP_KERNEL); ++ if (!ca->usage_base) ++ return -BCH_ERR_ENOMEM_usage_init; ++ ++ for (i = 0; i < ARRAY_SIZE(ca->usage); i++) { ++ ca->usage[i] = alloc_percpu(struct bch_dev_usage); ++ if (!ca->usage[i]) ++ return -BCH_ERR_ENOMEM_usage_init; ++ } ++ ++ return bch2_dev_buckets_resize(c, ca, ca->mi.nbuckets); ++} +diff --git a/fs/bcachefs/buckets.h b/fs/bcachefs/buckets.h +new file mode 100644 +index 000000000000..bf8d7f407e9c +--- /dev/null ++++ b/fs/bcachefs/buckets.h +@@ -0,0 +1,443 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++/* ++ * Code for manipulating bucket marks for garbage collection. ++ * ++ * Copyright 2014 Datera, Inc. ++ */ ++ ++#ifndef _BUCKETS_H ++#define _BUCKETS_H ++ ++#include "buckets_types.h" ++#include "extents.h" ++#include "sb-members.h" ++ ++static inline size_t sector_to_bucket(const struct bch_dev *ca, sector_t s) ++{ ++ return div_u64(s, ca->mi.bucket_size); ++} ++ ++static inline sector_t bucket_to_sector(const struct bch_dev *ca, size_t b) ++{ ++ return ((sector_t) b) * ca->mi.bucket_size; ++} ++ ++static inline sector_t bucket_remainder(const struct bch_dev *ca, sector_t s) ++{ ++ u32 remainder; ++ ++ div_u64_rem(s, ca->mi.bucket_size, &remainder); ++ return remainder; ++} ++ ++static inline size_t sector_to_bucket_and_offset(const struct bch_dev *ca, sector_t s, ++ u32 *offset) ++{ ++ return div_u64_rem(s, ca->mi.bucket_size, offset); ++} ++ ++#define for_each_bucket(_b, _buckets) \ ++ for (_b = (_buckets)->b + (_buckets)->first_bucket; \ ++ _b < (_buckets)->b + (_buckets)->nbuckets; _b++) ++ ++/* ++ * Ugly hack alert: ++ * ++ * We need to cram a spinlock in a single byte, because that's what we have left ++ * in struct bucket, and we care about the size of these - during fsck, we need ++ * in memory state for every single bucket on every device. ++ * ++ * We used to do ++ * while (xchg(&b->lock, 1) cpu_relax(); ++ * but, it turns out not all architectures support xchg on a single byte. ++ * ++ * So now we use bit_spin_lock(), with fun games since we can't burn a whole ++ * ulong for this - we just need to make sure the lock bit always ends up in the ++ * first byte. ++ */ ++ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++#define BUCKET_LOCK_BITNR 0 ++#else ++#define BUCKET_LOCK_BITNR (BITS_PER_LONG - 1) ++#endif ++ ++union ulong_byte_assert { ++ ulong ulong; ++ u8 byte; ++}; ++ ++static inline void bucket_unlock(struct bucket *b) ++{ ++ BUILD_BUG_ON(!((union ulong_byte_assert) { .ulong = 1UL << BUCKET_LOCK_BITNR }).byte); ++ ++ clear_bit_unlock(BUCKET_LOCK_BITNR, (void *) &b->lock); ++ wake_up_bit((void *) &b->lock, BUCKET_LOCK_BITNR); ++} ++ ++static inline void bucket_lock(struct bucket *b) ++{ ++ wait_on_bit_lock((void *) &b->lock, BUCKET_LOCK_BITNR, ++ TASK_UNINTERRUPTIBLE); ++} ++ ++static inline struct bucket_array *gc_bucket_array(struct bch_dev *ca) ++{ ++ return rcu_dereference_check(ca->buckets_gc, ++ !ca->fs || ++ percpu_rwsem_is_held(&ca->fs->mark_lock) || ++ lockdep_is_held(&ca->fs->gc_lock) || ++ lockdep_is_held(&ca->bucket_lock)); ++} ++ ++static inline struct bucket *gc_bucket(struct bch_dev *ca, size_t b) ++{ ++ struct bucket_array *buckets = gc_bucket_array(ca); ++ ++ BUG_ON(b < buckets->first_bucket || b >= buckets->nbuckets); ++ return buckets->b + b; ++} ++ ++static inline struct bucket_gens *bucket_gens(struct bch_dev *ca) ++{ ++ return rcu_dereference_check(ca->bucket_gens, ++ !ca->fs || ++ percpu_rwsem_is_held(&ca->fs->mark_lock) || ++ lockdep_is_held(&ca->fs->gc_lock) || ++ lockdep_is_held(&ca->bucket_lock)); ++} ++ ++static inline u8 *bucket_gen(struct bch_dev *ca, size_t b) ++{ ++ struct bucket_gens *gens = bucket_gens(ca); ++ ++ BUG_ON(b < gens->first_bucket || b >= gens->nbuckets); ++ return gens->b + b; ++} ++ ++static inline size_t PTR_BUCKET_NR(const struct bch_dev *ca, ++ const struct bch_extent_ptr *ptr) ++{ ++ return sector_to_bucket(ca, ptr->offset); ++} ++ ++static inline struct bpos PTR_BUCKET_POS(const struct bch_fs *c, ++ const struct bch_extent_ptr *ptr) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ return POS(ptr->dev, PTR_BUCKET_NR(ca, ptr)); ++} ++ ++static inline struct bpos PTR_BUCKET_POS_OFFSET(const struct bch_fs *c, ++ const struct bch_extent_ptr *ptr, ++ u32 *bucket_offset) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ return POS(ptr->dev, sector_to_bucket_and_offset(ca, ptr->offset, bucket_offset)); ++} ++ ++static inline struct bucket *PTR_GC_BUCKET(struct bch_dev *ca, ++ const struct bch_extent_ptr *ptr) ++{ ++ return gc_bucket(ca, PTR_BUCKET_NR(ca, ptr)); ++} ++ ++static inline enum bch_data_type ptr_data_type(const struct bkey *k, ++ const struct bch_extent_ptr *ptr) ++{ ++ if (bkey_is_btree_ptr(k)) ++ return BCH_DATA_btree; ++ ++ return ptr->cached ? BCH_DATA_cached : BCH_DATA_user; ++} ++ ++static inline s64 ptr_disk_sectors(s64 sectors, struct extent_ptr_decoded p) ++{ ++ EBUG_ON(sectors < 0); ++ ++ return crc_is_compressed(p.crc) ++ ? DIV_ROUND_UP_ULL(sectors * p.crc.compressed_size, ++ p.crc.uncompressed_size) ++ : sectors; ++} ++ ++static inline int gen_cmp(u8 a, u8 b) ++{ ++ return (s8) (a - b); ++} ++ ++static inline int gen_after(u8 a, u8 b) ++{ ++ int r = gen_cmp(a, b); ++ ++ return r > 0 ? r : 0; ++} ++ ++/** ++ * ptr_stale() - check if a pointer points into a bucket that has been ++ * invalidated. ++ */ ++static inline u8 ptr_stale(struct bch_dev *ca, ++ const struct bch_extent_ptr *ptr) ++{ ++ u8 ret; ++ ++ rcu_read_lock(); ++ ret = gen_after(*bucket_gen(ca, PTR_BUCKET_NR(ca, ptr)), ptr->gen); ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++/* Device usage: */ ++ ++void bch2_dev_usage_read_fast(struct bch_dev *, struct bch_dev_usage *); ++static inline struct bch_dev_usage bch2_dev_usage_read(struct bch_dev *ca) ++{ ++ struct bch_dev_usage ret; ++ ++ bch2_dev_usage_read_fast(ca, &ret); ++ return ret; ++} ++ ++void bch2_dev_usage_init(struct bch_dev *); ++ ++static inline u64 bch2_dev_buckets_reserved(struct bch_dev *ca, enum bch_watermark watermark) ++{ ++ s64 reserved = 0; ++ ++ switch (watermark) { ++ case BCH_WATERMARK_NR: ++ BUG(); ++ case BCH_WATERMARK_stripe: ++ reserved += ca->mi.nbuckets >> 6; ++ fallthrough; ++ case BCH_WATERMARK_normal: ++ reserved += ca->mi.nbuckets >> 6; ++ fallthrough; ++ case BCH_WATERMARK_copygc: ++ reserved += ca->nr_btree_reserve; ++ fallthrough; ++ case BCH_WATERMARK_btree: ++ reserved += ca->nr_btree_reserve; ++ fallthrough; ++ case BCH_WATERMARK_btree_copygc: ++ case BCH_WATERMARK_reclaim: ++ break; ++ } ++ ++ return reserved; ++} ++ ++static inline u64 dev_buckets_free(struct bch_dev *ca, ++ struct bch_dev_usage usage, ++ enum bch_watermark watermark) ++{ ++ return max_t(s64, 0, ++ usage.d[BCH_DATA_free].buckets - ++ ca->nr_open_buckets - ++ bch2_dev_buckets_reserved(ca, watermark)); ++} ++ ++static inline u64 __dev_buckets_available(struct bch_dev *ca, ++ struct bch_dev_usage usage, ++ enum bch_watermark watermark) ++{ ++ return max_t(s64, 0, ++ usage.d[BCH_DATA_free].buckets ++ + usage.d[BCH_DATA_cached].buckets ++ + usage.d[BCH_DATA_need_gc_gens].buckets ++ + usage.d[BCH_DATA_need_discard].buckets ++ - ca->nr_open_buckets ++ - bch2_dev_buckets_reserved(ca, watermark)); ++} ++ ++static inline u64 dev_buckets_available(struct bch_dev *ca, ++ enum bch_watermark watermark) ++{ ++ return __dev_buckets_available(ca, bch2_dev_usage_read(ca), watermark); ++} ++ ++/* Filesystem usage: */ ++ ++static inline unsigned __fs_usage_u64s(unsigned nr_replicas) ++{ ++ return sizeof(struct bch_fs_usage) / sizeof(u64) + nr_replicas; ++} ++ ++static inline unsigned fs_usage_u64s(struct bch_fs *c) ++{ ++ return __fs_usage_u64s(READ_ONCE(c->replicas.nr)); ++} ++ ++static inline unsigned __fs_usage_online_u64s(unsigned nr_replicas) ++{ ++ return sizeof(struct bch_fs_usage_online) / sizeof(u64) + nr_replicas; ++} ++ ++static inline unsigned fs_usage_online_u64s(struct bch_fs *c) ++{ ++ return __fs_usage_online_u64s(READ_ONCE(c->replicas.nr)); ++} ++ ++static inline unsigned dev_usage_u64s(void) ++{ ++ return sizeof(struct bch_dev_usage) / sizeof(u64); ++} ++ ++u64 bch2_fs_usage_read_one(struct bch_fs *, u64 *); ++ ++struct bch_fs_usage_online *bch2_fs_usage_read(struct bch_fs *); ++ ++void bch2_fs_usage_acc_to_base(struct bch_fs *, unsigned); ++ ++void bch2_fs_usage_to_text(struct printbuf *, ++ struct bch_fs *, struct bch_fs_usage_online *); ++ ++u64 bch2_fs_sectors_used(struct bch_fs *, struct bch_fs_usage_online *); ++ ++struct bch_fs_usage_short ++bch2_fs_usage_read_short(struct bch_fs *); ++ ++/* key/bucket marking: */ ++ ++static inline struct bch_fs_usage *fs_usage_ptr(struct bch_fs *c, ++ unsigned journal_seq, ++ bool gc) ++{ ++ percpu_rwsem_assert_held(&c->mark_lock); ++ BUG_ON(!gc && !journal_seq); ++ ++ return this_cpu_ptr(gc ++ ? c->usage_gc ++ : c->usage[journal_seq & JOURNAL_BUF_MASK]); ++} ++ ++int bch2_replicas_deltas_realloc(struct btree_trans *, unsigned); ++ ++void bch2_fs_usage_initialize(struct bch_fs *); ++ ++int bch2_mark_metadata_bucket(struct bch_fs *, struct bch_dev *, ++ size_t, enum bch_data_type, unsigned, ++ struct gc_pos, unsigned); ++ ++int bch2_mark_alloc(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_s_c, unsigned); ++int bch2_mark_extent(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_s_c, unsigned); ++int bch2_mark_stripe(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_s_c, unsigned); ++int bch2_mark_reservation(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_s_c, unsigned); ++int bch2_mark_reflink_p(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_s_c, unsigned); ++ ++int bch2_trans_mark_extent(struct btree_trans *, enum btree_id, unsigned, struct bkey_s_c, struct bkey_i *, unsigned); ++int bch2_trans_mark_stripe(struct btree_trans *, enum btree_id, unsigned, struct bkey_s_c, struct bkey_i *, unsigned); ++int bch2_trans_mark_reservation(struct btree_trans *, enum btree_id, unsigned, struct bkey_s_c, struct bkey_i *, unsigned); ++int bch2_trans_mark_reflink_p(struct btree_trans *, enum btree_id, unsigned, struct bkey_s_c, struct bkey_i *, unsigned); ++ ++void bch2_trans_fs_usage_revert(struct btree_trans *, struct replicas_delta_list *); ++int bch2_trans_fs_usage_apply(struct btree_trans *, struct replicas_delta_list *); ++ ++int bch2_trans_mark_metadata_bucket(struct btree_trans *, struct bch_dev *, ++ size_t, enum bch_data_type, unsigned); ++int bch2_trans_mark_dev_sb(struct bch_fs *, struct bch_dev *); ++ ++static inline bool is_superblock_bucket(struct bch_dev *ca, u64 b) ++{ ++ struct bch_sb_layout *layout = &ca->disk_sb.sb->layout; ++ u64 b_offset = bucket_to_sector(ca, b); ++ u64 b_end = bucket_to_sector(ca, b + 1); ++ unsigned i; ++ ++ if (!b) ++ return true; ++ ++ for (i = 0; i < layout->nr_superblocks; i++) { ++ u64 offset = le64_to_cpu(layout->sb_offset[i]); ++ u64 end = offset + (1 << layout->sb_max_size_bits); ++ ++ if (!(offset >= b_end || end <= b_offset)) ++ return true; ++ } ++ ++ return false; ++} ++ ++/* disk reservations: */ ++ ++static inline void bch2_disk_reservation_put(struct bch_fs *c, ++ struct disk_reservation *res) ++{ ++ if (res->sectors) { ++ this_cpu_sub(*c->online_reserved, res->sectors); ++ res->sectors = 0; ++ } ++} ++ ++#define BCH_DISK_RESERVATION_NOFAIL (1 << 0) ++ ++int __bch2_disk_reservation_add(struct bch_fs *, ++ struct disk_reservation *, ++ u64, int); ++ ++static inline int bch2_disk_reservation_add(struct bch_fs *c, struct disk_reservation *res, ++ u64 sectors, int flags) ++{ ++#ifdef __KERNEL__ ++ u64 old, new; ++ ++ do { ++ old = this_cpu_read(c->pcpu->sectors_available); ++ if (sectors > old) ++ return __bch2_disk_reservation_add(c, res, sectors, flags); ++ ++ new = old - sectors; ++ } while (this_cpu_cmpxchg(c->pcpu->sectors_available, old, new) != old); ++ ++ this_cpu_add(*c->online_reserved, sectors); ++ res->sectors += sectors; ++ return 0; ++#else ++ return __bch2_disk_reservation_add(c, res, sectors, flags); ++#endif ++} ++ ++static inline struct disk_reservation ++bch2_disk_reservation_init(struct bch_fs *c, unsigned nr_replicas) ++{ ++ return (struct disk_reservation) { ++ .sectors = 0, ++#if 0 ++ /* not used yet: */ ++ .gen = c->capacity_gen, ++#endif ++ .nr_replicas = nr_replicas, ++ }; ++} ++ ++static inline int bch2_disk_reservation_get(struct bch_fs *c, ++ struct disk_reservation *res, ++ u64 sectors, unsigned nr_replicas, ++ int flags) ++{ ++ *res = bch2_disk_reservation_init(c, nr_replicas); ++ ++ return bch2_disk_reservation_add(c, res, sectors * nr_replicas, flags); ++} ++ ++#define RESERVE_FACTOR 6 ++ ++static inline u64 avail_factor(u64 r) ++{ ++ return div_u64(r << RESERVE_FACTOR, (1 << RESERVE_FACTOR) + 1); ++} ++ ++int bch2_dev_buckets_resize(struct bch_fs *, struct bch_dev *, u64); ++void bch2_dev_buckets_free(struct bch_dev *); ++int bch2_dev_buckets_alloc(struct bch_fs *, struct bch_dev *); ++ ++#endif /* _BUCKETS_H */ +diff --git a/fs/bcachefs/buckets_types.h b/fs/bcachefs/buckets_types.h +new file mode 100644 +index 000000000000..2a9dab9006ef +--- /dev/null ++++ b/fs/bcachefs/buckets_types.h +@@ -0,0 +1,92 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BUCKETS_TYPES_H ++#define _BUCKETS_TYPES_H ++ ++#include "bcachefs_format.h" ++#include "util.h" ++ ++#define BUCKET_JOURNAL_SEQ_BITS 16 ++ ++struct bucket { ++ u8 lock; ++ u8 gen_valid:1; ++ u8 data_type:7; ++ u8 gen; ++ u8 stripe_redundancy; ++ u32 stripe; ++ u32 dirty_sectors; ++ u32 cached_sectors; ++}; ++ ++struct bucket_array { ++ struct rcu_head rcu; ++ u16 first_bucket; ++ size_t nbuckets; ++ struct bucket b[]; ++}; ++ ++struct bucket_gens { ++ struct rcu_head rcu; ++ u16 first_bucket; ++ size_t nbuckets; ++ u8 b[]; ++}; ++ ++struct bch_dev_usage { ++ u64 buckets_ec; ++ ++ struct { ++ u64 buckets; ++ u64 sectors; /* _compressed_ sectors: */ ++ /* ++ * XXX ++ * Why do we have this? Isn't it just buckets * bucket_size - ++ * sectors? ++ */ ++ u64 fragmented; ++ } d[BCH_DATA_NR]; ++}; ++ ++struct bch_fs_usage { ++ /* all fields are in units of 512 byte sectors: */ ++ u64 hidden; ++ u64 btree; ++ u64 data; ++ u64 cached; ++ u64 reserved; ++ u64 nr_inodes; ++ ++ /* XXX: add stats for compression ratio */ ++#if 0 ++ u64 uncompressed; ++ u64 compressed; ++#endif ++ ++ /* broken out: */ ++ ++ u64 persistent_reserved[BCH_REPLICAS_MAX]; ++ u64 replicas[]; ++}; ++ ++struct bch_fs_usage_online { ++ u64 online_reserved; ++ struct bch_fs_usage u; ++}; ++ ++struct bch_fs_usage_short { ++ u64 capacity; ++ u64 used; ++ u64 free; ++ u64 nr_inodes; ++}; ++ ++/* ++ * A reservation for space on disk: ++ */ ++struct disk_reservation { ++ u64 sectors; ++ u32 gen; ++ unsigned nr_replicas; ++}; ++ ++#endif /* _BUCKETS_TYPES_H */ +diff --git a/fs/bcachefs/buckets_waiting_for_journal.c b/fs/bcachefs/buckets_waiting_for_journal.c +new file mode 100644 +index 000000000000..ec1b636ef78d +--- /dev/null ++++ b/fs/bcachefs/buckets_waiting_for_journal.c +@@ -0,0 +1,166 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "buckets_waiting_for_journal.h" ++#include ++#include ++ ++static inline struct bucket_hashed * ++bucket_hash(struct buckets_waiting_for_journal_table *t, ++ unsigned hash_seed_idx, u64 dev_bucket) ++{ ++ return t->d + hash_64(dev_bucket ^ t->hash_seeds[hash_seed_idx], t->bits); ++} ++ ++static void bucket_table_init(struct buckets_waiting_for_journal_table *t, size_t bits) ++{ ++ unsigned i; ++ ++ t->bits = bits; ++ for (i = 0; i < ARRAY_SIZE(t->hash_seeds); i++) ++ get_random_bytes(&t->hash_seeds[i], sizeof(t->hash_seeds[i])); ++ memset(t->d, 0, sizeof(t->d[0]) << t->bits); ++} ++ ++bool bch2_bucket_needs_journal_commit(struct buckets_waiting_for_journal *b, ++ u64 flushed_seq, ++ unsigned dev, u64 bucket) ++{ ++ struct buckets_waiting_for_journal_table *t; ++ u64 dev_bucket = (u64) dev << 56 | bucket; ++ bool ret = false; ++ unsigned i; ++ ++ mutex_lock(&b->lock); ++ t = b->t; ++ ++ for (i = 0; i < ARRAY_SIZE(t->hash_seeds); i++) { ++ struct bucket_hashed *h = bucket_hash(t, i, dev_bucket); ++ ++ if (h->dev_bucket == dev_bucket) { ++ ret = h->journal_seq > flushed_seq; ++ break; ++ } ++ } ++ ++ mutex_unlock(&b->lock); ++ ++ return ret; ++} ++ ++static bool bucket_table_insert(struct buckets_waiting_for_journal_table *t, ++ struct bucket_hashed *new, ++ u64 flushed_seq) ++{ ++ struct bucket_hashed *last_evicted = NULL; ++ unsigned tries, i; ++ ++ for (tries = 0; tries < 10; tries++) { ++ struct bucket_hashed *old, *victim = NULL; ++ ++ for (i = 0; i < ARRAY_SIZE(t->hash_seeds); i++) { ++ old = bucket_hash(t, i, new->dev_bucket); ++ ++ if (old->dev_bucket == new->dev_bucket || ++ old->journal_seq <= flushed_seq) { ++ *old = *new; ++ return true; ++ } ++ ++ if (last_evicted != old) ++ victim = old; ++ } ++ ++ /* hashed to same slot 3 times: */ ++ if (!victim) ++ break; ++ ++ /* Failed to find an empty slot: */ ++ swap(*new, *victim); ++ last_evicted = victim; ++ } ++ ++ return false; ++} ++ ++int bch2_set_bucket_needs_journal_commit(struct buckets_waiting_for_journal *b, ++ u64 flushed_seq, ++ unsigned dev, u64 bucket, ++ u64 journal_seq) ++{ ++ struct buckets_waiting_for_journal_table *t, *n; ++ struct bucket_hashed tmp, new = { ++ .dev_bucket = (u64) dev << 56 | bucket, ++ .journal_seq = journal_seq, ++ }; ++ size_t i, size, new_bits, nr_elements = 1, nr_rehashes = 0; ++ int ret = 0; ++ ++ mutex_lock(&b->lock); ++ ++ if (likely(bucket_table_insert(b->t, &new, flushed_seq))) ++ goto out; ++ ++ t = b->t; ++ size = 1UL << t->bits; ++ for (i = 0; i < size; i++) ++ nr_elements += t->d[i].journal_seq > flushed_seq; ++ ++ new_bits = t->bits + (nr_elements * 3 > size); ++ ++ n = kvmalloc(sizeof(*n) + (sizeof(n->d[0]) << new_bits), GFP_KERNEL); ++ if (!n) { ++ ret = -BCH_ERR_ENOMEM_buckets_waiting_for_journal_set; ++ goto out; ++ } ++ ++retry_rehash: ++ nr_rehashes++; ++ bucket_table_init(n, new_bits); ++ ++ tmp = new; ++ BUG_ON(!bucket_table_insert(n, &tmp, flushed_seq)); ++ ++ for (i = 0; i < 1UL << t->bits; i++) { ++ if (t->d[i].journal_seq <= flushed_seq) ++ continue; ++ ++ tmp = t->d[i]; ++ if (!bucket_table_insert(n, &tmp, flushed_seq)) ++ goto retry_rehash; ++ } ++ ++ b->t = n; ++ kvfree(t); ++ ++ pr_debug("took %zu rehashes, table at %zu/%lu elements", ++ nr_rehashes, nr_elements, 1UL << b->t->bits); ++out: ++ mutex_unlock(&b->lock); ++ ++ return ret; ++} ++ ++void bch2_fs_buckets_waiting_for_journal_exit(struct bch_fs *c) ++{ ++ struct buckets_waiting_for_journal *b = &c->buckets_waiting_for_journal; ++ ++ kvfree(b->t); ++} ++ ++#define INITIAL_TABLE_BITS 3 ++ ++int bch2_fs_buckets_waiting_for_journal_init(struct bch_fs *c) ++{ ++ struct buckets_waiting_for_journal *b = &c->buckets_waiting_for_journal; ++ ++ mutex_init(&b->lock); ++ ++ b->t = kvmalloc(sizeof(*b->t) + ++ (sizeof(b->t->d[0]) << INITIAL_TABLE_BITS), GFP_KERNEL); ++ if (!b->t) ++ return -BCH_ERR_ENOMEM_buckets_waiting_for_journal_init; ++ ++ bucket_table_init(b->t, INITIAL_TABLE_BITS); ++ return 0; ++} +diff --git a/fs/bcachefs/buckets_waiting_for_journal.h b/fs/bcachefs/buckets_waiting_for_journal.h +new file mode 100644 +index 000000000000..d2ae19cbe18c +--- /dev/null ++++ b/fs/bcachefs/buckets_waiting_for_journal.h +@@ -0,0 +1,15 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BUCKETS_WAITING_FOR_JOURNAL_H ++#define _BUCKETS_WAITING_FOR_JOURNAL_H ++ ++#include "buckets_waiting_for_journal_types.h" ++ ++bool bch2_bucket_needs_journal_commit(struct buckets_waiting_for_journal *, ++ u64, unsigned, u64); ++int bch2_set_bucket_needs_journal_commit(struct buckets_waiting_for_journal *, ++ u64, unsigned, u64, u64); ++ ++void bch2_fs_buckets_waiting_for_journal_exit(struct bch_fs *); ++int bch2_fs_buckets_waiting_for_journal_init(struct bch_fs *); ++ ++#endif /* _BUCKETS_WAITING_FOR_JOURNAL_H */ +diff --git a/fs/bcachefs/buckets_waiting_for_journal_types.h b/fs/bcachefs/buckets_waiting_for_journal_types.h +new file mode 100644 +index 000000000000..e593db061d81 +--- /dev/null ++++ b/fs/bcachefs/buckets_waiting_for_journal_types.h +@@ -0,0 +1,23 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BUCKETS_WAITING_FOR_JOURNAL_TYPES_H ++#define _BUCKETS_WAITING_FOR_JOURNAL_TYPES_H ++ ++#include ++ ++struct bucket_hashed { ++ u64 dev_bucket; ++ u64 journal_seq; ++}; ++ ++struct buckets_waiting_for_journal_table { ++ unsigned bits; ++ u64 hash_seeds[3]; ++ struct bucket_hashed d[]; ++}; ++ ++struct buckets_waiting_for_journal { ++ struct mutex lock; ++ struct buckets_waiting_for_journal_table *t; ++}; ++ ++#endif /* _BUCKETS_WAITING_FOR_JOURNAL_TYPES_H */ +diff --git a/fs/bcachefs/chardev.c b/fs/bcachefs/chardev.c +new file mode 100644 +index 000000000000..f69e15dc699c +--- /dev/null ++++ b/fs/bcachefs/chardev.c +@@ -0,0 +1,784 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_CHARDEV ++ ++#include "bcachefs.h" ++#include "bcachefs_ioctl.h" ++#include "buckets.h" ++#include "chardev.h" ++#include "journal.h" ++#include "move.h" ++#include "replicas.h" ++#include "super.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* returns with ref on ca->ref */ ++static struct bch_dev *bch2_device_lookup(struct bch_fs *c, u64 dev, ++ unsigned flags) ++{ ++ struct bch_dev *ca; ++ ++ if (flags & BCH_BY_INDEX) { ++ if (dev >= c->sb.nr_devices) ++ return ERR_PTR(-EINVAL); ++ ++ rcu_read_lock(); ++ ca = rcu_dereference(c->devs[dev]); ++ if (ca) ++ percpu_ref_get(&ca->ref); ++ rcu_read_unlock(); ++ ++ if (!ca) ++ return ERR_PTR(-EINVAL); ++ } else { ++ char *path; ++ ++ path = strndup_user((const char __user *) ++ (unsigned long) dev, PATH_MAX); ++ if (IS_ERR(path)) ++ return ERR_CAST(path); ++ ++ ca = bch2_dev_lookup(c, path); ++ kfree(path); ++ } ++ ++ return ca; ++} ++ ++#if 0 ++static long bch2_ioctl_assemble(struct bch_ioctl_assemble __user *user_arg) ++{ ++ struct bch_ioctl_assemble arg; ++ struct bch_fs *c; ++ u64 *user_devs = NULL; ++ char **devs = NULL; ++ unsigned i; ++ int ret = -EFAULT; ++ ++ if (copy_from_user(&arg, user_arg, sizeof(arg))) ++ return -EFAULT; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ user_devs = kmalloc_array(arg.nr_devs, sizeof(u64), GFP_KERNEL); ++ if (!user_devs) ++ return -ENOMEM; ++ ++ devs = kcalloc(arg.nr_devs, sizeof(char *), GFP_KERNEL); ++ ++ if (copy_from_user(user_devs, user_arg->devs, ++ sizeof(u64) * arg.nr_devs)) ++ goto err; ++ ++ for (i = 0; i < arg.nr_devs; i++) { ++ devs[i] = strndup_user((const char __user *)(unsigned long) ++ user_devs[i], ++ PATH_MAX); ++ ret= PTR_ERR_OR_ZERO(devs[i]); ++ if (ret) ++ goto err; ++ } ++ ++ c = bch2_fs_open(devs, arg.nr_devs, bch2_opts_empty()); ++ ret = PTR_ERR_OR_ZERO(c); ++ if (!ret) ++ closure_put(&c->cl); ++err: ++ if (devs) ++ for (i = 0; i < arg.nr_devs; i++) ++ kfree(devs[i]); ++ kfree(devs); ++ return ret; ++} ++ ++static long bch2_ioctl_incremental(struct bch_ioctl_incremental __user *user_arg) ++{ ++ struct bch_ioctl_incremental arg; ++ const char *err; ++ char *path; ++ ++ if (copy_from_user(&arg, user_arg, sizeof(arg))) ++ return -EFAULT; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ++ ret = PTR_ERR_OR_ZERO(path); ++ if (ret) ++ return ret; ++ ++ err = bch2_fs_open_incremental(path); ++ kfree(path); ++ ++ if (err) { ++ pr_err("Could not register bcachefs devices: %s", err); ++ return -EINVAL; ++ } ++ ++ return 0; ++} ++#endif ++ ++static long bch2_global_ioctl(unsigned cmd, void __user *arg) ++{ ++ switch (cmd) { ++#if 0 ++ case BCH_IOCTL_ASSEMBLE: ++ return bch2_ioctl_assemble(arg); ++ case BCH_IOCTL_INCREMENTAL: ++ return bch2_ioctl_incremental(arg); ++#endif ++ default: ++ return -ENOTTY; ++ } ++} ++ ++static long bch2_ioctl_query_uuid(struct bch_fs *c, ++ struct bch_ioctl_query_uuid __user *user_arg) ++{ ++ if (copy_to_user(&user_arg->uuid, &c->sb.user_uuid, ++ sizeof(c->sb.user_uuid))) ++ return -EFAULT; ++ return 0; ++} ++ ++#if 0 ++static long bch2_ioctl_start(struct bch_fs *c, struct bch_ioctl_start arg) ++{ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ return bch2_fs_start(c); ++} ++ ++static long bch2_ioctl_stop(struct bch_fs *c) ++{ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ bch2_fs_stop(c); ++ return 0; ++} ++#endif ++ ++static long bch2_ioctl_disk_add(struct bch_fs *c, struct bch_ioctl_disk arg) ++{ ++ char *path; ++ int ret; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ++ ret = PTR_ERR_OR_ZERO(path); ++ if (ret) ++ return ret; ++ ++ ret = bch2_dev_add(c, path); ++ kfree(path); ++ ++ return ret; ++} ++ ++static long bch2_ioctl_disk_remove(struct bch_fs *c, struct bch_ioctl_disk arg) ++{ ++ struct bch_dev *ca; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| ++ BCH_FORCE_IF_METADATA_LOST| ++ BCH_FORCE_IF_DEGRADED| ++ BCH_BY_INDEX)) || ++ arg.pad) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ return bch2_dev_remove(c, ca, arg.flags); ++} ++ ++static long bch2_ioctl_disk_online(struct bch_fs *c, struct bch_ioctl_disk arg) ++{ ++ char *path; ++ int ret; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if (arg.flags || arg.pad) ++ return -EINVAL; ++ ++ path = strndup_user((const char __user *)(unsigned long) arg.dev, PATH_MAX); ++ ret = PTR_ERR_OR_ZERO(path); ++ if (ret) ++ return ret; ++ ++ ret = bch2_dev_online(c, path); ++ kfree(path); ++ return ret; ++} ++ ++static long bch2_ioctl_disk_offline(struct bch_fs *c, struct bch_ioctl_disk arg) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| ++ BCH_FORCE_IF_METADATA_LOST| ++ BCH_FORCE_IF_DEGRADED| ++ BCH_BY_INDEX)) || ++ arg.pad) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ ret = bch2_dev_offline(c, ca, arg.flags); ++ percpu_ref_put(&ca->ref); ++ return ret; ++} ++ ++static long bch2_ioctl_disk_set_state(struct bch_fs *c, ++ struct bch_ioctl_disk_set_state arg) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if ((arg.flags & ~(BCH_FORCE_IF_DATA_LOST| ++ BCH_FORCE_IF_METADATA_LOST| ++ BCH_FORCE_IF_DEGRADED| ++ BCH_BY_INDEX)) || ++ arg.pad[0] || arg.pad[1] || arg.pad[2] || ++ arg.new_state >= BCH_MEMBER_STATE_NR) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ ret = bch2_dev_set_state(c, ca, arg.new_state, arg.flags); ++ if (ret) ++ bch_err(c, "Error setting device state: %s", bch2_err_str(ret)); ++ ++ percpu_ref_put(&ca->ref); ++ return ret; ++} ++ ++struct bch_data_ctx { ++ struct bch_fs *c; ++ struct bch_ioctl_data arg; ++ struct bch_move_stats stats; ++ ++ int ret; ++ ++ struct task_struct *thread; ++}; ++ ++static int bch2_data_thread(void *arg) ++{ ++ struct bch_data_ctx *ctx = arg; ++ ++ ctx->ret = bch2_data_job(ctx->c, &ctx->stats, ctx->arg); ++ ++ ctx->stats.data_type = U8_MAX; ++ return 0; ++} ++ ++static int bch2_data_job_release(struct inode *inode, struct file *file) ++{ ++ struct bch_data_ctx *ctx = file->private_data; ++ ++ kthread_stop(ctx->thread); ++ put_task_struct(ctx->thread); ++ kfree(ctx); ++ return 0; ++} ++ ++static ssize_t bch2_data_job_read(struct file *file, char __user *buf, ++ size_t len, loff_t *ppos) ++{ ++ struct bch_data_ctx *ctx = file->private_data; ++ struct bch_fs *c = ctx->c; ++ struct bch_ioctl_data_event e = { ++ .type = BCH_DATA_EVENT_PROGRESS, ++ .p.data_type = ctx->stats.data_type, ++ .p.btree_id = ctx->stats.btree_id, ++ .p.pos = ctx->stats.pos, ++ .p.sectors_done = atomic64_read(&ctx->stats.sectors_seen), ++ .p.sectors_total = bch2_fs_usage_read_short(c).used, ++ }; ++ ++ if (len < sizeof(e)) ++ return -EINVAL; ++ ++ if (copy_to_user(buf, &e, sizeof(e))) ++ return -EFAULT; ++ ++ return sizeof(e); ++} ++ ++static const struct file_operations bcachefs_data_ops = { ++ .release = bch2_data_job_release, ++ .read = bch2_data_job_read, ++ .llseek = no_llseek, ++}; ++ ++static long bch2_ioctl_data(struct bch_fs *c, ++ struct bch_ioctl_data arg) ++{ ++ struct bch_data_ctx *ctx = NULL; ++ struct file *file = NULL; ++ unsigned flags = O_RDONLY|O_CLOEXEC|O_NONBLOCK; ++ int ret, fd = -1; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if (arg.op >= BCH_DATA_OP_NR || arg.flags) ++ return -EINVAL; ++ ++ ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); ++ if (!ctx) ++ return -ENOMEM; ++ ++ ctx->c = c; ++ ctx->arg = arg; ++ ++ ctx->thread = kthread_create(bch2_data_thread, ctx, ++ "bch-data/%s", c->name); ++ if (IS_ERR(ctx->thread)) { ++ ret = PTR_ERR(ctx->thread); ++ goto err; ++ } ++ ++ ret = get_unused_fd_flags(flags); ++ if (ret < 0) ++ goto err; ++ fd = ret; ++ ++ file = anon_inode_getfile("[bcachefs]", &bcachefs_data_ops, ctx, flags); ++ if (IS_ERR(file)) { ++ ret = PTR_ERR(file); ++ goto err; ++ } ++ ++ fd_install(fd, file); ++ ++ get_task_struct(ctx->thread); ++ wake_up_process(ctx->thread); ++ ++ return fd; ++err: ++ if (fd >= 0) ++ put_unused_fd(fd); ++ if (!IS_ERR_OR_NULL(ctx->thread)) ++ kthread_stop(ctx->thread); ++ kfree(ctx); ++ return ret; ++} ++ ++static long bch2_ioctl_fs_usage(struct bch_fs *c, ++ struct bch_ioctl_fs_usage __user *user_arg) ++{ ++ struct bch_ioctl_fs_usage *arg = NULL; ++ struct bch_replicas_usage *dst_e, *dst_end; ++ struct bch_fs_usage_online *src; ++ u32 replica_entries_bytes; ++ unsigned i; ++ int ret = 0; ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EINVAL; ++ ++ if (get_user(replica_entries_bytes, &user_arg->replica_entries_bytes)) ++ return -EFAULT; ++ ++ arg = kzalloc(size_add(sizeof(*arg), replica_entries_bytes), GFP_KERNEL); ++ if (!arg) ++ return -ENOMEM; ++ ++ src = bch2_fs_usage_read(c); ++ if (!src) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ arg->capacity = c->capacity; ++ arg->used = bch2_fs_sectors_used(c, src); ++ arg->online_reserved = src->online_reserved; ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) ++ arg->persistent_reserved[i] = src->u.persistent_reserved[i]; ++ ++ dst_e = arg->replicas; ++ dst_end = (void *) arg->replicas + replica_entries_bytes; ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *src_e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ /* check that we have enough space for one replicas entry */ ++ if (dst_e + 1 > dst_end) { ++ ret = -ERANGE; ++ break; ++ } ++ ++ dst_e->sectors = src->u.replicas[i]; ++ dst_e->r = *src_e; ++ ++ /* recheck after setting nr_devs: */ ++ if (replicas_usage_next(dst_e) > dst_end) { ++ ret = -ERANGE; ++ break; ++ } ++ ++ memcpy(dst_e->r.devs, src_e->devs, src_e->nr_devs); ++ ++ dst_e = replicas_usage_next(dst_e); ++ } ++ ++ arg->replica_entries_bytes = (void *) dst_e - (void *) arg->replicas; ++ ++ percpu_up_read(&c->mark_lock); ++ kfree(src); ++ ++ if (ret) ++ goto err; ++ if (copy_to_user(user_arg, arg, ++ sizeof(*arg) + arg->replica_entries_bytes)) ++ ret = -EFAULT; ++err: ++ kfree(arg); ++ return ret; ++} ++ ++static long bch2_ioctl_dev_usage(struct bch_fs *c, ++ struct bch_ioctl_dev_usage __user *user_arg) ++{ ++ struct bch_ioctl_dev_usage arg; ++ struct bch_dev_usage src; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EINVAL; ++ ++ if (copy_from_user(&arg, user_arg, sizeof(arg))) ++ return -EFAULT; ++ ++ if ((arg.flags & ~BCH_BY_INDEX) || ++ arg.pad[0] || ++ arg.pad[1] || ++ arg.pad[2]) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ src = bch2_dev_usage_read(ca); ++ ++ arg.state = ca->mi.state; ++ arg.bucket_size = ca->mi.bucket_size; ++ arg.nr_buckets = ca->mi.nbuckets - ca->mi.first_bucket; ++ arg.buckets_ec = src.buckets_ec; ++ ++ for (i = 0; i < BCH_DATA_NR; i++) { ++ arg.d[i].buckets = src.d[i].buckets; ++ arg.d[i].sectors = src.d[i].sectors; ++ arg.d[i].fragmented = src.d[i].fragmented; ++ } ++ ++ percpu_ref_put(&ca->ref); ++ ++ if (copy_to_user(user_arg, &arg, sizeof(arg))) ++ return -EFAULT; ++ ++ return 0; ++} ++ ++static long bch2_ioctl_read_super(struct bch_fs *c, ++ struct bch_ioctl_read_super arg) ++{ ++ struct bch_dev *ca = NULL; ++ struct bch_sb *sb; ++ int ret = 0; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if ((arg.flags & ~(BCH_BY_INDEX|BCH_READ_DEV)) || ++ arg.pad) ++ return -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ ++ if (arg.flags & BCH_READ_DEV) { ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ ++ if (IS_ERR(ca)) { ++ ret = PTR_ERR(ca); ++ goto err; ++ } ++ ++ sb = ca->disk_sb.sb; ++ } else { ++ sb = c->disk_sb.sb; ++ } ++ ++ if (vstruct_bytes(sb) > arg.size) { ++ ret = -ERANGE; ++ goto err; ++ } ++ ++ if (copy_to_user((void __user *)(unsigned long)arg.sb, sb, ++ vstruct_bytes(sb))) ++ ret = -EFAULT; ++err: ++ if (!IS_ERR_OR_NULL(ca)) ++ percpu_ref_put(&ca->ref); ++ mutex_unlock(&c->sb_lock); ++ return ret; ++} ++ ++static long bch2_ioctl_disk_get_idx(struct bch_fs *c, ++ struct bch_ioctl_disk_get_idx arg) ++{ ++ dev_t dev = huge_decode_dev(arg.dev); ++ struct bch_dev *ca; ++ unsigned i; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if (!dev) ++ return -EINVAL; ++ ++ for_each_online_member(ca, c, i) ++ if (ca->dev == dev) { ++ percpu_ref_put(&ca->io_ref); ++ return i; ++ } ++ ++ return -BCH_ERR_ENOENT_dev_idx_not_found; ++} ++ ++static long bch2_ioctl_disk_resize(struct bch_fs *c, ++ struct bch_ioctl_disk_resize arg) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if ((arg.flags & ~BCH_BY_INDEX) || ++ arg.pad) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ ret = bch2_dev_resize(c, ca, arg.nbuckets); ++ ++ percpu_ref_put(&ca->ref); ++ return ret; ++} ++ ++static long bch2_ioctl_disk_resize_journal(struct bch_fs *c, ++ struct bch_ioctl_disk_resize_journal arg) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if ((arg.flags & ~BCH_BY_INDEX) || ++ arg.pad) ++ return -EINVAL; ++ ++ if (arg.nbuckets > U32_MAX) ++ return -EINVAL; ++ ++ ca = bch2_device_lookup(c, arg.dev, arg.flags); ++ if (IS_ERR(ca)) ++ return PTR_ERR(ca); ++ ++ ret = bch2_set_nr_journal_buckets(c, ca, arg.nbuckets); ++ ++ percpu_ref_put(&ca->ref); ++ return ret; ++} ++ ++#define BCH_IOCTL(_name, _argtype) \ ++do { \ ++ _argtype i; \ ++ \ ++ if (copy_from_user(&i, arg, sizeof(i))) \ ++ return -EFAULT; \ ++ ret = bch2_ioctl_##_name(c, i); \ ++ goto out; \ ++} while (0) ++ ++long bch2_fs_ioctl(struct bch_fs *c, unsigned cmd, void __user *arg) ++{ ++ long ret; ++ ++ switch (cmd) { ++ case BCH_IOCTL_QUERY_UUID: ++ return bch2_ioctl_query_uuid(c, arg); ++ case BCH_IOCTL_FS_USAGE: ++ return bch2_ioctl_fs_usage(c, arg); ++ case BCH_IOCTL_DEV_USAGE: ++ return bch2_ioctl_dev_usage(c, arg); ++#if 0 ++ case BCH_IOCTL_START: ++ BCH_IOCTL(start, struct bch_ioctl_start); ++ case BCH_IOCTL_STOP: ++ return bch2_ioctl_stop(c); ++#endif ++ case BCH_IOCTL_READ_SUPER: ++ BCH_IOCTL(read_super, struct bch_ioctl_read_super); ++ case BCH_IOCTL_DISK_GET_IDX: ++ BCH_IOCTL(disk_get_idx, struct bch_ioctl_disk_get_idx); ++ } ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EINVAL; ++ ++ switch (cmd) { ++ case BCH_IOCTL_DISK_ADD: ++ BCH_IOCTL(disk_add, struct bch_ioctl_disk); ++ case BCH_IOCTL_DISK_REMOVE: ++ BCH_IOCTL(disk_remove, struct bch_ioctl_disk); ++ case BCH_IOCTL_DISK_ONLINE: ++ BCH_IOCTL(disk_online, struct bch_ioctl_disk); ++ case BCH_IOCTL_DISK_OFFLINE: ++ BCH_IOCTL(disk_offline, struct bch_ioctl_disk); ++ case BCH_IOCTL_DISK_SET_STATE: ++ BCH_IOCTL(disk_set_state, struct bch_ioctl_disk_set_state); ++ case BCH_IOCTL_DATA: ++ BCH_IOCTL(data, struct bch_ioctl_data); ++ case BCH_IOCTL_DISK_RESIZE: ++ BCH_IOCTL(disk_resize, struct bch_ioctl_disk_resize); ++ case BCH_IOCTL_DISK_RESIZE_JOURNAL: ++ BCH_IOCTL(disk_resize_journal, struct bch_ioctl_disk_resize_journal); ++ ++ default: ++ return -ENOTTY; ++ } ++out: ++ if (ret < 0) ++ ret = bch2_err_class(ret); ++ return ret; ++} ++ ++static DEFINE_IDR(bch_chardev_minor); ++ ++static long bch2_chardev_ioctl(struct file *filp, unsigned cmd, unsigned long v) ++{ ++ unsigned minor = iminor(file_inode(filp)); ++ struct bch_fs *c = minor < U8_MAX ? idr_find(&bch_chardev_minor, minor) : NULL; ++ void __user *arg = (void __user *) v; ++ ++ return c ++ ? bch2_fs_ioctl(c, cmd, arg) ++ : bch2_global_ioctl(cmd, arg); ++} ++ ++static const struct file_operations bch_chardev_fops = { ++ .owner = THIS_MODULE, ++ .unlocked_ioctl = bch2_chardev_ioctl, ++ .open = nonseekable_open, ++}; ++ ++static int bch_chardev_major; ++static struct class *bch_chardev_class; ++static struct device *bch_chardev; ++ ++void bch2_fs_chardev_exit(struct bch_fs *c) ++{ ++ if (!IS_ERR_OR_NULL(c->chardev)) ++ device_unregister(c->chardev); ++ if (c->minor >= 0) ++ idr_remove(&bch_chardev_minor, c->minor); ++} ++ ++int bch2_fs_chardev_init(struct bch_fs *c) ++{ ++ c->minor = idr_alloc(&bch_chardev_minor, c, 0, 0, GFP_KERNEL); ++ if (c->minor < 0) ++ return c->minor; ++ ++ c->chardev = device_create(bch_chardev_class, NULL, ++ MKDEV(bch_chardev_major, c->minor), c, ++ "bcachefs%u-ctl", c->minor); ++ if (IS_ERR(c->chardev)) ++ return PTR_ERR(c->chardev); ++ ++ return 0; ++} ++ ++void bch2_chardev_exit(void) ++{ ++ if (!IS_ERR_OR_NULL(bch_chardev_class)) ++ device_destroy(bch_chardev_class, ++ MKDEV(bch_chardev_major, U8_MAX)); ++ if (!IS_ERR_OR_NULL(bch_chardev_class)) ++ class_destroy(bch_chardev_class); ++ if (bch_chardev_major > 0) ++ unregister_chrdev(bch_chardev_major, "bcachefs"); ++} ++ ++int __init bch2_chardev_init(void) ++{ ++ bch_chardev_major = register_chrdev(0, "bcachefs-ctl", &bch_chardev_fops); ++ if (bch_chardev_major < 0) ++ return bch_chardev_major; ++ ++ bch_chardev_class = class_create("bcachefs"); ++ if (IS_ERR(bch_chardev_class)) ++ return PTR_ERR(bch_chardev_class); ++ ++ bch_chardev = device_create(bch_chardev_class, NULL, ++ MKDEV(bch_chardev_major, U8_MAX), ++ NULL, "bcachefs-ctl"); ++ if (IS_ERR(bch_chardev)) ++ return PTR_ERR(bch_chardev); ++ ++ return 0; ++} ++ ++#endif /* NO_BCACHEFS_CHARDEV */ +diff --git a/fs/bcachefs/chardev.h b/fs/bcachefs/chardev.h +new file mode 100644 +index 000000000000..0f563ca53c36 +--- /dev/null ++++ b/fs/bcachefs/chardev.h +@@ -0,0 +1,31 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_CHARDEV_H ++#define _BCACHEFS_CHARDEV_H ++ ++#ifndef NO_BCACHEFS_FS ++ ++long bch2_fs_ioctl(struct bch_fs *, unsigned, void __user *); ++ ++void bch2_fs_chardev_exit(struct bch_fs *); ++int bch2_fs_chardev_init(struct bch_fs *); ++ ++void bch2_chardev_exit(void); ++int __init bch2_chardev_init(void); ++ ++#else ++ ++static inline long bch2_fs_ioctl(struct bch_fs *c, ++ unsigned cmd, void __user * arg) ++{ ++ return -ENOTTY; ++} ++ ++static inline void bch2_fs_chardev_exit(struct bch_fs *c) {} ++static inline int bch2_fs_chardev_init(struct bch_fs *c) { return 0; } ++ ++static inline void bch2_chardev_exit(void) {} ++static inline int __init bch2_chardev_init(void) { return 0; } ++ ++#endif /* NO_BCACHEFS_FS */ ++ ++#endif /* _BCACHEFS_CHARDEV_H */ +diff --git a/fs/bcachefs/checksum.c b/fs/bcachefs/checksum.c +new file mode 100644 +index 000000000000..3c761ad6b1c8 +--- /dev/null ++++ b/fs/bcachefs/checksum.c +@@ -0,0 +1,804 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "checksum.h" ++#include "errcode.h" ++#include "super.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++/* ++ * bch2_checksum state is an abstraction of the checksum state calculated over different pages. ++ * it features page merging without having the checksum algorithm lose its state. ++ * for native checksum aglorithms (like crc), a default seed value will do. ++ * for hash-like algorithms, a state needs to be stored ++ */ ++ ++struct bch2_checksum_state { ++ union { ++ u64 seed; ++ struct xxh64_state h64state; ++ }; ++ unsigned int type; ++}; ++ ++static void bch2_checksum_init(struct bch2_checksum_state *state) ++{ ++ switch (state->type) { ++ case BCH_CSUM_none: ++ case BCH_CSUM_crc32c: ++ case BCH_CSUM_crc64: ++ state->seed = 0; ++ break; ++ case BCH_CSUM_crc32c_nonzero: ++ state->seed = U32_MAX; ++ break; ++ case BCH_CSUM_crc64_nonzero: ++ state->seed = U64_MAX; ++ break; ++ case BCH_CSUM_xxhash: ++ xxh64_reset(&state->h64state, 0); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++static u64 bch2_checksum_final(const struct bch2_checksum_state *state) ++{ ++ switch (state->type) { ++ case BCH_CSUM_none: ++ case BCH_CSUM_crc32c: ++ case BCH_CSUM_crc64: ++ return state->seed; ++ case BCH_CSUM_crc32c_nonzero: ++ return state->seed ^ U32_MAX; ++ case BCH_CSUM_crc64_nonzero: ++ return state->seed ^ U64_MAX; ++ case BCH_CSUM_xxhash: ++ return xxh64_digest(&state->h64state); ++ default: ++ BUG(); ++ } ++} ++ ++static void bch2_checksum_update(struct bch2_checksum_state *state, const void *data, size_t len) ++{ ++ switch (state->type) { ++ case BCH_CSUM_none: ++ return; ++ case BCH_CSUM_crc32c_nonzero: ++ case BCH_CSUM_crc32c: ++ state->seed = crc32c(state->seed, data, len); ++ break; ++ case BCH_CSUM_crc64_nonzero: ++ case BCH_CSUM_crc64: ++ state->seed = crc64_be(state->seed, data, len); ++ break; ++ case BCH_CSUM_xxhash: ++ xxh64_update(&state->h64state, data, len); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++static inline int do_encrypt_sg(struct crypto_sync_skcipher *tfm, ++ struct nonce nonce, ++ struct scatterlist *sg, size_t len) ++{ ++ SYNC_SKCIPHER_REQUEST_ON_STACK(req, tfm); ++ int ret; ++ ++ skcipher_request_set_sync_tfm(req, tfm); ++ skcipher_request_set_crypt(req, sg, sg, len, nonce.d); ++ ++ ret = crypto_skcipher_encrypt(req); ++ if (ret) ++ pr_err("got error %i from crypto_skcipher_encrypt()", ret); ++ ++ return ret; ++} ++ ++static inline int do_encrypt(struct crypto_sync_skcipher *tfm, ++ struct nonce nonce, ++ void *buf, size_t len) ++{ ++ if (!is_vmalloc_addr(buf)) { ++ struct scatterlist sg; ++ ++ sg_init_table(&sg, 1); ++ sg_set_page(&sg, ++ is_vmalloc_addr(buf) ++ ? vmalloc_to_page(buf) ++ : virt_to_page(buf), ++ len, offset_in_page(buf)); ++ return do_encrypt_sg(tfm, nonce, &sg, len); ++ } else { ++ unsigned pages = buf_pages(buf, len); ++ struct scatterlist *sg; ++ size_t orig_len = len; ++ int ret, i; ++ ++ sg = kmalloc_array(pages, sizeof(*sg), GFP_KERNEL); ++ if (!sg) ++ return -BCH_ERR_ENOMEM_do_encrypt; ++ ++ sg_init_table(sg, pages); ++ ++ for (i = 0; i < pages; i++) { ++ unsigned offset = offset_in_page(buf); ++ unsigned pg_len = min_t(size_t, len, PAGE_SIZE - offset); ++ ++ sg_set_page(sg + i, vmalloc_to_page(buf), pg_len, offset); ++ buf += pg_len; ++ len -= pg_len; ++ } ++ ++ ret = do_encrypt_sg(tfm, nonce, sg, orig_len); ++ kfree(sg); ++ return ret; ++ } ++} ++ ++int bch2_chacha_encrypt_key(struct bch_key *key, struct nonce nonce, ++ void *buf, size_t len) ++{ ++ struct crypto_sync_skcipher *chacha20 = ++ crypto_alloc_sync_skcipher("chacha20", 0, 0); ++ int ret; ++ ++ ret = PTR_ERR_OR_ZERO(chacha20); ++ if (ret) { ++ pr_err("error requesting chacha20 cipher: %s", bch2_err_str(ret)); ++ return ret; ++ } ++ ++ ret = crypto_skcipher_setkey(&chacha20->base, ++ (void *) key, sizeof(*key)); ++ if (ret) { ++ pr_err("error from crypto_skcipher_setkey(): %s", bch2_err_str(ret)); ++ goto err; ++ } ++ ++ ret = do_encrypt(chacha20, nonce, buf, len); ++err: ++ crypto_free_sync_skcipher(chacha20); ++ return ret; ++} ++ ++static int gen_poly_key(struct bch_fs *c, struct shash_desc *desc, ++ struct nonce nonce) ++{ ++ u8 key[POLY1305_KEY_SIZE]; ++ int ret; ++ ++ nonce.d[3] ^= BCH_NONCE_POLY; ++ ++ memset(key, 0, sizeof(key)); ++ ret = do_encrypt(c->chacha20, nonce, key, sizeof(key)); ++ if (ret) ++ return ret; ++ ++ desc->tfm = c->poly1305; ++ crypto_shash_init(desc); ++ crypto_shash_update(desc, key, sizeof(key)); ++ return 0; ++} ++ ++struct bch_csum bch2_checksum(struct bch_fs *c, unsigned type, ++ struct nonce nonce, const void *data, size_t len) ++{ ++ switch (type) { ++ case BCH_CSUM_none: ++ case BCH_CSUM_crc32c_nonzero: ++ case BCH_CSUM_crc64_nonzero: ++ case BCH_CSUM_crc32c: ++ case BCH_CSUM_xxhash: ++ case BCH_CSUM_crc64: { ++ struct bch2_checksum_state state; ++ ++ state.type = type; ++ ++ bch2_checksum_init(&state); ++ bch2_checksum_update(&state, data, len); ++ ++ return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) }; ++ } ++ ++ case BCH_CSUM_chacha20_poly1305_80: ++ case BCH_CSUM_chacha20_poly1305_128: { ++ SHASH_DESC_ON_STACK(desc, c->poly1305); ++ u8 digest[POLY1305_DIGEST_SIZE]; ++ struct bch_csum ret = { 0 }; ++ ++ gen_poly_key(c, desc, nonce); ++ ++ crypto_shash_update(desc, data, len); ++ crypto_shash_final(desc, digest); ++ ++ memcpy(&ret, digest, bch_crc_bytes[type]); ++ return ret; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++int bch2_encrypt(struct bch_fs *c, unsigned type, ++ struct nonce nonce, void *data, size_t len) ++{ ++ if (!bch2_csum_type_is_encryption(type)) ++ return 0; ++ ++ return do_encrypt(c->chacha20, nonce, data, len); ++} ++ ++static struct bch_csum __bch2_checksum_bio(struct bch_fs *c, unsigned type, ++ struct nonce nonce, struct bio *bio, ++ struct bvec_iter *iter) ++{ ++ struct bio_vec bv; ++ ++ switch (type) { ++ case BCH_CSUM_none: ++ return (struct bch_csum) { 0 }; ++ case BCH_CSUM_crc32c_nonzero: ++ case BCH_CSUM_crc64_nonzero: ++ case BCH_CSUM_crc32c: ++ case BCH_CSUM_xxhash: ++ case BCH_CSUM_crc64: { ++ struct bch2_checksum_state state; ++ ++ state.type = type; ++ bch2_checksum_init(&state); ++ ++#ifdef CONFIG_HIGHMEM ++ __bio_for_each_segment(bv, bio, *iter, *iter) { ++ void *p = kmap_local_page(bv.bv_page) + bv.bv_offset; ++ ++ bch2_checksum_update(&state, p, bv.bv_len); ++ kunmap_local(p); ++ } ++#else ++ __bio_for_each_bvec(bv, bio, *iter, *iter) ++ bch2_checksum_update(&state, page_address(bv.bv_page) + bv.bv_offset, ++ bv.bv_len); ++#endif ++ return (struct bch_csum) { .lo = cpu_to_le64(bch2_checksum_final(&state)) }; ++ } ++ ++ case BCH_CSUM_chacha20_poly1305_80: ++ case BCH_CSUM_chacha20_poly1305_128: { ++ SHASH_DESC_ON_STACK(desc, c->poly1305); ++ u8 digest[POLY1305_DIGEST_SIZE]; ++ struct bch_csum ret = { 0 }; ++ ++ gen_poly_key(c, desc, nonce); ++ ++#ifdef CONFIG_HIGHMEM ++ __bio_for_each_segment(bv, bio, *iter, *iter) { ++ void *p = kmap_local_page(bv.bv_page) + bv.bv_offset; ++ ++ crypto_shash_update(desc, p, bv.bv_len); ++ kunmap_local(p); ++ } ++#else ++ __bio_for_each_bvec(bv, bio, *iter, *iter) ++ crypto_shash_update(desc, ++ page_address(bv.bv_page) + bv.bv_offset, ++ bv.bv_len); ++#endif ++ crypto_shash_final(desc, digest); ++ ++ memcpy(&ret, digest, bch_crc_bytes[type]); ++ return ret; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++struct bch_csum bch2_checksum_bio(struct bch_fs *c, unsigned type, ++ struct nonce nonce, struct bio *bio) ++{ ++ struct bvec_iter iter = bio->bi_iter; ++ ++ return __bch2_checksum_bio(c, type, nonce, bio, &iter); ++} ++ ++int __bch2_encrypt_bio(struct bch_fs *c, unsigned type, ++ struct nonce nonce, struct bio *bio) ++{ ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ struct scatterlist sgl[16], *sg = sgl; ++ size_t bytes = 0; ++ int ret = 0; ++ ++ if (!bch2_csum_type_is_encryption(type)) ++ return 0; ++ ++ sg_init_table(sgl, ARRAY_SIZE(sgl)); ++ ++ bio_for_each_segment(bv, bio, iter) { ++ if (sg == sgl + ARRAY_SIZE(sgl)) { ++ sg_mark_end(sg - 1); ++ ++ ret = do_encrypt_sg(c->chacha20, nonce, sgl, bytes); ++ if (ret) ++ return ret; ++ ++ nonce = nonce_add(nonce, bytes); ++ bytes = 0; ++ ++ sg_init_table(sgl, ARRAY_SIZE(sgl)); ++ sg = sgl; ++ } ++ ++ sg_set_page(sg++, bv.bv_page, bv.bv_len, bv.bv_offset); ++ bytes += bv.bv_len; ++ } ++ ++ sg_mark_end(sg - 1); ++ return do_encrypt_sg(c->chacha20, nonce, sgl, bytes); ++} ++ ++struct bch_csum bch2_checksum_merge(unsigned type, struct bch_csum a, ++ struct bch_csum b, size_t b_len) ++{ ++ struct bch2_checksum_state state; ++ ++ state.type = type; ++ bch2_checksum_init(&state); ++ state.seed = le64_to_cpu(a.lo); ++ ++ BUG_ON(!bch2_checksum_mergeable(type)); ++ ++ while (b_len) { ++ unsigned page_len = min_t(unsigned, b_len, PAGE_SIZE); ++ ++ bch2_checksum_update(&state, ++ page_address(ZERO_PAGE(0)), page_len); ++ b_len -= page_len; ++ } ++ a.lo = cpu_to_le64(bch2_checksum_final(&state)); ++ a.lo ^= b.lo; ++ a.hi ^= b.hi; ++ return a; ++} ++ ++int bch2_rechecksum_bio(struct bch_fs *c, struct bio *bio, ++ struct bversion version, ++ struct bch_extent_crc_unpacked crc_old, ++ struct bch_extent_crc_unpacked *crc_a, ++ struct bch_extent_crc_unpacked *crc_b, ++ unsigned len_a, unsigned len_b, ++ unsigned new_csum_type) ++{ ++ struct bvec_iter iter = bio->bi_iter; ++ struct nonce nonce = extent_nonce(version, crc_old); ++ struct bch_csum merged = { 0 }; ++ struct crc_split { ++ struct bch_extent_crc_unpacked *crc; ++ unsigned len; ++ unsigned csum_type; ++ struct bch_csum csum; ++ } splits[3] = { ++ { crc_a, len_a, new_csum_type, { 0 }}, ++ { crc_b, len_b, new_csum_type, { 0 } }, ++ { NULL, bio_sectors(bio) - len_a - len_b, new_csum_type, { 0 } }, ++ }, *i; ++ bool mergeable = crc_old.csum_type == new_csum_type && ++ bch2_checksum_mergeable(new_csum_type); ++ unsigned crc_nonce = crc_old.nonce; ++ ++ BUG_ON(len_a + len_b > bio_sectors(bio)); ++ BUG_ON(crc_old.uncompressed_size != bio_sectors(bio)); ++ BUG_ON(crc_is_compressed(crc_old)); ++ BUG_ON(bch2_csum_type_is_encryption(crc_old.csum_type) != ++ bch2_csum_type_is_encryption(new_csum_type)); ++ ++ for (i = splits; i < splits + ARRAY_SIZE(splits); i++) { ++ iter.bi_size = i->len << 9; ++ if (mergeable || i->crc) ++ i->csum = __bch2_checksum_bio(c, i->csum_type, ++ nonce, bio, &iter); ++ else ++ bio_advance_iter(bio, &iter, i->len << 9); ++ nonce = nonce_add(nonce, i->len << 9); ++ } ++ ++ if (mergeable) ++ for (i = splits; i < splits + ARRAY_SIZE(splits); i++) ++ merged = bch2_checksum_merge(new_csum_type, merged, ++ i->csum, i->len << 9); ++ else ++ merged = bch2_checksum_bio(c, crc_old.csum_type, ++ extent_nonce(version, crc_old), bio); ++ ++ if (bch2_crc_cmp(merged, crc_old.csum) && !c->opts.no_data_io) { ++ bch_err(c, "checksum error in %s() (memory corruption or bug?)\n" ++ "expected %0llx:%0llx got %0llx:%0llx (old type %s new type %s)", ++ __func__, ++ crc_old.csum.hi, ++ crc_old.csum.lo, ++ merged.hi, ++ merged.lo, ++ bch2_csum_types[crc_old.csum_type], ++ bch2_csum_types[new_csum_type]); ++ return -EIO; ++ } ++ ++ for (i = splits; i < splits + ARRAY_SIZE(splits); i++) { ++ if (i->crc) ++ *i->crc = (struct bch_extent_crc_unpacked) { ++ .csum_type = i->csum_type, ++ .compression_type = crc_old.compression_type, ++ .compressed_size = i->len, ++ .uncompressed_size = i->len, ++ .offset = 0, ++ .live_size = i->len, ++ .nonce = crc_nonce, ++ .csum = i->csum, ++ }; ++ ++ if (bch2_csum_type_is_encryption(new_csum_type)) ++ crc_nonce += i->len; ++ } ++ ++ return 0; ++} ++ ++/* BCH_SB_FIELD_crypt: */ ++ ++static int bch2_sb_crypt_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); ++ ++ if (vstruct_bytes(&crypt->field) < sizeof(*crypt)) { ++ prt_printf(err, "wrong size (got %zu should be %zu)", ++ vstruct_bytes(&crypt->field), sizeof(*crypt)); ++ return -BCH_ERR_invalid_sb_crypt; ++ } ++ ++ if (BCH_CRYPT_KDF_TYPE(crypt)) { ++ prt_printf(err, "bad kdf type %llu", BCH_CRYPT_KDF_TYPE(crypt)); ++ return -BCH_ERR_invalid_sb_crypt; ++ } ++ ++ return 0; ++} ++ ++static void bch2_sb_crypt_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_crypt *crypt = field_to_type(f, crypt); ++ ++ prt_printf(out, "KFD: %llu", BCH_CRYPT_KDF_TYPE(crypt)); ++ prt_newline(out); ++ prt_printf(out, "scrypt n: %llu", BCH_KDF_SCRYPT_N(crypt)); ++ prt_newline(out); ++ prt_printf(out, "scrypt r: %llu", BCH_KDF_SCRYPT_R(crypt)); ++ prt_newline(out); ++ prt_printf(out, "scrypt p: %llu", BCH_KDF_SCRYPT_P(crypt)); ++ prt_newline(out); ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_crypt = { ++ .validate = bch2_sb_crypt_validate, ++ .to_text = bch2_sb_crypt_to_text, ++}; ++ ++#ifdef __KERNEL__ ++static int __bch2_request_key(char *key_description, struct bch_key *key) ++{ ++ struct key *keyring_key; ++ const struct user_key_payload *ukp; ++ int ret; ++ ++ keyring_key = request_key(&key_type_user, key_description, NULL); ++ if (IS_ERR(keyring_key)) ++ return PTR_ERR(keyring_key); ++ ++ down_read(&keyring_key->sem); ++ ukp = dereference_key_locked(keyring_key); ++ if (ukp->datalen == sizeof(*key)) { ++ memcpy(key, ukp->data, ukp->datalen); ++ ret = 0; ++ } else { ++ ret = -EINVAL; ++ } ++ up_read(&keyring_key->sem); ++ key_put(keyring_key); ++ ++ return ret; ++} ++#else ++#include ++ ++static int __bch2_request_key(char *key_description, struct bch_key *key) ++{ ++ key_serial_t key_id; ++ ++ key_id = request_key("user", key_description, NULL, ++ KEY_SPEC_SESSION_KEYRING); ++ if (key_id >= 0) ++ goto got_key; ++ ++ key_id = request_key("user", key_description, NULL, ++ KEY_SPEC_USER_KEYRING); ++ if (key_id >= 0) ++ goto got_key; ++ ++ key_id = request_key("user", key_description, NULL, ++ KEY_SPEC_USER_SESSION_KEYRING); ++ if (key_id >= 0) ++ goto got_key; ++ ++ return -errno; ++got_key: ++ ++ if (keyctl_read(key_id, (void *) key, sizeof(*key)) != sizeof(*key)) ++ return -1; ++ ++ return 0; ++} ++ ++#include "../crypto.h" ++#endif ++ ++int bch2_request_key(struct bch_sb *sb, struct bch_key *key) ++{ ++ struct printbuf key_description = PRINTBUF; ++ int ret; ++ ++ prt_printf(&key_description, "bcachefs:"); ++ pr_uuid(&key_description, sb->user_uuid.b); ++ ++ ret = __bch2_request_key(key_description.buf, key); ++ printbuf_exit(&key_description); ++ ++#ifndef __KERNEL__ ++ if (ret) { ++ char *passphrase = read_passphrase("Enter passphrase: "); ++ struct bch_encrypted_key sb_key; ++ ++ bch2_passphrase_check(sb, passphrase, ++ key, &sb_key); ++ ret = 0; ++ } ++#endif ++ ++ /* stash with memfd, pass memfd fd to mount */ ++ ++ return ret; ++} ++ ++#ifndef __KERNEL__ ++int bch2_revoke_key(struct bch_sb *sb) ++{ ++ key_serial_t key_id; ++ struct printbuf key_description = PRINTBUF; ++ ++ prt_printf(&key_description, "bcachefs:"); ++ pr_uuid(&key_description, sb->user_uuid.b); ++ ++ key_id = request_key("user", key_description.buf, NULL, KEY_SPEC_USER_KEYRING); ++ printbuf_exit(&key_description); ++ if (key_id < 0) ++ return errno; ++ ++ keyctl_revoke(key_id); ++ ++ return 0; ++} ++#endif ++ ++int bch2_decrypt_sb_key(struct bch_fs *c, ++ struct bch_sb_field_crypt *crypt, ++ struct bch_key *key) ++{ ++ struct bch_encrypted_key sb_key = crypt->key; ++ struct bch_key user_key; ++ int ret = 0; ++ ++ /* is key encrypted? */ ++ if (!bch2_key_is_encrypted(&sb_key)) ++ goto out; ++ ++ ret = bch2_request_key(c->disk_sb.sb, &user_key); ++ if (ret) { ++ bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret)); ++ goto err; ++ } ++ ++ /* decrypt real key: */ ++ ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c), ++ &sb_key, sizeof(sb_key)); ++ if (ret) ++ goto err; ++ ++ if (bch2_key_is_encrypted(&sb_key)) { ++ bch_err(c, "incorrect encryption key"); ++ ret = -EINVAL; ++ goto err; ++ } ++out: ++ *key = sb_key.key; ++err: ++ memzero_explicit(&sb_key, sizeof(sb_key)); ++ memzero_explicit(&user_key, sizeof(user_key)); ++ return ret; ++} ++ ++static int bch2_alloc_ciphers(struct bch_fs *c) ++{ ++ int ret; ++ ++ if (!c->chacha20) ++ c->chacha20 = crypto_alloc_sync_skcipher("chacha20", 0, 0); ++ ret = PTR_ERR_OR_ZERO(c->chacha20); ++ ++ if (ret) { ++ bch_err(c, "error requesting chacha20 module: %s", bch2_err_str(ret)); ++ return ret; ++ } ++ ++ if (!c->poly1305) ++ c->poly1305 = crypto_alloc_shash("poly1305", 0, 0); ++ ret = PTR_ERR_OR_ZERO(c->poly1305); ++ ++ if (ret) { ++ bch_err(c, "error requesting poly1305 module: %s", bch2_err_str(ret)); ++ return ret; ++ } ++ ++ return 0; ++} ++ ++int bch2_disable_encryption(struct bch_fs *c) ++{ ++ struct bch_sb_field_crypt *crypt; ++ struct bch_key key; ++ int ret = -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ ++ crypt = bch2_sb_field_get(c->disk_sb.sb, crypt); ++ if (!crypt) ++ goto out; ++ ++ /* is key encrypted? */ ++ ret = 0; ++ if (bch2_key_is_encrypted(&crypt->key)) ++ goto out; ++ ++ ret = bch2_decrypt_sb_key(c, crypt, &key); ++ if (ret) ++ goto out; ++ ++ crypt->key.magic = cpu_to_le64(BCH_KEY_MAGIC); ++ crypt->key.key = key; ++ ++ SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 0); ++ bch2_write_super(c); ++out: ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++int bch2_enable_encryption(struct bch_fs *c, bool keyed) ++{ ++ struct bch_encrypted_key key; ++ struct bch_key user_key; ++ struct bch_sb_field_crypt *crypt; ++ int ret = -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ ++ /* Do we already have an encryption key? */ ++ if (bch2_sb_field_get(c->disk_sb.sb, crypt)) ++ goto err; ++ ++ ret = bch2_alloc_ciphers(c); ++ if (ret) ++ goto err; ++ ++ key.magic = cpu_to_le64(BCH_KEY_MAGIC); ++ get_random_bytes(&key.key, sizeof(key.key)); ++ ++ if (keyed) { ++ ret = bch2_request_key(c->disk_sb.sb, &user_key); ++ if (ret) { ++ bch_err(c, "error requesting encryption key: %s", bch2_err_str(ret)); ++ goto err; ++ } ++ ++ ret = bch2_chacha_encrypt_key(&user_key, bch2_sb_key_nonce(c), ++ &key, sizeof(key)); ++ if (ret) ++ goto err; ++ } ++ ++ ret = crypto_skcipher_setkey(&c->chacha20->base, ++ (void *) &key.key, sizeof(key.key)); ++ if (ret) ++ goto err; ++ ++ crypt = bch2_sb_field_resize(&c->disk_sb, crypt, ++ sizeof(*crypt) / sizeof(u64)); ++ if (!crypt) { ++ ret = -BCH_ERR_ENOSPC_sb_crypt; ++ goto err; ++ } ++ ++ crypt->key = key; ++ ++ /* write superblock */ ++ SET_BCH_SB_ENCRYPTION_TYPE(c->disk_sb.sb, 1); ++ bch2_write_super(c); ++err: ++ mutex_unlock(&c->sb_lock); ++ memzero_explicit(&user_key, sizeof(user_key)); ++ memzero_explicit(&key, sizeof(key)); ++ return ret; ++} ++ ++void bch2_fs_encryption_exit(struct bch_fs *c) ++{ ++ if (!IS_ERR_OR_NULL(c->poly1305)) ++ crypto_free_shash(c->poly1305); ++ if (!IS_ERR_OR_NULL(c->chacha20)) ++ crypto_free_sync_skcipher(c->chacha20); ++ if (!IS_ERR_OR_NULL(c->sha256)) ++ crypto_free_shash(c->sha256); ++} ++ ++int bch2_fs_encryption_init(struct bch_fs *c) ++{ ++ struct bch_sb_field_crypt *crypt; ++ struct bch_key key; ++ int ret = 0; ++ ++ c->sha256 = crypto_alloc_shash("sha256", 0, 0); ++ ret = PTR_ERR_OR_ZERO(c->sha256); ++ if (ret) { ++ bch_err(c, "error requesting sha256 module: %s", bch2_err_str(ret)); ++ goto out; ++ } ++ ++ crypt = bch2_sb_field_get(c->disk_sb.sb, crypt); ++ if (!crypt) ++ goto out; ++ ++ ret = bch2_alloc_ciphers(c); ++ if (ret) ++ goto out; ++ ++ ret = bch2_decrypt_sb_key(c, crypt, &key); ++ if (ret) ++ goto out; ++ ++ ret = crypto_skcipher_setkey(&c->chacha20->base, ++ (void *) &key.key, sizeof(key.key)); ++ if (ret) ++ goto out; ++out: ++ memzero_explicit(&key, sizeof(key)); ++ return ret; ++} +diff --git a/fs/bcachefs/checksum.h b/fs/bcachefs/checksum.h +new file mode 100644 +index 000000000000..13998388c545 +--- /dev/null ++++ b/fs/bcachefs/checksum.h +@@ -0,0 +1,213 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_CHECKSUM_H ++#define _BCACHEFS_CHECKSUM_H ++ ++#include "bcachefs.h" ++#include "extents_types.h" ++#include "super-io.h" ++ ++#include ++#include ++ ++static inline bool bch2_checksum_mergeable(unsigned type) ++{ ++ ++ switch (type) { ++ case BCH_CSUM_none: ++ case BCH_CSUM_crc32c: ++ case BCH_CSUM_crc64: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++struct bch_csum bch2_checksum_merge(unsigned, struct bch_csum, ++ struct bch_csum, size_t); ++ ++#define BCH_NONCE_EXTENT cpu_to_le32(1 << 28) ++#define BCH_NONCE_BTREE cpu_to_le32(2 << 28) ++#define BCH_NONCE_JOURNAL cpu_to_le32(3 << 28) ++#define BCH_NONCE_PRIO cpu_to_le32(4 << 28) ++#define BCH_NONCE_POLY cpu_to_le32(1 << 31) ++ ++struct bch_csum bch2_checksum(struct bch_fs *, unsigned, struct nonce, ++ const void *, size_t); ++ ++/* ++ * This is used for various on disk data structures - bch_sb, prio_set, bset, ++ * jset: The checksum is _always_ the first field of these structs ++ */ ++#define csum_vstruct(_c, _type, _nonce, _i) \ ++({ \ ++ const void *_start = ((const void *) (_i)) + sizeof((_i)->csum);\ ++ \ ++ bch2_checksum(_c, _type, _nonce, _start, vstruct_end(_i) - _start);\ ++}) ++ ++int bch2_chacha_encrypt_key(struct bch_key *, struct nonce, void *, size_t); ++int bch2_request_key(struct bch_sb *, struct bch_key *); ++#ifndef __KERNEL__ ++int bch2_revoke_key(struct bch_sb *); ++#endif ++ ++int bch2_encrypt(struct bch_fs *, unsigned, struct nonce, ++ void *data, size_t); ++ ++struct bch_csum bch2_checksum_bio(struct bch_fs *, unsigned, ++ struct nonce, struct bio *); ++ ++int bch2_rechecksum_bio(struct bch_fs *, struct bio *, struct bversion, ++ struct bch_extent_crc_unpacked, ++ struct bch_extent_crc_unpacked *, ++ struct bch_extent_crc_unpacked *, ++ unsigned, unsigned, unsigned); ++ ++int __bch2_encrypt_bio(struct bch_fs *, unsigned, ++ struct nonce, struct bio *); ++ ++static inline int bch2_encrypt_bio(struct bch_fs *c, unsigned type, ++ struct nonce nonce, struct bio *bio) ++{ ++ return bch2_csum_type_is_encryption(type) ++ ? __bch2_encrypt_bio(c, type, nonce, bio) ++ : 0; ++} ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_crypt; ++ ++int bch2_decrypt_sb_key(struct bch_fs *, struct bch_sb_field_crypt *, ++ struct bch_key *); ++ ++int bch2_disable_encryption(struct bch_fs *); ++int bch2_enable_encryption(struct bch_fs *, bool); ++ ++void bch2_fs_encryption_exit(struct bch_fs *); ++int bch2_fs_encryption_init(struct bch_fs *); ++ ++static inline enum bch_csum_type bch2_csum_opt_to_type(enum bch_csum_opts type, ++ bool data) ++{ ++ switch (type) { ++ case BCH_CSUM_OPT_none: ++ return BCH_CSUM_none; ++ case BCH_CSUM_OPT_crc32c: ++ return data ? BCH_CSUM_crc32c : BCH_CSUM_crc32c_nonzero; ++ case BCH_CSUM_OPT_crc64: ++ return data ? BCH_CSUM_crc64 : BCH_CSUM_crc64_nonzero; ++ case BCH_CSUM_OPT_xxhash: ++ return BCH_CSUM_xxhash; ++ default: ++ BUG(); ++ } ++} ++ ++static inline enum bch_csum_type bch2_data_checksum_type(struct bch_fs *c, ++ struct bch_io_opts opts) ++{ ++ if (opts.nocow) ++ return 0; ++ ++ if (c->sb.encryption_type) ++ return c->opts.wide_macs ++ ? BCH_CSUM_chacha20_poly1305_128 ++ : BCH_CSUM_chacha20_poly1305_80; ++ ++ return bch2_csum_opt_to_type(opts.data_checksum, true); ++} ++ ++static inline enum bch_csum_type bch2_meta_checksum_type(struct bch_fs *c) ++{ ++ if (c->sb.encryption_type) ++ return BCH_CSUM_chacha20_poly1305_128; ++ ++ return bch2_csum_opt_to_type(c->opts.metadata_checksum, false); ++} ++ ++static inline bool bch2_checksum_type_valid(const struct bch_fs *c, ++ unsigned type) ++{ ++ if (type >= BCH_CSUM_NR) ++ return false; ++ ++ if (bch2_csum_type_is_encryption(type) && !c->chacha20) ++ return false; ++ ++ return true; ++} ++ ++/* returns true if not equal */ ++static inline bool bch2_crc_cmp(struct bch_csum l, struct bch_csum r) ++{ ++ /* ++ * XXX: need some way of preventing the compiler from optimizing this ++ * into a form that isn't constant time.. ++ */ ++ return ((l.lo ^ r.lo) | (l.hi ^ r.hi)) != 0; ++} ++ ++/* for skipping ahead and encrypting/decrypting at an offset: */ ++static inline struct nonce nonce_add(struct nonce nonce, unsigned offset) ++{ ++ EBUG_ON(offset & (CHACHA_BLOCK_SIZE - 1)); ++ ++ le32_add_cpu(&nonce.d[0], offset / CHACHA_BLOCK_SIZE); ++ return nonce; ++} ++ ++static inline struct nonce null_nonce(void) ++{ ++ struct nonce ret; ++ ++ memset(&ret, 0, sizeof(ret)); ++ return ret; ++} ++ ++static inline struct nonce extent_nonce(struct bversion version, ++ struct bch_extent_crc_unpacked crc) ++{ ++ unsigned compression_type = crc_is_compressed(crc) ++ ? crc.compression_type ++ : 0; ++ unsigned size = compression_type ? crc.uncompressed_size : 0; ++ struct nonce nonce = (struct nonce) {{ ++ [0] = cpu_to_le32(size << 22), ++ [1] = cpu_to_le32(version.lo), ++ [2] = cpu_to_le32(version.lo >> 32), ++ [3] = cpu_to_le32(version.hi| ++ (compression_type << 24))^BCH_NONCE_EXTENT, ++ }}; ++ ++ return nonce_add(nonce, crc.nonce << 9); ++} ++ ++static inline bool bch2_key_is_encrypted(struct bch_encrypted_key *key) ++{ ++ return le64_to_cpu(key->magic) != BCH_KEY_MAGIC; ++} ++ ++static inline struct nonce __bch2_sb_key_nonce(struct bch_sb *sb) ++{ ++ __le64 magic = __bch2_sb_magic(sb); ++ ++ return (struct nonce) {{ ++ [0] = 0, ++ [1] = 0, ++ [2] = ((__le32 *) &magic)[0], ++ [3] = ((__le32 *) &magic)[1], ++ }}; ++} ++ ++static inline struct nonce bch2_sb_key_nonce(struct bch_fs *c) ++{ ++ __le64 magic = bch2_sb_magic(c); ++ ++ return (struct nonce) {{ ++ [0] = 0, ++ [1] = 0, ++ [2] = ((__le32 *) &magic)[0], ++ [3] = ((__le32 *) &magic)[1], ++ }}; ++} ++ ++#endif /* _BCACHEFS_CHECKSUM_H */ +diff --git a/fs/bcachefs/clock.c b/fs/bcachefs/clock.c +new file mode 100644 +index 000000000000..f41889093a2c +--- /dev/null ++++ b/fs/bcachefs/clock.c +@@ -0,0 +1,193 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "clock.h" ++ ++#include ++#include ++#include ++ ++static inline long io_timer_cmp(io_timer_heap *h, ++ struct io_timer *l, ++ struct io_timer *r) ++{ ++ return l->expire - r->expire; ++} ++ ++void bch2_io_timer_add(struct io_clock *clock, struct io_timer *timer) ++{ ++ size_t i; ++ ++ spin_lock(&clock->timer_lock); ++ ++ if (time_after_eq((unsigned long) atomic64_read(&clock->now), ++ timer->expire)) { ++ spin_unlock(&clock->timer_lock); ++ timer->fn(timer); ++ return; ++ } ++ ++ for (i = 0; i < clock->timers.used; i++) ++ if (clock->timers.data[i] == timer) ++ goto out; ++ ++ BUG_ON(!heap_add(&clock->timers, timer, io_timer_cmp, NULL)); ++out: ++ spin_unlock(&clock->timer_lock); ++} ++ ++void bch2_io_timer_del(struct io_clock *clock, struct io_timer *timer) ++{ ++ size_t i; ++ ++ spin_lock(&clock->timer_lock); ++ ++ for (i = 0; i < clock->timers.used; i++) ++ if (clock->timers.data[i] == timer) { ++ heap_del(&clock->timers, i, io_timer_cmp, NULL); ++ break; ++ } ++ ++ spin_unlock(&clock->timer_lock); ++} ++ ++struct io_clock_wait { ++ struct io_timer io_timer; ++ struct timer_list cpu_timer; ++ struct task_struct *task; ++ int expired; ++}; ++ ++static void io_clock_wait_fn(struct io_timer *timer) ++{ ++ struct io_clock_wait *wait = container_of(timer, ++ struct io_clock_wait, io_timer); ++ ++ wait->expired = 1; ++ wake_up_process(wait->task); ++} ++ ++static void io_clock_cpu_timeout(struct timer_list *timer) ++{ ++ struct io_clock_wait *wait = container_of(timer, ++ struct io_clock_wait, cpu_timer); ++ ++ wait->expired = 1; ++ wake_up_process(wait->task); ++} ++ ++void bch2_io_clock_schedule_timeout(struct io_clock *clock, unsigned long until) ++{ ++ struct io_clock_wait wait; ++ ++ /* XXX: calculate sleep time rigorously */ ++ wait.io_timer.expire = until; ++ wait.io_timer.fn = io_clock_wait_fn; ++ wait.task = current; ++ wait.expired = 0; ++ bch2_io_timer_add(clock, &wait.io_timer); ++ ++ schedule(); ++ ++ bch2_io_timer_del(clock, &wait.io_timer); ++} ++ ++void bch2_kthread_io_clock_wait(struct io_clock *clock, ++ unsigned long io_until, ++ unsigned long cpu_timeout) ++{ ++ bool kthread = (current->flags & PF_KTHREAD) != 0; ++ struct io_clock_wait wait; ++ ++ wait.io_timer.expire = io_until; ++ wait.io_timer.fn = io_clock_wait_fn; ++ wait.task = current; ++ wait.expired = 0; ++ bch2_io_timer_add(clock, &wait.io_timer); ++ ++ timer_setup_on_stack(&wait.cpu_timer, io_clock_cpu_timeout, 0); ++ ++ if (cpu_timeout != MAX_SCHEDULE_TIMEOUT) ++ mod_timer(&wait.cpu_timer, cpu_timeout + jiffies); ++ ++ while (1) { ++ set_current_state(TASK_INTERRUPTIBLE); ++ if (kthread && kthread_should_stop()) ++ break; ++ ++ if (wait.expired) ++ break; ++ ++ schedule(); ++ try_to_freeze(); ++ } ++ ++ __set_current_state(TASK_RUNNING); ++ del_timer_sync(&wait.cpu_timer); ++ destroy_timer_on_stack(&wait.cpu_timer); ++ bch2_io_timer_del(clock, &wait.io_timer); ++} ++ ++static struct io_timer *get_expired_timer(struct io_clock *clock, ++ unsigned long now) ++{ ++ struct io_timer *ret = NULL; ++ ++ spin_lock(&clock->timer_lock); ++ ++ if (clock->timers.used && ++ time_after_eq(now, clock->timers.data[0]->expire)) ++ heap_pop(&clock->timers, ret, io_timer_cmp, NULL); ++ ++ spin_unlock(&clock->timer_lock); ++ ++ return ret; ++} ++ ++void __bch2_increment_clock(struct io_clock *clock, unsigned sectors) ++{ ++ struct io_timer *timer; ++ unsigned long now = atomic64_add_return(sectors, &clock->now); ++ ++ while ((timer = get_expired_timer(clock, now))) ++ timer->fn(timer); ++} ++ ++void bch2_io_timers_to_text(struct printbuf *out, struct io_clock *clock) ++{ ++ unsigned long now; ++ unsigned i; ++ ++ out->atomic++; ++ spin_lock(&clock->timer_lock); ++ now = atomic64_read(&clock->now); ++ ++ for (i = 0; i < clock->timers.used; i++) ++ prt_printf(out, "%ps:\t%li\n", ++ clock->timers.data[i]->fn, ++ clock->timers.data[i]->expire - now); ++ spin_unlock(&clock->timer_lock); ++ --out->atomic; ++} ++ ++void bch2_io_clock_exit(struct io_clock *clock) ++{ ++ free_heap(&clock->timers); ++ free_percpu(clock->pcpu_buf); ++} ++ ++int bch2_io_clock_init(struct io_clock *clock) ++{ ++ atomic64_set(&clock->now, 0); ++ spin_lock_init(&clock->timer_lock); ++ ++ clock->max_slop = IO_CLOCK_PCPU_SECTORS * num_possible_cpus(); ++ ++ clock->pcpu_buf = alloc_percpu(*clock->pcpu_buf); ++ if (!clock->pcpu_buf) ++ return -BCH_ERR_ENOMEM_io_clock_init; ++ ++ if (!init_heap(&clock->timers, NR_IO_TIMERS, GFP_KERNEL)) ++ return -BCH_ERR_ENOMEM_io_clock_init; ++ ++ return 0; ++} +diff --git a/fs/bcachefs/clock.h b/fs/bcachefs/clock.h +new file mode 100644 +index 000000000000..70a0f7436c84 +--- /dev/null ++++ b/fs/bcachefs/clock.h +@@ -0,0 +1,38 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_CLOCK_H ++#define _BCACHEFS_CLOCK_H ++ ++void bch2_io_timer_add(struct io_clock *, struct io_timer *); ++void bch2_io_timer_del(struct io_clock *, struct io_timer *); ++void bch2_kthread_io_clock_wait(struct io_clock *, unsigned long, ++ unsigned long); ++ ++void __bch2_increment_clock(struct io_clock *, unsigned); ++ ++static inline void bch2_increment_clock(struct bch_fs *c, unsigned sectors, ++ int rw) ++{ ++ struct io_clock *clock = &c->io_clock[rw]; ++ ++ if (unlikely(this_cpu_add_return(*clock->pcpu_buf, sectors) >= ++ IO_CLOCK_PCPU_SECTORS)) ++ __bch2_increment_clock(clock, this_cpu_xchg(*clock->pcpu_buf, 0)); ++} ++ ++void bch2_io_clock_schedule_timeout(struct io_clock *, unsigned long); ++ ++#define bch2_kthread_wait_event_ioclock_timeout(condition, clock, timeout)\ ++({ \ ++ long __ret = timeout; \ ++ might_sleep(); \ ++ if (!___wait_cond_timeout(condition)) \ ++ __ret = __wait_event_timeout(wq, condition, timeout); \ ++ __ret; \ ++}) ++ ++void bch2_io_timers_to_text(struct printbuf *, struct io_clock *); ++ ++void bch2_io_clock_exit(struct io_clock *); ++int bch2_io_clock_init(struct io_clock *); ++ ++#endif /* _BCACHEFS_CLOCK_H */ +diff --git a/fs/bcachefs/clock_types.h b/fs/bcachefs/clock_types.h +new file mode 100644 +index 000000000000..5fae0012d808 +--- /dev/null ++++ b/fs/bcachefs/clock_types.h +@@ -0,0 +1,37 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_CLOCK_TYPES_H ++#define _BCACHEFS_CLOCK_TYPES_H ++ ++#include "util.h" ++ ++#define NR_IO_TIMERS (BCH_SB_MEMBERS_MAX * 3) ++ ++/* ++ * Clocks/timers in units of sectors of IO: ++ * ++ * Note - they use percpu batching, so they're only approximate. ++ */ ++ ++struct io_timer; ++typedef void (*io_timer_fn)(struct io_timer *); ++ ++struct io_timer { ++ io_timer_fn fn; ++ unsigned long expire; ++}; ++ ++/* Amount to buffer up on a percpu counter */ ++#define IO_CLOCK_PCPU_SECTORS 128 ++ ++typedef HEAP(struct io_timer *) io_timer_heap; ++ ++struct io_clock { ++ atomic64_t now; ++ u16 __percpu *pcpu_buf; ++ unsigned max_slop; ++ ++ spinlock_t timer_lock; ++ io_timer_heap timers; ++}; ++ ++#endif /* _BCACHEFS_CLOCK_TYPES_H */ +diff --git a/fs/bcachefs/compress.c b/fs/bcachefs/compress.c +new file mode 100644 +index 000000000000..1480b64547b0 +--- /dev/null ++++ b/fs/bcachefs/compress.c +@@ -0,0 +1,710 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "checksum.h" ++#include "compress.h" ++#include "extents.h" ++#include "super-io.h" ++ ++#include ++#include ++#include ++ ++/* Bounce buffer: */ ++struct bbuf { ++ void *b; ++ enum { ++ BB_NONE, ++ BB_VMAP, ++ BB_KMALLOC, ++ BB_MEMPOOL, ++ } type; ++ int rw; ++}; ++ ++static struct bbuf __bounce_alloc(struct bch_fs *c, unsigned size, int rw) ++{ ++ void *b; ++ ++ BUG_ON(size > c->opts.encoded_extent_max); ++ ++ b = kmalloc(size, GFP_NOFS|__GFP_NOWARN); ++ if (b) ++ return (struct bbuf) { .b = b, .type = BB_KMALLOC, .rw = rw }; ++ ++ b = mempool_alloc(&c->compression_bounce[rw], GFP_NOFS); ++ if (b) ++ return (struct bbuf) { .b = b, .type = BB_MEMPOOL, .rw = rw }; ++ ++ BUG(); ++} ++ ++static bool bio_phys_contig(struct bio *bio, struct bvec_iter start) ++{ ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ void *expected_start = NULL; ++ ++ __bio_for_each_bvec(bv, bio, iter, start) { ++ if (expected_start && ++ expected_start != page_address(bv.bv_page) + bv.bv_offset) ++ return false; ++ ++ expected_start = page_address(bv.bv_page) + ++ bv.bv_offset + bv.bv_len; ++ } ++ ++ return true; ++} ++ ++static struct bbuf __bio_map_or_bounce(struct bch_fs *c, struct bio *bio, ++ struct bvec_iter start, int rw) ++{ ++ struct bbuf ret; ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ unsigned nr_pages = 0; ++ struct page *stack_pages[16]; ++ struct page **pages = NULL; ++ void *data; ++ ++ BUG_ON(start.bi_size > c->opts.encoded_extent_max); ++ ++ if (!PageHighMem(bio_iter_page(bio, start)) && ++ bio_phys_contig(bio, start)) ++ return (struct bbuf) { ++ .b = page_address(bio_iter_page(bio, start)) + ++ bio_iter_offset(bio, start), ++ .type = BB_NONE, .rw = rw ++ }; ++ ++ /* check if we can map the pages contiguously: */ ++ __bio_for_each_segment(bv, bio, iter, start) { ++ if (iter.bi_size != start.bi_size && ++ bv.bv_offset) ++ goto bounce; ++ ++ if (bv.bv_len < iter.bi_size && ++ bv.bv_offset + bv.bv_len < PAGE_SIZE) ++ goto bounce; ++ ++ nr_pages++; ++ } ++ ++ BUG_ON(DIV_ROUND_UP(start.bi_size, PAGE_SIZE) > nr_pages); ++ ++ pages = nr_pages > ARRAY_SIZE(stack_pages) ++ ? kmalloc_array(nr_pages, sizeof(struct page *), GFP_NOFS) ++ : stack_pages; ++ if (!pages) ++ goto bounce; ++ ++ nr_pages = 0; ++ __bio_for_each_segment(bv, bio, iter, start) ++ pages[nr_pages++] = bv.bv_page; ++ ++ data = vmap(pages, nr_pages, VM_MAP, PAGE_KERNEL); ++ if (pages != stack_pages) ++ kfree(pages); ++ ++ if (data) ++ return (struct bbuf) { ++ .b = data + bio_iter_offset(bio, start), ++ .type = BB_VMAP, .rw = rw ++ }; ++bounce: ++ ret = __bounce_alloc(c, start.bi_size, rw); ++ ++ if (rw == READ) ++ memcpy_from_bio(ret.b, bio, start); ++ ++ return ret; ++} ++ ++static struct bbuf bio_map_or_bounce(struct bch_fs *c, struct bio *bio, int rw) ++{ ++ return __bio_map_or_bounce(c, bio, bio->bi_iter, rw); ++} ++ ++static void bio_unmap_or_unbounce(struct bch_fs *c, struct bbuf buf) ++{ ++ switch (buf.type) { ++ case BB_NONE: ++ break; ++ case BB_VMAP: ++ vunmap((void *) ((unsigned long) buf.b & PAGE_MASK)); ++ break; ++ case BB_KMALLOC: ++ kfree(buf.b); ++ break; ++ case BB_MEMPOOL: ++ mempool_free(buf.b, &c->compression_bounce[buf.rw]); ++ break; ++ } ++} ++ ++static inline void zlib_set_workspace(z_stream *strm, void *workspace) ++{ ++#ifdef __KERNEL__ ++ strm->workspace = workspace; ++#endif ++} ++ ++static int __bio_uncompress(struct bch_fs *c, struct bio *src, ++ void *dst_data, struct bch_extent_crc_unpacked crc) ++{ ++ struct bbuf src_data = { NULL }; ++ size_t src_len = src->bi_iter.bi_size; ++ size_t dst_len = crc.uncompressed_size << 9; ++ void *workspace; ++ int ret; ++ ++ src_data = bio_map_or_bounce(c, src, READ); ++ ++ switch (crc.compression_type) { ++ case BCH_COMPRESSION_TYPE_lz4_old: ++ case BCH_COMPRESSION_TYPE_lz4: ++ ret = LZ4_decompress_safe_partial(src_data.b, dst_data, ++ src_len, dst_len, dst_len); ++ if (ret != dst_len) ++ goto err; ++ break; ++ case BCH_COMPRESSION_TYPE_gzip: { ++ z_stream strm = { ++ .next_in = src_data.b, ++ .avail_in = src_len, ++ .next_out = dst_data, ++ .avail_out = dst_len, ++ }; ++ ++ workspace = mempool_alloc(&c->decompress_workspace, GFP_NOFS); ++ ++ zlib_set_workspace(&strm, workspace); ++ zlib_inflateInit2(&strm, -MAX_WBITS); ++ ret = zlib_inflate(&strm, Z_FINISH); ++ ++ mempool_free(workspace, &c->decompress_workspace); ++ ++ if (ret != Z_STREAM_END) ++ goto err; ++ break; ++ } ++ case BCH_COMPRESSION_TYPE_zstd: { ++ ZSTD_DCtx *ctx; ++ size_t real_src_len = le32_to_cpup(src_data.b); ++ ++ if (real_src_len > src_len - 4) ++ goto err; ++ ++ workspace = mempool_alloc(&c->decompress_workspace, GFP_NOFS); ++ ctx = zstd_init_dctx(workspace, zstd_dctx_workspace_bound()); ++ ++ ret = zstd_decompress_dctx(ctx, ++ dst_data, dst_len, ++ src_data.b + 4, real_src_len); ++ ++ mempool_free(workspace, &c->decompress_workspace); ++ ++ if (ret != dst_len) ++ goto err; ++ break; ++ } ++ default: ++ BUG(); ++ } ++ ret = 0; ++out: ++ bio_unmap_or_unbounce(c, src_data); ++ return ret; ++err: ++ ret = -EIO; ++ goto out; ++} ++ ++int bch2_bio_uncompress_inplace(struct bch_fs *c, struct bio *bio, ++ struct bch_extent_crc_unpacked *crc) ++{ ++ struct bbuf data = { NULL }; ++ size_t dst_len = crc->uncompressed_size << 9; ++ ++ /* bio must own its pages: */ ++ BUG_ON(!bio->bi_vcnt); ++ BUG_ON(DIV_ROUND_UP(crc->live_size, PAGE_SECTORS) > bio->bi_max_vecs); ++ ++ if (crc->uncompressed_size << 9 > c->opts.encoded_extent_max || ++ crc->compressed_size << 9 > c->opts.encoded_extent_max) { ++ bch_err(c, "error rewriting existing data: extent too big"); ++ return -EIO; ++ } ++ ++ data = __bounce_alloc(c, dst_len, WRITE); ++ ++ if (__bio_uncompress(c, bio, data.b, *crc)) { ++ if (!c->opts.no_data_io) ++ bch_err(c, "error rewriting existing data: decompression error"); ++ bio_unmap_or_unbounce(c, data); ++ return -EIO; ++ } ++ ++ /* ++ * XXX: don't have a good way to assert that the bio was allocated with ++ * enough space, we depend on bch2_move_extent doing the right thing ++ */ ++ bio->bi_iter.bi_size = crc->live_size << 9; ++ ++ memcpy_to_bio(bio, bio->bi_iter, data.b + (crc->offset << 9)); ++ ++ crc->csum_type = 0; ++ crc->compression_type = 0; ++ crc->compressed_size = crc->live_size; ++ crc->uncompressed_size = crc->live_size; ++ crc->offset = 0; ++ crc->csum = (struct bch_csum) { 0, 0 }; ++ ++ bio_unmap_or_unbounce(c, data); ++ return 0; ++} ++ ++int bch2_bio_uncompress(struct bch_fs *c, struct bio *src, ++ struct bio *dst, struct bvec_iter dst_iter, ++ struct bch_extent_crc_unpacked crc) ++{ ++ struct bbuf dst_data = { NULL }; ++ size_t dst_len = crc.uncompressed_size << 9; ++ int ret; ++ ++ if (crc.uncompressed_size << 9 > c->opts.encoded_extent_max || ++ crc.compressed_size << 9 > c->opts.encoded_extent_max) ++ return -EIO; ++ ++ dst_data = dst_len == dst_iter.bi_size ++ ? __bio_map_or_bounce(c, dst, dst_iter, WRITE) ++ : __bounce_alloc(c, dst_len, WRITE); ++ ++ ret = __bio_uncompress(c, src, dst_data.b, crc); ++ if (ret) ++ goto err; ++ ++ if (dst_data.type != BB_NONE && ++ dst_data.type != BB_VMAP) ++ memcpy_to_bio(dst, dst_iter, dst_data.b + (crc.offset << 9)); ++err: ++ bio_unmap_or_unbounce(c, dst_data); ++ return ret; ++} ++ ++static int attempt_compress(struct bch_fs *c, ++ void *workspace, ++ void *dst, size_t dst_len, ++ void *src, size_t src_len, ++ struct bch_compression_opt compression) ++{ ++ enum bch_compression_type compression_type = ++ __bch2_compression_opt_to_type[compression.type]; ++ ++ switch (compression_type) { ++ case BCH_COMPRESSION_TYPE_lz4: ++ if (compression.level < LZ4HC_MIN_CLEVEL) { ++ int len = src_len; ++ int ret = LZ4_compress_destSize( ++ src, dst, ++ &len, dst_len, ++ workspace); ++ if (len < src_len) ++ return -len; ++ ++ return ret; ++ } else { ++ int ret = LZ4_compress_HC( ++ src, dst, ++ src_len, dst_len, ++ compression.level, ++ workspace); ++ ++ return ret ?: -1; ++ } ++ case BCH_COMPRESSION_TYPE_gzip: { ++ z_stream strm = { ++ .next_in = src, ++ .avail_in = src_len, ++ .next_out = dst, ++ .avail_out = dst_len, ++ }; ++ ++ zlib_set_workspace(&strm, workspace); ++ zlib_deflateInit2(&strm, ++ compression.level ++ ? clamp_t(unsigned, compression.level, ++ Z_BEST_SPEED, Z_BEST_COMPRESSION) ++ : Z_DEFAULT_COMPRESSION, ++ Z_DEFLATED, -MAX_WBITS, DEF_MEM_LEVEL, ++ Z_DEFAULT_STRATEGY); ++ ++ if (zlib_deflate(&strm, Z_FINISH) != Z_STREAM_END) ++ return 0; ++ ++ if (zlib_deflateEnd(&strm) != Z_OK) ++ return 0; ++ ++ return strm.total_out; ++ } ++ case BCH_COMPRESSION_TYPE_zstd: { ++ /* ++ * rescale: ++ * zstd max compression level is 22, our max level is 15 ++ */ ++ unsigned level = min((compression.level * 3) / 2, zstd_max_clevel()); ++ ZSTD_parameters params = zstd_get_params(level, c->opts.encoded_extent_max); ++ ZSTD_CCtx *ctx = zstd_init_cctx(workspace, ++ zstd_cctx_workspace_bound(¶ms.cParams)); ++ ++ /* ++ * ZSTD requires that when we decompress we pass in the exact ++ * compressed size - rounding it up to the nearest sector ++ * doesn't work, so we use the first 4 bytes of the buffer for ++ * that. ++ * ++ * Additionally, the ZSTD code seems to have a bug where it will ++ * write just past the end of the buffer - so subtract a fudge ++ * factor (7 bytes) from the dst buffer size to account for ++ * that. ++ */ ++ size_t len = zstd_compress_cctx(ctx, ++ dst + 4, dst_len - 4 - 7, ++ src, src_len, ++ &c->zstd_params); ++ if (zstd_is_error(len)) ++ return 0; ++ ++ *((__le32 *) dst) = cpu_to_le32(len); ++ return len + 4; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++static unsigned __bio_compress(struct bch_fs *c, ++ struct bio *dst, size_t *dst_len, ++ struct bio *src, size_t *src_len, ++ struct bch_compression_opt compression) ++{ ++ struct bbuf src_data = { NULL }, dst_data = { NULL }; ++ void *workspace; ++ enum bch_compression_type compression_type = ++ __bch2_compression_opt_to_type[compression.type]; ++ unsigned pad; ++ int ret = 0; ++ ++ BUG_ON(compression_type >= BCH_COMPRESSION_TYPE_NR); ++ BUG_ON(!mempool_initialized(&c->compress_workspace[compression_type])); ++ ++ /* If it's only one block, don't bother trying to compress: */ ++ if (src->bi_iter.bi_size <= c->opts.block_size) ++ return BCH_COMPRESSION_TYPE_incompressible; ++ ++ dst_data = bio_map_or_bounce(c, dst, WRITE); ++ src_data = bio_map_or_bounce(c, src, READ); ++ ++ workspace = mempool_alloc(&c->compress_workspace[compression_type], GFP_NOFS); ++ ++ *src_len = src->bi_iter.bi_size; ++ *dst_len = dst->bi_iter.bi_size; ++ ++ /* ++ * XXX: this algorithm sucks when the compression code doesn't tell us ++ * how much would fit, like LZ4 does: ++ */ ++ while (1) { ++ if (*src_len <= block_bytes(c)) { ++ ret = -1; ++ break; ++ } ++ ++ ret = attempt_compress(c, workspace, ++ dst_data.b, *dst_len, ++ src_data.b, *src_len, ++ compression); ++ if (ret > 0) { ++ *dst_len = ret; ++ ret = 0; ++ break; ++ } ++ ++ /* Didn't fit: should we retry with a smaller amount? */ ++ if (*src_len <= *dst_len) { ++ ret = -1; ++ break; ++ } ++ ++ /* ++ * If ret is negative, it's a hint as to how much data would fit ++ */ ++ BUG_ON(-ret >= *src_len); ++ ++ if (ret < 0) ++ *src_len = -ret; ++ else ++ *src_len -= (*src_len - *dst_len) / 2; ++ *src_len = round_down(*src_len, block_bytes(c)); ++ } ++ ++ mempool_free(workspace, &c->compress_workspace[compression_type]); ++ ++ if (ret) ++ goto err; ++ ++ /* Didn't get smaller: */ ++ if (round_up(*dst_len, block_bytes(c)) >= *src_len) ++ goto err; ++ ++ pad = round_up(*dst_len, block_bytes(c)) - *dst_len; ++ ++ memset(dst_data.b + *dst_len, 0, pad); ++ *dst_len += pad; ++ ++ if (dst_data.type != BB_NONE && ++ dst_data.type != BB_VMAP) ++ memcpy_to_bio(dst, dst->bi_iter, dst_data.b); ++ ++ BUG_ON(!*dst_len || *dst_len > dst->bi_iter.bi_size); ++ BUG_ON(!*src_len || *src_len > src->bi_iter.bi_size); ++ BUG_ON(*dst_len & (block_bytes(c) - 1)); ++ BUG_ON(*src_len & (block_bytes(c) - 1)); ++ ret = compression_type; ++out: ++ bio_unmap_or_unbounce(c, src_data); ++ bio_unmap_or_unbounce(c, dst_data); ++ return ret; ++err: ++ ret = BCH_COMPRESSION_TYPE_incompressible; ++ goto out; ++} ++ ++unsigned bch2_bio_compress(struct bch_fs *c, ++ struct bio *dst, size_t *dst_len, ++ struct bio *src, size_t *src_len, ++ unsigned compression_opt) ++{ ++ unsigned orig_dst = dst->bi_iter.bi_size; ++ unsigned orig_src = src->bi_iter.bi_size; ++ unsigned compression_type; ++ ++ /* Don't consume more than BCH_ENCODED_EXTENT_MAX from @src: */ ++ src->bi_iter.bi_size = min_t(unsigned, src->bi_iter.bi_size, ++ c->opts.encoded_extent_max); ++ /* Don't generate a bigger output than input: */ ++ dst->bi_iter.bi_size = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); ++ ++ compression_type = ++ __bio_compress(c, dst, dst_len, src, src_len, ++ bch2_compression_decode(compression_opt)); ++ ++ dst->bi_iter.bi_size = orig_dst; ++ src->bi_iter.bi_size = orig_src; ++ return compression_type; ++} ++ ++static int __bch2_fs_compress_init(struct bch_fs *, u64); ++ ++#define BCH_FEATURE_none 0 ++ ++static const unsigned bch2_compression_opt_to_feature[] = { ++#define x(t, n) [BCH_COMPRESSION_OPT_##t] = BCH_FEATURE_##t, ++ BCH_COMPRESSION_OPTS() ++#undef x ++}; ++ ++#undef BCH_FEATURE_none ++ ++static int __bch2_check_set_has_compressed_data(struct bch_fs *c, u64 f) ++{ ++ int ret = 0; ++ ++ if ((c->sb.features & f) == f) ++ return 0; ++ ++ mutex_lock(&c->sb_lock); ++ ++ if ((c->sb.features & f) == f) { ++ mutex_unlock(&c->sb_lock); ++ return 0; ++ } ++ ++ ret = __bch2_fs_compress_init(c, c->sb.features|f); ++ if (ret) { ++ mutex_unlock(&c->sb_lock); ++ return ret; ++ } ++ ++ c->disk_sb.sb->features[0] |= cpu_to_le64(f); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++int bch2_check_set_has_compressed_data(struct bch_fs *c, ++ unsigned compression_opt) ++{ ++ unsigned compression_type = bch2_compression_decode(compression_opt).type; ++ ++ BUG_ON(compression_type >= ARRAY_SIZE(bch2_compression_opt_to_feature)); ++ ++ return compression_type ++ ? __bch2_check_set_has_compressed_data(c, ++ 1ULL << bch2_compression_opt_to_feature[compression_type]) ++ : 0; ++} ++ ++void bch2_fs_compress_exit(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ mempool_exit(&c->decompress_workspace); ++ for (i = 0; i < ARRAY_SIZE(c->compress_workspace); i++) ++ mempool_exit(&c->compress_workspace[i]); ++ mempool_exit(&c->compression_bounce[WRITE]); ++ mempool_exit(&c->compression_bounce[READ]); ++} ++ ++static int __bch2_fs_compress_init(struct bch_fs *c, u64 features) ++{ ++ size_t decompress_workspace_size = 0; ++ ZSTD_parameters params = zstd_get_params(zstd_max_clevel(), ++ c->opts.encoded_extent_max); ++ struct { ++ unsigned feature; ++ enum bch_compression_type type; ++ size_t compress_workspace; ++ size_t decompress_workspace; ++ } compression_types[] = { ++ { BCH_FEATURE_lz4, BCH_COMPRESSION_TYPE_lz4, ++ max_t(size_t, LZ4_MEM_COMPRESS, LZ4HC_MEM_COMPRESS), ++ 0 }, ++ { BCH_FEATURE_gzip, BCH_COMPRESSION_TYPE_gzip, ++ zlib_deflate_workspacesize(MAX_WBITS, DEF_MEM_LEVEL), ++ zlib_inflate_workspacesize(), }, ++ { BCH_FEATURE_zstd, BCH_COMPRESSION_TYPE_zstd, ++ zstd_cctx_workspace_bound(¶ms.cParams), ++ zstd_dctx_workspace_bound() }, ++ }, *i; ++ bool have_compressed = false; ++ ++ c->zstd_params = params; ++ ++ for (i = compression_types; ++ i < compression_types + ARRAY_SIZE(compression_types); ++ i++) ++ have_compressed |= (features & (1 << i->feature)) != 0; ++ ++ if (!have_compressed) ++ return 0; ++ ++ if (!mempool_initialized(&c->compression_bounce[READ]) && ++ mempool_init_kvpmalloc_pool(&c->compression_bounce[READ], ++ 1, c->opts.encoded_extent_max)) ++ return -BCH_ERR_ENOMEM_compression_bounce_read_init; ++ ++ if (!mempool_initialized(&c->compression_bounce[WRITE]) && ++ mempool_init_kvpmalloc_pool(&c->compression_bounce[WRITE], ++ 1, c->opts.encoded_extent_max)) ++ return -BCH_ERR_ENOMEM_compression_bounce_write_init; ++ ++ for (i = compression_types; ++ i < compression_types + ARRAY_SIZE(compression_types); ++ i++) { ++ decompress_workspace_size = ++ max(decompress_workspace_size, i->decompress_workspace); ++ ++ if (!(features & (1 << i->feature))) ++ continue; ++ ++ if (mempool_initialized(&c->compress_workspace[i->type])) ++ continue; ++ ++ if (mempool_init_kvpmalloc_pool( ++ &c->compress_workspace[i->type], ++ 1, i->compress_workspace)) ++ return -BCH_ERR_ENOMEM_compression_workspace_init; ++ } ++ ++ if (!mempool_initialized(&c->decompress_workspace) && ++ mempool_init_kvpmalloc_pool(&c->decompress_workspace, ++ 1, decompress_workspace_size)) ++ return -BCH_ERR_ENOMEM_decompression_workspace_init; ++ ++ return 0; ++} ++ ++static u64 compression_opt_to_feature(unsigned v) ++{ ++ unsigned type = bch2_compression_decode(v).type; ++ ++ return BIT_ULL(bch2_compression_opt_to_feature[type]); ++} ++ ++int bch2_fs_compress_init(struct bch_fs *c) ++{ ++ u64 f = c->sb.features; ++ ++ f |= compression_opt_to_feature(c->opts.compression); ++ f |= compression_opt_to_feature(c->opts.background_compression); ++ ++ return __bch2_fs_compress_init(c, f); ++} ++ ++int bch2_opt_compression_parse(struct bch_fs *c, const char *_val, u64 *res, ++ struct printbuf *err) ++{ ++ char *val = kstrdup(_val, GFP_KERNEL); ++ char *p = val, *type_str, *level_str; ++ struct bch_compression_opt opt = { 0 }; ++ int ret; ++ ++ if (!val) ++ return -ENOMEM; ++ ++ type_str = strsep(&p, ":"); ++ level_str = p; ++ ++ ret = match_string(bch2_compression_opts, -1, type_str); ++ if (ret < 0 && err) ++ prt_str(err, "invalid compression type"); ++ if (ret < 0) ++ goto err; ++ ++ opt.type = ret; ++ ++ if (level_str) { ++ unsigned level; ++ ++ ret = kstrtouint(level_str, 10, &level); ++ if (!ret && !opt.type && level) ++ ret = -EINVAL; ++ if (!ret && level > 15) ++ ret = -EINVAL; ++ if (ret < 0 && err) ++ prt_str(err, "invalid compression level"); ++ if (ret < 0) ++ goto err; ++ ++ opt.level = level; ++ } ++ ++ *res = bch2_compression_encode(opt); ++err: ++ kfree(val); ++ return ret; ++} ++ ++void bch2_opt_compression_to_text(struct printbuf *out, ++ struct bch_fs *c, ++ struct bch_sb *sb, ++ u64 v) ++{ ++ struct bch_compression_opt opt = bch2_compression_decode(v); ++ ++ prt_str(out, bch2_compression_opts[opt.type]); ++ if (opt.level) ++ prt_printf(out, ":%u", opt.level); ++} +diff --git a/fs/bcachefs/compress.h b/fs/bcachefs/compress.h +new file mode 100644 +index 000000000000..052ea303241f +--- /dev/null ++++ b/fs/bcachefs/compress.h +@@ -0,0 +1,55 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_COMPRESS_H ++#define _BCACHEFS_COMPRESS_H ++ ++#include "extents_types.h" ++ ++struct bch_compression_opt { ++ u8 type:4, ++ level:4; ++}; ++ ++static inline struct bch_compression_opt bch2_compression_decode(unsigned v) ++{ ++ return (struct bch_compression_opt) { ++ .type = v & 15, ++ .level = v >> 4, ++ }; ++} ++ ++static inline unsigned bch2_compression_encode(struct bch_compression_opt opt) ++{ ++ return opt.type|(opt.level << 4); ++} ++ ++static const unsigned __bch2_compression_opt_to_type[] = { ++#define x(t, n) [BCH_COMPRESSION_OPT_##t] = BCH_COMPRESSION_TYPE_##t, ++ BCH_COMPRESSION_OPTS() ++#undef x ++}; ++ ++static inline enum bch_compression_type bch2_compression_opt_to_type(unsigned v) ++{ ++ return __bch2_compression_opt_to_type[bch2_compression_decode(v).type]; ++} ++ ++int bch2_bio_uncompress_inplace(struct bch_fs *, struct bio *, ++ struct bch_extent_crc_unpacked *); ++int bch2_bio_uncompress(struct bch_fs *, struct bio *, struct bio *, ++ struct bvec_iter, struct bch_extent_crc_unpacked); ++unsigned bch2_bio_compress(struct bch_fs *, struct bio *, size_t *, ++ struct bio *, size_t *, unsigned); ++ ++int bch2_check_set_has_compressed_data(struct bch_fs *, unsigned); ++void bch2_fs_compress_exit(struct bch_fs *); ++int bch2_fs_compress_init(struct bch_fs *); ++ ++int bch2_opt_compression_parse(struct bch_fs *, const char *, u64 *, struct printbuf *); ++void bch2_opt_compression_to_text(struct printbuf *, struct bch_fs *, struct bch_sb *, u64); ++ ++#define bch2_opt_compression (struct bch_opt_fn) { \ ++ .parse = bch2_opt_compression_parse, \ ++ .to_text = bch2_opt_compression_to_text, \ ++} ++ ++#endif /* _BCACHEFS_COMPRESS_H */ +diff --git a/fs/bcachefs/counters.c b/fs/bcachefs/counters.c +new file mode 100644 +index 000000000000..02a996e06a64 +--- /dev/null ++++ b/fs/bcachefs/counters.c +@@ -0,0 +1,107 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "super-io.h" ++#include "counters.h" ++ ++/* BCH_SB_FIELD_counters */ ++ ++static const char * const bch2_counter_names[] = { ++#define x(t, n, ...) (#t), ++ BCH_PERSISTENT_COUNTERS() ++#undef x ++ NULL ++}; ++ ++static size_t bch2_sb_counter_nr_entries(struct bch_sb_field_counters *ctrs) ++{ ++ if (!ctrs) ++ return 0; ++ ++ return (__le64 *) vstruct_end(&ctrs->field) - &ctrs->d[0]; ++}; ++ ++static int bch2_sb_counters_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ return 0; ++}; ++ ++static void bch2_sb_counters_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_counters *ctrs = field_to_type(f, counters); ++ unsigned int i; ++ unsigned int nr = bch2_sb_counter_nr_entries(ctrs); ++ ++ for (i = 0; i < nr; i++) { ++ if (i < BCH_COUNTER_NR) ++ prt_printf(out, "%s ", bch2_counter_names[i]); ++ else ++ prt_printf(out, "(unknown)"); ++ ++ prt_tab(out); ++ prt_printf(out, "%llu", le64_to_cpu(ctrs->d[i])); ++ prt_newline(out); ++ } ++}; ++ ++int bch2_sb_counters_to_cpu(struct bch_fs *c) ++{ ++ struct bch_sb_field_counters *ctrs = bch2_sb_field_get(c->disk_sb.sb, counters); ++ unsigned int i; ++ unsigned int nr = bch2_sb_counter_nr_entries(ctrs); ++ u64 val = 0; ++ ++ for (i = 0; i < BCH_COUNTER_NR; i++) ++ c->counters_on_mount[i] = 0; ++ ++ for (i = 0; i < min_t(unsigned int, nr, BCH_COUNTER_NR); i++) { ++ val = le64_to_cpu(ctrs->d[i]); ++ percpu_u64_set(&c->counters[i], val); ++ c->counters_on_mount[i] = val; ++ } ++ return 0; ++}; ++ ++int bch2_sb_counters_from_cpu(struct bch_fs *c) ++{ ++ struct bch_sb_field_counters *ctrs = bch2_sb_field_get(c->disk_sb.sb, counters); ++ struct bch_sb_field_counters *ret; ++ unsigned int i; ++ unsigned int nr = bch2_sb_counter_nr_entries(ctrs); ++ ++ if (nr < BCH_COUNTER_NR) { ++ ret = bch2_sb_field_resize(&c->disk_sb, counters, ++ sizeof(*ctrs) / sizeof(u64) + BCH_COUNTER_NR); ++ ++ if (ret) { ++ ctrs = ret; ++ nr = bch2_sb_counter_nr_entries(ctrs); ++ } ++ } ++ ++ ++ for (i = 0; i < min_t(unsigned int, nr, BCH_COUNTER_NR); i++) ++ ctrs->d[i] = cpu_to_le64(percpu_u64_get(&c->counters[i])); ++ return 0; ++} ++ ++void bch2_fs_counters_exit(struct bch_fs *c) ++{ ++ free_percpu(c->counters); ++} ++ ++int bch2_fs_counters_init(struct bch_fs *c) ++{ ++ c->counters = __alloc_percpu(sizeof(u64) * BCH_COUNTER_NR, sizeof(u64)); ++ if (!c->counters) ++ return -BCH_ERR_ENOMEM_fs_counters_init; ++ ++ return bch2_sb_counters_to_cpu(c); ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_counters = { ++ .validate = bch2_sb_counters_validate, ++ .to_text = bch2_sb_counters_to_text, ++}; +diff --git a/fs/bcachefs/counters.h b/fs/bcachefs/counters.h +new file mode 100644 +index 000000000000..4778aa19bf34 +--- /dev/null ++++ b/fs/bcachefs/counters.h +@@ -0,0 +1,17 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_COUNTERS_H ++#define _BCACHEFS_COUNTERS_H ++ ++#include "bcachefs.h" ++#include "super-io.h" ++ ++ ++int bch2_sb_counters_to_cpu(struct bch_fs *); ++int bch2_sb_counters_from_cpu(struct bch_fs *); ++ ++void bch2_fs_counters_exit(struct bch_fs *); ++int bch2_fs_counters_init(struct bch_fs *); ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_counters; ++ ++#endif // _BCACHEFS_COUNTERS_H +diff --git a/fs/bcachefs/darray.h b/fs/bcachefs/darray.h +new file mode 100644 +index 000000000000..114f86b45fd5 +--- /dev/null ++++ b/fs/bcachefs/darray.h +@@ -0,0 +1,87 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_DARRAY_H ++#define _BCACHEFS_DARRAY_H ++ ++/* ++ * Dynamic arrays: ++ * ++ * Inspired by CCAN's darray ++ */ ++ ++#include "util.h" ++#include ++ ++#define DARRAY(type) \ ++struct { \ ++ size_t nr, size; \ ++ type *data; \ ++} ++ ++typedef DARRAY(void) darray_void; ++ ++static inline int __darray_make_room(darray_void *d, size_t t_size, size_t more, gfp_t gfp) ++{ ++ if (d->nr + more > d->size) { ++ size_t new_size = roundup_pow_of_two(d->nr + more); ++ void *data = krealloc_array(d->data, new_size, t_size, gfp); ++ ++ if (!data) ++ return -ENOMEM; ++ ++ d->data = data; ++ d->size = new_size; ++ } ++ ++ return 0; ++} ++ ++#define darray_make_room_gfp(_d, _more, _gfp) \ ++ __darray_make_room((darray_void *) (_d), sizeof((_d)->data[0]), (_more), _gfp) ++ ++#define darray_make_room(_d, _more) \ ++ darray_make_room_gfp(_d, _more, GFP_KERNEL) ++ ++#define darray_top(_d) ((_d).data[(_d).nr]) ++ ++#define darray_push_gfp(_d, _item, _gfp) \ ++({ \ ++ int _ret = darray_make_room_gfp((_d), 1, _gfp); \ ++ \ ++ if (!_ret) \ ++ (_d)->data[(_d)->nr++] = (_item); \ ++ _ret; \ ++}) ++ ++#define darray_push(_d, _item) darray_push_gfp(_d, _item, GFP_KERNEL) ++ ++#define darray_pop(_d) ((_d)->data[--(_d)->nr]) ++ ++#define darray_first(_d) ((_d).data[0]) ++#define darray_last(_d) ((_d).data[(_d).nr - 1]) ++ ++#define darray_insert_item(_d, pos, _item) \ ++({ \ ++ size_t _pos = (pos); \ ++ int _ret = darray_make_room((_d), 1); \ ++ \ ++ if (!_ret) \ ++ array_insert_item((_d)->data, (_d)->nr, _pos, (_item)); \ ++ _ret; \ ++}) ++ ++#define darray_for_each(_d, _i) \ ++ for (_i = (_d).data; _i < (_d).data + (_d).nr; _i++) ++ ++#define darray_init(_d) \ ++do { \ ++ (_d)->data = NULL; \ ++ (_d)->nr = (_d)->size = 0; \ ++} while (0) ++ ++#define darray_exit(_d) \ ++do { \ ++ kfree((_d)->data); \ ++ darray_init(_d); \ ++} while (0) ++ ++#endif /* _BCACHEFS_DARRAY_H */ +diff --git a/fs/bcachefs/data_update.c b/fs/bcachefs/data_update.c +new file mode 100644 +index 000000000000..899ff46de8e0 +--- /dev/null ++++ b/fs/bcachefs/data_update.c +@@ -0,0 +1,558 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_buf.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "data_update.h" ++#include "ec.h" ++#include "error.h" ++#include "extents.h" ++#include "io_write.h" ++#include "keylist.h" ++#include "move.h" ++#include "nocow_locking.h" ++#include "subvolume.h" ++#include "trace.h" ++ ++static void trace_move_extent_finish2(struct bch_fs *c, struct bkey_s_c k) ++{ ++ if (trace_move_extent_finish_enabled()) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, k); ++ trace_move_extent_finish(c, buf.buf); ++ printbuf_exit(&buf); ++ } ++} ++ ++static void trace_move_extent_fail2(struct data_update *m, ++ struct bkey_s_c new, ++ struct bkey_s_c wrote, ++ struct bkey_i *insert, ++ const char *msg) ++{ ++ struct bch_fs *c = m->op.c; ++ struct bkey_s_c old = bkey_i_to_s_c(m->k.k); ++ const union bch_extent_entry *entry; ++ struct bch_extent_ptr *ptr; ++ struct extent_ptr_decoded p; ++ struct printbuf buf = PRINTBUF; ++ unsigned i, rewrites_found = 0; ++ ++ if (!trace_move_extent_fail_enabled()) ++ return; ++ ++ prt_str(&buf, msg); ++ ++ if (insert) { ++ i = 0; ++ bkey_for_each_ptr_decode(old.k, bch2_bkey_ptrs_c(old), p, entry) { ++ if (((1U << i) & m->data_opts.rewrite_ptrs) && ++ (ptr = bch2_extent_has_ptr(old, p, bkey_i_to_s(insert))) && ++ !ptr->cached) ++ rewrites_found |= 1U << i; ++ i++; ++ } ++ } ++ ++ prt_printf(&buf, "\nrewrite ptrs: %u%u%u%u", ++ (m->data_opts.rewrite_ptrs & (1 << 0)) != 0, ++ (m->data_opts.rewrite_ptrs & (1 << 1)) != 0, ++ (m->data_opts.rewrite_ptrs & (1 << 2)) != 0, ++ (m->data_opts.rewrite_ptrs & (1 << 3)) != 0); ++ ++ prt_printf(&buf, "\nrewrites found: %u%u%u%u", ++ (rewrites_found & (1 << 0)) != 0, ++ (rewrites_found & (1 << 1)) != 0, ++ (rewrites_found & (1 << 2)) != 0, ++ (rewrites_found & (1 << 3)) != 0); ++ ++ prt_str(&buf, "\nold: "); ++ bch2_bkey_val_to_text(&buf, c, old); ++ ++ prt_str(&buf, "\nnew: "); ++ bch2_bkey_val_to_text(&buf, c, new); ++ ++ prt_str(&buf, "\nwrote: "); ++ bch2_bkey_val_to_text(&buf, c, wrote); ++ ++ if (insert) { ++ prt_str(&buf, "\ninsert: "); ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(insert)); ++ } ++ ++ trace_move_extent_fail(c, buf.buf); ++ printbuf_exit(&buf); ++} ++ ++static int __bch2_data_update_index_update(struct btree_trans *trans, ++ struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct btree_iter iter; ++ struct data_update *m = ++ container_of(op, struct data_update, op); ++ struct keylist *keys = &op->insert_keys; ++ struct bkey_buf _new, _insert; ++ int ret = 0; ++ ++ bch2_bkey_buf_init(&_new); ++ bch2_bkey_buf_init(&_insert); ++ bch2_bkey_buf_realloc(&_insert, c, U8_MAX); ++ ++ bch2_trans_iter_init(trans, &iter, m->btree_id, ++ bkey_start_pos(&bch2_keylist_front(keys)->k), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ ++ while (1) { ++ struct bkey_s_c k; ++ struct bkey_s_c old = bkey_i_to_s_c(m->k.k); ++ struct bkey_i *insert = NULL; ++ struct bkey_i_extent *new; ++ const union bch_extent_entry *entry_c; ++ union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ struct bch_extent_ptr *ptr; ++ const struct bch_extent_ptr *ptr_c; ++ struct bpos next_pos; ++ bool should_check_enospc; ++ s64 i_sectors_delta = 0, disk_sectors_delta = 0; ++ unsigned rewrites_found = 0, durability, i; ++ ++ bch2_trans_begin(trans); ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ new = bkey_i_to_extent(bch2_keylist_front(keys)); ++ ++ if (!bch2_extents_match(k, old)) { ++ trace_move_extent_fail2(m, k, bkey_i_to_s_c(&new->k_i), ++ NULL, "no match:"); ++ goto nowork; ++ } ++ ++ bkey_reassemble(_insert.k, k); ++ insert = _insert.k; ++ ++ bch2_bkey_buf_copy(&_new, c, bch2_keylist_front(keys)); ++ new = bkey_i_to_extent(_new.k); ++ bch2_cut_front(iter.pos, &new->k_i); ++ ++ bch2_cut_front(iter.pos, insert); ++ bch2_cut_back(new->k.p, insert); ++ bch2_cut_back(insert->k.p, &new->k_i); ++ ++ /* ++ * @old: extent that we read from ++ * @insert: key that we're going to update, initialized from ++ * extent currently in btree - same as @old unless we raced with ++ * other updates ++ * @new: extent with new pointers that we'll be adding to @insert ++ * ++ * Fist, drop rewrite_ptrs from @new: ++ */ ++ i = 0; ++ bkey_for_each_ptr_decode(old.k, bch2_bkey_ptrs_c(old), p, entry_c) { ++ if (((1U << i) & m->data_opts.rewrite_ptrs) && ++ (ptr = bch2_extent_has_ptr(old, p, bkey_i_to_s(insert))) && ++ !ptr->cached) { ++ bch2_bkey_drop_ptr_noerror(bkey_i_to_s(insert), ptr); ++ /* ++ * See comment below: ++ bch2_extent_ptr_set_cached(bkey_i_to_s(insert), ptr); ++ */ ++ rewrites_found |= 1U << i; ++ } ++ i++; ++ } ++ ++ if (m->data_opts.rewrite_ptrs && ++ !rewrites_found && ++ bch2_bkey_durability(c, k) >= m->op.opts.data_replicas) { ++ trace_move_extent_fail2(m, k, bkey_i_to_s_c(&new->k_i), insert, "no rewrites found:"); ++ goto nowork; ++ } ++ ++ /* ++ * A replica that we just wrote might conflict with a replica ++ * that we want to keep, due to racing with another move: ++ */ ++restart_drop_conflicting_replicas: ++ extent_for_each_ptr(extent_i_to_s(new), ptr) ++ if ((ptr_c = bch2_bkey_has_device_c(bkey_i_to_s_c(insert), ptr->dev)) && ++ !ptr_c->cached) { ++ bch2_bkey_drop_ptr_noerror(bkey_i_to_s(&new->k_i), ptr); ++ goto restart_drop_conflicting_replicas; ++ } ++ ++ if (!bkey_val_u64s(&new->k)) { ++ trace_move_extent_fail2(m, k, bkey_i_to_s_c(&new->k_i), insert, "new replicas conflicted:"); ++ goto nowork; ++ } ++ ++ /* Now, drop pointers that conflict with what we just wrote: */ ++ extent_for_each_ptr_decode(extent_i_to_s(new), p, entry) ++ if ((ptr = bch2_bkey_has_device(bkey_i_to_s(insert), p.ptr.dev))) ++ bch2_bkey_drop_ptr_noerror(bkey_i_to_s(insert), ptr); ++ ++ durability = bch2_bkey_durability(c, bkey_i_to_s_c(insert)) + ++ bch2_bkey_durability(c, bkey_i_to_s_c(&new->k_i)); ++ ++ /* Now, drop excess replicas: */ ++restart_drop_extra_replicas: ++ bkey_for_each_ptr_decode(old.k, bch2_bkey_ptrs(bkey_i_to_s(insert)), p, entry) { ++ unsigned ptr_durability = bch2_extent_ptr_durability(c, &p); ++ ++ if (!p.ptr.cached && ++ durability - ptr_durability >= m->op.opts.data_replicas) { ++ durability -= ptr_durability; ++ bch2_bkey_drop_ptr_noerror(bkey_i_to_s(insert), &entry->ptr); ++ /* ++ * Currently, we're dropping unneeded replicas ++ * instead of marking them as cached, since ++ * cached data in stripe buckets prevents them ++ * from being reused: ++ bch2_extent_ptr_set_cached(bkey_i_to_s(insert), &entry->ptr); ++ */ ++ goto restart_drop_extra_replicas; ++ } ++ } ++ ++ /* Finally, add the pointers we just wrote: */ ++ extent_for_each_ptr_decode(extent_i_to_s(new), p, entry) ++ bch2_extent_ptr_decoded_append(insert, &p); ++ ++ bch2_bkey_narrow_crcs(insert, (struct bch_extent_crc_unpacked) { 0 }); ++ bch2_extent_normalize(c, bkey_i_to_s(insert)); ++ ++ ret = bch2_sum_sector_overwrites(trans, &iter, insert, ++ &should_check_enospc, ++ &i_sectors_delta, ++ &disk_sectors_delta); ++ if (ret) ++ goto err; ++ ++ if (disk_sectors_delta > (s64) op->res.sectors) { ++ ret = bch2_disk_reservation_add(c, &op->res, ++ disk_sectors_delta - op->res.sectors, ++ !should_check_enospc ++ ? BCH_DISK_RESERVATION_NOFAIL : 0); ++ if (ret) ++ goto out; ++ } ++ ++ next_pos = insert->k.p; ++ ++ ret = bch2_insert_snapshot_whiteouts(trans, m->btree_id, ++ k.k->p, bkey_start_pos(&insert->k)) ?: ++ bch2_insert_snapshot_whiteouts(trans, m->btree_id, ++ k.k->p, insert->k.p); ++ if (ret) ++ goto err; ++ ++ ret = bch2_trans_update(trans, &iter, insert, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: ++ bch2_trans_commit(trans, &op->res, ++ NULL, ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL| ++ m->data_opts.btree_insert_flags); ++ if (!ret) { ++ bch2_btree_iter_set_pos(&iter, next_pos); ++ ++ this_cpu_add(c->counters[BCH_COUNTER_move_extent_finish], new->k.size); ++ trace_move_extent_finish2(c, bkey_i_to_s_c(&new->k_i)); ++ } ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ ret = 0; ++ if (ret) ++ break; ++next: ++ while (bkey_ge(iter.pos, bch2_keylist_front(keys)->k.p)) { ++ bch2_keylist_pop_front(keys); ++ if (bch2_keylist_empty(keys)) ++ goto out; ++ } ++ continue; ++nowork: ++ if (m->ctxt && m->ctxt->stats) { ++ BUG_ON(k.k->p.offset <= iter.pos.offset); ++ atomic64_inc(&m->ctxt->stats->keys_raced); ++ atomic64_add(k.k->p.offset - iter.pos.offset, ++ &m->ctxt->stats->sectors_raced); ++ } ++ ++ this_cpu_inc(c->counters[BCH_COUNTER_move_extent_fail]); ++ ++ bch2_btree_iter_advance(&iter); ++ goto next; ++ } ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_bkey_buf_exit(&_insert, c); ++ bch2_bkey_buf_exit(&_new, c); ++ BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); ++ return ret; ++} ++ ++int bch2_data_update_index_update(struct bch_write_op *op) ++{ ++ return bch2_trans_run(op->c, __bch2_data_update_index_update(trans, op)); ++} ++ ++void bch2_data_update_read_done(struct data_update *m, ++ struct bch_extent_crc_unpacked crc) ++{ ++ /* write bio must own pages: */ ++ BUG_ON(!m->op.wbio.bio.bi_vcnt); ++ ++ m->op.crc = crc; ++ m->op.wbio.bio.bi_iter.bi_size = crc.compressed_size << 9; ++ ++ closure_call(&m->op.cl, bch2_write, NULL, NULL); ++} ++ ++void bch2_data_update_exit(struct data_update *update) ++{ ++ struct bch_fs *c = update->op.c; ++ struct bkey_ptrs_c ptrs = ++ bch2_bkey_ptrs_c(bkey_i_to_s_c(update->k.k)); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ if (c->opts.nocow_enabled) ++ bch2_bucket_nocow_unlock(&c->nocow_locks, ++ PTR_BUCKET_POS(c, ptr), 0); ++ percpu_ref_put(&bch_dev_bkey_exists(c, ptr->dev)->ref); ++ } ++ ++ bch2_bkey_buf_exit(&update->k, c); ++ bch2_disk_reservation_put(c, &update->op.res); ++ bch2_bio_free_pages_pool(c, &update->op.wbio.bio); ++} ++ ++void bch2_update_unwritten_extent(struct btree_trans *trans, ++ struct data_update *update) ++{ ++ struct bch_fs *c = update->op.c; ++ struct bio *bio = &update->op.wbio.bio; ++ struct bkey_i_extent *e; ++ struct write_point *wp; ++ struct bch_extent_ptr *ptr; ++ struct closure cl; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ closure_init_stack(&cl); ++ bch2_keylist_init(&update->op.insert_keys, update->op.inline_keys); ++ ++ while (bio_sectors(bio)) { ++ unsigned sectors = bio_sectors(bio); ++ ++ bch2_trans_iter_init(trans, &iter, update->btree_id, update->op.pos, ++ BTREE_ITER_SLOTS); ++ ret = lockrestart_do(trans, ({ ++ k = bch2_btree_iter_peek_slot(&iter); ++ bkey_err(k); ++ })); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret || !bch2_extents_match(k, bkey_i_to_s_c(update->k.k))) ++ break; ++ ++ e = bkey_extent_init(update->op.insert_keys.top); ++ e->k.p = update->op.pos; ++ ++ ret = bch2_alloc_sectors_start_trans(trans, ++ update->op.target, ++ false, ++ update->op.write_point, ++ &update->op.devs_have, ++ update->op.nr_replicas, ++ update->op.nr_replicas, ++ update->op.watermark, ++ 0, &cl, &wp); ++ if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) { ++ bch2_trans_unlock(trans); ++ closure_sync(&cl); ++ continue; ++ } ++ ++ if (ret) ++ return; ++ ++ sectors = min(sectors, wp->sectors_free); ++ ++ bch2_key_resize(&e->k, sectors); ++ ++ bch2_open_bucket_get(c, wp, &update->op.open_buckets); ++ bch2_alloc_sectors_append_ptrs(c, wp, &e->k_i, sectors, false); ++ bch2_alloc_sectors_done(c, wp); ++ ++ bio_advance(bio, sectors << 9); ++ update->op.pos.offset += sectors; ++ ++ extent_for_each_ptr(extent_i_to_s(e), ptr) ++ ptr->unwritten = true; ++ bch2_keylist_push(&update->op.insert_keys); ++ ++ ret = __bch2_data_update_index_update(trans, &update->op); ++ ++ bch2_open_buckets_put(c, &update->op.open_buckets); ++ ++ if (ret) ++ break; ++ } ++ ++ if (closure_nr_remaining(&cl) != 1) { ++ bch2_trans_unlock(trans); ++ closure_sync(&cl); ++ } ++} ++ ++int bch2_data_update_init(struct btree_trans *trans, ++ struct moving_context *ctxt, ++ struct data_update *m, ++ struct write_point_specifier wp, ++ struct bch_io_opts io_opts, ++ struct data_update_opts data_opts, ++ enum btree_id btree_id, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ const struct bch_extent_ptr *ptr; ++ unsigned i, reserve_sectors = k.k->size * data_opts.extra_replicas; ++ unsigned ptrs_locked = 0; ++ int ret; ++ ++ bch2_bkey_buf_init(&m->k); ++ bch2_bkey_buf_reassemble(&m->k, c, k); ++ m->btree_id = btree_id; ++ m->data_opts = data_opts; ++ ++ bch2_write_op_init(&m->op, c, io_opts); ++ m->op.pos = bkey_start_pos(k.k); ++ m->op.version = k.k->version; ++ m->op.target = data_opts.target; ++ m->op.write_point = wp; ++ m->op.nr_replicas = 0; ++ m->op.flags |= BCH_WRITE_PAGES_STABLE| ++ BCH_WRITE_PAGES_OWNED| ++ BCH_WRITE_DATA_ENCODED| ++ BCH_WRITE_MOVE| ++ m->data_opts.write_flags; ++ m->op.compression_opt = io_opts.background_compression ?: io_opts.compression; ++ m->op.watermark = m->data_opts.btree_insert_flags & BCH_WATERMARK_MASK; ++ ++ bkey_for_each_ptr(ptrs, ptr) ++ percpu_ref_get(&bch_dev_bkey_exists(c, ptr->dev)->ref); ++ ++ i = 0; ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ bool locked; ++ ++ if (((1U << i) & m->data_opts.rewrite_ptrs)) { ++ BUG_ON(p.ptr.cached); ++ ++ if (crc_is_compressed(p.crc)) ++ reserve_sectors += k.k->size; ++ ++ m->op.nr_replicas += bch2_extent_ptr_desired_durability(c, &p); ++ } else if (!p.ptr.cached) { ++ bch2_dev_list_add_dev(&m->op.devs_have, p.ptr.dev); ++ } ++ ++ /* ++ * op->csum_type is normally initialized from the fs/file's ++ * current options - but if an extent is encrypted, we require ++ * that it stays encrypted: ++ */ ++ if (bch2_csum_type_is_encryption(p.crc.csum_type)) { ++ m->op.nonce = p.crc.nonce + p.crc.offset; ++ m->op.csum_type = p.crc.csum_type; ++ } ++ ++ if (p.crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) ++ m->op.incompressible = true; ++ ++ if (c->opts.nocow_enabled) { ++ if (ctxt) { ++ move_ctxt_wait_event(ctxt, trans, ++ (locked = bch2_bucket_nocow_trylock(&c->nocow_locks, ++ PTR_BUCKET_POS(c, &p.ptr), 0)) || ++ !atomic_read(&ctxt->read_sectors)); ++ ++ if (!locked) ++ bch2_bucket_nocow_lock(&c->nocow_locks, ++ PTR_BUCKET_POS(c, &p.ptr), 0); ++ } else { ++ if (!bch2_bucket_nocow_trylock(&c->nocow_locks, ++ PTR_BUCKET_POS(c, &p.ptr), 0)) { ++ ret = -BCH_ERR_nocow_lock_blocked; ++ goto err; ++ } ++ } ++ ptrs_locked |= (1U << i); ++ } ++ ++ i++; ++ } ++ ++ if (reserve_sectors) { ++ ret = bch2_disk_reservation_add(c, &m->op.res, reserve_sectors, ++ m->data_opts.extra_replicas ++ ? 0 ++ : BCH_DISK_RESERVATION_NOFAIL); ++ if (ret) ++ goto err; ++ } ++ ++ m->op.nr_replicas += m->data_opts.extra_replicas; ++ m->op.nr_replicas_required = m->op.nr_replicas; ++ ++ BUG_ON(!m->op.nr_replicas); ++ ++ /* Special handling required: */ ++ if (bkey_extent_is_unwritten(k)) ++ return -BCH_ERR_unwritten_extent_update; ++ return 0; ++err: ++ i = 0; ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ if ((1U << i) & ptrs_locked) ++ bch2_bucket_nocow_unlock(&c->nocow_locks, ++ PTR_BUCKET_POS(c, &p.ptr), 0); ++ percpu_ref_put(&bch_dev_bkey_exists(c, p.ptr.dev)->ref); ++ i++; ++ } ++ ++ bch2_bkey_buf_exit(&m->k, c); ++ bch2_bio_free_pages_pool(c, &m->op.wbio.bio); ++ return ret; ++} ++ ++void bch2_data_update_opts_normalize(struct bkey_s_c k, struct data_update_opts *opts) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ unsigned i = 0; ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ if ((opts->rewrite_ptrs & (1U << i)) && ptr->cached) { ++ opts->kill_ptrs |= 1U << i; ++ opts->rewrite_ptrs ^= 1U << i; ++ } ++ ++ i++; ++ } ++} +diff --git a/fs/bcachefs/data_update.h b/fs/bcachefs/data_update.h +new file mode 100644 +index 000000000000..7ca1f98d7e94 +--- /dev/null ++++ b/fs/bcachefs/data_update.h +@@ -0,0 +1,43 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++ ++#ifndef _BCACHEFS_DATA_UPDATE_H ++#define _BCACHEFS_DATA_UPDATE_H ++ ++#include "bkey_buf.h" ++#include "io_write_types.h" ++ ++struct moving_context; ++ ++struct data_update_opts { ++ unsigned rewrite_ptrs; ++ unsigned kill_ptrs; ++ u16 target; ++ u8 extra_replicas; ++ unsigned btree_insert_flags; ++ unsigned write_flags; ++}; ++ ++struct data_update { ++ /* extent being updated: */ ++ enum btree_id btree_id; ++ struct bkey_buf k; ++ struct data_update_opts data_opts; ++ struct moving_context *ctxt; ++ struct bch_write_op op; ++}; ++ ++int bch2_data_update_index_update(struct bch_write_op *); ++ ++void bch2_data_update_read_done(struct data_update *, ++ struct bch_extent_crc_unpacked); ++ ++void bch2_data_update_exit(struct data_update *); ++void bch2_update_unwritten_extent(struct btree_trans *, struct data_update *); ++int bch2_data_update_init(struct btree_trans *, struct moving_context *, ++ struct data_update *, ++ struct write_point_specifier, ++ struct bch_io_opts, struct data_update_opts, ++ enum btree_id, struct bkey_s_c); ++void bch2_data_update_opts_normalize(struct bkey_s_c, struct data_update_opts *); ++ ++#endif /* _BCACHEFS_DATA_UPDATE_H */ +diff --git a/fs/bcachefs/debug.c b/fs/bcachefs/debug.c +new file mode 100644 +index 000000000000..75a3dc7cbd47 +--- /dev/null ++++ b/fs/bcachefs/debug.c +@@ -0,0 +1,954 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Assorted bcachefs debug code ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_locking.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "debug.h" ++#include "error.h" ++#include "extents.h" ++#include "fsck.h" ++#include "inode.h" ++#include "super.h" ++ ++#include ++#include ++#include ++#include ++#include ++ ++static struct dentry *bch_debug; ++ ++static bool bch2_btree_verify_replica(struct bch_fs *c, struct btree *b, ++ struct extent_ptr_decoded pick) ++{ ++ struct btree *v = c->verify_data; ++ struct btree_node *n_ondisk = c->verify_ondisk; ++ struct btree_node *n_sorted = c->verify_data->data; ++ struct bset *sorted, *inmemory = &b->data->keys; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, pick.ptr.dev); ++ struct bio *bio; ++ bool failed = false, saw_error = false; ++ ++ if (!bch2_dev_get_ioref(ca, READ)) ++ return false; ++ ++ bio = bio_alloc_bioset(ca->disk_sb.bdev, ++ buf_pages(n_sorted, btree_bytes(c)), ++ REQ_OP_READ|REQ_META, ++ GFP_NOFS, ++ &c->btree_bio); ++ bio->bi_iter.bi_sector = pick.ptr.offset; ++ bch2_bio_map(bio, n_sorted, btree_bytes(c)); ++ ++ submit_bio_wait(bio); ++ ++ bio_put(bio); ++ percpu_ref_put(&ca->io_ref); ++ ++ memcpy(n_ondisk, n_sorted, btree_bytes(c)); ++ ++ v->written = 0; ++ if (bch2_btree_node_read_done(c, ca, v, false, &saw_error) || saw_error) ++ return false; ++ ++ n_sorted = c->verify_data->data; ++ sorted = &n_sorted->keys; ++ ++ if (inmemory->u64s != sorted->u64s || ++ memcmp(inmemory->start, ++ sorted->start, ++ vstruct_end(inmemory) - (void *) inmemory->start)) { ++ unsigned offset = 0, sectors; ++ struct bset *i; ++ unsigned j; ++ ++ console_lock(); ++ ++ printk(KERN_ERR "*** in memory:\n"); ++ bch2_dump_bset(c, b, inmemory, 0); ++ ++ printk(KERN_ERR "*** read back in:\n"); ++ bch2_dump_bset(c, v, sorted, 0); ++ ++ while (offset < v->written) { ++ if (!offset) { ++ i = &n_ondisk->keys; ++ sectors = vstruct_blocks(n_ondisk, c->block_bits) << ++ c->block_bits; ++ } else { ++ struct btree_node_entry *bne = ++ (void *) n_ondisk + (offset << 9); ++ i = &bne->keys; ++ ++ sectors = vstruct_blocks(bne, c->block_bits) << ++ c->block_bits; ++ } ++ ++ printk(KERN_ERR "*** on disk block %u:\n", offset); ++ bch2_dump_bset(c, b, i, offset); ++ ++ offset += sectors; ++ } ++ ++ for (j = 0; j < le16_to_cpu(inmemory->u64s); j++) ++ if (inmemory->_data[j] != sorted->_data[j]) ++ break; ++ ++ console_unlock(); ++ bch_err(c, "verify failed at key %u", j); ++ ++ failed = true; ++ } ++ ++ if (v->written != b->written) { ++ bch_err(c, "written wrong: expected %u, got %u", ++ b->written, v->written); ++ failed = true; ++ } ++ ++ return failed; ++} ++ ++void __bch2_btree_verify(struct bch_fs *c, struct btree *b) ++{ ++ struct bkey_ptrs_c ptrs; ++ struct extent_ptr_decoded p; ++ const union bch_extent_entry *entry; ++ struct btree *v; ++ struct bset *inmemory = &b->data->keys; ++ struct bkey_packed *k; ++ bool failed = false; ++ ++ if (c->opts.nochanges) ++ return; ++ ++ bch2_btree_node_io_lock(b); ++ mutex_lock(&c->verify_lock); ++ ++ if (!c->verify_ondisk) { ++ c->verify_ondisk = kvpmalloc(btree_bytes(c), GFP_KERNEL); ++ if (!c->verify_ondisk) ++ goto out; ++ } ++ ++ if (!c->verify_data) { ++ c->verify_data = __bch2_btree_node_mem_alloc(c); ++ if (!c->verify_data) ++ goto out; ++ ++ list_del_init(&c->verify_data->list); ++ } ++ ++ BUG_ON(b->nsets != 1); ++ ++ for (k = inmemory->start; k != vstruct_last(inmemory); k = bkey_p_next(k)) ++ if (k->type == KEY_TYPE_btree_ptr_v2) ++ ((struct bch_btree_ptr_v2 *) bkeyp_val(&b->format, k))->mem_ptr = 0; ++ ++ v = c->verify_data; ++ bkey_copy(&v->key, &b->key); ++ v->c.level = b->c.level; ++ v->c.btree_id = b->c.btree_id; ++ bch2_btree_keys_init(v); ++ ++ ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(&b->key)); ++ bkey_for_each_ptr_decode(&b->key.k, ptrs, p, entry) ++ failed |= bch2_btree_verify_replica(c, b, p); ++ ++ if (failed) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&b->key)); ++ bch2_fs_fatal_error(c, "btree node verify failed for : %s\n", buf.buf); ++ printbuf_exit(&buf); ++ } ++out: ++ mutex_unlock(&c->verify_lock); ++ bch2_btree_node_io_unlock(b); ++} ++ ++void bch2_btree_node_ondisk_to_text(struct printbuf *out, struct bch_fs *c, ++ const struct btree *b) ++{ ++ struct btree_node *n_ondisk = NULL; ++ struct extent_ptr_decoded pick; ++ struct bch_dev *ca; ++ struct bio *bio = NULL; ++ unsigned offset = 0; ++ int ret; ++ ++ if (bch2_bkey_pick_read_device(c, bkey_i_to_s_c(&b->key), NULL, &pick) <= 0) { ++ prt_printf(out, "error getting device to read from: invalid device\n"); ++ return; ++ } ++ ++ ca = bch_dev_bkey_exists(c, pick.ptr.dev); ++ if (!bch2_dev_get_ioref(ca, READ)) { ++ prt_printf(out, "error getting device to read from: not online\n"); ++ return; ++ } ++ ++ n_ondisk = kvpmalloc(btree_bytes(c), GFP_KERNEL); ++ if (!n_ondisk) { ++ prt_printf(out, "memory allocation failure\n"); ++ goto out; ++ } ++ ++ bio = bio_alloc_bioset(ca->disk_sb.bdev, ++ buf_pages(n_ondisk, btree_bytes(c)), ++ REQ_OP_READ|REQ_META, ++ GFP_NOFS, ++ &c->btree_bio); ++ bio->bi_iter.bi_sector = pick.ptr.offset; ++ bch2_bio_map(bio, n_ondisk, btree_bytes(c)); ++ ++ ret = submit_bio_wait(bio); ++ if (ret) { ++ prt_printf(out, "IO error reading btree node: %s\n", bch2_err_str(ret)); ++ goto out; ++ } ++ ++ while (offset < btree_sectors(c)) { ++ struct bset *i; ++ struct nonce nonce; ++ struct bch_csum csum; ++ struct bkey_packed *k; ++ unsigned sectors; ++ ++ if (!offset) { ++ i = &n_ondisk->keys; ++ ++ if (!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i))) { ++ prt_printf(out, "unknown checksum type at offset %u: %llu\n", ++ offset, BSET_CSUM_TYPE(i)); ++ goto out; ++ } ++ ++ nonce = btree_nonce(i, offset << 9); ++ csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, n_ondisk); ++ ++ if (bch2_crc_cmp(csum, n_ondisk->csum)) { ++ prt_printf(out, "invalid checksum\n"); ++ goto out; ++ } ++ ++ bset_encrypt(c, i, offset << 9); ++ ++ sectors = vstruct_sectors(n_ondisk, c->block_bits); ++ } else { ++ struct btree_node_entry *bne = (void *) n_ondisk + (offset << 9); ++ ++ i = &bne->keys; ++ ++ if (i->seq != n_ondisk->keys.seq) ++ break; ++ ++ if (!bch2_checksum_type_valid(c, BSET_CSUM_TYPE(i))) { ++ prt_printf(out, "unknown checksum type at offset %u: %llu\n", ++ offset, BSET_CSUM_TYPE(i)); ++ goto out; ++ } ++ ++ nonce = btree_nonce(i, offset << 9); ++ csum = csum_vstruct(c, BSET_CSUM_TYPE(i), nonce, bne); ++ ++ if (bch2_crc_cmp(csum, bne->csum)) { ++ prt_printf(out, "invalid checksum"); ++ goto out; ++ } ++ ++ bset_encrypt(c, i, offset << 9); ++ ++ sectors = vstruct_sectors(bne, c->block_bits); ++ } ++ ++ prt_printf(out, " offset %u version %u, journal seq %llu\n", ++ offset, ++ le16_to_cpu(i->version), ++ le64_to_cpu(i->journal_seq)); ++ offset += sectors; ++ ++ printbuf_indent_add(out, 4); ++ ++ for (k = i->start; k != vstruct_last(i); k = bkey_p_next(k)) { ++ struct bkey u; ++ ++ bch2_bkey_val_to_text(out, c, bkey_disassemble(b, k, &u)); ++ prt_newline(out); ++ } ++ ++ printbuf_indent_sub(out, 4); ++ } ++out: ++ if (bio) ++ bio_put(bio); ++ kvpfree(n_ondisk, btree_bytes(c)); ++ percpu_ref_put(&ca->io_ref); ++} ++ ++#ifdef CONFIG_DEBUG_FS ++ ++/* XXX: bch_fs refcounting */ ++ ++struct dump_iter { ++ struct bch_fs *c; ++ enum btree_id id; ++ struct bpos from; ++ struct bpos prev_node; ++ u64 iter; ++ ++ struct printbuf buf; ++ ++ char __user *ubuf; /* destination user buffer */ ++ size_t size; /* size of requested read */ ++ ssize_t ret; /* bytes read so far */ ++}; ++ ++static ssize_t flush_buf(struct dump_iter *i) ++{ ++ if (i->buf.pos) { ++ size_t bytes = min_t(size_t, i->buf.pos, i->size); ++ int copied = bytes - copy_to_user(i->ubuf, i->buf.buf, bytes); ++ ++ i->ret += copied; ++ i->ubuf += copied; ++ i->size -= copied; ++ i->buf.pos -= copied; ++ memmove(i->buf.buf, i->buf.buf + copied, i->buf.pos); ++ ++ if (copied != bytes) ++ return -EFAULT; ++ } ++ ++ return i->size ? 0 : i->ret; ++} ++ ++static int bch2_dump_open(struct inode *inode, struct file *file) ++{ ++ struct btree_debug *bd = inode->i_private; ++ struct dump_iter *i; ++ ++ i = kzalloc(sizeof(struct dump_iter), GFP_KERNEL); ++ if (!i) ++ return -ENOMEM; ++ ++ file->private_data = i; ++ i->from = POS_MIN; ++ i->iter = 0; ++ i->c = container_of(bd, struct bch_fs, btree_debug[bd->id]); ++ i->id = bd->id; ++ i->buf = PRINTBUF; ++ ++ return 0; ++} ++ ++static int bch2_dump_release(struct inode *inode, struct file *file) ++{ ++ struct dump_iter *i = file->private_data; ++ ++ printbuf_exit(&i->buf); ++ kfree(i); ++ return 0; ++} ++ ++static ssize_t bch2_read_btree(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ ssize_t ret; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ ret = flush_buf(i); ++ if (ret) ++ return ret; ++ ++ trans = bch2_trans_get(i->c); ++ ret = for_each_btree_key2(trans, iter, i->id, i->from, ++ BTREE_ITER_PREFETCH| ++ BTREE_ITER_ALL_SNAPSHOTS, k, ({ ++ bch2_bkey_val_to_text(&i->buf, i->c, k); ++ prt_newline(&i->buf); ++ drop_locks_do(trans, flush_buf(i)); ++ })); ++ i->from = iter.pos; ++ ++ bch2_trans_put(trans); ++ ++ if (!ret) ++ ret = flush_buf(i); ++ ++ return ret ?: i->ret; ++} ++ ++static const struct file_operations btree_debug_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_read_btree, ++}; ++ ++static ssize_t bch2_read_btree_formats(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct btree *b; ++ ssize_t ret; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ ret = flush_buf(i); ++ if (ret) ++ return ret; ++ ++ if (bpos_eq(SPOS_MAX, i->from)) ++ return i->ret; ++ ++ trans = bch2_trans_get(i->c); ++retry: ++ bch2_trans_begin(trans); ++ ++ for_each_btree_node(trans, iter, i->id, i->from, 0, b, ret) { ++ bch2_btree_node_to_text(&i->buf, i->c, b); ++ i->from = !bpos_eq(SPOS_MAX, b->key.k.p) ++ ? bpos_successor(b->key.k.p) ++ : b->key.k.p; ++ ++ ret = drop_locks_do(trans, flush_buf(i)); ++ if (ret) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ ++ if (!ret) ++ ret = flush_buf(i); ++ ++ return ret ?: i->ret; ++} ++ ++static const struct file_operations btree_format_debug_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_read_btree_formats, ++}; ++ ++static ssize_t bch2_read_bfloat_failed(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ ssize_t ret; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ ret = flush_buf(i); ++ if (ret) ++ return ret; ++ ++ trans = bch2_trans_get(i->c); ++ ++ ret = for_each_btree_key2(trans, iter, i->id, i->from, ++ BTREE_ITER_PREFETCH| ++ BTREE_ITER_ALL_SNAPSHOTS, k, ({ ++ struct btree_path_level *l = &iter.path->l[0]; ++ struct bkey_packed *_k = ++ bch2_btree_node_iter_peek(&l->iter, l->b); ++ ++ if (bpos_gt(l->b->key.k.p, i->prev_node)) { ++ bch2_btree_node_to_text(&i->buf, i->c, l->b); ++ i->prev_node = l->b->key.k.p; ++ } ++ ++ bch2_bfloat_to_text(&i->buf, l->b, _k); ++ drop_locks_do(trans, flush_buf(i)); ++ })); ++ i->from = iter.pos; ++ ++ bch2_trans_put(trans); ++ ++ if (!ret) ++ ret = flush_buf(i); ++ ++ return ret ?: i->ret; ++} ++ ++static const struct file_operations bfloat_failed_debug_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_read_bfloat_failed, ++}; ++ ++static void bch2_cached_btree_node_to_text(struct printbuf *out, struct bch_fs *c, ++ struct btree *b) ++{ ++ if (!out->nr_tabstops) ++ printbuf_tabstop_push(out, 32); ++ ++ prt_printf(out, "%px btree=%s l=%u ", ++ b, ++ bch2_btree_ids[b->c.btree_id], ++ b->c.level); ++ prt_newline(out); ++ ++ printbuf_indent_add(out, 2); ++ ++ bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&b->key)); ++ prt_newline(out); ++ ++ prt_printf(out, "flags: "); ++ prt_tab(out); ++ prt_bitflags(out, bch2_btree_node_flags, b->flags); ++ prt_newline(out); ++ ++ prt_printf(out, "pcpu read locks: "); ++ prt_tab(out); ++ prt_printf(out, "%u", b->c.lock.readers != NULL); ++ prt_newline(out); ++ ++ prt_printf(out, "written:"); ++ prt_tab(out); ++ prt_printf(out, "%u", b->written); ++ prt_newline(out); ++ ++ prt_printf(out, "writes blocked:"); ++ prt_tab(out); ++ prt_printf(out, "%u", !list_empty_careful(&b->write_blocked)); ++ prt_newline(out); ++ ++ prt_printf(out, "will make reachable:"); ++ prt_tab(out); ++ prt_printf(out, "%lx", b->will_make_reachable); ++ prt_newline(out); ++ ++ prt_printf(out, "journal pin %px:", &b->writes[0].journal); ++ prt_tab(out); ++ prt_printf(out, "%llu", b->writes[0].journal.seq); ++ prt_newline(out); ++ ++ prt_printf(out, "journal pin %px:", &b->writes[1].journal); ++ prt_tab(out); ++ prt_printf(out, "%llu", b->writes[1].journal.seq); ++ prt_newline(out); ++ ++ printbuf_indent_sub(out, 2); ++} ++ ++static ssize_t bch2_cached_btree_nodes_read(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct bch_fs *c = i->c; ++ bool done = false; ++ ssize_t ret = 0; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ do { ++ struct bucket_table *tbl; ++ struct rhash_head *pos; ++ struct btree *b; ++ ++ ret = flush_buf(i); ++ if (ret) ++ return ret; ++ ++ rcu_read_lock(); ++ i->buf.atomic++; ++ tbl = rht_dereference_rcu(c->btree_cache.table.tbl, ++ &c->btree_cache.table); ++ if (i->iter < tbl->size) { ++ rht_for_each_entry_rcu(b, pos, tbl, i->iter, hash) ++ bch2_cached_btree_node_to_text(&i->buf, c, b); ++ i->iter++; ++ } else { ++ done = true; ++ } ++ --i->buf.atomic; ++ rcu_read_unlock(); ++ } while (!done); ++ ++ if (i->buf.allocation_failure) ++ ret = -ENOMEM; ++ ++ if (!ret) ++ ret = flush_buf(i); ++ ++ return ret ?: i->ret; ++} ++ ++static const struct file_operations cached_btree_nodes_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_cached_btree_nodes_read, ++}; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG_TRANSACTIONS ++static ssize_t bch2_btree_transactions_read(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct bch_fs *c = i->c; ++ struct btree_trans *trans; ++ ssize_t ret = 0; ++ u32 seq; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++restart: ++ seqmutex_lock(&c->btree_trans_lock); ++ list_for_each_entry(trans, &c->btree_trans_list, list) { ++ if (trans->locking_wait.task->pid <= i->iter) ++ continue; ++ ++ closure_get(&trans->ref); ++ seq = seqmutex_seq(&c->btree_trans_lock); ++ seqmutex_unlock(&c->btree_trans_lock); ++ ++ ret = flush_buf(i); ++ if (ret) { ++ closure_put(&trans->ref); ++ goto unlocked; ++ } ++ ++ bch2_btree_trans_to_text(&i->buf, trans); ++ ++ prt_printf(&i->buf, "backtrace:"); ++ prt_newline(&i->buf); ++ printbuf_indent_add(&i->buf, 2); ++ bch2_prt_task_backtrace(&i->buf, trans->locking_wait.task); ++ printbuf_indent_sub(&i->buf, 2); ++ prt_newline(&i->buf); ++ ++ i->iter = trans->locking_wait.task->pid; ++ ++ closure_put(&trans->ref); ++ ++ if (!seqmutex_relock(&c->btree_trans_lock, seq)) ++ goto restart; ++ } ++ seqmutex_unlock(&c->btree_trans_lock); ++unlocked: ++ if (i->buf.allocation_failure) ++ ret = -ENOMEM; ++ ++ if (!ret) ++ ret = flush_buf(i); ++ ++ return ret ?: i->ret; ++} ++ ++static const struct file_operations btree_transactions_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_btree_transactions_read, ++}; ++#endif /* CONFIG_BCACHEFS_DEBUG_TRANSACTIONS */ ++ ++static ssize_t bch2_journal_pins_read(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct bch_fs *c = i->c; ++ bool done = false; ++ int err; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ do { ++ err = flush_buf(i); ++ if (err) ++ return err; ++ ++ if (!i->size) ++ break; ++ ++ done = bch2_journal_seq_pins_to_text(&i->buf, &c->journal, &i->iter); ++ i->iter++; ++ } while (!done); ++ ++ if (i->buf.allocation_failure) ++ return -ENOMEM; ++ ++ return i->ret; ++} ++ ++static const struct file_operations journal_pins_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_journal_pins_read, ++}; ++ ++static int lock_held_stats_open(struct inode *inode, struct file *file) ++{ ++ struct bch_fs *c = inode->i_private; ++ struct dump_iter *i; ++ ++ i = kzalloc(sizeof(struct dump_iter), GFP_KERNEL); ++ ++ if (!i) ++ return -ENOMEM; ++ ++ i->iter = 0; ++ i->c = c; ++ i->buf = PRINTBUF; ++ file->private_data = i; ++ ++ return 0; ++} ++ ++static int lock_held_stats_release(struct inode *inode, struct file *file) ++{ ++ struct dump_iter *i = file->private_data; ++ ++ printbuf_exit(&i->buf); ++ kfree(i); ++ ++ return 0; ++} ++ ++static ssize_t lock_held_stats_read(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct bch_fs *c = i->c; ++ int err; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ while (1) { ++ struct btree_transaction_stats *s = &c->btree_transaction_stats[i->iter]; ++ ++ err = flush_buf(i); ++ if (err) ++ return err; ++ ++ if (!i->size) ++ break; ++ ++ if (i->iter == ARRAY_SIZE(bch2_btree_transaction_fns) || ++ !bch2_btree_transaction_fns[i->iter]) ++ break; ++ ++ prt_printf(&i->buf, "%s: ", bch2_btree_transaction_fns[i->iter]); ++ prt_newline(&i->buf); ++ printbuf_indent_add(&i->buf, 2); ++ ++ mutex_lock(&s->lock); ++ ++ prt_printf(&i->buf, "Max mem used: %u", s->max_mem); ++ prt_newline(&i->buf); ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_LOCK_TIME_STATS)) { ++ prt_printf(&i->buf, "Lock hold times:"); ++ prt_newline(&i->buf); ++ ++ printbuf_indent_add(&i->buf, 2); ++ bch2_time_stats_to_text(&i->buf, &s->lock_hold_times); ++ printbuf_indent_sub(&i->buf, 2); ++ } ++ ++ if (s->max_paths_text) { ++ prt_printf(&i->buf, "Maximum allocated btree paths (%u):", s->nr_max_paths); ++ prt_newline(&i->buf); ++ ++ printbuf_indent_add(&i->buf, 2); ++ prt_str_indented(&i->buf, s->max_paths_text); ++ printbuf_indent_sub(&i->buf, 2); ++ } ++ ++ mutex_unlock(&s->lock); ++ ++ printbuf_indent_sub(&i->buf, 2); ++ prt_newline(&i->buf); ++ i->iter++; ++ } ++ ++ if (i->buf.allocation_failure) ++ return -ENOMEM; ++ ++ return i->ret; ++} ++ ++static const struct file_operations lock_held_stats_op = { ++ .owner = THIS_MODULE, ++ .open = lock_held_stats_open, ++ .release = lock_held_stats_release, ++ .read = lock_held_stats_read, ++}; ++ ++static ssize_t bch2_btree_deadlock_read(struct file *file, char __user *buf, ++ size_t size, loff_t *ppos) ++{ ++ struct dump_iter *i = file->private_data; ++ struct bch_fs *c = i->c; ++ struct btree_trans *trans; ++ ssize_t ret = 0; ++ u32 seq; ++ ++ i->ubuf = buf; ++ i->size = size; ++ i->ret = 0; ++ ++ if (i->iter) ++ goto out; ++restart: ++ seqmutex_lock(&c->btree_trans_lock); ++ list_for_each_entry(trans, &c->btree_trans_list, list) { ++ if (trans->locking_wait.task->pid <= i->iter) ++ continue; ++ ++ closure_get(&trans->ref); ++ seq = seqmutex_seq(&c->btree_trans_lock); ++ seqmutex_unlock(&c->btree_trans_lock); ++ ++ ret = flush_buf(i); ++ if (ret) { ++ closure_put(&trans->ref); ++ goto out; ++ } ++ ++ bch2_check_for_deadlock(trans, &i->buf); ++ ++ i->iter = trans->locking_wait.task->pid; ++ ++ closure_put(&trans->ref); ++ ++ if (!seqmutex_relock(&c->btree_trans_lock, seq)) ++ goto restart; ++ } ++ seqmutex_unlock(&c->btree_trans_lock); ++out: ++ if (i->buf.allocation_failure) ++ ret = -ENOMEM; ++ ++ if (!ret) ++ ret = flush_buf(i); ++ ++ return ret ?: i->ret; ++} ++ ++static const struct file_operations btree_deadlock_ops = { ++ .owner = THIS_MODULE, ++ .open = bch2_dump_open, ++ .release = bch2_dump_release, ++ .read = bch2_btree_deadlock_read, ++}; ++ ++void bch2_fs_debug_exit(struct bch_fs *c) ++{ ++ if (!IS_ERR_OR_NULL(c->fs_debug_dir)) ++ debugfs_remove_recursive(c->fs_debug_dir); ++} ++ ++void bch2_fs_debug_init(struct bch_fs *c) ++{ ++ struct btree_debug *bd; ++ char name[100]; ++ ++ if (IS_ERR_OR_NULL(bch_debug)) ++ return; ++ ++ snprintf(name, sizeof(name), "%pU", c->sb.user_uuid.b); ++ c->fs_debug_dir = debugfs_create_dir(name, bch_debug); ++ if (IS_ERR_OR_NULL(c->fs_debug_dir)) ++ return; ++ ++ debugfs_create_file("cached_btree_nodes", 0400, c->fs_debug_dir, ++ c->btree_debug, &cached_btree_nodes_ops); ++ ++#ifdef CONFIG_BCACHEFS_DEBUG_TRANSACTIONS ++ debugfs_create_file("btree_transactions", 0400, c->fs_debug_dir, ++ c->btree_debug, &btree_transactions_ops); ++#endif ++ ++ debugfs_create_file("journal_pins", 0400, c->fs_debug_dir, ++ c->btree_debug, &journal_pins_ops); ++ ++ debugfs_create_file("btree_transaction_stats", 0400, c->fs_debug_dir, ++ c, &lock_held_stats_op); ++ ++ debugfs_create_file("btree_deadlock", 0400, c->fs_debug_dir, ++ c->btree_debug, &btree_deadlock_ops); ++ ++ c->btree_debug_dir = debugfs_create_dir("btrees", c->fs_debug_dir); ++ if (IS_ERR_OR_NULL(c->btree_debug_dir)) ++ return; ++ ++ for (bd = c->btree_debug; ++ bd < c->btree_debug + ARRAY_SIZE(c->btree_debug); ++ bd++) { ++ bd->id = bd - c->btree_debug; ++ debugfs_create_file(bch2_btree_ids[bd->id], ++ 0400, c->btree_debug_dir, bd, ++ &btree_debug_ops); ++ ++ snprintf(name, sizeof(name), "%s-formats", ++ bch2_btree_ids[bd->id]); ++ ++ debugfs_create_file(name, 0400, c->btree_debug_dir, bd, ++ &btree_format_debug_ops); ++ ++ snprintf(name, sizeof(name), "%s-bfloat-failed", ++ bch2_btree_ids[bd->id]); ++ ++ debugfs_create_file(name, 0400, c->btree_debug_dir, bd, ++ &bfloat_failed_debug_ops); ++ } ++} ++ ++#endif ++ ++void bch2_debug_exit(void) ++{ ++ if (!IS_ERR_OR_NULL(bch_debug)) ++ debugfs_remove_recursive(bch_debug); ++} ++ ++int __init bch2_debug_init(void) ++{ ++ int ret = 0; ++ ++ bch_debug = debugfs_create_dir("bcachefs", NULL); ++ return ret; ++} +diff --git a/fs/bcachefs/debug.h b/fs/bcachefs/debug.h +new file mode 100644 +index 000000000000..2c37143b5fd1 +--- /dev/null ++++ b/fs/bcachefs/debug.h +@@ -0,0 +1,32 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_DEBUG_H ++#define _BCACHEFS_DEBUG_H ++ ++#include "bcachefs.h" ++ ++struct bio; ++struct btree; ++struct bch_fs; ++ ++void __bch2_btree_verify(struct bch_fs *, struct btree *); ++void bch2_btree_node_ondisk_to_text(struct printbuf *, struct bch_fs *, ++ const struct btree *); ++ ++static inline void bch2_btree_verify(struct bch_fs *c, struct btree *b) ++{ ++ if (bch2_verify_btree_ondisk) ++ __bch2_btree_verify(c, b); ++} ++ ++#ifdef CONFIG_DEBUG_FS ++void bch2_fs_debug_exit(struct bch_fs *); ++void bch2_fs_debug_init(struct bch_fs *); ++#else ++static inline void bch2_fs_debug_exit(struct bch_fs *c) {} ++static inline void bch2_fs_debug_init(struct bch_fs *c) {} ++#endif ++ ++void bch2_debug_exit(void); ++int bch2_debug_init(void); ++ ++#endif /* _BCACHEFS_DEBUG_H */ +diff --git a/fs/bcachefs/dirent.c b/fs/bcachefs/dirent.c +new file mode 100644 +index 000000000000..6c6c8d57d72b +--- /dev/null ++++ b/fs/bcachefs/dirent.c +@@ -0,0 +1,587 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_buf.h" ++#include "bkey_methods.h" ++#include "btree_update.h" ++#include "extents.h" ++#include "dirent.h" ++#include "fs.h" ++#include "keylist.h" ++#include "str_hash.h" ++#include "subvolume.h" ++ ++#include ++ ++static unsigned bch2_dirent_name_bytes(struct bkey_s_c_dirent d) ++{ ++ unsigned bkey_u64s = bkey_val_u64s(d.k); ++ unsigned bkey_bytes = bkey_u64s * sizeof(u64); ++ u64 last_u64 = ((u64*)d.v)[bkey_u64s - 1]; ++#if CPU_BIG_ENDIAN ++ unsigned trailing_nuls = last_u64 ? __builtin_ctzll(last_u64) / 8 : 64 / 8; ++#else ++ unsigned trailing_nuls = last_u64 ? __builtin_clzll(last_u64) / 8 : 64 / 8; ++#endif ++ ++ return bkey_bytes - ++ offsetof(struct bch_dirent, d_name) - ++ trailing_nuls; ++} ++ ++struct qstr bch2_dirent_get_name(struct bkey_s_c_dirent d) ++{ ++ return (struct qstr) QSTR_INIT(d.v->d_name, bch2_dirent_name_bytes(d)); ++} ++ ++static u64 bch2_dirent_hash(const struct bch_hash_info *info, ++ const struct qstr *name) ++{ ++ struct bch_str_hash_ctx ctx; ++ ++ bch2_str_hash_init(&ctx, info); ++ bch2_str_hash_update(&ctx, info, name->name, name->len); ++ ++ /* [0,2) reserved for dots */ ++ return max_t(u64, bch2_str_hash_end(&ctx, info), 2); ++} ++ ++static u64 dirent_hash_key(const struct bch_hash_info *info, const void *key) ++{ ++ return bch2_dirent_hash(info, key); ++} ++ ++static u64 dirent_hash_bkey(const struct bch_hash_info *info, struct bkey_s_c k) ++{ ++ struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k); ++ struct qstr name = bch2_dirent_get_name(d); ++ ++ return bch2_dirent_hash(info, &name); ++} ++ ++static bool dirent_cmp_key(struct bkey_s_c _l, const void *_r) ++{ ++ struct bkey_s_c_dirent l = bkey_s_c_to_dirent(_l); ++ const struct qstr l_name = bch2_dirent_get_name(l); ++ const struct qstr *r_name = _r; ++ ++ return l_name.len - r_name->len ?: memcmp(l_name.name, r_name->name, l_name.len); ++} ++ ++static bool dirent_cmp_bkey(struct bkey_s_c _l, struct bkey_s_c _r) ++{ ++ struct bkey_s_c_dirent l = bkey_s_c_to_dirent(_l); ++ struct bkey_s_c_dirent r = bkey_s_c_to_dirent(_r); ++ const struct qstr l_name = bch2_dirent_get_name(l); ++ const struct qstr r_name = bch2_dirent_get_name(r); ++ ++ return l_name.len - r_name.len ?: memcmp(l_name.name, r_name.name, l_name.len); ++} ++ ++static bool dirent_is_visible(subvol_inum inum, struct bkey_s_c k) ++{ ++ struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k); ++ ++ if (d.v->d_type == DT_SUBVOL) ++ return le32_to_cpu(d.v->d_parent_subvol) == inum.subvol; ++ return true; ++} ++ ++const struct bch_hash_desc bch2_dirent_hash_desc = { ++ .btree_id = BTREE_ID_dirents, ++ .key_type = KEY_TYPE_dirent, ++ .hash_key = dirent_hash_key, ++ .hash_bkey = dirent_hash_bkey, ++ .cmp_key = dirent_cmp_key, ++ .cmp_bkey = dirent_cmp_bkey, ++ .is_visible = dirent_is_visible, ++}; ++ ++int bch2_dirent_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k); ++ struct qstr d_name = bch2_dirent_get_name(d); ++ ++ if (!d_name.len) { ++ prt_printf(err, "empty name"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (bkey_val_u64s(k.k) > dirent_val_u64s(d_name.len)) { ++ prt_printf(err, "value too big (%zu > %u)", ++ bkey_val_u64s(k.k), dirent_val_u64s(d_name.len)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ /* ++ * Check new keys don't exceed the max length ++ * (older keys may be larger.) ++ */ ++ if ((flags & BKEY_INVALID_COMMIT) && d_name.len > BCH_NAME_MAX) { ++ prt_printf(err, "dirent name too big (%u > %u)", ++ d_name.len, BCH_NAME_MAX); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (d_name.len != strnlen(d_name.name, d_name.len)) { ++ prt_printf(err, "dirent has stray data after name's NUL"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (d_name.len == 1 && !memcmp(d_name.name, ".", 1)) { ++ prt_printf(err, "invalid name"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (d_name.len == 2 && !memcmp(d_name.name, "..", 2)) { ++ prt_printf(err, "invalid name"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (memchr(d_name.name, '/', d_name.len)) { ++ prt_printf(err, "invalid name"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (d.v->d_type != DT_SUBVOL && ++ le64_to_cpu(d.v->d_inum) == d.k->p.inode) { ++ prt_printf(err, "dirent points to own directory"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_dirent_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_dirent d = bkey_s_c_to_dirent(k); ++ struct qstr d_name = bch2_dirent_get_name(d); ++ ++ prt_printf(out, "%.*s -> %llu type %s", ++ d_name.len, ++ d_name.name, ++ d.v->d_type != DT_SUBVOL ++ ? le64_to_cpu(d.v->d_inum) ++ : le32_to_cpu(d.v->d_child_subvol), ++ bch2_d_type_str(d.v->d_type)); ++} ++ ++static struct bkey_i_dirent *dirent_create_key(struct btree_trans *trans, ++ subvol_inum dir, u8 type, ++ const struct qstr *name, u64 dst) ++{ ++ struct bkey_i_dirent *dirent; ++ unsigned u64s = BKEY_U64s + dirent_val_u64s(name->len); ++ ++ if (name->len > BCH_NAME_MAX) ++ return ERR_PTR(-ENAMETOOLONG); ++ ++ BUG_ON(u64s > U8_MAX); ++ ++ dirent = bch2_trans_kmalloc(trans, u64s * sizeof(u64)); ++ if (IS_ERR(dirent)) ++ return dirent; ++ ++ bkey_dirent_init(&dirent->k_i); ++ dirent->k.u64s = u64s; ++ ++ if (type != DT_SUBVOL) { ++ dirent->v.d_inum = cpu_to_le64(dst); ++ } else { ++ dirent->v.d_parent_subvol = cpu_to_le32(dir.subvol); ++ dirent->v.d_child_subvol = cpu_to_le32(dst); ++ } ++ ++ dirent->v.d_type = type; ++ ++ memcpy(dirent->v.d_name, name->name, name->len); ++ memset(dirent->v.d_name + name->len, 0, ++ bkey_val_bytes(&dirent->k) - ++ offsetof(struct bch_dirent, d_name) - ++ name->len); ++ ++ EBUG_ON(bch2_dirent_name_bytes(dirent_i_to_s_c(dirent)) != name->len); ++ ++ return dirent; ++} ++ ++int bch2_dirent_create(struct btree_trans *trans, subvol_inum dir, ++ const struct bch_hash_info *hash_info, ++ u8 type, const struct qstr *name, u64 dst_inum, ++ u64 *dir_offset, int flags) ++{ ++ struct bkey_i_dirent *dirent; ++ int ret; ++ ++ dirent = dirent_create_key(trans, dir, type, name, dst_inum); ++ ret = PTR_ERR_OR_ZERO(dirent); ++ if (ret) ++ return ret; ++ ++ ret = bch2_hash_set(trans, bch2_dirent_hash_desc, hash_info, ++ dir, &dirent->k_i, flags); ++ *dir_offset = dirent->k.p.offset; ++ ++ return ret; ++} ++ ++static void dirent_copy_target(struct bkey_i_dirent *dst, ++ struct bkey_s_c_dirent src) ++{ ++ dst->v.d_inum = src.v->d_inum; ++ dst->v.d_type = src.v->d_type; ++} ++ ++int bch2_dirent_read_target(struct btree_trans *trans, subvol_inum dir, ++ struct bkey_s_c_dirent d, subvol_inum *target) ++{ ++ struct bch_subvolume s; ++ int ret = 0; ++ ++ if (d.v->d_type == DT_SUBVOL && ++ le32_to_cpu(d.v->d_parent_subvol) != dir.subvol) ++ return 1; ++ ++ if (likely(d.v->d_type != DT_SUBVOL)) { ++ target->subvol = dir.subvol; ++ target->inum = le64_to_cpu(d.v->d_inum); ++ } else { ++ target->subvol = le32_to_cpu(d.v->d_child_subvol); ++ ++ ret = bch2_subvolume_get(trans, target->subvol, true, BTREE_ITER_CACHED, &s); ++ ++ target->inum = le64_to_cpu(s.inode); ++ } ++ ++ return ret; ++} ++ ++int bch2_dirent_rename(struct btree_trans *trans, ++ subvol_inum src_dir, struct bch_hash_info *src_hash, ++ subvol_inum dst_dir, struct bch_hash_info *dst_hash, ++ const struct qstr *src_name, subvol_inum *src_inum, u64 *src_offset, ++ const struct qstr *dst_name, subvol_inum *dst_inum, u64 *dst_offset, ++ enum bch_rename_mode mode) ++{ ++ struct btree_iter src_iter = { NULL }; ++ struct btree_iter dst_iter = { NULL }; ++ struct bkey_s_c old_src, old_dst = bkey_s_c_null; ++ struct bkey_i_dirent *new_src = NULL, *new_dst = NULL; ++ struct bpos dst_pos = ++ POS(dst_dir.inum, bch2_dirent_hash(dst_hash, dst_name)); ++ unsigned src_type = 0, dst_type = 0, src_update_flags = 0; ++ int ret = 0; ++ ++ if (src_dir.subvol != dst_dir.subvol) ++ return -EXDEV; ++ ++ memset(src_inum, 0, sizeof(*src_inum)); ++ memset(dst_inum, 0, sizeof(*dst_inum)); ++ ++ /* Lookup src: */ ++ ret = bch2_hash_lookup(trans, &src_iter, bch2_dirent_hash_desc, ++ src_hash, src_dir, src_name, ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto out; ++ ++ old_src = bch2_btree_iter_peek_slot(&src_iter); ++ ret = bkey_err(old_src); ++ if (ret) ++ goto out; ++ ++ ret = bch2_dirent_read_target(trans, src_dir, ++ bkey_s_c_to_dirent(old_src), src_inum); ++ if (ret) ++ goto out; ++ ++ src_type = bkey_s_c_to_dirent(old_src).v->d_type; ++ ++ if (src_type == DT_SUBVOL && mode == BCH_RENAME_EXCHANGE) ++ return -EOPNOTSUPP; ++ ++ ++ /* Lookup dst: */ ++ if (mode == BCH_RENAME) { ++ /* ++ * Note that we're _not_ checking if the target already exists - ++ * we're relying on the VFS to do that check for us for ++ * correctness: ++ */ ++ ret = bch2_hash_hole(trans, &dst_iter, bch2_dirent_hash_desc, ++ dst_hash, dst_dir, dst_name); ++ if (ret) ++ goto out; ++ } else { ++ ret = bch2_hash_lookup(trans, &dst_iter, bch2_dirent_hash_desc, ++ dst_hash, dst_dir, dst_name, ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto out; ++ ++ old_dst = bch2_btree_iter_peek_slot(&dst_iter); ++ ret = bkey_err(old_dst); ++ if (ret) ++ goto out; ++ ++ ret = bch2_dirent_read_target(trans, dst_dir, ++ bkey_s_c_to_dirent(old_dst), dst_inum); ++ if (ret) ++ goto out; ++ ++ dst_type = bkey_s_c_to_dirent(old_dst).v->d_type; ++ ++ if (dst_type == DT_SUBVOL) ++ return -EOPNOTSUPP; ++ } ++ ++ if (mode != BCH_RENAME_EXCHANGE) ++ *src_offset = dst_iter.pos.offset; ++ ++ /* Create new dst key: */ ++ new_dst = dirent_create_key(trans, dst_dir, 0, dst_name, 0); ++ ret = PTR_ERR_OR_ZERO(new_dst); ++ if (ret) ++ goto out; ++ ++ dirent_copy_target(new_dst, bkey_s_c_to_dirent(old_src)); ++ new_dst->k.p = dst_iter.pos; ++ ++ /* Create new src key: */ ++ if (mode == BCH_RENAME_EXCHANGE) { ++ new_src = dirent_create_key(trans, src_dir, 0, src_name, 0); ++ ret = PTR_ERR_OR_ZERO(new_src); ++ if (ret) ++ goto out; ++ ++ dirent_copy_target(new_src, bkey_s_c_to_dirent(old_dst)); ++ new_src->k.p = src_iter.pos; ++ } else { ++ new_src = bch2_trans_kmalloc(trans, sizeof(struct bkey_i)); ++ ret = PTR_ERR_OR_ZERO(new_src); ++ if (ret) ++ goto out; ++ ++ bkey_init(&new_src->k); ++ new_src->k.p = src_iter.pos; ++ ++ if (bkey_le(dst_pos, src_iter.pos) && ++ bkey_lt(src_iter.pos, dst_iter.pos)) { ++ /* ++ * We have a hash collision for the new dst key, ++ * and new_src - the key we're deleting - is between ++ * new_dst's hashed slot and the slot we're going to be ++ * inserting it into - oops. This will break the hash ++ * table if we don't deal with it: ++ */ ++ if (mode == BCH_RENAME) { ++ /* ++ * If we're not overwriting, we can just insert ++ * new_dst at the src position: ++ */ ++ new_src = new_dst; ++ new_src->k.p = src_iter.pos; ++ goto out_set_src; ++ } else { ++ /* If we're overwriting, we can't insert new_dst ++ * at a different slot because it has to ++ * overwrite old_dst - just make sure to use a ++ * whiteout when deleting src: ++ */ ++ new_src->k.type = KEY_TYPE_hash_whiteout; ++ } ++ } else { ++ /* Check if we need a whiteout to delete src: */ ++ ret = bch2_hash_needs_whiteout(trans, bch2_dirent_hash_desc, ++ src_hash, &src_iter); ++ if (ret < 0) ++ goto out; ++ ++ if (ret) ++ new_src->k.type = KEY_TYPE_hash_whiteout; ++ } ++ } ++ ++ ret = bch2_trans_update(trans, &dst_iter, &new_dst->k_i, 0); ++ if (ret) ++ goto out; ++out_set_src: ++ ++ /* ++ * If we're deleting a subvolume, we need to really delete the dirent, ++ * not just emit a whiteout in the current snapshot: ++ */ ++ if (src_type == DT_SUBVOL) { ++ bch2_btree_iter_set_snapshot(&src_iter, old_src.k->p.snapshot); ++ ret = bch2_btree_iter_traverse(&src_iter); ++ if (ret) ++ goto out; ++ ++ new_src->k.p = src_iter.pos; ++ src_update_flags |= BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE; ++ } ++ ++ ret = bch2_trans_update(trans, &src_iter, &new_src->k_i, src_update_flags); ++ if (ret) ++ goto out; ++ ++ if (mode == BCH_RENAME_EXCHANGE) ++ *src_offset = new_src->k.p.offset; ++ *dst_offset = new_dst->k.p.offset; ++out: ++ bch2_trans_iter_exit(trans, &src_iter); ++ bch2_trans_iter_exit(trans, &dst_iter); ++ return ret; ++} ++ ++int __bch2_dirent_lookup_trans(struct btree_trans *trans, ++ struct btree_iter *iter, ++ subvol_inum dir, ++ const struct bch_hash_info *hash_info, ++ const struct qstr *name, subvol_inum *inum, ++ unsigned flags) ++{ ++ struct bkey_s_c k; ++ struct bkey_s_c_dirent d; ++ u32 snapshot; ++ int ret; ++ ++ ret = bch2_subvolume_get_snapshot(trans, dir.subvol, &snapshot); ++ if (ret) ++ return ret; ++ ++ ret = bch2_hash_lookup(trans, iter, bch2_dirent_hash_desc, ++ hash_info, dir, name, flags); ++ if (ret) ++ return ret; ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ d = bkey_s_c_to_dirent(k); ++ ++ ret = bch2_dirent_read_target(trans, dir, d, inum); ++ if (ret > 0) ++ ret = -ENOENT; ++err: ++ if (ret) ++ bch2_trans_iter_exit(trans, iter); ++ ++ return ret; ++} ++ ++u64 bch2_dirent_lookup(struct bch_fs *c, subvol_inum dir, ++ const struct bch_hash_info *hash_info, ++ const struct qstr *name, subvol_inum *inum) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ int ret; ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = __bch2_dirent_lookup_trans(trans, &iter, dir, hash_info, ++ name, inum, 0); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ if (!ret) ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++int bch2_empty_dir_trans(struct btree_trans *trans, subvol_inum dir) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ u32 snapshot; ++ int ret; ++ ++ ret = bch2_subvolume_get_snapshot(trans, dir.subvol, &snapshot); ++ if (ret) ++ return ret; ++ ++ for_each_btree_key_upto_norestart(trans, iter, BTREE_ID_dirents, ++ SPOS(dir.inum, 0, snapshot), ++ POS(dir.inum, U64_MAX), 0, k, ret) ++ if (k.k->type == KEY_TYPE_dirent) { ++ ret = -ENOTEMPTY; ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret; ++} ++ ++int bch2_readdir(struct bch_fs *c, subvol_inum inum, struct dir_context *ctx) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_dirent dirent; ++ subvol_inum target; ++ u32 snapshot; ++ struct bkey_buf sk; ++ struct qstr name; ++ int ret; ++ ++ bch2_bkey_buf_init(&sk); ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ for_each_btree_key_upto_norestart(trans, iter, BTREE_ID_dirents, ++ SPOS(inum.inum, ctx->pos, snapshot), ++ POS(inum.inum, U64_MAX), 0, k, ret) { ++ if (k.k->type != KEY_TYPE_dirent) ++ continue; ++ ++ dirent = bkey_s_c_to_dirent(k); ++ ++ ret = bch2_dirent_read_target(trans, inum, dirent, &target); ++ if (ret < 0) ++ break; ++ if (ret) ++ continue; ++ ++ /* dir_emit() can fault and block: */ ++ bch2_bkey_buf_reassemble(&sk, c, k); ++ dirent = bkey_i_to_s_c_dirent(sk.k); ++ bch2_trans_unlock(trans); ++ ++ name = bch2_dirent_get_name(dirent); ++ ++ ctx->pos = dirent.k->p.offset; ++ if (!dir_emit(ctx, name.name, ++ name.len, ++ target.inum, ++ vfs_d_type(dirent.v->d_type))) ++ break; ++ ctx->pos = dirent.k->p.offset + 1; ++ ++ /* ++ * read_target looks up subvolumes, we can overflow paths if the ++ * directory has many subvolumes in it ++ */ ++ ret = btree_trans_too_many_iters(trans); ++ if (ret) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ bch2_bkey_buf_exit(&sk, c); ++ ++ return ret; ++} +diff --git a/fs/bcachefs/dirent.h b/fs/bcachefs/dirent.h +new file mode 100644 +index 000000000000..e9fa1df38232 +--- /dev/null ++++ b/fs/bcachefs/dirent.h +@@ -0,0 +1,70 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_DIRENT_H ++#define _BCACHEFS_DIRENT_H ++ ++#include "str_hash.h" ++ ++enum bkey_invalid_flags; ++extern const struct bch_hash_desc bch2_dirent_hash_desc; ++ ++int bch2_dirent_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_dirent_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_dirent ((struct bkey_ops) { \ ++ .key_invalid = bch2_dirent_invalid, \ ++ .val_to_text = bch2_dirent_to_text, \ ++ .min_val_size = 16, \ ++}) ++ ++struct qstr; ++struct file; ++struct dir_context; ++struct bch_fs; ++struct bch_hash_info; ++struct bch_inode_info; ++ ++struct qstr bch2_dirent_get_name(struct bkey_s_c_dirent d); ++ ++static inline unsigned dirent_val_u64s(unsigned len) ++{ ++ return DIV_ROUND_UP(offsetof(struct bch_dirent, d_name) + len, ++ sizeof(u64)); ++} ++ ++int bch2_dirent_read_target(struct btree_trans *, subvol_inum, ++ struct bkey_s_c_dirent, subvol_inum *); ++ ++int bch2_dirent_create(struct btree_trans *, subvol_inum, ++ const struct bch_hash_info *, u8, ++ const struct qstr *, u64, u64 *, int); ++ ++static inline unsigned vfs_d_type(unsigned type) ++{ ++ return type == DT_SUBVOL ? DT_DIR : type; ++} ++ ++enum bch_rename_mode { ++ BCH_RENAME, ++ BCH_RENAME_OVERWRITE, ++ BCH_RENAME_EXCHANGE, ++}; ++ ++int bch2_dirent_rename(struct btree_trans *, ++ subvol_inum, struct bch_hash_info *, ++ subvol_inum, struct bch_hash_info *, ++ const struct qstr *, subvol_inum *, u64 *, ++ const struct qstr *, subvol_inum *, u64 *, ++ enum bch_rename_mode); ++ ++int __bch2_dirent_lookup_trans(struct btree_trans *, struct btree_iter *, ++ subvol_inum, const struct bch_hash_info *, ++ const struct qstr *, subvol_inum *, unsigned); ++u64 bch2_dirent_lookup(struct bch_fs *, subvol_inum, ++ const struct bch_hash_info *, ++ const struct qstr *, subvol_inum *); ++ ++int bch2_empty_dir_trans(struct btree_trans *, subvol_inum); ++int bch2_readdir(struct bch_fs *, subvol_inum, struct dir_context *); ++ ++#endif /* _BCACHEFS_DIRENT_H */ +diff --git a/fs/bcachefs/disk_groups.c b/fs/bcachefs/disk_groups.c +new file mode 100644 +index 000000000000..e00133b6ea51 +--- /dev/null ++++ b/fs/bcachefs/disk_groups.c +@@ -0,0 +1,550 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "disk_groups.h" ++#include "sb-members.h" ++#include "super-io.h" ++ ++#include ++ ++static int group_cmp(const void *_l, const void *_r) ++{ ++ const struct bch_disk_group *l = _l; ++ const struct bch_disk_group *r = _r; ++ ++ return ((BCH_GROUP_DELETED(l) > BCH_GROUP_DELETED(r)) - ++ (BCH_GROUP_DELETED(l) < BCH_GROUP_DELETED(r))) ?: ++ ((BCH_GROUP_PARENT(l) > BCH_GROUP_PARENT(r)) - ++ (BCH_GROUP_PARENT(l) < BCH_GROUP_PARENT(r))) ?: ++ strncmp(l->label, r->label, sizeof(l->label)); ++} ++ ++static int bch2_sb_disk_groups_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ field_to_type(f, disk_groups); ++ struct bch_disk_group *g, *sorted = NULL; ++ unsigned nr_groups = disk_groups_nr(groups); ++ unsigned i, len; ++ int ret = 0; ++ ++ for (i = 0; i < sb->nr_devices; i++) { ++ struct bch_member m = bch2_sb_member_get(sb, i); ++ unsigned group_id; ++ ++ if (!BCH_MEMBER_GROUP(&m)) ++ continue; ++ ++ group_id = BCH_MEMBER_GROUP(&m) - 1; ++ ++ if (group_id >= nr_groups) { ++ prt_printf(err, "disk %u has invalid label %u (have %u)", ++ i, group_id, nr_groups); ++ return -BCH_ERR_invalid_sb_disk_groups; ++ } ++ ++ if (BCH_GROUP_DELETED(&groups->entries[group_id])) { ++ prt_printf(err, "disk %u has deleted label %u", i, group_id); ++ return -BCH_ERR_invalid_sb_disk_groups; ++ } ++ } ++ ++ if (!nr_groups) ++ return 0; ++ ++ for (i = 0; i < nr_groups; i++) { ++ g = groups->entries + i; ++ ++ if (BCH_GROUP_DELETED(g)) ++ continue; ++ ++ len = strnlen(g->label, sizeof(g->label)); ++ if (!len) { ++ prt_printf(err, "label %u empty", i); ++ return -BCH_ERR_invalid_sb_disk_groups; ++ } ++ } ++ ++ sorted = kmalloc_array(nr_groups, sizeof(*sorted), GFP_KERNEL); ++ if (!sorted) ++ return -BCH_ERR_ENOMEM_disk_groups_validate; ++ ++ memcpy(sorted, groups->entries, nr_groups * sizeof(*sorted)); ++ sort(sorted, nr_groups, sizeof(*sorted), group_cmp, NULL); ++ ++ for (g = sorted; g + 1 < sorted + nr_groups; g++) ++ if (!BCH_GROUP_DELETED(g) && ++ !group_cmp(&g[0], &g[1])) { ++ prt_printf(err, "duplicate label %llu.%.*s", ++ BCH_GROUP_PARENT(g), ++ (int) sizeof(g->label), g->label); ++ ret = -BCH_ERR_invalid_sb_disk_groups; ++ goto err; ++ } ++err: ++ kfree(sorted); ++ return ret; ++} ++ ++void bch2_disk_groups_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct bch_disk_groups_cpu *g; ++ struct bch_dev *ca; ++ int i; ++ unsigned iter; ++ ++ out->atomic++; ++ rcu_read_lock(); ++ ++ g = rcu_dereference(c->disk_groups); ++ if (!g) ++ goto out; ++ ++ for (i = 0; i < g->nr; i++) { ++ if (i) ++ prt_printf(out, " "); ++ ++ if (g->entries[i].deleted) { ++ prt_printf(out, "[deleted]"); ++ continue; ++ } ++ ++ prt_printf(out, "[parent %d devs", g->entries[i].parent); ++ for_each_member_device_rcu(ca, c, iter, &g->entries[i].devs) ++ prt_printf(out, " %s", ca->name); ++ prt_printf(out, "]"); ++ } ++ ++out: ++ rcu_read_unlock(); ++ out->atomic--; ++} ++ ++static void bch2_sb_disk_groups_to_text(struct printbuf *out, ++ struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ field_to_type(f, disk_groups); ++ struct bch_disk_group *g; ++ unsigned nr_groups = disk_groups_nr(groups); ++ ++ for (g = groups->entries; ++ g < groups->entries + nr_groups; ++ g++) { ++ if (g != groups->entries) ++ prt_printf(out, " "); ++ ++ if (BCH_GROUP_DELETED(g)) ++ prt_printf(out, "[deleted]"); ++ else ++ prt_printf(out, "[parent %llu name %s]", ++ BCH_GROUP_PARENT(g), g->label); ++ } ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_disk_groups = { ++ .validate = bch2_sb_disk_groups_validate, ++ .to_text = bch2_sb_disk_groups_to_text ++}; ++ ++int bch2_sb_disk_groups_to_cpu(struct bch_fs *c) ++{ ++ struct bch_sb_field_disk_groups *groups; ++ struct bch_disk_groups_cpu *cpu_g, *old_g; ++ unsigned i, g, nr_groups; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ groups = bch2_sb_field_get(c->disk_sb.sb, disk_groups); ++ nr_groups = disk_groups_nr(groups); ++ ++ if (!groups) ++ return 0; ++ ++ cpu_g = kzalloc(struct_size(cpu_g, entries, nr_groups), GFP_KERNEL); ++ if (!cpu_g) ++ return -BCH_ERR_ENOMEM_disk_groups_to_cpu; ++ ++ cpu_g->nr = nr_groups; ++ ++ for (i = 0; i < nr_groups; i++) { ++ struct bch_disk_group *src = &groups->entries[i]; ++ struct bch_disk_group_cpu *dst = &cpu_g->entries[i]; ++ ++ dst->deleted = BCH_GROUP_DELETED(src); ++ dst->parent = BCH_GROUP_PARENT(src); ++ } ++ ++ for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { ++ struct bch_member m = bch2_sb_member_get(c->disk_sb.sb, i); ++ struct bch_disk_group_cpu *dst; ++ ++ if (!bch2_member_exists(&m)) ++ continue; ++ ++ g = BCH_MEMBER_GROUP(&m); ++ while (g) { ++ dst = &cpu_g->entries[g - 1]; ++ __set_bit(i, dst->devs.d); ++ g = dst->parent; ++ } ++ } ++ ++ old_g = rcu_dereference_protected(c->disk_groups, ++ lockdep_is_held(&c->sb_lock)); ++ rcu_assign_pointer(c->disk_groups, cpu_g); ++ if (old_g) ++ kfree_rcu(old_g, rcu); ++ ++ return 0; ++} ++ ++const struct bch_devs_mask *bch2_target_to_mask(struct bch_fs *c, unsigned target) ++{ ++ struct target t = target_decode(target); ++ struct bch_devs_mask *devs; ++ ++ rcu_read_lock(); ++ ++ switch (t.type) { ++ case TARGET_NULL: ++ devs = NULL; ++ break; ++ case TARGET_DEV: { ++ struct bch_dev *ca = t.dev < c->sb.nr_devices ++ ? rcu_dereference(c->devs[t.dev]) ++ : NULL; ++ devs = ca ? &ca->self : NULL; ++ break; ++ } ++ case TARGET_GROUP: { ++ struct bch_disk_groups_cpu *g = rcu_dereference(c->disk_groups); ++ ++ devs = g && t.group < g->nr && !g->entries[t.group].deleted ++ ? &g->entries[t.group].devs ++ : NULL; ++ break; ++ } ++ default: ++ BUG(); ++ } ++ ++ rcu_read_unlock(); ++ ++ return devs; ++} ++ ++bool bch2_dev_in_target(struct bch_fs *c, unsigned dev, unsigned target) ++{ ++ struct target t = target_decode(target); ++ ++ switch (t.type) { ++ case TARGET_NULL: ++ return false; ++ case TARGET_DEV: ++ return dev == t.dev; ++ case TARGET_GROUP: { ++ struct bch_disk_groups_cpu *g; ++ const struct bch_devs_mask *m; ++ bool ret; ++ ++ rcu_read_lock(); ++ g = rcu_dereference(c->disk_groups); ++ m = g && t.group < g->nr && !g->entries[t.group].deleted ++ ? &g->entries[t.group].devs ++ : NULL; ++ ++ ret = m ? test_bit(dev, m->d) : false; ++ rcu_read_unlock(); ++ ++ return ret; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++static int __bch2_disk_group_find(struct bch_sb_field_disk_groups *groups, ++ unsigned parent, ++ const char *name, unsigned namelen) ++{ ++ unsigned i, nr_groups = disk_groups_nr(groups); ++ ++ if (!namelen || namelen > BCH_SB_LABEL_SIZE) ++ return -EINVAL; ++ ++ for (i = 0; i < nr_groups; i++) { ++ struct bch_disk_group *g = groups->entries + i; ++ ++ if (BCH_GROUP_DELETED(g)) ++ continue; ++ ++ if (!BCH_GROUP_DELETED(g) && ++ BCH_GROUP_PARENT(g) == parent && ++ strnlen(g->label, sizeof(g->label)) == namelen && ++ !memcmp(name, g->label, namelen)) ++ return i; ++ } ++ ++ return -1; ++} ++ ++static int __bch2_disk_group_add(struct bch_sb_handle *sb, unsigned parent, ++ const char *name, unsigned namelen) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ bch2_sb_field_get(sb->sb, disk_groups); ++ unsigned i, nr_groups = disk_groups_nr(groups); ++ struct bch_disk_group *g; ++ ++ if (!namelen || namelen > BCH_SB_LABEL_SIZE) ++ return -EINVAL; ++ ++ for (i = 0; ++ i < nr_groups && !BCH_GROUP_DELETED(&groups->entries[i]); ++ i++) ++ ; ++ ++ if (i == nr_groups) { ++ unsigned u64s = ++ (sizeof(struct bch_sb_field_disk_groups) + ++ sizeof(struct bch_disk_group) * (nr_groups + 1)) / ++ sizeof(u64); ++ ++ groups = bch2_sb_field_resize(sb, disk_groups, u64s); ++ if (!groups) ++ return -BCH_ERR_ENOSPC_disk_label_add; ++ ++ nr_groups = disk_groups_nr(groups); ++ } ++ ++ BUG_ON(i >= nr_groups); ++ ++ g = &groups->entries[i]; ++ ++ memcpy(g->label, name, namelen); ++ if (namelen < sizeof(g->label)) ++ g->label[namelen] = '\0'; ++ SET_BCH_GROUP_DELETED(g, 0); ++ SET_BCH_GROUP_PARENT(g, parent); ++ SET_BCH_GROUP_DATA_ALLOWED(g, ~0); ++ ++ return i; ++} ++ ++int bch2_disk_path_find(struct bch_sb_handle *sb, const char *name) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ bch2_sb_field_get(sb->sb, disk_groups); ++ int v = -1; ++ ++ do { ++ const char *next = strchrnul(name, '.'); ++ unsigned len = next - name; ++ ++ if (*next == '.') ++ next++; ++ ++ v = __bch2_disk_group_find(groups, v + 1, name, len); ++ name = next; ++ } while (*name && v >= 0); ++ ++ return v; ++} ++ ++int bch2_disk_path_find_or_create(struct bch_sb_handle *sb, const char *name) ++{ ++ struct bch_sb_field_disk_groups *groups; ++ unsigned parent = 0; ++ int v = -1; ++ ++ do { ++ const char *next = strchrnul(name, '.'); ++ unsigned len = next - name; ++ ++ if (*next == '.') ++ next++; ++ ++ groups = bch2_sb_field_get(sb->sb, disk_groups); ++ ++ v = __bch2_disk_group_find(groups, parent, name, len); ++ if (v < 0) ++ v = __bch2_disk_group_add(sb, parent, name, len); ++ if (v < 0) ++ return v; ++ ++ parent = v + 1; ++ name = next; ++ } while (*name && v >= 0); ++ ++ return v; ++} ++ ++void bch2_disk_path_to_text(struct printbuf *out, struct bch_sb *sb, unsigned v) ++{ ++ struct bch_sb_field_disk_groups *groups = ++ bch2_sb_field_get(sb, disk_groups); ++ struct bch_disk_group *g; ++ unsigned nr = 0; ++ u16 path[32]; ++ ++ while (1) { ++ if (nr == ARRAY_SIZE(path)) ++ goto inval; ++ ++ if (v >= disk_groups_nr(groups)) ++ goto inval; ++ ++ g = groups->entries + v; ++ ++ if (BCH_GROUP_DELETED(g)) ++ goto inval; ++ ++ path[nr++] = v; ++ ++ if (!BCH_GROUP_PARENT(g)) ++ break; ++ ++ v = BCH_GROUP_PARENT(g) - 1; ++ } ++ ++ while (nr) { ++ v = path[--nr]; ++ g = groups->entries + v; ++ ++ prt_printf(out, "%.*s", (int) sizeof(g->label), g->label); ++ if (nr) ++ prt_printf(out, "."); ++ } ++ return; ++inval: ++ prt_printf(out, "invalid label %u", v); ++} ++ ++int __bch2_dev_group_set(struct bch_fs *c, struct bch_dev *ca, const char *name) ++{ ++ struct bch_member *mi; ++ int ret, v = -1; ++ ++ if (!strlen(name) || !strcmp(name, "none")) ++ return 0; ++ ++ v = bch2_disk_path_find_or_create(&c->disk_sb, name); ++ if (v < 0) ++ return v; ++ ++ ret = bch2_sb_disk_groups_to_cpu(c); ++ if (ret) ++ return ret; ++ ++ mi = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); ++ SET_BCH_MEMBER_GROUP(mi, v + 1); ++ return 0; ++} ++ ++int bch2_dev_group_set(struct bch_fs *c, struct bch_dev *ca, const char *name) ++{ ++ int ret; ++ ++ mutex_lock(&c->sb_lock); ++ ret = __bch2_dev_group_set(c, ca, name) ?: ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++int bch2_opt_target_parse(struct bch_fs *c, const char *val, u64 *res, ++ struct printbuf *err) ++{ ++ struct bch_dev *ca; ++ int g; ++ ++ if (!val) ++ return -EINVAL; ++ ++ if (!c) ++ return 0; ++ ++ if (!strlen(val) || !strcmp(val, "none")) { ++ *res = 0; ++ return 0; ++ } ++ ++ /* Is it a device? */ ++ ca = bch2_dev_lookup(c, val); ++ if (!IS_ERR(ca)) { ++ *res = dev_to_target(ca->dev_idx); ++ percpu_ref_put(&ca->ref); ++ return 0; ++ } ++ ++ mutex_lock(&c->sb_lock); ++ g = bch2_disk_path_find(&c->disk_sb, val); ++ mutex_unlock(&c->sb_lock); ++ ++ if (g >= 0) { ++ *res = group_to_target(g); ++ return 0; ++ } ++ ++ return -EINVAL; ++} ++ ++void bch2_opt_target_to_text(struct printbuf *out, ++ struct bch_fs *c, ++ struct bch_sb *sb, ++ u64 v) ++{ ++ struct target t = target_decode(v); ++ ++ switch (t.type) { ++ case TARGET_NULL: ++ prt_printf(out, "none"); ++ break; ++ case TARGET_DEV: ++ if (c) { ++ struct bch_dev *ca; ++ ++ rcu_read_lock(); ++ ca = t.dev < c->sb.nr_devices ++ ? rcu_dereference(c->devs[t.dev]) ++ : NULL; ++ ++ if (ca && percpu_ref_tryget(&ca->io_ref)) { ++ prt_printf(out, "/dev/%pg", ca->disk_sb.bdev); ++ percpu_ref_put(&ca->io_ref); ++ } else if (ca) { ++ prt_printf(out, "offline device %u", t.dev); ++ } else { ++ prt_printf(out, "invalid device %u", t.dev); ++ } ++ ++ rcu_read_unlock(); ++ } else { ++ struct bch_member m = bch2_sb_member_get(sb, t.dev); ++ ++ if (bch2_dev_exists(sb, t.dev)) { ++ prt_printf(out, "Device "); ++ pr_uuid(out, m.uuid.b); ++ prt_printf(out, " (%u)", t.dev); ++ } else { ++ prt_printf(out, "Bad device %u", t.dev); ++ } ++ } ++ break; ++ case TARGET_GROUP: ++ if (c) { ++ mutex_lock(&c->sb_lock); ++ bch2_disk_path_to_text(out, c->disk_sb.sb, t.group); ++ mutex_unlock(&c->sb_lock); ++ } else { ++ bch2_disk_path_to_text(out, sb, t.group); ++ } ++ break; ++ default: ++ BUG(); ++ } ++} +diff --git a/fs/bcachefs/disk_groups.h b/fs/bcachefs/disk_groups.h +new file mode 100644 +index 000000000000..bd7711767fd4 +--- /dev/null ++++ b/fs/bcachefs/disk_groups.h +@@ -0,0 +1,106 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_DISK_GROUPS_H ++#define _BCACHEFS_DISK_GROUPS_H ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_disk_groups; ++ ++static inline unsigned disk_groups_nr(struct bch_sb_field_disk_groups *groups) ++{ ++ return groups ++ ? (vstruct_end(&groups->field) - ++ (void *) &groups->entries[0]) / sizeof(struct bch_disk_group) ++ : 0; ++} ++ ++struct target { ++ enum { ++ TARGET_NULL, ++ TARGET_DEV, ++ TARGET_GROUP, ++ } type; ++ union { ++ unsigned dev; ++ unsigned group; ++ }; ++}; ++ ++#define TARGET_DEV_START 1 ++#define TARGET_GROUP_START (256 + TARGET_DEV_START) ++ ++static inline u16 dev_to_target(unsigned dev) ++{ ++ return TARGET_DEV_START + dev; ++} ++ ++static inline u16 group_to_target(unsigned group) ++{ ++ return TARGET_GROUP_START + group; ++} ++ ++static inline struct target target_decode(unsigned target) ++{ ++ if (target >= TARGET_GROUP_START) ++ return (struct target) { ++ .type = TARGET_GROUP, ++ .group = target - TARGET_GROUP_START ++ }; ++ ++ if (target >= TARGET_DEV_START) ++ return (struct target) { ++ .type = TARGET_DEV, ++ .group = target - TARGET_DEV_START ++ }; ++ ++ return (struct target) { .type = TARGET_NULL }; ++} ++ ++const struct bch_devs_mask *bch2_target_to_mask(struct bch_fs *, unsigned); ++ ++static inline struct bch_devs_mask target_rw_devs(struct bch_fs *c, ++ enum bch_data_type data_type, ++ u16 target) ++{ ++ struct bch_devs_mask devs = c->rw_devs[data_type]; ++ const struct bch_devs_mask *t = bch2_target_to_mask(c, target); ++ ++ if (t) ++ bitmap_and(devs.d, devs.d, t->d, BCH_SB_MEMBERS_MAX); ++ return devs; ++} ++ ++static inline bool bch2_target_accepts_data(struct bch_fs *c, ++ enum bch_data_type data_type, ++ u16 target) ++{ ++ struct bch_devs_mask rw_devs = target_rw_devs(c, data_type, target); ++ return !bitmap_empty(rw_devs.d, BCH_SB_MEMBERS_MAX); ++} ++ ++bool bch2_dev_in_target(struct bch_fs *, unsigned, unsigned); ++ ++int bch2_disk_path_find(struct bch_sb_handle *, const char *); ++ ++/* Exported for userspace bcachefs-tools: */ ++int bch2_disk_path_find_or_create(struct bch_sb_handle *, const char *); ++ ++void bch2_disk_path_to_text(struct printbuf *, struct bch_sb *, unsigned); ++ ++int bch2_opt_target_parse(struct bch_fs *, const char *, u64 *, struct printbuf *); ++void bch2_opt_target_to_text(struct printbuf *, struct bch_fs *, struct bch_sb *, u64); ++ ++#define bch2_opt_target (struct bch_opt_fn) { \ ++ .parse = bch2_opt_target_parse, \ ++ .to_text = bch2_opt_target_to_text, \ ++} ++ ++int bch2_sb_disk_groups_to_cpu(struct bch_fs *); ++ ++int __bch2_dev_group_set(struct bch_fs *, struct bch_dev *, const char *); ++int bch2_dev_group_set(struct bch_fs *, struct bch_dev *, const char *); ++ ++const char *bch2_sb_validate_disk_groups(struct bch_sb *, ++ struct bch_sb_field *); ++ ++void bch2_disk_groups_to_text(struct printbuf *, struct bch_fs *); ++ ++#endif /* _BCACHEFS_DISK_GROUPS_H */ +diff --git a/fs/bcachefs/ec.c b/fs/bcachefs/ec.c +new file mode 100644 +index 000000000000..8646856e4539 +--- /dev/null ++++ b/fs/bcachefs/ec.c +@@ -0,0 +1,1966 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++/* erasure coding */ ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "backpointers.h" ++#include "bkey_buf.h" ++#include "bset.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "btree_write_buffer.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "error.h" ++#include "io_read.h" ++#include "keylist.h" ++#include "recovery.h" ++#include "replicas.h" ++#include "super-io.h" ++#include "util.h" ++ ++#include ++ ++#ifdef __KERNEL__ ++ ++#include ++#include ++ ++static void raid5_recov(unsigned disks, unsigned failed_idx, ++ size_t size, void **data) ++{ ++ unsigned i = 2, nr; ++ ++ BUG_ON(failed_idx >= disks); ++ ++ swap(data[0], data[failed_idx]); ++ memcpy(data[0], data[1], size); ++ ++ while (i < disks) { ++ nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS); ++ xor_blocks(nr, size, data[0], data + i); ++ i += nr; ++ } ++ ++ swap(data[0], data[failed_idx]); ++} ++ ++static void raid_gen(int nd, int np, size_t size, void **v) ++{ ++ if (np >= 1) ++ raid5_recov(nd + np, nd, size, v); ++ if (np >= 2) ++ raid6_call.gen_syndrome(nd + np, size, v); ++ BUG_ON(np > 2); ++} ++ ++static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v) ++{ ++ switch (nr) { ++ case 0: ++ break; ++ case 1: ++ if (ir[0] < nd + 1) ++ raid5_recov(nd + 1, ir[0], size, v); ++ else ++ raid6_call.gen_syndrome(nd + np, size, v); ++ break; ++ case 2: ++ if (ir[1] < nd) { ++ /* data+data failure. */ ++ raid6_2data_recov(nd + np, size, ir[0], ir[1], v); ++ } else if (ir[0] < nd) { ++ /* data + p/q failure */ ++ ++ if (ir[1] == nd) /* data + p failure */ ++ raid6_datap_recov(nd + np, size, ir[0], v); ++ else { /* data + q failure */ ++ raid5_recov(nd + 1, ir[0], size, v); ++ raid6_call.gen_syndrome(nd + np, size, v); ++ } ++ } else { ++ raid_gen(nd, np, size, v); ++ } ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++#else ++ ++#include ++ ++#endif ++ ++struct ec_bio { ++ struct bch_dev *ca; ++ struct ec_stripe_buf *buf; ++ size_t idx; ++ struct bio bio; ++}; ++ ++/* Stripes btree keys: */ ++ ++int bch2_stripe_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; ++ ++ if (bkey_eq(k.k->p, POS_MIN)) { ++ prt_printf(err, "stripe at POS_MIN"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (k.k->p.inode) { ++ prt_printf(err, "nonzero inode field"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (bkey_val_u64s(k.k) < stripe_val_u64s(s)) { ++ prt_printf(err, "incorrect value size (%zu < %u)", ++ bkey_val_u64s(k.k), stripe_val_u64s(s)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return bch2_bkey_ptrs_invalid(c, k, flags, err); ++} ++ ++void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ const struct bch_stripe *s = bkey_s_c_to_stripe(k).v; ++ unsigned i, nr_data = s->nr_blocks - s->nr_redundant; ++ ++ prt_printf(out, "algo %u sectors %u blocks %u:%u csum %u gran %u", ++ s->algorithm, ++ le16_to_cpu(s->sectors), ++ nr_data, ++ s->nr_redundant, ++ s->csum_type, ++ 1U << s->csum_granularity_bits); ++ ++ for (i = 0; i < s->nr_blocks; i++) { ++ const struct bch_extent_ptr *ptr = s->ptrs + i; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ u32 offset; ++ u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); ++ ++ prt_printf(out, " %u:%llu:%u", ptr->dev, b, offset); ++ if (i < nr_data) ++ prt_printf(out, "#%u", stripe_blockcount_get(s, i)); ++ if (ptr_stale(ca, ptr)) ++ prt_printf(out, " stale"); ++ } ++} ++ ++/* returns blocknr in stripe that we matched: */ ++static const struct bch_extent_ptr *bkey_matches_stripe(struct bch_stripe *s, ++ struct bkey_s_c k, unsigned *block) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ unsigned i, nr_data = s->nr_blocks - s->nr_redundant; ++ ++ bkey_for_each_ptr(ptrs, ptr) ++ for (i = 0; i < nr_data; i++) ++ if (__bch2_ptr_matches_stripe(&s->ptrs[i], ptr, ++ le16_to_cpu(s->sectors))) { ++ *block = i; ++ return ptr; ++ } ++ ++ return NULL; ++} ++ ++static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_extent: { ++ struct bkey_s_c_extent e = bkey_s_c_to_extent(k); ++ const union bch_extent_entry *entry; ++ ++ extent_for_each_entry(e, entry) ++ if (extent_entry_type(entry) == ++ BCH_EXTENT_ENTRY_stripe_ptr && ++ entry->stripe_ptr.idx == idx) ++ return true; ++ ++ break; ++ } ++ } ++ ++ return false; ++} ++ ++/* Stripe bufs: */ ++ ++static void ec_stripe_buf_exit(struct ec_stripe_buf *buf) ++{ ++ if (buf->key.k.type == KEY_TYPE_stripe) { ++ struct bkey_i_stripe *s = bkey_i_to_stripe(&buf->key); ++ unsigned i; ++ ++ for (i = 0; i < s->v.nr_blocks; i++) { ++ kvpfree(buf->data[i], buf->size << 9); ++ buf->data[i] = NULL; ++ } ++ } ++} ++ ++/* XXX: this is a non-mempoolified memory allocation: */ ++static int ec_stripe_buf_init(struct ec_stripe_buf *buf, ++ unsigned offset, unsigned size) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; ++ unsigned csum_granularity = 1U << v->csum_granularity_bits; ++ unsigned end = offset + size; ++ unsigned i; ++ ++ BUG_ON(end > le16_to_cpu(v->sectors)); ++ ++ offset = round_down(offset, csum_granularity); ++ end = min_t(unsigned, le16_to_cpu(v->sectors), ++ round_up(end, csum_granularity)); ++ ++ buf->offset = offset; ++ buf->size = end - offset; ++ ++ memset(buf->valid, 0xFF, sizeof(buf->valid)); ++ ++ for (i = 0; i < v->nr_blocks; i++) { ++ buf->data[i] = kvpmalloc(buf->size << 9, GFP_KERNEL); ++ if (!buf->data[i]) ++ goto err; ++ } ++ ++ return 0; ++err: ++ ec_stripe_buf_exit(buf); ++ return -BCH_ERR_ENOMEM_stripe_buf; ++} ++ ++/* Checksumming: */ ++ ++static struct bch_csum ec_block_checksum(struct ec_stripe_buf *buf, ++ unsigned block, unsigned offset) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; ++ unsigned csum_granularity = 1 << v->csum_granularity_bits; ++ unsigned end = buf->offset + buf->size; ++ unsigned len = min(csum_granularity, end - offset); ++ ++ BUG_ON(offset >= end); ++ BUG_ON(offset < buf->offset); ++ BUG_ON(offset & (csum_granularity - 1)); ++ BUG_ON(offset + len != le16_to_cpu(v->sectors) && ++ (len & (csum_granularity - 1))); ++ ++ return bch2_checksum(NULL, v->csum_type, ++ null_nonce(), ++ buf->data[block] + ((offset - buf->offset) << 9), ++ len << 9); ++} ++ ++static void ec_generate_checksums(struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; ++ unsigned i, j, csums_per_device = stripe_csums_per_device(v); ++ ++ if (!v->csum_type) ++ return; ++ ++ BUG_ON(buf->offset); ++ BUG_ON(buf->size != le16_to_cpu(v->sectors)); ++ ++ for (i = 0; i < v->nr_blocks; i++) ++ for (j = 0; j < csums_per_device; j++) ++ stripe_csum_set(v, i, j, ++ ec_block_checksum(buf, i, j << v->csum_granularity_bits)); ++} ++ ++static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; ++ unsigned csum_granularity = 1 << v->csum_granularity_bits; ++ unsigned i; ++ ++ if (!v->csum_type) ++ return; ++ ++ for (i = 0; i < v->nr_blocks; i++) { ++ unsigned offset = buf->offset; ++ unsigned end = buf->offset + buf->size; ++ ++ if (!test_bit(i, buf->valid)) ++ continue; ++ ++ while (offset < end) { ++ unsigned j = offset >> v->csum_granularity_bits; ++ unsigned len = min(csum_granularity, end - offset); ++ struct bch_csum want = stripe_csum_get(v, i, j); ++ struct bch_csum got = ec_block_checksum(buf, i, offset); ++ ++ if (bch2_crc_cmp(want, got)) { ++ struct printbuf buf2 = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(&buf->key)); ++ ++ bch_err_ratelimited(c, ++ "stripe checksum error for %ps at %u:%u: csum type %u, expected %llx got %llx\n%s", ++ (void *) _RET_IP_, i, j, v->csum_type, ++ want.lo, got.lo, buf2.buf); ++ printbuf_exit(&buf2); ++ clear_bit(i, buf->valid); ++ break; ++ } ++ ++ offset += len; ++ } ++ } ++} ++ ++/* Erasure coding: */ ++ ++static void ec_generate_ec(struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; ++ unsigned nr_data = v->nr_blocks - v->nr_redundant; ++ unsigned bytes = le16_to_cpu(v->sectors) << 9; ++ ++ raid_gen(nr_data, v->nr_redundant, bytes, buf->data); ++} ++ ++static unsigned ec_nr_failed(struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; ++ ++ return v->nr_blocks - bitmap_weight(buf->valid, v->nr_blocks); ++} ++ ++static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; ++ unsigned i, failed[BCH_BKEY_PTRS_MAX], nr_failed = 0; ++ unsigned nr_data = v->nr_blocks - v->nr_redundant; ++ unsigned bytes = buf->size << 9; ++ ++ if (ec_nr_failed(buf) > v->nr_redundant) { ++ bch_err_ratelimited(c, ++ "error doing reconstruct read: unable to read enough blocks"); ++ return -1; ++ } ++ ++ for (i = 0; i < nr_data; i++) ++ if (!test_bit(i, buf->valid)) ++ failed[nr_failed++] = i; ++ ++ raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data); ++ return 0; ++} ++ ++/* IO: */ ++ ++static void ec_block_endio(struct bio *bio) ++{ ++ struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio); ++ struct bch_stripe *v = &bkey_i_to_stripe(&ec_bio->buf->key)->v; ++ struct bch_extent_ptr *ptr = &v->ptrs[ec_bio->idx]; ++ struct bch_dev *ca = ec_bio->ca; ++ struct closure *cl = bio->bi_private; ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "erasure coding %s error: %s", ++ bio_data_dir(bio) ? "write" : "read", ++ bch2_blk_status_to_str(bio->bi_status))) ++ clear_bit(ec_bio->idx, ec_bio->buf->valid); ++ ++ if (ptr_stale(ca, ptr)) { ++ bch_err_ratelimited(ca->fs, ++ "error %s stripe: stale pointer after io", ++ bio_data_dir(bio) == READ ? "reading from" : "writing to"); ++ clear_bit(ec_bio->idx, ec_bio->buf->valid); ++ } ++ ++ bio_put(&ec_bio->bio); ++ percpu_ref_put(&ca->io_ref); ++ closure_put(cl); ++} ++ ++static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf, ++ blk_opf_t opf, unsigned idx, struct closure *cl) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v; ++ unsigned offset = 0, bytes = buf->size << 9; ++ struct bch_extent_ptr *ptr = &v->ptrs[idx]; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr->dev); ++ enum bch_data_type data_type = idx < v->nr_blocks - v->nr_redundant ++ ? BCH_DATA_user ++ : BCH_DATA_parity; ++ int rw = op_is_write(opf); ++ ++ if (ptr_stale(ca, ptr)) { ++ bch_err_ratelimited(c, ++ "error %s stripe: stale pointer", ++ rw == READ ? "reading from" : "writing to"); ++ clear_bit(idx, buf->valid); ++ return; ++ } ++ ++ if (!bch2_dev_get_ioref(ca, rw)) { ++ clear_bit(idx, buf->valid); ++ return; ++ } ++ ++ this_cpu_add(ca->io_done->sectors[rw][data_type], buf->size); ++ ++ while (offset < bytes) { ++ unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS, ++ DIV_ROUND_UP(bytes, PAGE_SIZE)); ++ unsigned b = min_t(size_t, bytes - offset, ++ nr_iovecs << PAGE_SHIFT); ++ struct ec_bio *ec_bio; ++ ++ ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, ++ nr_iovecs, ++ opf, ++ GFP_KERNEL, ++ &c->ec_bioset), ++ struct ec_bio, bio); ++ ++ ec_bio->ca = ca; ++ ec_bio->buf = buf; ++ ec_bio->idx = idx; ++ ++ ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9); ++ ec_bio->bio.bi_end_io = ec_block_endio; ++ ec_bio->bio.bi_private = cl; ++ ++ bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b); ++ ++ closure_get(cl); ++ percpu_ref_get(&ca->io_ref); ++ ++ submit_bio(&ec_bio->bio); ++ ++ offset += b; ++ } ++ ++ percpu_ref_put(&ca->io_ref); ++} ++ ++static int get_stripe_key_trans(struct btree_trans *trans, u64 idx, ++ struct ec_stripe_buf *stripe) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, ++ POS(0, idx), BTREE_ITER_SLOTS); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ if (k.k->type != KEY_TYPE_stripe) { ++ ret = -ENOENT; ++ goto err; ++ } ++ bkey_reassemble(&stripe->key, k); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int get_stripe_key(struct bch_fs *c, u64 idx, struct ec_stripe_buf *stripe) ++{ ++ return bch2_trans_run(c, get_stripe_key_trans(trans, idx, stripe)); ++} ++ ++/* recovery read path: */ ++int bch2_ec_read_extent(struct bch_fs *c, struct bch_read_bio *rbio) ++{ ++ struct ec_stripe_buf *buf; ++ struct closure cl; ++ struct bch_stripe *v; ++ unsigned i, offset; ++ int ret = 0; ++ ++ closure_init_stack(&cl); ++ ++ BUG_ON(!rbio->pick.has_ec); ++ ++ buf = kzalloc(sizeof(*buf), GFP_NOFS); ++ if (!buf) ++ return -BCH_ERR_ENOMEM_ec_read_extent; ++ ++ ret = get_stripe_key(c, rbio->pick.ec.idx, buf); ++ if (ret) { ++ bch_err_ratelimited(c, ++ "error doing reconstruct read: error %i looking up stripe", ret); ++ kfree(buf); ++ return -EIO; ++ } ++ ++ v = &bkey_i_to_stripe(&buf->key)->v; ++ ++ if (!bch2_ptr_matches_stripe(v, rbio->pick)) { ++ bch_err_ratelimited(c, ++ "error doing reconstruct read: pointer doesn't match stripe"); ++ ret = -EIO; ++ goto err; ++ } ++ ++ offset = rbio->bio.bi_iter.bi_sector - v->ptrs[rbio->pick.ec.block].offset; ++ if (offset + bio_sectors(&rbio->bio) > le16_to_cpu(v->sectors)) { ++ bch_err_ratelimited(c, ++ "error doing reconstruct read: read is bigger than stripe"); ++ ret = -EIO; ++ goto err; ++ } ++ ++ ret = ec_stripe_buf_init(buf, offset, bio_sectors(&rbio->bio)); ++ if (ret) ++ goto err; ++ ++ for (i = 0; i < v->nr_blocks; i++) ++ ec_block_io(c, buf, REQ_OP_READ, i, &cl); ++ ++ closure_sync(&cl); ++ ++ if (ec_nr_failed(buf) > v->nr_redundant) { ++ bch_err_ratelimited(c, ++ "error doing reconstruct read: unable to read enough blocks"); ++ ret = -EIO; ++ goto err; ++ } ++ ++ ec_validate_checksums(c, buf); ++ ++ ret = ec_do_recov(c, buf); ++ if (ret) ++ goto err; ++ ++ memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter, ++ buf->data[rbio->pick.ec.block] + ((offset - buf->offset) << 9)); ++err: ++ ec_stripe_buf_exit(buf); ++ kfree(buf); ++ return ret; ++} ++ ++/* stripe bucket accounting: */ ++ ++static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp) ++{ ++ ec_stripes_heap n, *h = &c->ec_stripes_heap; ++ ++ if (idx >= h->size) { ++ if (!init_heap(&n, max(1024UL, roundup_pow_of_two(idx + 1)), gfp)) ++ return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc; ++ ++ mutex_lock(&c->ec_stripes_heap_lock); ++ if (n.size > h->size) { ++ memcpy(n.data, h->data, h->used * sizeof(h->data[0])); ++ n.used = h->used; ++ swap(*h, n); ++ } ++ mutex_unlock(&c->ec_stripes_heap_lock); ++ ++ free_heap(&n); ++ } ++ ++ if (!genradix_ptr_alloc(&c->stripes, idx, gfp)) ++ return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc; ++ ++ if (c->gc_pos.phase != GC_PHASE_NOT_RUNNING && ++ !genradix_ptr_alloc(&c->gc_stripes, idx, gfp)) ++ return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc; ++ ++ return 0; ++} ++ ++static int ec_stripe_mem_alloc(struct btree_trans *trans, ++ struct btree_iter *iter) ++{ ++ return allocate_dropping_locks_errcode(trans, ++ __ec_stripe_mem_alloc(trans->c, iter->pos.offset, _gfp)); ++} ++ ++/* ++ * Hash table of open stripes: ++ * Stripes that are being created or modified are kept in a hash table, so that ++ * stripe deletion can skip them. ++ */ ++ ++static bool __bch2_stripe_is_open(struct bch_fs *c, u64 idx) ++{ ++ unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); ++ struct ec_stripe_new *s; ++ ++ hlist_for_each_entry(s, &c->ec_stripes_new[hash], hash) ++ if (s->idx == idx) ++ return true; ++ return false; ++} ++ ++static bool bch2_stripe_is_open(struct bch_fs *c, u64 idx) ++{ ++ bool ret = false; ++ ++ spin_lock(&c->ec_stripes_new_lock); ++ ret = __bch2_stripe_is_open(c, idx); ++ spin_unlock(&c->ec_stripes_new_lock); ++ ++ return ret; ++} ++ ++static bool bch2_try_open_stripe(struct bch_fs *c, ++ struct ec_stripe_new *s, ++ u64 idx) ++{ ++ bool ret; ++ ++ spin_lock(&c->ec_stripes_new_lock); ++ ret = !__bch2_stripe_is_open(c, idx); ++ if (ret) { ++ unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new))); ++ ++ s->idx = idx; ++ hlist_add_head(&s->hash, &c->ec_stripes_new[hash]); ++ } ++ spin_unlock(&c->ec_stripes_new_lock); ++ ++ return ret; ++} ++ ++static void bch2_stripe_close(struct bch_fs *c, struct ec_stripe_new *s) ++{ ++ BUG_ON(!s->idx); ++ ++ spin_lock(&c->ec_stripes_new_lock); ++ hlist_del_init(&s->hash); ++ spin_unlock(&c->ec_stripes_new_lock); ++ ++ s->idx = 0; ++} ++ ++/* Heap of all existing stripes, ordered by blocks_nonempty */ ++ ++static u64 stripe_idx_to_delete(struct bch_fs *c) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ ++ lockdep_assert_held(&c->ec_stripes_heap_lock); ++ ++ if (h->used && ++ h->data[0].blocks_nonempty == 0 && ++ !bch2_stripe_is_open(c, h->data[0].idx)) ++ return h->data[0].idx; ++ ++ return 0; ++} ++ ++static inline int ec_stripes_heap_cmp(ec_stripes_heap *h, ++ struct ec_stripe_heap_entry l, ++ struct ec_stripe_heap_entry r) ++{ ++ return ((l.blocks_nonempty > r.blocks_nonempty) - ++ (l.blocks_nonempty < r.blocks_nonempty)); ++} ++ ++static inline void ec_stripes_heap_set_backpointer(ec_stripes_heap *h, ++ size_t i) ++{ ++ struct bch_fs *c = container_of(h, struct bch_fs, ec_stripes_heap); ++ ++ genradix_ptr(&c->stripes, h->data[i].idx)->heap_idx = i; ++} ++ ++static void heap_verify_backpointer(struct bch_fs *c, size_t idx) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ struct stripe *m = genradix_ptr(&c->stripes, idx); ++ ++ BUG_ON(m->heap_idx >= h->used); ++ BUG_ON(h->data[m->heap_idx].idx != idx); ++} ++ ++void bch2_stripes_heap_del(struct bch_fs *c, ++ struct stripe *m, size_t idx) ++{ ++ mutex_lock(&c->ec_stripes_heap_lock); ++ heap_verify_backpointer(c, idx); ++ ++ heap_del(&c->ec_stripes_heap, m->heap_idx, ++ ec_stripes_heap_cmp, ++ ec_stripes_heap_set_backpointer); ++ mutex_unlock(&c->ec_stripes_heap_lock); ++} ++ ++void bch2_stripes_heap_insert(struct bch_fs *c, ++ struct stripe *m, size_t idx) ++{ ++ mutex_lock(&c->ec_stripes_heap_lock); ++ BUG_ON(heap_full(&c->ec_stripes_heap)); ++ ++ heap_add(&c->ec_stripes_heap, ((struct ec_stripe_heap_entry) { ++ .idx = idx, ++ .blocks_nonempty = m->blocks_nonempty, ++ }), ++ ec_stripes_heap_cmp, ++ ec_stripes_heap_set_backpointer); ++ ++ heap_verify_backpointer(c, idx); ++ mutex_unlock(&c->ec_stripes_heap_lock); ++} ++ ++void bch2_stripes_heap_update(struct bch_fs *c, ++ struct stripe *m, size_t idx) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ bool do_deletes; ++ size_t i; ++ ++ mutex_lock(&c->ec_stripes_heap_lock); ++ heap_verify_backpointer(c, idx); ++ ++ h->data[m->heap_idx].blocks_nonempty = m->blocks_nonempty; ++ ++ i = m->heap_idx; ++ heap_sift_up(h, i, ec_stripes_heap_cmp, ++ ec_stripes_heap_set_backpointer); ++ heap_sift_down(h, i, ec_stripes_heap_cmp, ++ ec_stripes_heap_set_backpointer); ++ ++ heap_verify_backpointer(c, idx); ++ ++ do_deletes = stripe_idx_to_delete(c) != 0; ++ mutex_unlock(&c->ec_stripes_heap_lock); ++ ++ if (do_deletes) ++ bch2_do_stripe_deletes(c); ++} ++ ++/* stripe deletion */ ++ ++static int ec_stripe_delete(struct btree_trans *trans, u64 idx) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_stripe s; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, POS(0, idx), ++ BTREE_ITER_INTENT); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (k.k->type != KEY_TYPE_stripe) { ++ bch2_fs_inconsistent(c, "attempting to delete nonexistent stripe %llu", idx); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ s = bkey_s_c_to_stripe(k); ++ for (unsigned i = 0; i < s.v->nr_blocks; i++) ++ if (stripe_blockcount_get(s.v, i)) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, k); ++ bch2_fs_inconsistent(c, "attempting to delete nonempty stripe %s", buf.buf); ++ printbuf_exit(&buf); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ ret = bch2_btree_delete_at(trans, &iter, 0); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static void ec_stripe_delete_work(struct work_struct *work) ++{ ++ struct bch_fs *c = ++ container_of(work, struct bch_fs, ec_stripe_delete_work); ++ struct btree_trans *trans = bch2_trans_get(c); ++ int ret; ++ u64 idx; ++ ++ while (1) { ++ mutex_lock(&c->ec_stripes_heap_lock); ++ idx = stripe_idx_to_delete(c); ++ mutex_unlock(&c->ec_stripes_heap_lock); ++ ++ if (!idx) ++ break; ++ ++ ret = commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ ec_stripe_delete(trans, idx)); ++ if (ret) { ++ bch_err_fn(c, ret); ++ break; ++ } ++ } ++ ++ bch2_trans_put(trans); ++ ++ bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete); ++} ++ ++void bch2_do_stripe_deletes(struct bch_fs *c) ++{ ++ if (bch2_write_ref_tryget(c, BCH_WRITE_REF_stripe_delete) && ++ !queue_work(c->write_ref_wq, &c->ec_stripe_delete_work)) ++ bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete); ++} ++ ++/* stripe creation: */ ++ ++static int ec_stripe_key_update(struct btree_trans *trans, ++ struct bkey_i_stripe *new, ++ bool create) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes, ++ new->k.p, BTREE_ITER_INTENT); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (k.k->type != (create ? KEY_TYPE_deleted : KEY_TYPE_stripe)) { ++ bch2_fs_inconsistent(c, "error %s stripe: got existing key type %s", ++ create ? "creating" : "updating", ++ bch2_bkey_types[k.k->type]); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ if (k.k->type == KEY_TYPE_stripe) { ++ const struct bch_stripe *old = bkey_s_c_to_stripe(k).v; ++ unsigned i; ++ ++ if (old->nr_blocks != new->v.nr_blocks) { ++ bch_err(c, "error updating stripe: nr_blocks does not match"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ for (i = 0; i < new->v.nr_blocks; i++) { ++ unsigned v = stripe_blockcount_get(old, i); ++ ++ BUG_ON(v && ++ (old->ptrs[i].dev != new->v.ptrs[i].dev || ++ old->ptrs[i].gen != new->v.ptrs[i].gen || ++ old->ptrs[i].offset != new->v.ptrs[i].offset)); ++ ++ stripe_blockcount_set(&new->v, i, v); ++ } ++ } ++ ++ ret = bch2_trans_update(trans, &iter, &new->k_i, 0); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int ec_stripe_update_extent(struct btree_trans *trans, ++ struct bpos bucket, u8 gen, ++ struct ec_stripe_buf *s, ++ struct bpos *bp_pos) ++{ ++ struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; ++ struct bch_fs *c = trans->c; ++ struct bch_backpointer bp; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ const struct bch_extent_ptr *ptr_c; ++ struct bch_extent_ptr *ptr, *ec_ptr = NULL; ++ struct bch_extent_stripe_ptr stripe_ptr; ++ struct bkey_i *n; ++ int ret, dev, block; ++ ++ ret = bch2_get_next_backpointer(trans, bucket, gen, ++ bp_pos, &bp, BTREE_ITER_CACHED); ++ if (ret) ++ return ret; ++ if (bpos_eq(*bp_pos, SPOS_MAX)) ++ return 0; ++ ++ if (bp.level) { ++ struct printbuf buf = PRINTBUF; ++ struct btree_iter node_iter; ++ struct btree *b; ++ ++ b = bch2_backpointer_get_node(trans, &node_iter, *bp_pos, bp); ++ bch2_trans_iter_exit(trans, &node_iter); ++ ++ if (!b) ++ return 0; ++ ++ prt_printf(&buf, "found btree node in erasure coded bucket: b=%px\n", b); ++ bch2_backpointer_to_text(&buf, &bp); ++ ++ bch2_fs_inconsistent(c, "%s", buf.buf); ++ printbuf_exit(&buf); ++ return -EIO; ++ } ++ ++ k = bch2_backpointer_get_key(trans, &iter, *bp_pos, bp, BTREE_ITER_INTENT); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ if (!k.k) { ++ /* ++ * extent no longer exists - we could flush the btree ++ * write buffer and retry to verify, but no need: ++ */ ++ return 0; ++ } ++ ++ if (extent_has_stripe_ptr(k, s->key.k.p.offset)) ++ goto out; ++ ++ ptr_c = bkey_matches_stripe(v, k, &block); ++ /* ++ * It doesn't generally make sense to erasure code cached ptrs: ++ * XXX: should we be incrementing a counter? ++ */ ++ if (!ptr_c || ptr_c->cached) ++ goto out; ++ ++ dev = v->ptrs[block].dev; ++ ++ n = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + sizeof(stripe_ptr)); ++ ret = PTR_ERR_OR_ZERO(n); ++ if (ret) ++ goto out; ++ ++ bkey_reassemble(n, k); ++ ++ bch2_bkey_drop_ptrs(bkey_i_to_s(n), ptr, ptr->dev != dev); ++ ec_ptr = bch2_bkey_has_device(bkey_i_to_s(n), dev); ++ BUG_ON(!ec_ptr); ++ ++ stripe_ptr = (struct bch_extent_stripe_ptr) { ++ .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr, ++ .block = block, ++ .redundancy = v->nr_redundant, ++ .idx = s->key.k.p.offset, ++ }; ++ ++ __extent_entry_insert(n, ++ (union bch_extent_entry *) ec_ptr, ++ (union bch_extent_entry *) &stripe_ptr); ++ ++ ret = bch2_trans_update(trans, &iter, n, 0); ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int ec_stripe_update_bucket(struct btree_trans *trans, struct ec_stripe_buf *s, ++ unsigned block) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; ++ struct bch_extent_ptr bucket = v->ptrs[block]; ++ struct bpos bucket_pos = PTR_BUCKET_POS(c, &bucket); ++ struct bpos bp_pos = POS_MIN; ++ int ret = 0; ++ ++ while (1) { ++ ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL, ++ ec_stripe_update_extent(trans, bucket_pos, bucket.gen, ++ s, &bp_pos)); ++ if (ret) ++ break; ++ if (bkey_eq(bp_pos, POS_MAX)) ++ break; ++ ++ bp_pos = bpos_nosnap_successor(bp_pos); ++ } ++ ++ return ret; ++} ++ ++static int ec_stripe_update_extents(struct bch_fs *c, struct ec_stripe_buf *s) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v; ++ unsigned i, nr_data = v->nr_blocks - v->nr_redundant; ++ int ret = 0; ++ ++ ret = bch2_btree_write_buffer_flush(trans); ++ if (ret) ++ goto err; ++ ++ for (i = 0; i < nr_data; i++) { ++ ret = ec_stripe_update_bucket(trans, s, i); ++ if (ret) ++ break; ++ } ++err: ++ bch2_trans_put(trans); ++ ++ return ret; ++} ++ ++static void zero_out_rest_of_ec_bucket(struct bch_fs *c, ++ struct ec_stripe_new *s, ++ unsigned block, ++ struct open_bucket *ob) ++{ ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ob->dev); ++ unsigned offset = ca->mi.bucket_size - ob->sectors_free; ++ int ret; ++ ++ if (!bch2_dev_get_ioref(ca, WRITE)) { ++ s->err = -BCH_ERR_erofs_no_writes; ++ return; ++ } ++ ++ memset(s->new_stripe.data[block] + (offset << 9), ++ 0, ++ ob->sectors_free << 9); ++ ++ ret = blkdev_issue_zeroout(ca->disk_sb.bdev, ++ ob->bucket * ca->mi.bucket_size + offset, ++ ob->sectors_free, ++ GFP_KERNEL, 0); ++ ++ percpu_ref_put(&ca->io_ref); ++ ++ if (ret) ++ s->err = ret; ++} ++ ++void bch2_ec_stripe_new_free(struct bch_fs *c, struct ec_stripe_new *s) ++{ ++ if (s->idx) ++ bch2_stripe_close(c, s); ++ kfree(s); ++} ++ ++/* ++ * data buckets of new stripe all written: create the stripe ++ */ ++static void ec_stripe_create(struct ec_stripe_new *s) ++{ ++ struct bch_fs *c = s->c; ++ struct open_bucket *ob; ++ struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v; ++ unsigned i, nr_data = v->nr_blocks - v->nr_redundant; ++ int ret; ++ ++ BUG_ON(s->h->s == s); ++ ++ closure_sync(&s->iodone); ++ ++ if (!s->err) { ++ for (i = 0; i < nr_data; i++) ++ if (s->blocks[i]) { ++ ob = c->open_buckets + s->blocks[i]; ++ ++ if (ob->sectors_free) ++ zero_out_rest_of_ec_bucket(c, s, i, ob); ++ } ++ } ++ ++ if (s->err) { ++ if (!bch2_err_matches(s->err, EROFS)) ++ bch_err(c, "error creating stripe: error writing data buckets"); ++ goto err; ++ } ++ ++ if (s->have_existing_stripe) { ++ ec_validate_checksums(c, &s->existing_stripe); ++ ++ if (ec_do_recov(c, &s->existing_stripe)) { ++ bch_err(c, "error creating stripe: error reading existing stripe"); ++ goto err; ++ } ++ ++ for (i = 0; i < nr_data; i++) ++ if (stripe_blockcount_get(&bkey_i_to_stripe(&s->existing_stripe.key)->v, i)) ++ swap(s->new_stripe.data[i], ++ s->existing_stripe.data[i]); ++ ++ ec_stripe_buf_exit(&s->existing_stripe); ++ } ++ ++ BUG_ON(!s->allocated); ++ BUG_ON(!s->idx); ++ ++ ec_generate_ec(&s->new_stripe); ++ ++ ec_generate_checksums(&s->new_stripe); ++ ++ /* write p/q: */ ++ for (i = nr_data; i < v->nr_blocks; i++) ++ ec_block_io(c, &s->new_stripe, REQ_OP_WRITE, i, &s->iodone); ++ closure_sync(&s->iodone); ++ ++ if (ec_nr_failed(&s->new_stripe)) { ++ bch_err(c, "error creating stripe: error writing redundancy buckets"); ++ goto err; ++ } ++ ++ ret = bch2_trans_do(c, &s->res, NULL, ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL, ++ ec_stripe_key_update(trans, ++ bkey_i_to_stripe(&s->new_stripe.key), ++ !s->have_existing_stripe)); ++ if (ret) { ++ bch_err(c, "error creating stripe: error creating stripe key"); ++ goto err; ++ } ++ ++ ret = ec_stripe_update_extents(c, &s->new_stripe); ++ if (ret) { ++ bch_err_msg(c, ret, "creating stripe: error updating pointers"); ++ goto err; ++ } ++err: ++ bch2_disk_reservation_put(c, &s->res); ++ ++ for (i = 0; i < v->nr_blocks; i++) ++ if (s->blocks[i]) { ++ ob = c->open_buckets + s->blocks[i]; ++ ++ if (i < nr_data) { ++ ob->ec = NULL; ++ __bch2_open_bucket_put(c, ob); ++ } else { ++ bch2_open_bucket_put(c, ob); ++ } ++ } ++ ++ mutex_lock(&c->ec_stripe_new_lock); ++ list_del(&s->list); ++ mutex_unlock(&c->ec_stripe_new_lock); ++ wake_up(&c->ec_stripe_new_wait); ++ ++ ec_stripe_buf_exit(&s->existing_stripe); ++ ec_stripe_buf_exit(&s->new_stripe); ++ closure_debug_destroy(&s->iodone); ++ ++ ec_stripe_new_put(c, s, STRIPE_REF_stripe); ++} ++ ++static struct ec_stripe_new *get_pending_stripe(struct bch_fs *c) ++{ ++ struct ec_stripe_new *s; ++ ++ mutex_lock(&c->ec_stripe_new_lock); ++ list_for_each_entry(s, &c->ec_stripe_new_list, list) ++ if (!atomic_read(&s->ref[STRIPE_REF_io])) ++ goto out; ++ s = NULL; ++out: ++ mutex_unlock(&c->ec_stripe_new_lock); ++ ++ return s; ++} ++ ++static void ec_stripe_create_work(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, ++ struct bch_fs, ec_stripe_create_work); ++ struct ec_stripe_new *s; ++ ++ while ((s = get_pending_stripe(c))) ++ ec_stripe_create(s); ++ ++ bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create); ++} ++ ++void bch2_ec_do_stripe_creates(struct bch_fs *c) ++{ ++ bch2_write_ref_get(c, BCH_WRITE_REF_stripe_create); ++ ++ if (!queue_work(system_long_wq, &c->ec_stripe_create_work)) ++ bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create); ++} ++ ++static void ec_stripe_set_pending(struct bch_fs *c, struct ec_stripe_head *h) ++{ ++ struct ec_stripe_new *s = h->s; ++ ++ BUG_ON(!s->allocated && !s->err); ++ ++ h->s = NULL; ++ s->pending = true; ++ ++ mutex_lock(&c->ec_stripe_new_lock); ++ list_add(&s->list, &c->ec_stripe_new_list); ++ mutex_unlock(&c->ec_stripe_new_lock); ++ ++ ec_stripe_new_put(c, s, STRIPE_REF_io); ++} ++ ++void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob) ++{ ++ struct ec_stripe_new *s = ob->ec; ++ ++ s->err = -EIO; ++} ++ ++void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp) ++{ ++ struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs); ++ struct bch_dev *ca; ++ unsigned offset; ++ ++ if (!ob) ++ return NULL; ++ ++ BUG_ON(!ob->ec->new_stripe.data[ob->ec_idx]); ++ ++ ca = bch_dev_bkey_exists(c, ob->dev); ++ offset = ca->mi.bucket_size - ob->sectors_free; ++ ++ return ob->ec->new_stripe.data[ob->ec_idx] + (offset << 9); ++} ++ ++static int unsigned_cmp(const void *_l, const void *_r) ++{ ++ unsigned l = *((const unsigned *) _l); ++ unsigned r = *((const unsigned *) _r); ++ ++ return cmp_int(l, r); ++} ++ ++/* pick most common bucket size: */ ++static unsigned pick_blocksize(struct bch_fs *c, ++ struct bch_devs_mask *devs) ++{ ++ struct bch_dev *ca; ++ unsigned i, nr = 0, sizes[BCH_SB_MEMBERS_MAX]; ++ struct { ++ unsigned nr, size; ++ } cur = { 0, 0 }, best = { 0, 0 }; ++ ++ for_each_member_device_rcu(ca, c, i, devs) ++ sizes[nr++] = ca->mi.bucket_size; ++ ++ sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL); ++ ++ for (i = 0; i < nr; i++) { ++ if (sizes[i] != cur.size) { ++ if (cur.nr > best.nr) ++ best = cur; ++ ++ cur.nr = 0; ++ cur.size = sizes[i]; ++ } ++ ++ cur.nr++; ++ } ++ ++ if (cur.nr > best.nr) ++ best = cur; ++ ++ return best.size; ++} ++ ++static bool may_create_new_stripe(struct bch_fs *c) ++{ ++ return false; ++} ++ ++static void ec_stripe_key_init(struct bch_fs *c, ++ struct bkey_i *k, ++ unsigned nr_data, ++ unsigned nr_parity, ++ unsigned stripe_size) ++{ ++ struct bkey_i_stripe *s = bkey_stripe_init(k); ++ unsigned u64s; ++ ++ s->v.sectors = cpu_to_le16(stripe_size); ++ s->v.algorithm = 0; ++ s->v.nr_blocks = nr_data + nr_parity; ++ s->v.nr_redundant = nr_parity; ++ s->v.csum_granularity_bits = ilog2(c->opts.encoded_extent_max >> 9); ++ s->v.csum_type = BCH_CSUM_crc32c; ++ s->v.pad = 0; ++ ++ while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) { ++ BUG_ON(1 << s->v.csum_granularity_bits >= ++ le16_to_cpu(s->v.sectors) || ++ s->v.csum_granularity_bits == U8_MAX); ++ s->v.csum_granularity_bits++; ++ } ++ ++ set_bkey_val_u64s(&s->k, u64s); ++} ++ ++static int ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h) ++{ ++ struct ec_stripe_new *s; ++ ++ lockdep_assert_held(&h->lock); ++ ++ s = kzalloc(sizeof(*s), GFP_KERNEL); ++ if (!s) ++ return -BCH_ERR_ENOMEM_ec_new_stripe_alloc; ++ ++ mutex_init(&s->lock); ++ closure_init(&s->iodone, NULL); ++ atomic_set(&s->ref[STRIPE_REF_stripe], 1); ++ atomic_set(&s->ref[STRIPE_REF_io], 1); ++ s->c = c; ++ s->h = h; ++ s->nr_data = min_t(unsigned, h->nr_active_devs, ++ BCH_BKEY_PTRS_MAX) - h->redundancy; ++ s->nr_parity = h->redundancy; ++ ++ ec_stripe_key_init(c, &s->new_stripe.key, ++ s->nr_data, s->nr_parity, h->blocksize); ++ ++ h->s = s; ++ return 0; ++} ++ ++static struct ec_stripe_head * ++ec_new_stripe_head_alloc(struct bch_fs *c, unsigned target, ++ unsigned algo, unsigned redundancy, ++ enum bch_watermark watermark) ++{ ++ struct ec_stripe_head *h; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ h = kzalloc(sizeof(*h), GFP_KERNEL); ++ if (!h) ++ return NULL; ++ ++ mutex_init(&h->lock); ++ BUG_ON(!mutex_trylock(&h->lock)); ++ ++ h->target = target; ++ h->algo = algo; ++ h->redundancy = redundancy; ++ h->watermark = watermark; ++ ++ rcu_read_lock(); ++ h->devs = target_rw_devs(c, BCH_DATA_user, target); ++ ++ for_each_member_device_rcu(ca, c, i, &h->devs) ++ if (!ca->mi.durability) ++ __clear_bit(i, h->devs.d); ++ ++ h->blocksize = pick_blocksize(c, &h->devs); ++ ++ for_each_member_device_rcu(ca, c, i, &h->devs) ++ if (ca->mi.bucket_size == h->blocksize) ++ h->nr_active_devs++; ++ ++ rcu_read_unlock(); ++ list_add(&h->list, &c->ec_stripe_head_list); ++ return h; ++} ++ ++void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h) ++{ ++ if (h->s && ++ h->s->allocated && ++ bitmap_weight(h->s->blocks_allocated, ++ h->s->nr_data) == h->s->nr_data) ++ ec_stripe_set_pending(c, h); ++ ++ mutex_unlock(&h->lock); ++} ++ ++static struct ec_stripe_head * ++__bch2_ec_stripe_head_get(struct btree_trans *trans, ++ unsigned target, ++ unsigned algo, ++ unsigned redundancy, ++ enum bch_watermark watermark) ++{ ++ struct bch_fs *c = trans->c; ++ struct ec_stripe_head *h; ++ int ret; ++ ++ if (!redundancy) ++ return NULL; ++ ++ ret = bch2_trans_mutex_lock(trans, &c->ec_stripe_head_lock); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ if (test_bit(BCH_FS_GOING_RO, &c->flags)) { ++ h = ERR_PTR(-BCH_ERR_erofs_no_writes); ++ goto found; ++ } ++ ++ list_for_each_entry(h, &c->ec_stripe_head_list, list) ++ if (h->target == target && ++ h->algo == algo && ++ h->redundancy == redundancy && ++ h->watermark == watermark) { ++ ret = bch2_trans_mutex_lock(trans, &h->lock); ++ if (ret) ++ h = ERR_PTR(ret); ++ goto found; ++ } ++ ++ h = ec_new_stripe_head_alloc(c, target, algo, redundancy, watermark); ++found: ++ mutex_unlock(&c->ec_stripe_head_lock); ++ return h; ++} ++ ++static int new_stripe_alloc_buckets(struct btree_trans *trans, struct ec_stripe_head *h, ++ enum bch_watermark watermark, struct closure *cl) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_devs_mask devs = h->devs; ++ struct open_bucket *ob; ++ struct open_buckets buckets; ++ struct bch_stripe *v = &bkey_i_to_stripe(&h->s->new_stripe.key)->v; ++ unsigned i, j, nr_have_parity = 0, nr_have_data = 0; ++ bool have_cache = true; ++ int ret = 0; ++ ++ BUG_ON(v->nr_blocks != h->s->nr_data + h->s->nr_parity); ++ BUG_ON(v->nr_redundant != h->s->nr_parity); ++ ++ for_each_set_bit(i, h->s->blocks_gotten, v->nr_blocks) { ++ __clear_bit(v->ptrs[i].dev, devs.d); ++ if (i < h->s->nr_data) ++ nr_have_data++; ++ else ++ nr_have_parity++; ++ } ++ ++ BUG_ON(nr_have_data > h->s->nr_data); ++ BUG_ON(nr_have_parity > h->s->nr_parity); ++ ++ buckets.nr = 0; ++ if (nr_have_parity < h->s->nr_parity) { ++ ret = bch2_bucket_alloc_set_trans(trans, &buckets, ++ &h->parity_stripe, ++ &devs, ++ h->s->nr_parity, ++ &nr_have_parity, ++ &have_cache, 0, ++ BCH_DATA_parity, ++ watermark, ++ cl); ++ ++ open_bucket_for_each(c, &buckets, ob, i) { ++ j = find_next_zero_bit(h->s->blocks_gotten, ++ h->s->nr_data + h->s->nr_parity, ++ h->s->nr_data); ++ BUG_ON(j >= h->s->nr_data + h->s->nr_parity); ++ ++ h->s->blocks[j] = buckets.v[i]; ++ v->ptrs[j] = bch2_ob_ptr(c, ob); ++ __set_bit(j, h->s->blocks_gotten); ++ } ++ ++ if (ret) ++ return ret; ++ } ++ ++ buckets.nr = 0; ++ if (nr_have_data < h->s->nr_data) { ++ ret = bch2_bucket_alloc_set_trans(trans, &buckets, ++ &h->block_stripe, ++ &devs, ++ h->s->nr_data, ++ &nr_have_data, ++ &have_cache, 0, ++ BCH_DATA_user, ++ watermark, ++ cl); ++ ++ open_bucket_for_each(c, &buckets, ob, i) { ++ j = find_next_zero_bit(h->s->blocks_gotten, ++ h->s->nr_data, 0); ++ BUG_ON(j >= h->s->nr_data); ++ ++ h->s->blocks[j] = buckets.v[i]; ++ v->ptrs[j] = bch2_ob_ptr(c, ob); ++ __set_bit(j, h->s->blocks_gotten); ++ } ++ ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++/* XXX: doesn't obey target: */ ++static s64 get_existing_stripe(struct bch_fs *c, ++ struct ec_stripe_head *head) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ struct stripe *m; ++ size_t heap_idx; ++ u64 stripe_idx; ++ s64 ret = -1; ++ ++ if (may_create_new_stripe(c)) ++ return -1; ++ ++ mutex_lock(&c->ec_stripes_heap_lock); ++ for (heap_idx = 0; heap_idx < h->used; heap_idx++) { ++ /* No blocks worth reusing, stripe will just be deleted: */ ++ if (!h->data[heap_idx].blocks_nonempty) ++ continue; ++ ++ stripe_idx = h->data[heap_idx].idx; ++ ++ m = genradix_ptr(&c->stripes, stripe_idx); ++ ++ if (m->algorithm == head->algo && ++ m->nr_redundant == head->redundancy && ++ m->sectors == head->blocksize && ++ m->blocks_nonempty < m->nr_blocks - m->nr_redundant && ++ bch2_try_open_stripe(c, head->s, stripe_idx)) { ++ ret = stripe_idx; ++ break; ++ } ++ } ++ mutex_unlock(&c->ec_stripes_heap_lock); ++ return ret; ++} ++ ++static int __bch2_ec_stripe_head_reuse(struct btree_trans *trans, struct ec_stripe_head *h) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_stripe *new_v = &bkey_i_to_stripe(&h->s->new_stripe.key)->v; ++ struct bch_stripe *existing_v; ++ unsigned i; ++ s64 idx; ++ int ret; ++ ++ /* ++ * If we can't allocate a new stripe, and there's no stripes with empty ++ * blocks for us to reuse, that means we have to wait on copygc: ++ */ ++ idx = get_existing_stripe(c, h); ++ if (idx < 0) ++ return -BCH_ERR_stripe_alloc_blocked; ++ ++ ret = get_stripe_key_trans(trans, idx, &h->s->existing_stripe); ++ if (ret) { ++ bch2_stripe_close(c, h->s); ++ if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ bch2_fs_fatal_error(c, "error reading stripe key: %s", bch2_err_str(ret)); ++ return ret; ++ } ++ ++ existing_v = &bkey_i_to_stripe(&h->s->existing_stripe.key)->v; ++ ++ BUG_ON(existing_v->nr_redundant != h->s->nr_parity); ++ h->s->nr_data = existing_v->nr_blocks - ++ existing_v->nr_redundant; ++ ++ ret = ec_stripe_buf_init(&h->s->existing_stripe, 0, h->blocksize); ++ if (ret) { ++ bch2_stripe_close(c, h->s); ++ return ret; ++ } ++ ++ BUG_ON(h->s->existing_stripe.size != h->blocksize); ++ BUG_ON(h->s->existing_stripe.size != le16_to_cpu(existing_v->sectors)); ++ ++ /* ++ * Free buckets we initially allocated - they might conflict with ++ * blocks from the stripe we're reusing: ++ */ ++ for_each_set_bit(i, h->s->blocks_gotten, new_v->nr_blocks) { ++ bch2_open_bucket_put(c, c->open_buckets + h->s->blocks[i]); ++ h->s->blocks[i] = 0; ++ } ++ memset(h->s->blocks_gotten, 0, sizeof(h->s->blocks_gotten)); ++ memset(h->s->blocks_allocated, 0, sizeof(h->s->blocks_allocated)); ++ ++ for (i = 0; i < existing_v->nr_blocks; i++) { ++ if (stripe_blockcount_get(existing_v, i)) { ++ __set_bit(i, h->s->blocks_gotten); ++ __set_bit(i, h->s->blocks_allocated); ++ } ++ ++ ec_block_io(c, &h->s->existing_stripe, READ, i, &h->s->iodone); ++ } ++ ++ bkey_copy(&h->s->new_stripe.key, &h->s->existing_stripe.key); ++ h->s->have_existing_stripe = true; ++ ++ return 0; ++} ++ ++static int __bch2_ec_stripe_head_reserve(struct btree_trans *trans, struct ec_stripe_head *h) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bpos min_pos = POS(0, 1); ++ struct bpos start_pos = bpos_max(min_pos, POS(0, c->ec_stripe_hint)); ++ int ret; ++ ++ if (!h->s->res.sectors) { ++ ret = bch2_disk_reservation_get(c, &h->s->res, ++ h->blocksize, ++ h->s->nr_parity, ++ BCH_DISK_RESERVATION_NOFAIL); ++ if (ret) ++ return ret; ++ } ++ ++ for_each_btree_key_norestart(trans, iter, BTREE_ID_stripes, start_pos, ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { ++ if (bkey_gt(k.k->p, POS(0, U32_MAX))) { ++ if (start_pos.offset) { ++ start_pos = min_pos; ++ bch2_btree_iter_set_pos(&iter, start_pos); ++ continue; ++ } ++ ++ ret = -BCH_ERR_ENOSPC_stripe_create; ++ break; ++ } ++ ++ if (bkey_deleted(k.k) && ++ bch2_try_open_stripe(c, h->s, k.k->p.offset)) ++ break; ++ } ++ ++ c->ec_stripe_hint = iter.pos.offset; ++ ++ if (ret) ++ goto err; ++ ++ ret = ec_stripe_mem_alloc(trans, &iter); ++ if (ret) { ++ bch2_stripe_close(c, h->s); ++ goto err; ++ } ++ ++ h->s->new_stripe.key.k.p = iter.pos; ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++err: ++ bch2_disk_reservation_put(c, &h->s->res); ++ goto out; ++} ++ ++struct ec_stripe_head *bch2_ec_stripe_head_get(struct btree_trans *trans, ++ unsigned target, ++ unsigned algo, ++ unsigned redundancy, ++ enum bch_watermark watermark, ++ struct closure *cl) ++{ ++ struct bch_fs *c = trans->c; ++ struct ec_stripe_head *h; ++ bool waiting = false; ++ int ret; ++ ++ h = __bch2_ec_stripe_head_get(trans, target, algo, redundancy, watermark); ++ if (!h) ++ bch_err(c, "no stripe head"); ++ if (IS_ERR_OR_NULL(h)) ++ return h; ++ ++ if (!h->s) { ++ ret = ec_new_stripe_alloc(c, h); ++ if (ret) { ++ bch_err(c, "failed to allocate new stripe"); ++ goto err; ++ } ++ } ++ ++ if (h->s->allocated) ++ goto allocated; ++ ++ if (h->s->have_existing_stripe) ++ goto alloc_existing; ++ ++ /* First, try to allocate a full stripe: */ ++ ret = new_stripe_alloc_buckets(trans, h, BCH_WATERMARK_stripe, NULL) ?: ++ __bch2_ec_stripe_head_reserve(trans, h); ++ if (!ret) ++ goto allocate_buf; ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || ++ bch2_err_matches(ret, ENOMEM)) ++ goto err; ++ ++ /* ++ * Not enough buckets available for a full stripe: we must reuse an ++ * existing stripe: ++ */ ++ while (1) { ++ ret = __bch2_ec_stripe_head_reuse(trans, h); ++ if (!ret) ++ break; ++ if (waiting || !cl || ret != -BCH_ERR_stripe_alloc_blocked) ++ goto err; ++ ++ if (watermark == BCH_WATERMARK_copygc) { ++ ret = new_stripe_alloc_buckets(trans, h, watermark, NULL) ?: ++ __bch2_ec_stripe_head_reserve(trans, h); ++ if (ret) ++ goto err; ++ goto allocate_buf; ++ } ++ ++ /* XXX freelist_wait? */ ++ closure_wait(&c->freelist_wait, cl); ++ waiting = true; ++ } ++ ++ if (waiting) ++ closure_wake_up(&c->freelist_wait); ++alloc_existing: ++ /* ++ * Retry allocating buckets, with the watermark for this ++ * particular write: ++ */ ++ ret = new_stripe_alloc_buckets(trans, h, watermark, cl); ++ if (ret) ++ goto err; ++ ++allocate_buf: ++ ret = ec_stripe_buf_init(&h->s->new_stripe, 0, h->blocksize); ++ if (ret) ++ goto err; ++ ++ h->s->allocated = true; ++allocated: ++ BUG_ON(!h->s->idx); ++ BUG_ON(!h->s->new_stripe.data[0]); ++ BUG_ON(trans->restarted); ++ return h; ++err: ++ bch2_ec_stripe_head_put(c, h); ++ return ERR_PTR(ret); ++} ++ ++static void __bch2_ec_stop(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct ec_stripe_head *h; ++ struct open_bucket *ob; ++ unsigned i; ++ ++ mutex_lock(&c->ec_stripe_head_lock); ++ list_for_each_entry(h, &c->ec_stripe_head_list, list) { ++ mutex_lock(&h->lock); ++ if (!h->s) ++ goto unlock; ++ ++ if (!ca) ++ goto found; ++ ++ for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) { ++ if (!h->s->blocks[i]) ++ continue; ++ ++ ob = c->open_buckets + h->s->blocks[i]; ++ if (ob->dev == ca->dev_idx) ++ goto found; ++ } ++ goto unlock; ++found: ++ h->s->err = -BCH_ERR_erofs_no_writes; ++ ec_stripe_set_pending(c, h); ++unlock: ++ mutex_unlock(&h->lock); ++ } ++ mutex_unlock(&c->ec_stripe_head_lock); ++} ++ ++void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca) ++{ ++ __bch2_ec_stop(c, ca); ++} ++ ++void bch2_fs_ec_stop(struct bch_fs *c) ++{ ++ __bch2_ec_stop(c, NULL); ++} ++ ++static bool bch2_fs_ec_flush_done(struct bch_fs *c) ++{ ++ bool ret; ++ ++ mutex_lock(&c->ec_stripe_new_lock); ++ ret = list_empty(&c->ec_stripe_new_list); ++ mutex_unlock(&c->ec_stripe_new_lock); ++ ++ return ret; ++} ++ ++void bch2_fs_ec_flush(struct bch_fs *c) ++{ ++ wait_event(c->ec_stripe_new_wait, bch2_fs_ec_flush_done(c)); ++} ++ ++int bch2_stripes_read(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ const struct bch_stripe *s; ++ struct stripe *m; ++ unsigned i; ++ int ret; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_stripes, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ret) { ++ if (k.k->type != KEY_TYPE_stripe) ++ continue; ++ ++ ret = __ec_stripe_mem_alloc(c, k.k->p.offset, GFP_KERNEL); ++ if (ret) ++ break; ++ ++ s = bkey_s_c_to_stripe(k).v; ++ ++ m = genradix_ptr(&c->stripes, k.k->p.offset); ++ m->sectors = le16_to_cpu(s->sectors); ++ m->algorithm = s->algorithm; ++ m->nr_blocks = s->nr_blocks; ++ m->nr_redundant = s->nr_redundant; ++ m->blocks_nonempty = 0; ++ ++ for (i = 0; i < s->nr_blocks; i++) ++ m->blocks_nonempty += !!stripe_blockcount_get(s, i); ++ ++ bch2_stripes_heap_insert(c, m, k.k->p.offset); ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ bch2_trans_put(trans); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ ++ return ret; ++} ++ ++void bch2_stripes_heap_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ ec_stripes_heap *h = &c->ec_stripes_heap; ++ struct stripe *m; ++ size_t i; ++ ++ mutex_lock(&c->ec_stripes_heap_lock); ++ for (i = 0; i < min_t(size_t, h->used, 50); i++) { ++ m = genradix_ptr(&c->stripes, h->data[i].idx); ++ ++ prt_printf(out, "%zu %u/%u+%u", h->data[i].idx, ++ h->data[i].blocks_nonempty, ++ m->nr_blocks - m->nr_redundant, ++ m->nr_redundant); ++ if (bch2_stripe_is_open(c, h->data[i].idx)) ++ prt_str(out, " open"); ++ prt_newline(out); ++ } ++ mutex_unlock(&c->ec_stripes_heap_lock); ++} ++ ++void bch2_new_stripes_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct ec_stripe_head *h; ++ struct ec_stripe_new *s; ++ ++ mutex_lock(&c->ec_stripe_head_lock); ++ list_for_each_entry(h, &c->ec_stripe_head_list, list) { ++ prt_printf(out, "target %u algo %u redundancy %u %s:\n", ++ h->target, h->algo, h->redundancy, ++ bch2_watermarks[h->watermark]); ++ ++ if (h->s) ++ prt_printf(out, "\tidx %llu blocks %u+%u allocated %u\n", ++ h->s->idx, h->s->nr_data, h->s->nr_parity, ++ bitmap_weight(h->s->blocks_allocated, ++ h->s->nr_data)); ++ } ++ mutex_unlock(&c->ec_stripe_head_lock); ++ ++ prt_printf(out, "in flight:\n"); ++ ++ mutex_lock(&c->ec_stripe_new_lock); ++ list_for_each_entry(s, &c->ec_stripe_new_list, list) { ++ prt_printf(out, "\tidx %llu blocks %u+%u ref %u %u %s\n", ++ s->idx, s->nr_data, s->nr_parity, ++ atomic_read(&s->ref[STRIPE_REF_io]), ++ atomic_read(&s->ref[STRIPE_REF_stripe]), ++ bch2_watermarks[s->h->watermark]); ++ } ++ mutex_unlock(&c->ec_stripe_new_lock); ++} ++ ++void bch2_fs_ec_exit(struct bch_fs *c) ++{ ++ struct ec_stripe_head *h; ++ unsigned i; ++ ++ while (1) { ++ mutex_lock(&c->ec_stripe_head_lock); ++ h = list_first_entry_or_null(&c->ec_stripe_head_list, ++ struct ec_stripe_head, list); ++ if (h) ++ list_del(&h->list); ++ mutex_unlock(&c->ec_stripe_head_lock); ++ if (!h) ++ break; ++ ++ if (h->s) { ++ for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) ++ BUG_ON(h->s->blocks[i]); ++ ++ kfree(h->s); ++ } ++ kfree(h); ++ } ++ ++ BUG_ON(!list_empty(&c->ec_stripe_new_list)); ++ ++ free_heap(&c->ec_stripes_heap); ++ genradix_free(&c->stripes); ++ bioset_exit(&c->ec_bioset); ++} ++ ++void bch2_fs_ec_init_early(struct bch_fs *c) ++{ ++ spin_lock_init(&c->ec_stripes_new_lock); ++ mutex_init(&c->ec_stripes_heap_lock); ++ ++ INIT_LIST_HEAD(&c->ec_stripe_head_list); ++ mutex_init(&c->ec_stripe_head_lock); ++ ++ INIT_LIST_HEAD(&c->ec_stripe_new_list); ++ mutex_init(&c->ec_stripe_new_lock); ++ init_waitqueue_head(&c->ec_stripe_new_wait); ++ ++ INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work); ++ INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work); ++} ++ ++int bch2_fs_ec_init(struct bch_fs *c) ++{ ++ return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio), ++ BIOSET_NEED_BVECS); ++} +diff --git a/fs/bcachefs/ec.h b/fs/bcachefs/ec.h +new file mode 100644 +index 000000000000..966d165a3b66 +--- /dev/null ++++ b/fs/bcachefs/ec.h +@@ -0,0 +1,260 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EC_H ++#define _BCACHEFS_EC_H ++ ++#include "ec_types.h" ++#include "buckets_types.h" ++#include "extents_types.h" ++ ++enum bkey_invalid_flags; ++ ++int bch2_stripe_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_stripe_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ ++#define bch2_bkey_ops_stripe ((struct bkey_ops) { \ ++ .key_invalid = bch2_stripe_invalid, \ ++ .val_to_text = bch2_stripe_to_text, \ ++ .swab = bch2_ptr_swab, \ ++ .trans_trigger = bch2_trans_mark_stripe, \ ++ .atomic_trigger = bch2_mark_stripe, \ ++ .min_val_size = 8, \ ++}) ++ ++static inline unsigned stripe_csums_per_device(const struct bch_stripe *s) ++{ ++ return DIV_ROUND_UP(le16_to_cpu(s->sectors), ++ 1 << s->csum_granularity_bits); ++} ++ ++static inline unsigned stripe_csum_offset(const struct bch_stripe *s, ++ unsigned dev, unsigned csum_idx) ++{ ++ unsigned csum_bytes = bch_crc_bytes[s->csum_type]; ++ ++ return sizeof(struct bch_stripe) + ++ sizeof(struct bch_extent_ptr) * s->nr_blocks + ++ (dev * stripe_csums_per_device(s) + csum_idx) * csum_bytes; ++} ++ ++static inline unsigned stripe_blockcount_offset(const struct bch_stripe *s, ++ unsigned idx) ++{ ++ return stripe_csum_offset(s, s->nr_blocks, 0) + ++ sizeof(u16) * idx; ++} ++ ++static inline unsigned stripe_blockcount_get(const struct bch_stripe *s, ++ unsigned idx) ++{ ++ return le16_to_cpup((void *) s + stripe_blockcount_offset(s, idx)); ++} ++ ++static inline void stripe_blockcount_set(struct bch_stripe *s, ++ unsigned idx, unsigned v) ++{ ++ __le16 *p = (void *) s + stripe_blockcount_offset(s, idx); ++ ++ *p = cpu_to_le16(v); ++} ++ ++static inline unsigned stripe_val_u64s(const struct bch_stripe *s) ++{ ++ return DIV_ROUND_UP(stripe_blockcount_offset(s, s->nr_blocks), ++ sizeof(u64)); ++} ++ ++static inline void *stripe_csum(struct bch_stripe *s, ++ unsigned block, unsigned csum_idx) ++{ ++ EBUG_ON(block >= s->nr_blocks); ++ EBUG_ON(csum_idx >= stripe_csums_per_device(s)); ++ ++ return (void *) s + stripe_csum_offset(s, block, csum_idx); ++} ++ ++static inline struct bch_csum stripe_csum_get(struct bch_stripe *s, ++ unsigned block, unsigned csum_idx) ++{ ++ struct bch_csum csum = { 0 }; ++ ++ memcpy(&csum, stripe_csum(s, block, csum_idx), bch_crc_bytes[s->csum_type]); ++ return csum; ++} ++ ++static inline void stripe_csum_set(struct bch_stripe *s, ++ unsigned block, unsigned csum_idx, ++ struct bch_csum csum) ++{ ++ memcpy(stripe_csum(s, block, csum_idx), &csum, bch_crc_bytes[s->csum_type]); ++} ++ ++static inline bool __bch2_ptr_matches_stripe(const struct bch_extent_ptr *stripe_ptr, ++ const struct bch_extent_ptr *data_ptr, ++ unsigned sectors) ++{ ++ return data_ptr->dev == stripe_ptr->dev && ++ data_ptr->gen == stripe_ptr->gen && ++ data_ptr->offset >= stripe_ptr->offset && ++ data_ptr->offset < stripe_ptr->offset + sectors; ++} ++ ++static inline bool bch2_ptr_matches_stripe(const struct bch_stripe *s, ++ struct extent_ptr_decoded p) ++{ ++ unsigned nr_data = s->nr_blocks - s->nr_redundant; ++ ++ BUG_ON(!p.has_ec); ++ ++ if (p.ec.block >= nr_data) ++ return false; ++ ++ return __bch2_ptr_matches_stripe(&s->ptrs[p.ec.block], &p.ptr, ++ le16_to_cpu(s->sectors)); ++} ++ ++static inline bool bch2_ptr_matches_stripe_m(const struct gc_stripe *m, ++ struct extent_ptr_decoded p) ++{ ++ unsigned nr_data = m->nr_blocks - m->nr_redundant; ++ ++ BUG_ON(!p.has_ec); ++ ++ if (p.ec.block >= nr_data) ++ return false; ++ ++ return __bch2_ptr_matches_stripe(&m->ptrs[p.ec.block], &p.ptr, ++ m->sectors); ++} ++ ++struct bch_read_bio; ++ ++struct ec_stripe_buf { ++ /* might not be buffering the entire stripe: */ ++ unsigned offset; ++ unsigned size; ++ unsigned long valid[BITS_TO_LONGS(BCH_BKEY_PTRS_MAX)]; ++ ++ void *data[BCH_BKEY_PTRS_MAX]; ++ ++ __BKEY_PADDED(key, 255); ++}; ++ ++struct ec_stripe_head; ++ ++enum ec_stripe_ref { ++ STRIPE_REF_io, ++ STRIPE_REF_stripe, ++ STRIPE_REF_NR ++}; ++ ++struct ec_stripe_new { ++ struct bch_fs *c; ++ struct ec_stripe_head *h; ++ struct mutex lock; ++ struct list_head list; ++ ++ struct hlist_node hash; ++ u64 idx; ++ ++ struct closure iodone; ++ ++ atomic_t ref[STRIPE_REF_NR]; ++ ++ int err; ++ ++ u8 nr_data; ++ u8 nr_parity; ++ bool allocated; ++ bool pending; ++ bool have_existing_stripe; ++ ++ unsigned long blocks_gotten[BITS_TO_LONGS(BCH_BKEY_PTRS_MAX)]; ++ unsigned long blocks_allocated[BITS_TO_LONGS(BCH_BKEY_PTRS_MAX)]; ++ open_bucket_idx_t blocks[BCH_BKEY_PTRS_MAX]; ++ struct disk_reservation res; ++ ++ struct ec_stripe_buf new_stripe; ++ struct ec_stripe_buf existing_stripe; ++}; ++ ++struct ec_stripe_head { ++ struct list_head list; ++ struct mutex lock; ++ ++ unsigned target; ++ unsigned algo; ++ unsigned redundancy; ++ enum bch_watermark watermark; ++ ++ struct bch_devs_mask devs; ++ unsigned nr_active_devs; ++ ++ unsigned blocksize; ++ ++ struct dev_stripe_state block_stripe; ++ struct dev_stripe_state parity_stripe; ++ ++ struct ec_stripe_new *s; ++}; ++ ++int bch2_ec_read_extent(struct bch_fs *, struct bch_read_bio *); ++ ++void *bch2_writepoint_ec_buf(struct bch_fs *, struct write_point *); ++ ++void bch2_ec_bucket_cancel(struct bch_fs *, struct open_bucket *); ++ ++int bch2_ec_stripe_new_alloc(struct bch_fs *, struct ec_stripe_head *); ++ ++void bch2_ec_stripe_head_put(struct bch_fs *, struct ec_stripe_head *); ++struct ec_stripe_head *bch2_ec_stripe_head_get(struct btree_trans *, ++ unsigned, unsigned, unsigned, ++ enum bch_watermark, struct closure *); ++ ++void bch2_stripes_heap_update(struct bch_fs *, struct stripe *, size_t); ++void bch2_stripes_heap_del(struct bch_fs *, struct stripe *, size_t); ++void bch2_stripes_heap_insert(struct bch_fs *, struct stripe *, size_t); ++ ++void bch2_do_stripe_deletes(struct bch_fs *); ++void bch2_ec_do_stripe_creates(struct bch_fs *); ++void bch2_ec_stripe_new_free(struct bch_fs *, struct ec_stripe_new *); ++ ++static inline void ec_stripe_new_get(struct ec_stripe_new *s, ++ enum ec_stripe_ref ref) ++{ ++ atomic_inc(&s->ref[ref]); ++} ++ ++static inline void ec_stripe_new_put(struct bch_fs *c, struct ec_stripe_new *s, ++ enum ec_stripe_ref ref) ++{ ++ BUG_ON(atomic_read(&s->ref[ref]) <= 0); ++ ++ if (atomic_dec_and_test(&s->ref[ref])) ++ switch (ref) { ++ case STRIPE_REF_stripe: ++ bch2_ec_stripe_new_free(c, s); ++ break; ++ case STRIPE_REF_io: ++ bch2_ec_do_stripe_creates(c); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++void bch2_ec_stop_dev(struct bch_fs *, struct bch_dev *); ++void bch2_fs_ec_stop(struct bch_fs *); ++void bch2_fs_ec_flush(struct bch_fs *); ++ ++int bch2_stripes_read(struct bch_fs *); ++ ++void bch2_stripes_heap_to_text(struct printbuf *, struct bch_fs *); ++void bch2_new_stripes_to_text(struct printbuf *, struct bch_fs *); ++ ++void bch2_fs_ec_exit(struct bch_fs *); ++void bch2_fs_ec_init_early(struct bch_fs *); ++int bch2_fs_ec_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_EC_H */ +diff --git a/fs/bcachefs/ec_types.h b/fs/bcachefs/ec_types.h +new file mode 100644 +index 000000000000..e2b02a82de32 +--- /dev/null ++++ b/fs/bcachefs/ec_types.h +@@ -0,0 +1,41 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EC_TYPES_H ++#define _BCACHEFS_EC_TYPES_H ++ ++#include "bcachefs_format.h" ++ ++struct bch_replicas_padded { ++ struct bch_replicas_entry e; ++ u8 pad[BCH_BKEY_PTRS_MAX]; ++}; ++ ++struct stripe { ++ size_t heap_idx; ++ u16 sectors; ++ u8 algorithm; ++ u8 nr_blocks; ++ u8 nr_redundant; ++ u8 blocks_nonempty; ++}; ++ ++struct gc_stripe { ++ u16 sectors; ++ ++ u8 nr_blocks; ++ u8 nr_redundant; ++ ++ unsigned alive:1; /* does a corresponding key exist in stripes btree? */ ++ u16 block_sectors[BCH_BKEY_PTRS_MAX]; ++ struct bch_extent_ptr ptrs[BCH_BKEY_PTRS_MAX]; ++ ++ struct bch_replicas_padded r; ++}; ++ ++struct ec_stripe_heap_entry { ++ size_t idx; ++ unsigned blocks_nonempty; ++}; ++ ++typedef HEAP(struct ec_stripe_heap_entry) ec_stripes_heap; ++ ++#endif /* _BCACHEFS_EC_TYPES_H */ +diff --git a/fs/bcachefs/errcode.c b/fs/bcachefs/errcode.c +new file mode 100644 +index 000000000000..d260ff9bbfeb +--- /dev/null ++++ b/fs/bcachefs/errcode.c +@@ -0,0 +1,68 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "errcode.h" ++ ++#include ++ ++static const char * const bch2_errcode_strs[] = { ++#define x(class, err) [BCH_ERR_##err - BCH_ERR_START] = #err, ++ BCH_ERRCODES() ++#undef x ++ NULL ++}; ++ ++static unsigned bch2_errcode_parents[] = { ++#define x(class, err) [BCH_ERR_##err - BCH_ERR_START] = class, ++ BCH_ERRCODES() ++#undef x ++}; ++ ++const char *bch2_err_str(int err) ++{ ++ const char *errstr; ++ ++ err = abs(err); ++ ++ BUG_ON(err >= BCH_ERR_MAX); ++ ++ if (err >= BCH_ERR_START) ++ errstr = bch2_errcode_strs[err - BCH_ERR_START]; ++ else if (err) ++ errstr = errname(err); ++ else ++ errstr = "(No error)"; ++ return errstr ?: "(Invalid error)"; ++} ++ ++bool __bch2_err_matches(int err, int class) ++{ ++ err = abs(err); ++ class = abs(class); ++ ++ BUG_ON(err >= BCH_ERR_MAX); ++ BUG_ON(class >= BCH_ERR_MAX); ++ ++ while (err >= BCH_ERR_START && err != class) ++ err = bch2_errcode_parents[err - BCH_ERR_START]; ++ ++ return err == class; ++} ++ ++int __bch2_err_class(int err) ++{ ++ err = -err; ++ BUG_ON((unsigned) err >= BCH_ERR_MAX); ++ ++ while (err >= BCH_ERR_START && bch2_errcode_parents[err - BCH_ERR_START]) ++ err = bch2_errcode_parents[err - BCH_ERR_START]; ++ ++ return -err; ++} ++ ++const char *bch2_blk_status_to_str(blk_status_t status) ++{ ++ if (status == BLK_STS_REMOVED) ++ return "device removed"; ++ return blk_status_to_str(status); ++} +diff --git a/fs/bcachefs/errcode.h b/fs/bcachefs/errcode.h +new file mode 100644 +index 000000000000..7cc083776a2e +--- /dev/null ++++ b/fs/bcachefs/errcode.h +@@ -0,0 +1,265 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ERRCODE_H ++#define _BCACHEFS_ERRCODE_H ++ ++#define BCH_ERRCODES() \ ++ x(ENOMEM, ENOMEM_stripe_buf) \ ++ x(ENOMEM, ENOMEM_replicas_table) \ ++ x(ENOMEM, ENOMEM_cpu_replicas) \ ++ x(ENOMEM, ENOMEM_replicas_gc) \ ++ x(ENOMEM, ENOMEM_disk_groups_validate) \ ++ x(ENOMEM, ENOMEM_disk_groups_to_cpu) \ ++ x(ENOMEM, ENOMEM_mark_snapshot) \ ++ x(ENOMEM, ENOMEM_mark_stripe) \ ++ x(ENOMEM, ENOMEM_mark_stripe_ptr) \ ++ x(ENOMEM, ENOMEM_btree_key_cache_create) \ ++ x(ENOMEM, ENOMEM_btree_key_cache_fill) \ ++ x(ENOMEM, ENOMEM_btree_key_cache_insert) \ ++ x(ENOMEM, ENOMEM_trans_kmalloc) \ ++ x(ENOMEM, ENOMEM_trans_log_msg) \ ++ x(ENOMEM, ENOMEM_do_encrypt) \ ++ x(ENOMEM, ENOMEM_ec_read_extent) \ ++ x(ENOMEM, ENOMEM_ec_stripe_mem_alloc) \ ++ x(ENOMEM, ENOMEM_ec_new_stripe_alloc) \ ++ x(ENOMEM, ENOMEM_fs_btree_cache_init) \ ++ x(ENOMEM, ENOMEM_fs_btree_key_cache_init) \ ++ x(ENOMEM, ENOMEM_fs_counters_init) \ ++ x(ENOMEM, ENOMEM_fs_btree_write_buffer_init) \ ++ x(ENOMEM, ENOMEM_io_clock_init) \ ++ x(ENOMEM, ENOMEM_blacklist_table_init) \ ++ x(ENOMEM, ENOMEM_sb_realloc_injected) \ ++ x(ENOMEM, ENOMEM_sb_bio_realloc) \ ++ x(ENOMEM, ENOMEM_sb_buf_realloc) \ ++ x(ENOMEM, ENOMEM_sb_journal_validate) \ ++ x(ENOMEM, ENOMEM_sb_journal_v2_validate) \ ++ x(ENOMEM, ENOMEM_journal_entry_add) \ ++ x(ENOMEM, ENOMEM_journal_read_buf_realloc) \ ++ x(ENOMEM, ENOMEM_btree_interior_update_worker_init)\ ++ x(ENOMEM, ENOMEM_btree_interior_update_pool_init) \ ++ x(ENOMEM, ENOMEM_bio_read_init) \ ++ x(ENOMEM, ENOMEM_bio_read_split_init) \ ++ x(ENOMEM, ENOMEM_bio_write_init) \ ++ x(ENOMEM, ENOMEM_bio_bounce_pages_init) \ ++ x(ENOMEM, ENOMEM_writepage_bioset_init) \ ++ x(ENOMEM, ENOMEM_dio_read_bioset_init) \ ++ x(ENOMEM, ENOMEM_dio_write_bioset_init) \ ++ x(ENOMEM, ENOMEM_nocow_flush_bioset_init) \ ++ x(ENOMEM, ENOMEM_promote_table_init) \ ++ x(ENOMEM, ENOMEM_compression_bounce_read_init) \ ++ x(ENOMEM, ENOMEM_compression_bounce_write_init) \ ++ x(ENOMEM, ENOMEM_compression_workspace_init) \ ++ x(ENOMEM, ENOMEM_decompression_workspace_init) \ ++ x(ENOMEM, ENOMEM_bucket_gens) \ ++ x(ENOMEM, ENOMEM_buckets_nouse) \ ++ x(ENOMEM, ENOMEM_usage_init) \ ++ x(ENOMEM, ENOMEM_btree_node_read_all_replicas) \ ++ x(ENOMEM, ENOMEM_btree_node_reclaim) \ ++ x(ENOMEM, ENOMEM_btree_node_mem_alloc) \ ++ x(ENOMEM, ENOMEM_btree_cache_cannibalize_lock) \ ++ x(ENOMEM, ENOMEM_buckets_waiting_for_journal_init)\ ++ x(ENOMEM, ENOMEM_buckets_waiting_for_journal_set) \ ++ x(ENOMEM, ENOMEM_set_nr_journal_buckets) \ ++ x(ENOMEM, ENOMEM_dev_journal_init) \ ++ x(ENOMEM, ENOMEM_journal_pin_fifo) \ ++ x(ENOMEM, ENOMEM_journal_buf) \ ++ x(ENOMEM, ENOMEM_gc_start) \ ++ x(ENOMEM, ENOMEM_gc_alloc_start) \ ++ x(ENOMEM, ENOMEM_gc_reflink_start) \ ++ x(ENOMEM, ENOMEM_gc_gens) \ ++ x(ENOMEM, ENOMEM_gc_repair_key) \ ++ x(ENOMEM, ENOMEM_fsck_extent_ends_at) \ ++ x(ENOMEM, ENOMEM_fsck_add_nlink) \ ++ x(ENOMEM, ENOMEM_journal_key_insert) \ ++ x(ENOMEM, ENOMEM_journal_keys_sort) \ ++ x(ENOMEM, ENOMEM_journal_replay) \ ++ x(ENOMEM, ENOMEM_read_superblock_clean) \ ++ x(ENOMEM, ENOMEM_fs_alloc) \ ++ x(ENOMEM, ENOMEM_fs_name_alloc) \ ++ x(ENOMEM, ENOMEM_fs_other_alloc) \ ++ x(ENOMEM, ENOMEM_dev_alloc) \ ++ x(ENOSPC, ENOSPC_disk_reservation) \ ++ x(ENOSPC, ENOSPC_bucket_alloc) \ ++ x(ENOSPC, ENOSPC_disk_label_add) \ ++ x(ENOSPC, ENOSPC_stripe_create) \ ++ x(ENOSPC, ENOSPC_inode_create) \ ++ x(ENOSPC, ENOSPC_str_hash_create) \ ++ x(ENOSPC, ENOSPC_snapshot_create) \ ++ x(ENOSPC, ENOSPC_subvolume_create) \ ++ x(ENOSPC, ENOSPC_sb) \ ++ x(ENOSPC, ENOSPC_sb_journal) \ ++ x(ENOSPC, ENOSPC_sb_journal_seq_blacklist) \ ++ x(ENOSPC, ENOSPC_sb_quota) \ ++ x(ENOSPC, ENOSPC_sb_replicas) \ ++ x(ENOSPC, ENOSPC_sb_members) \ ++ x(ENOSPC, ENOSPC_sb_members_v2) \ ++ x(ENOSPC, ENOSPC_sb_crypt) \ ++ x(ENOSPC, ENOSPC_btree_slot) \ ++ x(ENOSPC, ENOSPC_snapshot_tree) \ ++ x(ENOENT, ENOENT_bkey_type_mismatch) \ ++ x(ENOENT, ENOENT_str_hash_lookup) \ ++ x(ENOENT, ENOENT_str_hash_set_must_replace) \ ++ x(ENOENT, ENOENT_inode) \ ++ x(ENOENT, ENOENT_not_subvol) \ ++ x(ENOENT, ENOENT_not_directory) \ ++ x(ENOENT, ENOENT_directory_dead) \ ++ x(ENOENT, ENOENT_subvolume) \ ++ x(ENOENT, ENOENT_snapshot_tree) \ ++ x(ENOENT, ENOENT_dirent_doesnt_match_inode) \ ++ x(ENOENT, ENOENT_dev_not_found) \ ++ x(ENOENT, ENOENT_dev_idx_not_found) \ ++ x(0, open_buckets_empty) \ ++ x(0, freelist_empty) \ ++ x(BCH_ERR_freelist_empty, no_buckets_found) \ ++ x(0, transaction_restart) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_fault_inject) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_relock) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_relock_path) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_relock_path_intent) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_relock_after_fill) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_too_many_iters) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_lock_node_reused) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_fill_relock) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_fill_mem_alloc_fail)\ ++ x(BCH_ERR_transaction_restart, transaction_restart_mem_realloced) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_in_traverse_all) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_would_deadlock) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_would_deadlock_write)\ ++ x(BCH_ERR_transaction_restart, transaction_restart_deadlock_recursion_limit)\ ++ x(BCH_ERR_transaction_restart, transaction_restart_upgrade) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_key_cache_upgrade) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_key_cache_fill) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_key_cache_raced) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_key_cache_realloced)\ ++ x(BCH_ERR_transaction_restart, transaction_restart_journal_preres_get) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_split_race) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_write_buffer_flush) \ ++ x(BCH_ERR_transaction_restart, transaction_restart_nested) \ ++ x(0, no_btree_node) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_relock) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_upgrade) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_drop) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_lock_root) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_up) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_down) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_init) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_cached) \ ++ x(BCH_ERR_no_btree_node, no_btree_node_srcu_reset) \ ++ x(0, btree_insert_fail) \ ++ x(BCH_ERR_btree_insert_fail, btree_insert_btree_node_full) \ ++ x(BCH_ERR_btree_insert_fail, btree_insert_need_mark_replicas) \ ++ x(BCH_ERR_btree_insert_fail, btree_insert_need_journal_res) \ ++ x(BCH_ERR_btree_insert_fail, btree_insert_need_journal_reclaim) \ ++ x(BCH_ERR_btree_insert_fail, btree_insert_need_flush_buffer) \ ++ x(0, backpointer_to_overwritten_btree_node) \ ++ x(0, lock_fail_root_changed) \ ++ x(0, journal_reclaim_would_deadlock) \ ++ x(EINVAL, fsck) \ ++ x(BCH_ERR_fsck, fsck_fix) \ ++ x(BCH_ERR_fsck, fsck_ignore) \ ++ x(BCH_ERR_fsck, fsck_errors_not_fixed) \ ++ x(BCH_ERR_fsck, fsck_repair_unimplemented) \ ++ x(BCH_ERR_fsck, fsck_repair_impossible) \ ++ x(0, restart_recovery) \ ++ x(0, unwritten_extent_update) \ ++ x(EINVAL, device_state_not_allowed) \ ++ x(EINVAL, member_info_missing) \ ++ x(EINVAL, mismatched_block_size) \ ++ x(EINVAL, block_size_too_small) \ ++ x(EINVAL, bucket_size_too_small) \ ++ x(EINVAL, device_size_too_small) \ ++ x(EINVAL, device_not_a_member_of_filesystem) \ ++ x(EINVAL, device_has_been_removed) \ ++ x(EINVAL, device_already_online) \ ++ x(EINVAL, insufficient_devices_to_start) \ ++ x(EINVAL, invalid) \ ++ x(EINVAL, internal_fsck_err) \ ++ x(EROFS, erofs_trans_commit) \ ++ x(EROFS, erofs_no_writes) \ ++ x(EROFS, erofs_journal_err) \ ++ x(EROFS, erofs_sb_err) \ ++ x(EROFS, erofs_unfixed_errors) \ ++ x(EROFS, erofs_norecovery) \ ++ x(EROFS, erofs_nochanges) \ ++ x(EROFS, insufficient_devices) \ ++ x(0, operation_blocked) \ ++ x(BCH_ERR_operation_blocked, btree_cache_cannibalize_lock_blocked) \ ++ x(BCH_ERR_operation_blocked, journal_res_get_blocked) \ ++ x(BCH_ERR_operation_blocked, journal_preres_get_blocked) \ ++ x(BCH_ERR_operation_blocked, bucket_alloc_blocked) \ ++ x(BCH_ERR_operation_blocked, stripe_alloc_blocked) \ ++ x(BCH_ERR_invalid, invalid_sb) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_magic) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_version) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_features) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_too_big) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_csum_type) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_csum) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_block_size) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_uuid) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_too_many_members) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_dev_idx) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_time_precision) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_field_size) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_layout) \ ++ x(BCH_ERR_invalid_sb_layout, invalid_sb_layout_type) \ ++ x(BCH_ERR_invalid_sb_layout, invalid_sb_layout_nr_superblocks) \ ++ x(BCH_ERR_invalid_sb_layout, invalid_sb_layout_superblocks_overlap) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_members_missing) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_members) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_disk_groups) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_replicas) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_journal) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_journal_seq_blacklist) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_crypt) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_clean) \ ++ x(BCH_ERR_invalid_sb, invalid_sb_quota) \ ++ x(BCH_ERR_invalid, invalid_bkey) \ ++ x(BCH_ERR_operation_blocked, nocow_lock_blocked) \ ++ x(EIO, btree_node_read_err) \ ++ x(BCH_ERR_btree_node_read_err, btree_node_read_err_fixable) \ ++ x(BCH_ERR_btree_node_read_err, btree_node_read_err_want_retry) \ ++ x(BCH_ERR_btree_node_read_err, btree_node_read_err_must_retry) \ ++ x(BCH_ERR_btree_node_read_err, btree_node_read_err_bad_node) \ ++ x(BCH_ERR_btree_node_read_err, btree_node_read_err_incompatible) \ ++ x(0, nopromote) \ ++ x(BCH_ERR_nopromote, nopromote_may_not) \ ++ x(BCH_ERR_nopromote, nopromote_already_promoted) \ ++ x(BCH_ERR_nopromote, nopromote_unwritten) \ ++ x(BCH_ERR_nopromote, nopromote_congested) \ ++ x(BCH_ERR_nopromote, nopromote_in_flight) \ ++ x(BCH_ERR_nopromote, nopromote_enomem) ++ ++enum bch_errcode { ++ BCH_ERR_START = 2048, ++#define x(class, err) BCH_ERR_##err, ++ BCH_ERRCODES() ++#undef x ++ BCH_ERR_MAX ++}; ++ ++const char *bch2_err_str(int); ++bool __bch2_err_matches(int, int); ++ ++static inline bool _bch2_err_matches(int err, int class) ++{ ++ return err < 0 && __bch2_err_matches(err, class); ++} ++ ++#define bch2_err_matches(_err, _class) \ ++({ \ ++ BUILD_BUG_ON(!__builtin_constant_p(_class)); \ ++ unlikely(_bch2_err_matches(_err, _class)); \ ++}) ++ ++int __bch2_err_class(int); ++ ++static inline long bch2_err_class(long err) ++{ ++ return err < 0 ? __bch2_err_class(err) : err; ++} ++ ++#define BLK_STS_REMOVED ((__force blk_status_t)128) ++ ++const char *bch2_blk_status_to_str(blk_status_t); ++ ++#endif /* _BCACHFES_ERRCODE_H */ +diff --git a/fs/bcachefs/error.c b/fs/bcachefs/error.c +new file mode 100644 +index 000000000000..2a5af8872613 +--- /dev/null ++++ b/fs/bcachefs/error.c +@@ -0,0 +1,293 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "error.h" ++#include "super.h" ++ ++#define FSCK_ERR_RATELIMIT_NR 10 ++ ++bool bch2_inconsistent_error(struct bch_fs *c) ++{ ++ set_bit(BCH_FS_ERROR, &c->flags); ++ ++ switch (c->opts.errors) { ++ case BCH_ON_ERROR_continue: ++ return false; ++ case BCH_ON_ERROR_ro: ++ if (bch2_fs_emergency_read_only(c)) ++ bch_err(c, "inconsistency detected - emergency read only"); ++ return true; ++ case BCH_ON_ERROR_panic: ++ panic(bch2_fmt(c, "panic after error")); ++ return true; ++ default: ++ BUG(); ++ } ++} ++ ++void bch2_topology_error(struct bch_fs *c) ++{ ++ set_bit(BCH_FS_TOPOLOGY_ERROR, &c->flags); ++ if (test_bit(BCH_FS_FSCK_DONE, &c->flags)) ++ bch2_inconsistent_error(c); ++} ++ ++void bch2_fatal_error(struct bch_fs *c) ++{ ++ if (bch2_fs_emergency_read_only(c)) ++ bch_err(c, "fatal error - emergency read only"); ++} ++ ++void bch2_io_error_work(struct work_struct *work) ++{ ++ struct bch_dev *ca = container_of(work, struct bch_dev, io_error_work); ++ struct bch_fs *c = ca->fs; ++ bool dev; ++ ++ down_write(&c->state_lock); ++ dev = bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_ro, ++ BCH_FORCE_IF_DEGRADED); ++ if (dev ++ ? __bch2_dev_set_state(c, ca, BCH_MEMBER_STATE_ro, ++ BCH_FORCE_IF_DEGRADED) ++ : bch2_fs_emergency_read_only(c)) ++ bch_err(ca, ++ "too many IO errors, setting %s RO", ++ dev ? "device" : "filesystem"); ++ up_write(&c->state_lock); ++} ++ ++void bch2_io_error(struct bch_dev *ca) ++{ ++ //queue_work(system_long_wq, &ca->io_error_work); ++} ++ ++enum ask_yn { ++ YN_NO, ++ YN_YES, ++ YN_ALLNO, ++ YN_ALLYES, ++}; ++ ++#ifdef __KERNEL__ ++#define bch2_fsck_ask_yn() YN_NO ++#else ++ ++#include "tools-util.h" ++ ++enum ask_yn bch2_fsck_ask_yn(void) ++{ ++ char *buf = NULL; ++ size_t buflen = 0; ++ bool ret; ++ ++ while (true) { ++ fputs(" (y,n, or Y,N for all errors of this type) ", stdout); ++ fflush(stdout); ++ ++ if (getline(&buf, &buflen, stdin) < 0) ++ die("error reading from standard input"); ++ ++ strim(buf); ++ if (strlen(buf) != 1) ++ continue; ++ ++ switch (buf[0]) { ++ case 'n': ++ return YN_NO; ++ case 'y': ++ return YN_YES; ++ case 'N': ++ return YN_ALLNO; ++ case 'Y': ++ return YN_ALLYES; ++ } ++ } ++ ++ free(buf); ++ return ret; ++} ++ ++#endif ++ ++static struct fsck_err_state *fsck_err_get(struct bch_fs *c, const char *fmt) ++{ ++ struct fsck_err_state *s; ++ ++ if (test_bit(BCH_FS_FSCK_DONE, &c->flags)) ++ return NULL; ++ ++ list_for_each_entry(s, &c->fsck_errors, list) ++ if (s->fmt == fmt) { ++ /* ++ * move it to the head of the list: repeated fsck errors ++ * are common ++ */ ++ list_move(&s->list, &c->fsck_errors); ++ return s; ++ } ++ ++ s = kzalloc(sizeof(*s), GFP_NOFS); ++ if (!s) { ++ if (!c->fsck_alloc_err) ++ bch_err(c, "kmalloc err, cannot ratelimit fsck errs"); ++ c->fsck_alloc_err = true; ++ return NULL; ++ } ++ ++ INIT_LIST_HEAD(&s->list); ++ s->fmt = fmt; ++ list_add(&s->list, &c->fsck_errors); ++ return s; ++} ++ ++int bch2_fsck_err(struct bch_fs *c, unsigned flags, const char *fmt, ...) ++{ ++ struct fsck_err_state *s = NULL; ++ va_list args; ++ bool print = true, suppressing = false, inconsistent = false; ++ struct printbuf buf = PRINTBUF, *out = &buf; ++ int ret = -BCH_ERR_fsck_ignore; ++ ++ va_start(args, fmt); ++ prt_vprintf(out, fmt, args); ++ va_end(args); ++ ++ mutex_lock(&c->fsck_error_lock); ++ s = fsck_err_get(c, fmt); ++ if (s) { ++ /* ++ * We may be called multiple times for the same error on ++ * transaction restart - this memoizes instead of asking the user ++ * multiple times for the same error: ++ */ ++ if (s->last_msg && !strcmp(buf.buf, s->last_msg)) { ++ ret = s->ret; ++ mutex_unlock(&c->fsck_error_lock); ++ printbuf_exit(&buf); ++ return ret; ++ } ++ ++ kfree(s->last_msg); ++ s->last_msg = kstrdup(buf.buf, GFP_KERNEL); ++ ++ if (c->opts.ratelimit_errors && ++ !(flags & FSCK_NO_RATELIMIT) && ++ s->nr >= FSCK_ERR_RATELIMIT_NR) { ++ if (s->nr == FSCK_ERR_RATELIMIT_NR) ++ suppressing = true; ++ else ++ print = false; ++ } ++ ++ s->nr++; ++ } ++ ++#ifdef BCACHEFS_LOG_PREFIX ++ if (!strncmp(fmt, "bcachefs:", 9)) ++ prt_printf(out, bch2_log_msg(c, "")); ++#endif ++ ++ if (test_bit(BCH_FS_FSCK_DONE, &c->flags)) { ++ if (c->opts.errors != BCH_ON_ERROR_continue || ++ !(flags & (FSCK_CAN_FIX|FSCK_CAN_IGNORE))) { ++ prt_str(out, ", shutting down"); ++ inconsistent = true; ++ ret = -BCH_ERR_fsck_errors_not_fixed; ++ } else if (flags & FSCK_CAN_FIX) { ++ prt_str(out, ", fixing"); ++ ret = -BCH_ERR_fsck_fix; ++ } else { ++ prt_str(out, ", continuing"); ++ ret = -BCH_ERR_fsck_ignore; ++ } ++ } else if (c->opts.fix_errors == FSCK_FIX_exit) { ++ prt_str(out, ", exiting"); ++ ret = -BCH_ERR_fsck_errors_not_fixed; ++ } else if (flags & FSCK_CAN_FIX) { ++ int fix = s && s->fix ++ ? s->fix ++ : c->opts.fix_errors; ++ ++ if (fix == FSCK_FIX_ask) { ++ int ask; ++ ++ prt_str(out, ": fix?"); ++ bch2_print_string_as_lines(KERN_ERR, out->buf); ++ print = false; ++ ++ ask = bch2_fsck_ask_yn(); ++ ++ if (ask >= YN_ALLNO && s) ++ s->fix = ask == YN_ALLNO ++ ? FSCK_FIX_no ++ : FSCK_FIX_yes; ++ ++ ret = ask & 1 ++ ? -BCH_ERR_fsck_fix ++ : -BCH_ERR_fsck_ignore; ++ } else if (fix == FSCK_FIX_yes || ++ (c->opts.nochanges && ++ !(flags & FSCK_CAN_IGNORE))) { ++ prt_str(out, ", fixing"); ++ ret = -BCH_ERR_fsck_fix; ++ } else { ++ prt_str(out, ", not fixing"); ++ } ++ } else if (flags & FSCK_NEED_FSCK) { ++ prt_str(out, " (run fsck to correct)"); ++ } else { ++ prt_str(out, " (repair unimplemented)"); ++ } ++ ++ if (ret == -BCH_ERR_fsck_ignore && ++ (c->opts.fix_errors == FSCK_FIX_exit || ++ !(flags & FSCK_CAN_IGNORE))) ++ ret = -BCH_ERR_fsck_errors_not_fixed; ++ ++ if (print) ++ bch2_print_string_as_lines(KERN_ERR, out->buf); ++ ++ if (!test_bit(BCH_FS_FSCK_DONE, &c->flags) && ++ (ret != -BCH_ERR_fsck_fix && ++ ret != -BCH_ERR_fsck_ignore)) ++ bch_err(c, "Unable to continue, halting"); ++ else if (suppressing) ++ bch_err(c, "Ratelimiting new instances of previous error"); ++ ++ if (s) ++ s->ret = ret; ++ ++ mutex_unlock(&c->fsck_error_lock); ++ ++ printbuf_exit(&buf); ++ ++ if (inconsistent) ++ bch2_inconsistent_error(c); ++ ++ if (ret == -BCH_ERR_fsck_fix) { ++ set_bit(BCH_FS_ERRORS_FIXED, &c->flags); ++ } else { ++ set_bit(BCH_FS_ERRORS_NOT_FIXED, &c->flags); ++ set_bit(BCH_FS_ERROR, &c->flags); ++ } ++ ++ return ret; ++} ++ ++void bch2_flush_fsck_errs(struct bch_fs *c) ++{ ++ struct fsck_err_state *s, *n; ++ ++ mutex_lock(&c->fsck_error_lock); ++ ++ list_for_each_entry_safe(s, n, &c->fsck_errors, list) { ++ if (s->ratelimited && s->last_msg) ++ bch_err(c, "Saw %llu errors like:\n %s", s->nr, s->last_msg); ++ ++ list_del(&s->list); ++ kfree(s->last_msg); ++ kfree(s); ++ } ++ ++ mutex_unlock(&c->fsck_error_lock); ++} +diff --git a/fs/bcachefs/error.h b/fs/bcachefs/error.h +new file mode 100644 +index 000000000000..7ce9540052e5 +--- /dev/null ++++ b/fs/bcachefs/error.h +@@ -0,0 +1,206 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_ERROR_H ++#define _BCACHEFS_ERROR_H ++ ++#include ++#include ++ ++struct bch_dev; ++struct bch_fs; ++struct work_struct; ++ ++/* ++ * XXX: separate out errors that indicate on disk data is inconsistent, and flag ++ * superblock as such ++ */ ++ ++/* Error messages: */ ++ ++/* ++ * Inconsistency errors: The on disk data is inconsistent. If these occur during ++ * initial recovery, they don't indicate a bug in the running code - we walk all ++ * the metadata before modifying anything. If they occur at runtime, they ++ * indicate either a bug in the running code or (less likely) data is being ++ * silently corrupted under us. ++ * ++ * XXX: audit all inconsistent errors and make sure they're all recoverable, in ++ * BCH_ON_ERROR_CONTINUE mode ++ */ ++ ++bool bch2_inconsistent_error(struct bch_fs *); ++ ++void bch2_topology_error(struct bch_fs *); ++ ++#define bch2_fs_inconsistent(c, ...) \ ++({ \ ++ bch_err(c, __VA_ARGS__); \ ++ bch2_inconsistent_error(c); \ ++}) ++ ++#define bch2_fs_inconsistent_on(cond, c, ...) \ ++({ \ ++ bool _ret = unlikely(!!(cond)); \ ++ \ ++ if (_ret) \ ++ bch2_fs_inconsistent(c, __VA_ARGS__); \ ++ _ret; \ ++}) ++ ++/* ++ * Later we might want to mark only the particular device inconsistent, not the ++ * entire filesystem: ++ */ ++ ++#define bch2_dev_inconsistent(ca, ...) \ ++do { \ ++ bch_err(ca, __VA_ARGS__); \ ++ bch2_inconsistent_error((ca)->fs); \ ++} while (0) ++ ++#define bch2_dev_inconsistent_on(cond, ca, ...) \ ++({ \ ++ bool _ret = unlikely(!!(cond)); \ ++ \ ++ if (_ret) \ ++ bch2_dev_inconsistent(ca, __VA_ARGS__); \ ++ _ret; \ ++}) ++ ++/* ++ * When a transaction update discovers or is causing a fs inconsistency, it's ++ * helpful to also dump the pending updates: ++ */ ++#define bch2_trans_inconsistent(trans, ...) \ ++({ \ ++ bch_err(trans->c, __VA_ARGS__); \ ++ bch2_dump_trans_updates(trans); \ ++ bch2_inconsistent_error(trans->c); \ ++}) ++ ++#define bch2_trans_inconsistent_on(cond, trans, ...) \ ++({ \ ++ bool _ret = unlikely(!!(cond)); \ ++ \ ++ if (_ret) \ ++ bch2_trans_inconsistent(trans, __VA_ARGS__); \ ++ _ret; \ ++}) ++ ++/* ++ * Fsck errors: inconsistency errors we detect at mount time, and should ideally ++ * be able to repair: ++ */ ++ ++struct fsck_err_state { ++ struct list_head list; ++ const char *fmt; ++ u64 nr; ++ bool ratelimited; ++ int ret; ++ int fix; ++ char *last_msg; ++}; ++ ++#define FSCK_CAN_FIX (1 << 0) ++#define FSCK_CAN_IGNORE (1 << 1) ++#define FSCK_NEED_FSCK (1 << 2) ++#define FSCK_NO_RATELIMIT (1 << 3) ++ ++__printf(3, 4) __cold ++int bch2_fsck_err(struct bch_fs *, unsigned, const char *, ...); ++void bch2_flush_fsck_errs(struct bch_fs *); ++ ++#define __fsck_err(c, _flags, msg, ...) \ ++({ \ ++ int _ret = bch2_fsck_err(c, _flags, msg, ##__VA_ARGS__); \ ++ \ ++ if (_ret != -BCH_ERR_fsck_fix && \ ++ _ret != -BCH_ERR_fsck_ignore) { \ ++ ret = _ret; \ ++ goto fsck_err; \ ++ } \ ++ \ ++ _ret == -BCH_ERR_fsck_fix; \ ++}) ++ ++/* These macros return true if error should be fixed: */ ++ ++/* XXX: mark in superblock that filesystem contains errors, if we ignore: */ ++ ++#define __fsck_err_on(cond, c, _flags, ...) \ ++ (unlikely(cond) ? __fsck_err(c, _flags, ##__VA_ARGS__) : false) ++ ++#define need_fsck_err_on(cond, c, ...) \ ++ __fsck_err_on(cond, c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ##__VA_ARGS__) ++ ++#define need_fsck_err(c, ...) \ ++ __fsck_err(c, FSCK_CAN_IGNORE|FSCK_NEED_FSCK, ##__VA_ARGS__) ++ ++#define mustfix_fsck_err(c, ...) \ ++ __fsck_err(c, FSCK_CAN_FIX, ##__VA_ARGS__) ++ ++#define mustfix_fsck_err_on(cond, c, ...) \ ++ __fsck_err_on(cond, c, FSCK_CAN_FIX, ##__VA_ARGS__) ++ ++#define fsck_err(c, ...) \ ++ __fsck_err(c, FSCK_CAN_FIX|FSCK_CAN_IGNORE, ##__VA_ARGS__) ++ ++#define fsck_err_on(cond, c, ...) \ ++ __fsck_err_on(cond, c, FSCK_CAN_FIX|FSCK_CAN_IGNORE, ##__VA_ARGS__) ++ ++/* ++ * Fatal errors: these don't indicate a bug, but we can't continue running in RW ++ * mode - pretty much just due to metadata IO errors: ++ */ ++ ++void bch2_fatal_error(struct bch_fs *); ++ ++#define bch2_fs_fatal_error(c, ...) \ ++do { \ ++ bch_err(c, __VA_ARGS__); \ ++ bch2_fatal_error(c); \ ++} while (0) ++ ++#define bch2_fs_fatal_err_on(cond, c, ...) \ ++({ \ ++ bool _ret = unlikely(!!(cond)); \ ++ \ ++ if (_ret) \ ++ bch2_fs_fatal_error(c, __VA_ARGS__); \ ++ _ret; \ ++}) ++ ++/* ++ * IO errors: either recoverable metadata IO (because we have replicas), or data ++ * IO - we need to log it and print out a message, but we don't (necessarily) ++ * want to shut down the fs: ++ */ ++ ++void bch2_io_error_work(struct work_struct *); ++ ++/* Does the error handling without logging a message */ ++void bch2_io_error(struct bch_dev *); ++ ++#define bch2_dev_io_err_on(cond, ca, ...) \ ++({ \ ++ bool _ret = (cond); \ ++ \ ++ if (_ret) { \ ++ bch_err_dev_ratelimited(ca, __VA_ARGS__); \ ++ bch2_io_error(ca); \ ++ } \ ++ _ret; \ ++}) ++ ++#define bch2_dev_inum_io_err_on(cond, ca, ...) \ ++({ \ ++ bool _ret = (cond); \ ++ \ ++ if (_ret) { \ ++ bch_err_inum_offset_ratelimited(ca, __VA_ARGS__); \ ++ bch2_io_error(ca); \ ++ } \ ++ _ret; \ ++}) ++ ++#endif /* _BCACHEFS_ERROR_H */ +diff --git a/fs/bcachefs/extent_update.c b/fs/bcachefs/extent_update.c +new file mode 100644 +index 000000000000..21af6fb8cecf +--- /dev/null ++++ b/fs/bcachefs/extent_update.c +@@ -0,0 +1,173 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "debug.h" ++#include "extents.h" ++#include "extent_update.h" ++ ++/* ++ * This counts the number of iterators to the alloc & ec btrees we'll need ++ * inserting/removing this extent: ++ */ ++static unsigned bch2_bkey_nr_alloc_ptrs(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ unsigned ret = 0, lru = 0; ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ switch (__extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ /* Might also be updating LRU btree */ ++ if (entry->ptr.cached) ++ lru++; ++ ++ fallthrough; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ ret++; ++ } ++ } ++ ++ /* ++ * Updating keys in the alloc btree may also update keys in the ++ * freespace or discard btrees: ++ */ ++ return lru + ret * 2; ++} ++ ++static int count_iters_for_insert(struct btree_trans *trans, ++ struct bkey_s_c k, ++ unsigned offset, ++ struct bpos *end, ++ unsigned *nr_iters, ++ unsigned max_iters) ++{ ++ int ret = 0, ret2 = 0; ++ ++ if (*nr_iters >= max_iters) { ++ *end = bpos_min(*end, k.k->p); ++ ret = 1; ++ } ++ ++ switch (k.k->type) { ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ *nr_iters += bch2_bkey_nr_alloc_ptrs(k); ++ ++ if (*nr_iters >= max_iters) { ++ *end = bpos_min(*end, k.k->p); ++ ret = 1; ++ } ++ ++ break; ++ case KEY_TYPE_reflink_p: { ++ struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); ++ u64 idx = le64_to_cpu(p.v->idx); ++ unsigned sectors = bpos_min(*end, p.k->p).offset - ++ bkey_start_offset(p.k); ++ struct btree_iter iter; ++ struct bkey_s_c r_k; ++ ++ for_each_btree_key_norestart(trans, iter, ++ BTREE_ID_reflink, POS(0, idx + offset), ++ BTREE_ITER_SLOTS, r_k, ret2) { ++ if (bkey_ge(bkey_start_pos(r_k.k), POS(0, idx + sectors))) ++ break; ++ ++ /* extent_update_to_keys(), for the reflink_v update */ ++ *nr_iters += 1; ++ ++ *nr_iters += 1 + bch2_bkey_nr_alloc_ptrs(r_k); ++ ++ if (*nr_iters >= max_iters) { ++ struct bpos pos = bkey_start_pos(k.k); ++ pos.offset += min_t(u64, k.k->size, ++ r_k.k->p.offset - idx); ++ ++ *end = bpos_min(*end, pos); ++ ret = 1; ++ break; ++ } ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ break; ++ } ++ } ++ ++ return ret2 ?: ret; ++} ++ ++#define EXTENT_ITERS_MAX (BTREE_ITER_MAX / 3) ++ ++int bch2_extent_atomic_end(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *insert, ++ struct bpos *end) ++{ ++ struct btree_iter copy; ++ struct bkey_s_c k; ++ unsigned nr_iters = 0; ++ int ret; ++ ++ ret = bch2_btree_iter_traverse(iter); ++ if (ret) ++ return ret; ++ ++ *end = insert->k.p; ++ ++ /* extent_update_to_keys(): */ ++ nr_iters += 1; ++ ++ ret = count_iters_for_insert(trans, bkey_i_to_s_c(insert), 0, end, ++ &nr_iters, EXTENT_ITERS_MAX / 2); ++ if (ret < 0) ++ return ret; ++ ++ bch2_trans_copy_iter(©, iter); ++ ++ for_each_btree_key_upto_continue_norestart(copy, insert->k.p, 0, k, ret) { ++ unsigned offset = 0; ++ ++ if (bkey_gt(bkey_start_pos(&insert->k), bkey_start_pos(k.k))) ++ offset = bkey_start_offset(&insert->k) - ++ bkey_start_offset(k.k); ++ ++ /* extent_handle_overwrites(): */ ++ switch (bch2_extent_overlap(&insert->k, k.k)) { ++ case BCH_EXTENT_OVERLAP_ALL: ++ case BCH_EXTENT_OVERLAP_FRONT: ++ nr_iters += 1; ++ break; ++ case BCH_EXTENT_OVERLAP_BACK: ++ case BCH_EXTENT_OVERLAP_MIDDLE: ++ nr_iters += 2; ++ break; ++ } ++ ++ ret = count_iters_for_insert(trans, k, offset, end, ++ &nr_iters, EXTENT_ITERS_MAX); ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_iter_exit(trans, ©); ++ return ret < 0 ? ret : 0; ++} ++ ++int bch2_extent_trim_atomic(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *k) ++{ ++ struct bpos end; ++ int ret; ++ ++ ret = bch2_extent_atomic_end(trans, iter, k, &end); ++ if (ret) ++ return ret; ++ ++ bch2_cut_back(end, k); ++ return 0; ++} +diff --git a/fs/bcachefs/extent_update.h b/fs/bcachefs/extent_update.h +new file mode 100644 +index 000000000000..6f5cf449361a +--- /dev/null ++++ b/fs/bcachefs/extent_update.h +@@ -0,0 +1,12 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EXTENT_UPDATE_H ++#define _BCACHEFS_EXTENT_UPDATE_H ++ ++#include "bcachefs.h" ++ ++int bch2_extent_atomic_end(struct btree_trans *, struct btree_iter *, ++ struct bkey_i *, struct bpos *); ++int bch2_extent_trim_atomic(struct btree_trans *, struct btree_iter *, ++ struct bkey_i *); ++ ++#endif /* _BCACHEFS_EXTENT_UPDATE_H */ +diff --git a/fs/bcachefs/extents.c b/fs/bcachefs/extents.c +new file mode 100644 +index 000000000000..1b25f84e4b9c +--- /dev/null ++++ b/fs/bcachefs/extents.c +@@ -0,0 +1,1403 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Copyright (C) 2010 Kent Overstreet ++ * ++ * Code for managing the extent btree and dynamically updating the writeback ++ * dirty sector count. ++ */ ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "btree_gc.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "debug.h" ++#include "disk_groups.h" ++#include "error.h" ++#include "extents.h" ++#include "inode.h" ++#include "journal.h" ++#include "replicas.h" ++#include "super.h" ++#include "super-io.h" ++#include "trace.h" ++#include "util.h" ++ ++static unsigned bch2_crc_field_size_max[] = { ++ [BCH_EXTENT_ENTRY_crc32] = CRC32_SIZE_MAX, ++ [BCH_EXTENT_ENTRY_crc64] = CRC64_SIZE_MAX, ++ [BCH_EXTENT_ENTRY_crc128] = CRC128_SIZE_MAX, ++}; ++ ++static void bch2_extent_crc_pack(union bch_extent_crc *, ++ struct bch_extent_crc_unpacked, ++ enum bch_extent_entry_type); ++ ++static struct bch_dev_io_failures *dev_io_failures(struct bch_io_failures *f, ++ unsigned dev) ++{ ++ struct bch_dev_io_failures *i; ++ ++ for (i = f->devs; i < f->devs + f->nr; i++) ++ if (i->dev == dev) ++ return i; ++ ++ return NULL; ++} ++ ++void bch2_mark_io_failure(struct bch_io_failures *failed, ++ struct extent_ptr_decoded *p) ++{ ++ struct bch_dev_io_failures *f = dev_io_failures(failed, p->ptr.dev); ++ ++ if (!f) { ++ BUG_ON(failed->nr >= ARRAY_SIZE(failed->devs)); ++ ++ f = &failed->devs[failed->nr++]; ++ f->dev = p->ptr.dev; ++ f->idx = p->idx; ++ f->nr_failed = 1; ++ f->nr_retries = 0; ++ } else if (p->idx != f->idx) { ++ f->idx = p->idx; ++ f->nr_failed = 1; ++ f->nr_retries = 0; ++ } else { ++ f->nr_failed++; ++ } ++} ++ ++/* ++ * returns true if p1 is better than p2: ++ */ ++static inline bool ptr_better(struct bch_fs *c, ++ const struct extent_ptr_decoded p1, ++ const struct extent_ptr_decoded p2) ++{ ++ if (likely(!p1.idx && !p2.idx)) { ++ struct bch_dev *dev1 = bch_dev_bkey_exists(c, p1.ptr.dev); ++ struct bch_dev *dev2 = bch_dev_bkey_exists(c, p2.ptr.dev); ++ ++ u64 l1 = atomic64_read(&dev1->cur_latency[READ]); ++ u64 l2 = atomic64_read(&dev2->cur_latency[READ]); ++ ++ /* Pick at random, biased in favor of the faster device: */ ++ ++ return bch2_rand_range(l1 + l2) > l1; ++ } ++ ++ if (bch2_force_reconstruct_read) ++ return p1.idx > p2.idx; ++ ++ return p1.idx < p2.idx; ++} ++ ++/* ++ * This picks a non-stale pointer, preferably from a device other than @avoid. ++ * Avoid can be NULL, meaning pick any. If there are no non-stale pointers to ++ * other devices, it will still pick a pointer from avoid. ++ */ ++int bch2_bkey_pick_read_device(struct bch_fs *c, struct bkey_s_c k, ++ struct bch_io_failures *failed, ++ struct extent_ptr_decoded *pick) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ struct bch_dev_io_failures *f; ++ struct bch_dev *ca; ++ int ret = 0; ++ ++ if (k.k->type == KEY_TYPE_error) ++ return -EIO; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ /* ++ * Unwritten extent: no need to actually read, treat it as a ++ * hole and return 0s: ++ */ ++ if (p.ptr.unwritten) ++ return 0; ++ ++ ca = bch_dev_bkey_exists(c, p.ptr.dev); ++ ++ /* ++ * If there are any dirty pointers it's an error if we can't ++ * read: ++ */ ++ if (!ret && !p.ptr.cached) ++ ret = -EIO; ++ ++ if (p.ptr.cached && ptr_stale(ca, &p.ptr)) ++ continue; ++ ++ f = failed ? dev_io_failures(failed, p.ptr.dev) : NULL; ++ if (f) ++ p.idx = f->nr_failed < f->nr_retries ++ ? f->idx ++ : f->idx + 1; ++ ++ if (!p.idx && ++ !bch2_dev_is_readable(ca)) ++ p.idx++; ++ ++ if (bch2_force_reconstruct_read && ++ !p.idx && p.has_ec) ++ p.idx++; ++ ++ if (p.idx >= (unsigned) p.has_ec + 1) ++ continue; ++ ++ if (ret > 0 && !ptr_better(c, p, *pick)) ++ continue; ++ ++ *pick = p; ++ ret = 1; ++ } ++ ++ return ret; ++} ++ ++/* KEY_TYPE_btree_ptr: */ ++ ++int bch2_btree_ptr_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ if (bkey_val_u64s(k.k) > BCH_REPLICAS_MAX) { ++ prt_printf(err, "value too big (%zu > %u)", ++ bkey_val_u64s(k.k), BCH_REPLICAS_MAX); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return bch2_bkey_ptrs_invalid(c, k, flags, err); ++} ++ ++void bch2_btree_ptr_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ bch2_bkey_ptrs_to_text(out, c, k); ++} ++ ++int bch2_btree_ptr_v2_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ if (bkey_val_u64s(k.k) > BKEY_BTREE_PTR_VAL_U64s_MAX) { ++ prt_printf(err, "value too big (%zu > %zu)", ++ bkey_val_u64s(k.k), BKEY_BTREE_PTR_VAL_U64s_MAX); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return bch2_bkey_ptrs_invalid(c, k, flags, err); ++} ++ ++void bch2_btree_ptr_v2_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_btree_ptr_v2 bp = bkey_s_c_to_btree_ptr_v2(k); ++ ++ prt_printf(out, "seq %llx written %u min_key %s", ++ le64_to_cpu(bp.v->seq), ++ le16_to_cpu(bp.v->sectors_written), ++ BTREE_PTR_RANGE_UPDATED(bp.v) ? "R " : ""); ++ ++ bch2_bpos_to_text(out, bp.v->min_key); ++ prt_printf(out, " "); ++ bch2_bkey_ptrs_to_text(out, c, k); ++} ++ ++void bch2_btree_ptr_v2_compat(enum btree_id btree_id, unsigned version, ++ unsigned big_endian, int write, ++ struct bkey_s k) ++{ ++ struct bkey_s_btree_ptr_v2 bp = bkey_s_to_btree_ptr_v2(k); ++ ++ compat_bpos(0, btree_id, version, big_endian, write, &bp.v->min_key); ++ ++ if (version < bcachefs_metadata_version_inode_btree_change && ++ btree_id_is_extents(btree_id) && ++ !bkey_eq(bp.v->min_key, POS_MIN)) ++ bp.v->min_key = write ++ ? bpos_nosnap_predecessor(bp.v->min_key) ++ : bpos_nosnap_successor(bp.v->min_key); ++} ++ ++/* KEY_TYPE_extent: */ ++ ++bool bch2_extent_merge(struct bch_fs *c, struct bkey_s l, struct bkey_s_c r) ++{ ++ struct bkey_ptrs l_ptrs = bch2_bkey_ptrs(l); ++ struct bkey_ptrs_c r_ptrs = bch2_bkey_ptrs_c(r); ++ union bch_extent_entry *en_l; ++ const union bch_extent_entry *en_r; ++ struct extent_ptr_decoded lp, rp; ++ bool use_right_ptr; ++ struct bch_dev *ca; ++ ++ en_l = l_ptrs.start; ++ en_r = r_ptrs.start; ++ while (en_l < l_ptrs.end && en_r < r_ptrs.end) { ++ if (extent_entry_type(en_l) != extent_entry_type(en_r)) ++ return false; ++ ++ en_l = extent_entry_next(en_l); ++ en_r = extent_entry_next(en_r); ++ } ++ ++ if (en_l < l_ptrs.end || en_r < r_ptrs.end) ++ return false; ++ ++ en_l = l_ptrs.start; ++ en_r = r_ptrs.start; ++ lp.crc = bch2_extent_crc_unpack(l.k, NULL); ++ rp.crc = bch2_extent_crc_unpack(r.k, NULL); ++ ++ while (__bkey_ptr_next_decode(l.k, l_ptrs.end, lp, en_l) && ++ __bkey_ptr_next_decode(r.k, r_ptrs.end, rp, en_r)) { ++ if (lp.ptr.offset + lp.crc.offset + lp.crc.live_size != ++ rp.ptr.offset + rp.crc.offset || ++ lp.ptr.dev != rp.ptr.dev || ++ lp.ptr.gen != rp.ptr.gen || ++ lp.ptr.unwritten != rp.ptr.unwritten || ++ lp.has_ec != rp.has_ec) ++ return false; ++ ++ /* Extents may not straddle buckets: */ ++ ca = bch_dev_bkey_exists(c, lp.ptr.dev); ++ if (PTR_BUCKET_NR(ca, &lp.ptr) != PTR_BUCKET_NR(ca, &rp.ptr)) ++ return false; ++ ++ if (lp.has_ec != rp.has_ec || ++ (lp.has_ec && ++ (lp.ec.block != rp.ec.block || ++ lp.ec.redundancy != rp.ec.redundancy || ++ lp.ec.idx != rp.ec.idx))) ++ return false; ++ ++ if (lp.crc.compression_type != rp.crc.compression_type || ++ lp.crc.nonce != rp.crc.nonce) ++ return false; ++ ++ if (lp.crc.offset + lp.crc.live_size + rp.crc.live_size <= ++ lp.crc.uncompressed_size) { ++ /* can use left extent's crc entry */ ++ } else if (lp.crc.live_size <= rp.crc.offset) { ++ /* can use right extent's crc entry */ ++ } else { ++ /* check if checksums can be merged: */ ++ if (lp.crc.csum_type != rp.crc.csum_type || ++ lp.crc.nonce != rp.crc.nonce || ++ crc_is_compressed(lp.crc) || ++ !bch2_checksum_mergeable(lp.crc.csum_type)) ++ return false; ++ ++ if (lp.crc.offset + lp.crc.live_size != lp.crc.compressed_size || ++ rp.crc.offset) ++ return false; ++ ++ if (lp.crc.csum_type && ++ lp.crc.uncompressed_size + ++ rp.crc.uncompressed_size > (c->opts.encoded_extent_max >> 9)) ++ return false; ++ } ++ ++ en_l = extent_entry_next(en_l); ++ en_r = extent_entry_next(en_r); ++ } ++ ++ en_l = l_ptrs.start; ++ en_r = r_ptrs.start; ++ while (en_l < l_ptrs.end && en_r < r_ptrs.end) { ++ if (extent_entry_is_crc(en_l)) { ++ struct bch_extent_crc_unpacked crc_l = bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); ++ struct bch_extent_crc_unpacked crc_r = bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); ++ ++ if (crc_l.uncompressed_size + crc_r.uncompressed_size > ++ bch2_crc_field_size_max[extent_entry_type(en_l)]) ++ return false; ++ } ++ ++ en_l = extent_entry_next(en_l); ++ en_r = extent_entry_next(en_r); ++ } ++ ++ use_right_ptr = false; ++ en_l = l_ptrs.start; ++ en_r = r_ptrs.start; ++ while (en_l < l_ptrs.end) { ++ if (extent_entry_type(en_l) == BCH_EXTENT_ENTRY_ptr && ++ use_right_ptr) ++ en_l->ptr = en_r->ptr; ++ ++ if (extent_entry_is_crc(en_l)) { ++ struct bch_extent_crc_unpacked crc_l = ++ bch2_extent_crc_unpack(l.k, entry_to_crc(en_l)); ++ struct bch_extent_crc_unpacked crc_r = ++ bch2_extent_crc_unpack(r.k, entry_to_crc(en_r)); ++ ++ use_right_ptr = false; ++ ++ if (crc_l.offset + crc_l.live_size + crc_r.live_size <= ++ crc_l.uncompressed_size) { ++ /* can use left extent's crc entry */ ++ } else if (crc_l.live_size <= crc_r.offset) { ++ /* can use right extent's crc entry */ ++ crc_r.offset -= crc_l.live_size; ++ bch2_extent_crc_pack(entry_to_crc(en_l), crc_r, ++ extent_entry_type(en_l)); ++ use_right_ptr = true; ++ } else { ++ crc_l.csum = bch2_checksum_merge(crc_l.csum_type, ++ crc_l.csum, ++ crc_r.csum, ++ crc_r.uncompressed_size << 9); ++ ++ crc_l.uncompressed_size += crc_r.uncompressed_size; ++ crc_l.compressed_size += crc_r.compressed_size; ++ bch2_extent_crc_pack(entry_to_crc(en_l), crc_l, ++ extent_entry_type(en_l)); ++ } ++ } ++ ++ en_l = extent_entry_next(en_l); ++ en_r = extent_entry_next(en_r); ++ } ++ ++ bch2_key_resize(l.k, l.k->size + r.k->size); ++ return true; ++} ++ ++/* KEY_TYPE_reservation: */ ++ ++int bch2_reservation_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); ++ ++ if (!r.v->nr_replicas || r.v->nr_replicas > BCH_REPLICAS_MAX) { ++ prt_printf(err, "invalid nr_replicas (%u)", ++ r.v->nr_replicas); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_reservation_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_reservation r = bkey_s_c_to_reservation(k); ++ ++ prt_printf(out, "generation %u replicas %u", ++ le32_to_cpu(r.v->generation), ++ r.v->nr_replicas); ++} ++ ++bool bch2_reservation_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) ++{ ++ struct bkey_s_reservation l = bkey_s_to_reservation(_l); ++ struct bkey_s_c_reservation r = bkey_s_c_to_reservation(_r); ++ ++ if (l.v->generation != r.v->generation || ++ l.v->nr_replicas != r.v->nr_replicas) ++ return false; ++ ++ bch2_key_resize(l.k, l.k->size + r.k->size); ++ return true; ++} ++ ++/* Extent checksum entries: */ ++ ++/* returns true if not equal */ ++static inline bool bch2_crc_unpacked_cmp(struct bch_extent_crc_unpacked l, ++ struct bch_extent_crc_unpacked r) ++{ ++ return (l.csum_type != r.csum_type || ++ l.compression_type != r.compression_type || ++ l.compressed_size != r.compressed_size || ++ l.uncompressed_size != r.uncompressed_size || ++ l.offset != r.offset || ++ l.live_size != r.live_size || ++ l.nonce != r.nonce || ++ bch2_crc_cmp(l.csum, r.csum)); ++} ++ ++static inline bool can_narrow_crc(struct bch_extent_crc_unpacked u, ++ struct bch_extent_crc_unpacked n) ++{ ++ return !crc_is_compressed(u) && ++ u.csum_type && ++ u.uncompressed_size > u.live_size && ++ bch2_csum_type_is_encryption(u.csum_type) == ++ bch2_csum_type_is_encryption(n.csum_type); ++} ++ ++bool bch2_can_narrow_extent_crcs(struct bkey_s_c k, ++ struct bch_extent_crc_unpacked n) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ struct bch_extent_crc_unpacked crc; ++ const union bch_extent_entry *i; ++ ++ if (!n.csum_type) ++ return false; ++ ++ bkey_for_each_crc(k.k, ptrs, crc, i) ++ if (can_narrow_crc(crc, n)) ++ return true; ++ ++ return false; ++} ++ ++/* ++ * We're writing another replica for this extent, so while we've got the data in ++ * memory we'll be computing a new checksum for the currently live data. ++ * ++ * If there are other replicas we aren't moving, and they are checksummed but ++ * not compressed, we can modify them to point to only the data that is ++ * currently live (so that readers won't have to bounce) while we've got the ++ * checksum we need: ++ */ ++bool bch2_bkey_narrow_crcs(struct bkey_i *k, struct bch_extent_crc_unpacked n) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); ++ struct bch_extent_crc_unpacked u; ++ struct extent_ptr_decoded p; ++ union bch_extent_entry *i; ++ bool ret = false; ++ ++ /* Find a checksum entry that covers only live data: */ ++ if (!n.csum_type) { ++ bkey_for_each_crc(&k->k, ptrs, u, i) ++ if (!crc_is_compressed(u) && ++ u.csum_type && ++ u.live_size == u.uncompressed_size) { ++ n = u; ++ goto found; ++ } ++ return false; ++ } ++found: ++ BUG_ON(crc_is_compressed(n)); ++ BUG_ON(n.offset); ++ BUG_ON(n.live_size != k->k.size); ++ ++restart_narrow_pointers: ++ ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); ++ ++ bkey_for_each_ptr_decode(&k->k, ptrs, p, i) ++ if (can_narrow_crc(p.crc, n)) { ++ bch2_bkey_drop_ptr_noerror(bkey_i_to_s(k), &i->ptr); ++ p.ptr.offset += p.crc.offset; ++ p.crc = n; ++ bch2_extent_ptr_decoded_append(k, &p); ++ ret = true; ++ goto restart_narrow_pointers; ++ } ++ ++ return ret; ++} ++ ++static void bch2_extent_crc_pack(union bch_extent_crc *dst, ++ struct bch_extent_crc_unpacked src, ++ enum bch_extent_entry_type type) ++{ ++#define set_common_fields(_dst, _src) \ ++ _dst.type = 1 << type; \ ++ _dst.csum_type = _src.csum_type, \ ++ _dst.compression_type = _src.compression_type, \ ++ _dst._compressed_size = _src.compressed_size - 1, \ ++ _dst._uncompressed_size = _src.uncompressed_size - 1, \ ++ _dst.offset = _src.offset ++ ++ switch (type) { ++ case BCH_EXTENT_ENTRY_crc32: ++ set_common_fields(dst->crc32, src); ++ dst->crc32.csum = (u32 __force) *((__le32 *) &src.csum.lo); ++ break; ++ case BCH_EXTENT_ENTRY_crc64: ++ set_common_fields(dst->crc64, src); ++ dst->crc64.nonce = src.nonce; ++ dst->crc64.csum_lo = (u64 __force) src.csum.lo; ++ dst->crc64.csum_hi = (u64 __force) *((__le16 *) &src.csum.hi); ++ break; ++ case BCH_EXTENT_ENTRY_crc128: ++ set_common_fields(dst->crc128, src); ++ dst->crc128.nonce = src.nonce; ++ dst->crc128.csum = src.csum; ++ break; ++ default: ++ BUG(); ++ } ++#undef set_common_fields ++} ++ ++void bch2_extent_crc_append(struct bkey_i *k, ++ struct bch_extent_crc_unpacked new) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); ++ union bch_extent_crc *crc = (void *) ptrs.end; ++ enum bch_extent_entry_type type; ++ ++ if (bch_crc_bytes[new.csum_type] <= 4 && ++ new.uncompressed_size <= CRC32_SIZE_MAX && ++ new.nonce <= CRC32_NONCE_MAX) ++ type = BCH_EXTENT_ENTRY_crc32; ++ else if (bch_crc_bytes[new.csum_type] <= 10 && ++ new.uncompressed_size <= CRC64_SIZE_MAX && ++ new.nonce <= CRC64_NONCE_MAX) ++ type = BCH_EXTENT_ENTRY_crc64; ++ else if (bch_crc_bytes[new.csum_type] <= 16 && ++ new.uncompressed_size <= CRC128_SIZE_MAX && ++ new.nonce <= CRC128_NONCE_MAX) ++ type = BCH_EXTENT_ENTRY_crc128; ++ else ++ BUG(); ++ ++ bch2_extent_crc_pack(crc, new, type); ++ ++ k->k.u64s += extent_entry_u64s(ptrs.end); ++ ++ EBUG_ON(bkey_val_u64s(&k->k) > BKEY_EXTENT_VAL_U64s_MAX); ++} ++ ++/* Generic code for keys with pointers: */ ++ ++unsigned bch2_bkey_nr_ptrs(struct bkey_s_c k) ++{ ++ return bch2_bkey_devs(k).nr; ++} ++ ++unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c k) ++{ ++ return k.k->type == KEY_TYPE_reservation ++ ? bkey_s_c_to_reservation(k).v->nr_replicas ++ : bch2_bkey_dirty_devs(k).nr; ++} ++ ++unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c k) ++{ ++ unsigned ret = 0; ++ ++ if (k.k->type == KEY_TYPE_reservation) { ++ ret = bkey_s_c_to_reservation(k).v->nr_replicas; ++ } else { ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ ret += !p.ptr.cached && !crc_is_compressed(p.crc); ++ } ++ ++ return ret; ++} ++ ++unsigned bch2_bkey_sectors_compressed(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ unsigned ret = 0; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ if (!p.ptr.cached && crc_is_compressed(p.crc)) ++ ret += p.crc.compressed_size; ++ ++ return ret; ++} ++ ++bool bch2_bkey_is_incompressible(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct bch_extent_crc_unpacked crc; ++ ++ bkey_for_each_crc(k.k, ptrs, crc, entry) ++ if (crc.compression_type == BCH_COMPRESSION_TYPE_incompressible) ++ return true; ++ return false; ++} ++ ++unsigned bch2_bkey_replicas(struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p = { 0 }; ++ unsigned replicas = 0; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ if (p.ptr.cached) ++ continue; ++ ++ if (p.has_ec) ++ replicas += p.ec.redundancy; ++ ++ replicas++; ++ ++ } ++ ++ return replicas; ++} ++ ++unsigned bch2_extent_ptr_desired_durability(struct bch_fs *c, struct extent_ptr_decoded *p) ++{ ++ struct bch_dev *ca; ++ ++ if (p->ptr.cached) ++ return 0; ++ ++ ca = bch_dev_bkey_exists(c, p->ptr.dev); ++ ++ return ca->mi.durability + ++ (p->has_ec ++ ? p->ec.redundancy ++ : 0); ++} ++ ++unsigned bch2_extent_ptr_durability(struct bch_fs *c, struct extent_ptr_decoded *p) ++{ ++ struct bch_dev *ca; ++ ++ if (p->ptr.cached) ++ return 0; ++ ++ ca = bch_dev_bkey_exists(c, p->ptr.dev); ++ ++ if (ca->mi.state == BCH_MEMBER_STATE_failed) ++ return 0; ++ ++ return ca->mi.durability + ++ (p->has_ec ++ ? p->ec.redundancy ++ : 0); ++} ++ ++unsigned bch2_bkey_durability(struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ unsigned durability = 0; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ durability += bch2_extent_ptr_durability(c, &p); ++ ++ return durability; ++} ++ ++static unsigned bch2_bkey_durability_safe(struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ unsigned durability = 0; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ if (p.ptr.dev < c->sb.nr_devices && c->devs[p.ptr.dev]) ++ durability += bch2_extent_ptr_durability(c, &p); ++ ++ return durability; ++} ++ ++void bch2_bkey_extent_entry_drop(struct bkey_i *k, union bch_extent_entry *entry) ++{ ++ union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); ++ union bch_extent_entry *next = extent_entry_next(entry); ++ ++ memmove_u64s(entry, next, (u64 *) end - (u64 *) next); ++ k->k.u64s -= extent_entry_u64s(entry); ++} ++ ++void bch2_extent_ptr_decoded_append(struct bkey_i *k, ++ struct extent_ptr_decoded *p) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(k)); ++ struct bch_extent_crc_unpacked crc = ++ bch2_extent_crc_unpack(&k->k, NULL); ++ union bch_extent_entry *pos; ++ ++ if (!bch2_crc_unpacked_cmp(crc, p->crc)) { ++ pos = ptrs.start; ++ goto found; ++ } ++ ++ bkey_for_each_crc(&k->k, ptrs, crc, pos) ++ if (!bch2_crc_unpacked_cmp(crc, p->crc)) { ++ pos = extent_entry_next(pos); ++ goto found; ++ } ++ ++ bch2_extent_crc_append(k, p->crc); ++ pos = bkey_val_end(bkey_i_to_s(k)); ++found: ++ p->ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; ++ __extent_entry_insert(k, pos, to_entry(&p->ptr)); ++ ++ if (p->has_ec) { ++ p->ec.type = 1 << BCH_EXTENT_ENTRY_stripe_ptr; ++ __extent_entry_insert(k, pos, to_entry(&p->ec)); ++ } ++} ++ ++static union bch_extent_entry *extent_entry_prev(struct bkey_ptrs ptrs, ++ union bch_extent_entry *entry) ++{ ++ union bch_extent_entry *i = ptrs.start; ++ ++ if (i == entry) ++ return NULL; ++ ++ while (extent_entry_next(i) != entry) ++ i = extent_entry_next(i); ++ return i; ++} ++ ++static void extent_entry_drop(struct bkey_s k, union bch_extent_entry *entry) ++{ ++ union bch_extent_entry *next = extent_entry_next(entry); ++ ++ /* stripes have ptrs, but their layout doesn't work with this code */ ++ BUG_ON(k.k->type == KEY_TYPE_stripe); ++ ++ memmove_u64s_down(entry, next, ++ (u64 *) bkey_val_end(k) - (u64 *) next); ++ k.k->u64s -= (u64 *) next - (u64 *) entry; ++} ++ ++/* ++ * Returns pointer to the next entry after the one being dropped: ++ */ ++union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s k, ++ struct bch_extent_ptr *ptr) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); ++ union bch_extent_entry *entry = to_entry(ptr), *next; ++ union bch_extent_entry *ret = entry; ++ bool drop_crc = true; ++ ++ EBUG_ON(ptr < &ptrs.start->ptr || ++ ptr >= &ptrs.end->ptr); ++ EBUG_ON(ptr->type != 1 << BCH_EXTENT_ENTRY_ptr); ++ ++ for (next = extent_entry_next(entry); ++ next != ptrs.end; ++ next = extent_entry_next(next)) { ++ if (extent_entry_is_crc(next)) { ++ break; ++ } else if (extent_entry_is_ptr(next)) { ++ drop_crc = false; ++ break; ++ } ++ } ++ ++ extent_entry_drop(k, entry); ++ ++ while ((entry = extent_entry_prev(ptrs, entry))) { ++ if (extent_entry_is_ptr(entry)) ++ break; ++ ++ if ((extent_entry_is_crc(entry) && drop_crc) || ++ extent_entry_is_stripe_ptr(entry)) { ++ ret = (void *) ret - extent_entry_bytes(entry); ++ extent_entry_drop(k, entry); ++ } ++ } ++ ++ return ret; ++} ++ ++union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s k, ++ struct bch_extent_ptr *ptr) ++{ ++ bool have_dirty = bch2_bkey_dirty_devs(k.s_c).nr; ++ union bch_extent_entry *ret = ++ bch2_bkey_drop_ptr_noerror(k, ptr); ++ ++ /* ++ * If we deleted all the dirty pointers and there's still cached ++ * pointers, we could set the cached pointers to dirty if they're not ++ * stale - but to do that correctly we'd need to grab an open_bucket ++ * reference so that we don't race with bucket reuse: ++ */ ++ if (have_dirty && ++ !bch2_bkey_dirty_devs(k.s_c).nr) { ++ k.k->type = KEY_TYPE_error; ++ set_bkey_val_u64s(k.k, 0); ++ ret = NULL; ++ } else if (!bch2_bkey_nr_ptrs(k.s_c)) { ++ k.k->type = KEY_TYPE_deleted; ++ set_bkey_val_u64s(k.k, 0); ++ ret = NULL; ++ } ++ ++ return ret; ++} ++ ++void bch2_bkey_drop_device(struct bkey_s k, unsigned dev) ++{ ++ struct bch_extent_ptr *ptr; ++ ++ bch2_bkey_drop_ptrs(k, ptr, ptr->dev == dev); ++} ++ ++void bch2_bkey_drop_device_noerror(struct bkey_s k, unsigned dev) ++{ ++ struct bch_extent_ptr *ptr = bch2_bkey_has_device(k, dev); ++ ++ if (ptr) ++ bch2_bkey_drop_ptr_noerror(k, ptr); ++} ++ ++const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c k, unsigned dev) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(ptrs, ptr) ++ if (ptr->dev == dev) ++ return ptr; ++ ++ return NULL; ++} ++ ++bool bch2_bkey_has_target(struct bch_fs *c, struct bkey_s_c k, unsigned target) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(ptrs, ptr) ++ if (bch2_dev_in_target(c, ptr->dev, target) && ++ (!ptr->cached || ++ !ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr))) ++ return true; ++ ++ return false; ++} ++ ++bool bch2_bkey_matches_ptr(struct bch_fs *c, struct bkey_s_c k, ++ struct bch_extent_ptr m, u64 offset) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ if (p.ptr.dev == m.dev && ++ p.ptr.gen == m.gen && ++ (s64) p.ptr.offset + p.crc.offset - bkey_start_offset(k.k) == ++ (s64) m.offset - offset) ++ return true; ++ ++ return false; ++} ++ ++/* ++ * Returns true if two extents refer to the same data: ++ */ ++bool bch2_extents_match(struct bkey_s_c k1, struct bkey_s_c k2) ++{ ++ if (k1.k->type != k2.k->type) ++ return false; ++ ++ if (bkey_extent_is_direct_data(k1.k)) { ++ struct bkey_ptrs_c ptrs1 = bch2_bkey_ptrs_c(k1); ++ struct bkey_ptrs_c ptrs2 = bch2_bkey_ptrs_c(k2); ++ const union bch_extent_entry *entry1, *entry2; ++ struct extent_ptr_decoded p1, p2; ++ ++ if (bkey_extent_is_unwritten(k1) != bkey_extent_is_unwritten(k2)) ++ return false; ++ ++ bkey_for_each_ptr_decode(k1.k, ptrs1, p1, entry1) ++ bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) ++ if (p1.ptr.dev == p2.ptr.dev && ++ p1.ptr.gen == p2.ptr.gen && ++ (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == ++ (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) ++ return true; ++ ++ return false; ++ } else { ++ /* KEY_TYPE_deleted, etc. */ ++ return true; ++ } ++} ++ ++struct bch_extent_ptr * ++bch2_extent_has_ptr(struct bkey_s_c k1, struct extent_ptr_decoded p1, struct bkey_s k2) ++{ ++ struct bkey_ptrs ptrs2 = bch2_bkey_ptrs(k2); ++ union bch_extent_entry *entry2; ++ struct extent_ptr_decoded p2; ++ ++ bkey_for_each_ptr_decode(k2.k, ptrs2, p2, entry2) ++ if (p1.ptr.dev == p2.ptr.dev && ++ p1.ptr.gen == p2.ptr.gen && ++ (s64) p1.ptr.offset + p1.crc.offset - bkey_start_offset(k1.k) == ++ (s64) p2.ptr.offset + p2.crc.offset - bkey_start_offset(k2.k)) ++ return &entry2->ptr; ++ ++ return NULL; ++} ++ ++void bch2_extent_ptr_set_cached(struct bkey_s k, struct bch_extent_ptr *ptr) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); ++ union bch_extent_entry *entry; ++ union bch_extent_entry *ec = NULL; ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ if (&entry->ptr == ptr) { ++ ptr->cached = true; ++ if (ec) ++ extent_entry_drop(k, ec); ++ return; ++ } ++ ++ if (extent_entry_is_stripe_ptr(entry)) ++ ec = entry; ++ else if (extent_entry_is_ptr(entry)) ++ ec = NULL; ++ } ++ ++ BUG(); ++} ++ ++/* ++ * bch_extent_normalize - clean up an extent, dropping stale pointers etc. ++ * ++ * Returns true if @k should be dropped entirely ++ * ++ * For existing keys, only called when btree nodes are being rewritten, not when ++ * they're merely being compacted/resorted in memory. ++ */ ++bool bch2_extent_normalize(struct bch_fs *c, struct bkey_s k) ++{ ++ struct bch_extent_ptr *ptr; ++ ++ bch2_bkey_drop_ptrs(k, ptr, ++ ptr->cached && ++ ptr_stale(bch_dev_bkey_exists(c, ptr->dev), ptr)); ++ ++ return bkey_deleted(k.k); ++} ++ ++void bch2_bkey_ptrs_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct bch_extent_crc_unpacked crc; ++ const struct bch_extent_ptr *ptr; ++ const struct bch_extent_stripe_ptr *ec; ++ struct bch_dev *ca; ++ bool first = true; ++ ++ if (c) ++ prt_printf(out, "durability: %u ", bch2_bkey_durability_safe(c, k)); ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ if (!first) ++ prt_printf(out, " "); ++ ++ switch (__extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ ptr = entry_to_ptr(entry); ++ ca = c && ptr->dev < c->sb.nr_devices && c->devs[ptr->dev] ++ ? bch_dev_bkey_exists(c, ptr->dev) ++ : NULL; ++ ++ if (!ca) { ++ prt_printf(out, "ptr: %u:%llu gen %u%s", ptr->dev, ++ (u64) ptr->offset, ptr->gen, ++ ptr->cached ? " cached" : ""); ++ } else { ++ u32 offset; ++ u64 b = sector_to_bucket_and_offset(ca, ptr->offset, &offset); ++ ++ prt_printf(out, "ptr: %u:%llu:%u gen %u", ++ ptr->dev, b, offset, ptr->gen); ++ if (ptr->cached) ++ prt_str(out, " cached"); ++ if (ptr->unwritten) ++ prt_str(out, " unwritten"); ++ if (ca && ptr_stale(ca, ptr)) ++ prt_printf(out, " stale"); ++ } ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ case BCH_EXTENT_ENTRY_crc64: ++ case BCH_EXTENT_ENTRY_crc128: ++ crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); ++ ++ prt_printf(out, "crc: c_size %u size %u offset %u nonce %u csum %s compress %s", ++ crc.compressed_size, ++ crc.uncompressed_size, ++ crc.offset, crc.nonce, ++ bch2_csum_types[crc.csum_type], ++ bch2_compression_types[crc.compression_type]); ++ break; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ ec = &entry->stripe_ptr; ++ ++ prt_printf(out, "ec: idx %llu block %u", ++ (u64) ec->idx, ec->block); ++ break; ++ default: ++ prt_printf(out, "(invalid extent entry %.16llx)", *((u64 *) entry)); ++ return; ++ } ++ ++ first = false; ++ } ++} ++ ++static int extent_ptr_invalid(const struct bch_fs *c, ++ struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ const struct bch_extent_ptr *ptr, ++ unsigned size_ondisk, ++ bool metadata, ++ struct printbuf *err) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr2; ++ u64 bucket; ++ u32 bucket_offset; ++ struct bch_dev *ca; ++ ++ if (!bch2_dev_exists2(c, ptr->dev)) { ++ /* ++ * If we're in the write path this key might have already been ++ * overwritten, and we could be seeing a device that doesn't ++ * exist anymore due to racing with device removal: ++ */ ++ if (flags & BKEY_INVALID_WRITE) ++ return 0; ++ ++ prt_printf(err, "pointer to invalid device (%u)", ptr->dev); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ ca = bch_dev_bkey_exists(c, ptr->dev); ++ bkey_for_each_ptr(ptrs, ptr2) ++ if (ptr != ptr2 && ptr->dev == ptr2->dev) { ++ prt_printf(err, "multiple pointers to same device (%u)", ptr->dev); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ bucket = sector_to_bucket_and_offset(ca, ptr->offset, &bucket_offset); ++ ++ if (bucket >= ca->mi.nbuckets) { ++ prt_printf(err, "pointer past last bucket (%llu > %llu)", ++ bucket, ca->mi.nbuckets); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (ptr->offset < bucket_to_sector(ca, ca->mi.first_bucket)) { ++ prt_printf(err, "pointer before first bucket (%llu < %u)", ++ bucket, ca->mi.first_bucket); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (bucket_offset + size_ondisk > ca->mi.bucket_size) { ++ prt_printf(err, "pointer spans multiple buckets (%u + %u > %u)", ++ bucket_offset, size_ondisk, ca->mi.bucket_size); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++int bch2_bkey_ptrs_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct bch_extent_crc_unpacked crc; ++ unsigned size_ondisk = k.k->size; ++ unsigned nonce = UINT_MAX; ++ unsigned nr_ptrs = 0; ++ bool unwritten = false, have_ec = false, crc_since_last_ptr = false; ++ int ret; ++ ++ if (bkey_is_btree_ptr(k.k)) ++ size_ondisk = btree_sectors(c); ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ if (__extent_entry_type(entry) >= BCH_EXTENT_ENTRY_MAX) { ++ prt_printf(err, "invalid extent entry type (got %u, max %u)", ++ __extent_entry_type(entry), BCH_EXTENT_ENTRY_MAX); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (bkey_is_btree_ptr(k.k) && ++ !extent_entry_is_ptr(entry)) { ++ prt_printf(err, "has non ptr field"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ switch (extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ ret = extent_ptr_invalid(c, k, flags, &entry->ptr, ++ size_ondisk, false, err); ++ if (ret) ++ return ret; ++ ++ if (nr_ptrs && unwritten != entry->ptr.unwritten) { ++ prt_printf(err, "extent with unwritten and written ptrs"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (k.k->type != KEY_TYPE_extent && entry->ptr.unwritten) { ++ prt_printf(err, "has unwritten ptrs"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (entry->ptr.cached && have_ec) { ++ prt_printf(err, "cached, erasure coded ptr"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ unwritten = entry->ptr.unwritten; ++ have_ec = false; ++ crc_since_last_ptr = false; ++ nr_ptrs++; ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ case BCH_EXTENT_ENTRY_crc64: ++ case BCH_EXTENT_ENTRY_crc128: ++ crc = bch2_extent_crc_unpack(k.k, entry_to_crc(entry)); ++ ++ if (crc.offset + crc.live_size > ++ crc.uncompressed_size) { ++ prt_printf(err, "checksum offset + key size > uncompressed size"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ size_ondisk = crc.compressed_size; ++ ++ if (!bch2_checksum_type_valid(c, crc.csum_type)) { ++ prt_printf(err, "invalid checksum type"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (crc.compression_type >= BCH_COMPRESSION_TYPE_NR) { ++ prt_printf(err, "invalid compression type"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (bch2_csum_type_is_encryption(crc.csum_type)) { ++ if (nonce == UINT_MAX) ++ nonce = crc.offset + crc.nonce; ++ else if (nonce != crc.offset + crc.nonce) { ++ prt_printf(err, "incorrect nonce"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ } ++ ++ if (crc_since_last_ptr) { ++ prt_printf(err, "redundant crc entry"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ crc_since_last_ptr = true; ++ break; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ if (have_ec) { ++ prt_printf(err, "redundant stripe entry"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ have_ec = true; ++ break; ++ case BCH_EXTENT_ENTRY_rebalance: ++ break; ++ } ++ } ++ ++ if (!nr_ptrs) { ++ prt_str(err, "no ptrs"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (nr_ptrs >= BCH_BKEY_PTRS_MAX) { ++ prt_str(err, "too many ptrs"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (crc_since_last_ptr) { ++ prt_printf(err, "redundant crc entry"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (have_ec) { ++ prt_printf(err, "redundant stripe entry"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_ptr_swab(struct bkey_s k) ++{ ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); ++ union bch_extent_entry *entry; ++ u64 *d; ++ ++ for (d = (u64 *) ptrs.start; ++ d != (u64 *) ptrs.end; ++ d++) ++ *d = swab64(*d); ++ ++ for (entry = ptrs.start; ++ entry < ptrs.end; ++ entry = extent_entry_next(entry)) { ++ switch (extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ entry->crc32.csum = swab32(entry->crc32.csum); ++ break; ++ case BCH_EXTENT_ENTRY_crc64: ++ entry->crc64.csum_hi = swab16(entry->crc64.csum_hi); ++ entry->crc64.csum_lo = swab64(entry->crc64.csum_lo); ++ break; ++ case BCH_EXTENT_ENTRY_crc128: ++ entry->crc128.csum.hi = (__force __le64) ++ swab64((__force u64) entry->crc128.csum.hi); ++ entry->crc128.csum.lo = (__force __le64) ++ swab64((__force u64) entry->crc128.csum.lo); ++ break; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ break; ++ case BCH_EXTENT_ENTRY_rebalance: ++ break; ++ } ++ } ++} ++ ++/* Generic extent code: */ ++ ++int bch2_cut_front_s(struct bpos where, struct bkey_s k) ++{ ++ unsigned new_val_u64s = bkey_val_u64s(k.k); ++ int val_u64s_delta; ++ u64 sub; ++ ++ if (bkey_le(where, bkey_start_pos(k.k))) ++ return 0; ++ ++ EBUG_ON(bkey_gt(where, k.k->p)); ++ ++ sub = where.offset - bkey_start_offset(k.k); ++ ++ k.k->size -= sub; ++ ++ if (!k.k->size) { ++ k.k->type = KEY_TYPE_deleted; ++ new_val_u64s = 0; ++ } ++ ++ switch (k.k->type) { ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: { ++ struct bkey_ptrs ptrs = bch2_bkey_ptrs(k); ++ union bch_extent_entry *entry; ++ bool seen_crc = false; ++ ++ bkey_extent_entry_for_each(ptrs, entry) { ++ switch (extent_entry_type(entry)) { ++ case BCH_EXTENT_ENTRY_ptr: ++ if (!seen_crc) ++ entry->ptr.offset += sub; ++ break; ++ case BCH_EXTENT_ENTRY_crc32: ++ entry->crc32.offset += sub; ++ break; ++ case BCH_EXTENT_ENTRY_crc64: ++ entry->crc64.offset += sub; ++ break; ++ case BCH_EXTENT_ENTRY_crc128: ++ entry->crc128.offset += sub; ++ break; ++ case BCH_EXTENT_ENTRY_stripe_ptr: ++ break; ++ case BCH_EXTENT_ENTRY_rebalance: ++ break; ++ } ++ ++ if (extent_entry_is_crc(entry)) ++ seen_crc = true; ++ } ++ ++ break; ++ } ++ case KEY_TYPE_reflink_p: { ++ struct bkey_s_reflink_p p = bkey_s_to_reflink_p(k); ++ ++ le64_add_cpu(&p.v->idx, sub); ++ break; ++ } ++ case KEY_TYPE_inline_data: ++ case KEY_TYPE_indirect_inline_data: { ++ void *p = bkey_inline_data_p(k); ++ unsigned bytes = bkey_inline_data_bytes(k.k); ++ ++ sub = min_t(u64, sub << 9, bytes); ++ ++ memmove(p, p + sub, bytes - sub); ++ ++ new_val_u64s -= sub >> 3; ++ break; ++ } ++ } ++ ++ val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; ++ BUG_ON(val_u64s_delta < 0); ++ ++ set_bkey_val_u64s(k.k, new_val_u64s); ++ memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); ++ return -val_u64s_delta; ++} ++ ++int bch2_cut_back_s(struct bpos where, struct bkey_s k) ++{ ++ unsigned new_val_u64s = bkey_val_u64s(k.k); ++ int val_u64s_delta; ++ u64 len = 0; ++ ++ if (bkey_ge(where, k.k->p)) ++ return 0; ++ ++ EBUG_ON(bkey_lt(where, bkey_start_pos(k.k))); ++ ++ len = where.offset - bkey_start_offset(k.k); ++ ++ k.k->p.offset = where.offset; ++ k.k->size = len; ++ ++ if (!len) { ++ k.k->type = KEY_TYPE_deleted; ++ new_val_u64s = 0; ++ } ++ ++ switch (k.k->type) { ++ case KEY_TYPE_inline_data: ++ case KEY_TYPE_indirect_inline_data: ++ new_val_u64s = (bkey_inline_data_offset(k.k) + ++ min(bkey_inline_data_bytes(k.k), k.k->size << 9)) >> 3; ++ break; ++ } ++ ++ val_u64s_delta = bkey_val_u64s(k.k) - new_val_u64s; ++ BUG_ON(val_u64s_delta < 0); ++ ++ set_bkey_val_u64s(k.k, new_val_u64s); ++ memset(bkey_val_end(k), 0, val_u64s_delta * sizeof(u64)); ++ return -val_u64s_delta; ++} +diff --git a/fs/bcachefs/extents.h b/fs/bcachefs/extents.h +new file mode 100644 +index 000000000000..879e7d218b6a +--- /dev/null ++++ b/fs/bcachefs/extents.h +@@ -0,0 +1,758 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EXTENTS_H ++#define _BCACHEFS_EXTENTS_H ++ ++#include "bcachefs.h" ++#include "bkey.h" ++#include "extents_types.h" ++ ++struct bch_fs; ++struct btree_trans; ++enum bkey_invalid_flags; ++ ++/* extent entries: */ ++ ++#define extent_entry_last(_e) \ ++ ((typeof(&(_e).v->start[0])) bkey_val_end(_e)) ++ ++#define entry_to_ptr(_entry) \ ++({ \ ++ EBUG_ON((_entry) && !extent_entry_is_ptr(_entry)); \ ++ \ ++ __builtin_choose_expr( \ ++ type_is_exact(_entry, const union bch_extent_entry *), \ ++ (const struct bch_extent_ptr *) (_entry), \ ++ (struct bch_extent_ptr *) (_entry)); \ ++}) ++ ++/* downcast, preserves const */ ++#define to_entry(_entry) \ ++({ \ ++ BUILD_BUG_ON(!type_is(_entry, union bch_extent_crc *) && \ ++ !type_is(_entry, struct bch_extent_ptr *) && \ ++ !type_is(_entry, struct bch_extent_stripe_ptr *)); \ ++ \ ++ __builtin_choose_expr( \ ++ (type_is_exact(_entry, const union bch_extent_crc *) || \ ++ type_is_exact(_entry, const struct bch_extent_ptr *) ||\ ++ type_is_exact(_entry, const struct bch_extent_stripe_ptr *)),\ ++ (const union bch_extent_entry *) (_entry), \ ++ (union bch_extent_entry *) (_entry)); \ ++}) ++ ++#define extent_entry_next(_entry) \ ++ ((typeof(_entry)) ((void *) (_entry) + extent_entry_bytes(_entry))) ++ ++static inline unsigned ++__extent_entry_type(const union bch_extent_entry *e) ++{ ++ return e->type ? __ffs(e->type) : BCH_EXTENT_ENTRY_MAX; ++} ++ ++static inline enum bch_extent_entry_type ++extent_entry_type(const union bch_extent_entry *e) ++{ ++ int ret = __ffs(e->type); ++ ++ EBUG_ON(ret < 0 || ret >= BCH_EXTENT_ENTRY_MAX); ++ ++ return ret; ++} ++ ++static inline size_t extent_entry_bytes(const union bch_extent_entry *entry) ++{ ++ switch (extent_entry_type(entry)) { ++#define x(f, n) \ ++ case BCH_EXTENT_ENTRY_##f: \ ++ return sizeof(struct bch_extent_##f); ++ BCH_EXTENT_ENTRY_TYPES() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++static inline size_t extent_entry_u64s(const union bch_extent_entry *entry) ++{ ++ return extent_entry_bytes(entry) / sizeof(u64); ++} ++ ++static inline void __extent_entry_insert(struct bkey_i *k, ++ union bch_extent_entry *dst, ++ union bch_extent_entry *new) ++{ ++ union bch_extent_entry *end = bkey_val_end(bkey_i_to_s(k)); ++ ++ memmove_u64s_up_small((u64 *) dst + extent_entry_u64s(new), ++ dst, (u64 *) end - (u64 *) dst); ++ k->k.u64s += extent_entry_u64s(new); ++ memcpy_u64s_small(dst, new, extent_entry_u64s(new)); ++} ++ ++static inline bool extent_entry_is_ptr(const union bch_extent_entry *e) ++{ ++ return extent_entry_type(e) == BCH_EXTENT_ENTRY_ptr; ++} ++ ++static inline bool extent_entry_is_stripe_ptr(const union bch_extent_entry *e) ++{ ++ return extent_entry_type(e) == BCH_EXTENT_ENTRY_stripe_ptr; ++} ++ ++static inline bool extent_entry_is_crc(const union bch_extent_entry *e) ++{ ++ switch (extent_entry_type(e)) { ++ case BCH_EXTENT_ENTRY_crc32: ++ case BCH_EXTENT_ENTRY_crc64: ++ case BCH_EXTENT_ENTRY_crc128: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++union bch_extent_crc { ++ u8 type; ++ struct bch_extent_crc32 crc32; ++ struct bch_extent_crc64 crc64; ++ struct bch_extent_crc128 crc128; ++}; ++ ++#define __entry_to_crc(_entry) \ ++ __builtin_choose_expr( \ ++ type_is_exact(_entry, const union bch_extent_entry *), \ ++ (const union bch_extent_crc *) (_entry), \ ++ (union bch_extent_crc *) (_entry)) ++ ++#define entry_to_crc(_entry) \ ++({ \ ++ EBUG_ON((_entry) && !extent_entry_is_crc(_entry)); \ ++ \ ++ __entry_to_crc(_entry); \ ++}) ++ ++static inline struct bch_extent_crc_unpacked ++bch2_extent_crc_unpack(const struct bkey *k, const union bch_extent_crc *crc) ++{ ++#define common_fields(_crc) \ ++ .csum_type = _crc.csum_type, \ ++ .compression_type = _crc.compression_type, \ ++ .compressed_size = _crc._compressed_size + 1, \ ++ .uncompressed_size = _crc._uncompressed_size + 1, \ ++ .offset = _crc.offset, \ ++ .live_size = k->size ++ ++ if (!crc) ++ return (struct bch_extent_crc_unpacked) { ++ .compressed_size = k->size, ++ .uncompressed_size = k->size, ++ .live_size = k->size, ++ }; ++ ++ switch (extent_entry_type(to_entry(crc))) { ++ case BCH_EXTENT_ENTRY_crc32: { ++ struct bch_extent_crc_unpacked ret = (struct bch_extent_crc_unpacked) { ++ common_fields(crc->crc32), ++ }; ++ ++ *((__le32 *) &ret.csum.lo) = (__le32 __force) crc->crc32.csum; ++ return ret; ++ } ++ case BCH_EXTENT_ENTRY_crc64: { ++ struct bch_extent_crc_unpacked ret = (struct bch_extent_crc_unpacked) { ++ common_fields(crc->crc64), ++ .nonce = crc->crc64.nonce, ++ .csum.lo = (__force __le64) crc->crc64.csum_lo, ++ }; ++ ++ *((__le16 *) &ret.csum.hi) = (__le16 __force) crc->crc64.csum_hi; ++ ++ return ret; ++ } ++ case BCH_EXTENT_ENTRY_crc128: { ++ struct bch_extent_crc_unpacked ret = (struct bch_extent_crc_unpacked) { ++ common_fields(crc->crc128), ++ .nonce = crc->crc128.nonce, ++ .csum = crc->crc128.csum, ++ }; ++ ++ return ret; ++ } ++ default: ++ BUG(); ++ } ++#undef common_fields ++} ++ ++static inline bool crc_is_compressed(struct bch_extent_crc_unpacked crc) ++{ ++ return (crc.compression_type != BCH_COMPRESSION_TYPE_none && ++ crc.compression_type != BCH_COMPRESSION_TYPE_incompressible); ++} ++ ++/* bkey_ptrs: generically over any key type that has ptrs */ ++ ++struct bkey_ptrs_c { ++ const union bch_extent_entry *start; ++ const union bch_extent_entry *end; ++}; ++ ++struct bkey_ptrs { ++ union bch_extent_entry *start; ++ union bch_extent_entry *end; ++}; ++ ++static inline struct bkey_ptrs_c bch2_bkey_ptrs_c(struct bkey_s_c k) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_btree_ptr: { ++ struct bkey_s_c_btree_ptr e = bkey_s_c_to_btree_ptr(k); ++ ++ return (struct bkey_ptrs_c) { ++ to_entry(&e.v->start[0]), ++ to_entry(extent_entry_last(e)) ++ }; ++ } ++ case KEY_TYPE_extent: { ++ struct bkey_s_c_extent e = bkey_s_c_to_extent(k); ++ ++ return (struct bkey_ptrs_c) { ++ e.v->start, ++ extent_entry_last(e) ++ }; ++ } ++ case KEY_TYPE_stripe: { ++ struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); ++ ++ return (struct bkey_ptrs_c) { ++ to_entry(&s.v->ptrs[0]), ++ to_entry(&s.v->ptrs[s.v->nr_blocks]), ++ }; ++ } ++ case KEY_TYPE_reflink_v: { ++ struct bkey_s_c_reflink_v r = bkey_s_c_to_reflink_v(k); ++ ++ return (struct bkey_ptrs_c) { ++ r.v->start, ++ bkey_val_end(r), ++ }; ++ } ++ case KEY_TYPE_btree_ptr_v2: { ++ struct bkey_s_c_btree_ptr_v2 e = bkey_s_c_to_btree_ptr_v2(k); ++ ++ return (struct bkey_ptrs_c) { ++ to_entry(&e.v->start[0]), ++ to_entry(extent_entry_last(e)) ++ }; ++ } ++ default: ++ return (struct bkey_ptrs_c) { NULL, NULL }; ++ } ++} ++ ++static inline struct bkey_ptrs bch2_bkey_ptrs(struct bkey_s k) ++{ ++ struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k.s_c); ++ ++ return (struct bkey_ptrs) { ++ (void *) p.start, ++ (void *) p.end ++ }; ++} ++ ++#define __bkey_extent_entry_for_each_from(_start, _end, _entry) \ ++ for ((_entry) = (_start); \ ++ (_entry) < (_end); \ ++ (_entry) = extent_entry_next(_entry)) ++ ++#define __bkey_ptr_next(_ptr, _end) \ ++({ \ ++ typeof(_end) _entry; \ ++ \ ++ __bkey_extent_entry_for_each_from(to_entry(_ptr), _end, _entry) \ ++ if (extent_entry_is_ptr(_entry)) \ ++ break; \ ++ \ ++ _entry < (_end) ? entry_to_ptr(_entry) : NULL; \ ++}) ++ ++#define bkey_extent_entry_for_each_from(_p, _entry, _start) \ ++ __bkey_extent_entry_for_each_from(_start, (_p).end, _entry) ++ ++#define bkey_extent_entry_for_each(_p, _entry) \ ++ bkey_extent_entry_for_each_from(_p, _entry, _p.start) ++ ++#define __bkey_for_each_ptr(_start, _end, _ptr) \ ++ for ((_ptr) = (_start); \ ++ ((_ptr) = __bkey_ptr_next(_ptr, _end)); \ ++ (_ptr)++) ++ ++#define bkey_ptr_next(_p, _ptr) \ ++ __bkey_ptr_next(_ptr, (_p).end) ++ ++#define bkey_for_each_ptr(_p, _ptr) \ ++ __bkey_for_each_ptr(&(_p).start->ptr, (_p).end, _ptr) ++ ++#define __bkey_ptr_next_decode(_k, _end, _ptr, _entry) \ ++({ \ ++ __label__ out; \ ++ \ ++ (_ptr).idx = 0; \ ++ (_ptr).has_ec = false; \ ++ \ ++ __bkey_extent_entry_for_each_from(_entry, _end, _entry) \ ++ switch (extent_entry_type(_entry)) { \ ++ case BCH_EXTENT_ENTRY_ptr: \ ++ (_ptr).ptr = _entry->ptr; \ ++ goto out; \ ++ case BCH_EXTENT_ENTRY_crc32: \ ++ case BCH_EXTENT_ENTRY_crc64: \ ++ case BCH_EXTENT_ENTRY_crc128: \ ++ (_ptr).crc = bch2_extent_crc_unpack(_k, \ ++ entry_to_crc(_entry)); \ ++ break; \ ++ case BCH_EXTENT_ENTRY_stripe_ptr: \ ++ (_ptr).ec = _entry->stripe_ptr; \ ++ (_ptr).has_ec = true; \ ++ break; \ ++ default: \ ++ /* nothing */ \ ++ break; \ ++ } \ ++out: \ ++ _entry < (_end); \ ++}) ++ ++#define __bkey_for_each_ptr_decode(_k, _start, _end, _ptr, _entry) \ ++ for ((_ptr).crc = bch2_extent_crc_unpack(_k, NULL), \ ++ (_entry) = _start; \ ++ __bkey_ptr_next_decode(_k, _end, _ptr, _entry); \ ++ (_entry) = extent_entry_next(_entry)) ++ ++#define bkey_for_each_ptr_decode(_k, _p, _ptr, _entry) \ ++ __bkey_for_each_ptr_decode(_k, (_p).start, (_p).end, \ ++ _ptr, _entry) ++ ++#define bkey_crc_next(_k, _start, _end, _crc, _iter) \ ++({ \ ++ __bkey_extent_entry_for_each_from(_iter, _end, _iter) \ ++ if (extent_entry_is_crc(_iter)) { \ ++ (_crc) = bch2_extent_crc_unpack(_k, \ ++ entry_to_crc(_iter)); \ ++ break; \ ++ } \ ++ \ ++ (_iter) < (_end); \ ++}) ++ ++#define __bkey_for_each_crc(_k, _start, _end, _crc, _iter) \ ++ for ((_crc) = bch2_extent_crc_unpack(_k, NULL), \ ++ (_iter) = (_start); \ ++ bkey_crc_next(_k, _start, _end, _crc, _iter); \ ++ (_iter) = extent_entry_next(_iter)) ++ ++#define bkey_for_each_crc(_k, _p, _crc, _iter) \ ++ __bkey_for_each_crc(_k, (_p).start, (_p).end, _crc, _iter) ++ ++/* Iterate over pointers in KEY_TYPE_extent: */ ++ ++#define extent_for_each_entry_from(_e, _entry, _start) \ ++ __bkey_extent_entry_for_each_from(_start, \ ++ extent_entry_last(_e), _entry) ++ ++#define extent_for_each_entry(_e, _entry) \ ++ extent_for_each_entry_from(_e, _entry, (_e).v->start) ++ ++#define extent_ptr_next(_e, _ptr) \ ++ __bkey_ptr_next(_ptr, extent_entry_last(_e)) ++ ++#define extent_for_each_ptr(_e, _ptr) \ ++ __bkey_for_each_ptr(&(_e).v->start->ptr, extent_entry_last(_e), _ptr) ++ ++#define extent_for_each_ptr_decode(_e, _ptr, _entry) \ ++ __bkey_for_each_ptr_decode((_e).k, (_e).v->start, \ ++ extent_entry_last(_e), _ptr, _entry) ++ ++/* utility code common to all keys with pointers: */ ++ ++void bch2_mark_io_failure(struct bch_io_failures *, ++ struct extent_ptr_decoded *); ++int bch2_bkey_pick_read_device(struct bch_fs *, struct bkey_s_c, ++ struct bch_io_failures *, ++ struct extent_ptr_decoded *); ++ ++/* KEY_TYPE_btree_ptr: */ ++ ++int bch2_btree_ptr_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_btree_ptr_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++ ++int bch2_btree_ptr_v2_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_btree_ptr_v2_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++void bch2_btree_ptr_v2_compat(enum btree_id, unsigned, unsigned, ++ int, struct bkey_s); ++ ++#define bch2_bkey_ops_btree_ptr ((struct bkey_ops) { \ ++ .key_invalid = bch2_btree_ptr_invalid, \ ++ .val_to_text = bch2_btree_ptr_to_text, \ ++ .swab = bch2_ptr_swab, \ ++ .trans_trigger = bch2_trans_mark_extent, \ ++ .atomic_trigger = bch2_mark_extent, \ ++}) ++ ++#define bch2_bkey_ops_btree_ptr_v2 ((struct bkey_ops) { \ ++ .key_invalid = bch2_btree_ptr_v2_invalid, \ ++ .val_to_text = bch2_btree_ptr_v2_to_text, \ ++ .swab = bch2_ptr_swab, \ ++ .compat = bch2_btree_ptr_v2_compat, \ ++ .trans_trigger = bch2_trans_mark_extent, \ ++ .atomic_trigger = bch2_mark_extent, \ ++ .min_val_size = 40, \ ++}) ++ ++/* KEY_TYPE_extent: */ ++ ++bool bch2_extent_merge(struct bch_fs *, struct bkey_s, struct bkey_s_c); ++ ++#define bch2_bkey_ops_extent ((struct bkey_ops) { \ ++ .key_invalid = bch2_bkey_ptrs_invalid, \ ++ .val_to_text = bch2_bkey_ptrs_to_text, \ ++ .swab = bch2_ptr_swab, \ ++ .key_normalize = bch2_extent_normalize, \ ++ .key_merge = bch2_extent_merge, \ ++ .trans_trigger = bch2_trans_mark_extent, \ ++ .atomic_trigger = bch2_mark_extent, \ ++}) ++ ++/* KEY_TYPE_reservation: */ ++ ++int bch2_reservation_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_reservation_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++bool bch2_reservation_merge(struct bch_fs *, struct bkey_s, struct bkey_s_c); ++ ++#define bch2_bkey_ops_reservation ((struct bkey_ops) { \ ++ .key_invalid = bch2_reservation_invalid, \ ++ .val_to_text = bch2_reservation_to_text, \ ++ .key_merge = bch2_reservation_merge, \ ++ .trans_trigger = bch2_trans_mark_reservation, \ ++ .atomic_trigger = bch2_mark_reservation, \ ++ .min_val_size = 8, \ ++}) ++ ++/* Extent checksum entries: */ ++ ++bool bch2_can_narrow_extent_crcs(struct bkey_s_c, ++ struct bch_extent_crc_unpacked); ++bool bch2_bkey_narrow_crcs(struct bkey_i *, struct bch_extent_crc_unpacked); ++void bch2_extent_crc_append(struct bkey_i *, ++ struct bch_extent_crc_unpacked); ++ ++/* Generic code for keys with pointers: */ ++ ++static inline bool bkey_is_btree_ptr(const struct bkey *k) ++{ ++ switch (k->type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++static inline bool bkey_extent_is_direct_data(const struct bkey *k) ++{ ++ switch (k->type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++static inline bool bkey_extent_is_inline_data(const struct bkey *k) ++{ ++ return k->type == KEY_TYPE_inline_data || ++ k->type == KEY_TYPE_indirect_inline_data; ++} ++ ++static inline unsigned bkey_inline_data_offset(const struct bkey *k) ++{ ++ switch (k->type) { ++ case KEY_TYPE_inline_data: ++ return sizeof(struct bch_inline_data); ++ case KEY_TYPE_indirect_inline_data: ++ return sizeof(struct bch_indirect_inline_data); ++ default: ++ BUG(); ++ } ++} ++ ++static inline unsigned bkey_inline_data_bytes(const struct bkey *k) ++{ ++ return bkey_val_bytes(k) - bkey_inline_data_offset(k); ++} ++ ++#define bkey_inline_data_p(_k) (((void *) (_k).v) + bkey_inline_data_offset((_k).k)) ++ ++static inline bool bkey_extent_is_data(const struct bkey *k) ++{ ++ return bkey_extent_is_direct_data(k) || ++ bkey_extent_is_inline_data(k) || ++ k->type == KEY_TYPE_reflink_p; ++} ++ ++/* ++ * Should extent be counted under inode->i_sectors? ++ */ ++static inline bool bkey_extent_is_allocation(const struct bkey *k) ++{ ++ switch (k->type) { ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reservation: ++ case KEY_TYPE_reflink_p: ++ case KEY_TYPE_reflink_v: ++ case KEY_TYPE_inline_data: ++ case KEY_TYPE_indirect_inline_data: ++ case KEY_TYPE_error: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++static inline bool bkey_extent_is_unwritten(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(ptrs, ptr) ++ if (ptr->unwritten) ++ return true; ++ return false; ++} ++ ++static inline bool bkey_extent_is_reservation(struct bkey_s_c k) ++{ ++ return k.k->type == KEY_TYPE_reservation || ++ bkey_extent_is_unwritten(k); ++} ++ ++static inline struct bch_devs_list bch2_bkey_devs(struct bkey_s_c k) ++{ ++ struct bch_devs_list ret = (struct bch_devs_list) { 0 }; ++ struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(p, ptr) ++ ret.devs[ret.nr++] = ptr->dev; ++ ++ return ret; ++} ++ ++static inline struct bch_devs_list bch2_bkey_dirty_devs(struct bkey_s_c k) ++{ ++ struct bch_devs_list ret = (struct bch_devs_list) { 0 }; ++ struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(p, ptr) ++ if (!ptr->cached) ++ ret.devs[ret.nr++] = ptr->dev; ++ ++ return ret; ++} ++ ++static inline struct bch_devs_list bch2_bkey_cached_devs(struct bkey_s_c k) ++{ ++ struct bch_devs_list ret = (struct bch_devs_list) { 0 }; ++ struct bkey_ptrs_c p = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ ++ bkey_for_each_ptr(p, ptr) ++ if (ptr->cached) ++ ret.devs[ret.nr++] = ptr->dev; ++ ++ return ret; ++} ++ ++static inline unsigned bch2_bkey_ptr_data_type(struct bkey_s_c k, const struct bch_extent_ptr *ptr) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ return BCH_DATA_btree; ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ return BCH_DATA_user; ++ case KEY_TYPE_stripe: { ++ struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); ++ ++ BUG_ON(ptr < s.v->ptrs || ++ ptr >= s.v->ptrs + s.v->nr_blocks); ++ ++ return ptr >= s.v->ptrs + s.v->nr_blocks - s.v->nr_redundant ++ ? BCH_DATA_parity ++ : BCH_DATA_user; ++ } ++ default: ++ BUG(); ++ } ++} ++ ++unsigned bch2_bkey_nr_ptrs(struct bkey_s_c); ++unsigned bch2_bkey_nr_ptrs_allocated(struct bkey_s_c); ++unsigned bch2_bkey_nr_ptrs_fully_allocated(struct bkey_s_c); ++bool bch2_bkey_is_incompressible(struct bkey_s_c); ++unsigned bch2_bkey_sectors_compressed(struct bkey_s_c); ++ ++unsigned bch2_bkey_replicas(struct bch_fs *, struct bkey_s_c); ++unsigned bch2_extent_ptr_desired_durability(struct bch_fs *, struct extent_ptr_decoded *); ++unsigned bch2_extent_ptr_durability(struct bch_fs *, struct extent_ptr_decoded *); ++unsigned bch2_bkey_durability(struct bch_fs *, struct bkey_s_c); ++ ++void bch2_bkey_drop_device(struct bkey_s, unsigned); ++void bch2_bkey_drop_device_noerror(struct bkey_s, unsigned); ++ ++const struct bch_extent_ptr *bch2_bkey_has_device_c(struct bkey_s_c, unsigned); ++ ++static inline struct bch_extent_ptr *bch2_bkey_has_device(struct bkey_s k, unsigned dev) ++{ ++ return (void *) bch2_bkey_has_device_c(k.s_c, dev); ++} ++ ++bool bch2_bkey_has_target(struct bch_fs *, struct bkey_s_c, unsigned); ++ ++void bch2_bkey_extent_entry_drop(struct bkey_i *, union bch_extent_entry *); ++ ++static inline void bch2_bkey_append_ptr(struct bkey_i *k, struct bch_extent_ptr ptr) ++{ ++ struct bch_extent_ptr *dest; ++ ++ EBUG_ON(bch2_bkey_has_device(bkey_i_to_s(k), ptr.dev)); ++ ++ switch (k->k.type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ case KEY_TYPE_extent: ++ EBUG_ON(bkey_val_u64s(&k->k) >= BKEY_EXTENT_VAL_U64s_MAX); ++ ++ ptr.type = 1 << BCH_EXTENT_ENTRY_ptr; ++ dest = (struct bch_extent_ptr *)((void *) &k->v + bkey_val_bytes(&k->k)); ++ *dest = ptr; ++ k->k.u64s++; ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++void bch2_extent_ptr_decoded_append(struct bkey_i *, ++ struct extent_ptr_decoded *); ++union bch_extent_entry *bch2_bkey_drop_ptr_noerror(struct bkey_s, ++ struct bch_extent_ptr *); ++union bch_extent_entry *bch2_bkey_drop_ptr(struct bkey_s, ++ struct bch_extent_ptr *); ++ ++#define bch2_bkey_drop_ptrs(_k, _ptr, _cond) \ ++do { \ ++ struct bkey_ptrs _ptrs = bch2_bkey_ptrs(_k); \ ++ \ ++ _ptr = &_ptrs.start->ptr; \ ++ \ ++ while ((_ptr = bkey_ptr_next(_ptrs, _ptr))) { \ ++ if (_cond) { \ ++ _ptr = (void *) bch2_bkey_drop_ptr(_k, _ptr); \ ++ _ptrs = bch2_bkey_ptrs(_k); \ ++ continue; \ ++ } \ ++ \ ++ (_ptr)++; \ ++ } \ ++} while (0) ++ ++bool bch2_bkey_matches_ptr(struct bch_fs *, struct bkey_s_c, ++ struct bch_extent_ptr, u64); ++bool bch2_extents_match(struct bkey_s_c, struct bkey_s_c); ++struct bch_extent_ptr * ++bch2_extent_has_ptr(struct bkey_s_c, struct extent_ptr_decoded, struct bkey_s); ++ ++void bch2_extent_ptr_set_cached(struct bkey_s, struct bch_extent_ptr *); ++ ++bool bch2_extent_normalize(struct bch_fs *, struct bkey_s); ++void bch2_bkey_ptrs_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++int bch2_bkey_ptrs_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++ ++void bch2_ptr_swab(struct bkey_s); ++ ++/* Generic extent code: */ ++ ++enum bch_extent_overlap { ++ BCH_EXTENT_OVERLAP_ALL = 0, ++ BCH_EXTENT_OVERLAP_BACK = 1, ++ BCH_EXTENT_OVERLAP_FRONT = 2, ++ BCH_EXTENT_OVERLAP_MIDDLE = 3, ++}; ++ ++/* Returns how k overlaps with m */ ++static inline enum bch_extent_overlap bch2_extent_overlap(const struct bkey *k, ++ const struct bkey *m) ++{ ++ int cmp1 = bkey_lt(k->p, m->p); ++ int cmp2 = bkey_gt(bkey_start_pos(k), bkey_start_pos(m)); ++ ++ return (cmp1 << 1) + cmp2; ++} ++ ++int bch2_cut_front_s(struct bpos, struct bkey_s); ++int bch2_cut_back_s(struct bpos, struct bkey_s); ++ ++static inline void bch2_cut_front(struct bpos where, struct bkey_i *k) ++{ ++ bch2_cut_front_s(where, bkey_i_to_s(k)); ++} ++ ++static inline void bch2_cut_back(struct bpos where, struct bkey_i *k) ++{ ++ bch2_cut_back_s(where, bkey_i_to_s(k)); ++} ++ ++/** ++ * bch_key_resize - adjust size of @k ++ * ++ * bkey_start_offset(k) will be preserved, modifies where the extent ends ++ */ ++static inline void bch2_key_resize(struct bkey *k, unsigned new_size) ++{ ++ k->p.offset -= k->size; ++ k->p.offset += new_size; ++ k->size = new_size; ++} ++ ++/* ++ * In extent_sort_fix_overlapping(), insert_fixup_extent(), ++ * extent_merge_inline() - we're modifying keys in place that are packed. To do ++ * that we have to unpack the key, modify the unpacked key - then this ++ * copies/repacks the unpacked to the original as necessary. ++ */ ++static inline void extent_save(struct btree *b, struct bkey_packed *dst, ++ struct bkey *src) ++{ ++ struct bkey_format *f = &b->format; ++ struct bkey_i *dst_unpacked; ++ ++ if ((dst_unpacked = packed_to_bkey(dst))) ++ dst_unpacked->k = *src; ++ else ++ BUG_ON(!bch2_bkey_pack_key(dst, src, f)); ++} ++ ++#endif /* _BCACHEFS_EXTENTS_H */ +diff --git a/fs/bcachefs/extents_types.h b/fs/bcachefs/extents_types.h +new file mode 100644 +index 000000000000..43d6c341ecca +--- /dev/null ++++ b/fs/bcachefs/extents_types.h +@@ -0,0 +1,40 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_EXTENTS_TYPES_H ++#define _BCACHEFS_EXTENTS_TYPES_H ++ ++#include "bcachefs_format.h" ++ ++struct bch_extent_crc_unpacked { ++ u32 compressed_size; ++ u32 uncompressed_size; ++ u32 live_size; ++ ++ u8 csum_type; ++ u8 compression_type; ++ ++ u16 offset; ++ ++ u16 nonce; ++ ++ struct bch_csum csum; ++}; ++ ++struct extent_ptr_decoded { ++ unsigned idx; ++ bool has_ec; ++ struct bch_extent_crc_unpacked crc; ++ struct bch_extent_ptr ptr; ++ struct bch_extent_stripe_ptr ec; ++}; ++ ++struct bch_io_failures { ++ u8 nr; ++ struct bch_dev_io_failures { ++ u8 dev; ++ u8 idx; ++ u8 nr_failed; ++ u8 nr_retries; ++ } devs[BCH_REPLICAS_MAX]; ++}; ++ ++#endif /* _BCACHEFS_EXTENTS_TYPES_H */ +diff --git a/fs/bcachefs/eytzinger.h b/fs/bcachefs/eytzinger.h +new file mode 100644 +index 000000000000..05429c9631cd +--- /dev/null ++++ b/fs/bcachefs/eytzinger.h +@@ -0,0 +1,281 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _EYTZINGER_H ++#define _EYTZINGER_H ++ ++#include ++#include ++ ++#include "util.h" ++ ++/* ++ * Traversal for trees in eytzinger layout - a full binary tree layed out in an ++ * array ++ */ ++ ++/* ++ * One based indexing version: ++ * ++ * With one based indexing each level of the tree starts at a power of two - ++ * good for cacheline alignment: ++ */ ++ ++static inline unsigned eytzinger1_child(unsigned i, unsigned child) ++{ ++ EBUG_ON(child > 1); ++ ++ return (i << 1) + child; ++} ++ ++static inline unsigned eytzinger1_left_child(unsigned i) ++{ ++ return eytzinger1_child(i, 0); ++} ++ ++static inline unsigned eytzinger1_right_child(unsigned i) ++{ ++ return eytzinger1_child(i, 1); ++} ++ ++static inline unsigned eytzinger1_first(unsigned size) ++{ ++ return rounddown_pow_of_two(size); ++} ++ ++static inline unsigned eytzinger1_last(unsigned size) ++{ ++ return rounddown_pow_of_two(size + 1) - 1; ++} ++ ++/* ++ * eytzinger1_next() and eytzinger1_prev() have the nice properties that ++ * ++ * eytzinger1_next(0) == eytzinger1_first()) ++ * eytzinger1_prev(0) == eytzinger1_last()) ++ * ++ * eytzinger1_prev(eytzinger1_first()) == 0 ++ * eytzinger1_next(eytzinger1_last()) == 0 ++ */ ++ ++static inline unsigned eytzinger1_next(unsigned i, unsigned size) ++{ ++ EBUG_ON(i > size); ++ ++ if (eytzinger1_right_child(i) <= size) { ++ i = eytzinger1_right_child(i); ++ ++ i <<= __fls(size + 1) - __fls(i); ++ i >>= i > size; ++ } else { ++ i >>= ffz(i) + 1; ++ } ++ ++ return i; ++} ++ ++static inline unsigned eytzinger1_prev(unsigned i, unsigned size) ++{ ++ EBUG_ON(i > size); ++ ++ if (eytzinger1_left_child(i) <= size) { ++ i = eytzinger1_left_child(i) + 1; ++ ++ i <<= __fls(size + 1) - __fls(i); ++ i -= 1; ++ i >>= i > size; ++ } else { ++ i >>= __ffs(i) + 1; ++ } ++ ++ return i; ++} ++ ++static inline unsigned eytzinger1_extra(unsigned size) ++{ ++ return (size + 1 - rounddown_pow_of_two(size)) << 1; ++} ++ ++static inline unsigned __eytzinger1_to_inorder(unsigned i, unsigned size, ++ unsigned extra) ++{ ++ unsigned b = __fls(i); ++ unsigned shift = __fls(size) - b; ++ int s; ++ ++ EBUG_ON(!i || i > size); ++ ++ i ^= 1U << b; ++ i <<= 1; ++ i |= 1; ++ i <<= shift; ++ ++ /* ++ * sign bit trick: ++ * ++ * if (i > extra) ++ * i -= (i - extra) >> 1; ++ */ ++ s = extra - i; ++ i += (s >> 1) & (s >> 31); ++ ++ return i; ++} ++ ++static inline unsigned __inorder_to_eytzinger1(unsigned i, unsigned size, ++ unsigned extra) ++{ ++ unsigned shift; ++ int s; ++ ++ EBUG_ON(!i || i > size); ++ ++ /* ++ * sign bit trick: ++ * ++ * if (i > extra) ++ * i += i - extra; ++ */ ++ s = extra - i; ++ i -= s & (s >> 31); ++ ++ shift = __ffs(i); ++ ++ i >>= shift + 1; ++ i |= 1U << (__fls(size) - shift); ++ ++ return i; ++} ++ ++static inline unsigned eytzinger1_to_inorder(unsigned i, unsigned size) ++{ ++ return __eytzinger1_to_inorder(i, size, eytzinger1_extra(size)); ++} ++ ++static inline unsigned inorder_to_eytzinger1(unsigned i, unsigned size) ++{ ++ return __inorder_to_eytzinger1(i, size, eytzinger1_extra(size)); ++} ++ ++#define eytzinger1_for_each(_i, _size) \ ++ for ((_i) = eytzinger1_first((_size)); \ ++ (_i) != 0; \ ++ (_i) = eytzinger1_next((_i), (_size))) ++ ++/* Zero based indexing version: */ ++ ++static inline unsigned eytzinger0_child(unsigned i, unsigned child) ++{ ++ EBUG_ON(child > 1); ++ ++ return (i << 1) + 1 + child; ++} ++ ++static inline unsigned eytzinger0_left_child(unsigned i) ++{ ++ return eytzinger0_child(i, 0); ++} ++ ++static inline unsigned eytzinger0_right_child(unsigned i) ++{ ++ return eytzinger0_child(i, 1); ++} ++ ++static inline unsigned eytzinger0_first(unsigned size) ++{ ++ return eytzinger1_first(size) - 1; ++} ++ ++static inline unsigned eytzinger0_last(unsigned size) ++{ ++ return eytzinger1_last(size) - 1; ++} ++ ++static inline unsigned eytzinger0_next(unsigned i, unsigned size) ++{ ++ return eytzinger1_next(i + 1, size) - 1; ++} ++ ++static inline unsigned eytzinger0_prev(unsigned i, unsigned size) ++{ ++ return eytzinger1_prev(i + 1, size) - 1; ++} ++ ++static inline unsigned eytzinger0_extra(unsigned size) ++{ ++ return eytzinger1_extra(size); ++} ++ ++static inline unsigned __eytzinger0_to_inorder(unsigned i, unsigned size, ++ unsigned extra) ++{ ++ return __eytzinger1_to_inorder(i + 1, size, extra) - 1; ++} ++ ++static inline unsigned __inorder_to_eytzinger0(unsigned i, unsigned size, ++ unsigned extra) ++{ ++ return __inorder_to_eytzinger1(i + 1, size, extra) - 1; ++} ++ ++static inline unsigned eytzinger0_to_inorder(unsigned i, unsigned size) ++{ ++ return __eytzinger0_to_inorder(i, size, eytzinger0_extra(size)); ++} ++ ++static inline unsigned inorder_to_eytzinger0(unsigned i, unsigned size) ++{ ++ return __inorder_to_eytzinger0(i, size, eytzinger0_extra(size)); ++} ++ ++#define eytzinger0_for_each(_i, _size) \ ++ for ((_i) = eytzinger0_first((_size)); \ ++ (_i) != -1; \ ++ (_i) = eytzinger0_next((_i), (_size))) ++ ++typedef int (*eytzinger_cmp_fn)(const void *l, const void *r, size_t size); ++ ++/* return greatest node <= @search, or -1 if not found */ ++static inline ssize_t eytzinger0_find_le(void *base, size_t nr, size_t size, ++ eytzinger_cmp_fn cmp, const void *search) ++{ ++ unsigned i, n = 0; ++ ++ if (!nr) ++ return -1; ++ ++ do { ++ i = n; ++ n = eytzinger0_child(i, cmp(search, base + i * size, size) >= 0); ++ } while (n < nr); ++ ++ if (n & 1) { ++ /* @i was greater than @search, return previous node: */ ++ ++ if (i == eytzinger0_first(nr)) ++ return -1; ++ ++ return eytzinger0_prev(i, nr); ++ } else { ++ return i; ++ } ++} ++ ++#define eytzinger0_find(base, nr, size, _cmp, search) \ ++({ \ ++ void *_base = (base); \ ++ void *_search = (search); \ ++ size_t _nr = (nr); \ ++ size_t _size = (size); \ ++ size_t _i = 0; \ ++ int _res; \ ++ \ ++ while (_i < _nr && \ ++ (_res = _cmp(_search, _base + _i * _size, _size))) \ ++ _i = eytzinger0_child(_i, _res > 0); \ ++ _i; \ ++}) ++ ++void eytzinger0_sort(void *, size_t, size_t, ++ int (*cmp_func)(const void *, const void *, size_t), ++ void (*swap_func)(void *, void *, size_t)); ++ ++#endif /* _EYTZINGER_H */ +diff --git a/fs/bcachefs/fifo.h b/fs/bcachefs/fifo.h +new file mode 100644 +index 000000000000..66b945be10c2 +--- /dev/null ++++ b/fs/bcachefs/fifo.h +@@ -0,0 +1,127 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FIFO_H ++#define _BCACHEFS_FIFO_H ++ ++#include "util.h" ++ ++#define FIFO(type) \ ++struct { \ ++ size_t front, back, size, mask; \ ++ type *data; \ ++} ++ ++#define DECLARE_FIFO(type, name) FIFO(type) name ++ ++#define fifo_buf_size(fifo) \ ++ ((fifo)->size \ ++ ? roundup_pow_of_two((fifo)->size) * sizeof((fifo)->data[0]) \ ++ : 0) ++ ++#define init_fifo(fifo, _size, _gfp) \ ++({ \ ++ (fifo)->front = (fifo)->back = 0; \ ++ (fifo)->size = (_size); \ ++ (fifo)->mask = (fifo)->size \ ++ ? roundup_pow_of_two((fifo)->size) - 1 \ ++ : 0; \ ++ (fifo)->data = kvpmalloc(fifo_buf_size(fifo), (_gfp)); \ ++}) ++ ++#define free_fifo(fifo) \ ++do { \ ++ kvpfree((fifo)->data, fifo_buf_size(fifo)); \ ++ (fifo)->data = NULL; \ ++} while (0) ++ ++#define fifo_swap(l, r) \ ++do { \ ++ swap((l)->front, (r)->front); \ ++ swap((l)->back, (r)->back); \ ++ swap((l)->size, (r)->size); \ ++ swap((l)->mask, (r)->mask); \ ++ swap((l)->data, (r)->data); \ ++} while (0) ++ ++#define fifo_move(dest, src) \ ++do { \ ++ typeof(*((dest)->data)) _t; \ ++ while (!fifo_full(dest) && \ ++ fifo_pop(src, _t)) \ ++ fifo_push(dest, _t); \ ++} while (0) ++ ++#define fifo_used(fifo) (((fifo)->back - (fifo)->front)) ++#define fifo_free(fifo) ((fifo)->size - fifo_used(fifo)) ++ ++#define fifo_empty(fifo) ((fifo)->front == (fifo)->back) ++#define fifo_full(fifo) (fifo_used(fifo) == (fifo)->size) ++ ++#define fifo_peek_front(fifo) ((fifo)->data[(fifo)->front & (fifo)->mask]) ++#define fifo_peek_back(fifo) ((fifo)->data[((fifo)->back - 1) & (fifo)->mask]) ++ ++#define fifo_entry_idx_abs(fifo, p) \ ++ ((((p) >= &fifo_peek_front(fifo) \ ++ ? (fifo)->front : (fifo)->back) & ~(fifo)->mask) + \ ++ (((p) - (fifo)->data))) ++ ++#define fifo_entry_idx(fifo, p) (((p) - &fifo_peek_front(fifo)) & (fifo)->mask) ++#define fifo_idx_entry(fifo, i) ((fifo)->data[((fifo)->front + (i)) & (fifo)->mask]) ++ ++#define fifo_push_back_ref(f) \ ++ (fifo_full((f)) ? NULL : &(f)->data[(f)->back++ & (f)->mask]) ++ ++#define fifo_push_front_ref(f) \ ++ (fifo_full((f)) ? NULL : &(f)->data[--(f)->front & (f)->mask]) ++ ++#define fifo_push_back(fifo, new) \ ++({ \ ++ typeof((fifo)->data) _r = fifo_push_back_ref(fifo); \ ++ if (_r) \ ++ *_r = (new); \ ++ _r != NULL; \ ++}) ++ ++#define fifo_push_front(fifo, new) \ ++({ \ ++ typeof((fifo)->data) _r = fifo_push_front_ref(fifo); \ ++ if (_r) \ ++ *_r = (new); \ ++ _r != NULL; \ ++}) ++ ++#define fifo_pop_front(fifo, i) \ ++({ \ ++ bool _r = !fifo_empty((fifo)); \ ++ if (_r) \ ++ (i) = (fifo)->data[(fifo)->front++ & (fifo)->mask]; \ ++ _r; \ ++}) ++ ++#define fifo_pop_back(fifo, i) \ ++({ \ ++ bool _r = !fifo_empty((fifo)); \ ++ if (_r) \ ++ (i) = (fifo)->data[--(fifo)->back & (fifo)->mask]; \ ++ _r; \ ++}) ++ ++#define fifo_push_ref(fifo) fifo_push_back_ref(fifo) ++#define fifo_push(fifo, i) fifo_push_back(fifo, (i)) ++#define fifo_pop(fifo, i) fifo_pop_front(fifo, (i)) ++#define fifo_peek(fifo) fifo_peek_front(fifo) ++ ++#define fifo_for_each_entry(_entry, _fifo, _iter) \ ++ for (typecheck(typeof((_fifo)->front), _iter), \ ++ (_iter) = (_fifo)->front; \ ++ ((_iter != (_fifo)->back) && \ ++ (_entry = (_fifo)->data[(_iter) & (_fifo)->mask], true)); \ ++ (_iter)++) ++ ++#define fifo_for_each_entry_ptr(_ptr, _fifo, _iter) \ ++ for (typecheck(typeof((_fifo)->front), _iter), \ ++ (_iter) = (_fifo)->front; \ ++ ((_iter != (_fifo)->back) && \ ++ (_ptr = &(_fifo)->data[(_iter) & (_fifo)->mask], true)); \ ++ (_iter)++) ++ ++#endif /* _BCACHEFS_FIFO_H */ +diff --git a/fs/bcachefs/fs-common.c b/fs/bcachefs/fs-common.c +new file mode 100644 +index 000000000000..bb5305441f27 +--- /dev/null ++++ b/fs/bcachefs/fs-common.c +@@ -0,0 +1,501 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "acl.h" ++#include "btree_update.h" ++#include "dirent.h" ++#include "fs-common.h" ++#include "inode.h" ++#include "subvolume.h" ++#include "xattr.h" ++ ++#include ++ ++static inline int is_subdir_for_nlink(struct bch_inode_unpacked *inode) ++{ ++ return S_ISDIR(inode->bi_mode) && !inode->bi_subvol; ++} ++ ++int bch2_create_trans(struct btree_trans *trans, ++ subvol_inum dir, ++ struct bch_inode_unpacked *dir_u, ++ struct bch_inode_unpacked *new_inode, ++ const struct qstr *name, ++ uid_t uid, gid_t gid, umode_t mode, dev_t rdev, ++ struct posix_acl *default_acl, ++ struct posix_acl *acl, ++ subvol_inum snapshot_src, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter dir_iter = { NULL }; ++ struct btree_iter inode_iter = { NULL }; ++ subvol_inum new_inum = dir; ++ u64 now = bch2_current_time(c); ++ u64 cpu = raw_smp_processor_id(); ++ u64 dir_target; ++ u32 snapshot; ++ unsigned dir_type = mode_to_type(mode); ++ int ret; ++ ++ ret = bch2_subvolume_get_snapshot(trans, dir.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ ret = bch2_inode_peek(trans, &dir_iter, dir_u, dir, BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ if (!(flags & BCH_CREATE_SNAPSHOT)) { ++ /* Normal create path - allocate a new inode: */ ++ bch2_inode_init_late(new_inode, now, uid, gid, mode, rdev, dir_u); ++ ++ if (flags & BCH_CREATE_TMPFILE) ++ new_inode->bi_flags |= BCH_INODE_UNLINKED; ++ ++ ret = bch2_inode_create(trans, &inode_iter, new_inode, snapshot, cpu); ++ if (ret) ++ goto err; ++ ++ snapshot_src = (subvol_inum) { 0 }; ++ } else { ++ /* ++ * Creating a snapshot - we're not allocating a new inode, but ++ * we do have to lookup the root inode of the subvolume we're ++ * snapshotting and update it (in the new snapshot): ++ */ ++ ++ if (!snapshot_src.inum) { ++ /* Inode wasn't specified, just snapshot: */ ++ struct bch_subvolume s; ++ ++ ret = bch2_subvolume_get(trans, snapshot_src.subvol, true, ++ BTREE_ITER_CACHED, &s); ++ if (ret) ++ goto err; ++ ++ snapshot_src.inum = le64_to_cpu(s.inode); ++ } ++ ++ ret = bch2_inode_peek(trans, &inode_iter, new_inode, snapshot_src, ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ if (new_inode->bi_subvol != snapshot_src.subvol) { ++ /* Not a subvolume root: */ ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ /* ++ * If we're not root, we have to own the subvolume being ++ * snapshotted: ++ */ ++ if (uid && new_inode->bi_uid != uid) { ++ ret = -EPERM; ++ goto err; ++ } ++ ++ flags |= BCH_CREATE_SUBVOL; ++ } ++ ++ new_inum.inum = new_inode->bi_inum; ++ dir_target = new_inode->bi_inum; ++ ++ if (flags & BCH_CREATE_SUBVOL) { ++ u32 new_subvol, dir_snapshot; ++ ++ ret = bch2_subvolume_create(trans, new_inode->bi_inum, ++ snapshot_src.subvol, ++ &new_subvol, &snapshot, ++ (flags & BCH_CREATE_SNAPSHOT_RO) != 0); ++ if (ret) ++ goto err; ++ ++ new_inode->bi_parent_subvol = dir.subvol; ++ new_inode->bi_subvol = new_subvol; ++ new_inum.subvol = new_subvol; ++ dir_target = new_subvol; ++ dir_type = DT_SUBVOL; ++ ++ ret = bch2_subvolume_get_snapshot(trans, dir.subvol, &dir_snapshot); ++ if (ret) ++ goto err; ++ ++ bch2_btree_iter_set_snapshot(&dir_iter, dir_snapshot); ++ ret = bch2_btree_iter_traverse(&dir_iter); ++ if (ret) ++ goto err; ++ } ++ ++ if (!(flags & BCH_CREATE_SNAPSHOT)) { ++ if (default_acl) { ++ ret = bch2_set_acl_trans(trans, new_inum, new_inode, ++ default_acl, ACL_TYPE_DEFAULT); ++ if (ret) ++ goto err; ++ } ++ ++ if (acl) { ++ ret = bch2_set_acl_trans(trans, new_inum, new_inode, ++ acl, ACL_TYPE_ACCESS); ++ if (ret) ++ goto err; ++ } ++ } ++ ++ if (!(flags & BCH_CREATE_TMPFILE)) { ++ struct bch_hash_info dir_hash = bch2_hash_info_init(c, dir_u); ++ u64 dir_offset; ++ ++ if (is_subdir_for_nlink(new_inode)) ++ dir_u->bi_nlink++; ++ dir_u->bi_mtime = dir_u->bi_ctime = now; ++ ++ ret = bch2_inode_write(trans, &dir_iter, dir_u); ++ if (ret) ++ goto err; ++ ++ ret = bch2_dirent_create(trans, dir, &dir_hash, ++ dir_type, ++ name, ++ dir_target, ++ &dir_offset, ++ BCH_HASH_SET_MUST_CREATE); ++ if (ret) ++ goto err; ++ ++ if (c->sb.version >= bcachefs_metadata_version_inode_backpointers) { ++ new_inode->bi_dir = dir_u->bi_inum; ++ new_inode->bi_dir_offset = dir_offset; ++ } ++ } ++ ++ inode_iter.flags &= ~BTREE_ITER_ALL_SNAPSHOTS; ++ bch2_btree_iter_set_snapshot(&inode_iter, snapshot); ++ ++ ret = bch2_btree_iter_traverse(&inode_iter) ?: ++ bch2_inode_write(trans, &inode_iter, new_inode); ++err: ++ bch2_trans_iter_exit(trans, &inode_iter); ++ bch2_trans_iter_exit(trans, &dir_iter); ++ return ret; ++} ++ ++int bch2_link_trans(struct btree_trans *trans, ++ subvol_inum dir, struct bch_inode_unpacked *dir_u, ++ subvol_inum inum, struct bch_inode_unpacked *inode_u, ++ const struct qstr *name) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter dir_iter = { NULL }; ++ struct btree_iter inode_iter = { NULL }; ++ struct bch_hash_info dir_hash; ++ u64 now = bch2_current_time(c); ++ u64 dir_offset = 0; ++ int ret; ++ ++ if (dir.subvol != inum.subvol) ++ return -EXDEV; ++ ++ ret = bch2_inode_peek(trans, &inode_iter, inode_u, inum, BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ inode_u->bi_ctime = now; ++ ret = bch2_inode_nlink_inc(inode_u); ++ if (ret) ++ return ret; ++ ++ ret = bch2_inode_peek(trans, &dir_iter, dir_u, dir, BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ if (bch2_reinherit_attrs(inode_u, dir_u)) { ++ ret = -EXDEV; ++ goto err; ++ } ++ ++ dir_u->bi_mtime = dir_u->bi_ctime = now; ++ ++ dir_hash = bch2_hash_info_init(c, dir_u); ++ ++ ret = bch2_dirent_create(trans, dir, &dir_hash, ++ mode_to_type(inode_u->bi_mode), ++ name, inum.inum, &dir_offset, ++ BCH_HASH_SET_MUST_CREATE); ++ if (ret) ++ goto err; ++ ++ if (c->sb.version >= bcachefs_metadata_version_inode_backpointers) { ++ inode_u->bi_dir = dir.inum; ++ inode_u->bi_dir_offset = dir_offset; ++ } ++ ++ ret = bch2_inode_write(trans, &dir_iter, dir_u) ?: ++ bch2_inode_write(trans, &inode_iter, inode_u); ++err: ++ bch2_trans_iter_exit(trans, &dir_iter); ++ bch2_trans_iter_exit(trans, &inode_iter); ++ return ret; ++} ++ ++int bch2_unlink_trans(struct btree_trans *trans, ++ subvol_inum dir, ++ struct bch_inode_unpacked *dir_u, ++ struct bch_inode_unpacked *inode_u, ++ const struct qstr *name, ++ bool deleting_snapshot) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter dir_iter = { NULL }; ++ struct btree_iter dirent_iter = { NULL }; ++ struct btree_iter inode_iter = { NULL }; ++ struct bch_hash_info dir_hash; ++ subvol_inum inum; ++ u64 now = bch2_current_time(c); ++ struct bkey_s_c k; ++ int ret; ++ ++ ret = bch2_inode_peek(trans, &dir_iter, dir_u, dir, BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ dir_hash = bch2_hash_info_init(c, dir_u); ++ ++ ret = __bch2_dirent_lookup_trans(trans, &dirent_iter, dir, &dir_hash, ++ name, &inum, BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ ret = bch2_inode_peek(trans, &inode_iter, inode_u, inum, ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ if (!deleting_snapshot && S_ISDIR(inode_u->bi_mode)) { ++ ret = bch2_empty_dir_trans(trans, inum); ++ if (ret) ++ goto err; ++ } ++ ++ if (deleting_snapshot && !inode_u->bi_subvol) { ++ ret = -BCH_ERR_ENOENT_not_subvol; ++ goto err; ++ } ++ ++ if (deleting_snapshot || inode_u->bi_subvol) { ++ ret = bch2_subvolume_unlink(trans, inode_u->bi_subvol); ++ if (ret) ++ goto err; ++ ++ k = bch2_btree_iter_peek_slot(&dirent_iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ /* ++ * If we're deleting a subvolume, we need to really delete the ++ * dirent, not just emit a whiteout in the current snapshot: ++ */ ++ bch2_btree_iter_set_snapshot(&dirent_iter, k.k->p.snapshot); ++ ret = bch2_btree_iter_traverse(&dirent_iter); ++ if (ret) ++ goto err; ++ } else { ++ bch2_inode_nlink_dec(trans, inode_u); ++ } ++ ++ if (inode_u->bi_dir == dirent_iter.pos.inode && ++ inode_u->bi_dir_offset == dirent_iter.pos.offset) { ++ inode_u->bi_dir = 0; ++ inode_u->bi_dir_offset = 0; ++ } ++ ++ dir_u->bi_mtime = dir_u->bi_ctime = inode_u->bi_ctime = now; ++ dir_u->bi_nlink -= is_subdir_for_nlink(inode_u); ++ ++ ret = bch2_hash_delete_at(trans, bch2_dirent_hash_desc, ++ &dir_hash, &dirent_iter, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: ++ bch2_inode_write(trans, &dir_iter, dir_u) ?: ++ bch2_inode_write(trans, &inode_iter, inode_u); ++err: ++ bch2_trans_iter_exit(trans, &inode_iter); ++ bch2_trans_iter_exit(trans, &dirent_iter); ++ bch2_trans_iter_exit(trans, &dir_iter); ++ return ret; ++} ++ ++bool bch2_reinherit_attrs(struct bch_inode_unpacked *dst_u, ++ struct bch_inode_unpacked *src_u) ++{ ++ u64 src, dst; ++ unsigned id; ++ bool ret = false; ++ ++ for (id = 0; id < Inode_opt_nr; id++) { ++ /* Skip attributes that were explicitly set on this inode */ ++ if (dst_u->bi_fields_set & (1 << id)) ++ continue; ++ ++ src = bch2_inode_opt_get(src_u, id); ++ dst = bch2_inode_opt_get(dst_u, id); ++ ++ if (src == dst) ++ continue; ++ ++ bch2_inode_opt_set(dst_u, id, src); ++ ret = true; ++ } ++ ++ return ret; ++} ++ ++int bch2_rename_trans(struct btree_trans *trans, ++ subvol_inum src_dir, struct bch_inode_unpacked *src_dir_u, ++ subvol_inum dst_dir, struct bch_inode_unpacked *dst_dir_u, ++ struct bch_inode_unpacked *src_inode_u, ++ struct bch_inode_unpacked *dst_inode_u, ++ const struct qstr *src_name, ++ const struct qstr *dst_name, ++ enum bch_rename_mode mode) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter src_dir_iter = { NULL }; ++ struct btree_iter dst_dir_iter = { NULL }; ++ struct btree_iter src_inode_iter = { NULL }; ++ struct btree_iter dst_inode_iter = { NULL }; ++ struct bch_hash_info src_hash, dst_hash; ++ subvol_inum src_inum, dst_inum; ++ u64 src_offset, dst_offset; ++ u64 now = bch2_current_time(c); ++ int ret; ++ ++ ret = bch2_inode_peek(trans, &src_dir_iter, src_dir_u, src_dir, ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ src_hash = bch2_hash_info_init(c, src_dir_u); ++ ++ if (dst_dir.inum != src_dir.inum || ++ dst_dir.subvol != src_dir.subvol) { ++ ret = bch2_inode_peek(trans, &dst_dir_iter, dst_dir_u, dst_dir, ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ dst_hash = bch2_hash_info_init(c, dst_dir_u); ++ } else { ++ dst_dir_u = src_dir_u; ++ dst_hash = src_hash; ++ } ++ ++ ret = bch2_dirent_rename(trans, ++ src_dir, &src_hash, ++ dst_dir, &dst_hash, ++ src_name, &src_inum, &src_offset, ++ dst_name, &dst_inum, &dst_offset, ++ mode); ++ if (ret) ++ goto err; ++ ++ ret = bch2_inode_peek(trans, &src_inode_iter, src_inode_u, src_inum, ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ ++ if (dst_inum.inum) { ++ ret = bch2_inode_peek(trans, &dst_inode_iter, dst_inode_u, dst_inum, ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto err; ++ } ++ ++ if (c->sb.version >= bcachefs_metadata_version_inode_backpointers) { ++ src_inode_u->bi_dir = dst_dir_u->bi_inum; ++ src_inode_u->bi_dir_offset = dst_offset; ++ ++ if (mode == BCH_RENAME_EXCHANGE) { ++ dst_inode_u->bi_dir = src_dir_u->bi_inum; ++ dst_inode_u->bi_dir_offset = src_offset; ++ } ++ ++ if (mode == BCH_RENAME_OVERWRITE && ++ dst_inode_u->bi_dir == dst_dir_u->bi_inum && ++ dst_inode_u->bi_dir_offset == src_offset) { ++ dst_inode_u->bi_dir = 0; ++ dst_inode_u->bi_dir_offset = 0; ++ } ++ } ++ ++ if (mode == BCH_RENAME_OVERWRITE) { ++ if (S_ISDIR(src_inode_u->bi_mode) != ++ S_ISDIR(dst_inode_u->bi_mode)) { ++ ret = -ENOTDIR; ++ goto err; ++ } ++ ++ if (S_ISDIR(dst_inode_u->bi_mode) && ++ bch2_empty_dir_trans(trans, dst_inum)) { ++ ret = -ENOTEMPTY; ++ goto err; ++ } ++ } ++ ++ if (bch2_reinherit_attrs(src_inode_u, dst_dir_u) && ++ S_ISDIR(src_inode_u->bi_mode)) { ++ ret = -EXDEV; ++ goto err; ++ } ++ ++ if (mode == BCH_RENAME_EXCHANGE && ++ bch2_reinherit_attrs(dst_inode_u, src_dir_u) && ++ S_ISDIR(dst_inode_u->bi_mode)) { ++ ret = -EXDEV; ++ goto err; ++ } ++ ++ if (is_subdir_for_nlink(src_inode_u)) { ++ src_dir_u->bi_nlink--; ++ dst_dir_u->bi_nlink++; ++ } ++ ++ if (dst_inum.inum && is_subdir_for_nlink(dst_inode_u)) { ++ dst_dir_u->bi_nlink--; ++ src_dir_u->bi_nlink += mode == BCH_RENAME_EXCHANGE; ++ } ++ ++ if (mode == BCH_RENAME_OVERWRITE) ++ bch2_inode_nlink_dec(trans, dst_inode_u); ++ ++ src_dir_u->bi_mtime = now; ++ src_dir_u->bi_ctime = now; ++ ++ if (src_dir.inum != dst_dir.inum) { ++ dst_dir_u->bi_mtime = now; ++ dst_dir_u->bi_ctime = now; ++ } ++ ++ src_inode_u->bi_ctime = now; ++ ++ if (dst_inum.inum) ++ dst_inode_u->bi_ctime = now; ++ ++ ret = bch2_inode_write(trans, &src_dir_iter, src_dir_u) ?: ++ (src_dir.inum != dst_dir.inum ++ ? bch2_inode_write(trans, &dst_dir_iter, dst_dir_u) ++ : 0) ?: ++ bch2_inode_write(trans, &src_inode_iter, src_inode_u) ?: ++ (dst_inum.inum ++ ? bch2_inode_write(trans, &dst_inode_iter, dst_inode_u) ++ : 0); ++err: ++ bch2_trans_iter_exit(trans, &dst_inode_iter); ++ bch2_trans_iter_exit(trans, &src_inode_iter); ++ bch2_trans_iter_exit(trans, &dst_dir_iter); ++ bch2_trans_iter_exit(trans, &src_dir_iter); ++ return ret; ++} +diff --git a/fs/bcachefs/fs-common.h b/fs/bcachefs/fs-common.h +new file mode 100644 +index 000000000000..dde237859514 +--- /dev/null ++++ b/fs/bcachefs/fs-common.h +@@ -0,0 +1,43 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_COMMON_H ++#define _BCACHEFS_FS_COMMON_H ++ ++struct posix_acl; ++ ++#define BCH_CREATE_TMPFILE (1U << 0) ++#define BCH_CREATE_SUBVOL (1U << 1) ++#define BCH_CREATE_SNAPSHOT (1U << 2) ++#define BCH_CREATE_SNAPSHOT_RO (1U << 3) ++ ++int bch2_create_trans(struct btree_trans *, subvol_inum, ++ struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ const struct qstr *, ++ uid_t, gid_t, umode_t, dev_t, ++ struct posix_acl *, ++ struct posix_acl *, ++ subvol_inum, unsigned); ++ ++int bch2_link_trans(struct btree_trans *, ++ subvol_inum, struct bch_inode_unpacked *, ++ subvol_inum, struct bch_inode_unpacked *, ++ const struct qstr *); ++ ++int bch2_unlink_trans(struct btree_trans *, subvol_inum, ++ struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ const struct qstr *, bool); ++ ++int bch2_rename_trans(struct btree_trans *, ++ subvol_inum, struct bch_inode_unpacked *, ++ subvol_inum, struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *, ++ const struct qstr *, ++ const struct qstr *, ++ enum bch_rename_mode); ++ ++bool bch2_reinherit_attrs(struct bch_inode_unpacked *, ++ struct bch_inode_unpacked *); ++ ++#endif /* _BCACHEFS_FS_COMMON_H */ +diff --git a/fs/bcachefs/fs-io-buffered.c b/fs/bcachefs/fs-io-buffered.c +new file mode 100644 +index 000000000000..58ccc7b91ac7 +--- /dev/null ++++ b/fs/bcachefs/fs-io-buffered.c +@@ -0,0 +1,1093 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_buf.h" ++#include "fs-io.h" ++#include "fs-io-buffered.h" ++#include "fs-io-direct.h" ++#include "fs-io-pagecache.h" ++#include "io_read.h" ++#include "io_write.h" ++ ++#include ++#include ++#include ++ ++static inline bool bio_full(struct bio *bio, unsigned len) ++{ ++ if (bio->bi_vcnt >= bio->bi_max_vecs) ++ return true; ++ if (bio->bi_iter.bi_size > UINT_MAX - len) ++ return true; ++ return false; ++} ++ ++/* readpage(s): */ ++ ++static void bch2_readpages_end_io(struct bio *bio) ++{ ++ struct folio_iter fi; ++ ++ bio_for_each_folio_all(fi, bio) { ++ if (!bio->bi_status) { ++ folio_mark_uptodate(fi.folio); ++ } else { ++ folio_clear_uptodate(fi.folio); ++ folio_set_error(fi.folio); ++ } ++ folio_unlock(fi.folio); ++ } ++ ++ bio_put(bio); ++} ++ ++struct readpages_iter { ++ struct address_space *mapping; ++ unsigned idx; ++ folios folios; ++}; ++ ++static int readpages_iter_init(struct readpages_iter *iter, ++ struct readahead_control *ractl) ++{ ++ struct folio **fi; ++ int ret; ++ ++ memset(iter, 0, sizeof(*iter)); ++ ++ iter->mapping = ractl->mapping; ++ ++ ret = bch2_filemap_get_contig_folios_d(iter->mapping, ++ ractl->_index << PAGE_SHIFT, ++ (ractl->_index + ractl->_nr_pages) << PAGE_SHIFT, ++ 0, mapping_gfp_mask(iter->mapping), ++ &iter->folios); ++ if (ret) ++ return ret; ++ ++ darray_for_each(iter->folios, fi) { ++ ractl->_nr_pages -= 1U << folio_order(*fi); ++ __bch2_folio_create(*fi, __GFP_NOFAIL|GFP_KERNEL); ++ folio_put(*fi); ++ folio_put(*fi); ++ } ++ ++ return 0; ++} ++ ++static inline struct folio *readpage_iter_peek(struct readpages_iter *iter) ++{ ++ if (iter->idx >= iter->folios.nr) ++ return NULL; ++ return iter->folios.data[iter->idx]; ++} ++ ++static inline void readpage_iter_advance(struct readpages_iter *iter) ++{ ++ iter->idx++; ++} ++ ++static bool extent_partial_reads_expensive(struct bkey_s_c k) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ struct bch_extent_crc_unpacked crc; ++ const union bch_extent_entry *i; ++ ++ bkey_for_each_crc(k.k, ptrs, crc, i) ++ if (crc.csum_type || crc.compression_type) ++ return true; ++ return false; ++} ++ ++static int readpage_bio_extend(struct btree_trans *trans, ++ struct readpages_iter *iter, ++ struct bio *bio, ++ unsigned sectors_this_extent, ++ bool get_more) ++{ ++ /* Don't hold btree locks while allocating memory: */ ++ bch2_trans_unlock(trans); ++ ++ while (bio_sectors(bio) < sectors_this_extent && ++ bio->bi_vcnt < bio->bi_max_vecs) { ++ struct folio *folio = readpage_iter_peek(iter); ++ int ret; ++ ++ if (folio) { ++ readpage_iter_advance(iter); ++ } else { ++ pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT; ++ ++ if (!get_more) ++ break; ++ ++ folio = xa_load(&iter->mapping->i_pages, folio_offset); ++ if (folio && !xa_is_value(folio)) ++ break; ++ ++ folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), 0); ++ if (!folio) ++ break; ++ ++ if (!__bch2_folio_create(folio, GFP_KERNEL)) { ++ folio_put(folio); ++ break; ++ } ++ ++ ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_KERNEL); ++ if (ret) { ++ __bch2_folio_release(folio); ++ folio_put(folio); ++ break; ++ } ++ ++ folio_put(folio); ++ } ++ ++ BUG_ON(folio_sector(folio) != bio_end_sector(bio)); ++ ++ BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0)); ++ } ++ ++ return bch2_trans_relock(trans); ++} ++ ++static void bchfs_read(struct btree_trans *trans, ++ struct bch_read_bio *rbio, ++ subvol_inum inum, ++ struct readpages_iter *readpages_iter) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_buf sk; ++ int flags = BCH_READ_RETRY_IF_STALE| ++ BCH_READ_MAY_PROMOTE; ++ u32 snapshot; ++ int ret = 0; ++ ++ rbio->c = c; ++ rbio->start_time = local_clock(); ++ rbio->subvol = inum.subvol; ++ ++ bch2_bkey_buf_init(&sk); ++retry: ++ bch2_trans_begin(trans); ++ iter = (struct btree_iter) { NULL }; ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ SPOS(inum.inum, rbio->bio.bi_iter.bi_sector, snapshot), ++ BTREE_ITER_SLOTS); ++ while (1) { ++ struct bkey_s_c k; ++ unsigned bytes, sectors, offset_into_extent; ++ enum btree_id data_btree = BTREE_ID_extents; ++ ++ /* ++ * read_extent -> io_time_reset may cause a transaction restart ++ * without returning an error, we need to check for that here: ++ */ ++ ret = bch2_trans_relock(trans); ++ if (ret) ++ break; ++ ++ bch2_btree_iter_set_pos(&iter, ++ POS(inum.inum, rbio->bio.bi_iter.bi_sector)); ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ break; ++ ++ offset_into_extent = iter.pos.offset - ++ bkey_start_offset(k.k); ++ sectors = k.k->size - offset_into_extent; ++ ++ bch2_bkey_buf_reassemble(&sk, c, k); ++ ++ ret = bch2_read_indirect_extent(trans, &data_btree, ++ &offset_into_extent, &sk); ++ if (ret) ++ break; ++ ++ k = bkey_i_to_s_c(sk.k); ++ ++ sectors = min(sectors, k.k->size - offset_into_extent); ++ ++ if (readpages_iter) { ++ ret = readpage_bio_extend(trans, readpages_iter, &rbio->bio, sectors, ++ extent_partial_reads_expensive(k)); ++ if (ret) ++ break; ++ } ++ ++ bytes = min(sectors, bio_sectors(&rbio->bio)) << 9; ++ swap(rbio->bio.bi_iter.bi_size, bytes); ++ ++ if (rbio->bio.bi_iter.bi_size == bytes) ++ flags |= BCH_READ_LAST_FRAGMENT; ++ ++ bch2_bio_page_state_set(&rbio->bio, k); ++ ++ bch2_read_extent(trans, rbio, iter.pos, ++ data_btree, k, offset_into_extent, flags); ++ ++ if (flags & BCH_READ_LAST_FRAGMENT) ++ break; ++ ++ swap(rbio->bio.bi_iter.bi_size, bytes); ++ bio_advance(&rbio->bio, bytes); ++ ++ ret = btree_trans_too_many_iters(trans); ++ if (ret) ++ break; ++ } ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ if (ret) { ++ bch_err_inum_offset_ratelimited(c, ++ iter.pos.inode, ++ iter.pos.offset << 9, ++ "read error %i from btree lookup", ret); ++ rbio->bio.bi_status = BLK_STS_IOERR; ++ bio_endio(&rbio->bio); ++ } ++ ++ bch2_bkey_buf_exit(&sk, c); ++} ++ ++void bch2_readahead(struct readahead_control *ractl) ++{ ++ struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_io_opts opts; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct folio *folio; ++ struct readpages_iter readpages_iter; ++ int ret; ++ ++ bch2_inode_opts_get(&opts, c, &inode->ei_inode); ++ ++ ret = readpages_iter_init(&readpages_iter, ractl); ++ BUG_ON(ret); ++ ++ bch2_pagecache_add_get(inode); ++ ++ while ((folio = readpage_iter_peek(&readpages_iter))) { ++ unsigned n = min_t(unsigned, ++ readpages_iter.folios.nr - ++ readpages_iter.idx, ++ BIO_MAX_VECS); ++ struct bch_read_bio *rbio = ++ rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ, ++ GFP_KERNEL, &c->bio_read), ++ opts); ++ ++ readpage_iter_advance(&readpages_iter); ++ ++ rbio->bio.bi_iter.bi_sector = folio_sector(folio); ++ rbio->bio.bi_end_io = bch2_readpages_end_io; ++ BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0)); ++ ++ bchfs_read(trans, rbio, inode_inum(inode), ++ &readpages_iter); ++ bch2_trans_unlock(trans); ++ } ++ ++ bch2_pagecache_add_put(inode); ++ ++ bch2_trans_put(trans); ++ darray_exit(&readpages_iter.folios); ++} ++ ++static void __bchfs_readfolio(struct bch_fs *c, struct bch_read_bio *rbio, ++ subvol_inum inum, struct folio *folio) ++{ ++ bch2_folio_create(folio, __GFP_NOFAIL); ++ ++ rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC; ++ rbio->bio.bi_iter.bi_sector = folio_sector(folio); ++ BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0)); ++ ++ bch2_trans_run(c, (bchfs_read(trans, rbio, inum, NULL), 0)); ++} ++ ++static void bch2_read_single_folio_end_io(struct bio *bio) ++{ ++ complete(bio->bi_private); ++} ++ ++int bch2_read_single_folio(struct folio *folio, struct address_space *mapping) ++{ ++ struct bch_inode_info *inode = to_bch_ei(mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_read_bio *rbio; ++ struct bch_io_opts opts; ++ int ret; ++ DECLARE_COMPLETION_ONSTACK(done); ++ ++ bch2_inode_opts_get(&opts, c, &inode->ei_inode); ++ ++ rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_KERNEL, &c->bio_read), ++ opts); ++ rbio->bio.bi_private = &done; ++ rbio->bio.bi_end_io = bch2_read_single_folio_end_io; ++ ++ __bchfs_readfolio(c, rbio, inode_inum(inode), folio); ++ wait_for_completion(&done); ++ ++ ret = blk_status_to_errno(rbio->bio.bi_status); ++ bio_put(&rbio->bio); ++ ++ if (ret < 0) ++ return ret; ++ ++ folio_mark_uptodate(folio); ++ return 0; ++} ++ ++int bch2_read_folio(struct file *file, struct folio *folio) ++{ ++ int ret; ++ ++ ret = bch2_read_single_folio(folio, folio->mapping); ++ folio_unlock(folio); ++ return bch2_err_class(ret); ++} ++ ++/* writepages: */ ++ ++struct bch_writepage_io { ++ struct bch_inode_info *inode; ++ ++ /* must be last: */ ++ struct bch_write_op op; ++}; ++ ++struct bch_writepage_state { ++ struct bch_writepage_io *io; ++ struct bch_io_opts opts; ++ struct bch_folio_sector *tmp; ++ unsigned tmp_sectors; ++}; ++ ++static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c, ++ struct bch_inode_info *inode) ++{ ++ struct bch_writepage_state ret = { 0 }; ++ ++ bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode); ++ return ret; ++} ++ ++static void bch2_writepage_io_done(struct bch_write_op *op) ++{ ++ struct bch_writepage_io *io = ++ container_of(op, struct bch_writepage_io, op); ++ struct bch_fs *c = io->op.c; ++ struct bio *bio = &io->op.wbio.bio; ++ struct folio_iter fi; ++ unsigned i; ++ ++ if (io->op.error) { ++ set_bit(EI_INODE_ERROR, &io->inode->ei_flags); ++ ++ bio_for_each_folio_all(fi, bio) { ++ struct bch_folio *s; ++ ++ folio_set_error(fi.folio); ++ mapping_set_error(fi.folio->mapping, -EIO); ++ ++ s = __bch2_folio(fi.folio); ++ spin_lock(&s->lock); ++ for (i = 0; i < folio_sectors(fi.folio); i++) ++ s->s[i].nr_replicas = 0; ++ spin_unlock(&s->lock); ++ } ++ } ++ ++ if (io->op.flags & BCH_WRITE_WROTE_DATA_INLINE) { ++ bio_for_each_folio_all(fi, bio) { ++ struct bch_folio *s; ++ ++ s = __bch2_folio(fi.folio); ++ spin_lock(&s->lock); ++ for (i = 0; i < folio_sectors(fi.folio); i++) ++ s->s[i].nr_replicas = 0; ++ spin_unlock(&s->lock); ++ } ++ } ++ ++ /* ++ * racing with fallocate can cause us to add fewer sectors than ++ * expected - but we shouldn't add more sectors than expected: ++ */ ++ WARN_ON_ONCE(io->op.i_sectors_delta > 0); ++ ++ /* ++ * (error (due to going RO) halfway through a page can screw that up ++ * slightly) ++ * XXX wtf? ++ BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS); ++ */ ++ ++ /* ++ * PageWriteback is effectively our ref on the inode - fixup i_blocks ++ * before calling end_page_writeback: ++ */ ++ bch2_i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta); ++ ++ bio_for_each_folio_all(fi, bio) { ++ struct bch_folio *s = __bch2_folio(fi.folio); ++ ++ if (atomic_dec_and_test(&s->write_count)) ++ folio_end_writeback(fi.folio); ++ } ++ ++ bio_put(&io->op.wbio.bio); ++} ++ ++static void bch2_writepage_do_io(struct bch_writepage_state *w) ++{ ++ struct bch_writepage_io *io = w->io; ++ ++ w->io = NULL; ++ closure_call(&io->op.cl, bch2_write, NULL, NULL); ++} ++ ++/* ++ * Get a bch_writepage_io and add @page to it - appending to an existing one if ++ * possible, else allocating a new one: ++ */ ++static void bch2_writepage_io_alloc(struct bch_fs *c, ++ struct writeback_control *wbc, ++ struct bch_writepage_state *w, ++ struct bch_inode_info *inode, ++ u64 sector, ++ unsigned nr_replicas) ++{ ++ struct bch_write_op *op; ++ ++ w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS, ++ REQ_OP_WRITE, ++ GFP_KERNEL, ++ &c->writepage_bioset), ++ struct bch_writepage_io, op.wbio.bio); ++ ++ w->io->inode = inode; ++ op = &w->io->op; ++ bch2_write_op_init(op, c, w->opts); ++ op->target = w->opts.foreground_target; ++ op->nr_replicas = nr_replicas; ++ op->res.nr_replicas = nr_replicas; ++ op->write_point = writepoint_hashed(inode->ei_last_dirtied); ++ op->subvol = inode->ei_subvol; ++ op->pos = POS(inode->v.i_ino, sector); ++ op->end_io = bch2_writepage_io_done; ++ op->devs_need_flush = &inode->ei_devs_need_flush; ++ op->wbio.bio.bi_iter.bi_sector = sector; ++ op->wbio.bio.bi_opf = wbc_to_write_flags(wbc); ++} ++ ++static int __bch2_writepage(struct folio *folio, ++ struct writeback_control *wbc, ++ void *data) ++{ ++ struct bch_inode_info *inode = to_bch_ei(folio->mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_writepage_state *w = data; ++ struct bch_folio *s; ++ unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX; ++ loff_t i_size = i_size_read(&inode->v); ++ int ret; ++ ++ EBUG_ON(!folio_test_uptodate(folio)); ++ ++ /* Is the folio fully inside i_size? */ ++ if (folio_end_pos(folio) <= i_size) ++ goto do_io; ++ ++ /* Is the folio fully outside i_size? (truncate in progress) */ ++ if (folio_pos(folio) >= i_size) { ++ folio_unlock(folio); ++ return 0; ++ } ++ ++ /* ++ * The folio straddles i_size. It must be zeroed out on each and every ++ * writepage invocation because it may be mmapped. "A file is mapped ++ * in multiples of the folio size. For a file that is not a multiple of ++ * the folio size, the remaining memory is zeroed when mapped, and ++ * writes to that region are not written out to the file." ++ */ ++ folio_zero_segment(folio, ++ i_size - folio_pos(folio), ++ folio_size(folio)); ++do_io: ++ f_sectors = folio_sectors(folio); ++ s = bch2_folio(folio); ++ ++ if (f_sectors > w->tmp_sectors) { ++ kfree(w->tmp); ++ w->tmp = kcalloc(f_sectors, sizeof(struct bch_folio_sector), __GFP_NOFAIL); ++ w->tmp_sectors = f_sectors; ++ } ++ ++ /* ++ * Things get really hairy with errors during writeback: ++ */ ++ ret = bch2_get_folio_disk_reservation(c, inode, folio, false); ++ BUG_ON(ret); ++ ++ /* Before unlocking the page, get copy of reservations: */ ++ spin_lock(&s->lock); ++ memcpy(w->tmp, s->s, sizeof(struct bch_folio_sector) * f_sectors); ++ ++ for (i = 0; i < f_sectors; i++) { ++ if (s->s[i].state < SECTOR_dirty) ++ continue; ++ ++ nr_replicas_this_write = ++ min_t(unsigned, nr_replicas_this_write, ++ s->s[i].nr_replicas + ++ s->s[i].replicas_reserved); ++ } ++ ++ for (i = 0; i < f_sectors; i++) { ++ if (s->s[i].state < SECTOR_dirty) ++ continue; ++ ++ s->s[i].nr_replicas = w->opts.compression ++ ? 0 : nr_replicas_this_write; ++ ++ s->s[i].replicas_reserved = 0; ++ bch2_folio_sector_set(folio, s, i, SECTOR_allocated); ++ } ++ spin_unlock(&s->lock); ++ ++ BUG_ON(atomic_read(&s->write_count)); ++ atomic_set(&s->write_count, 1); ++ ++ BUG_ON(folio_test_writeback(folio)); ++ folio_start_writeback(folio); ++ ++ folio_unlock(folio); ++ ++ offset = 0; ++ while (1) { ++ unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0; ++ u64 sector; ++ ++ while (offset < f_sectors && ++ w->tmp[offset].state < SECTOR_dirty) ++ offset++; ++ ++ if (offset == f_sectors) ++ break; ++ ++ while (offset + sectors < f_sectors && ++ w->tmp[offset + sectors].state >= SECTOR_dirty) { ++ reserved_sectors += w->tmp[offset + sectors].replicas_reserved; ++ dirty_sectors += w->tmp[offset + sectors].state == SECTOR_dirty; ++ sectors++; ++ } ++ BUG_ON(!sectors); ++ ++ sector = folio_sector(folio) + offset; ++ ++ if (w->io && ++ (w->io->op.res.nr_replicas != nr_replicas_this_write || ++ bio_full(&w->io->op.wbio.bio, sectors << 9) || ++ w->io->op.wbio.bio.bi_iter.bi_size + (sectors << 9) >= ++ (BIO_MAX_VECS * PAGE_SIZE) || ++ bio_end_sector(&w->io->op.wbio.bio) != sector)) ++ bch2_writepage_do_io(w); ++ ++ if (!w->io) ++ bch2_writepage_io_alloc(c, wbc, w, inode, sector, ++ nr_replicas_this_write); ++ ++ atomic_inc(&s->write_count); ++ ++ BUG_ON(inode != w->io->inode); ++ BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio, ++ sectors << 9, offset << 9)); ++ ++ /* Check for writing past i_size: */ ++ WARN_ONCE((bio_end_sector(&w->io->op.wbio.bio) << 9) > ++ round_up(i_size, block_bytes(c)) && ++ !test_bit(BCH_FS_EMERGENCY_RO, &c->flags), ++ "writing past i_size: %llu > %llu (unrounded %llu)\n", ++ bio_end_sector(&w->io->op.wbio.bio) << 9, ++ round_up(i_size, block_bytes(c)), ++ i_size); ++ ++ w->io->op.res.sectors += reserved_sectors; ++ w->io->op.i_sectors_delta -= dirty_sectors; ++ w->io->op.new_i_size = i_size; ++ ++ offset += sectors; ++ } ++ ++ if (atomic_dec_and_test(&s->write_count)) ++ folio_end_writeback(folio); ++ ++ return 0; ++} ++ ++int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc) ++{ ++ struct bch_fs *c = mapping->host->i_sb->s_fs_info; ++ struct bch_writepage_state w = ++ bch_writepage_state_init(c, to_bch_ei(mapping->host)); ++ struct blk_plug plug; ++ int ret; ++ ++ blk_start_plug(&plug); ++ ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w); ++ if (w.io) ++ bch2_writepage_do_io(&w); ++ blk_finish_plug(&plug); ++ kfree(w.tmp); ++ return bch2_err_class(ret); ++} ++ ++/* buffered writes: */ ++ ++int bch2_write_begin(struct file *file, struct address_space *mapping, ++ loff_t pos, unsigned len, ++ struct page **pagep, void **fsdata) ++{ ++ struct bch_inode_info *inode = to_bch_ei(mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch2_folio_reservation *res; ++ struct folio *folio; ++ unsigned offset; ++ int ret = -ENOMEM; ++ ++ res = kmalloc(sizeof(*res), GFP_KERNEL); ++ if (!res) ++ return -ENOMEM; ++ ++ bch2_folio_reservation_init(c, inode, res); ++ *fsdata = res; ++ ++ bch2_pagecache_add_get(inode); ++ ++ folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, ++ FGP_LOCK|FGP_WRITE|FGP_CREAT|FGP_STABLE, ++ mapping_gfp_mask(mapping)); ++ if (IS_ERR_OR_NULL(folio)) ++ goto err_unlock; ++ ++ offset = pos - folio_pos(folio); ++ len = min_t(size_t, len, folio_end_pos(folio) - pos); ++ ++ if (folio_test_uptodate(folio)) ++ goto out; ++ ++ /* If we're writing entire folio, don't need to read it in first: */ ++ if (!offset && len == folio_size(folio)) ++ goto out; ++ ++ if (!offset && pos + len >= inode->v.i_size) { ++ folio_zero_segment(folio, len, folio_size(folio)); ++ flush_dcache_folio(folio); ++ goto out; ++ } ++ ++ if (folio_pos(folio) >= inode->v.i_size) { ++ folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio)); ++ flush_dcache_folio(folio); ++ goto out; ++ } ++readpage: ++ ret = bch2_read_single_folio(folio, mapping); ++ if (ret) ++ goto err; ++out: ++ ret = bch2_folio_set(c, inode_inum(inode), &folio, 1); ++ if (ret) ++ goto err; ++ ++ ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len); ++ if (ret) { ++ if (!folio_test_uptodate(folio)) { ++ /* ++ * If the folio hasn't been read in, we won't know if we ++ * actually need a reservation - we don't actually need ++ * to read here, we just need to check if the folio is ++ * fully backed by uncompressed data: ++ */ ++ goto readpage; ++ } ++ ++ goto err; ++ } ++ ++ *pagep = &folio->page; ++ return 0; ++err: ++ folio_unlock(folio); ++ folio_put(folio); ++ *pagep = NULL; ++err_unlock: ++ bch2_pagecache_add_put(inode); ++ kfree(res); ++ *fsdata = NULL; ++ return bch2_err_class(ret); ++} ++ ++int bch2_write_end(struct file *file, struct address_space *mapping, ++ loff_t pos, unsigned len, unsigned copied, ++ struct page *page, void *fsdata) ++{ ++ struct bch_inode_info *inode = to_bch_ei(mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch2_folio_reservation *res = fsdata; ++ struct folio *folio = page_folio(page); ++ unsigned offset = pos - folio_pos(folio); ++ ++ lockdep_assert_held(&inode->v.i_rwsem); ++ BUG_ON(offset + copied > folio_size(folio)); ++ ++ if (unlikely(copied < len && !folio_test_uptodate(folio))) { ++ /* ++ * The folio needs to be read in, but that would destroy ++ * our partial write - simplest thing is to just force ++ * userspace to redo the write: ++ */ ++ folio_zero_range(folio, 0, folio_size(folio)); ++ flush_dcache_folio(folio); ++ copied = 0; ++ } ++ ++ spin_lock(&inode->v.i_lock); ++ if (pos + copied > inode->v.i_size) ++ i_size_write(&inode->v, pos + copied); ++ spin_unlock(&inode->v.i_lock); ++ ++ if (copied) { ++ if (!folio_test_uptodate(folio)) ++ folio_mark_uptodate(folio); ++ ++ bch2_set_folio_dirty(c, inode, folio, res, offset, copied); ++ ++ inode->ei_last_dirtied = (unsigned long) current; ++ } ++ ++ folio_unlock(folio); ++ folio_put(folio); ++ bch2_pagecache_add_put(inode); ++ ++ bch2_folio_reservation_put(c, inode, res); ++ kfree(res); ++ ++ return copied; ++} ++ ++static noinline void folios_trunc(folios *fs, struct folio **fi) ++{ ++ while (fs->data + fs->nr > fi) { ++ struct folio *f = darray_pop(fs); ++ ++ folio_unlock(f); ++ folio_put(f); ++ } ++} ++ ++static int __bch2_buffered_write(struct bch_inode_info *inode, ++ struct address_space *mapping, ++ struct iov_iter *iter, ++ loff_t pos, unsigned len) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch2_folio_reservation res; ++ folios fs; ++ struct folio **fi, *f; ++ unsigned copied = 0, f_offset, f_copied; ++ u64 end = pos + len, f_pos, f_len; ++ loff_t last_folio_pos = inode->v.i_size; ++ int ret = 0; ++ ++ BUG_ON(!len); ++ ++ bch2_folio_reservation_init(c, inode, &res); ++ darray_init(&fs); ++ ++ ret = bch2_filemap_get_contig_folios_d(mapping, pos, end, ++ FGP_LOCK|FGP_WRITE|FGP_STABLE|FGP_CREAT, ++ mapping_gfp_mask(mapping), ++ &fs); ++ if (ret) ++ goto out; ++ ++ BUG_ON(!fs.nr); ++ ++ f = darray_first(fs); ++ if (pos != folio_pos(f) && !folio_test_uptodate(f)) { ++ ret = bch2_read_single_folio(f, mapping); ++ if (ret) ++ goto out; ++ } ++ ++ f = darray_last(fs); ++ end = min(end, folio_end_pos(f)); ++ last_folio_pos = folio_pos(f); ++ if (end != folio_end_pos(f) && !folio_test_uptodate(f)) { ++ if (end >= inode->v.i_size) { ++ folio_zero_range(f, 0, folio_size(f)); ++ } else { ++ ret = bch2_read_single_folio(f, mapping); ++ if (ret) ++ goto out; ++ } ++ } ++ ++ ret = bch2_folio_set(c, inode_inum(inode), fs.data, fs.nr); ++ if (ret) ++ goto out; ++ ++ f_pos = pos; ++ f_offset = pos - folio_pos(darray_first(fs)); ++ darray_for_each(fs, fi) { ++ f = *fi; ++ f_len = min(end, folio_end_pos(f)) - f_pos; ++ ++ /* ++ * XXX: per POSIX and fstests generic/275, on -ENOSPC we're ++ * supposed to write as much as we have disk space for. ++ * ++ * On failure here we should still write out a partial page if ++ * we aren't completely out of disk space - we don't do that ++ * yet: ++ */ ++ ret = bch2_folio_reservation_get(c, inode, f, &res, f_offset, f_len); ++ if (unlikely(ret)) { ++ folios_trunc(&fs, fi); ++ if (!fs.nr) ++ goto out; ++ ++ end = min(end, folio_end_pos(darray_last(fs))); ++ break; ++ } ++ ++ f_pos = folio_end_pos(f); ++ f_offset = 0; ++ } ++ ++ if (mapping_writably_mapped(mapping)) ++ darray_for_each(fs, fi) ++ flush_dcache_folio(*fi); ++ ++ f_pos = pos; ++ f_offset = pos - folio_pos(darray_first(fs)); ++ darray_for_each(fs, fi) { ++ f = *fi; ++ f_len = min(end, folio_end_pos(f)) - f_pos; ++ f_copied = copy_page_from_iter_atomic(&f->page, f_offset, f_len, iter); ++ if (!f_copied) { ++ folios_trunc(&fs, fi); ++ break; ++ } ++ ++ if (!folio_test_uptodate(f) && ++ f_copied != folio_size(f) && ++ pos + copied + f_copied < inode->v.i_size) { ++ iov_iter_revert(iter, f_copied); ++ folio_zero_range(f, 0, folio_size(f)); ++ folios_trunc(&fs, fi); ++ break; ++ } ++ ++ flush_dcache_folio(f); ++ copied += f_copied; ++ ++ if (f_copied != f_len) { ++ folios_trunc(&fs, fi + 1); ++ break; ++ } ++ ++ f_pos = folio_end_pos(f); ++ f_offset = 0; ++ } ++ ++ if (!copied) ++ goto out; ++ ++ end = pos + copied; ++ ++ spin_lock(&inode->v.i_lock); ++ if (end > inode->v.i_size) ++ i_size_write(&inode->v, end); ++ spin_unlock(&inode->v.i_lock); ++ ++ f_pos = pos; ++ f_offset = pos - folio_pos(darray_first(fs)); ++ darray_for_each(fs, fi) { ++ f = *fi; ++ f_len = min(end, folio_end_pos(f)) - f_pos; ++ ++ if (!folio_test_uptodate(f)) ++ folio_mark_uptodate(f); ++ ++ bch2_set_folio_dirty(c, inode, f, &res, f_offset, f_len); ++ ++ f_pos = folio_end_pos(f); ++ f_offset = 0; ++ } ++ ++ inode->ei_last_dirtied = (unsigned long) current; ++out: ++ darray_for_each(fs, fi) { ++ folio_unlock(*fi); ++ folio_put(*fi); ++ } ++ ++ /* ++ * If the last folio added to the mapping starts beyond current EOF, we ++ * performed a short write but left around at least one post-EOF folio. ++ * Clean up the mapping before we return. ++ */ ++ if (last_folio_pos >= inode->v.i_size) ++ truncate_pagecache(&inode->v, inode->v.i_size); ++ ++ darray_exit(&fs); ++ bch2_folio_reservation_put(c, inode, &res); ++ ++ return copied ?: ret; ++} ++ ++static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter) ++{ ++ struct file *file = iocb->ki_filp; ++ struct address_space *mapping = file->f_mapping; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ loff_t pos = iocb->ki_pos; ++ ssize_t written = 0; ++ int ret = 0; ++ ++ bch2_pagecache_add_get(inode); ++ ++ do { ++ unsigned offset = pos & (PAGE_SIZE - 1); ++ unsigned bytes = iov_iter_count(iter); ++again: ++ /* ++ * Bring in the user page that we will copy from _first_. ++ * Otherwise there's a nasty deadlock on copying from the ++ * same page as we're writing to, without it being marked ++ * up-to-date. ++ * ++ * Not only is this an optimisation, but it is also required ++ * to check that the address is actually valid, when atomic ++ * usercopies are used, below. ++ */ ++ if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { ++ bytes = min_t(unsigned long, iov_iter_count(iter), ++ PAGE_SIZE - offset); ++ ++ if (unlikely(fault_in_iov_iter_readable(iter, bytes))) { ++ ret = -EFAULT; ++ break; ++ } ++ } ++ ++ if (unlikely(fatal_signal_pending(current))) { ++ ret = -EINTR; ++ break; ++ } ++ ++ ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes); ++ if (unlikely(ret < 0)) ++ break; ++ ++ cond_resched(); ++ ++ if (unlikely(ret == 0)) { ++ /* ++ * If we were unable to copy any data at all, we must ++ * fall back to a single segment length write. ++ * ++ * If we didn't fallback here, we could livelock ++ * because not all segments in the iov can be copied at ++ * once without a pagefault. ++ */ ++ bytes = min_t(unsigned long, PAGE_SIZE - offset, ++ iov_iter_single_seg_count(iter)); ++ goto again; ++ } ++ pos += ret; ++ written += ret; ++ ret = 0; ++ ++ balance_dirty_pages_ratelimited(mapping); ++ } while (iov_iter_count(iter)); ++ ++ bch2_pagecache_add_put(inode); ++ ++ return written ? written : ret; ++} ++ ++ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from) ++{ ++ struct file *file = iocb->ki_filp; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ ssize_t ret; ++ ++ if (iocb->ki_flags & IOCB_DIRECT) { ++ ret = bch2_direct_write(iocb, from); ++ goto out; ++ } ++ ++ inode_lock(&inode->v); ++ ++ ret = generic_write_checks(iocb, from); ++ if (ret <= 0) ++ goto unlock; ++ ++ ret = file_remove_privs(file); ++ if (ret) ++ goto unlock; ++ ++ ret = file_update_time(file); ++ if (ret) ++ goto unlock; ++ ++ ret = bch2_buffered_write(iocb, from); ++ if (likely(ret > 0)) ++ iocb->ki_pos += ret; ++unlock: ++ inode_unlock(&inode->v); ++ ++ if (ret > 0) ++ ret = generic_write_sync(iocb, ret); ++out: ++ return bch2_err_class(ret); ++} ++ ++void bch2_fs_fs_io_buffered_exit(struct bch_fs *c) ++{ ++ bioset_exit(&c->writepage_bioset); ++} ++ ++int bch2_fs_fs_io_buffered_init(struct bch_fs *c) ++{ ++ if (bioset_init(&c->writepage_bioset, ++ 4, offsetof(struct bch_writepage_io, op.wbio.bio), ++ BIOSET_NEED_BVECS)) ++ return -BCH_ERR_ENOMEM_writepage_bioset_init; ++ ++ return 0; ++} ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs-io-buffered.h b/fs/bcachefs/fs-io-buffered.h +new file mode 100644 +index 000000000000..a6126ff790e6 +--- /dev/null ++++ b/fs/bcachefs/fs-io-buffered.h +@@ -0,0 +1,27 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_IO_BUFFERED_H ++#define _BCACHEFS_FS_IO_BUFFERED_H ++ ++#ifndef NO_BCACHEFS_FS ++ ++int bch2_read_single_folio(struct folio *, struct address_space *); ++int bch2_read_folio(struct file *, struct folio *); ++ ++int bch2_writepages(struct address_space *, struct writeback_control *); ++void bch2_readahead(struct readahead_control *); ++ ++int bch2_write_begin(struct file *, struct address_space *, loff_t, ++ unsigned, struct page **, void **); ++int bch2_write_end(struct file *, struct address_space *, loff_t, ++ unsigned, unsigned, struct page *, void *); ++ ++ssize_t bch2_write_iter(struct kiocb *, struct iov_iter *); ++ ++void bch2_fs_fs_io_buffered_exit(struct bch_fs *); ++int bch2_fs_fs_io_buffered_init(struct bch_fs *); ++#else ++static inline void bch2_fs_fs_io_buffered_exit(struct bch_fs *c) {} ++static inline int bch2_fs_fs_io_buffered_init(struct bch_fs *c) { return 0; } ++#endif ++ ++#endif /* _BCACHEFS_FS_IO_BUFFERED_H */ +diff --git a/fs/bcachefs/fs-io-direct.c b/fs/bcachefs/fs-io-direct.c +new file mode 100644 +index 000000000000..6a9557e7ecab +--- /dev/null ++++ b/fs/bcachefs/fs-io-direct.c +@@ -0,0 +1,679 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "fs.h" ++#include "fs-io.h" ++#include "fs-io-direct.h" ++#include "fs-io-pagecache.h" ++#include "io_read.h" ++#include "io_write.h" ++ ++#include ++#include ++#include ++#include ++ ++/* O_DIRECT reads */ ++ ++struct dio_read { ++ struct closure cl; ++ struct kiocb *req; ++ long ret; ++ bool should_dirty; ++ struct bch_read_bio rbio; ++}; ++ ++static void bio_check_or_release(struct bio *bio, bool check_dirty) ++{ ++ if (check_dirty) { ++ bio_check_pages_dirty(bio); ++ } else { ++ bio_release_pages(bio, false); ++ bio_put(bio); ++ } ++} ++ ++static void bch2_dio_read_complete(struct closure *cl) ++{ ++ struct dio_read *dio = container_of(cl, struct dio_read, cl); ++ ++ dio->req->ki_complete(dio->req, dio->ret); ++ bio_check_or_release(&dio->rbio.bio, dio->should_dirty); ++} ++ ++static void bch2_direct_IO_read_endio(struct bio *bio) ++{ ++ struct dio_read *dio = bio->bi_private; ++ ++ if (bio->bi_status) ++ dio->ret = blk_status_to_errno(bio->bi_status); ++ ++ closure_put(&dio->cl); ++} ++ ++static void bch2_direct_IO_read_split_endio(struct bio *bio) ++{ ++ struct dio_read *dio = bio->bi_private; ++ bool should_dirty = dio->should_dirty; ++ ++ bch2_direct_IO_read_endio(bio); ++ bio_check_or_release(bio, should_dirty); ++} ++ ++static int bch2_direct_IO_read(struct kiocb *req, struct iov_iter *iter) ++{ ++ struct file *file = req->ki_filp; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_io_opts opts; ++ struct dio_read *dio; ++ struct bio *bio; ++ loff_t offset = req->ki_pos; ++ bool sync = is_sync_kiocb(req); ++ size_t shorten; ++ ssize_t ret; ++ ++ bch2_inode_opts_get(&opts, c, &inode->ei_inode); ++ ++ if ((offset|iter->count) & (block_bytes(c) - 1)) ++ return -EINVAL; ++ ++ ret = min_t(loff_t, iter->count, ++ max_t(loff_t, 0, i_size_read(&inode->v) - offset)); ++ ++ if (!ret) ++ return ret; ++ ++ shorten = iov_iter_count(iter) - round_up(ret, block_bytes(c)); ++ iter->count -= shorten; ++ ++ bio = bio_alloc_bioset(NULL, ++ bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), ++ REQ_OP_READ, ++ GFP_KERNEL, ++ &c->dio_read_bioset); ++ ++ bio->bi_end_io = bch2_direct_IO_read_endio; ++ ++ dio = container_of(bio, struct dio_read, rbio.bio); ++ closure_init(&dio->cl, NULL); ++ ++ /* ++ * this is a _really_ horrible hack just to avoid an atomic sub at the ++ * end: ++ */ ++ if (!sync) { ++ set_closure_fn(&dio->cl, bch2_dio_read_complete, NULL); ++ atomic_set(&dio->cl.remaining, ++ CLOSURE_REMAINING_INITIALIZER - ++ CLOSURE_RUNNING + ++ CLOSURE_DESTRUCTOR); ++ } else { ++ atomic_set(&dio->cl.remaining, ++ CLOSURE_REMAINING_INITIALIZER + 1); ++ } ++ ++ dio->req = req; ++ dio->ret = ret; ++ /* ++ * This is one of the sketchier things I've encountered: we have to skip ++ * the dirtying of requests that are internal from the kernel (i.e. from ++ * loopback), because we'll deadlock on page_lock. ++ */ ++ dio->should_dirty = iter_is_iovec(iter); ++ ++ goto start; ++ while (iter->count) { ++ bio = bio_alloc_bioset(NULL, ++ bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), ++ REQ_OP_READ, ++ GFP_KERNEL, ++ &c->bio_read); ++ bio->bi_end_io = bch2_direct_IO_read_split_endio; ++start: ++ bio->bi_opf = REQ_OP_READ|REQ_SYNC; ++ bio->bi_iter.bi_sector = offset >> 9; ++ bio->bi_private = dio; ++ ++ ret = bio_iov_iter_get_pages(bio, iter); ++ if (ret < 0) { ++ /* XXX: fault inject this path */ ++ bio->bi_status = BLK_STS_RESOURCE; ++ bio_endio(bio); ++ break; ++ } ++ ++ offset += bio->bi_iter.bi_size; ++ ++ if (dio->should_dirty) ++ bio_set_pages_dirty(bio); ++ ++ if (iter->count) ++ closure_get(&dio->cl); ++ ++ bch2_read(c, rbio_init(bio, opts), inode_inum(inode)); ++ } ++ ++ iter->count += shorten; ++ ++ if (sync) { ++ closure_sync(&dio->cl); ++ closure_debug_destroy(&dio->cl); ++ ret = dio->ret; ++ bio_check_or_release(&dio->rbio.bio, dio->should_dirty); ++ return ret; ++ } else { ++ return -EIOCBQUEUED; ++ } ++} ++ ++ssize_t bch2_read_iter(struct kiocb *iocb, struct iov_iter *iter) ++{ ++ struct file *file = iocb->ki_filp; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct address_space *mapping = file->f_mapping; ++ size_t count = iov_iter_count(iter); ++ ssize_t ret; ++ ++ if (!count) ++ return 0; /* skip atime */ ++ ++ if (iocb->ki_flags & IOCB_DIRECT) { ++ struct blk_plug plug; ++ ++ if (unlikely(mapping->nrpages)) { ++ ret = filemap_write_and_wait_range(mapping, ++ iocb->ki_pos, ++ iocb->ki_pos + count - 1); ++ if (ret < 0) ++ goto out; ++ } ++ ++ file_accessed(file); ++ ++ blk_start_plug(&plug); ++ ret = bch2_direct_IO_read(iocb, iter); ++ blk_finish_plug(&plug); ++ ++ if (ret >= 0) ++ iocb->ki_pos += ret; ++ } else { ++ bch2_pagecache_add_get(inode); ++ ret = generic_file_read_iter(iocb, iter); ++ bch2_pagecache_add_put(inode); ++ } ++out: ++ return bch2_err_class(ret); ++} ++ ++/* O_DIRECT writes */ ++ ++struct dio_write { ++ struct kiocb *req; ++ struct address_space *mapping; ++ struct bch_inode_info *inode; ++ struct mm_struct *mm; ++ unsigned loop:1, ++ extending:1, ++ sync:1, ++ flush:1, ++ free_iov:1; ++ struct quota_res quota_res; ++ u64 written; ++ ++ struct iov_iter iter; ++ struct iovec inline_vecs[2]; ++ ++ /* must be last: */ ++ struct bch_write_op op; ++}; ++ ++static bool bch2_check_range_allocated(struct bch_fs *c, subvol_inum inum, ++ u64 offset, u64 size, ++ unsigned nr_replicas, bool compressed) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ u64 end = offset + size; ++ u32 snapshot; ++ bool ret = true; ++ int err; ++retry: ++ bch2_trans_begin(trans); ++ ++ err = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (err) ++ goto err; ++ ++ for_each_btree_key_norestart(trans, iter, BTREE_ID_extents, ++ SPOS(inum.inum, offset, snapshot), ++ BTREE_ITER_SLOTS, k, err) { ++ if (bkey_ge(bkey_start_pos(k.k), POS(inum.inum, end))) ++ break; ++ ++ if (k.k->p.snapshot != snapshot || ++ nr_replicas > bch2_bkey_replicas(c, k) || ++ (!compressed && bch2_bkey_sectors_compressed(k))) { ++ ret = false; ++ break; ++ } ++ } ++ ++ offset = iter.pos.offset; ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(err, BCH_ERR_transaction_restart)) ++ goto retry; ++ bch2_trans_put(trans); ++ ++ return err ? false : ret; ++} ++ ++static noinline bool bch2_dio_write_check_allocated(struct dio_write *dio) ++{ ++ struct bch_fs *c = dio->op.c; ++ struct bch_inode_info *inode = dio->inode; ++ struct bio *bio = &dio->op.wbio.bio; ++ ++ return bch2_check_range_allocated(c, inode_inum(inode), ++ dio->op.pos.offset, bio_sectors(bio), ++ dio->op.opts.data_replicas, ++ dio->op.opts.compression != 0); ++} ++ ++static void bch2_dio_write_loop_async(struct bch_write_op *); ++static __always_inline long bch2_dio_write_done(struct dio_write *dio); ++ ++/* ++ * We're going to return -EIOCBQUEUED, but we haven't finished consuming the ++ * iov_iter yet, so we need to stash a copy of the iovec: it might be on the ++ * caller's stack, we're not guaranteed that it will live for the duration of ++ * the IO: ++ */ ++static noinline int bch2_dio_write_copy_iov(struct dio_write *dio) ++{ ++ struct iovec *iov = dio->inline_vecs; ++ ++ /* ++ * iov_iter has a single embedded iovec - nothing to do: ++ */ ++ if (iter_is_ubuf(&dio->iter)) ++ return 0; ++ ++ /* ++ * We don't currently handle non-iovec iov_iters here - return an error, ++ * and we'll fall back to doing the IO synchronously: ++ */ ++ if (!iter_is_iovec(&dio->iter)) ++ return -1; ++ ++ if (dio->iter.nr_segs > ARRAY_SIZE(dio->inline_vecs)) { ++ iov = kmalloc_array(dio->iter.nr_segs, sizeof(*iov), ++ GFP_KERNEL); ++ if (unlikely(!iov)) ++ return -ENOMEM; ++ ++ dio->free_iov = true; ++ } ++ ++ memcpy(iov, dio->iter.__iov, dio->iter.nr_segs * sizeof(*iov)); ++ dio->iter.__iov = iov; ++ return 0; ++} ++ ++static void bch2_dio_write_flush_done(struct closure *cl) ++{ ++ struct dio_write *dio = container_of(cl, struct dio_write, op.cl); ++ struct bch_fs *c = dio->op.c; ++ ++ closure_debug_destroy(cl); ++ ++ dio->op.error = bch2_journal_error(&c->journal); ++ ++ bch2_dio_write_done(dio); ++} ++ ++static noinline void bch2_dio_write_flush(struct dio_write *dio) ++{ ++ struct bch_fs *c = dio->op.c; ++ struct bch_inode_unpacked inode; ++ int ret; ++ ++ dio->flush = 0; ++ ++ closure_init(&dio->op.cl, NULL); ++ ++ if (!dio->op.error) { ++ ret = bch2_inode_find_by_inum(c, inode_inum(dio->inode), &inode); ++ if (ret) { ++ dio->op.error = ret; ++ } else { ++ bch2_journal_flush_seq_async(&c->journal, inode.bi_journal_seq, ++ &dio->op.cl); ++ bch2_inode_flush_nocow_writes_async(c, dio->inode, &dio->op.cl); ++ } ++ } ++ ++ if (dio->sync) { ++ closure_sync(&dio->op.cl); ++ closure_debug_destroy(&dio->op.cl); ++ } else { ++ continue_at(&dio->op.cl, bch2_dio_write_flush_done, NULL); ++ } ++} ++ ++static __always_inline long bch2_dio_write_done(struct dio_write *dio) ++{ ++ struct kiocb *req = dio->req; ++ struct bch_inode_info *inode = dio->inode; ++ bool sync = dio->sync; ++ long ret; ++ ++ if (unlikely(dio->flush)) { ++ bch2_dio_write_flush(dio); ++ if (!sync) ++ return -EIOCBQUEUED; ++ } ++ ++ bch2_pagecache_block_put(inode); ++ ++ if (dio->free_iov) ++ kfree(dio->iter.__iov); ++ ++ ret = dio->op.error ?: ((long) dio->written << 9); ++ bio_put(&dio->op.wbio.bio); ++ ++ /* inode->i_dio_count is our ref on inode and thus bch_fs */ ++ inode_dio_end(&inode->v); ++ ++ if (ret < 0) ++ ret = bch2_err_class(ret); ++ ++ if (!sync) { ++ req->ki_complete(req, ret); ++ ret = -EIOCBQUEUED; ++ } ++ return ret; ++} ++ ++static __always_inline void bch2_dio_write_end(struct dio_write *dio) ++{ ++ struct bch_fs *c = dio->op.c; ++ struct kiocb *req = dio->req; ++ struct bch_inode_info *inode = dio->inode; ++ struct bio *bio = &dio->op.wbio.bio; ++ ++ req->ki_pos += (u64) dio->op.written << 9; ++ dio->written += dio->op.written; ++ ++ if (dio->extending) { ++ spin_lock(&inode->v.i_lock); ++ if (req->ki_pos > inode->v.i_size) ++ i_size_write(&inode->v, req->ki_pos); ++ spin_unlock(&inode->v.i_lock); ++ } ++ ++ if (dio->op.i_sectors_delta || dio->quota_res.sectors) { ++ mutex_lock(&inode->ei_quota_lock); ++ __bch2_i_sectors_acct(c, inode, &dio->quota_res, dio->op.i_sectors_delta); ++ __bch2_quota_reservation_put(c, inode, &dio->quota_res); ++ mutex_unlock(&inode->ei_quota_lock); ++ } ++ ++ bio_release_pages(bio, false); ++ ++ if (unlikely(dio->op.error)) ++ set_bit(EI_INODE_ERROR, &inode->ei_flags); ++} ++ ++static __always_inline long bch2_dio_write_loop(struct dio_write *dio) ++{ ++ struct bch_fs *c = dio->op.c; ++ struct kiocb *req = dio->req; ++ struct address_space *mapping = dio->mapping; ++ struct bch_inode_info *inode = dio->inode; ++ struct bch_io_opts opts; ++ struct bio *bio = &dio->op.wbio.bio; ++ unsigned unaligned, iter_count; ++ bool sync = dio->sync, dropped_locks; ++ long ret; ++ ++ bch2_inode_opts_get(&opts, c, &inode->ei_inode); ++ ++ while (1) { ++ iter_count = dio->iter.count; ++ ++ EBUG_ON(current->faults_disabled_mapping); ++ current->faults_disabled_mapping = mapping; ++ ++ ret = bio_iov_iter_get_pages(bio, &dio->iter); ++ ++ dropped_locks = fdm_dropped_locks(); ++ ++ current->faults_disabled_mapping = NULL; ++ ++ /* ++ * If the fault handler returned an error but also signalled ++ * that it dropped & retook ei_pagecache_lock, we just need to ++ * re-shoot down the page cache and retry: ++ */ ++ if (dropped_locks && ret) ++ ret = 0; ++ ++ if (unlikely(ret < 0)) ++ goto err; ++ ++ if (unlikely(dropped_locks)) { ++ ret = bch2_write_invalidate_inode_pages_range(mapping, ++ req->ki_pos, ++ req->ki_pos + iter_count - 1); ++ if (unlikely(ret)) ++ goto err; ++ ++ if (!bio->bi_iter.bi_size) ++ continue; ++ } ++ ++ unaligned = bio->bi_iter.bi_size & (block_bytes(c) - 1); ++ bio->bi_iter.bi_size -= unaligned; ++ iov_iter_revert(&dio->iter, unaligned); ++ ++ if (!bio->bi_iter.bi_size) { ++ /* ++ * bio_iov_iter_get_pages was only able to get < ++ * blocksize worth of pages: ++ */ ++ ret = -EFAULT; ++ goto err; ++ } ++ ++ bch2_write_op_init(&dio->op, c, opts); ++ dio->op.end_io = sync ++ ? NULL ++ : bch2_dio_write_loop_async; ++ dio->op.target = dio->op.opts.foreground_target; ++ dio->op.write_point = writepoint_hashed((unsigned long) current); ++ dio->op.nr_replicas = dio->op.opts.data_replicas; ++ dio->op.subvol = inode->ei_subvol; ++ dio->op.pos = POS(inode->v.i_ino, (u64) req->ki_pos >> 9); ++ dio->op.devs_need_flush = &inode->ei_devs_need_flush; ++ ++ if (sync) ++ dio->op.flags |= BCH_WRITE_SYNC; ++ dio->op.flags |= BCH_WRITE_CHECK_ENOSPC; ++ ++ ret = bch2_quota_reservation_add(c, inode, &dio->quota_res, ++ bio_sectors(bio), true); ++ if (unlikely(ret)) ++ goto err; ++ ++ ret = bch2_disk_reservation_get(c, &dio->op.res, bio_sectors(bio), ++ dio->op.opts.data_replicas, 0); ++ if (unlikely(ret) && ++ !bch2_dio_write_check_allocated(dio)) ++ goto err; ++ ++ task_io_account_write(bio->bi_iter.bi_size); ++ ++ if (unlikely(dio->iter.count) && ++ !dio->sync && ++ !dio->loop && ++ bch2_dio_write_copy_iov(dio)) ++ dio->sync = sync = true; ++ ++ dio->loop = true; ++ closure_call(&dio->op.cl, bch2_write, NULL, NULL); ++ ++ if (!sync) ++ return -EIOCBQUEUED; ++ ++ bch2_dio_write_end(dio); ++ ++ if (likely(!dio->iter.count) || dio->op.error) ++ break; ++ ++ bio_reset(bio, NULL, REQ_OP_WRITE); ++ } ++out: ++ return bch2_dio_write_done(dio); ++err: ++ dio->op.error = ret; ++ ++ bio_release_pages(bio, false); ++ ++ bch2_quota_reservation_put(c, inode, &dio->quota_res); ++ goto out; ++} ++ ++static noinline __cold void bch2_dio_write_continue(struct dio_write *dio) ++{ ++ struct mm_struct *mm = dio->mm; ++ ++ bio_reset(&dio->op.wbio.bio, NULL, REQ_OP_WRITE); ++ ++ if (mm) ++ kthread_use_mm(mm); ++ bch2_dio_write_loop(dio); ++ if (mm) ++ kthread_unuse_mm(mm); ++} ++ ++static void bch2_dio_write_loop_async(struct bch_write_op *op) ++{ ++ struct dio_write *dio = container_of(op, struct dio_write, op); ++ ++ bch2_dio_write_end(dio); ++ ++ if (likely(!dio->iter.count) || dio->op.error) ++ bch2_dio_write_done(dio); ++ else ++ bch2_dio_write_continue(dio); ++} ++ ++ssize_t bch2_direct_write(struct kiocb *req, struct iov_iter *iter) ++{ ++ struct file *file = req->ki_filp; ++ struct address_space *mapping = file->f_mapping; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct dio_write *dio; ++ struct bio *bio; ++ bool locked = true, extending; ++ ssize_t ret; ++ ++ prefetch(&c->opts); ++ prefetch((void *) &c->opts + 64); ++ prefetch(&inode->ei_inode); ++ prefetch((void *) &inode->ei_inode + 64); ++ ++ inode_lock(&inode->v); ++ ++ ret = generic_write_checks(req, iter); ++ if (unlikely(ret <= 0)) ++ goto err; ++ ++ ret = file_remove_privs(file); ++ if (unlikely(ret)) ++ goto err; ++ ++ ret = file_update_time(file); ++ if (unlikely(ret)) ++ goto err; ++ ++ if (unlikely((req->ki_pos|iter->count) & (block_bytes(c) - 1))) ++ goto err; ++ ++ inode_dio_begin(&inode->v); ++ bch2_pagecache_block_get(inode); ++ ++ extending = req->ki_pos + iter->count > inode->v.i_size; ++ if (!extending) { ++ inode_unlock(&inode->v); ++ locked = false; ++ } ++ ++ bio = bio_alloc_bioset(NULL, ++ bio_iov_vecs_to_alloc(iter, BIO_MAX_VECS), ++ REQ_OP_WRITE, ++ GFP_KERNEL, ++ &c->dio_write_bioset); ++ dio = container_of(bio, struct dio_write, op.wbio.bio); ++ dio->req = req; ++ dio->mapping = mapping; ++ dio->inode = inode; ++ dio->mm = current->mm; ++ dio->loop = false; ++ dio->extending = extending; ++ dio->sync = is_sync_kiocb(req) || extending; ++ dio->flush = iocb_is_dsync(req) && !c->opts.journal_flush_disabled; ++ dio->free_iov = false; ++ dio->quota_res.sectors = 0; ++ dio->written = 0; ++ dio->iter = *iter; ++ dio->op.c = c; ++ ++ if (unlikely(mapping->nrpages)) { ++ ret = bch2_write_invalidate_inode_pages_range(mapping, ++ req->ki_pos, ++ req->ki_pos + iter->count - 1); ++ if (unlikely(ret)) ++ goto err_put_bio; ++ } ++ ++ ret = bch2_dio_write_loop(dio); ++err: ++ if (locked) ++ inode_unlock(&inode->v); ++ return ret; ++err_put_bio: ++ bch2_pagecache_block_put(inode); ++ bio_put(bio); ++ inode_dio_end(&inode->v); ++ goto err; ++} ++ ++void bch2_fs_fs_io_direct_exit(struct bch_fs *c) ++{ ++ bioset_exit(&c->dio_write_bioset); ++ bioset_exit(&c->dio_read_bioset); ++} ++ ++int bch2_fs_fs_io_direct_init(struct bch_fs *c) ++{ ++ if (bioset_init(&c->dio_read_bioset, ++ 4, offsetof(struct dio_read, rbio.bio), ++ BIOSET_NEED_BVECS)) ++ return -BCH_ERR_ENOMEM_dio_read_bioset_init; ++ ++ if (bioset_init(&c->dio_write_bioset, ++ 4, offsetof(struct dio_write, op.wbio.bio), ++ BIOSET_NEED_BVECS)) ++ return -BCH_ERR_ENOMEM_dio_write_bioset_init; ++ ++ return 0; ++} ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs-io-direct.h b/fs/bcachefs/fs-io-direct.h +new file mode 100644 +index 000000000000..814621ec7f81 +--- /dev/null ++++ b/fs/bcachefs/fs-io-direct.h +@@ -0,0 +1,16 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_IO_DIRECT_H ++#define _BCACHEFS_FS_IO_DIRECT_H ++ ++#ifndef NO_BCACHEFS_FS ++ssize_t bch2_direct_write(struct kiocb *, struct iov_iter *); ++ssize_t bch2_read_iter(struct kiocb *, struct iov_iter *); ++ ++void bch2_fs_fs_io_direct_exit(struct bch_fs *); ++int bch2_fs_fs_io_direct_init(struct bch_fs *); ++#else ++static inline void bch2_fs_fs_io_direct_exit(struct bch_fs *c) {} ++static inline int bch2_fs_fs_io_direct_init(struct bch_fs *c) { return 0; } ++#endif ++ ++#endif /* _BCACHEFS_FS_IO_DIRECT_H */ +diff --git a/fs/bcachefs/fs-io-pagecache.c b/fs/bcachefs/fs-io-pagecache.c +new file mode 100644 +index 000000000000..8bd9bcdd27f7 +--- /dev/null ++++ b/fs/bcachefs/fs-io-pagecache.c +@@ -0,0 +1,791 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "btree_iter.h" ++#include "extents.h" ++#include "fs-io.h" ++#include "fs-io-pagecache.h" ++#include "subvolume.h" ++ ++#include ++#include ++ ++int bch2_filemap_get_contig_folios_d(struct address_space *mapping, ++ loff_t start, u64 end, ++ int fgp_flags, gfp_t gfp, ++ folios *fs) ++{ ++ struct folio *f; ++ u64 pos = start; ++ int ret = 0; ++ ++ while (pos < end) { ++ if ((u64) pos >= (u64) start + (1ULL << 20)) ++ fgp_flags &= ~FGP_CREAT; ++ ++ ret = darray_make_room_gfp(fs, 1, gfp & GFP_KERNEL); ++ if (ret) ++ break; ++ ++ f = __filemap_get_folio(mapping, pos >> PAGE_SHIFT, fgp_flags, gfp); ++ if (IS_ERR_OR_NULL(f)) ++ break; ++ ++ BUG_ON(fs->nr && folio_pos(f) != pos); ++ ++ pos = folio_end_pos(f); ++ darray_push(fs, f); ++ } ++ ++ if (!fs->nr && !ret && (fgp_flags & FGP_CREAT)) ++ ret = -ENOMEM; ++ ++ return fs->nr ? 0 : ret; ++} ++ ++/* pagecache_block must be held */ ++int bch2_write_invalidate_inode_pages_range(struct address_space *mapping, ++ loff_t start, loff_t end) ++{ ++ int ret; ++ ++ /* ++ * XXX: the way this is currently implemented, we can spin if a process ++ * is continually redirtying a specific page ++ */ ++ do { ++ if (!mapping->nrpages) ++ return 0; ++ ++ ret = filemap_write_and_wait_range(mapping, start, end); ++ if (ret) ++ break; ++ ++ if (!mapping->nrpages) ++ return 0; ++ ++ ret = invalidate_inode_pages2_range(mapping, ++ start >> PAGE_SHIFT, ++ end >> PAGE_SHIFT); ++ } while (ret == -EBUSY); ++ ++ return ret; ++} ++ ++#if 0 ++/* Useful for debug tracing: */ ++static const char * const bch2_folio_sector_states[] = { ++#define x(n) #n, ++ BCH_FOLIO_SECTOR_STATE() ++#undef x ++ NULL ++}; ++#endif ++ ++static inline enum bch_folio_sector_state ++folio_sector_dirty(enum bch_folio_sector_state state) ++{ ++ switch (state) { ++ case SECTOR_unallocated: ++ return SECTOR_dirty; ++ case SECTOR_reserved: ++ return SECTOR_dirty_reserved; ++ default: ++ return state; ++ } ++} ++ ++static inline enum bch_folio_sector_state ++folio_sector_undirty(enum bch_folio_sector_state state) ++{ ++ switch (state) { ++ case SECTOR_dirty: ++ return SECTOR_unallocated; ++ case SECTOR_dirty_reserved: ++ return SECTOR_reserved; ++ default: ++ return state; ++ } ++} ++ ++static inline enum bch_folio_sector_state ++folio_sector_reserve(enum bch_folio_sector_state state) ++{ ++ switch (state) { ++ case SECTOR_unallocated: ++ return SECTOR_reserved; ++ case SECTOR_dirty: ++ return SECTOR_dirty_reserved; ++ default: ++ return state; ++ } ++} ++ ++/* for newly allocated folios: */ ++struct bch_folio *__bch2_folio_create(struct folio *folio, gfp_t gfp) ++{ ++ struct bch_folio *s; ++ ++ s = kzalloc(sizeof(*s) + ++ sizeof(struct bch_folio_sector) * ++ folio_sectors(folio), gfp); ++ if (!s) ++ return NULL; ++ ++ spin_lock_init(&s->lock); ++ folio_attach_private(folio, s); ++ return s; ++} ++ ++struct bch_folio *bch2_folio_create(struct folio *folio, gfp_t gfp) ++{ ++ return bch2_folio(folio) ?: __bch2_folio_create(folio, gfp); ++} ++ ++static unsigned bkey_to_sector_state(struct bkey_s_c k) ++{ ++ if (bkey_extent_is_reservation(k)) ++ return SECTOR_reserved; ++ if (bkey_extent_is_allocation(k.k)) ++ return SECTOR_allocated; ++ return SECTOR_unallocated; ++} ++ ++static void __bch2_folio_set(struct folio *folio, ++ unsigned pg_offset, unsigned pg_len, ++ unsigned nr_ptrs, unsigned state) ++{ ++ struct bch_folio *s = bch2_folio(folio); ++ unsigned i, sectors = folio_sectors(folio); ++ ++ BUG_ON(pg_offset >= sectors); ++ BUG_ON(pg_offset + pg_len > sectors); ++ ++ spin_lock(&s->lock); ++ ++ for (i = pg_offset; i < pg_offset + pg_len; i++) { ++ s->s[i].nr_replicas = nr_ptrs; ++ bch2_folio_sector_set(folio, s, i, state); ++ } ++ ++ if (i == sectors) ++ s->uptodate = true; ++ ++ spin_unlock(&s->lock); ++} ++ ++/* ++ * Initialize bch_folio state (allocated/unallocated, nr_replicas) from the ++ * extents btree: ++ */ ++int bch2_folio_set(struct bch_fs *c, subvol_inum inum, ++ struct folio **fs, unsigned nr_folios) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_folio *s; ++ u64 offset = folio_sector(fs[0]); ++ unsigned folio_idx; ++ u32 snapshot; ++ bool need_set = false; ++ int ret; ++ ++ for (folio_idx = 0; folio_idx < nr_folios; folio_idx++) { ++ s = bch2_folio_create(fs[folio_idx], GFP_KERNEL); ++ if (!s) ++ return -ENOMEM; ++ ++ need_set |= !s->uptodate; ++ } ++ ++ if (!need_set) ++ return 0; ++ ++ folio_idx = 0; ++ trans = bch2_trans_get(c); ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ for_each_btree_key_norestart(trans, iter, BTREE_ID_extents, ++ SPOS(inum.inum, offset, snapshot), ++ BTREE_ITER_SLOTS, k, ret) { ++ unsigned nr_ptrs = bch2_bkey_nr_ptrs_fully_allocated(k); ++ unsigned state = bkey_to_sector_state(k); ++ ++ while (folio_idx < nr_folios) { ++ struct folio *folio = fs[folio_idx]; ++ u64 folio_start = folio_sector(folio); ++ u64 folio_end = folio_end_sector(folio); ++ unsigned folio_offset = max(bkey_start_offset(k.k), folio_start) - ++ folio_start; ++ unsigned folio_len = min(k.k->p.offset, folio_end) - ++ folio_offset - folio_start; ++ ++ BUG_ON(k.k->p.offset < folio_start); ++ BUG_ON(bkey_start_offset(k.k) > folio_end); ++ ++ if (!bch2_folio(folio)->uptodate) ++ __bch2_folio_set(folio, folio_offset, folio_len, nr_ptrs, state); ++ ++ if (k.k->p.offset < folio_end) ++ break; ++ folio_idx++; ++ } ++ ++ if (folio_idx == nr_folios) ++ break; ++ } ++ ++ offset = iter.pos.offset; ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ bch2_trans_put(trans); ++ ++ return ret; ++} ++ ++void bch2_bio_page_state_set(struct bio *bio, struct bkey_s_c k) ++{ ++ struct bvec_iter iter; ++ struct folio_vec fv; ++ unsigned nr_ptrs = k.k->type == KEY_TYPE_reflink_v ++ ? 0 : bch2_bkey_nr_ptrs_fully_allocated(k); ++ unsigned state = bkey_to_sector_state(k); ++ ++ bio_for_each_folio(fv, bio, iter) ++ __bch2_folio_set(fv.fv_folio, ++ fv.fv_offset >> 9, ++ fv.fv_len >> 9, ++ nr_ptrs, state); ++} ++ ++void bch2_mark_pagecache_unallocated(struct bch_inode_info *inode, ++ u64 start, u64 end) ++{ ++ pgoff_t index = start >> PAGE_SECTORS_SHIFT; ++ pgoff_t end_index = (end - 1) >> PAGE_SECTORS_SHIFT; ++ struct folio_batch fbatch; ++ unsigned i, j; ++ ++ if (end <= start) ++ return; ++ ++ folio_batch_init(&fbatch); ++ ++ while (filemap_get_folios(inode->v.i_mapping, ++ &index, end_index, &fbatch)) { ++ for (i = 0; i < folio_batch_count(&fbatch); i++) { ++ struct folio *folio = fbatch.folios[i]; ++ u64 folio_start = folio_sector(folio); ++ u64 folio_end = folio_end_sector(folio); ++ unsigned folio_offset = max(start, folio_start) - folio_start; ++ unsigned folio_len = min(end, folio_end) - folio_offset - folio_start; ++ struct bch_folio *s; ++ ++ BUG_ON(end <= folio_start); ++ ++ folio_lock(folio); ++ s = bch2_folio(folio); ++ ++ if (s) { ++ spin_lock(&s->lock); ++ for (j = folio_offset; j < folio_offset + folio_len; j++) ++ s->s[j].nr_replicas = 0; ++ spin_unlock(&s->lock); ++ } ++ ++ folio_unlock(folio); ++ } ++ folio_batch_release(&fbatch); ++ cond_resched(); ++ } ++} ++ ++void bch2_mark_pagecache_reserved(struct bch_inode_info *inode, ++ u64 start, u64 end) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ pgoff_t index = start >> PAGE_SECTORS_SHIFT; ++ pgoff_t end_index = (end - 1) >> PAGE_SECTORS_SHIFT; ++ struct folio_batch fbatch; ++ s64 i_sectors_delta = 0; ++ unsigned i, j; ++ ++ if (end <= start) ++ return; ++ ++ folio_batch_init(&fbatch); ++ ++ while (filemap_get_folios(inode->v.i_mapping, ++ &index, end_index, &fbatch)) { ++ for (i = 0; i < folio_batch_count(&fbatch); i++) { ++ struct folio *folio = fbatch.folios[i]; ++ u64 folio_start = folio_sector(folio); ++ u64 folio_end = folio_end_sector(folio); ++ unsigned folio_offset = max(start, folio_start) - folio_start; ++ unsigned folio_len = min(end, folio_end) - folio_offset - folio_start; ++ struct bch_folio *s; ++ ++ BUG_ON(end <= folio_start); ++ ++ folio_lock(folio); ++ s = bch2_folio(folio); ++ ++ if (s) { ++ spin_lock(&s->lock); ++ for (j = folio_offset; j < folio_offset + folio_len; j++) { ++ i_sectors_delta -= s->s[j].state == SECTOR_dirty; ++ bch2_folio_sector_set(folio, s, j, ++ folio_sector_reserve(s->s[j].state)); ++ } ++ spin_unlock(&s->lock); ++ } ++ ++ folio_unlock(folio); ++ } ++ folio_batch_release(&fbatch); ++ cond_resched(); ++ } ++ ++ bch2_i_sectors_acct(c, inode, NULL, i_sectors_delta); ++} ++ ++static inline unsigned sectors_to_reserve(struct bch_folio_sector *s, ++ unsigned nr_replicas) ++{ ++ return max(0, (int) nr_replicas - ++ s->nr_replicas - ++ s->replicas_reserved); ++} ++ ++int bch2_get_folio_disk_reservation(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct folio *folio, bool check_enospc) ++{ ++ struct bch_folio *s = bch2_folio_create(folio, 0); ++ unsigned nr_replicas = inode_nr_replicas(c, inode); ++ struct disk_reservation disk_res = { 0 }; ++ unsigned i, sectors = folio_sectors(folio), disk_res_sectors = 0; ++ int ret; ++ ++ if (!s) ++ return -ENOMEM; ++ ++ for (i = 0; i < sectors; i++) ++ disk_res_sectors += sectors_to_reserve(&s->s[i], nr_replicas); ++ ++ if (!disk_res_sectors) ++ return 0; ++ ++ ret = bch2_disk_reservation_get(c, &disk_res, ++ disk_res_sectors, 1, ++ !check_enospc ++ ? BCH_DISK_RESERVATION_NOFAIL ++ : 0); ++ if (unlikely(ret)) ++ return ret; ++ ++ for (i = 0; i < sectors; i++) ++ s->s[i].replicas_reserved += ++ sectors_to_reserve(&s->s[i], nr_replicas); ++ ++ return 0; ++} ++ ++void bch2_folio_reservation_put(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch2_folio_reservation *res) ++{ ++ bch2_disk_reservation_put(c, &res->disk); ++ bch2_quota_reservation_put(c, inode, &res->quota); ++} ++ ++int bch2_folio_reservation_get(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct folio *folio, ++ struct bch2_folio_reservation *res, ++ unsigned offset, unsigned len) ++{ ++ struct bch_folio *s = bch2_folio_create(folio, 0); ++ unsigned i, disk_sectors = 0, quota_sectors = 0; ++ int ret; ++ ++ if (!s) ++ return -ENOMEM; ++ ++ BUG_ON(!s->uptodate); ++ ++ for (i = round_down(offset, block_bytes(c)) >> 9; ++ i < round_up(offset + len, block_bytes(c)) >> 9; ++ i++) { ++ disk_sectors += sectors_to_reserve(&s->s[i], ++ res->disk.nr_replicas); ++ quota_sectors += s->s[i].state == SECTOR_unallocated; ++ } ++ ++ if (disk_sectors) { ++ ret = bch2_disk_reservation_add(c, &res->disk, disk_sectors, 0); ++ if (unlikely(ret)) ++ return ret; ++ } ++ ++ if (quota_sectors) { ++ ret = bch2_quota_reservation_add(c, inode, &res->quota, ++ quota_sectors, true); ++ if (unlikely(ret)) { ++ struct disk_reservation tmp = { ++ .sectors = disk_sectors ++ }; ++ ++ bch2_disk_reservation_put(c, &tmp); ++ res->disk.sectors -= disk_sectors; ++ return ret; ++ } ++ } ++ ++ return 0; ++} ++ ++static void bch2_clear_folio_bits(struct folio *folio) ++{ ++ struct bch_inode_info *inode = to_bch_ei(folio->mapping->host); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_folio *s = bch2_folio(folio); ++ struct disk_reservation disk_res = { 0 }; ++ int i, sectors = folio_sectors(folio), dirty_sectors = 0; ++ ++ if (!s) ++ return; ++ ++ EBUG_ON(!folio_test_locked(folio)); ++ EBUG_ON(folio_test_writeback(folio)); ++ ++ for (i = 0; i < sectors; i++) { ++ disk_res.sectors += s->s[i].replicas_reserved; ++ s->s[i].replicas_reserved = 0; ++ ++ dirty_sectors -= s->s[i].state == SECTOR_dirty; ++ bch2_folio_sector_set(folio, s, i, folio_sector_undirty(s->s[i].state)); ++ } ++ ++ bch2_disk_reservation_put(c, &disk_res); ++ ++ bch2_i_sectors_acct(c, inode, NULL, dirty_sectors); ++ ++ bch2_folio_release(folio); ++} ++ ++void bch2_set_folio_dirty(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct folio *folio, ++ struct bch2_folio_reservation *res, ++ unsigned offset, unsigned len) ++{ ++ struct bch_folio *s = bch2_folio(folio); ++ unsigned i, dirty_sectors = 0; ++ ++ WARN_ON((u64) folio_pos(folio) + offset + len > ++ round_up((u64) i_size_read(&inode->v), block_bytes(c))); ++ ++ BUG_ON(!s->uptodate); ++ ++ spin_lock(&s->lock); ++ ++ for (i = round_down(offset, block_bytes(c)) >> 9; ++ i < round_up(offset + len, block_bytes(c)) >> 9; ++ i++) { ++ unsigned sectors = sectors_to_reserve(&s->s[i], ++ res->disk.nr_replicas); ++ ++ /* ++ * This can happen if we race with the error path in ++ * bch2_writepage_io_done(): ++ */ ++ sectors = min_t(unsigned, sectors, res->disk.sectors); ++ ++ s->s[i].replicas_reserved += sectors; ++ res->disk.sectors -= sectors; ++ ++ dirty_sectors += s->s[i].state == SECTOR_unallocated; ++ ++ bch2_folio_sector_set(folio, s, i, folio_sector_dirty(s->s[i].state)); ++ } ++ ++ spin_unlock(&s->lock); ++ ++ bch2_i_sectors_acct(c, inode, &res->quota, dirty_sectors); ++ ++ if (!folio_test_dirty(folio)) ++ filemap_dirty_folio(inode->v.i_mapping, folio); ++} ++ ++vm_fault_t bch2_page_fault(struct vm_fault *vmf) ++{ ++ struct file *file = vmf->vma->vm_file; ++ struct address_space *mapping = file->f_mapping; ++ struct address_space *fdm = faults_disabled_mapping(); ++ struct bch_inode_info *inode = file_bch_inode(file); ++ vm_fault_t ret; ++ ++ if (fdm == mapping) ++ return VM_FAULT_SIGBUS; ++ ++ /* Lock ordering: */ ++ if (fdm > mapping) { ++ struct bch_inode_info *fdm_host = to_bch_ei(fdm->host); ++ ++ if (bch2_pagecache_add_tryget(inode)) ++ goto got_lock; ++ ++ bch2_pagecache_block_put(fdm_host); ++ ++ bch2_pagecache_add_get(inode); ++ bch2_pagecache_add_put(inode); ++ ++ bch2_pagecache_block_get(fdm_host); ++ ++ /* Signal that lock has been dropped: */ ++ set_fdm_dropped_locks(); ++ return VM_FAULT_SIGBUS; ++ } ++ ++ bch2_pagecache_add_get(inode); ++got_lock: ++ ret = filemap_fault(vmf); ++ bch2_pagecache_add_put(inode); ++ ++ return ret; ++} ++ ++vm_fault_t bch2_page_mkwrite(struct vm_fault *vmf) ++{ ++ struct folio *folio = page_folio(vmf->page); ++ struct file *file = vmf->vma->vm_file; ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct address_space *mapping = file->f_mapping; ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch2_folio_reservation res; ++ unsigned len; ++ loff_t isize; ++ vm_fault_t ret; ++ ++ bch2_folio_reservation_init(c, inode, &res); ++ ++ sb_start_pagefault(inode->v.i_sb); ++ file_update_time(file); ++ ++ /* ++ * Not strictly necessary, but helps avoid dio writes livelocking in ++ * bch2_write_invalidate_inode_pages_range() - can drop this if/when we get ++ * a bch2_write_invalidate_inode_pages_range() that works without dropping ++ * page lock before invalidating page ++ */ ++ bch2_pagecache_add_get(inode); ++ ++ folio_lock(folio); ++ isize = i_size_read(&inode->v); ++ ++ if (folio->mapping != mapping || folio_pos(folio) >= isize) { ++ folio_unlock(folio); ++ ret = VM_FAULT_NOPAGE; ++ goto out; ++ } ++ ++ len = min_t(loff_t, folio_size(folio), isize - folio_pos(folio)); ++ ++ if (bch2_folio_set(c, inode_inum(inode), &folio, 1) ?: ++ bch2_folio_reservation_get(c, inode, folio, &res, 0, len)) { ++ folio_unlock(folio); ++ ret = VM_FAULT_SIGBUS; ++ goto out; ++ } ++ ++ bch2_set_folio_dirty(c, inode, folio, &res, 0, len); ++ bch2_folio_reservation_put(c, inode, &res); ++ ++ folio_wait_stable(folio); ++ ret = VM_FAULT_LOCKED; ++out: ++ bch2_pagecache_add_put(inode); ++ sb_end_pagefault(inode->v.i_sb); ++ ++ return ret; ++} ++ ++void bch2_invalidate_folio(struct folio *folio, size_t offset, size_t length) ++{ ++ if (offset || length < folio_size(folio)) ++ return; ++ ++ bch2_clear_folio_bits(folio); ++} ++ ++bool bch2_release_folio(struct folio *folio, gfp_t gfp_mask) ++{ ++ if (folio_test_dirty(folio) || folio_test_writeback(folio)) ++ return false; ++ ++ bch2_clear_folio_bits(folio); ++ return true; ++} ++ ++/* fseek: */ ++ ++static int folio_data_offset(struct folio *folio, loff_t pos, ++ unsigned min_replicas) ++{ ++ struct bch_folio *s = bch2_folio(folio); ++ unsigned i, sectors = folio_sectors(folio); ++ ++ if (s) ++ for (i = folio_pos_to_s(folio, pos); i < sectors; i++) ++ if (s->s[i].state >= SECTOR_dirty && ++ s->s[i].nr_replicas + s->s[i].replicas_reserved >= min_replicas) ++ return i << SECTOR_SHIFT; ++ ++ return -1; ++} ++ ++loff_t bch2_seek_pagecache_data(struct inode *vinode, ++ loff_t start_offset, ++ loff_t end_offset, ++ unsigned min_replicas, ++ bool nonblock) ++{ ++ struct folio_batch fbatch; ++ pgoff_t start_index = start_offset >> PAGE_SHIFT; ++ pgoff_t end_index = end_offset >> PAGE_SHIFT; ++ pgoff_t index = start_index; ++ unsigned i; ++ loff_t ret; ++ int offset; ++ ++ folio_batch_init(&fbatch); ++ ++ while (filemap_get_folios(vinode->i_mapping, ++ &index, end_index, &fbatch)) { ++ for (i = 0; i < folio_batch_count(&fbatch); i++) { ++ struct folio *folio = fbatch.folios[i]; ++ ++ if (!nonblock) { ++ folio_lock(folio); ++ } else if (!folio_trylock(folio)) { ++ folio_batch_release(&fbatch); ++ return -EAGAIN; ++ } ++ ++ offset = folio_data_offset(folio, ++ max(folio_pos(folio), start_offset), ++ min_replicas); ++ if (offset >= 0) { ++ ret = clamp(folio_pos(folio) + offset, ++ start_offset, end_offset); ++ folio_unlock(folio); ++ folio_batch_release(&fbatch); ++ return ret; ++ } ++ folio_unlock(folio); ++ } ++ folio_batch_release(&fbatch); ++ cond_resched(); ++ } ++ ++ return end_offset; ++} ++ ++/* ++ * Search for a hole in a folio. ++ * ++ * The filemap layer returns -ENOENT if no folio exists, so reuse the same error ++ * code to indicate a pagecache hole exists at the returned offset. Otherwise ++ * return 0 if the folio is filled with data, or an error code. This function ++ * can return -EAGAIN if nonblock is specified. ++ */ ++static int folio_hole_offset(struct address_space *mapping, loff_t *offset, ++ unsigned min_replicas, bool nonblock) ++{ ++ struct folio *folio; ++ struct bch_folio *s; ++ unsigned i, sectors; ++ int ret = -ENOENT; ++ ++ folio = __filemap_get_folio(mapping, *offset >> PAGE_SHIFT, ++ FGP_LOCK|(nonblock ? FGP_NOWAIT : 0), 0); ++ if (IS_ERR(folio)) ++ return PTR_ERR(folio); ++ ++ s = bch2_folio(folio); ++ if (!s) ++ goto unlock; ++ ++ sectors = folio_sectors(folio); ++ for (i = folio_pos_to_s(folio, *offset); i < sectors; i++) ++ if (s->s[i].state < SECTOR_dirty || ++ s->s[i].nr_replicas + s->s[i].replicas_reserved < min_replicas) { ++ *offset = max(*offset, ++ folio_pos(folio) + (i << SECTOR_SHIFT)); ++ goto unlock; ++ } ++ ++ *offset = folio_end_pos(folio); ++ ret = 0; ++unlock: ++ folio_unlock(folio); ++ folio_put(folio); ++ return ret; ++} ++ ++loff_t bch2_seek_pagecache_hole(struct inode *vinode, ++ loff_t start_offset, ++ loff_t end_offset, ++ unsigned min_replicas, ++ bool nonblock) ++{ ++ struct address_space *mapping = vinode->i_mapping; ++ loff_t offset = start_offset; ++ loff_t ret = 0; ++ ++ while (!ret && offset < end_offset) ++ ret = folio_hole_offset(mapping, &offset, min_replicas, nonblock); ++ ++ if (ret && ret != -ENOENT) ++ return ret; ++ return min(offset, end_offset); ++} ++ ++int bch2_clamp_data_hole(struct inode *inode, ++ u64 *hole_start, ++ u64 *hole_end, ++ unsigned min_replicas, ++ bool nonblock) ++{ ++ loff_t ret; ++ ++ ret = bch2_seek_pagecache_hole(inode, ++ *hole_start << 9, *hole_end << 9, min_replicas, nonblock) >> 9; ++ if (ret < 0) ++ return ret; ++ ++ *hole_start = ret; ++ ++ if (*hole_start == *hole_end) ++ return 0; ++ ++ ret = bch2_seek_pagecache_data(inode, ++ *hole_start << 9, *hole_end << 9, min_replicas, nonblock) >> 9; ++ if (ret < 0) ++ return ret; ++ ++ *hole_end = ret; ++ return 0; ++} ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs-io-pagecache.h b/fs/bcachefs/fs-io-pagecache.h +new file mode 100644 +index 000000000000..a2222ad586e9 +--- /dev/null ++++ b/fs/bcachefs/fs-io-pagecache.h +@@ -0,0 +1,176 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_IO_PAGECACHE_H ++#define _BCACHEFS_FS_IO_PAGECACHE_H ++ ++#include ++ ++typedef DARRAY(struct folio *) folios; ++ ++int bch2_filemap_get_contig_folios_d(struct address_space *, loff_t, ++ u64, int, gfp_t, folios *); ++int bch2_write_invalidate_inode_pages_range(struct address_space *, loff_t, loff_t); ++ ++/* ++ * Use u64 for the end pos and sector helpers because if the folio covers the ++ * max supported range of the mapping, the start offset of the next folio ++ * overflows loff_t. This breaks much of the range based processing in the ++ * buffered write path. ++ */ ++static inline u64 folio_end_pos(struct folio *folio) ++{ ++ return folio_pos(folio) + folio_size(folio); ++} ++ ++static inline size_t folio_sectors(struct folio *folio) ++{ ++ return PAGE_SECTORS << folio_order(folio); ++} ++ ++static inline loff_t folio_sector(struct folio *folio) ++{ ++ return folio_pos(folio) >> 9; ++} ++ ++static inline u64 folio_end_sector(struct folio *folio) ++{ ++ return folio_end_pos(folio) >> 9; ++} ++ ++#define BCH_FOLIO_SECTOR_STATE() \ ++ x(unallocated) \ ++ x(reserved) \ ++ x(dirty) \ ++ x(dirty_reserved) \ ++ x(allocated) ++ ++enum bch_folio_sector_state { ++#define x(n) SECTOR_##n, ++ BCH_FOLIO_SECTOR_STATE() ++#undef x ++}; ++ ++struct bch_folio_sector { ++ /* Uncompressed, fully allocated replicas (or on disk reservation): */ ++ unsigned nr_replicas:4; ++ ++ /* Owns PAGE_SECTORS * replicas_reserved sized in memory reservation: */ ++ unsigned replicas_reserved:4; ++ ++ /* i_sectors: */ ++ enum bch_folio_sector_state state:8; ++}; ++ ++struct bch_folio { ++ spinlock_t lock; ++ atomic_t write_count; ++ /* ++ * Is the sector state up to date with the btree? ++ * (Not the data itself) ++ */ ++ bool uptodate; ++ struct bch_folio_sector s[]; ++}; ++ ++/* Helper for when we need to add debug instrumentation: */ ++static inline void bch2_folio_sector_set(struct folio *folio, ++ struct bch_folio *s, ++ unsigned i, unsigned n) ++{ ++ s->s[i].state = n; ++} ++ ++/* file offset (to folio offset) to bch_folio_sector index */ ++static inline int folio_pos_to_s(struct folio *folio, loff_t pos) ++{ ++ u64 f_offset = pos - folio_pos(folio); ++ ++ BUG_ON(pos < folio_pos(folio) || pos >= folio_end_pos(folio)); ++ return f_offset >> SECTOR_SHIFT; ++} ++ ++/* for newly allocated folios: */ ++static inline void __bch2_folio_release(struct folio *folio) ++{ ++ kfree(folio_detach_private(folio)); ++} ++ ++static inline void bch2_folio_release(struct folio *folio) ++{ ++ EBUG_ON(!folio_test_locked(folio)); ++ __bch2_folio_release(folio); ++} ++ ++static inline struct bch_folio *__bch2_folio(struct folio *folio) ++{ ++ return folio_has_private(folio) ++ ? (struct bch_folio *) folio_get_private(folio) ++ : NULL; ++} ++ ++static inline struct bch_folio *bch2_folio(struct folio *folio) ++{ ++ EBUG_ON(!folio_test_locked(folio)); ++ ++ return __bch2_folio(folio); ++} ++ ++struct bch_folio *__bch2_folio_create(struct folio *, gfp_t); ++struct bch_folio *bch2_folio_create(struct folio *, gfp_t); ++ ++struct bch2_folio_reservation { ++ struct disk_reservation disk; ++ struct quota_res quota; ++}; ++ ++static inline unsigned inode_nr_replicas(struct bch_fs *c, struct bch_inode_info *inode) ++{ ++ /* XXX: this should not be open coded */ ++ return inode->ei_inode.bi_data_replicas ++ ? inode->ei_inode.bi_data_replicas - 1 ++ : c->opts.data_replicas; ++} ++ ++static inline void bch2_folio_reservation_init(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch2_folio_reservation *res) ++{ ++ memset(res, 0, sizeof(*res)); ++ ++ res->disk.nr_replicas = inode_nr_replicas(c, inode); ++} ++ ++int bch2_folio_set(struct bch_fs *, subvol_inum, struct folio **, unsigned); ++void bch2_bio_page_state_set(struct bio *, struct bkey_s_c); ++ ++void bch2_mark_pagecache_unallocated(struct bch_inode_info *, u64, u64); ++void bch2_mark_pagecache_reserved(struct bch_inode_info *, u64, u64); ++ ++int bch2_get_folio_disk_reservation(struct bch_fs *, ++ struct bch_inode_info *, ++ struct folio *, bool); ++ ++void bch2_folio_reservation_put(struct bch_fs *, ++ struct bch_inode_info *, ++ struct bch2_folio_reservation *); ++int bch2_folio_reservation_get(struct bch_fs *, ++ struct bch_inode_info *, ++ struct folio *, ++ struct bch2_folio_reservation *, ++ unsigned, unsigned); ++ ++void bch2_set_folio_dirty(struct bch_fs *, ++ struct bch_inode_info *, ++ struct folio *, ++ struct bch2_folio_reservation *, ++ unsigned, unsigned); ++ ++vm_fault_t bch2_page_fault(struct vm_fault *); ++vm_fault_t bch2_page_mkwrite(struct vm_fault *); ++void bch2_invalidate_folio(struct folio *, size_t, size_t); ++bool bch2_release_folio(struct folio *, gfp_t); ++ ++loff_t bch2_seek_pagecache_data(struct inode *, loff_t, loff_t, unsigned, bool); ++loff_t bch2_seek_pagecache_hole(struct inode *, loff_t, loff_t, unsigned, bool); ++int bch2_clamp_data_hole(struct inode *, u64 *, u64 *, unsigned, bool); ++ ++#endif /* _BCACHEFS_FS_IO_PAGECACHE_H */ +diff --git a/fs/bcachefs/fs-io.c b/fs/bcachefs/fs-io.c +new file mode 100644 +index 000000000000..b0e8144ec550 +--- /dev/null ++++ b/fs/bcachefs/fs-io.c +@@ -0,0 +1,1072 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_buf.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "clock.h" ++#include "error.h" ++#include "extents.h" ++#include "extent_update.h" ++#include "fs.h" ++#include "fs-io.h" ++#include "fs-io-buffered.h" ++#include "fs-io-pagecache.h" ++#include "fsck.h" ++#include "inode.h" ++#include "journal.h" ++#include "io_misc.h" ++#include "keylist.h" ++#include "quota.h" ++#include "reflink.h" ++#include "trace.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include ++ ++struct nocow_flush { ++ struct closure *cl; ++ struct bch_dev *ca; ++ struct bio bio; ++}; ++ ++static void nocow_flush_endio(struct bio *_bio) ++{ ++ ++ struct nocow_flush *bio = container_of(_bio, struct nocow_flush, bio); ++ ++ closure_put(bio->cl); ++ percpu_ref_put(&bio->ca->io_ref); ++ bio_put(&bio->bio); ++} ++ ++void bch2_inode_flush_nocow_writes_async(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct closure *cl) ++{ ++ struct nocow_flush *bio; ++ struct bch_dev *ca; ++ struct bch_devs_mask devs; ++ unsigned dev; ++ ++ dev = find_first_bit(inode->ei_devs_need_flush.d, BCH_SB_MEMBERS_MAX); ++ if (dev == BCH_SB_MEMBERS_MAX) ++ return; ++ ++ devs = inode->ei_devs_need_flush; ++ memset(&inode->ei_devs_need_flush, 0, sizeof(inode->ei_devs_need_flush)); ++ ++ for_each_set_bit(dev, devs.d, BCH_SB_MEMBERS_MAX) { ++ rcu_read_lock(); ++ ca = rcu_dereference(c->devs[dev]); ++ if (ca && !percpu_ref_tryget(&ca->io_ref)) ++ ca = NULL; ++ rcu_read_unlock(); ++ ++ if (!ca) ++ continue; ++ ++ bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev, 0, ++ REQ_OP_FLUSH, ++ GFP_KERNEL, ++ &c->nocow_flush_bioset), ++ struct nocow_flush, bio); ++ bio->cl = cl; ++ bio->ca = ca; ++ bio->bio.bi_end_io = nocow_flush_endio; ++ closure_bio_submit(&bio->bio, cl); ++ } ++} ++ ++static int bch2_inode_flush_nocow_writes(struct bch_fs *c, ++ struct bch_inode_info *inode) ++{ ++ struct closure cl; ++ ++ closure_init_stack(&cl); ++ bch2_inode_flush_nocow_writes_async(c, inode, &cl); ++ closure_sync(&cl); ++ ++ return 0; ++} ++ ++/* i_size updates: */ ++ ++struct inode_new_size { ++ loff_t new_size; ++ u64 now; ++ unsigned fields; ++}; ++ ++static int inode_set_size(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct inode_new_size *s = p; ++ ++ bi->bi_size = s->new_size; ++ if (s->fields & ATTR_ATIME) ++ bi->bi_atime = s->now; ++ if (s->fields & ATTR_MTIME) ++ bi->bi_mtime = s->now; ++ if (s->fields & ATTR_CTIME) ++ bi->bi_ctime = s->now; ++ ++ return 0; ++} ++ ++int __must_check bch2_write_inode_size(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ loff_t new_size, unsigned fields) ++{ ++ struct inode_new_size s = { ++ .new_size = new_size, ++ .now = bch2_current_time(c), ++ .fields = fields, ++ }; ++ ++ return bch2_write_inode(c, inode, inode_set_size, &s, fields); ++} ++ ++void __bch2_i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, ++ struct quota_res *quota_res, s64 sectors) ++{ ++ bch2_fs_inconsistent_on((s64) inode->v.i_blocks + sectors < 0, c, ++ "inode %lu i_blocks underflow: %llu + %lli < 0 (ondisk %lli)", ++ inode->v.i_ino, (u64) inode->v.i_blocks, sectors, ++ inode->ei_inode.bi_sectors); ++ inode->v.i_blocks += sectors; ++ ++#ifdef CONFIG_BCACHEFS_QUOTA ++ if (quota_res && ++ !test_bit(EI_INODE_SNAPSHOT, &inode->ei_flags) && ++ sectors > 0) { ++ BUG_ON(sectors > quota_res->sectors); ++ BUG_ON(sectors > inode->ei_quota_reserved); ++ ++ quota_res->sectors -= sectors; ++ inode->ei_quota_reserved -= sectors; ++ } else { ++ bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, KEY_TYPE_QUOTA_WARN); ++ } ++#endif ++} ++ ++/* fsync: */ ++ ++/* ++ * inode->ei_inode.bi_journal_seq won't be up to date since it's set in an ++ * insert trigger: look up the btree inode instead ++ */ ++static int bch2_flush_inode(struct bch_fs *c, ++ struct bch_inode_info *inode) ++{ ++ struct bch_inode_unpacked u; ++ int ret; ++ ++ if (c->opts.journal_flush_disabled) ++ return 0; ++ ++ ret = bch2_inode_find_by_inum(c, inode_inum(inode), &u); ++ if (ret) ++ return ret; ++ ++ return bch2_journal_flush_seq(&c->journal, u.bi_journal_seq) ?: ++ bch2_inode_flush_nocow_writes(c, inode); ++} ++ ++int bch2_fsync(struct file *file, loff_t start, loff_t end, int datasync) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ int ret, ret2, ret3; ++ ++ ret = file_write_and_wait_range(file, start, end); ++ ret2 = sync_inode_metadata(&inode->v, 1); ++ ret3 = bch2_flush_inode(c, inode); ++ ++ return bch2_err_class(ret ?: ret2 ?: ret3); ++} ++ ++/* truncate: */ ++ ++static inline int range_has_data(struct bch_fs *c, u32 subvol, ++ struct bpos start, ++ struct bpos end) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, subvol, &start.snapshot); ++ if (ret) ++ goto err; ++ ++ for_each_btree_key_upto_norestart(trans, iter, BTREE_ID_extents, start, end, 0, k, ret) ++ if (bkey_extent_is_data(k.k) && !bkey_extent_is_unwritten(k)) { ++ ret = 1; ++ break; ++ } ++ start = iter.pos; ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int __bch2_truncate_folio(struct bch_inode_info *inode, ++ pgoff_t index, loff_t start, loff_t end) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct address_space *mapping = inode->v.i_mapping; ++ struct bch_folio *s; ++ unsigned start_offset; ++ unsigned end_offset; ++ unsigned i; ++ struct folio *folio; ++ s64 i_sectors_delta = 0; ++ int ret = 0; ++ u64 end_pos; ++ ++ folio = filemap_lock_folio(mapping, index); ++ if (IS_ERR_OR_NULL(folio)) { ++ /* ++ * XXX: we're doing two index lookups when we end up reading the ++ * folio ++ */ ++ ret = range_has_data(c, inode->ei_subvol, ++ POS(inode->v.i_ino, (index << PAGE_SECTORS_SHIFT)), ++ POS(inode->v.i_ino, (index << PAGE_SECTORS_SHIFT) + PAGE_SECTORS)); ++ if (ret <= 0) ++ return ret; ++ ++ folio = __filemap_get_folio(mapping, index, ++ FGP_LOCK|FGP_CREAT, GFP_KERNEL); ++ if (IS_ERR_OR_NULL(folio)) { ++ ret = -ENOMEM; ++ goto out; ++ } ++ } ++ ++ BUG_ON(start >= folio_end_pos(folio)); ++ BUG_ON(end <= folio_pos(folio)); ++ ++ start_offset = max(start, folio_pos(folio)) - folio_pos(folio); ++ end_offset = min_t(u64, end, folio_end_pos(folio)) - folio_pos(folio); ++ ++ /* Folio boundary? Nothing to do */ ++ if (start_offset == 0 && ++ end_offset == folio_size(folio)) { ++ ret = 0; ++ goto unlock; ++ } ++ ++ s = bch2_folio_create(folio, 0); ++ if (!s) { ++ ret = -ENOMEM; ++ goto unlock; ++ } ++ ++ if (!folio_test_uptodate(folio)) { ++ ret = bch2_read_single_folio(folio, mapping); ++ if (ret) ++ goto unlock; ++ } ++ ++ ret = bch2_folio_set(c, inode_inum(inode), &folio, 1); ++ if (ret) ++ goto unlock; ++ ++ for (i = round_up(start_offset, block_bytes(c)) >> 9; ++ i < round_down(end_offset, block_bytes(c)) >> 9; ++ i++) { ++ s->s[i].nr_replicas = 0; ++ ++ i_sectors_delta -= s->s[i].state == SECTOR_dirty; ++ bch2_folio_sector_set(folio, s, i, SECTOR_unallocated); ++ } ++ ++ bch2_i_sectors_acct(c, inode, NULL, i_sectors_delta); ++ ++ /* ++ * Caller needs to know whether this folio will be written out by ++ * writeback - doing an i_size update if necessary - or whether it will ++ * be responsible for the i_size update. ++ * ++ * Note that we shouldn't ever see a folio beyond EOF, but check and ++ * warn if so. This has been observed by failure to clean up folios ++ * after a short write and there's still a chance reclaim will fix ++ * things up. ++ */ ++ WARN_ON_ONCE(folio_pos(folio) >= inode->v.i_size); ++ end_pos = folio_end_pos(folio); ++ if (inode->v.i_size > folio_pos(folio)) ++ end_pos = min_t(u64, inode->v.i_size, end_pos); ++ ret = s->s[folio_pos_to_s(folio, end_pos - 1)].state >= SECTOR_dirty; ++ ++ folio_zero_segment(folio, start_offset, end_offset); ++ ++ /* ++ * Bit of a hack - we don't want truncate to fail due to -ENOSPC. ++ * ++ * XXX: because we aren't currently tracking whether the folio has actual ++ * data in it (vs. just 0s, or only partially written) this wrong. ick. ++ */ ++ BUG_ON(bch2_get_folio_disk_reservation(c, inode, folio, false)); ++ ++ /* ++ * This removes any writeable userspace mappings; we need to force ++ * .page_mkwrite to be called again before any mmapped writes, to ++ * redirty the full page: ++ */ ++ folio_mkclean(folio); ++ filemap_dirty_folio(mapping, folio); ++unlock: ++ folio_unlock(folio); ++ folio_put(folio); ++out: ++ return ret; ++} ++ ++static int bch2_truncate_folio(struct bch_inode_info *inode, loff_t from) ++{ ++ return __bch2_truncate_folio(inode, from >> PAGE_SHIFT, ++ from, ANYSINT_MAX(loff_t)); ++} ++ ++static int bch2_truncate_folios(struct bch_inode_info *inode, ++ loff_t start, loff_t end) ++{ ++ int ret = __bch2_truncate_folio(inode, start >> PAGE_SHIFT, ++ start, end); ++ ++ if (ret >= 0 && ++ start >> PAGE_SHIFT != end >> PAGE_SHIFT) ++ ret = __bch2_truncate_folio(inode, ++ (end - 1) >> PAGE_SHIFT, ++ start, end); ++ return ret; ++} ++ ++static int bch2_extend(struct mnt_idmap *idmap, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *inode_u, ++ struct iattr *iattr) ++{ ++ struct address_space *mapping = inode->v.i_mapping; ++ int ret; ++ ++ /* ++ * sync appends: ++ * ++ * this has to be done _before_ extending i_size: ++ */ ++ ret = filemap_write_and_wait_range(mapping, inode_u->bi_size, S64_MAX); ++ if (ret) ++ return ret; ++ ++ truncate_setsize(&inode->v, iattr->ia_size); ++ ++ return bch2_setattr_nonsize(idmap, inode, iattr); ++} ++ ++int bchfs_truncate(struct mnt_idmap *idmap, ++ struct bch_inode_info *inode, struct iattr *iattr) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct address_space *mapping = inode->v.i_mapping; ++ struct bch_inode_unpacked inode_u; ++ s64 i_sectors_delta = 0; ++ int ret = 0; ++ ++ /* ++ * If the truncate call with change the size of the file, the ++ * cmtimes should be updated. If the size will not change, we ++ * do not need to update the cmtimes. ++ */ ++ if (iattr->ia_size != inode->v.i_size) { ++ if (!(iattr->ia_valid & ATTR_MTIME)) ++ ktime_get_coarse_real_ts64(&iattr->ia_mtime); ++ if (!(iattr->ia_valid & ATTR_CTIME)) ++ ktime_get_coarse_real_ts64(&iattr->ia_ctime); ++ iattr->ia_valid |= ATTR_MTIME|ATTR_CTIME; ++ } ++ ++ inode_dio_wait(&inode->v); ++ bch2_pagecache_block_get(inode); ++ ++ ret = bch2_inode_find_by_inum(c, inode_inum(inode), &inode_u); ++ if (ret) ++ goto err; ++ ++ /* ++ * check this before next assertion; on filesystem error our normal ++ * invariants are a bit broken (truncate has to truncate the page cache ++ * before the inode). ++ */ ++ ret = bch2_journal_error(&c->journal); ++ if (ret) ++ goto err; ++ ++ WARN_ONCE(!test_bit(EI_INODE_ERROR, &inode->ei_flags) && ++ inode->v.i_size < inode_u.bi_size, ++ "truncate spotted in mem i_size < btree i_size: %llu < %llu\n", ++ (u64) inode->v.i_size, inode_u.bi_size); ++ ++ if (iattr->ia_size > inode->v.i_size) { ++ ret = bch2_extend(idmap, inode, &inode_u, iattr); ++ goto err; ++ } ++ ++ iattr->ia_valid &= ~ATTR_SIZE; ++ ++ ret = bch2_truncate_folio(inode, iattr->ia_size); ++ if (unlikely(ret < 0)) ++ goto err; ++ ++ truncate_setsize(&inode->v, iattr->ia_size); ++ ++ /* ++ * When extending, we're going to write the new i_size to disk ++ * immediately so we need to flush anything above the current on disk ++ * i_size first: ++ * ++ * Also, when extending we need to flush the page that i_size currently ++ * straddles - if it's mapped to userspace, we need to ensure that ++ * userspace has to redirty it and call .mkwrite -> set_page_dirty ++ * again to allocate the part of the page that was extended. ++ */ ++ if (iattr->ia_size > inode_u.bi_size) ++ ret = filemap_write_and_wait_range(mapping, ++ inode_u.bi_size, ++ iattr->ia_size - 1); ++ else if (iattr->ia_size & (PAGE_SIZE - 1)) ++ ret = filemap_write_and_wait_range(mapping, ++ round_down(iattr->ia_size, PAGE_SIZE), ++ iattr->ia_size - 1); ++ if (ret) ++ goto err; ++ ++ ret = bch2_truncate(c, inode_inum(inode), iattr->ia_size, &i_sectors_delta); ++ bch2_i_sectors_acct(c, inode, NULL, i_sectors_delta); ++ ++ if (unlikely(ret)) { ++ /* ++ * If we error here, VFS caches are now inconsistent with btree ++ */ ++ set_bit(EI_INODE_ERROR, &inode->ei_flags); ++ goto err; ++ } ++ ++ bch2_fs_inconsistent_on(!inode->v.i_size && inode->v.i_blocks && ++ !bch2_journal_error(&c->journal), c, ++ "inode %lu truncated to 0 but i_blocks %llu (ondisk %lli)", ++ inode->v.i_ino, (u64) inode->v.i_blocks, ++ inode->ei_inode.bi_sectors); ++ ++ ret = bch2_setattr_nonsize(idmap, inode, iattr); ++err: ++ bch2_pagecache_block_put(inode); ++ return bch2_err_class(ret); ++} ++ ++/* fallocate: */ ++ ++static int inode_update_times_fn(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, void *p) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ bi->bi_mtime = bi->bi_ctime = bch2_current_time(c); ++ return 0; ++} ++ ++static long bchfs_fpunch(struct bch_inode_info *inode, loff_t offset, loff_t len) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ u64 end = offset + len; ++ u64 block_start = round_up(offset, block_bytes(c)); ++ u64 block_end = round_down(end, block_bytes(c)); ++ bool truncated_last_page; ++ int ret = 0; ++ ++ ret = bch2_truncate_folios(inode, offset, end); ++ if (unlikely(ret < 0)) ++ goto err; ++ ++ truncated_last_page = ret; ++ ++ truncate_pagecache_range(&inode->v, offset, end - 1); ++ ++ if (block_start < block_end) { ++ s64 i_sectors_delta = 0; ++ ++ ret = bch2_fpunch(c, inode_inum(inode), ++ block_start >> 9, block_end >> 9, ++ &i_sectors_delta); ++ bch2_i_sectors_acct(c, inode, NULL, i_sectors_delta); ++ } ++ ++ mutex_lock(&inode->ei_update_lock); ++ if (end >= inode->v.i_size && !truncated_last_page) { ++ ret = bch2_write_inode_size(c, inode, inode->v.i_size, ++ ATTR_MTIME|ATTR_CTIME); ++ } else { ++ ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL, ++ ATTR_MTIME|ATTR_CTIME); ++ } ++ mutex_unlock(&inode->ei_update_lock); ++err: ++ return ret; ++} ++ ++static long bchfs_fcollapse_finsert(struct bch_inode_info *inode, ++ loff_t offset, loff_t len, ++ bool insert) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct address_space *mapping = inode->v.i_mapping; ++ s64 i_sectors_delta = 0; ++ int ret = 0; ++ ++ if ((offset | len) & (block_bytes(c) - 1)) ++ return -EINVAL; ++ ++ if (insert) { ++ if (offset >= inode->v.i_size) ++ return -EINVAL; ++ } else { ++ if (offset + len >= inode->v.i_size) ++ return -EINVAL; ++ } ++ ++ ret = bch2_write_invalidate_inode_pages_range(mapping, offset, LLONG_MAX); ++ if (ret) ++ return ret; ++ ++ if (insert) ++ i_size_write(&inode->v, inode->v.i_size + len); ++ ++ ret = bch2_fcollapse_finsert(c, inode_inum(inode), offset >> 9, len >> 9, ++ insert, &i_sectors_delta); ++ if (!ret && !insert) ++ i_size_write(&inode->v, inode->v.i_size - len); ++ bch2_i_sectors_acct(c, inode, NULL, i_sectors_delta); ++ ++ return ret; ++} ++ ++static int __bchfs_fallocate(struct bch_inode_info *inode, int mode, ++ u64 start_sector, u64 end_sector) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bpos end_pos = POS(inode->v.i_ino, end_sector); ++ struct bch_io_opts opts; ++ int ret = 0; ++ ++ bch2_inode_opts_get(&opts, c, &inode->ei_inode); ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ POS(inode->v.i_ino, start_sector), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ ++ while (!ret && bkey_lt(iter.pos, end_pos)) { ++ s64 i_sectors_delta = 0; ++ struct quota_res quota_res = { 0 }; ++ struct bkey_s_c k; ++ unsigned sectors; ++ bool is_allocation; ++ u64 hole_start, hole_end; ++ u32 snapshot; ++ ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, ++ inode->ei_subvol, &snapshot); ++ if (ret) ++ goto bkey_err; ++ ++ bch2_btree_iter_set_snapshot(&iter, snapshot); ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ if ((ret = bkey_err(k))) ++ goto bkey_err; ++ ++ hole_start = iter.pos.offset; ++ hole_end = bpos_min(k.k->p, end_pos).offset; ++ is_allocation = bkey_extent_is_allocation(k.k); ++ ++ /* already reserved */ ++ if (bkey_extent_is_reservation(k) && ++ bch2_bkey_nr_ptrs_fully_allocated(k) >= opts.data_replicas) { ++ bch2_btree_iter_advance(&iter); ++ continue; ++ } ++ ++ if (bkey_extent_is_data(k.k) && ++ !(mode & FALLOC_FL_ZERO_RANGE)) { ++ bch2_btree_iter_advance(&iter); ++ continue; ++ } ++ ++ if (!(mode & FALLOC_FL_ZERO_RANGE)) { ++ /* ++ * Lock ordering - can't be holding btree locks while ++ * blocking on a folio lock: ++ */ ++ if (bch2_clamp_data_hole(&inode->v, ++ &hole_start, ++ &hole_end, ++ opts.data_replicas, true)) ++ ret = drop_locks_do(trans, ++ (bch2_clamp_data_hole(&inode->v, ++ &hole_start, ++ &hole_end, ++ opts.data_replicas, false), 0)); ++ bch2_btree_iter_set_pos(&iter, POS(iter.pos.inode, hole_start)); ++ ++ if (ret) ++ goto bkey_err; ++ ++ if (hole_start == hole_end) ++ continue; ++ } ++ ++ sectors = hole_end - hole_start; ++ ++ if (!is_allocation) { ++ ret = bch2_quota_reservation_add(c, inode, ++ "a_res, sectors, true); ++ if (unlikely(ret)) ++ goto bkey_err; ++ } ++ ++ ret = bch2_extent_fallocate(trans, inode_inum(inode), &iter, ++ sectors, opts, &i_sectors_delta, ++ writepoint_hashed((unsigned long) current)); ++ if (ret) ++ goto bkey_err; ++ ++ bch2_i_sectors_acct(c, inode, "a_res, i_sectors_delta); ++ ++ drop_locks_do(trans, ++ (bch2_mark_pagecache_reserved(inode, hole_start, iter.pos.offset), 0)); ++bkey_err: ++ bch2_quota_reservation_put(c, inode, "a_res); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ ret = 0; ++ } ++ ++ if (bch2_err_matches(ret, ENOSPC) && (mode & FALLOC_FL_ZERO_RANGE)) { ++ struct quota_res quota_res = { 0 }; ++ s64 i_sectors_delta = 0; ++ ++ bch2_fpunch_at(trans, &iter, inode_inum(inode), ++ end_sector, &i_sectors_delta); ++ bch2_i_sectors_acct(c, inode, "a_res, i_sectors_delta); ++ bch2_quota_reservation_put(c, inode, "a_res); ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static long bchfs_fallocate(struct bch_inode_info *inode, int mode, ++ loff_t offset, loff_t len) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ u64 end = offset + len; ++ u64 block_start = round_down(offset, block_bytes(c)); ++ u64 block_end = round_up(end, block_bytes(c)); ++ bool truncated_last_page = false; ++ int ret, ret2 = 0; ++ ++ if (!(mode & FALLOC_FL_KEEP_SIZE) && end > inode->v.i_size) { ++ ret = inode_newsize_ok(&inode->v, end); ++ if (ret) ++ return ret; ++ } ++ ++ if (mode & FALLOC_FL_ZERO_RANGE) { ++ ret = bch2_truncate_folios(inode, offset, end); ++ if (unlikely(ret < 0)) ++ return ret; ++ ++ truncated_last_page = ret; ++ ++ truncate_pagecache_range(&inode->v, offset, end - 1); ++ ++ block_start = round_up(offset, block_bytes(c)); ++ block_end = round_down(end, block_bytes(c)); ++ } ++ ++ ret = __bchfs_fallocate(inode, mode, block_start >> 9, block_end >> 9); ++ ++ /* ++ * On -ENOSPC in ZERO_RANGE mode, we still want to do the inode update, ++ * so that the VFS cache i_size is consistent with the btree i_size: ++ */ ++ if (ret && ++ !(bch2_err_matches(ret, ENOSPC) && (mode & FALLOC_FL_ZERO_RANGE))) ++ return ret; ++ ++ if (mode & FALLOC_FL_KEEP_SIZE && end > inode->v.i_size) ++ end = inode->v.i_size; ++ ++ if (end >= inode->v.i_size && ++ (((mode & FALLOC_FL_ZERO_RANGE) && !truncated_last_page) || ++ !(mode & FALLOC_FL_KEEP_SIZE))) { ++ spin_lock(&inode->v.i_lock); ++ i_size_write(&inode->v, end); ++ spin_unlock(&inode->v.i_lock); ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret2 = bch2_write_inode_size(c, inode, end, 0); ++ mutex_unlock(&inode->ei_update_lock); ++ } ++ ++ return ret ?: ret2; ++} ++ ++long bch2_fallocate_dispatch(struct file *file, int mode, ++ loff_t offset, loff_t len) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ long ret; ++ ++ if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_fallocate)) ++ return -EROFS; ++ ++ inode_lock(&inode->v); ++ inode_dio_wait(&inode->v); ++ bch2_pagecache_block_get(inode); ++ ++ ret = file_modified(file); ++ if (ret) ++ goto err; ++ ++ if (!(mode & ~(FALLOC_FL_KEEP_SIZE|FALLOC_FL_ZERO_RANGE))) ++ ret = bchfs_fallocate(inode, mode, offset, len); ++ else if (mode == (FALLOC_FL_PUNCH_HOLE|FALLOC_FL_KEEP_SIZE)) ++ ret = bchfs_fpunch(inode, offset, len); ++ else if (mode == FALLOC_FL_INSERT_RANGE) ++ ret = bchfs_fcollapse_finsert(inode, offset, len, true); ++ else if (mode == FALLOC_FL_COLLAPSE_RANGE) ++ ret = bchfs_fcollapse_finsert(inode, offset, len, false); ++ else ++ ret = -EOPNOTSUPP; ++err: ++ bch2_pagecache_block_put(inode); ++ inode_unlock(&inode->v); ++ bch2_write_ref_put(c, BCH_WRITE_REF_fallocate); ++ ++ return bch2_err_class(ret); ++} ++ ++/* ++ * Take a quota reservation for unallocated blocks in a given file range ++ * Does not check pagecache ++ */ ++static int quota_reserve_range(struct bch_inode_info *inode, ++ struct quota_res *res, ++ u64 start, u64 end) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ u32 snapshot; ++ u64 sectors = end - start; ++ u64 pos = start; ++ int ret; ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inode->ei_subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ SPOS(inode->v.i_ino, pos, snapshot), 0); ++ ++ while (!(ret = btree_trans_too_many_iters(trans)) && ++ (k = bch2_btree_iter_peek_upto(&iter, POS(inode->v.i_ino, end - 1))).k && ++ !(ret = bkey_err(k))) { ++ if (bkey_extent_is_allocation(k.k)) { ++ u64 s = min(end, k.k->p.offset) - ++ max(start, bkey_start_offset(k.k)); ++ BUG_ON(s > sectors); ++ sectors -= s; ++ } ++ bch2_btree_iter_advance(&iter); ++ } ++ pos = iter.pos.offset; ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ ++ return ret ?: bch2_quota_reservation_add(c, inode, res, sectors, true); ++} ++ ++loff_t bch2_remap_file_range(struct file *file_src, loff_t pos_src, ++ struct file *file_dst, loff_t pos_dst, ++ loff_t len, unsigned remap_flags) ++{ ++ struct bch_inode_info *src = file_bch_inode(file_src); ++ struct bch_inode_info *dst = file_bch_inode(file_dst); ++ struct bch_fs *c = src->v.i_sb->s_fs_info; ++ struct quota_res quota_res = { 0 }; ++ s64 i_sectors_delta = 0; ++ u64 aligned_len; ++ loff_t ret = 0; ++ ++ if (remap_flags & ~(REMAP_FILE_DEDUP|REMAP_FILE_ADVISORY)) ++ return -EINVAL; ++ ++ if (remap_flags & REMAP_FILE_DEDUP) ++ return -EOPNOTSUPP; ++ ++ if ((pos_src & (block_bytes(c) - 1)) || ++ (pos_dst & (block_bytes(c) - 1))) ++ return -EINVAL; ++ ++ if (src == dst && ++ abs(pos_src - pos_dst) < len) ++ return -EINVAL; ++ ++ bch2_lock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst); ++ ++ inode_dio_wait(&src->v); ++ inode_dio_wait(&dst->v); ++ ++ ret = generic_remap_file_range_prep(file_src, pos_src, ++ file_dst, pos_dst, ++ &len, remap_flags); ++ if (ret < 0 || len == 0) ++ goto err; ++ ++ aligned_len = round_up((u64) len, block_bytes(c)); ++ ++ ret = bch2_write_invalidate_inode_pages_range(dst->v.i_mapping, ++ pos_dst, pos_dst + len - 1); ++ if (ret) ++ goto err; ++ ++ ret = quota_reserve_range(dst, "a_res, pos_dst >> 9, ++ (pos_dst + aligned_len) >> 9); ++ if (ret) ++ goto err; ++ ++ file_update_time(file_dst); ++ ++ bch2_mark_pagecache_unallocated(src, pos_src >> 9, ++ (pos_src + aligned_len) >> 9); ++ ++ ret = bch2_remap_range(c, ++ inode_inum(dst), pos_dst >> 9, ++ inode_inum(src), pos_src >> 9, ++ aligned_len >> 9, ++ pos_dst + len, &i_sectors_delta); ++ if (ret < 0) ++ goto err; ++ ++ /* ++ * due to alignment, we might have remapped slightly more than requsted ++ */ ++ ret = min((u64) ret << 9, (u64) len); ++ ++ bch2_i_sectors_acct(c, dst, "a_res, i_sectors_delta); ++ ++ spin_lock(&dst->v.i_lock); ++ if (pos_dst + ret > dst->v.i_size) ++ i_size_write(&dst->v, pos_dst + ret); ++ spin_unlock(&dst->v.i_lock); ++ ++ if ((file_dst->f_flags & (__O_SYNC | O_DSYNC)) || ++ IS_SYNC(file_inode(file_dst))) ++ ret = bch2_flush_inode(c, dst); ++err: ++ bch2_quota_reservation_put(c, dst, "a_res); ++ bch2_unlock_inodes(INODE_LOCK|INODE_PAGECACHE_BLOCK, src, dst); ++ ++ return bch2_err_class(ret); ++} ++ ++/* fseek: */ ++ ++static loff_t bch2_seek_data(struct file *file, u64 offset) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ subvol_inum inum = inode_inum(inode); ++ u64 isize, next_data = MAX_LFS_FILESIZE; ++ u32 snapshot; ++ int ret; ++ ++ isize = i_size_read(&inode->v); ++ if (offset >= isize) ++ return -ENXIO; ++ ++ trans = bch2_trans_get(c); ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ for_each_btree_key_upto_norestart(trans, iter, BTREE_ID_extents, ++ SPOS(inode->v.i_ino, offset >> 9, snapshot), ++ POS(inode->v.i_ino, U64_MAX), ++ 0, k, ret) { ++ if (bkey_extent_is_data(k.k)) { ++ next_data = max(offset, bkey_start_offset(k.k) << 9); ++ break; ++ } else if (k.k->p.offset >> 9 > isize) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ if (ret) ++ return ret; ++ ++ if (next_data > offset) ++ next_data = bch2_seek_pagecache_data(&inode->v, ++ offset, next_data, 0, false); ++ ++ if (next_data >= isize) ++ return -ENXIO; ++ ++ return vfs_setpos(file, next_data, MAX_LFS_FILESIZE); ++} ++ ++static loff_t bch2_seek_hole(struct file *file, u64 offset) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ subvol_inum inum = inode_inum(inode); ++ u64 isize, next_hole = MAX_LFS_FILESIZE; ++ u32 snapshot; ++ int ret; ++ ++ isize = i_size_read(&inode->v); ++ if (offset >= isize) ++ return -ENXIO; ++ ++ trans = bch2_trans_get(c); ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ for_each_btree_key_norestart(trans, iter, BTREE_ID_extents, ++ SPOS(inode->v.i_ino, offset >> 9, snapshot), ++ BTREE_ITER_SLOTS, k, ret) { ++ if (k.k->p.inode != inode->v.i_ino) { ++ next_hole = bch2_seek_pagecache_hole(&inode->v, ++ offset, MAX_LFS_FILESIZE, 0, false); ++ break; ++ } else if (!bkey_extent_is_data(k.k)) { ++ next_hole = bch2_seek_pagecache_hole(&inode->v, ++ max(offset, bkey_start_offset(k.k) << 9), ++ k.k->p.offset << 9, 0, false); ++ ++ if (next_hole < k.k->p.offset << 9) ++ break; ++ } else { ++ offset = max(offset, bkey_start_offset(k.k) << 9); ++ } ++ } ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ if (ret) ++ return ret; ++ ++ if (next_hole > isize) ++ next_hole = isize; ++ ++ return vfs_setpos(file, next_hole, MAX_LFS_FILESIZE); ++} ++ ++loff_t bch2_llseek(struct file *file, loff_t offset, int whence) ++{ ++ loff_t ret; ++ ++ switch (whence) { ++ case SEEK_SET: ++ case SEEK_CUR: ++ case SEEK_END: ++ ret = generic_file_llseek(file, offset, whence); ++ break; ++ case SEEK_DATA: ++ ret = bch2_seek_data(file, offset); ++ break; ++ case SEEK_HOLE: ++ ret = bch2_seek_hole(file, offset); ++ break; ++ default: ++ ret = -EINVAL; ++ break; ++ } ++ ++ return bch2_err_class(ret); ++} ++ ++void bch2_fs_fsio_exit(struct bch_fs *c) ++{ ++ bioset_exit(&c->nocow_flush_bioset); ++} ++ ++int bch2_fs_fsio_init(struct bch_fs *c) ++{ ++ if (bioset_init(&c->nocow_flush_bioset, ++ 1, offsetof(struct nocow_flush, bio), 0)) ++ return -BCH_ERR_ENOMEM_nocow_flush_bioset_init; ++ ++ return 0; ++} ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs-io.h b/fs/bcachefs/fs-io.h +new file mode 100644 +index 000000000000..ca70346e68dc +--- /dev/null ++++ b/fs/bcachefs/fs-io.h +@@ -0,0 +1,184 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_IO_H ++#define _BCACHEFS_FS_IO_H ++ ++#ifndef NO_BCACHEFS_FS ++ ++#include "buckets.h" ++#include "fs.h" ++#include "io_write_types.h" ++#include "quota.h" ++ ++#include ++ ++struct folio_vec { ++ struct folio *fv_folio; ++ size_t fv_offset; ++ size_t fv_len; ++}; ++ ++static inline struct folio_vec biovec_to_foliovec(struct bio_vec bv) ++{ ++ ++ struct folio *folio = page_folio(bv.bv_page); ++ size_t offset = (folio_page_idx(folio, bv.bv_page) << PAGE_SHIFT) + ++ bv.bv_offset; ++ size_t len = min_t(size_t, folio_size(folio) - offset, bv.bv_len); ++ ++ return (struct folio_vec) { ++ .fv_folio = folio, ++ .fv_offset = offset, ++ .fv_len = len, ++ }; ++} ++ ++static inline struct folio_vec bio_iter_iovec_folio(struct bio *bio, ++ struct bvec_iter iter) ++{ ++ return biovec_to_foliovec(bio_iter_iovec(bio, iter)); ++} ++ ++#define __bio_for_each_folio(bvl, bio, iter, start) \ ++ for (iter = (start); \ ++ (iter).bi_size && \ ++ ((bvl = bio_iter_iovec_folio((bio), (iter))), 1); \ ++ bio_advance_iter_single((bio), &(iter), (bvl).fv_len)) ++ ++/** ++ * bio_for_each_folio - iterate over folios within a bio ++ * ++ * Like other non-_all versions, this iterates over what bio->bi_iter currently ++ * points to. This version is for drivers, where the bio may have previously ++ * been split or cloned. ++ */ ++#define bio_for_each_folio(bvl, bio, iter) \ ++ __bio_for_each_folio(bvl, bio, iter, (bio)->bi_iter) ++ ++struct quota_res { ++ u64 sectors; ++}; ++ ++#ifdef CONFIG_BCACHEFS_QUOTA ++ ++static inline void __bch2_quota_reservation_put(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res) ++{ ++ BUG_ON(res->sectors > inode->ei_quota_reserved); ++ ++ bch2_quota_acct(c, inode->ei_qid, Q_SPC, ++ -((s64) res->sectors), KEY_TYPE_QUOTA_PREALLOC); ++ inode->ei_quota_reserved -= res->sectors; ++ res->sectors = 0; ++} ++ ++static inline void bch2_quota_reservation_put(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res) ++{ ++ if (res->sectors) { ++ mutex_lock(&inode->ei_quota_lock); ++ __bch2_quota_reservation_put(c, inode, res); ++ mutex_unlock(&inode->ei_quota_lock); ++ } ++} ++ ++static inline int bch2_quota_reservation_add(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res, ++ u64 sectors, ++ bool check_enospc) ++{ ++ int ret; ++ ++ if (test_bit(EI_INODE_SNAPSHOT, &inode->ei_flags)) ++ return 0; ++ ++ mutex_lock(&inode->ei_quota_lock); ++ ret = bch2_quota_acct(c, inode->ei_qid, Q_SPC, sectors, ++ check_enospc ? KEY_TYPE_QUOTA_PREALLOC : KEY_TYPE_QUOTA_NOCHECK); ++ if (likely(!ret)) { ++ inode->ei_quota_reserved += sectors; ++ res->sectors += sectors; ++ } ++ mutex_unlock(&inode->ei_quota_lock); ++ ++ return ret; ++} ++ ++#else ++ ++static inline void __bch2_quota_reservation_put(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res) {} ++ ++static inline void bch2_quota_reservation_put(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res) {} ++ ++static inline int bch2_quota_reservation_add(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct quota_res *res, ++ unsigned sectors, ++ bool check_enospc) ++{ ++ return 0; ++} ++ ++#endif ++ ++void __bch2_i_sectors_acct(struct bch_fs *, struct bch_inode_info *, ++ struct quota_res *, s64); ++ ++static inline void bch2_i_sectors_acct(struct bch_fs *c, struct bch_inode_info *inode, ++ struct quota_res *quota_res, s64 sectors) ++{ ++ if (sectors) { ++ mutex_lock(&inode->ei_quota_lock); ++ __bch2_i_sectors_acct(c, inode, quota_res, sectors); ++ mutex_unlock(&inode->ei_quota_lock); ++ } ++} ++ ++static inline struct address_space *faults_disabled_mapping(void) ++{ ++ return (void *) (((unsigned long) current->faults_disabled_mapping) & ~1UL); ++} ++ ++static inline void set_fdm_dropped_locks(void) ++{ ++ current->faults_disabled_mapping = ++ (void *) (((unsigned long) current->faults_disabled_mapping)|1); ++} ++ ++static inline bool fdm_dropped_locks(void) ++{ ++ return ((unsigned long) current->faults_disabled_mapping) & 1; ++} ++ ++void bch2_inode_flush_nocow_writes_async(struct bch_fs *, ++ struct bch_inode_info *, struct closure *); ++ ++int __must_check bch2_write_inode_size(struct bch_fs *, ++ struct bch_inode_info *, ++ loff_t, unsigned); ++ ++int bch2_fsync(struct file *, loff_t, loff_t, int); ++ ++int bchfs_truncate(struct mnt_idmap *, ++ struct bch_inode_info *, struct iattr *); ++long bch2_fallocate_dispatch(struct file *, int, loff_t, loff_t); ++ ++loff_t bch2_remap_file_range(struct file *, loff_t, struct file *, ++ loff_t, loff_t, unsigned); ++ ++loff_t bch2_llseek(struct file *, loff_t, int); ++ ++void bch2_fs_fsio_exit(struct bch_fs *); ++int bch2_fs_fsio_init(struct bch_fs *); ++#else ++static inline void bch2_fs_fsio_exit(struct bch_fs *c) {} ++static inline int bch2_fs_fsio_init(struct bch_fs *c) { return 0; } ++#endif ++ ++#endif /* _BCACHEFS_FS_IO_H */ +diff --git a/fs/bcachefs/fs-ioctl.c b/fs/bcachefs/fs-ioctl.c +new file mode 100644 +index 000000000000..6040bd3f0778 +--- /dev/null ++++ b/fs/bcachefs/fs-ioctl.c +@@ -0,0 +1,572 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "chardev.h" ++#include "dirent.h" ++#include "fs.h" ++#include "fs-common.h" ++#include "fs-ioctl.h" ++#include "quota.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#define FS_IOC_GOINGDOWN _IOR('X', 125, __u32) ++#define FSOP_GOING_FLAGS_DEFAULT 0x0 /* going down */ ++#define FSOP_GOING_FLAGS_LOGFLUSH 0x1 /* flush log but not data */ ++#define FSOP_GOING_FLAGS_NOLOGFLUSH 0x2 /* don't flush log nor data */ ++ ++struct flags_set { ++ unsigned mask; ++ unsigned flags; ++ ++ unsigned projid; ++ ++ bool set_projinherit; ++ bool projinherit; ++}; ++ ++static int bch2_inode_flags_set(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ /* ++ * We're relying on btree locking here for exclusion with other ioctl ++ * calls - use the flags in the btree (@bi), not inode->i_flags: ++ */ ++ struct flags_set *s = p; ++ unsigned newflags = s->flags; ++ unsigned oldflags = bi->bi_flags & s->mask; ++ ++ if (((newflags ^ oldflags) & (BCH_INODE_APPEND|BCH_INODE_IMMUTABLE)) && ++ !capable(CAP_LINUX_IMMUTABLE)) ++ return -EPERM; ++ ++ if (!S_ISREG(bi->bi_mode) && ++ !S_ISDIR(bi->bi_mode) && ++ (newflags & (BCH_INODE_NODUMP|BCH_INODE_NOATIME)) != newflags) ++ return -EINVAL; ++ ++ if (s->set_projinherit) { ++ bi->bi_fields_set &= ~(1 << Inode_opt_project); ++ bi->bi_fields_set |= ((int) s->projinherit << Inode_opt_project); ++ } ++ ++ bi->bi_flags &= ~s->mask; ++ bi->bi_flags |= newflags; ++ ++ bi->bi_ctime = timespec_to_bch2_time(c, current_time(&inode->v)); ++ return 0; ++} ++ ++static int bch2_ioc_getflags(struct bch_inode_info *inode, int __user *arg) ++{ ++ unsigned flags = map_flags(bch_flags_to_uflags, inode->ei_inode.bi_flags); ++ ++ return put_user(flags, arg); ++} ++ ++static int bch2_ioc_setflags(struct bch_fs *c, ++ struct file *file, ++ struct bch_inode_info *inode, ++ void __user *arg) ++{ ++ struct flags_set s = { .mask = map_defined(bch_flags_to_uflags) }; ++ unsigned uflags; ++ int ret; ++ ++ if (get_user(uflags, (int __user *) arg)) ++ return -EFAULT; ++ ++ s.flags = map_flags_rev(bch_flags_to_uflags, uflags); ++ if (uflags) ++ return -EOPNOTSUPP; ++ ++ ret = mnt_want_write_file(file); ++ if (ret) ++ return ret; ++ ++ inode_lock(&inode->v); ++ if (!inode_owner_or_capable(file_mnt_idmap(file), &inode->v)) { ++ ret = -EACCES; ++ goto setflags_out; ++ } ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode(c, inode, bch2_inode_flags_set, &s, ++ ATTR_CTIME); ++ mutex_unlock(&inode->ei_update_lock); ++ ++setflags_out: ++ inode_unlock(&inode->v); ++ mnt_drop_write_file(file); ++ return ret; ++} ++ ++static int bch2_ioc_fsgetxattr(struct bch_inode_info *inode, ++ struct fsxattr __user *arg) ++{ ++ struct fsxattr fa = { 0 }; ++ ++ fa.fsx_xflags = map_flags(bch_flags_to_xflags, inode->ei_inode.bi_flags); ++ ++ if (inode->ei_inode.bi_fields_set & (1 << Inode_opt_project)) ++ fa.fsx_xflags |= FS_XFLAG_PROJINHERIT; ++ ++ fa.fsx_projid = inode->ei_qid.q[QTYP_PRJ]; ++ ++ if (copy_to_user(arg, &fa, sizeof(fa))) ++ return -EFAULT; ++ ++ return 0; ++} ++ ++static int fssetxattr_inode_update_fn(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct flags_set *s = p; ++ ++ if (s->projid != bi->bi_project) { ++ bi->bi_fields_set |= 1U << Inode_opt_project; ++ bi->bi_project = s->projid; ++ } ++ ++ return bch2_inode_flags_set(trans, inode, bi, p); ++} ++ ++static int bch2_ioc_fssetxattr(struct bch_fs *c, ++ struct file *file, ++ struct bch_inode_info *inode, ++ struct fsxattr __user *arg) ++{ ++ struct flags_set s = { .mask = map_defined(bch_flags_to_xflags) }; ++ struct fsxattr fa; ++ int ret; ++ ++ if (copy_from_user(&fa, arg, sizeof(fa))) ++ return -EFAULT; ++ ++ s.set_projinherit = true; ++ s.projinherit = (fa.fsx_xflags & FS_XFLAG_PROJINHERIT) != 0; ++ fa.fsx_xflags &= ~FS_XFLAG_PROJINHERIT; ++ ++ s.flags = map_flags_rev(bch_flags_to_xflags, fa.fsx_xflags); ++ if (fa.fsx_xflags) ++ return -EOPNOTSUPP; ++ ++ if (fa.fsx_projid >= U32_MAX) ++ return -EINVAL; ++ ++ /* ++ * inode fields accessible via the xattr interface are stored with a +1 ++ * bias, so that 0 means unset: ++ */ ++ s.projid = fa.fsx_projid + 1; ++ ++ ret = mnt_want_write_file(file); ++ if (ret) ++ return ret; ++ ++ inode_lock(&inode->v); ++ if (!inode_owner_or_capable(file_mnt_idmap(file), &inode->v)) { ++ ret = -EACCES; ++ goto err; ++ } ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_set_projid(c, inode, fa.fsx_projid); ++ if (ret) ++ goto err_unlock; ++ ++ ret = bch2_write_inode(c, inode, fssetxattr_inode_update_fn, &s, ++ ATTR_CTIME); ++err_unlock: ++ mutex_unlock(&inode->ei_update_lock); ++err: ++ inode_unlock(&inode->v); ++ mnt_drop_write_file(file); ++ return ret; ++} ++ ++static int bch2_reinherit_attrs_fn(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct bch_inode_info *dir = p; ++ ++ return !bch2_reinherit_attrs(bi, &dir->ei_inode); ++} ++ ++static int bch2_ioc_reinherit_attrs(struct bch_fs *c, ++ struct file *file, ++ struct bch_inode_info *src, ++ const char __user *name) ++{ ++ struct bch_hash_info hash = bch2_hash_info_init(c, &src->ei_inode); ++ struct bch_inode_info *dst; ++ struct inode *vinode = NULL; ++ char *kname = NULL; ++ struct qstr qstr; ++ int ret = 0; ++ subvol_inum inum; ++ ++ kname = kmalloc(BCH_NAME_MAX + 1, GFP_KERNEL); ++ if (!kname) ++ return -ENOMEM; ++ ++ ret = strncpy_from_user(kname, name, BCH_NAME_MAX); ++ if (unlikely(ret < 0)) ++ goto err1; ++ ++ qstr.len = ret; ++ qstr.name = kname; ++ ++ ret = bch2_dirent_lookup(c, inode_inum(src), &hash, &qstr, &inum); ++ if (ret) ++ goto err1; ++ ++ vinode = bch2_vfs_inode_get(c, inum); ++ ret = PTR_ERR_OR_ZERO(vinode); ++ if (ret) ++ goto err1; ++ ++ dst = to_bch_ei(vinode); ++ ++ ret = mnt_want_write_file(file); ++ if (ret) ++ goto err2; ++ ++ bch2_lock_inodes(INODE_UPDATE_LOCK, src, dst); ++ ++ if (inode_attr_changing(src, dst, Inode_opt_project)) { ++ ret = bch2_fs_quota_transfer(c, dst, ++ src->ei_qid, ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (ret) ++ goto err3; ++ } ++ ++ ret = bch2_write_inode(c, dst, bch2_reinherit_attrs_fn, src, 0); ++err3: ++ bch2_unlock_inodes(INODE_UPDATE_LOCK, src, dst); ++ ++ /* return true if we did work */ ++ if (ret >= 0) ++ ret = !ret; ++ ++ mnt_drop_write_file(file); ++err2: ++ iput(vinode); ++err1: ++ kfree(kname); ++ ++ return ret; ++} ++ ++static int bch2_ioc_goingdown(struct bch_fs *c, u32 __user *arg) ++{ ++ u32 flags; ++ int ret = 0; ++ ++ if (!capable(CAP_SYS_ADMIN)) ++ return -EPERM; ++ ++ if (get_user(flags, arg)) ++ return -EFAULT; ++ ++ bch_notice(c, "shutdown by ioctl type %u", flags); ++ ++ down_write(&c->vfs_sb->s_umount); ++ ++ switch (flags) { ++ case FSOP_GOING_FLAGS_DEFAULT: ++ ret = freeze_bdev(c->vfs_sb->s_bdev); ++ if (ret) ++ goto err; ++ ++ bch2_journal_flush(&c->journal); ++ c->vfs_sb->s_flags |= SB_RDONLY; ++ bch2_fs_emergency_read_only(c); ++ thaw_bdev(c->vfs_sb->s_bdev); ++ break; ++ ++ case FSOP_GOING_FLAGS_LOGFLUSH: ++ bch2_journal_flush(&c->journal); ++ fallthrough; ++ ++ case FSOP_GOING_FLAGS_NOLOGFLUSH: ++ c->vfs_sb->s_flags |= SB_RDONLY; ++ bch2_fs_emergency_read_only(c); ++ break; ++ default: ++ ret = -EINVAL; ++ break; ++ } ++err: ++ up_write(&c->vfs_sb->s_umount); ++ return ret; ++} ++ ++static long __bch2_ioctl_subvolume_create(struct bch_fs *c, struct file *filp, ++ struct bch_ioctl_subvolume arg) ++{ ++ struct inode *dir; ++ struct bch_inode_info *inode; ++ struct user_namespace *s_user_ns; ++ struct dentry *dst_dentry; ++ struct path src_path, dst_path; ++ int how = LOOKUP_FOLLOW; ++ int error; ++ subvol_inum snapshot_src = { 0 }; ++ unsigned lookup_flags = 0; ++ unsigned create_flags = BCH_CREATE_SUBVOL; ++ ++ if (arg.flags & ~(BCH_SUBVOL_SNAPSHOT_CREATE| ++ BCH_SUBVOL_SNAPSHOT_RO)) ++ return -EINVAL; ++ ++ if (!(arg.flags & BCH_SUBVOL_SNAPSHOT_CREATE) && ++ (arg.src_ptr || ++ (arg.flags & BCH_SUBVOL_SNAPSHOT_RO))) ++ return -EINVAL; ++ ++ if (arg.flags & BCH_SUBVOL_SNAPSHOT_CREATE) ++ create_flags |= BCH_CREATE_SNAPSHOT; ++ ++ if (arg.flags & BCH_SUBVOL_SNAPSHOT_RO) ++ create_flags |= BCH_CREATE_SNAPSHOT_RO; ++ ++ /* why do we need this lock? */ ++ down_read(&c->vfs_sb->s_umount); ++ ++ if (arg.flags & BCH_SUBVOL_SNAPSHOT_CREATE) ++ sync_inodes_sb(c->vfs_sb); ++retry: ++ if (arg.src_ptr) { ++ error = user_path_at(arg.dirfd, ++ (const char __user *)(unsigned long)arg.src_ptr, ++ how, &src_path); ++ if (error) ++ goto err1; ++ ++ if (src_path.dentry->d_sb->s_fs_info != c) { ++ path_put(&src_path); ++ error = -EXDEV; ++ goto err1; ++ } ++ ++ snapshot_src = inode_inum(to_bch_ei(src_path.dentry->d_inode)); ++ } ++ ++ dst_dentry = user_path_create(arg.dirfd, ++ (const char __user *)(unsigned long)arg.dst_ptr, ++ &dst_path, lookup_flags); ++ error = PTR_ERR_OR_ZERO(dst_dentry); ++ if (error) ++ goto err2; ++ ++ if (dst_dentry->d_sb->s_fs_info != c) { ++ error = -EXDEV; ++ goto err3; ++ } ++ ++ if (dst_dentry->d_inode) { ++ error = -EEXIST; ++ goto err3; ++ } ++ ++ dir = dst_path.dentry->d_inode; ++ if (IS_DEADDIR(dir)) { ++ error = -BCH_ERR_ENOENT_directory_dead; ++ goto err3; ++ } ++ ++ s_user_ns = dir->i_sb->s_user_ns; ++ if (!kuid_has_mapping(s_user_ns, current_fsuid()) || ++ !kgid_has_mapping(s_user_ns, current_fsgid())) { ++ error = -EOVERFLOW; ++ goto err3; ++ } ++ ++ error = inode_permission(file_mnt_idmap(filp), ++ dir, MAY_WRITE | MAY_EXEC); ++ if (error) ++ goto err3; ++ ++ if (!IS_POSIXACL(dir)) ++ arg.mode &= ~current_umask(); ++ ++ error = security_path_mkdir(&dst_path, dst_dentry, arg.mode); ++ if (error) ++ goto err3; ++ ++ if ((arg.flags & BCH_SUBVOL_SNAPSHOT_CREATE) && ++ !arg.src_ptr) ++ snapshot_src.subvol = to_bch_ei(dir)->ei_inode.bi_subvol; ++ ++ inode = __bch2_create(file_mnt_idmap(filp), to_bch_ei(dir), ++ dst_dentry, arg.mode|S_IFDIR, ++ 0, snapshot_src, create_flags); ++ error = PTR_ERR_OR_ZERO(inode); ++ if (error) ++ goto err3; ++ ++ d_instantiate(dst_dentry, &inode->v); ++ fsnotify_mkdir(dir, dst_dentry); ++err3: ++ done_path_create(&dst_path, dst_dentry); ++err2: ++ if (arg.src_ptr) ++ path_put(&src_path); ++ ++ if (retry_estale(error, lookup_flags)) { ++ lookup_flags |= LOOKUP_REVAL; ++ goto retry; ++ } ++err1: ++ up_read(&c->vfs_sb->s_umount); ++ ++ return error; ++} ++ ++static long bch2_ioctl_subvolume_create(struct bch_fs *c, struct file *filp, ++ struct bch_ioctl_subvolume arg) ++{ ++ down_write(&c->snapshot_create_lock); ++ long ret = __bch2_ioctl_subvolume_create(c, filp, arg); ++ up_write(&c->snapshot_create_lock); ++ ++ return ret; ++} ++ ++static long bch2_ioctl_subvolume_destroy(struct bch_fs *c, struct file *filp, ++ struct bch_ioctl_subvolume arg) ++{ ++ struct path path; ++ struct inode *dir; ++ int ret = 0; ++ ++ if (arg.flags) ++ return -EINVAL; ++ ++ ret = user_path_at(arg.dirfd, ++ (const char __user *)(unsigned long)arg.dst_ptr, ++ LOOKUP_FOLLOW, &path); ++ if (ret) ++ return ret; ++ ++ if (path.dentry->d_sb->s_fs_info != c) { ++ ret = -EXDEV; ++ goto err; ++ } ++ ++ dir = path.dentry->d_parent->d_inode; ++ ++ ret = __bch2_unlink(dir, path.dentry, true); ++ if (ret) ++ goto err; ++ ++ fsnotify_rmdir(dir, path.dentry); ++ d_delete(path.dentry); ++err: ++ path_put(&path); ++ return ret; ++} ++ ++long bch2_fs_file_ioctl(struct file *file, unsigned cmd, unsigned long arg) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ long ret; ++ ++ switch (cmd) { ++ case FS_IOC_GETFLAGS: ++ ret = bch2_ioc_getflags(inode, (int __user *) arg); ++ break; ++ ++ case FS_IOC_SETFLAGS: ++ ret = bch2_ioc_setflags(c, file, inode, (int __user *) arg); ++ break; ++ ++ case FS_IOC_FSGETXATTR: ++ ret = bch2_ioc_fsgetxattr(inode, (void __user *) arg); ++ break; ++ ++ case FS_IOC_FSSETXATTR: ++ ret = bch2_ioc_fssetxattr(c, file, inode, ++ (void __user *) arg); ++ break; ++ ++ case BCHFS_IOC_REINHERIT_ATTRS: ++ ret = bch2_ioc_reinherit_attrs(c, file, inode, ++ (void __user *) arg); ++ break; ++ ++ case FS_IOC_GETVERSION: ++ ret = -ENOTTY; ++ break; ++ ++ case FS_IOC_SETVERSION: ++ ret = -ENOTTY; ++ break; ++ ++ case FS_IOC_GOINGDOWN: ++ ret = bch2_ioc_goingdown(c, (u32 __user *) arg); ++ break; ++ ++ case BCH_IOCTL_SUBVOLUME_CREATE: { ++ struct bch_ioctl_subvolume i; ++ ++ ret = copy_from_user(&i, (void __user *) arg, sizeof(i)) ++ ? -EFAULT ++ : bch2_ioctl_subvolume_create(c, file, i); ++ break; ++ } ++ ++ case BCH_IOCTL_SUBVOLUME_DESTROY: { ++ struct bch_ioctl_subvolume i; ++ ++ ret = copy_from_user(&i, (void __user *) arg, sizeof(i)) ++ ? -EFAULT ++ : bch2_ioctl_subvolume_destroy(c, file, i); ++ break; ++ } ++ ++ default: ++ ret = bch2_fs_ioctl(c, cmd, (void __user *) arg); ++ break; ++ } ++ ++ return bch2_err_class(ret); ++} ++ ++#ifdef CONFIG_COMPAT ++long bch2_compat_fs_ioctl(struct file *file, unsigned cmd, unsigned long arg) ++{ ++ /* These are just misnamed, they actually get/put from/to user an int */ ++ switch (cmd) { ++ case FS_IOC_GETFLAGS: ++ cmd = FS_IOC_GETFLAGS; ++ break; ++ case FS_IOC32_SETFLAGS: ++ cmd = FS_IOC_SETFLAGS; ++ break; ++ default: ++ return -ENOIOCTLCMD; ++ } ++ return bch2_fs_file_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); ++} ++#endif ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs-ioctl.h b/fs/bcachefs/fs-ioctl.h +new file mode 100644 +index 000000000000..54a9c21a3b83 +--- /dev/null ++++ b/fs/bcachefs/fs-ioctl.h +@@ -0,0 +1,81 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_IOCTL_H ++#define _BCACHEFS_FS_IOCTL_H ++ ++/* Inode flags: */ ++ ++/* bcachefs inode flags -> vfs inode flags: */ ++static const __maybe_unused unsigned bch_flags_to_vfs[] = { ++ [__BCH_INODE_SYNC] = S_SYNC, ++ [__BCH_INODE_IMMUTABLE] = S_IMMUTABLE, ++ [__BCH_INODE_APPEND] = S_APPEND, ++ [__BCH_INODE_NOATIME] = S_NOATIME, ++}; ++ ++/* bcachefs inode flags -> FS_IOC_GETFLAGS: */ ++static const __maybe_unused unsigned bch_flags_to_uflags[] = { ++ [__BCH_INODE_SYNC] = FS_SYNC_FL, ++ [__BCH_INODE_IMMUTABLE] = FS_IMMUTABLE_FL, ++ [__BCH_INODE_APPEND] = FS_APPEND_FL, ++ [__BCH_INODE_NODUMP] = FS_NODUMP_FL, ++ [__BCH_INODE_NOATIME] = FS_NOATIME_FL, ++}; ++ ++/* bcachefs inode flags -> FS_IOC_FSGETXATTR: */ ++static const __maybe_unused unsigned bch_flags_to_xflags[] = { ++ [__BCH_INODE_SYNC] = FS_XFLAG_SYNC, ++ [__BCH_INODE_IMMUTABLE] = FS_XFLAG_IMMUTABLE, ++ [__BCH_INODE_APPEND] = FS_XFLAG_APPEND, ++ [__BCH_INODE_NODUMP] = FS_XFLAG_NODUMP, ++ [__BCH_INODE_NOATIME] = FS_XFLAG_NOATIME, ++ //[__BCH_INODE_PROJINHERIT] = FS_XFLAG_PROJINHERIT; ++}; ++ ++#define set_flags(_map, _in, _out) \ ++do { \ ++ unsigned _i; \ ++ \ ++ for (_i = 0; _i < ARRAY_SIZE(_map); _i++) \ ++ if ((_in) & (1 << _i)) \ ++ (_out) |= _map[_i]; \ ++ else \ ++ (_out) &= ~_map[_i]; \ ++} while (0) ++ ++#define map_flags(_map, _in) \ ++({ \ ++ unsigned _out = 0; \ ++ \ ++ set_flags(_map, _in, _out); \ ++ _out; \ ++}) ++ ++#define map_flags_rev(_map, _in) \ ++({ \ ++ unsigned _i, _out = 0; \ ++ \ ++ for (_i = 0; _i < ARRAY_SIZE(_map); _i++) \ ++ if ((_in) & _map[_i]) { \ ++ (_out) |= 1 << _i; \ ++ (_in) &= ~_map[_i]; \ ++ } \ ++ (_out); \ ++}) ++ ++#define map_defined(_map) \ ++({ \ ++ unsigned _in = ~0; \ ++ \ ++ map_flags_rev(_map, _in); \ ++}) ++ ++/* Set VFS inode flags from bcachefs inode: */ ++static inline void bch2_inode_flags_to_vfs(struct bch_inode_info *inode) ++{ ++ set_flags(bch_flags_to_vfs, inode->ei_inode.bi_flags, inode->v.i_flags); ++} ++ ++long bch2_fs_file_ioctl(struct file *, unsigned, unsigned long); ++long bch2_compat_fs_ioctl(struct file *, unsigned, unsigned long); ++ ++#endif /* _BCACHEFS_FS_IOCTL_H */ +diff --git a/fs/bcachefs/fs.c b/fs/bcachefs/fs.c +new file mode 100644 +index 000000000000..bc009ef497d0 +--- /dev/null ++++ b/fs/bcachefs/fs.c +@@ -0,0 +1,1980 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifndef NO_BCACHEFS_FS ++ ++#include "bcachefs.h" ++#include "acl.h" ++#include "bkey_buf.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "chardev.h" ++#include "dirent.h" ++#include "errcode.h" ++#include "extents.h" ++#include "fs.h" ++#include "fs-common.h" ++#include "fs-io.h" ++#include "fs-ioctl.h" ++#include "fs-io-buffered.h" ++#include "fs-io-direct.h" ++#include "fs-io-pagecache.h" ++#include "fsck.h" ++#include "inode.h" ++#include "io_read.h" ++#include "journal.h" ++#include "keylist.h" ++#include "quota.h" ++#include "snapshot.h" ++#include "super.h" ++#include "xattr.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++static struct kmem_cache *bch2_inode_cache; ++ ++static void bch2_vfs_inode_init(struct btree_trans *, subvol_inum, ++ struct bch_inode_info *, ++ struct bch_inode_unpacked *, ++ struct bch_subvolume *); ++ ++void bch2_inode_update_after_write(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ unsigned fields) ++{ ++ struct bch_fs *c = trans->c; ++ ++ BUG_ON(bi->bi_inum != inode->v.i_ino); ++ ++ bch2_assert_pos_locked(trans, BTREE_ID_inodes, ++ POS(0, bi->bi_inum), ++ c->opts.inodes_use_key_cache); ++ ++ set_nlink(&inode->v, bch2_inode_nlink_get(bi)); ++ i_uid_write(&inode->v, bi->bi_uid); ++ i_gid_write(&inode->v, bi->bi_gid); ++ inode->v.i_mode = bi->bi_mode; ++ ++ if (fields & ATTR_ATIME) ++ inode->v.i_atime = bch2_time_to_timespec(c, bi->bi_atime); ++ if (fields & ATTR_MTIME) ++ inode->v.i_mtime = bch2_time_to_timespec(c, bi->bi_mtime); ++ if (fields & ATTR_CTIME) ++ inode_set_ctime_to_ts(&inode->v, bch2_time_to_timespec(c, bi->bi_ctime)); ++ ++ inode->ei_inode = *bi; ++ ++ bch2_inode_flags_to_vfs(inode); ++} ++ ++int __must_check bch2_write_inode(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ inode_set_fn set, ++ void *p, unsigned fields) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter = { NULL }; ++ struct bch_inode_unpacked inode_u; ++ int ret; ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_inode_peek(trans, &iter, &inode_u, inode_inum(inode), ++ BTREE_ITER_INTENT) ?: ++ (set ? set(trans, inode, &inode_u, p) : 0) ?: ++ bch2_inode_write(trans, &iter, &inode_u) ?: ++ bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_NOFAIL); ++ ++ /* ++ * the btree node lock protects inode->ei_inode, not ei_update_lock; ++ * this is important for inode updates via bchfs_write_index_update ++ */ ++ if (!ret) ++ bch2_inode_update_after_write(trans, inode, &inode_u, fields); ++ ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_fs_fatal_err_on(bch2_err_matches(ret, ENOENT), c, ++ "inode %u:%llu not found when updating", ++ inode_inum(inode).subvol, ++ inode_inum(inode).inum); ++ ++ bch2_trans_put(trans); ++ return ret < 0 ? ret : 0; ++} ++ ++int bch2_fs_quota_transfer(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch_qid new_qid, ++ unsigned qtypes, ++ enum quota_acct_mode mode) ++{ ++ unsigned i; ++ int ret; ++ ++ qtypes &= enabled_qtypes(c); ++ ++ for (i = 0; i < QTYP_NR; i++) ++ if (new_qid.q[i] == inode->ei_qid.q[i]) ++ qtypes &= ~(1U << i); ++ ++ if (!qtypes) ++ return 0; ++ ++ mutex_lock(&inode->ei_quota_lock); ++ ++ ret = bch2_quota_transfer(c, qtypes, new_qid, ++ inode->ei_qid, ++ inode->v.i_blocks + ++ inode->ei_quota_reserved, ++ mode); ++ if (!ret) ++ for (i = 0; i < QTYP_NR; i++) ++ if (qtypes & (1 << i)) ++ inode->ei_qid.q[i] = new_qid.q[i]; ++ ++ mutex_unlock(&inode->ei_quota_lock); ++ ++ return ret; ++} ++ ++static int bch2_iget5_test(struct inode *vinode, void *p) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ subvol_inum *inum = p; ++ ++ return inode->ei_subvol == inum->subvol && ++ inode->ei_inode.bi_inum == inum->inum; ++} ++ ++static int bch2_iget5_set(struct inode *vinode, void *p) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ subvol_inum *inum = p; ++ ++ inode->v.i_ino = inum->inum; ++ inode->ei_subvol = inum->subvol; ++ inode->ei_inode.bi_inum = inum->inum; ++ return 0; ++} ++ ++static unsigned bch2_inode_hash(subvol_inum inum) ++{ ++ return jhash_3words(inum.subvol, inum.inum >> 32, inum.inum, JHASH_INITVAL); ++} ++ ++struct inode *bch2_vfs_inode_get(struct bch_fs *c, subvol_inum inum) ++{ ++ struct bch_inode_unpacked inode_u; ++ struct bch_inode_info *inode; ++ struct btree_trans *trans; ++ struct bch_subvolume subvol; ++ int ret; ++ ++ inode = to_bch_ei(iget5_locked(c->vfs_sb, ++ bch2_inode_hash(inum), ++ bch2_iget5_test, ++ bch2_iget5_set, ++ &inum)); ++ if (unlikely(!inode)) ++ return ERR_PTR(-ENOMEM); ++ if (!(inode->v.i_state & I_NEW)) ++ return &inode->v; ++ ++ trans = bch2_trans_get(c); ++ ret = lockrestart_do(trans, ++ bch2_subvolume_get(trans, inum.subvol, true, 0, &subvol) ?: ++ bch2_inode_find_by_inum_trans(trans, inum, &inode_u)); ++ ++ if (!ret) ++ bch2_vfs_inode_init(trans, inum, inode, &inode_u, &subvol); ++ bch2_trans_put(trans); ++ ++ if (ret) { ++ iget_failed(&inode->v); ++ return ERR_PTR(bch2_err_class(ret)); ++ } ++ ++ mutex_lock(&c->vfs_inodes_lock); ++ list_add(&inode->ei_vfs_inode_list, &c->vfs_inodes_list); ++ mutex_unlock(&c->vfs_inodes_lock); ++ ++ unlock_new_inode(&inode->v); ++ ++ return &inode->v; ++} ++ ++struct bch_inode_info * ++__bch2_create(struct mnt_idmap *idmap, ++ struct bch_inode_info *dir, struct dentry *dentry, ++ umode_t mode, dev_t rdev, subvol_inum snapshot_src, ++ unsigned flags) ++{ ++ struct bch_fs *c = dir->v.i_sb->s_fs_info; ++ struct btree_trans *trans; ++ struct bch_inode_unpacked dir_u; ++ struct bch_inode_info *inode, *old; ++ struct bch_inode_unpacked inode_u; ++ struct posix_acl *default_acl = NULL, *acl = NULL; ++ subvol_inum inum; ++ struct bch_subvolume subvol; ++ u64 journal_seq = 0; ++ int ret; ++ ++ /* ++ * preallocate acls + vfs inode before btree transaction, so that ++ * nothing can fail after the transaction succeeds: ++ */ ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ ret = posix_acl_create(&dir->v, &mode, &default_acl, &acl); ++ if (ret) ++ return ERR_PTR(ret); ++#endif ++ inode = to_bch_ei(new_inode(c->vfs_sb)); ++ if (unlikely(!inode)) { ++ inode = ERR_PTR(-ENOMEM); ++ goto err; ++ } ++ ++ bch2_inode_init_early(c, &inode_u); ++ ++ if (!(flags & BCH_CREATE_TMPFILE)) ++ mutex_lock(&dir->ei_update_lock); ++ ++ trans = bch2_trans_get(c); ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_create_trans(trans, ++ inode_inum(dir), &dir_u, &inode_u, ++ !(flags & BCH_CREATE_TMPFILE) ++ ? &dentry->d_name : NULL, ++ from_kuid(i_user_ns(&dir->v), current_fsuid()), ++ from_kgid(i_user_ns(&dir->v), current_fsgid()), ++ mode, rdev, ++ default_acl, acl, snapshot_src, flags) ?: ++ bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, 1, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (unlikely(ret)) ++ goto err_before_quota; ++ ++ inum.subvol = inode_u.bi_subvol ?: dir->ei_subvol; ++ inum.inum = inode_u.bi_inum; ++ ++ ret = bch2_subvolume_get(trans, inum.subvol, true, ++ BTREE_ITER_WITH_UPDATES, &subvol) ?: ++ bch2_trans_commit(trans, NULL, &journal_seq, 0); ++ if (unlikely(ret)) { ++ bch2_quota_acct(c, bch_qid(&inode_u), Q_INO, -1, ++ KEY_TYPE_QUOTA_WARN); ++err_before_quota: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ goto err_trans; ++ } ++ ++ if (!(flags & BCH_CREATE_TMPFILE)) { ++ bch2_inode_update_after_write(trans, dir, &dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ mutex_unlock(&dir->ei_update_lock); ++ } ++ ++ bch2_iget5_set(&inode->v, &inum); ++ bch2_vfs_inode_init(trans, inum, inode, &inode_u, &subvol); ++ ++ set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl); ++ set_cached_acl(&inode->v, ACL_TYPE_DEFAULT, default_acl); ++ ++ /* ++ * we must insert the new inode into the inode cache before calling ++ * bch2_trans_exit() and dropping locks, else we could race with another ++ * thread pulling the inode in and modifying it: ++ */ ++ ++ inode->v.i_state |= I_CREATING; ++ ++ old = to_bch_ei(inode_insert5(&inode->v, ++ bch2_inode_hash(inum), ++ bch2_iget5_test, ++ bch2_iget5_set, ++ &inum)); ++ BUG_ON(!old); ++ ++ if (unlikely(old != inode)) { ++ /* ++ * We raced, another process pulled the new inode into cache ++ * before us: ++ */ ++ make_bad_inode(&inode->v); ++ iput(&inode->v); ++ ++ inode = old; ++ } else { ++ mutex_lock(&c->vfs_inodes_lock); ++ list_add(&inode->ei_vfs_inode_list, &c->vfs_inodes_list); ++ mutex_unlock(&c->vfs_inodes_lock); ++ /* ++ * we really don't want insert_inode_locked2() to be setting ++ * I_NEW... ++ */ ++ unlock_new_inode(&inode->v); ++ } ++ ++ bch2_trans_put(trans); ++err: ++ posix_acl_release(default_acl); ++ posix_acl_release(acl); ++ return inode; ++err_trans: ++ if (!(flags & BCH_CREATE_TMPFILE)) ++ mutex_unlock(&dir->ei_update_lock); ++ ++ bch2_trans_put(trans); ++ make_bad_inode(&inode->v); ++ iput(&inode->v); ++ inode = ERR_PTR(ret); ++ goto err; ++} ++ ++/* methods */ ++ ++static struct dentry *bch2_lookup(struct inode *vdir, struct dentry *dentry, ++ unsigned int flags) ++{ ++ struct bch_fs *c = vdir->i_sb->s_fs_info; ++ struct bch_inode_info *dir = to_bch_ei(vdir); ++ struct bch_hash_info hash = bch2_hash_info_init(c, &dir->ei_inode); ++ struct inode *vinode = NULL; ++ subvol_inum inum = { .subvol = 1 }; ++ int ret; ++ ++ ret = bch2_dirent_lookup(c, inode_inum(dir), &hash, ++ &dentry->d_name, &inum); ++ ++ if (!ret) ++ vinode = bch2_vfs_inode_get(c, inum); ++ ++ return d_splice_alias(vinode, dentry); ++} ++ ++static int bch2_mknod(struct mnt_idmap *idmap, ++ struct inode *vdir, struct dentry *dentry, ++ umode_t mode, dev_t rdev) ++{ ++ struct bch_inode_info *inode = ++ __bch2_create(idmap, to_bch_ei(vdir), dentry, mode, rdev, ++ (subvol_inum) { 0 }, 0); ++ ++ if (IS_ERR(inode)) ++ return bch2_err_class(PTR_ERR(inode)); ++ ++ d_instantiate(dentry, &inode->v); ++ return 0; ++} ++ ++static int bch2_create(struct mnt_idmap *idmap, ++ struct inode *vdir, struct dentry *dentry, ++ umode_t mode, bool excl) ++{ ++ return bch2_mknod(idmap, vdir, dentry, mode|S_IFREG, 0); ++} ++ ++static int __bch2_link(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ struct bch_inode_info *dir, ++ struct dentry *dentry) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct bch_inode_unpacked dir_u, inode_u; ++ int ret; ++ ++ mutex_lock(&inode->ei_update_lock); ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_link_trans(trans, ++ inode_inum(dir), &dir_u, ++ inode_inum(inode), &inode_u, ++ &dentry->d_name)); ++ ++ if (likely(!ret)) { ++ bch2_inode_update_after_write(trans, dir, &dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ bch2_inode_update_after_write(trans, inode, &inode_u, ATTR_CTIME); ++ } ++ ++ bch2_trans_put(trans); ++ mutex_unlock(&inode->ei_update_lock); ++ return ret; ++} ++ ++static int bch2_link(struct dentry *old_dentry, struct inode *vdir, ++ struct dentry *dentry) ++{ ++ struct bch_fs *c = vdir->i_sb->s_fs_info; ++ struct bch_inode_info *dir = to_bch_ei(vdir); ++ struct bch_inode_info *inode = to_bch_ei(old_dentry->d_inode); ++ int ret; ++ ++ lockdep_assert_held(&inode->v.i_rwsem); ++ ++ ret = __bch2_link(c, inode, dir, dentry); ++ if (unlikely(ret)) ++ return ret; ++ ++ ihold(&inode->v); ++ d_instantiate(dentry, &inode->v); ++ return 0; ++} ++ ++int __bch2_unlink(struct inode *vdir, struct dentry *dentry, ++ bool deleting_snapshot) ++{ ++ struct bch_fs *c = vdir->i_sb->s_fs_info; ++ struct bch_inode_info *dir = to_bch_ei(vdir); ++ struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); ++ struct bch_inode_unpacked dir_u, inode_u; ++ struct btree_trans *trans = bch2_trans_get(c); ++ int ret; ++ ++ bch2_lock_inodes(INODE_UPDATE_LOCK, dir, inode); ++ ++ ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL, ++ bch2_unlink_trans(trans, ++ inode_inum(dir), &dir_u, ++ &inode_u, &dentry->d_name, ++ deleting_snapshot)); ++ if (unlikely(ret)) ++ goto err; ++ ++ bch2_inode_update_after_write(trans, dir, &dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ bch2_inode_update_after_write(trans, inode, &inode_u, ++ ATTR_MTIME); ++ ++ if (inode_u.bi_subvol) { ++ /* ++ * Subvolume deletion is asynchronous, but we still want to tell ++ * the VFS that it's been deleted here: ++ */ ++ set_nlink(&inode->v, 0); ++ } ++err: ++ bch2_unlock_inodes(INODE_UPDATE_LOCK, dir, inode); ++ bch2_trans_put(trans); ++ ++ return ret; ++} ++ ++static int bch2_unlink(struct inode *vdir, struct dentry *dentry) ++{ ++ return __bch2_unlink(vdir, dentry, false); ++} ++ ++static int bch2_symlink(struct mnt_idmap *idmap, ++ struct inode *vdir, struct dentry *dentry, ++ const char *symname) ++{ ++ struct bch_fs *c = vdir->i_sb->s_fs_info; ++ struct bch_inode_info *dir = to_bch_ei(vdir), *inode; ++ int ret; ++ ++ inode = __bch2_create(idmap, dir, dentry, S_IFLNK|S_IRWXUGO, 0, ++ (subvol_inum) { 0 }, BCH_CREATE_TMPFILE); ++ if (IS_ERR(inode)) ++ return bch2_err_class(PTR_ERR(inode)); ++ ++ inode_lock(&inode->v); ++ ret = page_symlink(&inode->v, symname, strlen(symname) + 1); ++ inode_unlock(&inode->v); ++ ++ if (unlikely(ret)) ++ goto err; ++ ++ ret = filemap_write_and_wait_range(inode->v.i_mapping, 0, LLONG_MAX); ++ if (unlikely(ret)) ++ goto err; ++ ++ ret = __bch2_link(c, inode, dir, dentry); ++ if (unlikely(ret)) ++ goto err; ++ ++ d_instantiate(dentry, &inode->v); ++ return 0; ++err: ++ iput(&inode->v); ++ return ret; ++} ++ ++static int bch2_mkdir(struct mnt_idmap *idmap, ++ struct inode *vdir, struct dentry *dentry, umode_t mode) ++{ ++ return bch2_mknod(idmap, vdir, dentry, mode|S_IFDIR, 0); ++} ++ ++static int bch2_rename2(struct mnt_idmap *idmap, ++ struct inode *src_vdir, struct dentry *src_dentry, ++ struct inode *dst_vdir, struct dentry *dst_dentry, ++ unsigned flags) ++{ ++ struct bch_fs *c = src_vdir->i_sb->s_fs_info; ++ struct bch_inode_info *src_dir = to_bch_ei(src_vdir); ++ struct bch_inode_info *dst_dir = to_bch_ei(dst_vdir); ++ struct bch_inode_info *src_inode = to_bch_ei(src_dentry->d_inode); ++ struct bch_inode_info *dst_inode = to_bch_ei(dst_dentry->d_inode); ++ struct bch_inode_unpacked dst_dir_u, src_dir_u; ++ struct bch_inode_unpacked src_inode_u, dst_inode_u; ++ struct btree_trans *trans; ++ enum bch_rename_mode mode = flags & RENAME_EXCHANGE ++ ? BCH_RENAME_EXCHANGE ++ : dst_dentry->d_inode ++ ? BCH_RENAME_OVERWRITE : BCH_RENAME; ++ int ret; ++ ++ if (flags & ~(RENAME_NOREPLACE|RENAME_EXCHANGE)) ++ return -EINVAL; ++ ++ if (mode == BCH_RENAME_OVERWRITE) { ++ ret = filemap_write_and_wait_range(src_inode->v.i_mapping, ++ 0, LLONG_MAX); ++ if (ret) ++ return ret; ++ } ++ ++ trans = bch2_trans_get(c); ++ ++ bch2_lock_inodes(INODE_UPDATE_LOCK, ++ src_dir, ++ dst_dir, ++ src_inode, ++ dst_inode); ++ ++ if (inode_attr_changing(dst_dir, src_inode, Inode_opt_project)) { ++ ret = bch2_fs_quota_transfer(c, src_inode, ++ dst_dir->ei_qid, ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (ret) ++ goto err; ++ } ++ ++ if (mode == BCH_RENAME_EXCHANGE && ++ inode_attr_changing(src_dir, dst_inode, Inode_opt_project)) { ++ ret = bch2_fs_quota_transfer(c, dst_inode, ++ src_dir->ei_qid, ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (ret) ++ goto err; ++ } ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_rename_trans(trans, ++ inode_inum(src_dir), &src_dir_u, ++ inode_inum(dst_dir), &dst_dir_u, ++ &src_inode_u, ++ &dst_inode_u, ++ &src_dentry->d_name, ++ &dst_dentry->d_name, ++ mode)); ++ if (unlikely(ret)) ++ goto err; ++ ++ BUG_ON(src_inode->v.i_ino != src_inode_u.bi_inum); ++ BUG_ON(dst_inode && ++ dst_inode->v.i_ino != dst_inode_u.bi_inum); ++ ++ bch2_inode_update_after_write(trans, src_dir, &src_dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ ++ if (src_dir != dst_dir) ++ bch2_inode_update_after_write(trans, dst_dir, &dst_dir_u, ++ ATTR_MTIME|ATTR_CTIME); ++ ++ bch2_inode_update_after_write(trans, src_inode, &src_inode_u, ++ ATTR_CTIME); ++ ++ if (dst_inode) ++ bch2_inode_update_after_write(trans, dst_inode, &dst_inode_u, ++ ATTR_CTIME); ++err: ++ bch2_trans_put(trans); ++ ++ bch2_fs_quota_transfer(c, src_inode, ++ bch_qid(&src_inode->ei_inode), ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_NOCHECK); ++ if (dst_inode) ++ bch2_fs_quota_transfer(c, dst_inode, ++ bch_qid(&dst_inode->ei_inode), ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_NOCHECK); ++ ++ bch2_unlock_inodes(INODE_UPDATE_LOCK, ++ src_dir, ++ dst_dir, ++ src_inode, ++ dst_inode); ++ ++ return ret; ++} ++ ++static void bch2_setattr_copy(struct mnt_idmap *idmap, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ struct iattr *attr) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ unsigned int ia_valid = attr->ia_valid; ++ ++ if (ia_valid & ATTR_UID) ++ bi->bi_uid = from_kuid(i_user_ns(&inode->v), attr->ia_uid); ++ if (ia_valid & ATTR_GID) ++ bi->bi_gid = from_kgid(i_user_ns(&inode->v), attr->ia_gid); ++ ++ if (ia_valid & ATTR_SIZE) ++ bi->bi_size = attr->ia_size; ++ ++ if (ia_valid & ATTR_ATIME) ++ bi->bi_atime = timespec_to_bch2_time(c, attr->ia_atime); ++ if (ia_valid & ATTR_MTIME) ++ bi->bi_mtime = timespec_to_bch2_time(c, attr->ia_mtime); ++ if (ia_valid & ATTR_CTIME) ++ bi->bi_ctime = timespec_to_bch2_time(c, attr->ia_ctime); ++ ++ if (ia_valid & ATTR_MODE) { ++ umode_t mode = attr->ia_mode; ++ kgid_t gid = ia_valid & ATTR_GID ++ ? attr->ia_gid ++ : inode->v.i_gid; ++ ++ if (!in_group_p(gid) && ++ !capable_wrt_inode_uidgid(idmap, &inode->v, CAP_FSETID)) ++ mode &= ~S_ISGID; ++ bi->bi_mode = mode; ++ } ++} ++ ++int bch2_setattr_nonsize(struct mnt_idmap *idmap, ++ struct bch_inode_info *inode, ++ struct iattr *attr) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_qid qid; ++ struct btree_trans *trans; ++ struct btree_iter inode_iter = { NULL }; ++ struct bch_inode_unpacked inode_u; ++ struct posix_acl *acl = NULL; ++ int ret; ++ ++ mutex_lock(&inode->ei_update_lock); ++ ++ qid = inode->ei_qid; ++ ++ if (attr->ia_valid & ATTR_UID) ++ qid.q[QTYP_USR] = from_kuid(i_user_ns(&inode->v), attr->ia_uid); ++ ++ if (attr->ia_valid & ATTR_GID) ++ qid.q[QTYP_GRP] = from_kgid(i_user_ns(&inode->v), attr->ia_gid); ++ ++ ret = bch2_fs_quota_transfer(c, inode, qid, ~0, ++ KEY_TYPE_QUOTA_PREALLOC); ++ if (ret) ++ goto err; ++ ++ trans = bch2_trans_get(c); ++retry: ++ bch2_trans_begin(trans); ++ kfree(acl); ++ acl = NULL; ++ ++ ret = bch2_inode_peek(trans, &inode_iter, &inode_u, inode_inum(inode), ++ BTREE_ITER_INTENT); ++ if (ret) ++ goto btree_err; ++ ++ bch2_setattr_copy(idmap, inode, &inode_u, attr); ++ ++ if (attr->ia_valid & ATTR_MODE) { ++ ret = bch2_acl_chmod(trans, inode_inum(inode), &inode_u, ++ inode_u.bi_mode, &acl); ++ if (ret) ++ goto btree_err; ++ } ++ ++ ret = bch2_inode_write(trans, &inode_iter, &inode_u) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++btree_err: ++ bch2_trans_iter_exit(trans, &inode_iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ if (unlikely(ret)) ++ goto err_trans; ++ ++ bch2_inode_update_after_write(trans, inode, &inode_u, attr->ia_valid); ++ ++ if (acl) ++ set_cached_acl(&inode->v, ACL_TYPE_ACCESS, acl); ++err_trans: ++ bch2_trans_put(trans); ++err: ++ mutex_unlock(&inode->ei_update_lock); ++ ++ return bch2_err_class(ret); ++} ++ ++static int bch2_getattr(struct mnt_idmap *idmap, ++ const struct path *path, struct kstat *stat, ++ u32 request_mask, unsigned query_flags) ++{ ++ struct bch_inode_info *inode = to_bch_ei(d_inode(path->dentry)); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ stat->dev = inode->v.i_sb->s_dev; ++ stat->ino = inode->v.i_ino; ++ stat->mode = inode->v.i_mode; ++ stat->nlink = inode->v.i_nlink; ++ stat->uid = inode->v.i_uid; ++ stat->gid = inode->v.i_gid; ++ stat->rdev = inode->v.i_rdev; ++ stat->size = i_size_read(&inode->v); ++ stat->atime = inode->v.i_atime; ++ stat->mtime = inode->v.i_mtime; ++ stat->ctime = inode_get_ctime(&inode->v); ++ stat->blksize = block_bytes(c); ++ stat->blocks = inode->v.i_blocks; ++ ++ if (request_mask & STATX_BTIME) { ++ stat->result_mask |= STATX_BTIME; ++ stat->btime = bch2_time_to_timespec(c, inode->ei_inode.bi_otime); ++ } ++ ++ if (inode->ei_inode.bi_flags & BCH_INODE_IMMUTABLE) ++ stat->attributes |= STATX_ATTR_IMMUTABLE; ++ stat->attributes_mask |= STATX_ATTR_IMMUTABLE; ++ ++ if (inode->ei_inode.bi_flags & BCH_INODE_APPEND) ++ stat->attributes |= STATX_ATTR_APPEND; ++ stat->attributes_mask |= STATX_ATTR_APPEND; ++ ++ if (inode->ei_inode.bi_flags & BCH_INODE_NODUMP) ++ stat->attributes |= STATX_ATTR_NODUMP; ++ stat->attributes_mask |= STATX_ATTR_NODUMP; ++ ++ return 0; ++} ++ ++static int bch2_setattr(struct mnt_idmap *idmap, ++ struct dentry *dentry, struct iattr *iattr) ++{ ++ struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); ++ int ret; ++ ++ lockdep_assert_held(&inode->v.i_rwsem); ++ ++ ret = setattr_prepare(idmap, dentry, iattr); ++ if (ret) ++ return ret; ++ ++ return iattr->ia_valid & ATTR_SIZE ++ ? bchfs_truncate(idmap, inode, iattr) ++ : bch2_setattr_nonsize(idmap, inode, iattr); ++} ++ ++static int bch2_tmpfile(struct mnt_idmap *idmap, ++ struct inode *vdir, struct file *file, umode_t mode) ++{ ++ struct bch_inode_info *inode = ++ __bch2_create(idmap, to_bch_ei(vdir), ++ file->f_path.dentry, mode, 0, ++ (subvol_inum) { 0 }, BCH_CREATE_TMPFILE); ++ ++ if (IS_ERR(inode)) ++ return bch2_err_class(PTR_ERR(inode)); ++ ++ d_mark_tmpfile(file, &inode->v); ++ d_instantiate(file->f_path.dentry, &inode->v); ++ return finish_open_simple(file, 0); ++} ++ ++static int bch2_fill_extent(struct bch_fs *c, ++ struct fiemap_extent_info *info, ++ struct bkey_s_c k, unsigned flags) ++{ ++ if (bkey_extent_is_direct_data(k.k)) { ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ int ret; ++ ++ if (k.k->type == KEY_TYPE_reflink_v) ++ flags |= FIEMAP_EXTENT_SHARED; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ int flags2 = 0; ++ u64 offset = p.ptr.offset; ++ ++ if (p.ptr.unwritten) ++ flags2 |= FIEMAP_EXTENT_UNWRITTEN; ++ ++ if (p.crc.compression_type) ++ flags2 |= FIEMAP_EXTENT_ENCODED; ++ else ++ offset += p.crc.offset; ++ ++ if ((offset & (block_sectors(c) - 1)) || ++ (k.k->size & (block_sectors(c) - 1))) ++ flags2 |= FIEMAP_EXTENT_NOT_ALIGNED; ++ ++ ret = fiemap_fill_next_extent(info, ++ bkey_start_offset(k.k) << 9, ++ offset << 9, ++ k.k->size << 9, flags|flags2); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++ } else if (bkey_extent_is_inline_data(k.k)) { ++ return fiemap_fill_next_extent(info, ++ bkey_start_offset(k.k) << 9, ++ 0, k.k->size << 9, ++ flags| ++ FIEMAP_EXTENT_DATA_INLINE); ++ } else if (k.k->type == KEY_TYPE_reservation) { ++ return fiemap_fill_next_extent(info, ++ bkey_start_offset(k.k) << 9, ++ 0, k.k->size << 9, ++ flags| ++ FIEMAP_EXTENT_DELALLOC| ++ FIEMAP_EXTENT_UNWRITTEN); ++ } else { ++ BUG(); ++ } ++} ++ ++static int bch2_fiemap(struct inode *vinode, struct fiemap_extent_info *info, ++ u64 start, u64 len) ++{ ++ struct bch_fs *c = vinode->i_sb->s_fs_info; ++ struct bch_inode_info *ei = to_bch_ei(vinode); ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_buf cur, prev; ++ struct bpos end = POS(ei->v.i_ino, (start + len) >> 9); ++ unsigned offset_into_extent, sectors; ++ bool have_extent = false; ++ u32 snapshot; ++ int ret = 0; ++ ++ ret = fiemap_prep(&ei->v, info, start, &len, FIEMAP_FLAG_SYNC); ++ if (ret) ++ return ret; ++ ++ if (start + len < start) ++ return -EINVAL; ++ ++ start >>= 9; ++ ++ bch2_bkey_buf_init(&cur); ++ bch2_bkey_buf_init(&prev); ++ trans = bch2_trans_get(c); ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, ei->ei_subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ SPOS(ei->v.i_ino, start, snapshot), 0); ++ ++ while (!(ret = btree_trans_too_many_iters(trans)) && ++ (k = bch2_btree_iter_peek_upto(&iter, end)).k && ++ !(ret = bkey_err(k))) { ++ enum btree_id data_btree = BTREE_ID_extents; ++ ++ if (!bkey_extent_is_data(k.k) && ++ k.k->type != KEY_TYPE_reservation) { ++ bch2_btree_iter_advance(&iter); ++ continue; ++ } ++ ++ offset_into_extent = iter.pos.offset - ++ bkey_start_offset(k.k); ++ sectors = k.k->size - offset_into_extent; ++ ++ bch2_bkey_buf_reassemble(&cur, c, k); ++ ++ ret = bch2_read_indirect_extent(trans, &data_btree, ++ &offset_into_extent, &cur); ++ if (ret) ++ break; ++ ++ k = bkey_i_to_s_c(cur.k); ++ bch2_bkey_buf_realloc(&prev, c, k.k->u64s); ++ ++ sectors = min(sectors, k.k->size - offset_into_extent); ++ ++ bch2_cut_front(POS(k.k->p.inode, ++ bkey_start_offset(k.k) + ++ offset_into_extent), ++ cur.k); ++ bch2_key_resize(&cur.k->k, sectors); ++ cur.k->k.p = iter.pos; ++ cur.k->k.p.offset += cur.k->k.size; ++ ++ if (have_extent) { ++ bch2_trans_unlock(trans); ++ ret = bch2_fill_extent(c, info, ++ bkey_i_to_s_c(prev.k), 0); ++ if (ret) ++ break; ++ } ++ ++ bkey_copy(prev.k, cur.k); ++ have_extent = true; ++ ++ bch2_btree_iter_set_pos(&iter, ++ POS(iter.pos.inode, iter.pos.offset + sectors)); ++ } ++ start = iter.pos.offset; ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ if (!ret && have_extent) { ++ bch2_trans_unlock(trans); ++ ret = bch2_fill_extent(c, info, bkey_i_to_s_c(prev.k), ++ FIEMAP_EXTENT_LAST); ++ } ++ ++ bch2_trans_put(trans); ++ bch2_bkey_buf_exit(&cur, c); ++ bch2_bkey_buf_exit(&prev, c); ++ return ret < 0 ? ret : 0; ++} ++ ++static const struct vm_operations_struct bch_vm_ops = { ++ .fault = bch2_page_fault, ++ .map_pages = filemap_map_pages, ++ .page_mkwrite = bch2_page_mkwrite, ++}; ++ ++static int bch2_mmap(struct file *file, struct vm_area_struct *vma) ++{ ++ file_accessed(file); ++ ++ vma->vm_ops = &bch_vm_ops; ++ return 0; ++} ++ ++/* Directories: */ ++ ++static loff_t bch2_dir_llseek(struct file *file, loff_t offset, int whence) ++{ ++ return generic_file_llseek_size(file, offset, whence, ++ S64_MAX, S64_MAX); ++} ++ ++static int bch2_vfs_readdir(struct file *file, struct dir_context *ctx) ++{ ++ struct bch_inode_info *inode = file_bch_inode(file); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ int ret; ++ ++ if (!dir_emit_dots(file, ctx)) ++ return 0; ++ ++ ret = bch2_readdir(c, inode_inum(inode), ctx); ++ if (ret) ++ bch_err_fn(c, ret); ++ ++ return bch2_err_class(ret); ++} ++ ++static const struct file_operations bch_file_operations = { ++ .llseek = bch2_llseek, ++ .read_iter = bch2_read_iter, ++ .write_iter = bch2_write_iter, ++ .mmap = bch2_mmap, ++ .open = generic_file_open, ++ .fsync = bch2_fsync, ++ .splice_read = filemap_splice_read, ++ .splice_write = iter_file_splice_write, ++ .fallocate = bch2_fallocate_dispatch, ++ .unlocked_ioctl = bch2_fs_file_ioctl, ++#ifdef CONFIG_COMPAT ++ .compat_ioctl = bch2_compat_fs_ioctl, ++#endif ++ .remap_file_range = bch2_remap_file_range, ++}; ++ ++static const struct inode_operations bch_file_inode_operations = { ++ .getattr = bch2_getattr, ++ .setattr = bch2_setattr, ++ .fiemap = bch2_fiemap, ++ .listxattr = bch2_xattr_list, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ .get_acl = bch2_get_acl, ++ .set_acl = bch2_set_acl, ++#endif ++}; ++ ++static const struct inode_operations bch_dir_inode_operations = { ++ .lookup = bch2_lookup, ++ .create = bch2_create, ++ .link = bch2_link, ++ .unlink = bch2_unlink, ++ .symlink = bch2_symlink, ++ .mkdir = bch2_mkdir, ++ .rmdir = bch2_unlink, ++ .mknod = bch2_mknod, ++ .rename = bch2_rename2, ++ .getattr = bch2_getattr, ++ .setattr = bch2_setattr, ++ .tmpfile = bch2_tmpfile, ++ .listxattr = bch2_xattr_list, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ .get_acl = bch2_get_acl, ++ .set_acl = bch2_set_acl, ++#endif ++}; ++ ++static const struct file_operations bch_dir_file_operations = { ++ .llseek = bch2_dir_llseek, ++ .read = generic_read_dir, ++ .iterate_shared = bch2_vfs_readdir, ++ .fsync = bch2_fsync, ++ .unlocked_ioctl = bch2_fs_file_ioctl, ++#ifdef CONFIG_COMPAT ++ .compat_ioctl = bch2_compat_fs_ioctl, ++#endif ++}; ++ ++static const struct inode_operations bch_symlink_inode_operations = { ++ .get_link = page_get_link, ++ .getattr = bch2_getattr, ++ .setattr = bch2_setattr, ++ .listxattr = bch2_xattr_list, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ .get_acl = bch2_get_acl, ++ .set_acl = bch2_set_acl, ++#endif ++}; ++ ++static const struct inode_operations bch_special_inode_operations = { ++ .getattr = bch2_getattr, ++ .setattr = bch2_setattr, ++ .listxattr = bch2_xattr_list, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ .get_acl = bch2_get_acl, ++ .set_acl = bch2_set_acl, ++#endif ++}; ++ ++static const struct address_space_operations bch_address_space_operations = { ++ .read_folio = bch2_read_folio, ++ .writepages = bch2_writepages, ++ .readahead = bch2_readahead, ++ .dirty_folio = filemap_dirty_folio, ++ .write_begin = bch2_write_begin, ++ .write_end = bch2_write_end, ++ .invalidate_folio = bch2_invalidate_folio, ++ .release_folio = bch2_release_folio, ++ .direct_IO = noop_direct_IO, ++#ifdef CONFIG_MIGRATION ++ .migrate_folio = filemap_migrate_folio, ++#endif ++ .error_remove_page = generic_error_remove_page, ++}; ++ ++struct bcachefs_fid { ++ u64 inum; ++ u32 subvol; ++ u32 gen; ++} __packed; ++ ++struct bcachefs_fid_with_parent { ++ struct bcachefs_fid fid; ++ struct bcachefs_fid dir; ++} __packed; ++ ++static int bcachefs_fid_valid(int fh_len, int fh_type) ++{ ++ switch (fh_type) { ++ case FILEID_BCACHEFS_WITHOUT_PARENT: ++ return fh_len == sizeof(struct bcachefs_fid) / sizeof(u32); ++ case FILEID_BCACHEFS_WITH_PARENT: ++ return fh_len == sizeof(struct bcachefs_fid_with_parent) / sizeof(u32); ++ default: ++ return false; ++ } ++} ++ ++static struct bcachefs_fid bch2_inode_to_fid(struct bch_inode_info *inode) ++{ ++ return (struct bcachefs_fid) { ++ .inum = inode->ei_inode.bi_inum, ++ .subvol = inode->ei_subvol, ++ .gen = inode->ei_inode.bi_generation, ++ }; ++} ++ ++static int bch2_encode_fh(struct inode *vinode, u32 *fh, int *len, ++ struct inode *vdir) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_inode_info *dir = to_bch_ei(vdir); ++ ++ if (*len < sizeof(struct bcachefs_fid_with_parent) / sizeof(u32)) ++ return FILEID_INVALID; ++ ++ if (!S_ISDIR(inode->v.i_mode) && dir) { ++ struct bcachefs_fid_with_parent *fid = (void *) fh; ++ ++ fid->fid = bch2_inode_to_fid(inode); ++ fid->dir = bch2_inode_to_fid(dir); ++ ++ *len = sizeof(*fid) / sizeof(u32); ++ return FILEID_BCACHEFS_WITH_PARENT; ++ } else { ++ struct bcachefs_fid *fid = (void *) fh; ++ ++ *fid = bch2_inode_to_fid(inode); ++ ++ *len = sizeof(*fid) / sizeof(u32); ++ return FILEID_BCACHEFS_WITHOUT_PARENT; ++ } ++} ++ ++static struct inode *bch2_nfs_get_inode(struct super_block *sb, ++ struct bcachefs_fid fid) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct inode *vinode = bch2_vfs_inode_get(c, (subvol_inum) { ++ .subvol = fid.subvol, ++ .inum = fid.inum, ++ }); ++ if (!IS_ERR(vinode) && vinode->i_generation != fid.gen) { ++ iput(vinode); ++ vinode = ERR_PTR(-ESTALE); ++ } ++ return vinode; ++} ++ ++static struct dentry *bch2_fh_to_dentry(struct super_block *sb, struct fid *_fid, ++ int fh_len, int fh_type) ++{ ++ struct bcachefs_fid *fid = (void *) _fid; ++ ++ if (!bcachefs_fid_valid(fh_len, fh_type)) ++ return NULL; ++ ++ return d_obtain_alias(bch2_nfs_get_inode(sb, *fid)); ++} ++ ++static struct dentry *bch2_fh_to_parent(struct super_block *sb, struct fid *_fid, ++ int fh_len, int fh_type) ++{ ++ struct bcachefs_fid_with_parent *fid = (void *) _fid; ++ ++ if (!bcachefs_fid_valid(fh_len, fh_type) || ++ fh_type != FILEID_BCACHEFS_WITH_PARENT) ++ return NULL; ++ ++ return d_obtain_alias(bch2_nfs_get_inode(sb, fid->dir)); ++} ++ ++static struct dentry *bch2_get_parent(struct dentry *child) ++{ ++ struct bch_inode_info *inode = to_bch_ei(child->d_inode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ subvol_inum parent_inum = { ++ .subvol = inode->ei_inode.bi_parent_subvol ?: ++ inode->ei_subvol, ++ .inum = inode->ei_inode.bi_dir, ++ }; ++ ++ if (!parent_inum.inum) ++ return NULL; ++ ++ return d_obtain_alias(bch2_vfs_inode_get(c, parent_inum)); ++} ++ ++static int bch2_get_name(struct dentry *parent, char *name, struct dentry *child) ++{ ++ struct bch_inode_info *inode = to_bch_ei(child->d_inode); ++ struct bch_inode_info *dir = to_bch_ei(parent->d_inode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct btree_trans *trans; ++ struct btree_iter iter1; ++ struct btree_iter iter2; ++ struct bkey_s_c k; ++ struct bkey_s_c_dirent d; ++ struct bch_inode_unpacked inode_u; ++ subvol_inum target; ++ u32 snapshot; ++ struct qstr dirent_name; ++ unsigned name_len = 0; ++ int ret; ++ ++ if (!S_ISDIR(dir->v.i_mode)) ++ return -EINVAL; ++ ++ trans = bch2_trans_get(c); ++ ++ bch2_trans_iter_init(trans, &iter1, BTREE_ID_dirents, ++ POS(dir->ei_inode.bi_inum, 0), 0); ++ bch2_trans_iter_init(trans, &iter2, BTREE_ID_dirents, ++ POS(dir->ei_inode.bi_inum, 0), 0); ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, dir->ei_subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ bch2_btree_iter_set_snapshot(&iter1, snapshot); ++ bch2_btree_iter_set_snapshot(&iter2, snapshot); ++ ++ ret = bch2_inode_find_by_inum_trans(trans, inode_inum(inode), &inode_u); ++ if (ret) ++ goto err; ++ ++ if (inode_u.bi_dir == dir->ei_inode.bi_inum) { ++ bch2_btree_iter_set_pos(&iter1, POS(inode_u.bi_dir, inode_u.bi_dir_offset)); ++ ++ k = bch2_btree_iter_peek_slot(&iter1); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (k.k->type != KEY_TYPE_dirent) { ++ ret = -BCH_ERR_ENOENT_dirent_doesnt_match_inode; ++ goto err; ++ } ++ ++ d = bkey_s_c_to_dirent(k); ++ ret = bch2_dirent_read_target(trans, inode_inum(dir), d, &target); ++ if (ret > 0) ++ ret = -BCH_ERR_ENOENT_dirent_doesnt_match_inode; ++ if (ret) ++ goto err; ++ ++ if (target.subvol == inode->ei_subvol && ++ target.inum == inode->ei_inode.bi_inum) ++ goto found; ++ } else { ++ /* ++ * File with multiple hardlinks and our backref is to the wrong ++ * directory - linear search: ++ */ ++ for_each_btree_key_continue_norestart(iter2, 0, k, ret) { ++ if (k.k->p.inode > dir->ei_inode.bi_inum) ++ break; ++ ++ if (k.k->type != KEY_TYPE_dirent) ++ continue; ++ ++ d = bkey_s_c_to_dirent(k); ++ ret = bch2_dirent_read_target(trans, inode_inum(dir), d, &target); ++ if (ret < 0) ++ break; ++ if (ret) ++ continue; ++ ++ if (target.subvol == inode->ei_subvol && ++ target.inum == inode->ei_inode.bi_inum) ++ goto found; ++ } ++ } ++ ++ ret = -ENOENT; ++ goto err; ++found: ++ dirent_name = bch2_dirent_get_name(d); ++ ++ name_len = min_t(unsigned, dirent_name.len, NAME_MAX); ++ memcpy(name, dirent_name.name, name_len); ++ name[name_len] = '\0'; ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_iter_exit(trans, &iter1); ++ bch2_trans_iter_exit(trans, &iter2); ++ bch2_trans_put(trans); ++ ++ return ret; ++} ++ ++static const struct export_operations bch_export_ops = { ++ .encode_fh = bch2_encode_fh, ++ .fh_to_dentry = bch2_fh_to_dentry, ++ .fh_to_parent = bch2_fh_to_parent, ++ .get_parent = bch2_get_parent, ++ .get_name = bch2_get_name, ++}; ++ ++static void bch2_vfs_inode_init(struct btree_trans *trans, subvol_inum inum, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ struct bch_subvolume *subvol) ++{ ++ bch2_inode_update_after_write(trans, inode, bi, ~0); ++ ++ if (BCH_SUBVOLUME_SNAP(subvol)) ++ set_bit(EI_INODE_SNAPSHOT, &inode->ei_flags); ++ else ++ clear_bit(EI_INODE_SNAPSHOT, &inode->ei_flags); ++ ++ inode->v.i_blocks = bi->bi_sectors; ++ inode->v.i_ino = bi->bi_inum; ++ inode->v.i_rdev = bi->bi_dev; ++ inode->v.i_generation = bi->bi_generation; ++ inode->v.i_size = bi->bi_size; ++ ++ inode->ei_flags = 0; ++ inode->ei_quota_reserved = 0; ++ inode->ei_qid = bch_qid(bi); ++ inode->ei_subvol = inum.subvol; ++ ++ inode->v.i_mapping->a_ops = &bch_address_space_operations; ++ ++ switch (inode->v.i_mode & S_IFMT) { ++ case S_IFREG: ++ inode->v.i_op = &bch_file_inode_operations; ++ inode->v.i_fop = &bch_file_operations; ++ break; ++ case S_IFDIR: ++ inode->v.i_op = &bch_dir_inode_operations; ++ inode->v.i_fop = &bch_dir_file_operations; ++ break; ++ case S_IFLNK: ++ inode_nohighmem(&inode->v); ++ inode->v.i_op = &bch_symlink_inode_operations; ++ break; ++ default: ++ init_special_inode(&inode->v, inode->v.i_mode, inode->v.i_rdev); ++ inode->v.i_op = &bch_special_inode_operations; ++ break; ++ } ++ ++ mapping_set_large_folios(inode->v.i_mapping); ++} ++ ++static struct inode *bch2_alloc_inode(struct super_block *sb) ++{ ++ struct bch_inode_info *inode; ++ ++ inode = kmem_cache_alloc(bch2_inode_cache, GFP_NOFS); ++ if (!inode) ++ return NULL; ++ ++ inode_init_once(&inode->v); ++ mutex_init(&inode->ei_update_lock); ++ two_state_lock_init(&inode->ei_pagecache_lock); ++ INIT_LIST_HEAD(&inode->ei_vfs_inode_list); ++ mutex_init(&inode->ei_quota_lock); ++ ++ return &inode->v; ++} ++ ++static void bch2_i_callback(struct rcu_head *head) ++{ ++ struct inode *vinode = container_of(head, struct inode, i_rcu); ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ ++ kmem_cache_free(bch2_inode_cache, inode); ++} ++ ++static void bch2_destroy_inode(struct inode *vinode) ++{ ++ call_rcu(&vinode->i_rcu, bch2_i_callback); ++} ++ ++static int inode_update_times_fn(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ ++ bi->bi_atime = timespec_to_bch2_time(c, inode->v.i_atime); ++ bi->bi_mtime = timespec_to_bch2_time(c, inode->v.i_mtime); ++ bi->bi_ctime = timespec_to_bch2_time(c, inode_get_ctime(&inode->v)); ++ ++ return 0; ++} ++ ++static int bch2_vfs_write_inode(struct inode *vinode, ++ struct writeback_control *wbc) ++{ ++ struct bch_fs *c = vinode->i_sb->s_fs_info; ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ int ret; ++ ++ mutex_lock(&inode->ei_update_lock); ++ ret = bch2_write_inode(c, inode, inode_update_times_fn, NULL, ++ ATTR_ATIME|ATTR_MTIME|ATTR_CTIME); ++ mutex_unlock(&inode->ei_update_lock); ++ ++ return bch2_err_class(ret); ++} ++ ++static void bch2_evict_inode(struct inode *vinode) ++{ ++ struct bch_fs *c = vinode->i_sb->s_fs_info; ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ ++ truncate_inode_pages_final(&inode->v.i_data); ++ ++ clear_inode(&inode->v); ++ ++ BUG_ON(!is_bad_inode(&inode->v) && inode->ei_quota_reserved); ++ ++ if (!inode->v.i_nlink && !is_bad_inode(&inode->v)) { ++ bch2_quota_acct(c, inode->ei_qid, Q_SPC, -((s64) inode->v.i_blocks), ++ KEY_TYPE_QUOTA_WARN); ++ bch2_quota_acct(c, inode->ei_qid, Q_INO, -1, ++ KEY_TYPE_QUOTA_WARN); ++ bch2_inode_rm(c, inode_inum(inode)); ++ } ++ ++ mutex_lock(&c->vfs_inodes_lock); ++ list_del_init(&inode->ei_vfs_inode_list); ++ mutex_unlock(&c->vfs_inodes_lock); ++} ++ ++void bch2_evict_subvolume_inodes(struct bch_fs *c, snapshot_id_list *s) ++{ ++ struct bch_inode_info *inode, **i; ++ DARRAY(struct bch_inode_info *) grabbed; ++ bool clean_pass = false, this_pass_clean; ++ ++ /* ++ * Initially, we scan for inodes without I_DONTCACHE, then mark them to ++ * be pruned with d_mark_dontcache(). ++ * ++ * Once we've had a clean pass where we didn't find any inodes without ++ * I_DONTCACHE, we wait for them to be freed: ++ */ ++ ++ darray_init(&grabbed); ++ darray_make_room(&grabbed, 1024); ++again: ++ cond_resched(); ++ this_pass_clean = true; ++ ++ mutex_lock(&c->vfs_inodes_lock); ++ list_for_each_entry(inode, &c->vfs_inodes_list, ei_vfs_inode_list) { ++ if (!snapshot_list_has_id(s, inode->ei_subvol)) ++ continue; ++ ++ if (!(inode->v.i_state & I_DONTCACHE) && ++ !(inode->v.i_state & I_FREEING) && ++ igrab(&inode->v)) { ++ this_pass_clean = false; ++ ++ if (darray_push_gfp(&grabbed, inode, GFP_ATOMIC|__GFP_NOWARN)) { ++ iput(&inode->v); ++ break; ++ } ++ } else if (clean_pass && this_pass_clean) { ++ wait_queue_head_t *wq = bit_waitqueue(&inode->v.i_state, __I_NEW); ++ DEFINE_WAIT_BIT(wait, &inode->v.i_state, __I_NEW); ++ ++ prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); ++ mutex_unlock(&c->vfs_inodes_lock); ++ ++ schedule(); ++ finish_wait(wq, &wait.wq_entry); ++ goto again; ++ } ++ } ++ mutex_unlock(&c->vfs_inodes_lock); ++ ++ darray_for_each(grabbed, i) { ++ inode = *i; ++ d_mark_dontcache(&inode->v); ++ d_prune_aliases(&inode->v); ++ iput(&inode->v); ++ } ++ grabbed.nr = 0; ++ ++ if (!clean_pass || !this_pass_clean) { ++ clean_pass = this_pass_clean; ++ goto again; ++ } ++ ++ darray_exit(&grabbed); ++} ++ ++static int bch2_statfs(struct dentry *dentry, struct kstatfs *buf) ++{ ++ struct super_block *sb = dentry->d_sb; ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_fs_usage_short usage = bch2_fs_usage_read_short(c); ++ unsigned shift = sb->s_blocksize_bits - 9; ++ /* ++ * this assumes inodes take up 64 bytes, which is a decent average ++ * number: ++ */ ++ u64 avail_inodes = ((usage.capacity - usage.used) << 3); ++ u64 fsid; ++ ++ buf->f_type = BCACHEFS_STATFS_MAGIC; ++ buf->f_bsize = sb->s_blocksize; ++ buf->f_blocks = usage.capacity >> shift; ++ buf->f_bfree = usage.free >> shift; ++ buf->f_bavail = avail_factor(usage.free) >> shift; ++ ++ buf->f_files = usage.nr_inodes + avail_inodes; ++ buf->f_ffree = avail_inodes; ++ ++ fsid = le64_to_cpup((void *) c->sb.user_uuid.b) ^ ++ le64_to_cpup((void *) c->sb.user_uuid.b + sizeof(u64)); ++ buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL; ++ buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL; ++ buf->f_namelen = BCH_NAME_MAX; ++ ++ return 0; ++} ++ ++static int bch2_sync_fs(struct super_block *sb, int wait) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ int ret; ++ ++ if (c->opts.journal_flush_disabled) ++ return 0; ++ ++ if (!wait) { ++ bch2_journal_flush_async(&c->journal, NULL); ++ return 0; ++ } ++ ++ ret = bch2_journal_flush(&c->journal); ++ return bch2_err_class(ret); ++} ++ ++static struct bch_fs *bch2_path_to_fs(const char *path) ++{ ++ struct bch_fs *c; ++ dev_t dev; ++ int ret; ++ ++ ret = lookup_bdev(path, &dev); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ c = bch2_dev_to_fs(dev); ++ if (c) ++ closure_put(&c->cl); ++ return c ?: ERR_PTR(-ENOENT); ++} ++ ++static char **split_devs(const char *_dev_name, unsigned *nr) ++{ ++ char *dev_name = NULL, **devs = NULL, *s; ++ size_t i = 0, nr_devs = 0; ++ ++ dev_name = kstrdup(_dev_name, GFP_KERNEL); ++ if (!dev_name) ++ return NULL; ++ ++ for (s = dev_name; s; s = strchr(s + 1, ':')) ++ nr_devs++; ++ ++ devs = kcalloc(nr_devs + 1, sizeof(const char *), GFP_KERNEL); ++ if (!devs) { ++ kfree(dev_name); ++ return NULL; ++ } ++ ++ while ((s = strsep(&dev_name, ":"))) ++ devs[i++] = s; ++ ++ *nr = nr_devs; ++ return devs; ++} ++ ++static int bch2_remount(struct super_block *sb, int *flags, char *data) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_opts opts = bch2_opts_empty(); ++ int ret; ++ ++ opt_set(opts, read_only, (*flags & SB_RDONLY) != 0); ++ ++ ret = bch2_parse_mount_opts(c, &opts, data); ++ if (ret) ++ goto err; ++ ++ if (opts.read_only != c->opts.read_only) { ++ down_write(&c->state_lock); ++ ++ if (opts.read_only) { ++ bch2_fs_read_only(c); ++ ++ sb->s_flags |= SB_RDONLY; ++ } else { ++ ret = bch2_fs_read_write(c); ++ if (ret) { ++ bch_err(c, "error going rw: %i", ret); ++ up_write(&c->state_lock); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ sb->s_flags &= ~SB_RDONLY; ++ } ++ ++ c->opts.read_only = opts.read_only; ++ ++ up_write(&c->state_lock); ++ } ++ ++ if (opt_defined(opts, errors)) ++ c->opts.errors = opts.errors; ++err: ++ return bch2_err_class(ret); ++} ++ ++static int bch2_show_devname(struct seq_file *seq, struct dentry *root) ++{ ++ struct bch_fs *c = root->d_sb->s_fs_info; ++ struct bch_dev *ca; ++ unsigned i; ++ bool first = true; ++ ++ for_each_online_member(ca, c, i) { ++ if (!first) ++ seq_putc(seq, ':'); ++ first = false; ++ seq_puts(seq, "/dev/"); ++ seq_puts(seq, ca->name); ++ } ++ ++ return 0; ++} ++ ++static int bch2_show_options(struct seq_file *seq, struct dentry *root) ++{ ++ struct bch_fs *c = root->d_sb->s_fs_info; ++ enum bch_opt_id i; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ for (i = 0; i < bch2_opts_nr; i++) { ++ const struct bch_option *opt = &bch2_opt_table[i]; ++ u64 v = bch2_opt_get_by_id(&c->opts, i); ++ ++ if (!(opt->flags & OPT_MOUNT)) ++ continue; ++ ++ if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) ++ continue; ++ ++ printbuf_reset(&buf); ++ bch2_opt_to_text(&buf, c, c->disk_sb.sb, opt, v, ++ OPT_SHOW_MOUNT_STYLE); ++ seq_putc(seq, ','); ++ seq_puts(seq, buf.buf); ++ } ++ ++ if (buf.allocation_failure) ++ ret = -ENOMEM; ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static void bch2_put_super(struct super_block *sb) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ __bch2_fs_stop(c); ++} ++ ++/* ++ * bcachefs doesn't currently integrate intwrite freeze protection but the ++ * internal write references serve the same purpose. Therefore reuse the ++ * read-only transition code to perform the quiesce. The caveat is that we don't ++ * currently have the ability to block tasks that want a write reference while ++ * the superblock is frozen. This is fine for now, but we should either add ++ * blocking support or find a way to integrate sb_start_intwrite() and friends. ++ */ ++static int bch2_freeze(struct super_block *sb) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ down_write(&c->state_lock); ++ bch2_fs_read_only(c); ++ up_write(&c->state_lock); ++ return 0; ++} ++ ++static int bch2_unfreeze(struct super_block *sb) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ int ret; ++ ++ down_write(&c->state_lock); ++ ret = bch2_fs_read_write(c); ++ up_write(&c->state_lock); ++ return ret; ++} ++ ++static const struct super_operations bch_super_operations = { ++ .alloc_inode = bch2_alloc_inode, ++ .destroy_inode = bch2_destroy_inode, ++ .write_inode = bch2_vfs_write_inode, ++ .evict_inode = bch2_evict_inode, ++ .sync_fs = bch2_sync_fs, ++ .statfs = bch2_statfs, ++ .show_devname = bch2_show_devname, ++ .show_options = bch2_show_options, ++ .remount_fs = bch2_remount, ++ .put_super = bch2_put_super, ++ .freeze_fs = bch2_freeze, ++ .unfreeze_fs = bch2_unfreeze, ++}; ++ ++static int bch2_set_super(struct super_block *s, void *data) ++{ ++ s->s_fs_info = data; ++ return 0; ++} ++ ++static int bch2_noset_super(struct super_block *s, void *data) ++{ ++ return -EBUSY; ++} ++ ++static int bch2_test_super(struct super_block *s, void *data) ++{ ++ struct bch_fs *c = s->s_fs_info; ++ struct bch_fs **devs = data; ++ unsigned i; ++ ++ if (!c) ++ return false; ++ ++ for (i = 0; devs[i]; i++) ++ if (c != devs[i]) ++ return false; ++ return true; ++} ++ ++static struct dentry *bch2_mount(struct file_system_type *fs_type, ++ int flags, const char *dev_name, void *data) ++{ ++ struct bch_fs *c; ++ struct bch_dev *ca; ++ struct super_block *sb; ++ struct inode *vinode; ++ struct bch_opts opts = bch2_opts_empty(); ++ char **devs; ++ struct bch_fs **devs_to_fs = NULL; ++ unsigned i, nr_devs; ++ int ret; ++ ++ opt_set(opts, read_only, (flags & SB_RDONLY) != 0); ++ ++ ret = bch2_parse_mount_opts(NULL, &opts, data); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ if (!dev_name || strlen(dev_name) == 0) ++ return ERR_PTR(-EINVAL); ++ ++ devs = split_devs(dev_name, &nr_devs); ++ if (!devs) ++ return ERR_PTR(-ENOMEM); ++ ++ devs_to_fs = kcalloc(nr_devs + 1, sizeof(void *), GFP_KERNEL); ++ if (!devs_to_fs) { ++ sb = ERR_PTR(-ENOMEM); ++ goto got_sb; ++ } ++ ++ for (i = 0; i < nr_devs; i++) ++ devs_to_fs[i] = bch2_path_to_fs(devs[i]); ++ ++ sb = sget(fs_type, bch2_test_super, bch2_noset_super, ++ flags|SB_NOSEC, devs_to_fs); ++ if (!IS_ERR(sb)) ++ goto got_sb; ++ ++ c = bch2_fs_open(devs, nr_devs, opts); ++ if (IS_ERR(c)) { ++ sb = ERR_CAST(c); ++ goto got_sb; ++ } ++ ++ /* Some options can't be parsed until after the fs is started: */ ++ ret = bch2_parse_mount_opts(c, &opts, data); ++ if (ret) { ++ bch2_fs_stop(c); ++ sb = ERR_PTR(ret); ++ goto got_sb; ++ } ++ ++ bch2_opts_apply(&c->opts, opts); ++ ++ sb = sget(fs_type, NULL, bch2_set_super, flags|SB_NOSEC, c); ++ if (IS_ERR(sb)) ++ bch2_fs_stop(c); ++got_sb: ++ kfree(devs_to_fs); ++ kfree(devs[0]); ++ kfree(devs); ++ ++ if (IS_ERR(sb)) { ++ ret = PTR_ERR(sb); ++ ret = bch2_err_class(ret); ++ return ERR_PTR(ret); ++ } ++ ++ c = sb->s_fs_info; ++ ++ if (sb->s_root) { ++ if ((flags ^ sb->s_flags) & SB_RDONLY) { ++ ret = -EBUSY; ++ goto err_put_super; ++ } ++ goto out; ++ } ++ ++ sb->s_blocksize = block_bytes(c); ++ sb->s_blocksize_bits = ilog2(block_bytes(c)); ++ sb->s_maxbytes = MAX_LFS_FILESIZE; ++ sb->s_op = &bch_super_operations; ++ sb->s_export_op = &bch_export_ops; ++#ifdef CONFIG_BCACHEFS_QUOTA ++ sb->s_qcop = &bch2_quotactl_operations; ++ sb->s_quota_types = QTYPE_MASK_USR|QTYPE_MASK_GRP|QTYPE_MASK_PRJ; ++#endif ++ sb->s_xattr = bch2_xattr_handlers; ++ sb->s_magic = BCACHEFS_STATFS_MAGIC; ++ sb->s_time_gran = c->sb.nsec_per_time_unit; ++ sb->s_time_min = div_s64(S64_MIN, c->sb.time_units_per_sec) + 1; ++ sb->s_time_max = div_s64(S64_MAX, c->sb.time_units_per_sec); ++ c->vfs_sb = sb; ++ strscpy(sb->s_id, c->name, sizeof(sb->s_id)); ++ ++ ret = super_setup_bdi(sb); ++ if (ret) ++ goto err_put_super; ++ ++ sb->s_bdi->ra_pages = VM_READAHEAD_PAGES; ++ ++ for_each_online_member(ca, c, i) { ++ struct block_device *bdev = ca->disk_sb.bdev; ++ ++ /* XXX: create an anonymous device for multi device filesystems */ ++ sb->s_bdev = bdev; ++ sb->s_dev = bdev->bd_dev; ++ percpu_ref_put(&ca->io_ref); ++ break; ++ } ++ ++ c->dev = sb->s_dev; ++ ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ if (c->opts.acl) ++ sb->s_flags |= SB_POSIXACL; ++#endif ++ ++ sb->s_shrink.seeks = 0; ++ ++ vinode = bch2_vfs_inode_get(c, BCACHEFS_ROOT_SUBVOL_INUM); ++ ret = PTR_ERR_OR_ZERO(vinode); ++ if (ret) { ++ bch_err_msg(c, ret, "mounting: error getting root inode"); ++ goto err_put_super; ++ } ++ ++ sb->s_root = d_make_root(vinode); ++ if (!sb->s_root) { ++ bch_err(c, "error mounting: error allocating root dentry"); ++ ret = -ENOMEM; ++ goto err_put_super; ++ } ++ ++ sb->s_flags |= SB_ACTIVE; ++out: ++ return dget(sb->s_root); ++ ++err_put_super: ++ sb->s_fs_info = NULL; ++ c->vfs_sb = NULL; ++ deactivate_locked_super(sb); ++ bch2_fs_stop(c); ++ return ERR_PTR(bch2_err_class(ret)); ++} ++ ++static void bch2_kill_sb(struct super_block *sb) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ if (c) ++ c->vfs_sb = NULL; ++ generic_shutdown_super(sb); ++ if (c) ++ bch2_fs_free(c); ++} ++ ++static struct file_system_type bcache_fs_type = { ++ .owner = THIS_MODULE, ++ .name = "bcachefs", ++ .mount = bch2_mount, ++ .kill_sb = bch2_kill_sb, ++ .fs_flags = FS_REQUIRES_DEV, ++}; ++ ++MODULE_ALIAS_FS("bcachefs"); ++ ++void bch2_vfs_exit(void) ++{ ++ unregister_filesystem(&bcache_fs_type); ++ kmem_cache_destroy(bch2_inode_cache); ++} ++ ++int __init bch2_vfs_init(void) ++{ ++ int ret = -ENOMEM; ++ ++ bch2_inode_cache = KMEM_CACHE(bch_inode_info, SLAB_RECLAIM_ACCOUNT); ++ if (!bch2_inode_cache) ++ goto err; ++ ++ ret = register_filesystem(&bcache_fs_type); ++ if (ret) ++ goto err; ++ ++ return 0; ++err: ++ bch2_vfs_exit(); ++ return ret; ++} ++ ++#endif /* NO_BCACHEFS_FS */ +diff --git a/fs/bcachefs/fs.h b/fs/bcachefs/fs.h +new file mode 100644 +index 000000000000..5edf1d4b9e6b +--- /dev/null ++++ b/fs/bcachefs/fs.h +@@ -0,0 +1,209 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FS_H ++#define _BCACHEFS_FS_H ++ ++#include "inode.h" ++#include "opts.h" ++#include "str_hash.h" ++#include "quota_types.h" ++#include "two_state_shared_lock.h" ++ ++#include ++#include ++ ++struct bch_inode_info { ++ struct inode v; ++ struct list_head ei_vfs_inode_list; ++ unsigned long ei_flags; ++ ++ struct mutex ei_update_lock; ++ u64 ei_quota_reserved; ++ unsigned long ei_last_dirtied; ++ two_state_lock_t ei_pagecache_lock; ++ ++ struct mutex ei_quota_lock; ++ struct bch_qid ei_qid; ++ ++ u32 ei_subvol; ++ ++ /* ++ * When we've been doing nocow writes we'll need to issue flushes to the ++ * underlying block devices ++ * ++ * XXX: a device may have had a flush issued by some other codepath. It ++ * would be better to keep for each device a sequence number that's ++ * incremented when we isusue a cache flush, and track here the sequence ++ * number that needs flushing. ++ */ ++ struct bch_devs_mask ei_devs_need_flush; ++ ++ /* copy of inode in btree: */ ++ struct bch_inode_unpacked ei_inode; ++}; ++ ++#define bch2_pagecache_add_put(i) bch2_two_state_unlock(&i->ei_pagecache_lock, 0) ++#define bch2_pagecache_add_tryget(i) bch2_two_state_trylock(&i->ei_pagecache_lock, 0) ++#define bch2_pagecache_add_get(i) bch2_two_state_lock(&i->ei_pagecache_lock, 0) ++ ++#define bch2_pagecache_block_put(i) bch2_two_state_unlock(&i->ei_pagecache_lock, 1) ++#define bch2_pagecache_block_get(i) bch2_two_state_lock(&i->ei_pagecache_lock, 1) ++ ++static inline subvol_inum inode_inum(struct bch_inode_info *inode) ++{ ++ return (subvol_inum) { ++ .subvol = inode->ei_subvol, ++ .inum = inode->ei_inode.bi_inum, ++ }; ++} ++ ++/* ++ * Set if we've gotten a btree error for this inode, and thus the vfs inode and ++ * btree inode may be inconsistent: ++ */ ++#define EI_INODE_ERROR 0 ++ ++/* ++ * Set in the inode is in a snapshot subvolume - we don't do quota accounting in ++ * those: ++ */ ++#define EI_INODE_SNAPSHOT 1 ++ ++#define to_bch_ei(_inode) \ ++ container_of_or_null(_inode, struct bch_inode_info, v) ++ ++static inline int ptrcmp(void *l, void *r) ++{ ++ return cmp_int(l, r); ++} ++ ++enum bch_inode_lock_op { ++ INODE_LOCK = (1U << 0), ++ INODE_PAGECACHE_BLOCK = (1U << 1), ++ INODE_UPDATE_LOCK = (1U << 2), ++}; ++ ++#define bch2_lock_inodes(_locks, ...) \ ++do { \ ++ struct bch_inode_info *a[] = { NULL, __VA_ARGS__ }; \ ++ unsigned i; \ ++ \ ++ bubble_sort(&a[1], ARRAY_SIZE(a) - 1, ptrcmp); \ ++ \ ++ for (i = 1; i < ARRAY_SIZE(a); i++) \ ++ if (a[i] != a[i - 1]) { \ ++ if ((_locks) & INODE_LOCK) \ ++ down_write_nested(&a[i]->v.i_rwsem, i); \ ++ if ((_locks) & INODE_PAGECACHE_BLOCK) \ ++ bch2_pagecache_block_get(a[i]);\ ++ if ((_locks) & INODE_UPDATE_LOCK) \ ++ mutex_lock_nested(&a[i]->ei_update_lock, i);\ ++ } \ ++} while (0) ++ ++#define bch2_unlock_inodes(_locks, ...) \ ++do { \ ++ struct bch_inode_info *a[] = { NULL, __VA_ARGS__ }; \ ++ unsigned i; \ ++ \ ++ bubble_sort(&a[1], ARRAY_SIZE(a) - 1, ptrcmp); \ ++ \ ++ for (i = 1; i < ARRAY_SIZE(a); i++) \ ++ if (a[i] != a[i - 1]) { \ ++ if ((_locks) & INODE_LOCK) \ ++ up_write(&a[i]->v.i_rwsem); \ ++ if ((_locks) & INODE_PAGECACHE_BLOCK) \ ++ bch2_pagecache_block_put(a[i]);\ ++ if ((_locks) & INODE_UPDATE_LOCK) \ ++ mutex_unlock(&a[i]->ei_update_lock); \ ++ } \ ++} while (0) ++ ++static inline struct bch_inode_info *file_bch_inode(struct file *file) ++{ ++ return to_bch_ei(file_inode(file)); ++} ++ ++static inline bool inode_attr_changing(struct bch_inode_info *dir, ++ struct bch_inode_info *inode, ++ enum inode_opt_id id) ++{ ++ return !(inode->ei_inode.bi_fields_set & (1 << id)) && ++ bch2_inode_opt_get(&dir->ei_inode, id) != ++ bch2_inode_opt_get(&inode->ei_inode, id); ++} ++ ++static inline bool inode_attrs_changing(struct bch_inode_info *dir, ++ struct bch_inode_info *inode) ++{ ++ unsigned id; ++ ++ for (id = 0; id < Inode_opt_nr; id++) ++ if (inode_attr_changing(dir, inode, id)) ++ return true; ++ ++ return false; ++} ++ ++struct bch_inode_unpacked; ++ ++#ifndef NO_BCACHEFS_FS ++ ++struct bch_inode_info * ++__bch2_create(struct mnt_idmap *, struct bch_inode_info *, ++ struct dentry *, umode_t, dev_t, subvol_inum, unsigned); ++ ++int bch2_fs_quota_transfer(struct bch_fs *, ++ struct bch_inode_info *, ++ struct bch_qid, ++ unsigned, ++ enum quota_acct_mode); ++ ++static inline int bch2_set_projid(struct bch_fs *c, ++ struct bch_inode_info *inode, ++ u32 projid) ++{ ++ struct bch_qid qid = inode->ei_qid; ++ ++ qid.q[QTYP_PRJ] = projid; ++ ++ return bch2_fs_quota_transfer(c, inode, qid, ++ 1 << QTYP_PRJ, ++ KEY_TYPE_QUOTA_PREALLOC); ++} ++ ++struct inode *bch2_vfs_inode_get(struct bch_fs *, subvol_inum); ++ ++/* returns 0 if we want to do the update, or error is passed up */ ++typedef int (*inode_set_fn)(struct btree_trans *, ++ struct bch_inode_info *, ++ struct bch_inode_unpacked *, void *); ++ ++void bch2_inode_update_after_write(struct btree_trans *, ++ struct bch_inode_info *, ++ struct bch_inode_unpacked *, ++ unsigned); ++int __must_check bch2_write_inode(struct bch_fs *, struct bch_inode_info *, ++ inode_set_fn, void *, unsigned); ++ ++int bch2_setattr_nonsize(struct mnt_idmap *, ++ struct bch_inode_info *, ++ struct iattr *); ++int __bch2_unlink(struct inode *, struct dentry *, bool); ++ ++void bch2_evict_subvolume_inodes(struct bch_fs *, snapshot_id_list *); ++ ++void bch2_vfs_exit(void); ++int bch2_vfs_init(void); ++ ++#else ++ ++#define bch2_inode_update_after_write(_trans, _inode, _inode_u, _fields) ({ do {} while (0); }) ++ ++static inline void bch2_evict_subvolume_inodes(struct bch_fs *c, ++ snapshot_id_list *s) {} ++static inline void bch2_vfs_exit(void) {} ++static inline int bch2_vfs_init(void) { return 0; } ++ ++#endif /* NO_BCACHEFS_FS */ ++ ++#endif /* _BCACHEFS_FS_H */ +diff --git a/fs/bcachefs/fsck.c b/fs/bcachefs/fsck.c +new file mode 100644 +index 000000000000..b8f9e7475dc5 +--- /dev/null ++++ b/fs/bcachefs/fsck.c +@@ -0,0 +1,2417 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_buf.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "darray.h" ++#include "dirent.h" ++#include "error.h" ++#include "fs-common.h" ++#include "fsck.h" ++#include "inode.h" ++#include "keylist.h" ++#include "recovery.h" ++#include "snapshot.h" ++#include "super.h" ++#include "xattr.h" ++ ++#include ++#include /* struct qstr */ ++ ++#define QSTR(n) { { { .len = strlen(n) } }, .name = n } ++ ++/* ++ * XXX: this is handling transaction restarts without returning ++ * -BCH_ERR_transaction_restart_nested, this is not how we do things anymore: ++ */ ++static s64 bch2_count_inode_sectors(struct btree_trans *trans, u64 inum, ++ u32 snapshot) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ u64 sectors = 0; ++ int ret; ++ ++ for_each_btree_key_upto(trans, iter, BTREE_ID_extents, ++ SPOS(inum, 0, snapshot), ++ POS(inum, U64_MAX), ++ 0, k, ret) ++ if (bkey_extent_is_allocation(k.k)) ++ sectors += k.k->size; ++ ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret ?: sectors; ++} ++ ++static s64 bch2_count_subdirs(struct btree_trans *trans, u64 inum, ++ u32 snapshot) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_dirent d; ++ u64 subdirs = 0; ++ int ret; ++ ++ for_each_btree_key_upto(trans, iter, BTREE_ID_dirents, ++ SPOS(inum, 0, snapshot), ++ POS(inum, U64_MAX), ++ 0, k, ret) { ++ if (k.k->type != KEY_TYPE_dirent) ++ continue; ++ ++ d = bkey_s_c_to_dirent(k); ++ if (d.v->d_type == DT_DIR) ++ subdirs++; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret ?: subdirs; ++} ++ ++static int __snapshot_lookup_subvol(struct btree_trans *trans, u32 snapshot, ++ u32 *subvol) ++{ ++ struct bch_snapshot s; ++ int ret = bch2_bkey_get_val_typed(trans, BTREE_ID_snapshots, ++ POS(0, snapshot), 0, ++ snapshot, &s); ++ if (!ret) ++ *subvol = le32_to_cpu(s.subvol); ++ else if (bch2_err_matches(ret, ENOENT)) ++ bch_err(trans->c, "snapshot %u not found", snapshot); ++ return ret; ++ ++} ++ ++static int __subvol_lookup(struct btree_trans *trans, u32 subvol, ++ u32 *snapshot, u64 *inum) ++{ ++ struct bch_subvolume s; ++ int ret; ++ ++ ret = bch2_subvolume_get(trans, subvol, false, 0, &s); ++ ++ *snapshot = le32_to_cpu(s.snapshot); ++ *inum = le64_to_cpu(s.inode); ++ return ret; ++} ++ ++static int subvol_lookup(struct btree_trans *trans, u32 subvol, ++ u32 *snapshot, u64 *inum) ++{ ++ return lockrestart_do(trans, __subvol_lookup(trans, subvol, snapshot, inum)); ++} ++ ++static int lookup_first_inode(struct btree_trans *trans, u64 inode_nr, ++ struct bch_inode_unpacked *inode) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_inodes, ++ POS(0, inode_nr), ++ BTREE_ITER_ALL_SNAPSHOTS); ++ k = bch2_btree_iter_peek(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (!k.k || !bkey_eq(k.k->p, POS(0, inode_nr))) { ++ ret = -BCH_ERR_ENOENT_inode; ++ goto err; ++ } ++ ++ ret = bch2_inode_unpack(k, inode); ++err: ++ bch_err_msg(trans->c, ret, "fetching inode %llu", inode_nr); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int __lookup_inode(struct btree_trans *trans, u64 inode_nr, ++ struct bch_inode_unpacked *inode, ++ u32 *snapshot) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, ++ SPOS(0, inode_nr, *snapshot), 0); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ ret = bkey_is_inode(k.k) ++ ? bch2_inode_unpack(k, inode) ++ : -BCH_ERR_ENOENT_inode; ++ if (!ret) ++ *snapshot = iter.pos.snapshot; ++err: ++ bch_err_msg(trans->c, ret, "fetching inode %llu:%u", inode_nr, *snapshot); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int lookup_inode(struct btree_trans *trans, u64 inode_nr, ++ struct bch_inode_unpacked *inode, ++ u32 *snapshot) ++{ ++ return lockrestart_do(trans, __lookup_inode(trans, inode_nr, inode, snapshot)); ++} ++ ++static int __lookup_dirent(struct btree_trans *trans, ++ struct bch_hash_info hash_info, ++ subvol_inum dir, struct qstr *name, ++ u64 *target, unsigned *type) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c_dirent d; ++ int ret; ++ ++ ret = bch2_hash_lookup(trans, &iter, bch2_dirent_hash_desc, ++ &hash_info, dir, name, 0); ++ if (ret) ++ return ret; ++ ++ d = bkey_s_c_to_dirent(bch2_btree_iter_peek_slot(&iter)); ++ *target = le64_to_cpu(d.v->d_inum); ++ *type = d.v->d_type; ++ bch2_trans_iter_exit(trans, &iter); ++ return 0; ++} ++ ++static int __write_inode(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode, ++ u32 snapshot) ++{ ++ struct bkey_inode_buf *inode_p = ++ bch2_trans_kmalloc(trans, sizeof(*inode_p)); ++ ++ if (IS_ERR(inode_p)) ++ return PTR_ERR(inode_p); ++ ++ bch2_inode_pack(inode_p, inode); ++ inode_p->inode.k.p.snapshot = snapshot; ++ ++ return bch2_btree_insert_nonextent(trans, BTREE_ID_inodes, ++ &inode_p->inode.k_i, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++} ++ ++static int fsck_write_inode(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode, ++ u32 snapshot) ++{ ++ int ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ __write_inode(trans, inode, snapshot)); ++ if (ret) ++ bch_err_fn(trans->c, ret); ++ return ret; ++} ++ ++static int __remove_dirent(struct btree_trans *trans, struct bpos pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bch_inode_unpacked dir_inode; ++ struct bch_hash_info dir_hash_info; ++ int ret; ++ ++ ret = lookup_first_inode(trans, pos.inode, &dir_inode); ++ if (ret) ++ goto err; ++ ++ dir_hash_info = bch2_hash_info_init(c, &dir_inode); ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_dirents, pos, BTREE_ITER_INTENT); ++ ++ ret = bch2_hash_delete_at(trans, bch2_dirent_hash_desc, ++ &dir_hash_info, &iter, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* Get lost+found, create if it doesn't exist: */ ++static int lookup_lostfound(struct btree_trans *trans, u32 subvol, ++ struct bch_inode_unpacked *lostfound) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_inode_unpacked root; ++ struct bch_hash_info root_hash_info; ++ struct qstr lostfound_str = QSTR("lost+found"); ++ subvol_inum root_inum = { .subvol = subvol }; ++ u64 inum = 0; ++ unsigned d_type = 0; ++ u32 snapshot; ++ int ret; ++ ++ ret = __subvol_lookup(trans, subvol, &snapshot, &root_inum.inum); ++ if (ret) ++ return ret; ++ ++ ret = __lookup_inode(trans, root_inum.inum, &root, &snapshot); ++ if (ret) ++ return ret; ++ ++ root_hash_info = bch2_hash_info_init(c, &root); ++ ++ ret = __lookup_dirent(trans, root_hash_info, root_inum, ++ &lostfound_str, &inum, &d_type); ++ if (bch2_err_matches(ret, ENOENT)) { ++ bch_notice(c, "creating lost+found"); ++ goto create_lostfound; ++ } ++ ++ bch_err_fn(c, ret); ++ if (ret) ++ return ret; ++ ++ if (d_type != DT_DIR) { ++ bch_err(c, "error looking up lost+found: not a directory"); ++ return -BCH_ERR_ENOENT_not_directory; ++ } ++ ++ /* ++ * The bch2_check_dirents pass has already run, dangling dirents ++ * shouldn't exist here: ++ */ ++ return __lookup_inode(trans, inum, lostfound, &snapshot); ++ ++create_lostfound: ++ bch2_inode_init_early(c, lostfound); ++ ++ ret = bch2_create_trans(trans, root_inum, &root, ++ lostfound, &lostfound_str, ++ 0, 0, S_IFDIR|0700, 0, NULL, NULL, ++ (subvol_inum) { }, 0); ++ bch_err_msg(c, ret, "creating lost+found"); ++ return ret; ++} ++ ++static int __reattach_inode(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode, ++ u32 inode_snapshot) ++{ ++ struct bch_hash_info dir_hash; ++ struct bch_inode_unpacked lostfound; ++ char name_buf[20]; ++ struct qstr name; ++ u64 dir_offset = 0; ++ u32 subvol; ++ int ret; ++ ++ ret = __snapshot_lookup_subvol(trans, inode_snapshot, &subvol); ++ if (ret) ++ return ret; ++ ++ ret = lookup_lostfound(trans, subvol, &lostfound); ++ if (ret) ++ return ret; ++ ++ if (S_ISDIR(inode->bi_mode)) { ++ lostfound.bi_nlink++; ++ ++ ret = __write_inode(trans, &lostfound, U32_MAX); ++ if (ret) ++ return ret; ++ } ++ ++ dir_hash = bch2_hash_info_init(trans->c, &lostfound); ++ ++ snprintf(name_buf, sizeof(name_buf), "%llu", inode->bi_inum); ++ name = (struct qstr) QSTR(name_buf); ++ ++ ret = bch2_dirent_create(trans, ++ (subvol_inum) { ++ .subvol = subvol, ++ .inum = lostfound.bi_inum, ++ }, ++ &dir_hash, ++ inode_d_type(inode), ++ &name, inode->bi_inum, &dir_offset, ++ BCH_HASH_SET_MUST_CREATE); ++ if (ret) ++ return ret; ++ ++ inode->bi_dir = lostfound.bi_inum; ++ inode->bi_dir_offset = dir_offset; ++ ++ return __write_inode(trans, inode, inode_snapshot); ++} ++ ++static int reattach_inode(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode, ++ u32 inode_snapshot) ++{ ++ int ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_NOFAIL, ++ __reattach_inode(trans, inode, inode_snapshot)); ++ bch_err_msg(trans->c, ret, "reattaching inode %llu", inode->bi_inum); ++ return ret; ++} ++ ++static int remove_backpointer(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c_dirent d; ++ int ret; ++ ++ d = bch2_bkey_get_iter_typed(trans, &iter, BTREE_ID_dirents, ++ POS(inode->bi_dir, inode->bi_dir_offset), 0, ++ dirent); ++ ret = bkey_err(d) ?: ++ __remove_dirent(trans, d.k->p); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++struct snapshots_seen_entry { ++ u32 id; ++ u32 equiv; ++}; ++ ++struct snapshots_seen { ++ struct bpos pos; ++ DARRAY(struct snapshots_seen_entry) ids; ++}; ++ ++static inline void snapshots_seen_exit(struct snapshots_seen *s) ++{ ++ darray_exit(&s->ids); ++} ++ ++static inline void snapshots_seen_init(struct snapshots_seen *s) ++{ ++ memset(s, 0, sizeof(*s)); ++} ++ ++static int snapshots_seen_add_inorder(struct bch_fs *c, struct snapshots_seen *s, u32 id) ++{ ++ struct snapshots_seen_entry *i, n = { ++ .id = id, ++ .equiv = bch2_snapshot_equiv(c, id), ++ }; ++ int ret = 0; ++ ++ darray_for_each(s->ids, i) { ++ if (i->id == id) ++ return 0; ++ if (i->id > id) ++ break; ++ } ++ ++ ret = darray_insert_item(&s->ids, i - s->ids.data, n); ++ if (ret) ++ bch_err(c, "error reallocating snapshots_seen table (size %zu)", ++ s->ids.size); ++ return ret; ++} ++ ++static int snapshots_seen_update(struct bch_fs *c, struct snapshots_seen *s, ++ enum btree_id btree_id, struct bpos pos) ++{ ++ struct snapshots_seen_entry *i, n = { ++ .id = pos.snapshot, ++ .equiv = bch2_snapshot_equiv(c, pos.snapshot), ++ }; ++ int ret = 0; ++ ++ if (!bkey_eq(s->pos, pos)) ++ s->ids.nr = 0; ++ ++ s->pos = pos; ++ s->pos.snapshot = n.equiv; ++ ++ darray_for_each(s->ids, i) { ++ if (i->id == n.id) ++ return 0; ++ ++ /* ++ * We currently don't rigorously track for snapshot cleanup ++ * needing to be run, so it shouldn't be a fsck error yet: ++ */ ++ if (i->equiv == n.equiv) { ++ bch_err(c, "snapshot deletion did not finish:\n" ++ " duplicate keys in btree %s at %llu:%llu snapshots %u, %u (equiv %u)\n", ++ bch2_btree_ids[btree_id], ++ pos.inode, pos.offset, ++ i->id, n.id, n.equiv); ++ return bch2_run_explicit_recovery_pass(c, BCH_RECOVERY_PASS_delete_dead_snapshots); ++ } ++ } ++ ++ ret = darray_push(&s->ids, n); ++ if (ret) ++ bch_err(c, "error reallocating snapshots_seen table (size %zu)", ++ s->ids.size); ++ return ret; ++} ++ ++/** ++ * key_visible_in_snapshot - returns true if @id is a descendent of @ancestor, ++ * and @ancestor hasn't been overwritten in @seen ++ * ++ * @c: filesystem handle ++ * @seen: list of snapshot ids already seen at current position ++ * @id: descendent snapshot id ++ * @ancestor: ancestor snapshot id ++ * ++ * Returns: whether key in @ancestor snapshot is visible in @id snapshot ++ */ ++static bool key_visible_in_snapshot(struct bch_fs *c, struct snapshots_seen *seen, ++ u32 id, u32 ancestor) ++{ ++ ssize_t i; ++ ++ EBUG_ON(id > ancestor); ++ EBUG_ON(!bch2_snapshot_is_equiv(c, id)); ++ EBUG_ON(!bch2_snapshot_is_equiv(c, ancestor)); ++ ++ /* @ancestor should be the snapshot most recently added to @seen */ ++ EBUG_ON(ancestor != seen->pos.snapshot); ++ EBUG_ON(ancestor != seen->ids.data[seen->ids.nr - 1].equiv); ++ ++ if (id == ancestor) ++ return true; ++ ++ if (!bch2_snapshot_is_ancestor(c, id, ancestor)) ++ return false; ++ ++ /* ++ * We know that @id is a descendant of @ancestor, we're checking if ++ * we've seen a key that overwrote @ancestor - i.e. also a descendent of ++ * @ascestor and with @id as a descendent. ++ * ++ * But we already know that we're scanning IDs between @id and @ancestor ++ * numerically, since snapshot ID lists are kept sorted, so if we find ++ * an id that's an ancestor of @id we're done: ++ */ ++ ++ for (i = seen->ids.nr - 2; ++ i >= 0 && seen->ids.data[i].equiv >= id; ++ --i) ++ if (bch2_snapshot_is_ancestor(c, id, seen->ids.data[i].equiv)) ++ return false; ++ ++ return true; ++} ++ ++/** ++ * ref_visible - given a key with snapshot id @src that points to a key with ++ * snapshot id @dst, test whether there is some snapshot in which @dst is ++ * visible. ++ * ++ * @c: filesystem handle ++ * @s: list of snapshot IDs already seen at @src ++ * @src: snapshot ID of src key ++ * @dst: snapshot ID of dst key ++ * Returns: true if there is some snapshot in which @dst is visible ++ * ++ * Assumes we're visiting @src keys in natural key order ++ */ ++static bool ref_visible(struct bch_fs *c, struct snapshots_seen *s, ++ u32 src, u32 dst) ++{ ++ return dst <= src ++ ? key_visible_in_snapshot(c, s, dst, src) ++ : bch2_snapshot_is_ancestor(c, src, dst); ++} ++ ++static int ref_visible2(struct bch_fs *c, ++ u32 src, struct snapshots_seen *src_seen, ++ u32 dst, struct snapshots_seen *dst_seen) ++{ ++ src = bch2_snapshot_equiv(c, src); ++ dst = bch2_snapshot_equiv(c, dst); ++ ++ if (dst > src) { ++ swap(dst, src); ++ swap(dst_seen, src_seen); ++ } ++ return key_visible_in_snapshot(c, src_seen, dst, src); ++} ++ ++#define for_each_visible_inode(_c, _s, _w, _snapshot, _i) \ ++ for (_i = (_w)->inodes.data; _i < (_w)->inodes.data + (_w)->inodes.nr && \ ++ (_i)->snapshot <= (_snapshot); _i++) \ ++ if (key_visible_in_snapshot(_c, _s, _i->snapshot, _snapshot)) ++ ++struct inode_walker_entry { ++ struct bch_inode_unpacked inode; ++ u32 snapshot; ++ bool seen_this_pos; ++ u64 count; ++}; ++ ++struct inode_walker { ++ bool first_this_inode; ++ bool recalculate_sums; ++ struct bpos last_pos; ++ ++ DARRAY(struct inode_walker_entry) inodes; ++}; ++ ++static void inode_walker_exit(struct inode_walker *w) ++{ ++ darray_exit(&w->inodes); ++} ++ ++static struct inode_walker inode_walker_init(void) ++{ ++ return (struct inode_walker) { 0, }; ++} ++ ++static int add_inode(struct bch_fs *c, struct inode_walker *w, ++ struct bkey_s_c inode) ++{ ++ struct bch_inode_unpacked u; ++ ++ BUG_ON(bch2_inode_unpack(inode, &u)); ++ ++ return darray_push(&w->inodes, ((struct inode_walker_entry) { ++ .inode = u, ++ .snapshot = bch2_snapshot_equiv(c, inode.k->p.snapshot), ++ })); ++} ++ ++static int get_inodes_all_snapshots(struct btree_trans *trans, ++ struct inode_walker *w, u64 inum) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ u32 restart_count = trans->restart_count; ++ int ret; ++ ++ w->recalculate_sums = false; ++ w->inodes.nr = 0; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_inodes, POS(0, inum), ++ BTREE_ITER_ALL_SNAPSHOTS, k, ret) { ++ if (k.k->p.offset != inum) ++ break; ++ ++ if (bkey_is_inode(k.k)) ++ add_inode(c, w, k); ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) ++ return ret; ++ ++ w->first_this_inode = true; ++ ++ return trans_was_restarted(trans, restart_count); ++} ++ ++static struct inode_walker_entry * ++lookup_inode_for_snapshot(struct bch_fs *c, struct inode_walker *w, ++ u32 snapshot, bool is_whiteout) ++{ ++ struct inode_walker_entry *i; ++ ++ snapshot = bch2_snapshot_equiv(c, snapshot); ++ ++ darray_for_each(w->inodes, i) ++ if (bch2_snapshot_is_ancestor(c, snapshot, i->snapshot)) ++ goto found; ++ ++ return NULL; ++found: ++ BUG_ON(snapshot > i->snapshot); ++ ++ if (snapshot != i->snapshot && !is_whiteout) { ++ struct inode_walker_entry new = *i; ++ size_t pos; ++ int ret; ++ ++ new.snapshot = snapshot; ++ new.count = 0; ++ ++ bch_info(c, "have key for inode %llu:%u but have inode in ancestor snapshot %u", ++ w->last_pos.inode, snapshot, i->snapshot); ++ ++ while (i > w->inodes.data && i[-1].snapshot > snapshot) ++ --i; ++ ++ pos = i - w->inodes.data; ++ ret = darray_insert_item(&w->inodes, pos, new); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ i = w->inodes.data + pos; ++ } ++ ++ return i; ++} ++ ++static struct inode_walker_entry *walk_inode(struct btree_trans *trans, ++ struct inode_walker *w, struct bpos pos, ++ bool is_whiteout) ++{ ++ if (w->last_pos.inode != pos.inode) { ++ int ret = get_inodes_all_snapshots(trans, w, pos.inode); ++ if (ret) ++ return ERR_PTR(ret); ++ } else if (bkey_cmp(w->last_pos, pos)) { ++ struct inode_walker_entry *i; ++ ++ darray_for_each(w->inodes, i) ++ i->seen_this_pos = false; ++ ++ } ++ ++ w->last_pos = pos; ++ ++ return lookup_inode_for_snapshot(trans->c, w, pos.snapshot, is_whiteout); ++} ++ ++static int __get_visible_inodes(struct btree_trans *trans, ++ struct inode_walker *w, ++ struct snapshots_seen *s, ++ u64 inum) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ w->inodes.nr = 0; ++ ++ for_each_btree_key_norestart(trans, iter, BTREE_ID_inodes, POS(0, inum), ++ BTREE_ITER_ALL_SNAPSHOTS, k, ret) { ++ u32 equiv = bch2_snapshot_equiv(c, k.k->p.snapshot); ++ ++ if (k.k->p.offset != inum) ++ break; ++ ++ if (!ref_visible(c, s, s->pos.snapshot, equiv)) ++ continue; ++ ++ if (bkey_is_inode(k.k)) ++ add_inode(c, w, k); ++ ++ if (equiv >= s->pos.snapshot) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret; ++} ++ ++static int check_key_has_snapshot(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ if (mustfix_fsck_err_on(!bch2_snapshot_equiv(c, k.k->p.snapshot), c, ++ "key in missing snapshot: %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) ++ ret = bch2_btree_delete_at(trans, iter, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: 1; ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int hash_redo_key(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ struct bch_hash_info *hash_info, ++ struct btree_iter *k_iter, struct bkey_s_c k) ++{ ++ struct bkey_i *delete; ++ struct bkey_i *tmp; ++ ++ delete = bch2_trans_kmalloc(trans, sizeof(*delete)); ++ if (IS_ERR(delete)) ++ return PTR_ERR(delete); ++ ++ tmp = bch2_bkey_make_mut_noupdate(trans, k); ++ if (IS_ERR(tmp)) ++ return PTR_ERR(tmp); ++ ++ bkey_init(&delete->k); ++ delete->k.p = k_iter->pos; ++ return bch2_btree_iter_traverse(k_iter) ?: ++ bch2_trans_update(trans, k_iter, delete, 0) ?: ++ bch2_hash_set_snapshot(trans, desc, hash_info, ++ (subvol_inum) { 0, k.k->p.inode }, ++ k.k->p.snapshot, tmp, ++ BCH_HASH_SET_MUST_CREATE, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW); ++} ++ ++static int hash_check_key(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ struct bch_hash_info *hash_info, ++ struct btree_iter *k_iter, struct bkey_s_c hash_k) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter = { NULL }; ++ struct printbuf buf = PRINTBUF; ++ struct bkey_s_c k; ++ u64 hash; ++ int ret = 0; ++ ++ if (hash_k.k->type != desc.key_type) ++ return 0; ++ ++ hash = desc.hash_bkey(hash_info, hash_k); ++ ++ if (likely(hash == hash_k.k->p.offset)) ++ return 0; ++ ++ if (hash_k.k->p.offset < hash) ++ goto bad_hash; ++ ++ for_each_btree_key_norestart(trans, iter, desc.btree_id, ++ SPOS(hash_k.k->p.inode, hash, hash_k.k->p.snapshot), ++ BTREE_ITER_SLOTS, k, ret) { ++ if (bkey_eq(k.k->p, hash_k.k->p)) ++ break; ++ ++ if (fsck_err_on(k.k->type == desc.key_type && ++ !desc.cmp_bkey(k, hash_k), c, ++ "duplicate hash table keys:\n%s", ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, hash_k), ++ buf.buf))) { ++ ret = bch2_hash_delete_at(trans, desc, hash_info, k_iter, 0) ?: 1; ++ break; ++ } ++ ++ if (bkey_deleted(k.k)) { ++ bch2_trans_iter_exit(trans, &iter); ++ goto bad_hash; ++ } ++ } ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ printbuf_exit(&buf); ++ return ret; ++bad_hash: ++ if (fsck_err(c, "hash table key at wrong offset: btree %s inode %llu offset %llu, hashed to %llu\n%s", ++ bch2_btree_ids[desc.btree_id], hash_k.k->p.inode, hash_k.k->p.offset, hash, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, hash_k), buf.buf))) { ++ ret = hash_redo_key(trans, desc, hash_info, k_iter, hash_k); ++ bch_err_fn(c, ret); ++ if (ret) ++ return ret; ++ ret = -BCH_ERR_transaction_restart_nested; ++ } ++fsck_err: ++ goto out; ++} ++ ++static int check_inode(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ struct bch_inode_unpacked *prev, ++ struct snapshots_seen *s, ++ bool full) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_inode_unpacked u; ++ bool do_update = false; ++ int ret; ++ ++ ret = check_key_has_snapshot(trans, iter, k); ++ if (ret < 0) ++ goto err; ++ if (ret) ++ return 0; ++ ++ ret = snapshots_seen_update(c, s, iter->btree_id, k.k->p); ++ if (ret) ++ goto err; ++ ++ if (!bkey_is_inode(k.k)) ++ return 0; ++ ++ BUG_ON(bch2_inode_unpack(k, &u)); ++ ++ if (!full && ++ !(u.bi_flags & (BCH_INODE_I_SIZE_DIRTY| ++ BCH_INODE_I_SECTORS_DIRTY| ++ BCH_INODE_UNLINKED))) ++ return 0; ++ ++ if (prev->bi_inum != u.bi_inum) ++ *prev = u; ++ ++ if (fsck_err_on(prev->bi_hash_seed != u.bi_hash_seed || ++ inode_d_type(prev) != inode_d_type(&u), c, ++ "inodes in different snapshots don't match")) { ++ bch_err(c, "repair not implemented yet"); ++ return -EINVAL; ++ } ++ ++ if ((u.bi_flags & (BCH_INODE_I_SIZE_DIRTY|BCH_INODE_UNLINKED)) && ++ bch2_key_has_snapshot_overwrites(trans, BTREE_ID_inodes, k.k->p)) { ++ struct bpos new_min_pos; ++ ++ ret = bch2_propagate_key_to_snapshot_leaves(trans, iter->btree_id, k, &new_min_pos); ++ if (ret) ++ goto err; ++ ++ u.bi_flags &= ~BCH_INODE_I_SIZE_DIRTY|BCH_INODE_UNLINKED; ++ ++ ret = __write_inode(trans, &u, iter->pos.snapshot); ++ bch_err_msg(c, ret, "in fsck updating inode"); ++ if (ret) ++ return ret; ++ ++ if (!bpos_eq(new_min_pos, POS_MIN)) ++ bch2_btree_iter_set_pos(iter, bpos_predecessor(new_min_pos)); ++ return 0; ++ } ++ ++ if (u.bi_flags & BCH_INODE_UNLINKED && ++ (!c->sb.clean || ++ fsck_err(c, "filesystem marked clean, but inode %llu unlinked", ++ u.bi_inum))) { ++ bch2_trans_unlock(trans); ++ bch2_fs_lazy_rw(c); ++ ++ ret = bch2_inode_rm_snapshot(trans, u.bi_inum, iter->pos.snapshot); ++ bch_err_msg(c, ret, "in fsck deleting inode"); ++ return ret; ++ } ++ ++ if (u.bi_flags & BCH_INODE_I_SIZE_DIRTY && ++ (!c->sb.clean || ++ fsck_err(c, "filesystem marked clean, but inode %llu has i_size dirty", ++ u.bi_inum))) { ++ bch_verbose(c, "truncating inode %llu", u.bi_inum); ++ ++ bch2_trans_unlock(trans); ++ bch2_fs_lazy_rw(c); ++ ++ /* ++ * XXX: need to truncate partial blocks too here - or ideally ++ * just switch units to bytes and that issue goes away ++ */ ++ ret = bch2_btree_delete_range_trans(trans, BTREE_ID_extents, ++ SPOS(u.bi_inum, round_up(u.bi_size, block_bytes(c)) >> 9, ++ iter->pos.snapshot), ++ POS(u.bi_inum, U64_MAX), ++ 0, NULL); ++ bch_err_msg(c, ret, "in fsck truncating inode"); ++ if (ret) ++ return ret; ++ ++ /* ++ * We truncated without our normal sector accounting hook, just ++ * make sure we recalculate it: ++ */ ++ u.bi_flags |= BCH_INODE_I_SECTORS_DIRTY; ++ ++ u.bi_flags &= ~BCH_INODE_I_SIZE_DIRTY; ++ do_update = true; ++ } ++ ++ if (u.bi_flags & BCH_INODE_I_SECTORS_DIRTY && ++ (!c->sb.clean || ++ fsck_err(c, "filesystem marked clean, but inode %llu has i_sectors dirty", ++ u.bi_inum))) { ++ s64 sectors; ++ ++ bch_verbose(c, "recounting sectors for inode %llu", ++ u.bi_inum); ++ ++ sectors = bch2_count_inode_sectors(trans, u.bi_inum, iter->pos.snapshot); ++ if (sectors < 0) { ++ bch_err_msg(c, sectors, "in fsck recounting inode sectors"); ++ return sectors; ++ } ++ ++ u.bi_sectors = sectors; ++ u.bi_flags &= ~BCH_INODE_I_SECTORS_DIRTY; ++ do_update = true; ++ } ++ ++ if (u.bi_flags & BCH_INODE_BACKPTR_UNTRUSTED) { ++ u.bi_dir = 0; ++ u.bi_dir_offset = 0; ++ u.bi_flags &= ~BCH_INODE_BACKPTR_UNTRUSTED; ++ do_update = true; ++ } ++ ++ if (do_update) { ++ ret = __write_inode(trans, &u, iter->pos.snapshot); ++ bch_err_msg(c, ret, "in fsck updating inode"); ++ if (ret) ++ return ret; ++ } ++err: ++fsck_err: ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++noinline_for_stack ++int bch2_check_inodes(struct bch_fs *c) ++{ ++ bool full = c->opts.fsck; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bch_inode_unpacked prev = { 0 }; ++ struct snapshots_seen s; ++ struct bkey_s_c k; ++ int ret; ++ ++ snapshots_seen_init(&s); ++ ++ ret = for_each_btree_key_commit(trans, iter, BTREE_ID_inodes, ++ POS_MIN, ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ++ NULL, NULL, BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ check_inode(trans, &iter, k, &prev, &s, full)); ++ ++ snapshots_seen_exit(&s); ++ bch2_trans_put(trans); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static struct bkey_s_c_dirent dirent_get_by_pos(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bpos pos) ++{ ++ return bch2_bkey_get_iter_typed(trans, iter, BTREE_ID_dirents, pos, 0, dirent); ++} ++ ++static bool inode_points_to_dirent(struct bch_inode_unpacked *inode, ++ struct bkey_s_c_dirent d) ++{ ++ return inode->bi_dir == d.k->p.inode && ++ inode->bi_dir_offset == d.k->p.offset; ++} ++ ++static bool dirent_points_to_inode(struct bkey_s_c_dirent d, ++ struct bch_inode_unpacked *inode) ++{ ++ return d.v->d_type == DT_SUBVOL ++ ? le32_to_cpu(d.v->d_child_subvol) == inode->bi_subvol ++ : le64_to_cpu(d.v->d_inum) == inode->bi_inum; ++} ++ ++static int inode_backpointer_exists(struct btree_trans *trans, ++ struct bch_inode_unpacked *inode, ++ u32 snapshot) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c_dirent d; ++ int ret; ++ ++ d = dirent_get_by_pos(trans, &iter, ++ SPOS(inode->bi_dir, inode->bi_dir_offset, snapshot)); ++ ret = bkey_err(d); ++ if (ret) ++ return bch2_err_matches(ret, ENOENT) ? 0 : ret; ++ ++ ret = dirent_points_to_inode(d, inode); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int check_i_sectors(struct btree_trans *trans, struct inode_walker *w) ++{ ++ struct bch_fs *c = trans->c; ++ struct inode_walker_entry *i; ++ u32 restart_count = trans->restart_count; ++ int ret = 0; ++ s64 count2; ++ ++ darray_for_each(w->inodes, i) { ++ if (i->inode.bi_sectors == i->count) ++ continue; ++ ++ count2 = bch2_count_inode_sectors(trans, w->last_pos.inode, i->snapshot); ++ ++ if (w->recalculate_sums) ++ i->count = count2; ++ ++ if (i->count != count2) { ++ bch_err(c, "fsck counted i_sectors wrong for inode %llu:%u: got %llu should be %llu", ++ w->last_pos.inode, i->snapshot, i->count, count2); ++ return -BCH_ERR_internal_fsck_err; ++ } ++ ++ if (fsck_err_on(!(i->inode.bi_flags & BCH_INODE_I_SECTORS_DIRTY), c, ++ "inode %llu:%u has incorrect i_sectors: got %llu, should be %llu", ++ w->last_pos.inode, i->snapshot, ++ i->inode.bi_sectors, i->count)) { ++ i->inode.bi_sectors = i->count; ++ ret = fsck_write_inode(trans, &i->inode, i->snapshot); ++ if (ret) ++ break; ++ } ++ } ++fsck_err: ++ bch_err_fn(c, ret); ++ return ret ?: trans_was_restarted(trans, restart_count); ++} ++ ++struct extent_end { ++ u32 snapshot; ++ u64 offset; ++ struct snapshots_seen seen; ++}; ++ ++struct extent_ends { ++ struct bpos last_pos; ++ DARRAY(struct extent_end) e; ++}; ++ ++static void extent_ends_reset(struct extent_ends *extent_ends) ++{ ++ struct extent_end *i; ++ ++ darray_for_each(extent_ends->e, i) ++ snapshots_seen_exit(&i->seen); ++ ++ extent_ends->e.nr = 0; ++} ++ ++static void extent_ends_exit(struct extent_ends *extent_ends) ++{ ++ extent_ends_reset(extent_ends); ++ darray_exit(&extent_ends->e); ++} ++ ++static void extent_ends_init(struct extent_ends *extent_ends) ++{ ++ memset(extent_ends, 0, sizeof(*extent_ends)); ++} ++ ++static int extent_ends_at(struct bch_fs *c, ++ struct extent_ends *extent_ends, ++ struct snapshots_seen *seen, ++ struct bkey_s_c k) ++{ ++ struct extent_end *i, n = (struct extent_end) { ++ .offset = k.k->p.offset, ++ .snapshot = k.k->p.snapshot, ++ .seen = *seen, ++ }; ++ ++ n.seen.ids.data = kmemdup(seen->ids.data, ++ sizeof(seen->ids.data[0]) * seen->ids.size, ++ GFP_KERNEL); ++ if (!n.seen.ids.data) ++ return -BCH_ERR_ENOMEM_fsck_extent_ends_at; ++ ++ darray_for_each(extent_ends->e, i) { ++ if (i->snapshot == k.k->p.snapshot) { ++ snapshots_seen_exit(&i->seen); ++ *i = n; ++ return 0; ++ } ++ ++ if (i->snapshot >= k.k->p.snapshot) ++ break; ++ } ++ ++ return darray_insert_item(&extent_ends->e, i - extent_ends->e.data, n); ++} ++ ++static int overlapping_extents_found(struct btree_trans *trans, ++ enum btree_id btree, ++ struct bpos pos1, struct snapshots_seen *pos1_seen, ++ struct bkey pos2, ++ bool *fixed, ++ struct extent_end *extent_end) ++{ ++ struct bch_fs *c = trans->c; ++ struct printbuf buf = PRINTBUF; ++ struct btree_iter iter1, iter2 = { NULL }; ++ struct bkey_s_c k1, k2; ++ int ret; ++ ++ BUG_ON(bkey_le(pos1, bkey_start_pos(&pos2))); ++ ++ bch2_trans_iter_init(trans, &iter1, btree, pos1, ++ BTREE_ITER_ALL_SNAPSHOTS| ++ BTREE_ITER_NOT_EXTENTS); ++ k1 = bch2_btree_iter_peek_upto(&iter1, POS(pos1.inode, U64_MAX)); ++ ret = bkey_err(k1); ++ if (ret) ++ goto err; ++ ++ prt_str(&buf, "\n "); ++ bch2_bkey_val_to_text(&buf, c, k1); ++ ++ if (!bpos_eq(pos1, k1.k->p)) { ++ prt_str(&buf, "\n wanted\n "); ++ bch2_bpos_to_text(&buf, pos1); ++ prt_str(&buf, "\n "); ++ bch2_bkey_to_text(&buf, &pos2); ++ ++ bch_err(c, "%s: error finding first overlapping extent when repairing, got%s", ++ __func__, buf.buf); ++ ret = -BCH_ERR_internal_fsck_err; ++ goto err; ++ } ++ ++ bch2_trans_copy_iter(&iter2, &iter1); ++ ++ while (1) { ++ bch2_btree_iter_advance(&iter2); ++ ++ k2 = bch2_btree_iter_peek_upto(&iter2, POS(pos1.inode, U64_MAX)); ++ ret = bkey_err(k2); ++ if (ret) ++ goto err; ++ ++ if (bpos_ge(k2.k->p, pos2.p)) ++ break; ++ } ++ ++ prt_str(&buf, "\n "); ++ bch2_bkey_val_to_text(&buf, c, k2); ++ ++ if (bpos_gt(k2.k->p, pos2.p) || ++ pos2.size != k2.k->size) { ++ bch_err(c, "%s: error finding seconding overlapping extent when repairing%s", ++ __func__, buf.buf); ++ ret = -BCH_ERR_internal_fsck_err; ++ goto err; ++ } ++ ++ prt_printf(&buf, "\n overwriting %s extent", ++ pos1.snapshot >= pos2.p.snapshot ? "first" : "second"); ++ ++ if (fsck_err(c, "overlapping extents%s", buf.buf)) { ++ struct btree_iter *old_iter = &iter1; ++ struct disk_reservation res = { 0 }; ++ ++ if (pos1.snapshot < pos2.p.snapshot) { ++ old_iter = &iter2; ++ swap(k1, k2); ++ } ++ ++ trans->extra_journal_res += bch2_bkey_sectors_compressed(k2); ++ ++ ret = bch2_trans_update_extent_overwrite(trans, old_iter, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE, ++ k1, k2) ?: ++ bch2_trans_commit(trans, &res, NULL, ++ BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL); ++ bch2_disk_reservation_put(c, &res); ++ ++ if (ret) ++ goto err; ++ ++ *fixed = true; ++ ++ if (pos1.snapshot == pos2.p.snapshot) { ++ /* ++ * We overwrote the first extent, and did the overwrite ++ * in the same snapshot: ++ */ ++ extent_end->offset = bkey_start_offset(&pos2); ++ } else if (pos1.snapshot > pos2.p.snapshot) { ++ /* ++ * We overwrote the first extent in pos2's snapshot: ++ */ ++ ret = snapshots_seen_add_inorder(c, pos1_seen, pos2.p.snapshot); ++ } else { ++ /* ++ * We overwrote the second extent - restart ++ * check_extent() from the top: ++ */ ++ ret = -BCH_ERR_transaction_restart_nested; ++ } ++ } ++fsck_err: ++err: ++ bch2_trans_iter_exit(trans, &iter2); ++ bch2_trans_iter_exit(trans, &iter1); ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int check_overlapping_extents(struct btree_trans *trans, ++ struct snapshots_seen *seen, ++ struct extent_ends *extent_ends, ++ struct bkey_s_c k, ++ u32 equiv, ++ struct btree_iter *iter, ++ bool *fixed) ++{ ++ struct bch_fs *c = trans->c; ++ struct extent_end *i; ++ int ret = 0; ++ ++ /* transaction restart, running again */ ++ if (bpos_eq(extent_ends->last_pos, k.k->p)) ++ return 0; ++ ++ if (extent_ends->last_pos.inode != k.k->p.inode) ++ extent_ends_reset(extent_ends); ++ ++ darray_for_each(extent_ends->e, i) { ++ if (i->offset <= bkey_start_offset(k.k)) ++ continue; ++ ++ if (!ref_visible2(c, ++ k.k->p.snapshot, seen, ++ i->snapshot, &i->seen)) ++ continue; ++ ++ ret = overlapping_extents_found(trans, iter->btree_id, ++ SPOS(iter->pos.inode, ++ i->offset, ++ i->snapshot), ++ &i->seen, ++ *k.k, fixed, i); ++ if (ret) ++ goto err; ++ } ++ ++ ret = extent_ends_at(c, extent_ends, seen, k); ++ if (ret) ++ goto err; ++ ++ extent_ends->last_pos = k.k->p; ++err: ++ return ret; ++} ++ ++static int check_extent(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c k, ++ struct inode_walker *inode, ++ struct snapshots_seen *s, ++ struct extent_ends *extent_ends) ++{ ++ struct bch_fs *c = trans->c; ++ struct inode_walker_entry *i; ++ struct printbuf buf = PRINTBUF; ++ struct bpos equiv = k.k->p; ++ int ret = 0; ++ ++ equiv.snapshot = bch2_snapshot_equiv(c, k.k->p.snapshot); ++ ++ ret = check_key_has_snapshot(trans, iter, k); ++ if (ret) { ++ ret = ret < 0 ? ret : 0; ++ goto out; ++ } ++ ++ if (inode->last_pos.inode != k.k->p.inode) { ++ ret = check_i_sectors(trans, inode); ++ if (ret) ++ goto err; ++ } ++ ++ i = walk_inode(trans, inode, equiv, k.k->type == KEY_TYPE_whiteout); ++ ret = PTR_ERR_OR_ZERO(i); ++ if (ret) ++ goto err; ++ ++ ret = snapshots_seen_update(c, s, iter->btree_id, k.k->p); ++ if (ret) ++ goto err; ++ ++ if (k.k->type != KEY_TYPE_whiteout) { ++ if (fsck_err_on(!i, c, ++ "extent in missing inode:\n %s", ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), buf.buf))) ++ goto delete; ++ ++ if (fsck_err_on(i && ++ !S_ISREG(i->inode.bi_mode) && ++ !S_ISLNK(i->inode.bi_mode), c, ++ "extent in non regular inode mode %o:\n %s", ++ i->inode.bi_mode, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), buf.buf))) ++ goto delete; ++ ++ ret = check_overlapping_extents(trans, s, extent_ends, k, ++ equiv.snapshot, iter, ++ &inode->recalculate_sums); ++ if (ret) ++ goto err; ++ } ++ ++ /* ++ * Check inodes in reverse order, from oldest snapshots to newest, ++ * starting from the inode that matches this extent's snapshot. If we ++ * didn't have one, iterate over all inodes: ++ */ ++ if (!i) ++ i = inode->inodes.data + inode->inodes.nr - 1; ++ ++ for (; ++ inode->inodes.data && i >= inode->inodes.data; ++ --i) { ++ if (i->snapshot > equiv.snapshot || ++ !key_visible_in_snapshot(c, s, i->snapshot, equiv.snapshot)) ++ continue; ++ ++ if (k.k->type != KEY_TYPE_whiteout) { ++ if (fsck_err_on(!(i->inode.bi_flags & BCH_INODE_I_SIZE_DIRTY) && ++ k.k->p.offset > round_up(i->inode.bi_size, block_bytes(c)) >> 9 && ++ !bkey_extent_is_reservation(k), c, ++ "extent type past end of inode %llu:%u, i_size %llu\n %s", ++ i->inode.bi_inum, i->snapshot, i->inode.bi_size, ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ struct btree_iter iter2; ++ ++ bch2_trans_copy_iter(&iter2, iter); ++ bch2_btree_iter_set_snapshot(&iter2, i->snapshot); ++ ret = bch2_btree_iter_traverse(&iter2) ?: ++ bch2_btree_delete_at(trans, &iter2, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ bch2_trans_iter_exit(trans, &iter2); ++ if (ret) ++ goto err; ++ ++ iter->k.type = KEY_TYPE_whiteout; ++ } ++ ++ if (bkey_extent_is_allocation(k.k)) ++ i->count += k.k->size; ++ } ++ ++ i->seen_this_pos = true; ++ } ++out: ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ bch_err_fn(c, ret); ++ return ret; ++delete: ++ ret = bch2_btree_delete_at(trans, iter, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ goto out; ++} ++ ++/* ++ * Walk extents: verify that extents have a corresponding S_ISREG inode, and ++ * that i_size an i_sectors are consistent ++ */ ++int bch2_check_extents(struct bch_fs *c) ++{ ++ struct inode_walker w = inode_walker_init(); ++ struct snapshots_seen s; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct extent_ends extent_ends; ++ struct disk_reservation res = { 0 }; ++ int ret = 0; ++ ++ snapshots_seen_init(&s); ++ extent_ends_init(&extent_ends); ++ ++ ret = for_each_btree_key_commit(trans, iter, BTREE_ID_extents, ++ POS(BCACHEFS_ROOT_INO, 0), ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ++ &res, NULL, ++ BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ({ ++ bch2_disk_reservation_put(c, &res); ++ check_extent(trans, &iter, k, &w, &s, &extent_ends); ++ })) ?: ++ check_i_sectors(trans, &w); ++ ++ bch2_disk_reservation_put(c, &res); ++ extent_ends_exit(&extent_ends); ++ inode_walker_exit(&w); ++ snapshots_seen_exit(&s); ++ bch2_trans_put(trans); ++ ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int check_subdir_count(struct btree_trans *trans, struct inode_walker *w) ++{ ++ struct bch_fs *c = trans->c; ++ struct inode_walker_entry *i; ++ u32 restart_count = trans->restart_count; ++ int ret = 0; ++ s64 count2; ++ ++ darray_for_each(w->inodes, i) { ++ if (i->inode.bi_nlink == i->count) ++ continue; ++ ++ count2 = bch2_count_subdirs(trans, w->last_pos.inode, i->snapshot); ++ if (count2 < 0) ++ return count2; ++ ++ if (i->count != count2) { ++ bch_err(c, "fsck counted subdirectories wrong: got %llu should be %llu", ++ i->count, count2); ++ i->count = count2; ++ if (i->inode.bi_nlink == i->count) ++ continue; ++ } ++ ++ if (fsck_err_on(i->inode.bi_nlink != i->count, c, ++ "directory %llu:%u with wrong i_nlink: got %u, should be %llu", ++ w->last_pos.inode, i->snapshot, i->inode.bi_nlink, i->count)) { ++ i->inode.bi_nlink = i->count; ++ ret = fsck_write_inode(trans, &i->inode, i->snapshot); ++ if (ret) ++ break; ++ } ++ } ++fsck_err: ++ bch_err_fn(c, ret); ++ return ret ?: trans_was_restarted(trans, restart_count); ++} ++ ++static int check_dirent_target(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c_dirent d, ++ struct bch_inode_unpacked *target, ++ u32 target_snapshot) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_i_dirent *n; ++ bool backpointer_exists = true; ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ if (!target->bi_dir && ++ !target->bi_dir_offset) { ++ target->bi_dir = d.k->p.inode; ++ target->bi_dir_offset = d.k->p.offset; ++ ++ ret = __write_inode(trans, target, target_snapshot); ++ if (ret) ++ goto err; ++ } ++ ++ if (!inode_points_to_dirent(target, d)) { ++ ret = inode_backpointer_exists(trans, target, d.k->p.snapshot); ++ if (ret < 0) ++ goto err; ++ ++ backpointer_exists = ret; ++ ret = 0; ++ ++ if (fsck_err_on(S_ISDIR(target->bi_mode) && ++ backpointer_exists, c, ++ "directory %llu with multiple links", ++ target->bi_inum)) { ++ ret = __remove_dirent(trans, d.k->p); ++ goto out; ++ } ++ ++ if (fsck_err_on(backpointer_exists && ++ !target->bi_nlink, c, ++ "inode %llu type %s has multiple links but i_nlink 0", ++ target->bi_inum, bch2_d_types[d.v->d_type])) { ++ target->bi_nlink++; ++ target->bi_flags &= ~BCH_INODE_UNLINKED; ++ ++ ret = __write_inode(trans, target, target_snapshot); ++ if (ret) ++ goto err; ++ } ++ ++ if (fsck_err_on(!backpointer_exists, c, ++ "inode %llu:%u has wrong backpointer:\n" ++ "got %llu:%llu\n" ++ "should be %llu:%llu", ++ target->bi_inum, target_snapshot, ++ target->bi_dir, ++ target->bi_dir_offset, ++ d.k->p.inode, ++ d.k->p.offset)) { ++ target->bi_dir = d.k->p.inode; ++ target->bi_dir_offset = d.k->p.offset; ++ ++ ret = __write_inode(trans, target, target_snapshot); ++ if (ret) ++ goto err; ++ } ++ } ++ ++ if (fsck_err_on(d.v->d_type != inode_d_type(target), c, ++ "incorrect d_type: got %s, should be %s:\n%s", ++ bch2_d_type_str(d.v->d_type), ++ bch2_d_type_str(inode_d_type(target)), ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, d.s_c), buf.buf))) { ++ n = bch2_trans_kmalloc(trans, bkey_bytes(d.k)); ++ ret = PTR_ERR_OR_ZERO(n); ++ if (ret) ++ goto err; ++ ++ bkey_reassemble(&n->k_i, d.s_c); ++ n->v.d_type = inode_d_type(target); ++ ++ ret = bch2_trans_update(trans, iter, &n->k_i, 0); ++ if (ret) ++ goto err; ++ ++ d = dirent_i_to_s_c(n); ++ } ++ ++ if (d.v->d_type == DT_SUBVOL && ++ target->bi_parent_subvol != le32_to_cpu(d.v->d_parent_subvol) && ++ (c->sb.version < bcachefs_metadata_version_subvol_dirent || ++ fsck_err(c, "dirent has wrong d_parent_subvol field: got %u, should be %u", ++ le32_to_cpu(d.v->d_parent_subvol), ++ target->bi_parent_subvol))) { ++ n = bch2_trans_kmalloc(trans, bkey_bytes(d.k)); ++ ret = PTR_ERR_OR_ZERO(n); ++ if (ret) ++ goto err; ++ ++ bkey_reassemble(&n->k_i, d.s_c); ++ n->v.d_parent_subvol = cpu_to_le32(target->bi_parent_subvol); ++ ++ ret = bch2_trans_update(trans, iter, &n->k_i, 0); ++ if (ret) ++ goto err; ++ ++ d = dirent_i_to_s_c(n); ++ } ++out: ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int check_dirent(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c k, ++ struct bch_hash_info *hash_info, ++ struct inode_walker *dir, ++ struct inode_walker *target, ++ struct snapshots_seen *s) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c_dirent d; ++ struct inode_walker_entry *i; ++ struct printbuf buf = PRINTBUF; ++ struct bpos equiv; ++ int ret = 0; ++ ++ ret = check_key_has_snapshot(trans, iter, k); ++ if (ret) { ++ ret = ret < 0 ? ret : 0; ++ goto out; ++ } ++ ++ equiv = k.k->p; ++ equiv.snapshot = bch2_snapshot_equiv(c, k.k->p.snapshot); ++ ++ ret = snapshots_seen_update(c, s, iter->btree_id, k.k->p); ++ if (ret) ++ goto err; ++ ++ if (k.k->type == KEY_TYPE_whiteout) ++ goto out; ++ ++ if (dir->last_pos.inode != k.k->p.inode) { ++ ret = check_subdir_count(trans, dir); ++ if (ret) ++ goto err; ++ } ++ ++ BUG_ON(!iter->path->should_be_locked); ++ ++ i = walk_inode(trans, dir, equiv, k.k->type == KEY_TYPE_whiteout); ++ ret = PTR_ERR_OR_ZERO(i); ++ if (ret < 0) ++ goto err; ++ ++ if (dir->first_this_inode && dir->inodes.nr) ++ *hash_info = bch2_hash_info_init(c, &dir->inodes.data[0].inode); ++ dir->first_this_inode = false; ++ ++ if (fsck_err_on(!i, c, ++ "dirent in nonexisting directory:\n%s", ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ ret = bch2_btree_delete_at(trans, iter, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ goto out; ++ } ++ ++ if (!i) ++ goto out; ++ ++ if (fsck_err_on(!S_ISDIR(i->inode.bi_mode), c, ++ "dirent in non directory inode type %s:\n%s", ++ bch2_d_type_str(inode_d_type(&i->inode)), ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ ret = bch2_btree_delete_at(trans, iter, 0); ++ goto out; ++ } ++ ++ ret = hash_check_key(trans, bch2_dirent_hash_desc, hash_info, iter, k); ++ if (ret < 0) ++ goto err; ++ if (ret) { ++ /* dirent has been deleted */ ++ ret = 0; ++ goto out; ++ } ++ ++ if (k.k->type != KEY_TYPE_dirent) ++ goto out; ++ ++ d = bkey_s_c_to_dirent(k); ++ ++ if (d.v->d_type == DT_SUBVOL) { ++ struct bch_inode_unpacked subvol_root; ++ u32 target_subvol = le32_to_cpu(d.v->d_child_subvol); ++ u32 target_snapshot; ++ u64 target_inum; ++ ++ ret = __subvol_lookup(trans, target_subvol, ++ &target_snapshot, &target_inum); ++ if (ret && !bch2_err_matches(ret, ENOENT)) ++ goto err; ++ ++ if (fsck_err_on(ret, c, ++ "dirent points to missing subvolume %u", ++ le32_to_cpu(d.v->d_child_subvol))) { ++ ret = __remove_dirent(trans, d.k->p); ++ goto err; ++ } ++ ++ ret = __lookup_inode(trans, target_inum, ++ &subvol_root, &target_snapshot); ++ if (ret && !bch2_err_matches(ret, ENOENT)) ++ goto err; ++ ++ if (fsck_err_on(ret, c, ++ "subvolume %u points to missing subvolume root %llu", ++ target_subvol, ++ target_inum)) { ++ bch_err(c, "repair not implemented yet"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ if (fsck_err_on(subvol_root.bi_subvol != target_subvol, c, ++ "subvol root %llu has wrong bi_subvol field: got %u, should be %u", ++ target_inum, ++ subvol_root.bi_subvol, target_subvol)) { ++ subvol_root.bi_subvol = target_subvol; ++ ret = __write_inode(trans, &subvol_root, target_snapshot); ++ if (ret) ++ goto err; ++ } ++ ++ ret = check_dirent_target(trans, iter, d, &subvol_root, ++ target_snapshot); ++ if (ret) ++ goto err; ++ } else { ++ ret = __get_visible_inodes(trans, target, s, le64_to_cpu(d.v->d_inum)); ++ if (ret) ++ goto err; ++ ++ if (fsck_err_on(!target->inodes.nr, c, ++ "dirent points to missing inode: (equiv %u)\n%s", ++ equiv.snapshot, ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, k), ++ buf.buf))) { ++ ret = __remove_dirent(trans, d.k->p); ++ if (ret) ++ goto err; ++ } ++ ++ darray_for_each(target->inodes, i) { ++ ret = check_dirent_target(trans, iter, d, ++ &i->inode, i->snapshot); ++ if (ret) ++ goto err; ++ } ++ } ++ ++ if (d.v->d_type == DT_DIR) ++ for_each_visible_inode(c, s, dir, equiv.snapshot, i) ++ i->count++; ++ ++out: ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* ++ * Walk dirents: verify that they all have a corresponding S_ISDIR inode, ++ * validate d_type ++ */ ++int bch2_check_dirents(struct bch_fs *c) ++{ ++ struct inode_walker dir = inode_walker_init(); ++ struct inode_walker target = inode_walker_init(); ++ struct snapshots_seen s; ++ struct bch_hash_info hash_info; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ snapshots_seen_init(&s); ++ ++ ret = for_each_btree_key_commit(trans, iter, BTREE_ID_dirents, ++ POS(BCACHEFS_ROOT_INO, 0), ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, ++ k, ++ NULL, NULL, ++ BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ check_dirent(trans, &iter, k, &hash_info, &dir, &target, &s)); ++ ++ bch2_trans_put(trans); ++ snapshots_seen_exit(&s); ++ inode_walker_exit(&dir); ++ inode_walker_exit(&target); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int check_xattr(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c k, ++ struct bch_hash_info *hash_info, ++ struct inode_walker *inode) ++{ ++ struct bch_fs *c = trans->c; ++ struct inode_walker_entry *i; ++ int ret; ++ ++ ret = check_key_has_snapshot(trans, iter, k); ++ if (ret) ++ return ret; ++ ++ i = walk_inode(trans, inode, k.k->p, k.k->type == KEY_TYPE_whiteout); ++ ret = PTR_ERR_OR_ZERO(i); ++ if (ret) ++ return ret; ++ ++ if (inode->first_this_inode && inode->inodes.nr) ++ *hash_info = bch2_hash_info_init(c, &inode->inodes.data[0].inode); ++ inode->first_this_inode = false; ++ ++ if (fsck_err_on(!i, c, ++ "xattr for missing inode %llu", ++ k.k->p.inode)) ++ return bch2_btree_delete_at(trans, iter, 0); ++ ++ if (!i) ++ return 0; ++ ++ ret = hash_check_key(trans, bch2_xattr_hash_desc, hash_info, iter, k); ++fsck_err: ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* ++ * Walk xattrs: verify that they all have a corresponding inode ++ */ ++int bch2_check_xattrs(struct bch_fs *c) ++{ ++ struct inode_walker inode = inode_walker_init(); ++ struct bch_hash_info hash_info; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, BTREE_ID_xattrs, ++ POS(BCACHEFS_ROOT_INO, 0), ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, ++ k, ++ NULL, NULL, ++ BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ check_xattr(trans, &iter, k, &hash_info, &inode))); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int check_root_trans(struct btree_trans *trans) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_inode_unpacked root_inode; ++ u32 snapshot; ++ u64 inum; ++ int ret; ++ ++ ret = __subvol_lookup(trans, BCACHEFS_ROOT_SUBVOL, &snapshot, &inum); ++ if (ret && !bch2_err_matches(ret, ENOENT)) ++ return ret; ++ ++ if (mustfix_fsck_err_on(ret, c, "root subvol missing")) { ++ struct bkey_i_subvolume root_subvol; ++ ++ snapshot = U32_MAX; ++ inum = BCACHEFS_ROOT_INO; ++ ++ bkey_subvolume_init(&root_subvol.k_i); ++ root_subvol.k.p.offset = BCACHEFS_ROOT_SUBVOL; ++ root_subvol.v.flags = 0; ++ root_subvol.v.snapshot = cpu_to_le32(snapshot); ++ root_subvol.v.inode = cpu_to_le64(inum); ++ ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ bch2_btree_insert_trans(trans, BTREE_ID_subvolumes, ++ &root_subvol.k_i, 0)); ++ bch_err_msg(c, ret, "writing root subvol"); ++ if (ret) ++ goto err; ++ ++ } ++ ++ ret = __lookup_inode(trans, BCACHEFS_ROOT_INO, &root_inode, &snapshot); ++ if (ret && !bch2_err_matches(ret, ENOENT)) ++ return ret; ++ ++ if (mustfix_fsck_err_on(ret, c, "root directory missing") || ++ mustfix_fsck_err_on(!S_ISDIR(root_inode.bi_mode), c, ++ "root inode not a directory")) { ++ bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, ++ 0, NULL); ++ root_inode.bi_inum = inum; ++ ++ ret = __write_inode(trans, &root_inode, snapshot); ++ bch_err_msg(c, ret, "writing root inode"); ++ } ++err: ++fsck_err: ++ return ret; ++} ++ ++/* Get root directory, create if it doesn't exist: */ ++int bch2_check_root(struct bch_fs *c) ++{ ++ int ret; ++ ++ ret = bch2_trans_do(c, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ check_root_trans(trans)); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++struct pathbuf_entry { ++ u64 inum; ++ u32 snapshot; ++}; ++ ++typedef DARRAY(struct pathbuf_entry) pathbuf; ++ ++static bool path_is_dup(pathbuf *p, u64 inum, u32 snapshot) ++{ ++ struct pathbuf_entry *i; ++ ++ darray_for_each(*p, i) ++ if (i->inum == inum && ++ i->snapshot == snapshot) ++ return true; ++ ++ return false; ++} ++ ++static int path_down(struct bch_fs *c, pathbuf *p, ++ u64 inum, u32 snapshot) ++{ ++ int ret = darray_push(p, ((struct pathbuf_entry) { ++ .inum = inum, ++ .snapshot = snapshot, ++ })); ++ ++ if (ret) ++ bch_err(c, "fsck: error allocating memory for pathbuf, size %zu", ++ p->size); ++ return ret; ++} ++ ++/* ++ * Check that a given inode is reachable from the root: ++ * ++ * XXX: we should also be verifying that inodes are in the right subvolumes ++ */ ++static int check_path(struct btree_trans *trans, ++ pathbuf *p, ++ struct bch_inode_unpacked *inode, ++ u32 snapshot) ++{ ++ struct bch_fs *c = trans->c; ++ int ret = 0; ++ ++ snapshot = bch2_snapshot_equiv(c, snapshot); ++ p->nr = 0; ++ ++ while (!(inode->bi_inum == BCACHEFS_ROOT_INO && ++ inode->bi_subvol == BCACHEFS_ROOT_SUBVOL)) { ++ struct btree_iter dirent_iter; ++ struct bkey_s_c_dirent d; ++ u32 parent_snapshot = snapshot; ++ ++ if (inode->bi_subvol) { ++ u64 inum; ++ ++ ret = subvol_lookup(trans, inode->bi_parent_subvol, ++ &parent_snapshot, &inum); ++ if (ret) ++ break; ++ } ++ ++ ret = lockrestart_do(trans, ++ PTR_ERR_OR_ZERO((d = dirent_get_by_pos(trans, &dirent_iter, ++ SPOS(inode->bi_dir, inode->bi_dir_offset, ++ parent_snapshot))).k)); ++ if (ret && !bch2_err_matches(ret, ENOENT)) ++ break; ++ ++ if (!ret && !dirent_points_to_inode(d, inode)) { ++ bch2_trans_iter_exit(trans, &dirent_iter); ++ ret = -BCH_ERR_ENOENT_dirent_doesnt_match_inode; ++ } ++ ++ if (bch2_err_matches(ret, ENOENT)) { ++ if (fsck_err(c, "unreachable inode %llu:%u, type %s nlink %u backptr %llu:%llu", ++ inode->bi_inum, snapshot, ++ bch2_d_type_str(inode_d_type(inode)), ++ inode->bi_nlink, ++ inode->bi_dir, ++ inode->bi_dir_offset)) ++ ret = reattach_inode(trans, inode, snapshot); ++ break; ++ } ++ ++ bch2_trans_iter_exit(trans, &dirent_iter); ++ ++ if (!S_ISDIR(inode->bi_mode)) ++ break; ++ ++ ret = path_down(c, p, inode->bi_inum, snapshot); ++ if (ret) { ++ bch_err(c, "memory allocation failure"); ++ return ret; ++ } ++ ++ snapshot = parent_snapshot; ++ ++ ret = lookup_inode(trans, inode->bi_dir, inode, &snapshot); ++ if (ret) { ++ /* Should have been caught in dirents pass */ ++ bch_err(c, "error looking up parent directory: %i", ret); ++ break; ++ } ++ ++ if (path_is_dup(p, inode->bi_inum, snapshot)) { ++ struct pathbuf_entry *i; ++ ++ /* XXX print path */ ++ bch_err(c, "directory structure loop"); ++ ++ darray_for_each(*p, i) ++ pr_err("%llu:%u", i->inum, i->snapshot); ++ pr_err("%llu:%u", inode->bi_inum, snapshot); ++ ++ if (!fsck_err(c, "directory structure loop")) ++ return 0; ++ ++ ret = commit_do(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL| ++ BTREE_INSERT_LAZY_RW, ++ remove_backpointer(trans, inode)); ++ if (ret) { ++ bch_err(c, "error removing dirent: %i", ret); ++ break; ++ } ++ ++ ret = reattach_inode(trans, inode, snapshot); ++ } ++ } ++fsck_err: ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* ++ * Check for unreachable inodes, as well as loops in the directory structure: ++ * After bch2_check_dirents(), if an inode backpointer doesn't exist that means it's ++ * unreachable: ++ */ ++int bch2_check_directory_structure(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_inode_unpacked u; ++ pathbuf path = { 0, }; ++ int ret; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_inodes, POS_MIN, ++ BTREE_ITER_INTENT| ++ BTREE_ITER_PREFETCH| ++ BTREE_ITER_ALL_SNAPSHOTS, k, ret) { ++ if (!bkey_is_inode(k.k)) ++ continue; ++ ++ ret = bch2_inode_unpack(k, &u); ++ if (ret) { ++ /* Should have been caught earlier in fsck: */ ++ bch_err(c, "error unpacking inode %llu: %i", k.k->p.offset, ret); ++ break; ++ } ++ ++ if (u.bi_flags & BCH_INODE_UNLINKED) ++ continue; ++ ++ ret = check_path(trans, &path, &u, iter.pos.snapshot); ++ if (ret) ++ break; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ darray_exit(&path); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++struct nlink_table { ++ size_t nr; ++ size_t size; ++ ++ struct nlink { ++ u64 inum; ++ u32 snapshot; ++ u32 count; ++ } *d; ++}; ++ ++static int add_nlink(struct bch_fs *c, struct nlink_table *t, ++ u64 inum, u32 snapshot) ++{ ++ if (t->nr == t->size) { ++ size_t new_size = max_t(size_t, 128UL, t->size * 2); ++ void *d = kvmalloc_array(new_size, sizeof(t->d[0]), GFP_KERNEL); ++ ++ if (!d) { ++ bch_err(c, "fsck: error allocating memory for nlink_table, size %zu", ++ new_size); ++ return -BCH_ERR_ENOMEM_fsck_add_nlink; ++ } ++ ++ if (t->d) ++ memcpy(d, t->d, t->size * sizeof(t->d[0])); ++ kvfree(t->d); ++ ++ t->d = d; ++ t->size = new_size; ++ } ++ ++ ++ t->d[t->nr++] = (struct nlink) { ++ .inum = inum, ++ .snapshot = snapshot, ++ }; ++ ++ return 0; ++} ++ ++static int nlink_cmp(const void *_l, const void *_r) ++{ ++ const struct nlink *l = _l; ++ const struct nlink *r = _r; ++ ++ return cmp_int(l->inum, r->inum) ?: cmp_int(l->snapshot, r->snapshot); ++} ++ ++static void inc_link(struct bch_fs *c, struct snapshots_seen *s, ++ struct nlink_table *links, ++ u64 range_start, u64 range_end, u64 inum, u32 snapshot) ++{ ++ struct nlink *link, key = { ++ .inum = inum, .snapshot = U32_MAX, ++ }; ++ ++ if (inum < range_start || inum >= range_end) ++ return; ++ ++ link = __inline_bsearch(&key, links->d, links->nr, ++ sizeof(links->d[0]), nlink_cmp); ++ if (!link) ++ return; ++ ++ while (link > links->d && link[0].inum == link[-1].inum) ++ --link; ++ ++ for (; link < links->d + links->nr && link->inum == inum; link++) ++ if (ref_visible(c, s, snapshot, link->snapshot)) { ++ link->count++; ++ if (link->snapshot >= snapshot) ++ break; ++ } ++} ++ ++noinline_for_stack ++static int check_nlinks_find_hardlinks(struct bch_fs *c, ++ struct nlink_table *t, ++ u64 start, u64 *end) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_inode_unpacked u; ++ int ret = 0; ++ ++ for_each_btree_key(trans, iter, BTREE_ID_inodes, ++ POS(0, start), ++ BTREE_ITER_INTENT| ++ BTREE_ITER_PREFETCH| ++ BTREE_ITER_ALL_SNAPSHOTS, k, ret) { ++ if (!bkey_is_inode(k.k)) ++ continue; ++ ++ /* Should never fail, checked by bch2_inode_invalid: */ ++ BUG_ON(bch2_inode_unpack(k, &u)); ++ ++ /* ++ * Backpointer and directory structure checks are sufficient for ++ * directories, since they can't have hardlinks: ++ */ ++ if (S_ISDIR(u.bi_mode)) ++ continue; ++ ++ if (!u.bi_nlink) ++ continue; ++ ++ ret = add_nlink(c, t, k.k->p.offset, k.k->p.snapshot); ++ if (ret) { ++ *end = k.k->p.offset; ++ ret = 0; ++ break; ++ } ++ ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ ++ if (ret) ++ bch_err(c, "error in fsck: btree error %i while walking inodes", ret); ++ ++ return ret; ++} ++ ++noinline_for_stack ++static int check_nlinks_walk_dirents(struct bch_fs *c, struct nlink_table *links, ++ u64 range_start, u64 range_end) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct snapshots_seen s; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_dirent d; ++ int ret; ++ ++ snapshots_seen_init(&s); ++ ++ for_each_btree_key(trans, iter, BTREE_ID_dirents, POS_MIN, ++ BTREE_ITER_INTENT| ++ BTREE_ITER_PREFETCH| ++ BTREE_ITER_ALL_SNAPSHOTS, k, ret) { ++ ret = snapshots_seen_update(c, &s, iter.btree_id, k.k->p); ++ if (ret) ++ break; ++ ++ switch (k.k->type) { ++ case KEY_TYPE_dirent: ++ d = bkey_s_c_to_dirent(k); ++ ++ if (d.v->d_type != DT_DIR && ++ d.v->d_type != DT_SUBVOL) ++ inc_link(c, &s, links, range_start, range_end, ++ le64_to_cpu(d.v->d_inum), ++ bch2_snapshot_equiv(c, d.k->p.snapshot)); ++ break; ++ } ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) ++ bch_err(c, "error in fsck: btree error %i while walking dirents", ret); ++ ++ bch2_trans_put(trans); ++ snapshots_seen_exit(&s); ++ return ret; ++} ++ ++static int check_nlinks_update_inode(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c k, ++ struct nlink_table *links, ++ size_t *idx, u64 range_end) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_inode_unpacked u; ++ struct nlink *link = &links->d[*idx]; ++ int ret = 0; ++ ++ if (k.k->p.offset >= range_end) ++ return 1; ++ ++ if (!bkey_is_inode(k.k)) ++ return 0; ++ ++ BUG_ON(bch2_inode_unpack(k, &u)); ++ ++ if (S_ISDIR(u.bi_mode)) ++ return 0; ++ ++ if (!u.bi_nlink) ++ return 0; ++ ++ while ((cmp_int(link->inum, k.k->p.offset) ?: ++ cmp_int(link->snapshot, k.k->p.snapshot)) < 0) { ++ BUG_ON(*idx == links->nr); ++ link = &links->d[++*idx]; ++ } ++ ++ if (fsck_err_on(bch2_inode_nlink_get(&u) != link->count, c, ++ "inode %llu type %s has wrong i_nlink (%u, should be %u)", ++ u.bi_inum, bch2_d_types[mode_to_type(u.bi_mode)], ++ bch2_inode_nlink_get(&u), link->count)) { ++ bch2_inode_nlink_set(&u, link->count); ++ ret = __write_inode(trans, &u, k.k->p.snapshot); ++ } ++fsck_err: ++ return ret; ++} ++ ++noinline_for_stack ++static int check_nlinks_update_hardlinks(struct bch_fs *c, ++ struct nlink_table *links, ++ u64 range_start, u64 range_end) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ size_t idx = 0; ++ int ret = 0; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, BTREE_ID_inodes, ++ POS(0, range_start), ++ BTREE_ITER_INTENT|BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ++ NULL, NULL, BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ check_nlinks_update_inode(trans, &iter, k, links, &idx, range_end))); ++ if (ret < 0) { ++ bch_err(c, "error in fsck: btree error %i while walking inodes", ret); ++ return ret; ++ } ++ ++ return 0; ++} ++ ++int bch2_check_nlinks(struct bch_fs *c) ++{ ++ struct nlink_table links = { 0 }; ++ u64 this_iter_range_start, next_iter_range_start = 0; ++ int ret = 0; ++ ++ do { ++ this_iter_range_start = next_iter_range_start; ++ next_iter_range_start = U64_MAX; ++ ++ ret = check_nlinks_find_hardlinks(c, &links, ++ this_iter_range_start, ++ &next_iter_range_start); ++ ++ ret = check_nlinks_walk_dirents(c, &links, ++ this_iter_range_start, ++ next_iter_range_start); ++ if (ret) ++ break; ++ ++ ret = check_nlinks_update_hardlinks(c, &links, ++ this_iter_range_start, ++ next_iter_range_start); ++ if (ret) ++ break; ++ ++ links.nr = 0; ++ } while (next_iter_range_start != U64_MAX); ++ ++ kvfree(links.d); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int fix_reflink_p_key(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_reflink_p p; ++ struct bkey_i_reflink_p *u; ++ int ret; ++ ++ if (k.k->type != KEY_TYPE_reflink_p) ++ return 0; ++ ++ p = bkey_s_c_to_reflink_p(k); ++ ++ if (!p.v->front_pad && !p.v->back_pad) ++ return 0; ++ ++ u = bch2_trans_kmalloc(trans, sizeof(*u)); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ return ret; ++ ++ bkey_reassemble(&u->k_i, k); ++ u->v.front_pad = 0; ++ u->v.back_pad = 0; ++ ++ return bch2_trans_update(trans, iter, &u->k_i, BTREE_TRIGGER_NORUN); ++} ++ ++int bch2_fix_reflink_p(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ if (c->sb.version >= bcachefs_metadata_version_reflink_p_fix) ++ return 0; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, ++ BTREE_ID_extents, POS_MIN, ++ BTREE_ITER_INTENT|BTREE_ITER_PREFETCH| ++ BTREE_ITER_ALL_SNAPSHOTS, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, ++ fix_reflink_p_key(trans, &iter, k))); ++ bch_err_fn(c, ret); ++ return ret; ++} +diff --git a/fs/bcachefs/fsck.h b/fs/bcachefs/fsck.h +new file mode 100644 +index 000000000000..90c87b5089a0 +--- /dev/null ++++ b/fs/bcachefs/fsck.h +@@ -0,0 +1,14 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_FSCK_H ++#define _BCACHEFS_FSCK_H ++ ++int bch2_check_inodes(struct bch_fs *); ++int bch2_check_extents(struct bch_fs *); ++int bch2_check_dirents(struct bch_fs *); ++int bch2_check_xattrs(struct bch_fs *); ++int bch2_check_root(struct bch_fs *); ++int bch2_check_directory_structure(struct bch_fs *); ++int bch2_check_nlinks(struct bch_fs *); ++int bch2_fix_reflink_p(struct bch_fs *); ++ ++#endif /* _BCACHEFS_FSCK_H */ +diff --git a/fs/bcachefs/inode.c b/fs/bcachefs/inode.c +new file mode 100644 +index 000000000000..bb3f443d8381 +--- /dev/null ++++ b/fs/bcachefs/inode.c +@@ -0,0 +1,1133 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_key_cache.h" ++#include "btree_write_buffer.h" ++#include "bkey_methods.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "error.h" ++#include "extents.h" ++#include "extent_update.h" ++#include "inode.h" ++#include "str_hash.h" ++#include "snapshot.h" ++#include "subvolume.h" ++#include "varint.h" ++ ++#include ++ ++#include ++ ++const char * const bch2_inode_opts[] = { ++#define x(name, ...) #name, ++ BCH_INODE_OPTS() ++#undef x ++ NULL, ++}; ++ ++static const u8 byte_table[8] = { 1, 2, 3, 4, 6, 8, 10, 13 }; ++ ++static int inode_decode_field(const u8 *in, const u8 *end, ++ u64 out[2], unsigned *out_bits) ++{ ++ __be64 be[2] = { 0, 0 }; ++ unsigned bytes, shift; ++ u8 *p; ++ ++ if (in >= end) ++ return -1; ++ ++ if (!*in) ++ return -1; ++ ++ /* ++ * position of highest set bit indicates number of bytes: ++ * shift = number of bits to remove in high byte: ++ */ ++ shift = 8 - __fls(*in); /* 1 <= shift <= 8 */ ++ bytes = byte_table[shift - 1]; ++ ++ if (in + bytes > end) ++ return -1; ++ ++ p = (u8 *) be + 16 - bytes; ++ memcpy(p, in, bytes); ++ *p ^= (1 << 8) >> shift; ++ ++ out[0] = be64_to_cpu(be[0]); ++ out[1] = be64_to_cpu(be[1]); ++ *out_bits = out[0] ? 64 + fls64(out[0]) : fls64(out[1]); ++ ++ return bytes; ++} ++ ++static inline void bch2_inode_pack_inlined(struct bkey_inode_buf *packed, ++ const struct bch_inode_unpacked *inode) ++{ ++ struct bkey_i_inode_v3 *k = &packed->inode; ++ u8 *out = k->v.fields; ++ u8 *end = (void *) &packed[1]; ++ u8 *last_nonzero_field = out; ++ unsigned nr_fields = 0, last_nonzero_fieldnr = 0; ++ unsigned bytes; ++ int ret; ++ ++ bkey_inode_v3_init(&packed->inode.k_i); ++ packed->inode.k.p.offset = inode->bi_inum; ++ packed->inode.v.bi_journal_seq = cpu_to_le64(inode->bi_journal_seq); ++ packed->inode.v.bi_hash_seed = inode->bi_hash_seed; ++ packed->inode.v.bi_flags = cpu_to_le64(inode->bi_flags); ++ packed->inode.v.bi_sectors = cpu_to_le64(inode->bi_sectors); ++ packed->inode.v.bi_size = cpu_to_le64(inode->bi_size); ++ packed->inode.v.bi_version = cpu_to_le64(inode->bi_version); ++ SET_INODEv3_MODE(&packed->inode.v, inode->bi_mode); ++ SET_INODEv3_FIELDS_START(&packed->inode.v, INODEv3_FIELDS_START_CUR); ++ ++ ++#define x(_name, _bits) \ ++ nr_fields++; \ ++ \ ++ if (inode->_name) { \ ++ ret = bch2_varint_encode_fast(out, inode->_name); \ ++ out += ret; \ ++ \ ++ if (_bits > 64) \ ++ *out++ = 0; \ ++ \ ++ last_nonzero_field = out; \ ++ last_nonzero_fieldnr = nr_fields; \ ++ } else { \ ++ *out++ = 0; \ ++ \ ++ if (_bits > 64) \ ++ *out++ = 0; \ ++ } ++ ++ BCH_INODE_FIELDS_v3() ++#undef x ++ BUG_ON(out > end); ++ ++ out = last_nonzero_field; ++ nr_fields = last_nonzero_fieldnr; ++ ++ bytes = out - (u8 *) &packed->inode.v; ++ set_bkey_val_bytes(&packed->inode.k, bytes); ++ memset_u64s_tail(&packed->inode.v, 0, bytes); ++ ++ SET_INODEv3_NR_FIELDS(&k->v, nr_fields); ++ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG)) { ++ struct bch_inode_unpacked unpacked; ++ ++ ret = bch2_inode_unpack(bkey_i_to_s_c(&packed->inode.k_i), &unpacked); ++ BUG_ON(ret); ++ BUG_ON(unpacked.bi_inum != inode->bi_inum); ++ BUG_ON(unpacked.bi_hash_seed != inode->bi_hash_seed); ++ BUG_ON(unpacked.bi_sectors != inode->bi_sectors); ++ BUG_ON(unpacked.bi_size != inode->bi_size); ++ BUG_ON(unpacked.bi_version != inode->bi_version); ++ BUG_ON(unpacked.bi_mode != inode->bi_mode); ++ ++#define x(_name, _bits) if (unpacked._name != inode->_name) \ ++ panic("unpacked %llu should be %llu", \ ++ (u64) unpacked._name, (u64) inode->_name); ++ BCH_INODE_FIELDS_v3() ++#undef x ++ } ++} ++ ++void bch2_inode_pack(struct bkey_inode_buf *packed, ++ const struct bch_inode_unpacked *inode) ++{ ++ bch2_inode_pack_inlined(packed, inode); ++} ++ ++static noinline int bch2_inode_unpack_v1(struct bkey_s_c_inode inode, ++ struct bch_inode_unpacked *unpacked) ++{ ++ const u8 *in = inode.v->fields; ++ const u8 *end = bkey_val_end(inode); ++ u64 field[2]; ++ unsigned fieldnr = 0, field_bits; ++ int ret; ++ ++#define x(_name, _bits) \ ++ if (fieldnr++ == INODE_NR_FIELDS(inode.v)) { \ ++ unsigned offset = offsetof(struct bch_inode_unpacked, _name);\ ++ memset((void *) unpacked + offset, 0, \ ++ sizeof(*unpacked) - offset); \ ++ return 0; \ ++ } \ ++ \ ++ ret = inode_decode_field(in, end, field, &field_bits); \ ++ if (ret < 0) \ ++ return ret; \ ++ \ ++ if (field_bits > sizeof(unpacked->_name) * 8) \ ++ return -1; \ ++ \ ++ unpacked->_name = field[1]; \ ++ in += ret; ++ ++ BCH_INODE_FIELDS_v2() ++#undef x ++ ++ /* XXX: signal if there were more fields than expected? */ ++ return 0; ++} ++ ++static int bch2_inode_unpack_v2(struct bch_inode_unpacked *unpacked, ++ const u8 *in, const u8 *end, ++ unsigned nr_fields) ++{ ++ unsigned fieldnr = 0; ++ int ret; ++ u64 v[2]; ++ ++#define x(_name, _bits) \ ++ if (fieldnr < nr_fields) { \ ++ ret = bch2_varint_decode_fast(in, end, &v[0]); \ ++ if (ret < 0) \ ++ return ret; \ ++ in += ret; \ ++ \ ++ if (_bits > 64) { \ ++ ret = bch2_varint_decode_fast(in, end, &v[1]); \ ++ if (ret < 0) \ ++ return ret; \ ++ in += ret; \ ++ } else { \ ++ v[1] = 0; \ ++ } \ ++ } else { \ ++ v[0] = v[1] = 0; \ ++ } \ ++ \ ++ unpacked->_name = v[0]; \ ++ if (v[1] || v[0] != unpacked->_name) \ ++ return -1; \ ++ fieldnr++; ++ ++ BCH_INODE_FIELDS_v2() ++#undef x ++ ++ /* XXX: signal if there were more fields than expected? */ ++ return 0; ++} ++ ++static int bch2_inode_unpack_v3(struct bkey_s_c k, ++ struct bch_inode_unpacked *unpacked) ++{ ++ struct bkey_s_c_inode_v3 inode = bkey_s_c_to_inode_v3(k); ++ const u8 *in = inode.v->fields; ++ const u8 *end = bkey_val_end(inode); ++ unsigned nr_fields = INODEv3_NR_FIELDS(inode.v); ++ unsigned fieldnr = 0; ++ int ret; ++ u64 v[2]; ++ ++ unpacked->bi_inum = inode.k->p.offset; ++ unpacked->bi_journal_seq= le64_to_cpu(inode.v->bi_journal_seq); ++ unpacked->bi_hash_seed = inode.v->bi_hash_seed; ++ unpacked->bi_flags = le64_to_cpu(inode.v->bi_flags); ++ unpacked->bi_sectors = le64_to_cpu(inode.v->bi_sectors); ++ unpacked->bi_size = le64_to_cpu(inode.v->bi_size); ++ unpacked->bi_version = le64_to_cpu(inode.v->bi_version); ++ unpacked->bi_mode = INODEv3_MODE(inode.v); ++ ++#define x(_name, _bits) \ ++ if (fieldnr < nr_fields) { \ ++ ret = bch2_varint_decode_fast(in, end, &v[0]); \ ++ if (ret < 0) \ ++ return ret; \ ++ in += ret; \ ++ \ ++ if (_bits > 64) { \ ++ ret = bch2_varint_decode_fast(in, end, &v[1]); \ ++ if (ret < 0) \ ++ return ret; \ ++ in += ret; \ ++ } else { \ ++ v[1] = 0; \ ++ } \ ++ } else { \ ++ v[0] = v[1] = 0; \ ++ } \ ++ \ ++ unpacked->_name = v[0]; \ ++ if (v[1] || v[0] != unpacked->_name) \ ++ return -1; \ ++ fieldnr++; ++ ++ BCH_INODE_FIELDS_v3() ++#undef x ++ ++ /* XXX: signal if there were more fields than expected? */ ++ return 0; ++} ++ ++static noinline int bch2_inode_unpack_slowpath(struct bkey_s_c k, ++ struct bch_inode_unpacked *unpacked) ++{ ++ memset(unpacked, 0, sizeof(*unpacked)); ++ ++ switch (k.k->type) { ++ case KEY_TYPE_inode: { ++ struct bkey_s_c_inode inode = bkey_s_c_to_inode(k); ++ ++ unpacked->bi_inum = inode.k->p.offset; ++ unpacked->bi_journal_seq= 0; ++ unpacked->bi_hash_seed = inode.v->bi_hash_seed; ++ unpacked->bi_flags = le32_to_cpu(inode.v->bi_flags); ++ unpacked->bi_mode = le16_to_cpu(inode.v->bi_mode); ++ ++ if (INODE_NEW_VARINT(inode.v)) { ++ return bch2_inode_unpack_v2(unpacked, inode.v->fields, ++ bkey_val_end(inode), ++ INODE_NR_FIELDS(inode.v)); ++ } else { ++ return bch2_inode_unpack_v1(inode, unpacked); ++ } ++ break; ++ } ++ case KEY_TYPE_inode_v2: { ++ struct bkey_s_c_inode_v2 inode = bkey_s_c_to_inode_v2(k); ++ ++ unpacked->bi_inum = inode.k->p.offset; ++ unpacked->bi_journal_seq= le64_to_cpu(inode.v->bi_journal_seq); ++ unpacked->bi_hash_seed = inode.v->bi_hash_seed; ++ unpacked->bi_flags = le64_to_cpu(inode.v->bi_flags); ++ unpacked->bi_mode = le16_to_cpu(inode.v->bi_mode); ++ ++ return bch2_inode_unpack_v2(unpacked, inode.v->fields, ++ bkey_val_end(inode), ++ INODEv2_NR_FIELDS(inode.v)); ++ } ++ default: ++ BUG(); ++ } ++} ++ ++int bch2_inode_unpack(struct bkey_s_c k, ++ struct bch_inode_unpacked *unpacked) ++{ ++ if (likely(k.k->type == KEY_TYPE_inode_v3)) ++ return bch2_inode_unpack_v3(k, unpacked); ++ return bch2_inode_unpack_slowpath(k, unpacked); ++} ++ ++static int bch2_inode_peek_nowarn(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bch_inode_unpacked *inode, ++ subvol_inum inum, unsigned flags) ++{ ++ struct bkey_s_c k; ++ u32 snapshot; ++ int ret; ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ return ret; ++ ++ k = bch2_bkey_get_iter(trans, iter, BTREE_ID_inodes, ++ SPOS(0, inum.inum, snapshot), ++ flags|BTREE_ITER_CACHED); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ ++ ret = bkey_is_inode(k.k) ? 0 : -BCH_ERR_ENOENT_inode; ++ if (ret) ++ goto err; ++ ++ ret = bch2_inode_unpack(k, inode); ++ if (ret) ++ goto err; ++ ++ return 0; ++err: ++ bch2_trans_iter_exit(trans, iter); ++ return ret; ++} ++ ++int bch2_inode_peek(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bch_inode_unpacked *inode, ++ subvol_inum inum, unsigned flags) ++{ ++ int ret = bch2_inode_peek_nowarn(trans, iter, inode, inum, flags); ++ bch_err_msg(trans->c, ret, "looking up inum %u:%llu:", inum.subvol, inum.inum); ++ return ret; ++} ++ ++int bch2_inode_write(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bch_inode_unpacked *inode) ++{ ++ struct bkey_inode_buf *inode_p; ++ ++ inode_p = bch2_trans_kmalloc(trans, sizeof(*inode_p)); ++ if (IS_ERR(inode_p)) ++ return PTR_ERR(inode_p); ++ ++ bch2_inode_pack_inlined(inode_p, inode); ++ inode_p->inode.k.p.snapshot = iter->snapshot; ++ return bch2_trans_update(trans, iter, &inode_p->inode.k_i, 0); ++} ++ ++struct bkey_i *bch2_inode_to_v3(struct btree_trans *trans, struct bkey_i *k) ++{ ++ struct bch_inode_unpacked u; ++ struct bkey_inode_buf *inode_p; ++ int ret; ++ ++ if (!bkey_is_inode(&k->k)) ++ return ERR_PTR(-ENOENT); ++ ++ inode_p = bch2_trans_kmalloc(trans, sizeof(*inode_p)); ++ if (IS_ERR(inode_p)) ++ return ERR_CAST(inode_p); ++ ++ ret = bch2_inode_unpack(bkey_i_to_s_c(k), &u); ++ if (ret) ++ return ERR_PTR(ret); ++ ++ bch2_inode_pack(inode_p, &u); ++ return &inode_p->inode.k_i; ++} ++ ++static int __bch2_inode_invalid(struct bkey_s_c k, struct printbuf *err) ++{ ++ struct bch_inode_unpacked unpacked; ++ ++ if (k.k->p.inode) { ++ prt_printf(err, "nonzero k.p.inode"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (k.k->p.offset < BLOCKDEV_INODE_MAX) { ++ prt_printf(err, "fs inode in blockdev range"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (bch2_inode_unpack(k, &unpacked)) { ++ prt_printf(err, "invalid variable length fields"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (unpacked.bi_data_checksum >= BCH_CSUM_OPT_NR + 1) { ++ prt_printf(err, "invalid data checksum type (%u >= %u", ++ unpacked.bi_data_checksum, BCH_CSUM_OPT_NR + 1); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (unpacked.bi_compression >= BCH_COMPRESSION_OPT_NR + 1) { ++ prt_printf(err, "invalid data checksum type (%u >= %u)", ++ unpacked.bi_compression, BCH_COMPRESSION_OPT_NR + 1); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if ((unpacked.bi_flags & BCH_INODE_UNLINKED) && ++ unpacked.bi_nlink != 0) { ++ prt_printf(err, "flagged as unlinked but bi_nlink != 0"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (unpacked.bi_subvol && !S_ISDIR(unpacked.bi_mode)) { ++ prt_printf(err, "subvolume root but not a directory"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++int bch2_inode_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_inode inode = bkey_s_c_to_inode(k); ++ ++ if (INODE_STR_HASH(inode.v) >= BCH_STR_HASH_NR) { ++ prt_printf(err, "invalid str hash type (%llu >= %u)", ++ INODE_STR_HASH(inode.v), BCH_STR_HASH_NR); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return __bch2_inode_invalid(k, err); ++} ++ ++int bch2_inode_v2_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_inode_v2 inode = bkey_s_c_to_inode_v2(k); ++ ++ if (INODEv2_STR_HASH(inode.v) >= BCH_STR_HASH_NR) { ++ prt_printf(err, "invalid str hash type (%llu >= %u)", ++ INODEv2_STR_HASH(inode.v), BCH_STR_HASH_NR); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return __bch2_inode_invalid(k, err); ++} ++ ++int bch2_inode_v3_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_inode_v3 inode = bkey_s_c_to_inode_v3(k); ++ ++ if (INODEv3_FIELDS_START(inode.v) < INODEv3_FIELDS_START_INITIAL || ++ INODEv3_FIELDS_START(inode.v) > bkey_val_u64s(inode.k)) { ++ prt_printf(err, "invalid fields_start (got %llu, min %u max %zu)", ++ INODEv3_FIELDS_START(inode.v), ++ INODEv3_FIELDS_START_INITIAL, ++ bkey_val_u64s(inode.k)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (INODEv3_STR_HASH(inode.v) >= BCH_STR_HASH_NR) { ++ prt_printf(err, "invalid str hash type (%llu >= %u)", ++ INODEv3_STR_HASH(inode.v), BCH_STR_HASH_NR); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return __bch2_inode_invalid(k, err); ++} ++ ++static void __bch2_inode_unpacked_to_text(struct printbuf *out, ++ struct bch_inode_unpacked *inode) ++{ ++ prt_printf(out, "mode %o flags %x journal_seq %llu bi_size %llu bi_sectors %llu bi_version %llu", ++ inode->bi_mode, inode->bi_flags, ++ inode->bi_journal_seq, ++ inode->bi_size, ++ inode->bi_sectors, ++ inode->bi_version); ++ ++#define x(_name, _bits) \ ++ prt_printf(out, " "#_name " %llu", (u64) inode->_name); ++ BCH_INODE_FIELDS_v3() ++#undef x ++} ++ ++void bch2_inode_unpacked_to_text(struct printbuf *out, struct bch_inode_unpacked *inode) ++{ ++ prt_printf(out, "inum: %llu ", inode->bi_inum); ++ __bch2_inode_unpacked_to_text(out, inode); ++} ++ ++void bch2_inode_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bch_inode_unpacked inode; ++ ++ if (bch2_inode_unpack(k, &inode)) { ++ prt_printf(out, "(unpack error)"); ++ return; ++ } ++ ++ __bch2_inode_unpacked_to_text(out, &inode); ++} ++ ++static inline u64 bkey_inode_flags(struct bkey_s_c k) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_inode: ++ return le32_to_cpu(bkey_s_c_to_inode(k).v->bi_flags); ++ case KEY_TYPE_inode_v2: ++ return le64_to_cpu(bkey_s_c_to_inode_v2(k).v->bi_flags); ++ case KEY_TYPE_inode_v3: ++ return le64_to_cpu(bkey_s_c_to_inode_v3(k).v->bi_flags); ++ default: ++ return 0; ++ } ++} ++ ++static inline bool bkey_is_deleted_inode(struct bkey_s_c k) ++{ ++ return bkey_inode_flags(k) & BCH_INODE_UNLINKED; ++} ++ ++int bch2_trans_mark_inode(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, ++ struct bkey_i *new, ++ unsigned flags) ++{ ++ int nr = bkey_is_inode(&new->k) - bkey_is_inode(old.k); ++ bool old_deleted = bkey_is_deleted_inode(old); ++ bool new_deleted = bkey_is_deleted_inode(bkey_i_to_s_c(new)); ++ ++ if (nr) { ++ int ret = bch2_replicas_deltas_realloc(trans, 0); ++ struct replicas_delta_list *d = trans->fs_usage_deltas; ++ ++ if (ret) ++ return ret; ++ ++ d->nr_inodes += nr; ++ } ++ ++ if (old_deleted != new_deleted) { ++ int ret = bch2_btree_bit_mod(trans, BTREE_ID_deleted_inodes, new->k.p, new_deleted); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++int bch2_mark_inode(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_fs_usage *fs_usage; ++ u64 journal_seq = trans->journal_res.seq; ++ ++ if (flags & BTREE_TRIGGER_INSERT) { ++ struct bch_inode_v3 *v = (struct bch_inode_v3 *) new.v; ++ ++ BUG_ON(!journal_seq); ++ BUG_ON(new.k->type != KEY_TYPE_inode_v3); ++ ++ v->bi_journal_seq = cpu_to_le64(journal_seq); ++ } ++ ++ if (flags & BTREE_TRIGGER_GC) { ++ percpu_down_read(&c->mark_lock); ++ preempt_disable(); ++ ++ fs_usage = fs_usage_ptr(c, journal_seq, flags & BTREE_TRIGGER_GC); ++ fs_usage->nr_inodes += bkey_is_inode(new.k); ++ fs_usage->nr_inodes -= bkey_is_inode(old.k); ++ ++ preempt_enable(); ++ percpu_up_read(&c->mark_lock); ++ } ++ return 0; ++} ++ ++int bch2_inode_generation_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ if (k.k->p.inode) { ++ prt_printf(err, "nonzero k.p.inode"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_inode_generation_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_inode_generation gen = bkey_s_c_to_inode_generation(k); ++ ++ prt_printf(out, "generation: %u", le32_to_cpu(gen.v->bi_generation)); ++} ++ ++void bch2_inode_init_early(struct bch_fs *c, ++ struct bch_inode_unpacked *inode_u) ++{ ++ enum bch_str_hash_type str_hash = ++ bch2_str_hash_opt_to_type(c, c->opts.str_hash); ++ ++ memset(inode_u, 0, sizeof(*inode_u)); ++ ++ /* ick */ ++ inode_u->bi_flags |= str_hash << INODE_STR_HASH_OFFSET; ++ get_random_bytes(&inode_u->bi_hash_seed, ++ sizeof(inode_u->bi_hash_seed)); ++} ++ ++void bch2_inode_init_late(struct bch_inode_unpacked *inode_u, u64 now, ++ uid_t uid, gid_t gid, umode_t mode, dev_t rdev, ++ struct bch_inode_unpacked *parent) ++{ ++ inode_u->bi_mode = mode; ++ inode_u->bi_uid = uid; ++ inode_u->bi_gid = gid; ++ inode_u->bi_dev = rdev; ++ inode_u->bi_atime = now; ++ inode_u->bi_mtime = now; ++ inode_u->bi_ctime = now; ++ inode_u->bi_otime = now; ++ ++ if (parent && parent->bi_mode & S_ISGID) { ++ inode_u->bi_gid = parent->bi_gid; ++ if (S_ISDIR(mode)) ++ inode_u->bi_mode |= S_ISGID; ++ } ++ ++ if (parent) { ++#define x(_name, ...) inode_u->bi_##_name = parent->bi_##_name; ++ BCH_INODE_OPTS() ++#undef x ++ } ++} ++ ++void bch2_inode_init(struct bch_fs *c, struct bch_inode_unpacked *inode_u, ++ uid_t uid, gid_t gid, umode_t mode, dev_t rdev, ++ struct bch_inode_unpacked *parent) ++{ ++ bch2_inode_init_early(c, inode_u); ++ bch2_inode_init_late(inode_u, bch2_current_time(c), ++ uid, gid, mode, rdev, parent); ++} ++ ++static inline u32 bkey_generation(struct bkey_s_c k) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_inode: ++ case KEY_TYPE_inode_v2: ++ BUG(); ++ case KEY_TYPE_inode_generation: ++ return le32_to_cpu(bkey_s_c_to_inode_generation(k).v->bi_generation); ++ default: ++ return 0; ++ } ++} ++ ++/* ++ * This just finds an empty slot: ++ */ ++int bch2_inode_create(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bch_inode_unpacked *inode_u, ++ u32 snapshot, u64 cpu) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c k; ++ u64 min, max, start, pos, *hint; ++ int ret = 0; ++ unsigned bits = (c->opts.inodes_32bit ? 31 : 63); ++ ++ if (c->opts.shard_inode_numbers) { ++ bits -= c->inode_shard_bits; ++ ++ min = (cpu << bits); ++ max = (cpu << bits) | ~(ULLONG_MAX << bits); ++ ++ min = max_t(u64, min, BLOCKDEV_INODE_MAX); ++ hint = c->unused_inode_hints + cpu; ++ } else { ++ min = BLOCKDEV_INODE_MAX; ++ max = ~(ULLONG_MAX << bits); ++ hint = c->unused_inode_hints; ++ } ++ ++ start = READ_ONCE(*hint); ++ ++ if (start >= max || start < min) ++ start = min; ++ ++ pos = start; ++ bch2_trans_iter_init(trans, iter, BTREE_ID_inodes, POS(0, pos), ++ BTREE_ITER_ALL_SNAPSHOTS| ++ BTREE_ITER_INTENT); ++again: ++ while ((k = bch2_btree_iter_peek(iter)).k && ++ !(ret = bkey_err(k)) && ++ bkey_lt(k.k->p, POS(0, max))) { ++ if (pos < iter->pos.offset) ++ goto found_slot; ++ ++ /* ++ * We don't need to iterate over keys in every snapshot once ++ * we've found just one: ++ */ ++ pos = iter->pos.offset + 1; ++ bch2_btree_iter_set_pos(iter, POS(0, pos)); ++ } ++ ++ if (!ret && pos < max) ++ goto found_slot; ++ ++ if (!ret && start == min) ++ ret = -BCH_ERR_ENOSPC_inode_create; ++ ++ if (ret) { ++ bch2_trans_iter_exit(trans, iter); ++ return ret; ++ } ++ ++ /* Retry from start */ ++ pos = start = min; ++ bch2_btree_iter_set_pos(iter, POS(0, pos)); ++ goto again; ++found_slot: ++ bch2_btree_iter_set_pos(iter, SPOS(0, pos, snapshot)); ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) { ++ bch2_trans_iter_exit(trans, iter); ++ return ret; ++ } ++ ++ *hint = k.k->p.offset; ++ inode_u->bi_inum = k.k->p.offset; ++ inode_u->bi_generation = bkey_generation(k); ++ return 0; ++} ++ ++static int bch2_inode_delete_keys(struct btree_trans *trans, ++ subvol_inum inum, enum btree_id id) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_i delete; ++ struct bpos end = POS(inum.inum, U64_MAX); ++ u32 snapshot; ++ int ret = 0; ++ ++ /* ++ * We're never going to be deleting partial extents, no need to use an ++ * extent iterator: ++ */ ++ bch2_trans_iter_init(trans, &iter, id, POS(inum.inum, 0), ++ BTREE_ITER_INTENT); ++ ++ while (1) { ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ bch2_btree_iter_set_snapshot(&iter, snapshot); ++ ++ k = bch2_btree_iter_peek_upto(&iter, end); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (!k.k) ++ break; ++ ++ bkey_init(&delete.k); ++ delete.k.p = iter.pos; ++ ++ if (iter.flags & BTREE_ITER_IS_EXTENTS) ++ bch2_key_resize(&delete.k, ++ bpos_min(end, k.k->p).offset - ++ iter.pos.offset); ++ ++ ret = bch2_trans_update(trans, &iter, &delete, 0) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++err: ++ if (ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ break; ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_inode_rm(struct bch_fs *c, subvol_inum inum) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter = { NULL }; ++ struct bkey_i_inode_generation delete; ++ struct bch_inode_unpacked inode_u; ++ struct bkey_s_c k; ++ u32 snapshot; ++ int ret; ++ ++ /* ++ * If this was a directory, there shouldn't be any real dirents left - ++ * but there could be whiteouts (from hash collisions) that we should ++ * delete: ++ * ++ * XXX: the dirent could ideally would delete whiteouts when they're no ++ * longer needed ++ */ ++ ret = bch2_inode_delete_keys(trans, inum, BTREE_ID_extents) ?: ++ bch2_inode_delete_keys(trans, inum, BTREE_ID_xattrs) ?: ++ bch2_inode_delete_keys(trans, inum, BTREE_ID_dirents); ++ if (ret) ++ goto err; ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, ++ SPOS(0, inum.inum, snapshot), ++ BTREE_ITER_INTENT|BTREE_ITER_CACHED); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (!bkey_is_inode(k.k)) { ++ bch2_fs_inconsistent(c, ++ "inode %llu:%u not found when deleting", ++ inum.inum, snapshot); ++ ret = -EIO; ++ goto err; ++ } ++ ++ bch2_inode_unpack(k, &inode_u); ++ ++ bkey_inode_generation_init(&delete.k_i); ++ delete.k.p = iter.pos; ++ delete.v.bi_generation = cpu_to_le32(inode_u.bi_generation + 1); ++ ++ ret = bch2_trans_update(trans, &iter, &delete.k_i, 0) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++int bch2_inode_find_by_inum_nowarn_trans(struct btree_trans *trans, ++ subvol_inum inum, ++ struct bch_inode_unpacked *inode) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ ret = bch2_inode_peek_nowarn(trans, &iter, inode, inum, 0); ++ if (!ret) ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_inode_find_by_inum_trans(struct btree_trans *trans, ++ subvol_inum inum, ++ struct bch_inode_unpacked *inode) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ ret = bch2_inode_peek(trans, &iter, inode, inum, 0); ++ if (!ret) ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_inode_find_by_inum(struct bch_fs *c, subvol_inum inum, ++ struct bch_inode_unpacked *inode) ++{ ++ return bch2_trans_do(c, NULL, NULL, 0, ++ bch2_inode_find_by_inum_trans(trans, inum, inode)); ++} ++ ++int bch2_inode_nlink_inc(struct bch_inode_unpacked *bi) ++{ ++ if (bi->bi_flags & BCH_INODE_UNLINKED) ++ bi->bi_flags &= ~BCH_INODE_UNLINKED; ++ else { ++ if (bi->bi_nlink == U32_MAX) ++ return -EINVAL; ++ ++ bi->bi_nlink++; ++ } ++ ++ return 0; ++} ++ ++void bch2_inode_nlink_dec(struct btree_trans *trans, struct bch_inode_unpacked *bi) ++{ ++ if (bi->bi_nlink && (bi->bi_flags & BCH_INODE_UNLINKED)) { ++ bch2_trans_inconsistent(trans, "inode %llu unlinked but link count nonzero", ++ bi->bi_inum); ++ return; ++ } ++ ++ if (bi->bi_flags & BCH_INODE_UNLINKED) { ++ bch2_trans_inconsistent(trans, "inode %llu link count underflow", bi->bi_inum); ++ return; ++ } ++ ++ if (bi->bi_nlink) ++ bi->bi_nlink--; ++ else ++ bi->bi_flags |= BCH_INODE_UNLINKED; ++} ++ ++struct bch_opts bch2_inode_opts_to_opts(struct bch_inode_unpacked *inode) ++{ ++ struct bch_opts ret = { 0 }; ++#define x(_name, _bits) \ ++ if (inode->bi_##_name) \ ++ opt_set(ret, _name, inode->bi_##_name - 1); ++ BCH_INODE_OPTS() ++#undef x ++ return ret; ++} ++ ++void bch2_inode_opts_get(struct bch_io_opts *opts, struct bch_fs *c, ++ struct bch_inode_unpacked *inode) ++{ ++#define x(_name, _bits) opts->_name = inode_opt_get(c, inode, _name); ++ BCH_INODE_OPTS() ++#undef x ++ ++ if (opts->nocow) ++ opts->compression = opts->background_compression = opts->data_checksum = opts->erasure_code = 0; ++} ++ ++int bch2_inode_rm_snapshot(struct btree_trans *trans, u64 inum, u32 snapshot) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter = { NULL }; ++ struct bkey_i_inode_generation delete; ++ struct bch_inode_unpacked inode_u; ++ struct bkey_s_c k; ++ int ret; ++ ++ do { ++ ret = bch2_btree_delete_range_trans(trans, BTREE_ID_extents, ++ SPOS(inum, 0, snapshot), ++ SPOS(inum, U64_MAX, snapshot), ++ 0, NULL) ?: ++ bch2_btree_delete_range_trans(trans, BTREE_ID_dirents, ++ SPOS(inum, 0, snapshot), ++ SPOS(inum, U64_MAX, snapshot), ++ 0, NULL) ?: ++ bch2_btree_delete_range_trans(trans, BTREE_ID_xattrs, ++ SPOS(inum, 0, snapshot), ++ SPOS(inum, U64_MAX, snapshot), ++ 0, NULL); ++ } while (ret == -BCH_ERR_transaction_restart_nested); ++ if (ret) ++ goto err; ++retry: ++ bch2_trans_begin(trans); ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, ++ SPOS(0, inum, snapshot), BTREE_ITER_INTENT); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (!bkey_is_inode(k.k)) { ++ bch2_fs_inconsistent(c, ++ "inode %llu:%u not found when deleting", ++ inum, snapshot); ++ ret = -EIO; ++ goto err; ++ } ++ ++ bch2_inode_unpack(k, &inode_u); ++ ++ /* Subvolume root? */ ++ if (inode_u.bi_subvol) ++ bch_warn(c, "deleting inode %llu marked as unlinked, but also a subvolume root!?", inode_u.bi_inum); ++ ++ bkey_inode_generation_init(&delete.k_i); ++ delete.k.p = iter.pos; ++ delete.v.bi_generation = cpu_to_le32(inode_u.bi_generation + 1); ++ ++ ret = bch2_trans_update(trans, &iter, &delete.k_i, 0) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ return ret ?: -BCH_ERR_transaction_restart_nested; ++} ++ ++static int may_delete_deleted_inode(struct btree_trans *trans, struct bpos pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_inode_unpacked inode; ++ int ret; ++ ++ if (bch2_snapshot_is_internal_node(c, pos.snapshot)) ++ return 0; ++ ++ if (!fsck_err_on(c->sb.clean, c, ++ "filesystem marked as clean but have deleted inode %llu:%u", ++ pos.offset, pos.snapshot)) ++ return 0; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, pos, BTREE_ITER_CACHED); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ ++ ret = bkey_is_inode(k.k) ? 0 : -BCH_ERR_ENOENT_inode; ++ if (fsck_err_on(!bkey_is_inode(k.k), c, ++ "nonexistent inode %llu:%u in deleted_inodes btree", ++ pos.offset, pos.snapshot)) ++ goto delete; ++ ++ ret = bch2_inode_unpack(k, &inode); ++ if (ret) ++ goto err; ++ ++ if (fsck_err_on(S_ISDIR(inode.bi_mode), c, ++ "directory %llu:%u in deleted_inodes btree", ++ pos.offset, pos.snapshot)) ++ goto delete; ++ ++ if (fsck_err_on(!(inode.bi_flags & BCH_INODE_UNLINKED), c, ++ "non-deleted inode %llu:%u in deleted_inodes btree", ++ pos.offset, pos.snapshot)) ++ goto delete; ++ ++ return 1; ++err: ++fsck_err: ++ return ret; ++delete: ++ return bch2_btree_bit_mod(trans, BTREE_ID_deleted_inodes, pos, false); ++} ++ ++int bch2_delete_dead_inodes(struct bch_fs *c) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ ret = bch2_btree_write_buffer_flush_sync(trans); ++ if (ret) ++ goto err; ++ ++ /* ++ * Weird transaction restart handling here because on successful delete, ++ * bch2_inode_rm_snapshot() will return a nested transaction restart, ++ * but we can't retry because the btree write buffer won't have been ++ * flushed and we'd spin: ++ */ ++ for_each_btree_key(trans, iter, BTREE_ID_deleted_inodes, POS_MIN, ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ret) { ++ ret = lockrestart_do(trans, may_delete_deleted_inode(trans, k.k->p)); ++ if (ret < 0) ++ break; ++ ++ if (ret) { ++ if (!test_bit(BCH_FS_RW, &c->flags)) { ++ bch2_trans_unlock(trans); ++ bch2_fs_lazy_rw(c); ++ } ++ ++ ret = bch2_inode_rm_snapshot(trans, k.k->p.offset, k.k->p.snapshot); ++ if (ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ break; ++ } ++ } ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ bch2_trans_put(trans); ++ ++ return ret; ++} +diff --git a/fs/bcachefs/inode.h b/fs/bcachefs/inode.h +new file mode 100644 +index 000000000000..a7464e1b6960 +--- /dev/null ++++ b/fs/bcachefs/inode.h +@@ -0,0 +1,207 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_INODE_H ++#define _BCACHEFS_INODE_H ++ ++#include "bkey.h" ++#include "opts.h" ++ ++enum bkey_invalid_flags; ++extern const char * const bch2_inode_opts[]; ++ ++int bch2_inode_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++int bch2_inode_v2_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++int bch2_inode_v3_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_inode_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++int bch2_trans_mark_inode(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_i *, unsigned); ++int bch2_mark_inode(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_s_c, unsigned); ++ ++#define bch2_bkey_ops_inode ((struct bkey_ops) { \ ++ .key_invalid = bch2_inode_invalid, \ ++ .val_to_text = bch2_inode_to_text, \ ++ .trans_trigger = bch2_trans_mark_inode, \ ++ .atomic_trigger = bch2_mark_inode, \ ++ .min_val_size = 16, \ ++}) ++ ++#define bch2_bkey_ops_inode_v2 ((struct bkey_ops) { \ ++ .key_invalid = bch2_inode_v2_invalid, \ ++ .val_to_text = bch2_inode_to_text, \ ++ .trans_trigger = bch2_trans_mark_inode, \ ++ .atomic_trigger = bch2_mark_inode, \ ++ .min_val_size = 32, \ ++}) ++ ++#define bch2_bkey_ops_inode_v3 ((struct bkey_ops) { \ ++ .key_invalid = bch2_inode_v3_invalid, \ ++ .val_to_text = bch2_inode_to_text, \ ++ .trans_trigger = bch2_trans_mark_inode, \ ++ .atomic_trigger = bch2_mark_inode, \ ++ .min_val_size = 48, \ ++}) ++ ++static inline bool bkey_is_inode(const struct bkey *k) ++{ ++ return k->type == KEY_TYPE_inode || ++ k->type == KEY_TYPE_inode_v2 || ++ k->type == KEY_TYPE_inode_v3; ++} ++ ++int bch2_inode_generation_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_inode_generation_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_inode_generation ((struct bkey_ops) { \ ++ .key_invalid = bch2_inode_generation_invalid, \ ++ .val_to_text = bch2_inode_generation_to_text, \ ++ .min_val_size = 8, \ ++}) ++ ++#if 0 ++typedef struct { ++ u64 lo; ++ u32 hi; ++} __packed __aligned(4) u96; ++#endif ++typedef u64 u96; ++ ++struct bch_inode_unpacked { ++ u64 bi_inum; ++ u64 bi_journal_seq; ++ __le64 bi_hash_seed; ++ u64 bi_size; ++ u64 bi_sectors; ++ u64 bi_version; ++ u32 bi_flags; ++ u16 bi_mode; ++ ++#define x(_name, _bits) u##_bits _name; ++ BCH_INODE_FIELDS_v3() ++#undef x ++}; ++ ++struct bkey_inode_buf { ++ struct bkey_i_inode_v3 inode; ++ ++#define x(_name, _bits) + 8 + _bits / 8 ++ u8 _pad[0 + BCH_INODE_FIELDS_v3()]; ++#undef x ++} __packed __aligned(8); ++ ++void bch2_inode_pack(struct bkey_inode_buf *, const struct bch_inode_unpacked *); ++int bch2_inode_unpack(struct bkey_s_c, struct bch_inode_unpacked *); ++struct bkey_i *bch2_inode_to_v3(struct btree_trans *, struct bkey_i *); ++ ++void bch2_inode_unpacked_to_text(struct printbuf *, struct bch_inode_unpacked *); ++ ++int bch2_inode_peek(struct btree_trans *, struct btree_iter *, ++ struct bch_inode_unpacked *, subvol_inum, unsigned); ++int bch2_inode_write(struct btree_trans *, struct btree_iter *, ++ struct bch_inode_unpacked *); ++ ++void bch2_inode_init_early(struct bch_fs *, ++ struct bch_inode_unpacked *); ++void bch2_inode_init_late(struct bch_inode_unpacked *, u64, ++ uid_t, gid_t, umode_t, dev_t, ++ struct bch_inode_unpacked *); ++void bch2_inode_init(struct bch_fs *, struct bch_inode_unpacked *, ++ uid_t, gid_t, umode_t, dev_t, ++ struct bch_inode_unpacked *); ++ ++int bch2_inode_create(struct btree_trans *, struct btree_iter *, ++ struct bch_inode_unpacked *, u32, u64); ++ ++int bch2_inode_rm(struct bch_fs *, subvol_inum); ++ ++int bch2_inode_find_by_inum_nowarn_trans(struct btree_trans *, ++ subvol_inum, ++ struct bch_inode_unpacked *); ++int bch2_inode_find_by_inum_trans(struct btree_trans *, subvol_inum, ++ struct bch_inode_unpacked *); ++int bch2_inode_find_by_inum(struct bch_fs *, subvol_inum, ++ struct bch_inode_unpacked *); ++ ++#define inode_opt_get(_c, _inode, _name) \ ++ ((_inode)->bi_##_name ? (_inode)->bi_##_name - 1 : (_c)->opts._name) ++ ++static inline void bch2_inode_opt_set(struct bch_inode_unpacked *inode, ++ enum inode_opt_id id, u64 v) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Inode_opt_##_name: \ ++ inode->bi_##_name = v; \ ++ break; ++ BCH_INODE_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++static inline u64 bch2_inode_opt_get(struct bch_inode_unpacked *inode, ++ enum inode_opt_id id) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Inode_opt_##_name: \ ++ return inode->bi_##_name; ++ BCH_INODE_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++static inline u8 mode_to_type(umode_t mode) ++{ ++ return (mode >> 12) & 15; ++} ++ ++static inline u8 inode_d_type(struct bch_inode_unpacked *inode) ++{ ++ return inode->bi_subvol ? DT_SUBVOL : mode_to_type(inode->bi_mode); ++} ++ ++/* i_nlink: */ ++ ++static inline unsigned nlink_bias(umode_t mode) ++{ ++ return S_ISDIR(mode) ? 2 : 1; ++} ++ ++static inline unsigned bch2_inode_nlink_get(struct bch_inode_unpacked *bi) ++{ ++ return bi->bi_flags & BCH_INODE_UNLINKED ++ ? 0 ++ : bi->bi_nlink + nlink_bias(bi->bi_mode); ++} ++ ++static inline void bch2_inode_nlink_set(struct bch_inode_unpacked *bi, ++ unsigned nlink) ++{ ++ if (nlink) { ++ bi->bi_nlink = nlink - nlink_bias(bi->bi_mode); ++ bi->bi_flags &= ~BCH_INODE_UNLINKED; ++ } else { ++ bi->bi_nlink = 0; ++ bi->bi_flags |= BCH_INODE_UNLINKED; ++ } ++} ++ ++int bch2_inode_nlink_inc(struct bch_inode_unpacked *); ++void bch2_inode_nlink_dec(struct btree_trans *, struct bch_inode_unpacked *); ++ ++struct bch_opts bch2_inode_opts_to_opts(struct bch_inode_unpacked *); ++void bch2_inode_opts_get(struct bch_io_opts *, struct bch_fs *, ++ struct bch_inode_unpacked *); ++ ++int bch2_inode_rm_snapshot(struct btree_trans *, u64, u32); ++int bch2_delete_dead_inodes(struct bch_fs *); ++ ++#endif /* _BCACHEFS_INODE_H */ +diff --git a/fs/bcachefs/io_misc.c b/fs/bcachefs/io_misc.c +new file mode 100644 +index 000000000000..119834cb8f9e +--- /dev/null ++++ b/fs/bcachefs/io_misc.c +@@ -0,0 +1,515 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * io_misc.c - fallocate, fpunch, truncate: ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_buf.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "clock.h" ++#include "error.h" ++#include "extents.h" ++#include "extent_update.h" ++#include "inode.h" ++#include "io_misc.h" ++#include "io_write.h" ++#include "logged_ops.h" ++#include "subvolume.h" ++ ++/* Overwrites whatever was present with zeroes: */ ++int bch2_extent_fallocate(struct btree_trans *trans, ++ subvol_inum inum, ++ struct btree_iter *iter, ++ unsigned sectors, ++ struct bch_io_opts opts, ++ s64 *i_sectors_delta, ++ struct write_point_specifier write_point) ++{ ++ struct bch_fs *c = trans->c; ++ struct disk_reservation disk_res = { 0 }; ++ struct closure cl; ++ struct open_buckets open_buckets = { 0 }; ++ struct bkey_s_c k; ++ struct bkey_buf old, new; ++ unsigned sectors_allocated = 0; ++ bool have_reservation = false; ++ bool unwritten = opts.nocow && ++ c->sb.version >= bcachefs_metadata_version_unwritten_extents; ++ int ret; ++ ++ bch2_bkey_buf_init(&old); ++ bch2_bkey_buf_init(&new); ++ closure_init_stack(&cl); ++ ++ k = bch2_btree_iter_peek_slot(iter); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ ++ sectors = min_t(u64, sectors, k.k->p.offset - iter->pos.offset); ++ ++ if (!have_reservation) { ++ unsigned new_replicas = ++ max(0, (int) opts.data_replicas - ++ (int) bch2_bkey_nr_ptrs_fully_allocated(k)); ++ /* ++ * Get a disk reservation before (in the nocow case) calling ++ * into the allocator: ++ */ ++ ret = bch2_disk_reservation_get(c, &disk_res, sectors, new_replicas, 0); ++ if (unlikely(ret)) ++ goto err; ++ ++ bch2_bkey_buf_reassemble(&old, c, k); ++ } ++ ++ if (have_reservation) { ++ if (!bch2_extents_match(k, bkey_i_to_s_c(old.k))) ++ goto err; ++ ++ bch2_key_resize(&new.k->k, sectors); ++ } else if (!unwritten) { ++ struct bkey_i_reservation *reservation; ++ ++ bch2_bkey_buf_realloc(&new, c, sizeof(*reservation) / sizeof(u64)); ++ reservation = bkey_reservation_init(new.k); ++ reservation->k.p = iter->pos; ++ bch2_key_resize(&reservation->k, sectors); ++ reservation->v.nr_replicas = opts.data_replicas; ++ } else { ++ struct bkey_i_extent *e; ++ struct bch_devs_list devs_have; ++ struct write_point *wp; ++ struct bch_extent_ptr *ptr; ++ ++ devs_have.nr = 0; ++ ++ bch2_bkey_buf_realloc(&new, c, BKEY_EXTENT_U64s_MAX); ++ ++ e = bkey_extent_init(new.k); ++ e->k.p = iter->pos; ++ ++ ret = bch2_alloc_sectors_start_trans(trans, ++ opts.foreground_target, ++ false, ++ write_point, ++ &devs_have, ++ opts.data_replicas, ++ opts.data_replicas, ++ BCH_WATERMARK_normal, 0, &cl, &wp); ++ if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) ++ ret = -BCH_ERR_transaction_restart_nested; ++ if (ret) ++ goto err; ++ ++ sectors = min(sectors, wp->sectors_free); ++ sectors_allocated = sectors; ++ ++ bch2_key_resize(&e->k, sectors); ++ ++ bch2_open_bucket_get(c, wp, &open_buckets); ++ bch2_alloc_sectors_append_ptrs(c, wp, &e->k_i, sectors, false); ++ bch2_alloc_sectors_done(c, wp); ++ ++ extent_for_each_ptr(extent_i_to_s(e), ptr) ++ ptr->unwritten = true; ++ } ++ ++ have_reservation = true; ++ ++ ret = bch2_extent_update(trans, inum, iter, new.k, &disk_res, ++ 0, i_sectors_delta, true); ++err: ++ if (!ret && sectors_allocated) ++ bch2_increment_clock(c, sectors_allocated, WRITE); ++ ++ bch2_open_buckets_put(c, &open_buckets); ++ bch2_disk_reservation_put(c, &disk_res); ++ bch2_bkey_buf_exit(&new, c); ++ bch2_bkey_buf_exit(&old, c); ++ ++ if (closure_nr_remaining(&cl) != 1) { ++ bch2_trans_unlock(trans); ++ closure_sync(&cl); ++ } ++ ++ return ret; ++} ++ ++/* ++ * Returns -BCH_ERR_transacton_restart if we had to drop locks: ++ */ ++int bch2_fpunch_at(struct btree_trans *trans, struct btree_iter *iter, ++ subvol_inum inum, u64 end, ++ s64 *i_sectors_delta) ++{ ++ struct bch_fs *c = trans->c; ++ unsigned max_sectors = KEY_SIZE_MAX & (~0 << c->block_bits); ++ struct bpos end_pos = POS(inum.inum, end); ++ struct bkey_s_c k; ++ int ret = 0, ret2 = 0; ++ u32 snapshot; ++ ++ while (!ret || ++ bch2_err_matches(ret, BCH_ERR_transaction_restart)) { ++ struct disk_reservation disk_res = ++ bch2_disk_reservation_init(c, 0); ++ struct bkey_i delete; ++ ++ if (ret) ++ ret2 = ret; ++ ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ continue; ++ ++ bch2_btree_iter_set_snapshot(iter, snapshot); ++ ++ /* ++ * peek_upto() doesn't have ideal semantics for extents: ++ */ ++ k = bch2_btree_iter_peek_upto(iter, end_pos); ++ if (!k.k) ++ break; ++ ++ ret = bkey_err(k); ++ if (ret) ++ continue; ++ ++ bkey_init(&delete.k); ++ delete.k.p = iter->pos; ++ ++ /* create the biggest key we can */ ++ bch2_key_resize(&delete.k, max_sectors); ++ bch2_cut_back(end_pos, &delete); ++ ++ ret = bch2_extent_update(trans, inum, iter, &delete, ++ &disk_res, 0, i_sectors_delta, false); ++ bch2_disk_reservation_put(c, &disk_res); ++ } ++ ++ return ret ?: ret2; ++} ++ ++int bch2_fpunch(struct bch_fs *c, subvol_inum inum, u64 start, u64 end, ++ s64 *i_sectors_delta) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ POS(inum.inum, start), ++ BTREE_ITER_INTENT); ++ ++ ret = bch2_fpunch_at(trans, &iter, inum, end, i_sectors_delta); ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ ret = 0; ++ ++ return ret; ++} ++ ++/* truncate: */ ++ ++void bch2_logged_op_truncate_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_logged_op_truncate op = bkey_s_c_to_logged_op_truncate(k); ++ ++ prt_printf(out, "subvol=%u", le32_to_cpu(op.v->subvol)); ++ prt_printf(out, " inum=%llu", le64_to_cpu(op.v->inum)); ++ prt_printf(out, " new_i_size=%llu", le64_to_cpu(op.v->new_i_size)); ++} ++ ++static int truncate_set_isize(struct btree_trans *trans, ++ subvol_inum inum, ++ u64 new_i_size) ++{ ++ struct btree_iter iter = { NULL }; ++ struct bch_inode_unpacked inode_u; ++ int ret; ++ ++ ret = bch2_inode_peek(trans, &iter, &inode_u, inum, BTREE_ITER_INTENT) ?: ++ (inode_u.bi_size = new_i_size, 0) ?: ++ bch2_inode_write(trans, &iter, &inode_u); ++ ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int __bch2_resume_logged_op_truncate(struct btree_trans *trans, ++ struct bkey_i *op_k, ++ u64 *i_sectors_delta) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter fpunch_iter; ++ struct bkey_i_logged_op_truncate *op = bkey_i_to_logged_op_truncate(op_k); ++ subvol_inum inum = { le32_to_cpu(op->v.subvol), le64_to_cpu(op->v.inum) }; ++ u64 new_i_size = le64_to_cpu(op->v.new_i_size); ++ int ret; ++ ++ ret = commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ truncate_set_isize(trans, inum, new_i_size)); ++ if (ret) ++ goto err; ++ ++ bch2_trans_iter_init(trans, &fpunch_iter, BTREE_ID_extents, ++ POS(inum.inum, round_up(new_i_size, block_bytes(c)) >> 9), ++ BTREE_ITER_INTENT); ++ ret = bch2_fpunch_at(trans, &fpunch_iter, inum, U64_MAX, i_sectors_delta); ++ bch2_trans_iter_exit(trans, &fpunch_iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ ret = 0; ++err: ++ bch2_logged_op_finish(trans, op_k); ++ return ret; ++} ++ ++int bch2_resume_logged_op_truncate(struct btree_trans *trans, struct bkey_i *op_k) ++{ ++ return __bch2_resume_logged_op_truncate(trans, op_k, NULL); ++} ++ ++int bch2_truncate(struct bch_fs *c, subvol_inum inum, u64 new_i_size, u64 *i_sectors_delta) ++{ ++ struct bkey_i_logged_op_truncate op; ++ ++ bkey_logged_op_truncate_init(&op.k_i); ++ op.v.subvol = cpu_to_le32(inum.subvol); ++ op.v.inum = cpu_to_le64(inum.inum); ++ op.v.new_i_size = cpu_to_le64(new_i_size); ++ ++ /* ++ * Logged ops aren't atomic w.r.t. snapshot creation: creating a ++ * snapshot while they're in progress, then crashing, will result in the ++ * resume only proceeding in one of the snapshots ++ */ ++ down_read(&c->snapshot_create_lock); ++ int ret = bch2_trans_run(c, ++ bch2_logged_op_start(trans, &op.k_i) ?: ++ __bch2_resume_logged_op_truncate(trans, &op.k_i, i_sectors_delta)); ++ up_read(&c->snapshot_create_lock); ++ ++ return ret; ++} ++ ++/* finsert/fcollapse: */ ++ ++void bch2_logged_op_finsert_to_text(struct printbuf *out, struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_logged_op_finsert op = bkey_s_c_to_logged_op_finsert(k); ++ ++ prt_printf(out, "subvol=%u", le32_to_cpu(op.v->subvol)); ++ prt_printf(out, " inum=%llu", le64_to_cpu(op.v->inum)); ++ prt_printf(out, " dst_offset=%lli", le64_to_cpu(op.v->dst_offset)); ++ prt_printf(out, " src_offset=%llu", le64_to_cpu(op.v->src_offset)); ++} ++ ++static int adjust_i_size(struct btree_trans *trans, subvol_inum inum, u64 offset, s64 len) ++{ ++ struct btree_iter iter; ++ struct bch_inode_unpacked inode_u; ++ int ret; ++ ++ offset <<= 9; ++ len <<= 9; ++ ++ ret = bch2_inode_peek(trans, &iter, &inode_u, inum, BTREE_ITER_INTENT); ++ if (ret) ++ return ret; ++ ++ if (len > 0) { ++ if (MAX_LFS_FILESIZE - inode_u.bi_size < len) { ++ ret = -EFBIG; ++ goto err; ++ } ++ ++ if (offset >= inode_u.bi_size) { ++ ret = -EINVAL; ++ goto err; ++ } ++ } ++ ++ inode_u.bi_size += len; ++ inode_u.bi_mtime = inode_u.bi_ctime = bch2_current_time(trans->c); ++ ++ ret = bch2_inode_write(trans, &iter, &inode_u); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int __bch2_resume_logged_op_finsert(struct btree_trans *trans, ++ struct bkey_i *op_k, ++ u64 *i_sectors_delta) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_i_logged_op_finsert *op = bkey_i_to_logged_op_finsert(op_k); ++ subvol_inum inum = { le32_to_cpu(op->v.subvol), le64_to_cpu(op->v.inum) }; ++ u64 dst_offset = le64_to_cpu(op->v.dst_offset); ++ u64 src_offset = le64_to_cpu(op->v.src_offset); ++ s64 shift = dst_offset - src_offset; ++ u64 len = abs(shift); ++ u64 pos = le64_to_cpu(op->v.pos); ++ bool insert = shift > 0; ++ int ret = 0; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ POS(inum.inum, 0), ++ BTREE_ITER_INTENT); ++ ++ switch (op->v.state) { ++case LOGGED_OP_FINSERT_start: ++ op->v.state = LOGGED_OP_FINSERT_shift_extents; ++ ++ if (insert) { ++ ret = commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ adjust_i_size(trans, inum, src_offset, len) ?: ++ bch2_logged_op_update(trans, &op->k_i)); ++ if (ret) ++ goto err; ++ } else { ++ bch2_btree_iter_set_pos(&iter, POS(inum.inum, src_offset)); ++ ++ ret = bch2_fpunch_at(trans, &iter, inum, src_offset + len, i_sectors_delta); ++ if (ret && !bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto err; ++ ++ ret = commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ bch2_logged_op_update(trans, &op->k_i)); ++ } ++ ++ fallthrough; ++case LOGGED_OP_FINSERT_shift_extents: ++ while (1) { ++ struct disk_reservation disk_res = ++ bch2_disk_reservation_init(c, 0); ++ struct bkey_i delete, *copy; ++ struct bkey_s_c k; ++ struct bpos src_pos = POS(inum.inum, src_offset); ++ u32 snapshot; ++ ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto btree_err; ++ ++ bch2_btree_iter_set_snapshot(&iter, snapshot); ++ bch2_btree_iter_set_pos(&iter, SPOS(inum.inum, pos, snapshot)); ++ ++ k = insert ++ ? bch2_btree_iter_peek_prev(&iter) ++ : bch2_btree_iter_peek_upto(&iter, POS(inum.inum, U64_MAX)); ++ if ((ret = bkey_err(k))) ++ goto btree_err; ++ ++ if (!k.k || ++ k.k->p.inode != inum.inum || ++ bkey_le(k.k->p, POS(inum.inum, src_offset))) ++ break; ++ ++ copy = bch2_bkey_make_mut_noupdate(trans, k); ++ if ((ret = PTR_ERR_OR_ZERO(copy))) ++ goto btree_err; ++ ++ if (insert && ++ bkey_lt(bkey_start_pos(k.k), src_pos)) { ++ bch2_cut_front(src_pos, copy); ++ ++ /* Splitting compressed extent? */ ++ bch2_disk_reservation_add(c, &disk_res, ++ copy->k.size * ++ bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(copy)), ++ BCH_DISK_RESERVATION_NOFAIL); ++ } ++ ++ bkey_init(&delete.k); ++ delete.k.p = copy->k.p; ++ delete.k.p.snapshot = snapshot; ++ delete.k.size = copy->k.size; ++ ++ copy->k.p.offset += shift; ++ copy->k.p.snapshot = snapshot; ++ ++ op->v.pos = cpu_to_le64(insert ? bkey_start_offset(&delete.k) : delete.k.p.offset); ++ ++ ret = bch2_btree_insert_trans(trans, BTREE_ID_extents, &delete, 0) ?: ++ bch2_btree_insert_trans(trans, BTREE_ID_extents, copy, 0) ?: ++ bch2_logged_op_update(trans, &op->k_i) ?: ++ bch2_trans_commit(trans, &disk_res, NULL, BTREE_INSERT_NOFAIL); ++btree_err: ++ bch2_disk_reservation_put(c, &disk_res); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ goto err; ++ ++ pos = le64_to_cpu(op->v.pos); ++ } ++ ++ op->v.state = LOGGED_OP_FINSERT_finish; ++ ++ if (!insert) { ++ ret = commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ adjust_i_size(trans, inum, src_offset, shift) ?: ++ bch2_logged_op_update(trans, &op->k_i)); ++ } else { ++ /* We need an inode update to update bi_journal_seq for fsync: */ ++ ret = commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ adjust_i_size(trans, inum, 0, 0) ?: ++ bch2_logged_op_update(trans, &op->k_i)); ++ } ++ ++ break; ++case LOGGED_OP_FINSERT_finish: ++ break; ++ } ++err: ++ bch2_logged_op_finish(trans, op_k); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_resume_logged_op_finsert(struct btree_trans *trans, struct bkey_i *op_k) ++{ ++ return __bch2_resume_logged_op_finsert(trans, op_k, NULL); ++} ++ ++int bch2_fcollapse_finsert(struct bch_fs *c, subvol_inum inum, ++ u64 offset, u64 len, bool insert, ++ s64 *i_sectors_delta) ++{ ++ struct bkey_i_logged_op_finsert op; ++ s64 shift = insert ? len : -len; ++ ++ bkey_logged_op_finsert_init(&op.k_i); ++ op.v.subvol = cpu_to_le32(inum.subvol); ++ op.v.inum = cpu_to_le64(inum.inum); ++ op.v.dst_offset = cpu_to_le64(offset + shift); ++ op.v.src_offset = cpu_to_le64(offset); ++ op.v.pos = cpu_to_le64(insert ? U64_MAX : offset); ++ ++ /* ++ * Logged ops aren't atomic w.r.t. snapshot creation: creating a ++ * snapshot while they're in progress, then crashing, will result in the ++ * resume only proceeding in one of the snapshots ++ */ ++ down_read(&c->snapshot_create_lock); ++ int ret = bch2_trans_run(c, ++ bch2_logged_op_start(trans, &op.k_i) ?: ++ __bch2_resume_logged_op_finsert(trans, &op.k_i, i_sectors_delta)); ++ up_read(&c->snapshot_create_lock); ++ ++ return ret; ++} +diff --git a/fs/bcachefs/io_misc.h b/fs/bcachefs/io_misc.h +new file mode 100644 +index 000000000000..c9e6ed40e1b8 +--- /dev/null ++++ b/fs/bcachefs/io_misc.h +@@ -0,0 +1,34 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_IO_MISC_H ++#define _BCACHEFS_IO_MISC_H ++ ++int bch2_extent_fallocate(struct btree_trans *, subvol_inum, struct btree_iter *, ++ unsigned, struct bch_io_opts, s64 *, ++ struct write_point_specifier); ++int bch2_fpunch_at(struct btree_trans *, struct btree_iter *, ++ subvol_inum, u64, s64 *); ++int bch2_fpunch(struct bch_fs *c, subvol_inum, u64, u64, s64 *); ++ ++void bch2_logged_op_truncate_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_logged_op_truncate ((struct bkey_ops) { \ ++ .val_to_text = bch2_logged_op_truncate_to_text, \ ++ .min_val_size = 24, \ ++}) ++ ++int bch2_resume_logged_op_truncate(struct btree_trans *, struct bkey_i *); ++ ++int bch2_truncate(struct bch_fs *, subvol_inum, u64, u64 *); ++ ++void bch2_logged_op_finsert_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_logged_op_finsert ((struct bkey_ops) { \ ++ .val_to_text = bch2_logged_op_finsert_to_text, \ ++ .min_val_size = 24, \ ++}) ++ ++int bch2_resume_logged_op_finsert(struct btree_trans *, struct bkey_i *); ++ ++int bch2_fcollapse_finsert(struct bch_fs *, subvol_inum, u64, u64, bool, s64 *); ++ ++#endif /* _BCACHEFS_IO_MISC_H */ +diff --git a/fs/bcachefs/io_read.c b/fs/bcachefs/io_read.c +new file mode 100644 +index 000000000000..443c3ea65527 +--- /dev/null ++++ b/fs/bcachefs/io_read.c +@@ -0,0 +1,1210 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Some low level IO code, and hacks for various block layer limitations ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "clock.h" ++#include "compress.h" ++#include "data_update.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "error.h" ++#include "io_read.h" ++#include "io_misc.h" ++#include "io_write.h" ++#include "subvolume.h" ++#include "trace.h" ++ ++#include ++ ++#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT ++ ++static bool bch2_target_congested(struct bch_fs *c, u16 target) ++{ ++ const struct bch_devs_mask *devs; ++ unsigned d, nr = 0, total = 0; ++ u64 now = local_clock(), last; ++ s64 congested; ++ struct bch_dev *ca; ++ ++ if (!target) ++ return false; ++ ++ rcu_read_lock(); ++ devs = bch2_target_to_mask(c, target) ?: ++ &c->rw_devs[BCH_DATA_user]; ++ ++ for_each_set_bit(d, devs->d, BCH_SB_MEMBERS_MAX) { ++ ca = rcu_dereference(c->devs[d]); ++ if (!ca) ++ continue; ++ ++ congested = atomic_read(&ca->congested); ++ last = READ_ONCE(ca->congested_last); ++ if (time_after64(now, last)) ++ congested -= (now - last) >> 12; ++ ++ total += max(congested, 0LL); ++ nr++; ++ } ++ rcu_read_unlock(); ++ ++ return bch2_rand_range(nr * CONGESTED_MAX) < total; ++} ++ ++#else ++ ++static bool bch2_target_congested(struct bch_fs *c, u16 target) ++{ ++ return false; ++} ++ ++#endif ++ ++/* Cache promotion on read */ ++ ++struct promote_op { ++ struct rcu_head rcu; ++ u64 start_time; ++ ++ struct rhash_head hash; ++ struct bpos pos; ++ ++ struct data_update write; ++ struct bio_vec bi_inline_vecs[0]; /* must be last */ ++}; ++ ++static const struct rhashtable_params bch_promote_params = { ++ .head_offset = offsetof(struct promote_op, hash), ++ .key_offset = offsetof(struct promote_op, pos), ++ .key_len = sizeof(struct bpos), ++}; ++ ++static inline int should_promote(struct bch_fs *c, struct bkey_s_c k, ++ struct bpos pos, ++ struct bch_io_opts opts, ++ unsigned flags) ++{ ++ BUG_ON(!opts.promote_target); ++ ++ if (!(flags & BCH_READ_MAY_PROMOTE)) ++ return -BCH_ERR_nopromote_may_not; ++ ++ if (bch2_bkey_has_target(c, k, opts.promote_target)) ++ return -BCH_ERR_nopromote_already_promoted; ++ ++ if (bkey_extent_is_unwritten(k)) ++ return -BCH_ERR_nopromote_unwritten; ++ ++ if (bch2_target_congested(c, opts.promote_target)) ++ return -BCH_ERR_nopromote_congested; ++ ++ if (rhashtable_lookup_fast(&c->promote_table, &pos, ++ bch_promote_params)) ++ return -BCH_ERR_nopromote_in_flight; ++ ++ return 0; ++} ++ ++static void promote_free(struct bch_fs *c, struct promote_op *op) ++{ ++ int ret; ++ ++ bch2_data_update_exit(&op->write); ++ ++ ret = rhashtable_remove_fast(&c->promote_table, &op->hash, ++ bch_promote_params); ++ BUG_ON(ret); ++ bch2_write_ref_put(c, BCH_WRITE_REF_promote); ++ kfree_rcu(op, rcu); ++} ++ ++static void promote_done(struct bch_write_op *wop) ++{ ++ struct promote_op *op = ++ container_of(wop, struct promote_op, write.op); ++ struct bch_fs *c = op->write.op.c; ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_data_promote], ++ op->start_time); ++ promote_free(c, op); ++} ++ ++static void promote_start(struct promote_op *op, struct bch_read_bio *rbio) ++{ ++ struct bio *bio = &op->write.op.wbio.bio; ++ ++ trace_and_count(op->write.op.c, read_promote, &rbio->bio); ++ ++ /* we now own pages: */ ++ BUG_ON(!rbio->bounce); ++ BUG_ON(rbio->bio.bi_vcnt > bio->bi_max_vecs); ++ ++ memcpy(bio->bi_io_vec, rbio->bio.bi_io_vec, ++ sizeof(struct bio_vec) * rbio->bio.bi_vcnt); ++ swap(bio->bi_vcnt, rbio->bio.bi_vcnt); ++ ++ bch2_data_update_read_done(&op->write, rbio->pick.crc); ++} ++ ++static struct promote_op *__promote_alloc(struct btree_trans *trans, ++ enum btree_id btree_id, ++ struct bkey_s_c k, ++ struct bpos pos, ++ struct extent_ptr_decoded *pick, ++ struct bch_io_opts opts, ++ unsigned sectors, ++ struct bch_read_bio **rbio) ++{ ++ struct bch_fs *c = trans->c; ++ struct promote_op *op = NULL; ++ struct bio *bio; ++ unsigned pages = DIV_ROUND_UP(sectors, PAGE_SECTORS); ++ int ret; ++ ++ if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_promote)) ++ return NULL; ++ ++ op = kzalloc(sizeof(*op) + sizeof(struct bio_vec) * pages, GFP_NOFS); ++ if (!op) ++ goto err; ++ ++ op->start_time = local_clock(); ++ op->pos = pos; ++ ++ /* ++ * We don't use the mempool here because extents that aren't ++ * checksummed or compressed can be too big for the mempool: ++ */ ++ *rbio = kzalloc(sizeof(struct bch_read_bio) + ++ sizeof(struct bio_vec) * pages, ++ GFP_NOFS); ++ if (!*rbio) ++ goto err; ++ ++ rbio_init(&(*rbio)->bio, opts); ++ bio_init(&(*rbio)->bio, NULL, (*rbio)->bio.bi_inline_vecs, pages, 0); ++ ++ if (bch2_bio_alloc_pages(&(*rbio)->bio, sectors << 9, ++ GFP_NOFS)) ++ goto err; ++ ++ (*rbio)->bounce = true; ++ (*rbio)->split = true; ++ (*rbio)->kmalloc = true; ++ ++ if (rhashtable_lookup_insert_fast(&c->promote_table, &op->hash, ++ bch_promote_params)) ++ goto err; ++ ++ bio = &op->write.op.wbio.bio; ++ bio_init(bio, NULL, bio->bi_inline_vecs, pages, 0); ++ ++ ret = bch2_data_update_init(trans, NULL, &op->write, ++ writepoint_hashed((unsigned long) current), ++ opts, ++ (struct data_update_opts) { ++ .target = opts.promote_target, ++ .extra_replicas = 1, ++ .write_flags = BCH_WRITE_ALLOC_NOWAIT|BCH_WRITE_CACHED, ++ }, ++ btree_id, k); ++ /* ++ * possible errors: -BCH_ERR_nocow_lock_blocked, ++ * -BCH_ERR_ENOSPC_disk_reservation: ++ */ ++ if (ret) { ++ ret = rhashtable_remove_fast(&c->promote_table, &op->hash, ++ bch_promote_params); ++ BUG_ON(ret); ++ goto err; ++ } ++ ++ op->write.op.end_io = promote_done; ++ ++ return op; ++err: ++ if (*rbio) ++ bio_free_pages(&(*rbio)->bio); ++ kfree(*rbio); ++ *rbio = NULL; ++ kfree(op); ++ bch2_write_ref_put(c, BCH_WRITE_REF_promote); ++ return NULL; ++} ++ ++noinline ++static struct promote_op *promote_alloc(struct btree_trans *trans, ++ struct bvec_iter iter, ++ struct bkey_s_c k, ++ struct extent_ptr_decoded *pick, ++ struct bch_io_opts opts, ++ unsigned flags, ++ struct bch_read_bio **rbio, ++ bool *bounce, ++ bool *read_full) ++{ ++ struct bch_fs *c = trans->c; ++ bool promote_full = *read_full || READ_ONCE(c->promote_whole_extents); ++ /* data might have to be decompressed in the write path: */ ++ unsigned sectors = promote_full ++ ? max(pick->crc.compressed_size, pick->crc.live_size) ++ : bvec_iter_sectors(iter); ++ struct bpos pos = promote_full ++ ? bkey_start_pos(k.k) ++ : POS(k.k->p.inode, iter.bi_sector); ++ struct promote_op *promote; ++ int ret; ++ ++ ret = should_promote(c, k, pos, opts, flags); ++ if (ret) ++ goto nopromote; ++ ++ promote = __promote_alloc(trans, ++ k.k->type == KEY_TYPE_reflink_v ++ ? BTREE_ID_reflink ++ : BTREE_ID_extents, ++ k, pos, pick, opts, sectors, rbio); ++ if (!promote) { ++ ret = -BCH_ERR_nopromote_enomem; ++ goto nopromote; ++ } ++ ++ *bounce = true; ++ *read_full = promote_full; ++ return promote; ++nopromote: ++ trace_read_nopromote(c, ret); ++ return NULL; ++} ++ ++/* Read */ ++ ++#define READ_RETRY_AVOID 1 ++#define READ_RETRY 2 ++#define READ_ERR 3 ++ ++enum rbio_context { ++ RBIO_CONTEXT_NULL, ++ RBIO_CONTEXT_HIGHPRI, ++ RBIO_CONTEXT_UNBOUND, ++}; ++ ++static inline struct bch_read_bio * ++bch2_rbio_parent(struct bch_read_bio *rbio) ++{ ++ return rbio->split ? rbio->parent : rbio; ++} ++ ++__always_inline ++static void bch2_rbio_punt(struct bch_read_bio *rbio, work_func_t fn, ++ enum rbio_context context, ++ struct workqueue_struct *wq) ++{ ++ if (context <= rbio->context) { ++ fn(&rbio->work); ++ } else { ++ rbio->work.func = fn; ++ rbio->context = context; ++ queue_work(wq, &rbio->work); ++ } ++} ++ ++static inline struct bch_read_bio *bch2_rbio_free(struct bch_read_bio *rbio) ++{ ++ BUG_ON(rbio->bounce && !rbio->split); ++ ++ if (rbio->promote) ++ promote_free(rbio->c, rbio->promote); ++ rbio->promote = NULL; ++ ++ if (rbio->bounce) ++ bch2_bio_free_pages_pool(rbio->c, &rbio->bio); ++ ++ if (rbio->split) { ++ struct bch_read_bio *parent = rbio->parent; ++ ++ if (rbio->kmalloc) ++ kfree(rbio); ++ else ++ bio_put(&rbio->bio); ++ ++ rbio = parent; ++ } ++ ++ return rbio; ++} ++ ++/* ++ * Only called on a top level bch_read_bio to complete an entire read request, ++ * not a split: ++ */ ++static void bch2_rbio_done(struct bch_read_bio *rbio) ++{ ++ if (rbio->start_time) ++ bch2_time_stats_update(&rbio->c->times[BCH_TIME_data_read], ++ rbio->start_time); ++ bio_endio(&rbio->bio); ++} ++ ++static void bch2_read_retry_nodecode(struct bch_fs *c, struct bch_read_bio *rbio, ++ struct bvec_iter bvec_iter, ++ struct bch_io_failures *failed, ++ unsigned flags) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_buf sk; ++ struct bkey_s_c k; ++ int ret; ++ ++ flags &= ~BCH_READ_LAST_FRAGMENT; ++ flags |= BCH_READ_MUST_CLONE; ++ ++ bch2_bkey_buf_init(&sk); ++ ++ bch2_trans_iter_init(trans, &iter, rbio->data_btree, ++ rbio->read_pos, BTREE_ITER_SLOTS); ++retry: ++ rbio->bio.bi_status = 0; ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ if (bkey_err(k)) ++ goto err; ++ ++ bch2_bkey_buf_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ bch2_trans_unlock(trans); ++ ++ if (!bch2_bkey_matches_ptr(c, k, ++ rbio->pick.ptr, ++ rbio->data_pos.offset - ++ rbio->pick.crc.offset)) { ++ /* extent we wanted to read no longer exists: */ ++ rbio->hole = true; ++ goto out; ++ } ++ ++ ret = __bch2_read_extent(trans, rbio, bvec_iter, ++ rbio->read_pos, ++ rbio->data_btree, ++ k, 0, failed, flags); ++ if (ret == READ_RETRY) ++ goto retry; ++ if (ret) ++ goto err; ++out: ++ bch2_rbio_done(rbio); ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ bch2_bkey_buf_exit(&sk, c); ++ return; ++err: ++ rbio->bio.bi_status = BLK_STS_IOERR; ++ goto out; ++} ++ ++static void bch2_rbio_retry(struct work_struct *work) ++{ ++ struct bch_read_bio *rbio = ++ container_of(work, struct bch_read_bio, work); ++ struct bch_fs *c = rbio->c; ++ struct bvec_iter iter = rbio->bvec_iter; ++ unsigned flags = rbio->flags; ++ subvol_inum inum = { ++ .subvol = rbio->subvol, ++ .inum = rbio->read_pos.inode, ++ }; ++ struct bch_io_failures failed = { .nr = 0 }; ++ ++ trace_and_count(c, read_retry, &rbio->bio); ++ ++ if (rbio->retry == READ_RETRY_AVOID) ++ bch2_mark_io_failure(&failed, &rbio->pick); ++ ++ rbio->bio.bi_status = 0; ++ ++ rbio = bch2_rbio_free(rbio); ++ ++ flags |= BCH_READ_IN_RETRY; ++ flags &= ~BCH_READ_MAY_PROMOTE; ++ ++ if (flags & BCH_READ_NODECODE) { ++ bch2_read_retry_nodecode(c, rbio, iter, &failed, flags); ++ } else { ++ flags &= ~BCH_READ_LAST_FRAGMENT; ++ flags |= BCH_READ_MUST_CLONE; ++ ++ __bch2_read(c, rbio, iter, inum, &failed, flags); ++ } ++} ++ ++static void bch2_rbio_error(struct bch_read_bio *rbio, int retry, ++ blk_status_t error) ++{ ++ rbio->retry = retry; ++ ++ if (rbio->flags & BCH_READ_IN_RETRY) ++ return; ++ ++ if (retry == READ_ERR) { ++ rbio = bch2_rbio_free(rbio); ++ ++ rbio->bio.bi_status = error; ++ bch2_rbio_done(rbio); ++ } else { ++ bch2_rbio_punt(rbio, bch2_rbio_retry, ++ RBIO_CONTEXT_UNBOUND, system_unbound_wq); ++ } ++} ++ ++static int __bch2_rbio_narrow_crcs(struct btree_trans *trans, ++ struct bch_read_bio *rbio) ++{ ++ struct bch_fs *c = rbio->c; ++ u64 data_offset = rbio->data_pos.offset - rbio->pick.crc.offset; ++ struct bch_extent_crc_unpacked new_crc; ++ struct btree_iter iter; ++ struct bkey_i *new; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ if (crc_is_compressed(rbio->pick.crc)) ++ return 0; ++ ++ k = bch2_bkey_get_iter(trans, &iter, rbio->data_btree, rbio->data_pos, ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ if ((ret = bkey_err(k))) ++ goto out; ++ ++ if (bversion_cmp(k.k->version, rbio->version) || ++ !bch2_bkey_matches_ptr(c, k, rbio->pick.ptr, data_offset)) ++ goto out; ++ ++ /* Extent was merged? */ ++ if (bkey_start_offset(k.k) < data_offset || ++ k.k->p.offset > data_offset + rbio->pick.crc.uncompressed_size) ++ goto out; ++ ++ if (bch2_rechecksum_bio(c, &rbio->bio, rbio->version, ++ rbio->pick.crc, NULL, &new_crc, ++ bkey_start_offset(k.k) - data_offset, k.k->size, ++ rbio->pick.crc.csum_type)) { ++ bch_err(c, "error verifying existing checksum while narrowing checksum (memory corruption?)"); ++ ret = 0; ++ goto out; ++ } ++ ++ /* ++ * going to be temporarily appending another checksum entry: ++ */ ++ new = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + ++ sizeof(struct bch_extent_crc128)); ++ if ((ret = PTR_ERR_OR_ZERO(new))) ++ goto out; ++ ++ bkey_reassemble(new, k); ++ ++ if (!bch2_bkey_narrow_crcs(new, new_crc)) ++ goto out; ++ ++ ret = bch2_trans_update(trans, &iter, new, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static noinline void bch2_rbio_narrow_crcs(struct bch_read_bio *rbio) ++{ ++ bch2_trans_do(rbio->c, NULL, NULL, BTREE_INSERT_NOFAIL, ++ __bch2_rbio_narrow_crcs(trans, rbio)); ++} ++ ++/* Inner part that may run in process context */ ++static void __bch2_read_endio(struct work_struct *work) ++{ ++ struct bch_read_bio *rbio = ++ container_of(work, struct bch_read_bio, work); ++ struct bch_fs *c = rbio->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev); ++ struct bio *src = &rbio->bio; ++ struct bio *dst = &bch2_rbio_parent(rbio)->bio; ++ struct bvec_iter dst_iter = rbio->bvec_iter; ++ struct bch_extent_crc_unpacked crc = rbio->pick.crc; ++ struct nonce nonce = extent_nonce(rbio->version, crc); ++ unsigned nofs_flags; ++ struct bch_csum csum; ++ int ret; ++ ++ nofs_flags = memalloc_nofs_save(); ++ ++ /* Reset iterator for checksumming and copying bounced data: */ ++ if (rbio->bounce) { ++ src->bi_iter.bi_size = crc.compressed_size << 9; ++ src->bi_iter.bi_idx = 0; ++ src->bi_iter.bi_bvec_done = 0; ++ } else { ++ src->bi_iter = rbio->bvec_iter; ++ } ++ ++ csum = bch2_checksum_bio(c, crc.csum_type, nonce, src); ++ if (bch2_crc_cmp(csum, rbio->pick.crc.csum) && !c->opts.no_data_io) ++ goto csum_err; ++ ++ /* ++ * XXX ++ * We need to rework the narrow_crcs path to deliver the read completion ++ * first, and then punt to a different workqueue, otherwise we're ++ * holding up reads while doing btree updates which is bad for memory ++ * reclaim. ++ */ ++ if (unlikely(rbio->narrow_crcs)) ++ bch2_rbio_narrow_crcs(rbio); ++ ++ if (rbio->flags & BCH_READ_NODECODE) ++ goto nodecode; ++ ++ /* Adjust crc to point to subset of data we want: */ ++ crc.offset += rbio->offset_into_extent; ++ crc.live_size = bvec_iter_sectors(rbio->bvec_iter); ++ ++ if (crc_is_compressed(crc)) { ++ ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src); ++ if (ret) ++ goto decrypt_err; ++ ++ if (bch2_bio_uncompress(c, src, dst, dst_iter, crc) && ++ !c->opts.no_data_io) ++ goto decompression_err; ++ } else { ++ /* don't need to decrypt the entire bio: */ ++ nonce = nonce_add(nonce, crc.offset << 9); ++ bio_advance(src, crc.offset << 9); ++ ++ BUG_ON(src->bi_iter.bi_size < dst_iter.bi_size); ++ src->bi_iter.bi_size = dst_iter.bi_size; ++ ++ ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src); ++ if (ret) ++ goto decrypt_err; ++ ++ if (rbio->bounce) { ++ struct bvec_iter src_iter = src->bi_iter; ++ ++ bio_copy_data_iter(dst, &dst_iter, src, &src_iter); ++ } ++ } ++ ++ if (rbio->promote) { ++ /* ++ * Re encrypt data we decrypted, so it's consistent with ++ * rbio->crc: ++ */ ++ ret = bch2_encrypt_bio(c, crc.csum_type, nonce, src); ++ if (ret) ++ goto decrypt_err; ++ ++ promote_start(rbio->promote, rbio); ++ rbio->promote = NULL; ++ } ++nodecode: ++ if (likely(!(rbio->flags & BCH_READ_IN_RETRY))) { ++ rbio = bch2_rbio_free(rbio); ++ bch2_rbio_done(rbio); ++ } ++out: ++ memalloc_nofs_restore(nofs_flags); ++ return; ++csum_err: ++ /* ++ * Checksum error: if the bio wasn't bounced, we may have been ++ * reading into buffers owned by userspace (that userspace can ++ * scribble over) - retry the read, bouncing it this time: ++ */ ++ if (!rbio->bounce && (rbio->flags & BCH_READ_USER_MAPPED)) { ++ rbio->flags |= BCH_READ_MUST_BOUNCE; ++ bch2_rbio_error(rbio, READ_RETRY, BLK_STS_IOERR); ++ goto out; ++ } ++ ++ bch_err_inum_offset_ratelimited(ca, ++ rbio->read_pos.inode, ++ rbio->read_pos.offset << 9, ++ "data checksum error: expected %0llx:%0llx got %0llx:%0llx (type %s)", ++ rbio->pick.crc.csum.hi, rbio->pick.crc.csum.lo, ++ csum.hi, csum.lo, bch2_csum_types[crc.csum_type]); ++ bch2_io_error(ca); ++ bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); ++ goto out; ++decompression_err: ++ bch_err_inum_offset_ratelimited(c, rbio->read_pos.inode, ++ rbio->read_pos.offset << 9, ++ "decompression error"); ++ bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR); ++ goto out; ++decrypt_err: ++ bch_err_inum_offset_ratelimited(c, rbio->read_pos.inode, ++ rbio->read_pos.offset << 9, ++ "decrypt error"); ++ bch2_rbio_error(rbio, READ_ERR, BLK_STS_IOERR); ++ goto out; ++} ++ ++static void bch2_read_endio(struct bio *bio) ++{ ++ struct bch_read_bio *rbio = ++ container_of(bio, struct bch_read_bio, bio); ++ struct bch_fs *c = rbio->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, rbio->pick.ptr.dev); ++ struct workqueue_struct *wq = NULL; ++ enum rbio_context context = RBIO_CONTEXT_NULL; ++ ++ if (rbio->have_ioref) { ++ bch2_latency_acct(ca, rbio->submit_time, READ); ++ percpu_ref_put(&ca->io_ref); ++ } ++ ++ if (!rbio->split) ++ rbio->bio.bi_end_io = rbio->end_io; ++ ++ if (bch2_dev_inum_io_err_on(bio->bi_status, ca, ++ rbio->read_pos.inode, ++ rbio->read_pos.offset, ++ "data read error: %s", ++ bch2_blk_status_to_str(bio->bi_status))) { ++ bch2_rbio_error(rbio, READ_RETRY_AVOID, bio->bi_status); ++ return; ++ } ++ ++ if (((rbio->flags & BCH_READ_RETRY_IF_STALE) && race_fault()) || ++ ptr_stale(ca, &rbio->pick.ptr)) { ++ trace_and_count(c, read_reuse_race, &rbio->bio); ++ ++ if (rbio->flags & BCH_READ_RETRY_IF_STALE) ++ bch2_rbio_error(rbio, READ_RETRY, BLK_STS_AGAIN); ++ else ++ bch2_rbio_error(rbio, READ_ERR, BLK_STS_AGAIN); ++ return; ++ } ++ ++ if (rbio->narrow_crcs || ++ rbio->promote || ++ crc_is_compressed(rbio->pick.crc) || ++ bch2_csum_type_is_encryption(rbio->pick.crc.csum_type)) ++ context = RBIO_CONTEXT_UNBOUND, wq = system_unbound_wq; ++ else if (rbio->pick.crc.csum_type) ++ context = RBIO_CONTEXT_HIGHPRI, wq = system_highpri_wq; ++ ++ bch2_rbio_punt(rbio, __bch2_read_endio, context, wq); ++} ++ ++int __bch2_read_indirect_extent(struct btree_trans *trans, ++ unsigned *offset_into_extent, ++ struct bkey_buf *orig_k) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ u64 reflink_offset; ++ int ret; ++ ++ reflink_offset = le64_to_cpu(bkey_i_to_reflink_p(orig_k->k)->v.idx) + ++ *offset_into_extent; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_reflink, ++ POS(0, reflink_offset), 0); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (k.k->type != KEY_TYPE_reflink_v && ++ k.k->type != KEY_TYPE_indirect_inline_data) { ++ bch_err_inum_offset_ratelimited(trans->c, ++ orig_k->k->k.p.inode, ++ orig_k->k->k.p.offset << 9, ++ "%llu len %u points to nonexistent indirect extent %llu", ++ orig_k->k->k.p.offset, ++ orig_k->k->k.size, ++ reflink_offset); ++ bch2_inconsistent_error(trans->c); ++ ret = -EIO; ++ goto err; ++ } ++ ++ *offset_into_extent = iter.pos.offset - bkey_start_offset(k.k); ++ bch2_bkey_buf_reassemble(orig_k, trans->c, k); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static noinline void read_from_stale_dirty_pointer(struct btree_trans *trans, ++ struct bkey_s_c k, ++ struct bch_extent_ptr ptr) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, ptr.dev); ++ struct btree_iter iter; ++ struct printbuf buf = PRINTBUF; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, ++ PTR_BUCKET_POS(c, &ptr), ++ BTREE_ITER_CACHED); ++ ++ prt_printf(&buf, "Attempting to read from stale dirty pointer:"); ++ printbuf_indent_add(&buf, 2); ++ prt_newline(&buf); ++ ++ bch2_bkey_val_to_text(&buf, c, k); ++ prt_newline(&buf); ++ ++ prt_printf(&buf, "memory gen: %u", *bucket_gen(ca, iter.pos.offset)); ++ ++ ret = lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_slot(&iter))); ++ if (!ret) { ++ prt_newline(&buf); ++ bch2_bkey_val_to_text(&buf, c, k); ++ } ++ ++ bch2_fs_inconsistent(c, "%s", buf.buf); ++ ++ bch2_trans_iter_exit(trans, &iter); ++ printbuf_exit(&buf); ++} ++ ++int __bch2_read_extent(struct btree_trans *trans, struct bch_read_bio *orig, ++ struct bvec_iter iter, struct bpos read_pos, ++ enum btree_id data_btree, struct bkey_s_c k, ++ unsigned offset_into_extent, ++ struct bch_io_failures *failed, unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct extent_ptr_decoded pick; ++ struct bch_read_bio *rbio = NULL; ++ struct bch_dev *ca = NULL; ++ struct promote_op *promote = NULL; ++ bool bounce = false, read_full = false, narrow_crcs = false; ++ struct bpos data_pos = bkey_start_pos(k.k); ++ int pick_ret; ++ ++ if (bkey_extent_is_inline_data(k.k)) { ++ unsigned bytes = min_t(unsigned, iter.bi_size, ++ bkey_inline_data_bytes(k.k)); ++ ++ swap(iter.bi_size, bytes); ++ memcpy_to_bio(&orig->bio, iter, bkey_inline_data_p(k)); ++ swap(iter.bi_size, bytes); ++ bio_advance_iter(&orig->bio, &iter, bytes); ++ zero_fill_bio_iter(&orig->bio, iter); ++ goto out_read_done; ++ } ++retry_pick: ++ pick_ret = bch2_bkey_pick_read_device(c, k, failed, &pick); ++ ++ /* hole or reservation - just zero fill: */ ++ if (!pick_ret) ++ goto hole; ++ ++ if (pick_ret < 0) { ++ bch_err_inum_offset_ratelimited(c, ++ read_pos.inode, read_pos.offset << 9, ++ "no device to read from"); ++ goto err; ++ } ++ ++ ca = bch_dev_bkey_exists(c, pick.ptr.dev); ++ ++ /* ++ * Stale dirty pointers are treated as IO errors, but @failed isn't ++ * allocated unless we're in the retry path - so if we're not in the ++ * retry path, don't check here, it'll be caught in bch2_read_endio() ++ * and we'll end up in the retry path: ++ */ ++ if ((flags & BCH_READ_IN_RETRY) && ++ !pick.ptr.cached && ++ unlikely(ptr_stale(ca, &pick.ptr))) { ++ read_from_stale_dirty_pointer(trans, k, pick.ptr); ++ bch2_mark_io_failure(failed, &pick); ++ goto retry_pick; ++ } ++ ++ /* ++ * Unlock the iterator while the btree node's lock is still in ++ * cache, before doing the IO: ++ */ ++ bch2_trans_unlock(trans); ++ ++ if (flags & BCH_READ_NODECODE) { ++ /* ++ * can happen if we retry, and the extent we were going to read ++ * has been merged in the meantime: ++ */ ++ if (pick.crc.compressed_size > orig->bio.bi_vcnt * PAGE_SECTORS) ++ goto hole; ++ ++ iter.bi_size = pick.crc.compressed_size << 9; ++ goto get_bio; ++ } ++ ++ if (!(flags & BCH_READ_LAST_FRAGMENT) || ++ bio_flagged(&orig->bio, BIO_CHAIN)) ++ flags |= BCH_READ_MUST_CLONE; ++ ++ narrow_crcs = !(flags & BCH_READ_IN_RETRY) && ++ bch2_can_narrow_extent_crcs(k, pick.crc); ++ ++ if (narrow_crcs && (flags & BCH_READ_USER_MAPPED)) ++ flags |= BCH_READ_MUST_BOUNCE; ++ ++ EBUG_ON(offset_into_extent + bvec_iter_sectors(iter) > k.k->size); ++ ++ if (crc_is_compressed(pick.crc) || ++ (pick.crc.csum_type != BCH_CSUM_none && ++ (bvec_iter_sectors(iter) != pick.crc.uncompressed_size || ++ (bch2_csum_type_is_encryption(pick.crc.csum_type) && ++ (flags & BCH_READ_USER_MAPPED)) || ++ (flags & BCH_READ_MUST_BOUNCE)))) { ++ read_full = true; ++ bounce = true; ++ } ++ ++ if (orig->opts.promote_target) ++ promote = promote_alloc(trans, iter, k, &pick, orig->opts, flags, ++ &rbio, &bounce, &read_full); ++ ++ if (!read_full) { ++ EBUG_ON(crc_is_compressed(pick.crc)); ++ EBUG_ON(pick.crc.csum_type && ++ (bvec_iter_sectors(iter) != pick.crc.uncompressed_size || ++ bvec_iter_sectors(iter) != pick.crc.live_size || ++ pick.crc.offset || ++ offset_into_extent)); ++ ++ data_pos.offset += offset_into_extent; ++ pick.ptr.offset += pick.crc.offset + ++ offset_into_extent; ++ offset_into_extent = 0; ++ pick.crc.compressed_size = bvec_iter_sectors(iter); ++ pick.crc.uncompressed_size = bvec_iter_sectors(iter); ++ pick.crc.offset = 0; ++ pick.crc.live_size = bvec_iter_sectors(iter); ++ } ++get_bio: ++ if (rbio) { ++ /* ++ * promote already allocated bounce rbio: ++ * promote needs to allocate a bio big enough for uncompressing ++ * data in the write path, but we're not going to use it all ++ * here: ++ */ ++ EBUG_ON(rbio->bio.bi_iter.bi_size < ++ pick.crc.compressed_size << 9); ++ rbio->bio.bi_iter.bi_size = ++ pick.crc.compressed_size << 9; ++ } else if (bounce) { ++ unsigned sectors = pick.crc.compressed_size; ++ ++ rbio = rbio_init(bio_alloc_bioset(NULL, ++ DIV_ROUND_UP(sectors, PAGE_SECTORS), ++ 0, ++ GFP_NOFS, ++ &c->bio_read_split), ++ orig->opts); ++ ++ bch2_bio_alloc_pages_pool(c, &rbio->bio, sectors << 9); ++ rbio->bounce = true; ++ rbio->split = true; ++ } else if (flags & BCH_READ_MUST_CLONE) { ++ /* ++ * Have to clone if there were any splits, due to error ++ * reporting issues (if a split errored, and retrying didn't ++ * work, when it reports the error to its parent (us) we don't ++ * know if the error was from our bio, and we should retry, or ++ * from the whole bio, in which case we don't want to retry and ++ * lose the error) ++ */ ++ rbio = rbio_init(bio_alloc_clone(NULL, &orig->bio, GFP_NOFS, ++ &c->bio_read_split), ++ orig->opts); ++ rbio->bio.bi_iter = iter; ++ rbio->split = true; ++ } else { ++ rbio = orig; ++ rbio->bio.bi_iter = iter; ++ EBUG_ON(bio_flagged(&rbio->bio, BIO_CHAIN)); ++ } ++ ++ EBUG_ON(bio_sectors(&rbio->bio) != pick.crc.compressed_size); ++ ++ rbio->c = c; ++ rbio->submit_time = local_clock(); ++ if (rbio->split) ++ rbio->parent = orig; ++ else ++ rbio->end_io = orig->bio.bi_end_io; ++ rbio->bvec_iter = iter; ++ rbio->offset_into_extent= offset_into_extent; ++ rbio->flags = flags; ++ rbio->have_ioref = pick_ret > 0 && bch2_dev_get_ioref(ca, READ); ++ rbio->narrow_crcs = narrow_crcs; ++ rbio->hole = 0; ++ rbio->retry = 0; ++ rbio->context = 0; ++ /* XXX: only initialize this if needed */ ++ rbio->devs_have = bch2_bkey_devs(k); ++ rbio->pick = pick; ++ rbio->subvol = orig->subvol; ++ rbio->read_pos = read_pos; ++ rbio->data_btree = data_btree; ++ rbio->data_pos = data_pos; ++ rbio->version = k.k->version; ++ rbio->promote = promote; ++ INIT_WORK(&rbio->work, NULL); ++ ++ rbio->bio.bi_opf = orig->bio.bi_opf; ++ rbio->bio.bi_iter.bi_sector = pick.ptr.offset; ++ rbio->bio.bi_end_io = bch2_read_endio; ++ ++ if (rbio->bounce) ++ trace_and_count(c, read_bounce, &rbio->bio); ++ ++ this_cpu_add(c->counters[BCH_COUNTER_io_read], bio_sectors(&rbio->bio)); ++ bch2_increment_clock(c, bio_sectors(&rbio->bio), READ); ++ ++ /* ++ * If it's being moved internally, we don't want to flag it as a cache ++ * hit: ++ */ ++ if (pick.ptr.cached && !(flags & BCH_READ_NODECODE)) ++ bch2_bucket_io_time_reset(trans, pick.ptr.dev, ++ PTR_BUCKET_NR(ca, &pick.ptr), READ); ++ ++ if (!(flags & (BCH_READ_IN_RETRY|BCH_READ_LAST_FRAGMENT))) { ++ bio_inc_remaining(&orig->bio); ++ trace_and_count(c, read_split, &orig->bio); ++ } ++ ++ if (!rbio->pick.idx) { ++ if (!rbio->have_ioref) { ++ bch_err_inum_offset_ratelimited(c, ++ read_pos.inode, ++ read_pos.offset << 9, ++ "no device to read from"); ++ bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); ++ goto out; ++ } ++ ++ this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_user], ++ bio_sectors(&rbio->bio)); ++ bio_set_dev(&rbio->bio, ca->disk_sb.bdev); ++ ++ if (unlikely(c->opts.no_data_io)) { ++ if (likely(!(flags & BCH_READ_IN_RETRY))) ++ bio_endio(&rbio->bio); ++ } else { ++ if (likely(!(flags & BCH_READ_IN_RETRY))) ++ submit_bio(&rbio->bio); ++ else ++ submit_bio_wait(&rbio->bio); ++ } ++ ++ /* ++ * We just submitted IO which may block, we expect relock fail ++ * events and shouldn't count them: ++ */ ++ trans->notrace_relock_fail = true; ++ } else { ++ /* Attempting reconstruct read: */ ++ if (bch2_ec_read_extent(c, rbio)) { ++ bch2_rbio_error(rbio, READ_RETRY_AVOID, BLK_STS_IOERR); ++ goto out; ++ } ++ ++ if (likely(!(flags & BCH_READ_IN_RETRY))) ++ bio_endio(&rbio->bio); ++ } ++out: ++ if (likely(!(flags & BCH_READ_IN_RETRY))) { ++ return 0; ++ } else { ++ int ret; ++ ++ rbio->context = RBIO_CONTEXT_UNBOUND; ++ bch2_read_endio(&rbio->bio); ++ ++ ret = rbio->retry; ++ rbio = bch2_rbio_free(rbio); ++ ++ if (ret == READ_RETRY_AVOID) { ++ bch2_mark_io_failure(failed, &pick); ++ ret = READ_RETRY; ++ } ++ ++ if (!ret) ++ goto out_read_done; ++ ++ return ret; ++ } ++ ++err: ++ if (flags & BCH_READ_IN_RETRY) ++ return READ_ERR; ++ ++ orig->bio.bi_status = BLK_STS_IOERR; ++ goto out_read_done; ++ ++hole: ++ /* ++ * won't normally happen in the BCH_READ_NODECODE ++ * (bch2_move_extent()) path, but if we retry and the extent we wanted ++ * to read no longer exists we have to signal that: ++ */ ++ if (flags & BCH_READ_NODECODE) ++ orig->hole = true; ++ ++ zero_fill_bio_iter(&orig->bio, iter); ++out_read_done: ++ if (flags & BCH_READ_LAST_FRAGMENT) ++ bch2_rbio_done(orig); ++ return 0; ++} ++ ++void __bch2_read(struct bch_fs *c, struct bch_read_bio *rbio, ++ struct bvec_iter bvec_iter, subvol_inum inum, ++ struct bch_io_failures *failed, unsigned flags) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_buf sk; ++ struct bkey_s_c k; ++ u32 snapshot; ++ int ret; ++ ++ BUG_ON(flags & BCH_READ_NODECODE); ++ ++ bch2_bkey_buf_init(&sk); ++retry: ++ bch2_trans_begin(trans); ++ iter = (struct btree_iter) { NULL }; ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ SPOS(inum.inum, bvec_iter.bi_sector, snapshot), ++ BTREE_ITER_SLOTS); ++ while (1) { ++ unsigned bytes, sectors, offset_into_extent; ++ enum btree_id data_btree = BTREE_ID_extents; ++ ++ /* ++ * read_extent -> io_time_reset may cause a transaction restart ++ * without returning an error, we need to check for that here: ++ */ ++ ret = bch2_trans_relock(trans); ++ if (ret) ++ break; ++ ++ bch2_btree_iter_set_pos(&iter, ++ POS(inum.inum, bvec_iter.bi_sector)); ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ break; ++ ++ offset_into_extent = iter.pos.offset - ++ bkey_start_offset(k.k); ++ sectors = k.k->size - offset_into_extent; ++ ++ bch2_bkey_buf_reassemble(&sk, c, k); ++ ++ ret = bch2_read_indirect_extent(trans, &data_btree, ++ &offset_into_extent, &sk); ++ if (ret) ++ break; ++ ++ k = bkey_i_to_s_c(sk.k); ++ ++ /* ++ * With indirect extents, the amount of data to read is the min ++ * of the original extent and the indirect extent: ++ */ ++ sectors = min(sectors, k.k->size - offset_into_extent); ++ ++ bytes = min(sectors, bvec_iter_sectors(bvec_iter)) << 9; ++ swap(bvec_iter.bi_size, bytes); ++ ++ if (bvec_iter.bi_size == bytes) ++ flags |= BCH_READ_LAST_FRAGMENT; ++ ++ ret = __bch2_read_extent(trans, rbio, bvec_iter, iter.pos, ++ data_btree, k, ++ offset_into_extent, failed, flags); ++ if (ret) ++ break; ++ ++ if (flags & BCH_READ_LAST_FRAGMENT) ++ break; ++ ++ swap(bvec_iter.bi_size, bytes); ++ bio_advance_iter(&rbio->bio, &bvec_iter, bytes); ++ ++ ret = btree_trans_too_many_iters(trans); ++ if (ret) ++ break; ++ } ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart) || ++ ret == READ_RETRY || ++ ret == READ_RETRY_AVOID) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ bch2_bkey_buf_exit(&sk, c); ++ ++ if (ret) { ++ bch_err_inum_offset_ratelimited(c, inum.inum, ++ bvec_iter.bi_sector << 9, ++ "read error %i from btree lookup", ret); ++ rbio->bio.bi_status = BLK_STS_IOERR; ++ bch2_rbio_done(rbio); ++ } ++} ++ ++void bch2_fs_io_read_exit(struct bch_fs *c) ++{ ++ if (c->promote_table.tbl) ++ rhashtable_destroy(&c->promote_table); ++ bioset_exit(&c->bio_read_split); ++ bioset_exit(&c->bio_read); ++} ++ ++int bch2_fs_io_read_init(struct bch_fs *c) ++{ ++ if (bioset_init(&c->bio_read, 1, offsetof(struct bch_read_bio, bio), ++ BIOSET_NEED_BVECS)) ++ return -BCH_ERR_ENOMEM_bio_read_init; ++ ++ if (bioset_init(&c->bio_read_split, 1, offsetof(struct bch_read_bio, bio), ++ BIOSET_NEED_BVECS)) ++ return -BCH_ERR_ENOMEM_bio_read_split_init; ++ ++ if (rhashtable_init(&c->promote_table, &bch_promote_params)) ++ return -BCH_ERR_ENOMEM_promote_table_init; ++ ++ return 0; ++} +diff --git a/fs/bcachefs/io_read.h b/fs/bcachefs/io_read.h +new file mode 100644 +index 000000000000..d9c18bb7d403 +--- /dev/null ++++ b/fs/bcachefs/io_read.h +@@ -0,0 +1,158 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_IO_READ_H ++#define _BCACHEFS_IO_READ_H ++ ++#include "bkey_buf.h" ++ ++struct bch_read_bio { ++ struct bch_fs *c; ++ u64 start_time; ++ u64 submit_time; ++ ++ /* ++ * Reads will often have to be split, and if the extent being read from ++ * was checksummed or compressed we'll also have to allocate bounce ++ * buffers and copy the data back into the original bio. ++ * ++ * If we didn't have to split, we have to save and restore the original ++ * bi_end_io - @split below indicates which: ++ */ ++ union { ++ struct bch_read_bio *parent; ++ bio_end_io_t *end_io; ++ }; ++ ++ /* ++ * Saved copy of bio->bi_iter, from submission time - allows us to ++ * resubmit on IO error, and also to copy data back to the original bio ++ * when we're bouncing: ++ */ ++ struct bvec_iter bvec_iter; ++ ++ unsigned offset_into_extent; ++ ++ u16 flags; ++ union { ++ struct { ++ u16 bounce:1, ++ split:1, ++ kmalloc:1, ++ have_ioref:1, ++ narrow_crcs:1, ++ hole:1, ++ retry:2, ++ context:2; ++ }; ++ u16 _state; ++ }; ++ ++ struct bch_devs_list devs_have; ++ ++ struct extent_ptr_decoded pick; ++ ++ /* ++ * pos we read from - different from data_pos for indirect extents: ++ */ ++ u32 subvol; ++ struct bpos read_pos; ++ ++ /* ++ * start pos of data we read (may not be pos of data we want) - for ++ * promote, narrow extents paths: ++ */ ++ enum btree_id data_btree; ++ struct bpos data_pos; ++ struct bversion version; ++ ++ struct promote_op *promote; ++ ++ struct bch_io_opts opts; ++ ++ struct work_struct work; ++ ++ struct bio bio; ++}; ++ ++#define to_rbio(_bio) container_of((_bio), struct bch_read_bio, bio) ++ ++struct bch_devs_mask; ++struct cache_promote_op; ++struct extent_ptr_decoded; ++ ++int __bch2_read_indirect_extent(struct btree_trans *, unsigned *, ++ struct bkey_buf *); ++ ++static inline int bch2_read_indirect_extent(struct btree_trans *trans, ++ enum btree_id *data_btree, ++ unsigned *offset_into_extent, ++ struct bkey_buf *k) ++{ ++ if (k->k->k.type != KEY_TYPE_reflink_p) ++ return 0; ++ ++ *data_btree = BTREE_ID_reflink; ++ return __bch2_read_indirect_extent(trans, offset_into_extent, k); ++} ++ ++enum bch_read_flags { ++ BCH_READ_RETRY_IF_STALE = 1 << 0, ++ BCH_READ_MAY_PROMOTE = 1 << 1, ++ BCH_READ_USER_MAPPED = 1 << 2, ++ BCH_READ_NODECODE = 1 << 3, ++ BCH_READ_LAST_FRAGMENT = 1 << 4, ++ ++ /* internal: */ ++ BCH_READ_MUST_BOUNCE = 1 << 5, ++ BCH_READ_MUST_CLONE = 1 << 6, ++ BCH_READ_IN_RETRY = 1 << 7, ++}; ++ ++int __bch2_read_extent(struct btree_trans *, struct bch_read_bio *, ++ struct bvec_iter, struct bpos, enum btree_id, ++ struct bkey_s_c, unsigned, ++ struct bch_io_failures *, unsigned); ++ ++static inline void bch2_read_extent(struct btree_trans *trans, ++ struct bch_read_bio *rbio, struct bpos read_pos, ++ enum btree_id data_btree, struct bkey_s_c k, ++ unsigned offset_into_extent, unsigned flags) ++{ ++ __bch2_read_extent(trans, rbio, rbio->bio.bi_iter, read_pos, ++ data_btree, k, offset_into_extent, NULL, flags); ++} ++ ++void __bch2_read(struct bch_fs *, struct bch_read_bio *, struct bvec_iter, ++ subvol_inum, struct bch_io_failures *, unsigned flags); ++ ++static inline void bch2_read(struct bch_fs *c, struct bch_read_bio *rbio, ++ subvol_inum inum) ++{ ++ struct bch_io_failures failed = { .nr = 0 }; ++ ++ BUG_ON(rbio->_state); ++ ++ rbio->c = c; ++ rbio->start_time = local_clock(); ++ rbio->subvol = inum.subvol; ++ ++ __bch2_read(c, rbio, rbio->bio.bi_iter, inum, &failed, ++ BCH_READ_RETRY_IF_STALE| ++ BCH_READ_MAY_PROMOTE| ++ BCH_READ_USER_MAPPED); ++} ++ ++static inline struct bch_read_bio *rbio_init(struct bio *bio, ++ struct bch_io_opts opts) ++{ ++ struct bch_read_bio *rbio = to_rbio(bio); ++ ++ rbio->_state = 0; ++ rbio->promote = NULL; ++ rbio->opts = opts; ++ return rbio; ++} ++ ++void bch2_fs_io_read_exit(struct bch_fs *); ++int bch2_fs_io_read_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_IO_READ_H */ +diff --git a/fs/bcachefs/io_write.c b/fs/bcachefs/io_write.c +new file mode 100644 +index 000000000000..6e4f85eb6ec8 +--- /dev/null ++++ b/fs/bcachefs/io_write.c +@@ -0,0 +1,1671 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_buf.h" ++#include "bset.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "clock.h" ++#include "compress.h" ++#include "debug.h" ++#include "ec.h" ++#include "error.h" ++#include "extent_update.h" ++#include "inode.h" ++#include "io_write.h" ++#include "journal.h" ++#include "keylist.h" ++#include "move.h" ++#include "nocow_locking.h" ++#include "rebalance.h" ++#include "subvolume.h" ++#include "super.h" ++#include "super-io.h" ++#include "trace.h" ++ ++#include ++#include ++#include ++#include ++ ++#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT ++ ++static inline void bch2_congested_acct(struct bch_dev *ca, u64 io_latency, ++ u64 now, int rw) ++{ ++ u64 latency_capable = ++ ca->io_latency[rw].quantiles.entries[QUANTILE_IDX(1)].m; ++ /* ideally we'd be taking into account the device's variance here: */ ++ u64 latency_threshold = latency_capable << (rw == READ ? 2 : 3); ++ s64 latency_over = io_latency - latency_threshold; ++ ++ if (latency_threshold && latency_over > 0) { ++ /* ++ * bump up congested by approximately latency_over * 4 / ++ * latency_threshold - we don't need much accuracy here so don't ++ * bother with the divide: ++ */ ++ if (atomic_read(&ca->congested) < CONGESTED_MAX) ++ atomic_add(latency_over >> ++ max_t(int, ilog2(latency_threshold) - 2, 0), ++ &ca->congested); ++ ++ ca->congested_last = now; ++ } else if (atomic_read(&ca->congested) > 0) { ++ atomic_dec(&ca->congested); ++ } ++} ++ ++void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) ++{ ++ atomic64_t *latency = &ca->cur_latency[rw]; ++ u64 now = local_clock(); ++ u64 io_latency = time_after64(now, submit_time) ++ ? now - submit_time ++ : 0; ++ u64 old, new, v = atomic64_read(latency); ++ ++ do { ++ old = v; ++ ++ /* ++ * If the io latency was reasonably close to the current ++ * latency, skip doing the update and atomic operation - most of ++ * the time: ++ */ ++ if (abs((int) (old - io_latency)) < (old >> 1) && ++ now & ~(~0U << 5)) ++ break; ++ ++ new = ewma_add(old, io_latency, 5); ++ } while ((v = atomic64_cmpxchg(latency, old, new)) != old); ++ ++ bch2_congested_acct(ca, io_latency, now, rw); ++ ++ __bch2_time_stats_update(&ca->io_latency[rw], submit_time, now); ++} ++ ++#endif ++ ++/* Allocate, free from mempool: */ ++ ++void bch2_bio_free_pages_pool(struct bch_fs *c, struct bio *bio) ++{ ++ struct bvec_iter_all iter; ++ struct bio_vec *bv; ++ ++ bio_for_each_segment_all(bv, bio, iter) ++ if (bv->bv_page != ZERO_PAGE(0)) ++ mempool_free(bv->bv_page, &c->bio_bounce_pages); ++ bio->bi_vcnt = 0; ++} ++ ++static struct page *__bio_alloc_page_pool(struct bch_fs *c, bool *using_mempool) ++{ ++ struct page *page; ++ ++ if (likely(!*using_mempool)) { ++ page = alloc_page(GFP_NOFS); ++ if (unlikely(!page)) { ++ mutex_lock(&c->bio_bounce_pages_lock); ++ *using_mempool = true; ++ goto pool_alloc; ++ ++ } ++ } else { ++pool_alloc: ++ page = mempool_alloc(&c->bio_bounce_pages, GFP_NOFS); ++ } ++ ++ return page; ++} ++ ++void bch2_bio_alloc_pages_pool(struct bch_fs *c, struct bio *bio, ++ size_t size) ++{ ++ bool using_mempool = false; ++ ++ while (size) { ++ struct page *page = __bio_alloc_page_pool(c, &using_mempool); ++ unsigned len = min_t(size_t, PAGE_SIZE, size); ++ ++ BUG_ON(!bio_add_page(bio, page, len, 0)); ++ size -= len; ++ } ++ ++ if (using_mempool) ++ mutex_unlock(&c->bio_bounce_pages_lock); ++} ++ ++/* Extent update path: */ ++ ++int bch2_sum_sector_overwrites(struct btree_trans *trans, ++ struct btree_iter *extent_iter, ++ struct bkey_i *new, ++ bool *usage_increasing, ++ s64 *i_sectors_delta, ++ s64 *disk_sectors_delta) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c old; ++ unsigned new_replicas = bch2_bkey_replicas(c, bkey_i_to_s_c(new)); ++ bool new_compressed = bch2_bkey_sectors_compressed(bkey_i_to_s_c(new)); ++ int ret = 0; ++ ++ *usage_increasing = false; ++ *i_sectors_delta = 0; ++ *disk_sectors_delta = 0; ++ ++ bch2_trans_copy_iter(&iter, extent_iter); ++ ++ for_each_btree_key_upto_continue_norestart(iter, ++ new->k.p, BTREE_ITER_SLOTS, old, ret) { ++ s64 sectors = min(new->k.p.offset, old.k->p.offset) - ++ max(bkey_start_offset(&new->k), ++ bkey_start_offset(old.k)); ++ ++ *i_sectors_delta += sectors * ++ (bkey_extent_is_allocation(&new->k) - ++ bkey_extent_is_allocation(old.k)); ++ ++ *disk_sectors_delta += sectors * bch2_bkey_nr_ptrs_allocated(bkey_i_to_s_c(new)); ++ *disk_sectors_delta -= new->k.p.snapshot == old.k->p.snapshot ++ ? sectors * bch2_bkey_nr_ptrs_fully_allocated(old) ++ : 0; ++ ++ if (!*usage_increasing && ++ (new->k.p.snapshot != old.k->p.snapshot || ++ new_replicas > bch2_bkey_replicas(c, old) || ++ (!new_compressed && bch2_bkey_sectors_compressed(old)))) ++ *usage_increasing = true; ++ ++ if (bkey_ge(old.k->p, new->k.p)) ++ break; ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static inline int bch2_extent_update_i_size_sectors(struct btree_trans *trans, ++ struct btree_iter *extent_iter, ++ u64 new_i_size, ++ s64 i_sectors_delta) ++{ ++ struct btree_iter iter; ++ struct bkey_i *k; ++ struct bkey_i_inode_v3 *inode; ++ unsigned inode_update_flags = BTREE_UPDATE_NOJOURNAL; ++ int ret; ++ ++ k = bch2_bkey_get_mut_noupdate(trans, &iter, BTREE_ID_inodes, ++ SPOS(0, ++ extent_iter->pos.inode, ++ extent_iter->snapshot), ++ BTREE_ITER_CACHED); ++ ret = PTR_ERR_OR_ZERO(k); ++ if (unlikely(ret)) ++ return ret; ++ ++ if (unlikely(k->k.type != KEY_TYPE_inode_v3)) { ++ k = bch2_inode_to_v3(trans, k); ++ ret = PTR_ERR_OR_ZERO(k); ++ if (unlikely(ret)) ++ goto err; ++ } ++ ++ inode = bkey_i_to_inode_v3(k); ++ ++ if (!(le64_to_cpu(inode->v.bi_flags) & BCH_INODE_I_SIZE_DIRTY) && ++ new_i_size > le64_to_cpu(inode->v.bi_size)) { ++ inode->v.bi_size = cpu_to_le64(new_i_size); ++ inode_update_flags = 0; ++ } ++ ++ if (i_sectors_delta) { ++ le64_add_cpu(&inode->v.bi_sectors, i_sectors_delta); ++ inode_update_flags = 0; ++ } ++ ++ if (inode->k.p.snapshot != iter.snapshot) { ++ inode->k.p.snapshot = iter.snapshot; ++ inode_update_flags = 0; ++ } ++ ++ ret = bch2_trans_update(trans, &iter, &inode->k_i, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE| ++ inode_update_flags); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_extent_update(struct btree_trans *trans, ++ subvol_inum inum, ++ struct btree_iter *iter, ++ struct bkey_i *k, ++ struct disk_reservation *disk_res, ++ u64 new_i_size, ++ s64 *i_sectors_delta_total, ++ bool check_enospc) ++{ ++ struct bpos next_pos; ++ bool usage_increasing; ++ s64 i_sectors_delta = 0, disk_sectors_delta = 0; ++ int ret; ++ ++ /* ++ * This traverses us the iterator without changing iter->path->pos to ++ * search_key() (which is pos + 1 for extents): we want there to be a ++ * path already traversed at iter->pos because ++ * bch2_trans_extent_update() will use it to attempt extent merging ++ */ ++ ret = __bch2_btree_iter_traverse(iter); ++ if (ret) ++ return ret; ++ ++ ret = bch2_extent_trim_atomic(trans, iter, k); ++ if (ret) ++ return ret; ++ ++ next_pos = k->k.p; ++ ++ ret = bch2_sum_sector_overwrites(trans, iter, k, ++ &usage_increasing, ++ &i_sectors_delta, ++ &disk_sectors_delta); ++ if (ret) ++ return ret; ++ ++ if (disk_res && ++ disk_sectors_delta > (s64) disk_res->sectors) { ++ ret = bch2_disk_reservation_add(trans->c, disk_res, ++ disk_sectors_delta - disk_res->sectors, ++ !check_enospc || !usage_increasing ++ ? BCH_DISK_RESERVATION_NOFAIL : 0); ++ if (ret) ++ return ret; ++ } ++ ++ /* ++ * Note: ++ * We always have to do an inode update - even when i_size/i_sectors ++ * aren't changing - for fsync to work properly; fsync relies on ++ * inode->bi_journal_seq which is updated by the trigger code: ++ */ ++ ret = bch2_extent_update_i_size_sectors(trans, iter, ++ min(k->k.p.offset << 9, new_i_size), ++ i_sectors_delta) ?: ++ bch2_trans_update(trans, iter, k, 0) ?: ++ bch2_trans_commit(trans, disk_res, NULL, ++ BTREE_INSERT_NOCHECK_RW| ++ BTREE_INSERT_NOFAIL); ++ if (unlikely(ret)) ++ return ret; ++ ++ if (i_sectors_delta_total) ++ *i_sectors_delta_total += i_sectors_delta; ++ bch2_btree_iter_set_pos(iter, next_pos); ++ return 0; ++} ++ ++static int bch2_write_index_default(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct bkey_buf sk; ++ struct keylist *keys = &op->insert_keys; ++ struct bkey_i *k = bch2_keylist_front(keys); ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ subvol_inum inum = { ++ .subvol = op->subvol, ++ .inum = k->k.p.inode, ++ }; ++ int ret; ++ ++ BUG_ON(!inum.subvol); ++ ++ bch2_bkey_buf_init(&sk); ++ ++ do { ++ bch2_trans_begin(trans); ++ ++ k = bch2_keylist_front(keys); ++ bch2_bkey_buf_copy(&sk, c, k); ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, ++ &sk.k->k.p.snapshot); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ break; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ bkey_start_pos(&sk.k->k), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ ++ ret = bch2_extent_update(trans, inum, &iter, sk.k, ++ &op->res, ++ op->new_i_size, &op->i_sectors_delta, ++ op->flags & BCH_WRITE_CHECK_ENOSPC); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ break; ++ ++ if (bkey_ge(iter.pos, k->k.p)) ++ bch2_keylist_pop_front(&op->insert_keys); ++ else ++ bch2_cut_front(iter.pos, k); ++ } while (!bch2_keylist_empty(keys)); ++ ++ bch2_trans_put(trans); ++ bch2_bkey_buf_exit(&sk, c); ++ ++ return ret; ++} ++ ++/* Writes */ ++ ++void bch2_submit_wbio_replicas(struct bch_write_bio *wbio, struct bch_fs *c, ++ enum bch_data_type type, ++ const struct bkey_i *k, ++ bool nocow) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); ++ const struct bch_extent_ptr *ptr; ++ struct bch_write_bio *n; ++ struct bch_dev *ca; ++ ++ BUG_ON(c->opts.nochanges); ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ BUG_ON(ptr->dev >= BCH_SB_MEMBERS_MAX || ++ !c->devs[ptr->dev]); ++ ++ ca = bch_dev_bkey_exists(c, ptr->dev); ++ ++ if (to_entry(ptr + 1) < ptrs.end) { ++ n = to_wbio(bio_alloc_clone(NULL, &wbio->bio, ++ GFP_NOFS, &ca->replica_set)); ++ ++ n->bio.bi_end_io = wbio->bio.bi_end_io; ++ n->bio.bi_private = wbio->bio.bi_private; ++ n->parent = wbio; ++ n->split = true; ++ n->bounce = false; ++ n->put_bio = true; ++ n->bio.bi_opf = wbio->bio.bi_opf; ++ bio_inc_remaining(&wbio->bio); ++ } else { ++ n = wbio; ++ n->split = false; ++ } ++ ++ n->c = c; ++ n->dev = ptr->dev; ++ n->have_ioref = nocow || bch2_dev_get_ioref(ca, ++ type == BCH_DATA_btree ? READ : WRITE); ++ n->nocow = nocow; ++ n->submit_time = local_clock(); ++ n->inode_offset = bkey_start_offset(&k->k); ++ n->bio.bi_iter.bi_sector = ptr->offset; ++ ++ if (likely(n->have_ioref)) { ++ this_cpu_add(ca->io_done->sectors[WRITE][type], ++ bio_sectors(&n->bio)); ++ ++ bio_set_dev(&n->bio, ca->disk_sb.bdev); ++ ++ if (type != BCH_DATA_btree && unlikely(c->opts.no_data_io)) { ++ bio_endio(&n->bio); ++ continue; ++ } ++ ++ submit_bio(&n->bio); ++ } else { ++ n->bio.bi_status = BLK_STS_REMOVED; ++ bio_endio(&n->bio); ++ } ++ } ++} ++ ++static void __bch2_write(struct bch_write_op *); ++ ++static void bch2_write_done(struct closure *cl) ++{ ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct bch_fs *c = op->c; ++ ++ EBUG_ON(op->open_buckets.nr); ++ ++ bch2_time_stats_update(&c->times[BCH_TIME_data_write], op->start_time); ++ bch2_disk_reservation_put(c, &op->res); ++ ++ if (!(op->flags & BCH_WRITE_MOVE)) ++ bch2_write_ref_put(c, BCH_WRITE_REF_write); ++ bch2_keylist_free(&op->insert_keys, op->inline_keys); ++ ++ EBUG_ON(cl->parent); ++ closure_debug_destroy(cl); ++ if (op->end_io) ++ op->end_io(op); ++} ++ ++static noinline int bch2_write_drop_io_error_ptrs(struct bch_write_op *op) ++{ ++ struct keylist *keys = &op->insert_keys; ++ struct bch_extent_ptr *ptr; ++ struct bkey_i *src, *dst = keys->keys, *n; ++ ++ for (src = keys->keys; src != keys->top; src = n) { ++ n = bkey_next(src); ++ ++ if (bkey_extent_is_direct_data(&src->k)) { ++ bch2_bkey_drop_ptrs(bkey_i_to_s(src), ptr, ++ test_bit(ptr->dev, op->failed.d)); ++ ++ if (!bch2_bkey_nr_ptrs(bkey_i_to_s_c(src))) ++ return -EIO; ++ } ++ ++ if (dst != src) ++ memmove_u64s_down(dst, src, src->k.u64s); ++ dst = bkey_next(dst); ++ } ++ ++ keys->top = dst; ++ return 0; ++} ++ ++/** ++ * __bch2_write_index - after a write, update index to point to new data ++ * @op: bch_write_op to process ++ */ ++static void __bch2_write_index(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct keylist *keys = &op->insert_keys; ++ struct bkey_i *k; ++ unsigned dev; ++ int ret = 0; ++ ++ if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { ++ ret = bch2_write_drop_io_error_ptrs(op); ++ if (ret) ++ goto err; ++ } ++ ++ /* ++ * probably not the ideal place to hook this in, but I don't ++ * particularly want to plumb io_opts all the way through the btree ++ * update stack right now ++ */ ++ for_each_keylist_key(keys, k) ++ bch2_rebalance_add_key(c, bkey_i_to_s_c(k), &op->opts); ++ ++ if (!bch2_keylist_empty(keys)) { ++ u64 sectors_start = keylist_sectors(keys); ++ ++ ret = !(op->flags & BCH_WRITE_MOVE) ++ ? bch2_write_index_default(op) ++ : bch2_data_update_index_update(op); ++ ++ BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); ++ BUG_ON(keylist_sectors(keys) && !ret); ++ ++ op->written += sectors_start - keylist_sectors(keys); ++ ++ if (ret && !bch2_err_matches(ret, EROFS)) { ++ struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); ++ ++ bch_err_inum_offset_ratelimited(c, ++ insert->k.p.inode, insert->k.p.offset << 9, ++ "write error while doing btree update: %s", ++ bch2_err_str(ret)); ++ } ++ ++ if (ret) ++ goto err; ++ } ++out: ++ /* If some a bucket wasn't written, we can't erasure code it: */ ++ for_each_set_bit(dev, op->failed.d, BCH_SB_MEMBERS_MAX) ++ bch2_open_bucket_write_error(c, &op->open_buckets, dev); ++ ++ bch2_open_buckets_put(c, &op->open_buckets); ++ return; ++err: ++ keys->top = keys->keys; ++ op->error = ret; ++ op->flags |= BCH_WRITE_DONE; ++ goto out; ++} ++ ++static inline void __wp_update_state(struct write_point *wp, enum write_point_state state) ++{ ++ if (state != wp->state) { ++ u64 now = ktime_get_ns(); ++ ++ if (wp->last_state_change && ++ time_after64(now, wp->last_state_change)) ++ wp->time[wp->state] += now - wp->last_state_change; ++ wp->state = state; ++ wp->last_state_change = now; ++ } ++} ++ ++static inline void wp_update_state(struct write_point *wp, bool running) ++{ ++ enum write_point_state state; ++ ++ state = running ? WRITE_POINT_running : ++ !list_empty(&wp->writes) ? WRITE_POINT_waiting_io ++ : WRITE_POINT_stopped; ++ ++ __wp_update_state(wp, state); ++} ++ ++static void bch2_write_index(struct closure *cl) ++{ ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct write_point *wp = op->wp; ++ struct workqueue_struct *wq = index_update_wq(op); ++ unsigned long flags; ++ ++ if ((op->flags & BCH_WRITE_DONE) && ++ (op->flags & BCH_WRITE_MOVE)) ++ bch2_bio_free_pages_pool(op->c, &op->wbio.bio); ++ ++ spin_lock_irqsave(&wp->writes_lock, flags); ++ if (wp->state == WRITE_POINT_waiting_io) ++ __wp_update_state(wp, WRITE_POINT_waiting_work); ++ list_add_tail(&op->wp_list, &wp->writes); ++ spin_unlock_irqrestore (&wp->writes_lock, flags); ++ ++ queue_work(wq, &wp->index_update_work); ++} ++ ++static inline void bch2_write_queue(struct bch_write_op *op, struct write_point *wp) ++{ ++ op->wp = wp; ++ ++ if (wp->state == WRITE_POINT_stopped) { ++ spin_lock_irq(&wp->writes_lock); ++ __wp_update_state(wp, WRITE_POINT_waiting_io); ++ spin_unlock_irq(&wp->writes_lock); ++ } ++} ++ ++void bch2_write_point_do_index_updates(struct work_struct *work) ++{ ++ struct write_point *wp = ++ container_of(work, struct write_point, index_update_work); ++ struct bch_write_op *op; ++ ++ while (1) { ++ spin_lock_irq(&wp->writes_lock); ++ op = list_first_entry_or_null(&wp->writes, struct bch_write_op, wp_list); ++ if (op) ++ list_del(&op->wp_list); ++ wp_update_state(wp, op != NULL); ++ spin_unlock_irq(&wp->writes_lock); ++ ++ if (!op) ++ break; ++ ++ op->flags |= BCH_WRITE_IN_WORKER; ++ ++ __bch2_write_index(op); ++ ++ if (!(op->flags & BCH_WRITE_DONE)) ++ __bch2_write(op); ++ else ++ bch2_write_done(&op->cl); ++ } ++} ++ ++static void bch2_write_endio(struct bio *bio) ++{ ++ struct closure *cl = bio->bi_private; ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct bch_write_bio *wbio = to_wbio(bio); ++ struct bch_write_bio *parent = wbio->split ? wbio->parent : NULL; ++ struct bch_fs *c = wbio->c; ++ struct bch_dev *ca = bch_dev_bkey_exists(c, wbio->dev); ++ ++ if (bch2_dev_inum_io_err_on(bio->bi_status, ca, ++ op->pos.inode, ++ wbio->inode_offset << 9, ++ "data write error: %s", ++ bch2_blk_status_to_str(bio->bi_status))) { ++ set_bit(wbio->dev, op->failed.d); ++ op->flags |= BCH_WRITE_IO_ERROR; ++ } ++ ++ if (wbio->nocow) ++ set_bit(wbio->dev, op->devs_need_flush->d); ++ ++ if (wbio->have_ioref) { ++ bch2_latency_acct(ca, wbio->submit_time, WRITE); ++ percpu_ref_put(&ca->io_ref); ++ } ++ ++ if (wbio->bounce) ++ bch2_bio_free_pages_pool(c, bio); ++ ++ if (wbio->put_bio) ++ bio_put(bio); ++ ++ if (parent) ++ bio_endio(&parent->bio); ++ else ++ closure_put(cl); ++} ++ ++static void init_append_extent(struct bch_write_op *op, ++ struct write_point *wp, ++ struct bversion version, ++ struct bch_extent_crc_unpacked crc) ++{ ++ struct bkey_i_extent *e; ++ ++ op->pos.offset += crc.uncompressed_size; ++ ++ e = bkey_extent_init(op->insert_keys.top); ++ e->k.p = op->pos; ++ e->k.size = crc.uncompressed_size; ++ e->k.version = version; ++ ++ if (crc.csum_type || ++ crc.compression_type || ++ crc.nonce) ++ bch2_extent_crc_append(&e->k_i, crc); ++ ++ bch2_alloc_sectors_append_ptrs_inlined(op->c, wp, &e->k_i, crc.compressed_size, ++ op->flags & BCH_WRITE_CACHED); ++ ++ bch2_keylist_push(&op->insert_keys); ++} ++ ++static struct bio *bch2_write_bio_alloc(struct bch_fs *c, ++ struct write_point *wp, ++ struct bio *src, ++ bool *page_alloc_failed, ++ void *buf) ++{ ++ struct bch_write_bio *wbio; ++ struct bio *bio; ++ unsigned output_available = ++ min(wp->sectors_free << 9, src->bi_iter.bi_size); ++ unsigned pages = DIV_ROUND_UP(output_available + ++ (buf ++ ? ((unsigned long) buf & (PAGE_SIZE - 1)) ++ : 0), PAGE_SIZE); ++ ++ pages = min(pages, BIO_MAX_VECS); ++ ++ bio = bio_alloc_bioset(NULL, pages, 0, ++ GFP_NOFS, &c->bio_write); ++ wbio = wbio_init(bio); ++ wbio->put_bio = true; ++ /* copy WRITE_SYNC flag */ ++ wbio->bio.bi_opf = src->bi_opf; ++ ++ if (buf) { ++ bch2_bio_map(bio, buf, output_available); ++ return bio; ++ } ++ ++ wbio->bounce = true; ++ ++ /* ++ * We can't use mempool for more than c->sb.encoded_extent_max ++ * worth of pages, but we'd like to allocate more if we can: ++ */ ++ bch2_bio_alloc_pages_pool(c, bio, ++ min_t(unsigned, output_available, ++ c->opts.encoded_extent_max)); ++ ++ if (bio->bi_iter.bi_size < output_available) ++ *page_alloc_failed = ++ bch2_bio_alloc_pages(bio, ++ output_available - ++ bio->bi_iter.bi_size, ++ GFP_NOFS) != 0; ++ ++ return bio; ++} ++ ++static int bch2_write_rechecksum(struct bch_fs *c, ++ struct bch_write_op *op, ++ unsigned new_csum_type) ++{ ++ struct bio *bio = &op->wbio.bio; ++ struct bch_extent_crc_unpacked new_crc; ++ int ret; ++ ++ /* bch2_rechecksum_bio() can't encrypt or decrypt data: */ ++ ++ if (bch2_csum_type_is_encryption(op->crc.csum_type) != ++ bch2_csum_type_is_encryption(new_csum_type)) ++ new_csum_type = op->crc.csum_type; ++ ++ ret = bch2_rechecksum_bio(c, bio, op->version, op->crc, ++ NULL, &new_crc, ++ op->crc.offset, op->crc.live_size, ++ new_csum_type); ++ if (ret) ++ return ret; ++ ++ bio_advance(bio, op->crc.offset << 9); ++ bio->bi_iter.bi_size = op->crc.live_size << 9; ++ op->crc = new_crc; ++ return 0; ++} ++ ++static int bch2_write_decrypt(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct nonce nonce = extent_nonce(op->version, op->crc); ++ struct bch_csum csum; ++ int ret; ++ ++ if (!bch2_csum_type_is_encryption(op->crc.csum_type)) ++ return 0; ++ ++ /* ++ * If we need to decrypt data in the write path, we'll no longer be able ++ * to verify the existing checksum (poly1305 mac, in this case) after ++ * it's decrypted - this is the last point we'll be able to reverify the ++ * checksum: ++ */ ++ csum = bch2_checksum_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); ++ if (bch2_crc_cmp(op->crc.csum, csum)) ++ return -EIO; ++ ++ ret = bch2_encrypt_bio(c, op->crc.csum_type, nonce, &op->wbio.bio); ++ op->crc.csum_type = 0; ++ op->crc.csum = (struct bch_csum) { 0, 0 }; ++ return ret; ++} ++ ++static enum prep_encoded_ret { ++ PREP_ENCODED_OK, ++ PREP_ENCODED_ERR, ++ PREP_ENCODED_CHECKSUM_ERR, ++ PREP_ENCODED_DO_WRITE, ++} bch2_write_prep_encoded_data(struct bch_write_op *op, struct write_point *wp) ++{ ++ struct bch_fs *c = op->c; ++ struct bio *bio = &op->wbio.bio; ++ ++ if (!(op->flags & BCH_WRITE_DATA_ENCODED)) ++ return PREP_ENCODED_OK; ++ ++ BUG_ON(bio_sectors(bio) != op->crc.compressed_size); ++ ++ /* Can we just write the entire extent as is? */ ++ if (op->crc.uncompressed_size == op->crc.live_size && ++ op->crc.compressed_size <= wp->sectors_free && ++ (op->crc.compression_type == bch2_compression_opt_to_type(op->compression_opt) || ++ op->incompressible)) { ++ if (!crc_is_compressed(op->crc) && ++ op->csum_type != op->crc.csum_type && ++ bch2_write_rechecksum(c, op, op->csum_type) && ++ !c->opts.no_data_io) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ return PREP_ENCODED_DO_WRITE; ++ } ++ ++ /* ++ * If the data is compressed and we couldn't write the entire extent as ++ * is, we have to decompress it: ++ */ ++ if (crc_is_compressed(op->crc)) { ++ struct bch_csum csum; ++ ++ if (bch2_write_decrypt(op)) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ /* Last point we can still verify checksum: */ ++ csum = bch2_checksum_bio(c, op->crc.csum_type, ++ extent_nonce(op->version, op->crc), ++ bio); ++ if (bch2_crc_cmp(op->crc.csum, csum) && !c->opts.no_data_io) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ if (bch2_bio_uncompress_inplace(c, bio, &op->crc)) ++ return PREP_ENCODED_ERR; ++ } ++ ++ /* ++ * No longer have compressed data after this point - data might be ++ * encrypted: ++ */ ++ ++ /* ++ * If the data is checksummed and we're only writing a subset, ++ * rechecksum and adjust bio to point to currently live data: ++ */ ++ if ((op->crc.live_size != op->crc.uncompressed_size || ++ op->crc.csum_type != op->csum_type) && ++ bch2_write_rechecksum(c, op, op->csum_type) && ++ !c->opts.no_data_io) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ /* ++ * If we want to compress the data, it has to be decrypted: ++ */ ++ if ((op->compression_opt || ++ bch2_csum_type_is_encryption(op->crc.csum_type) != ++ bch2_csum_type_is_encryption(op->csum_type)) && ++ bch2_write_decrypt(op)) ++ return PREP_ENCODED_CHECKSUM_ERR; ++ ++ return PREP_ENCODED_OK; ++} ++ ++static int bch2_write_extent(struct bch_write_op *op, struct write_point *wp, ++ struct bio **_dst) ++{ ++ struct bch_fs *c = op->c; ++ struct bio *src = &op->wbio.bio, *dst = src; ++ struct bvec_iter saved_iter; ++ void *ec_buf; ++ unsigned total_output = 0, total_input = 0; ++ bool bounce = false; ++ bool page_alloc_failed = false; ++ int ret, more = 0; ++ ++ BUG_ON(!bio_sectors(src)); ++ ++ ec_buf = bch2_writepoint_ec_buf(c, wp); ++ ++ switch (bch2_write_prep_encoded_data(op, wp)) { ++ case PREP_ENCODED_OK: ++ break; ++ case PREP_ENCODED_ERR: ++ ret = -EIO; ++ goto err; ++ case PREP_ENCODED_CHECKSUM_ERR: ++ goto csum_err; ++ case PREP_ENCODED_DO_WRITE: ++ /* XXX look for bug here */ ++ if (ec_buf) { ++ dst = bch2_write_bio_alloc(c, wp, src, ++ &page_alloc_failed, ++ ec_buf); ++ bio_copy_data(dst, src); ++ bounce = true; ++ } ++ init_append_extent(op, wp, op->version, op->crc); ++ goto do_write; ++ } ++ ++ if (ec_buf || ++ op->compression_opt || ++ (op->csum_type && ++ !(op->flags & BCH_WRITE_PAGES_STABLE)) || ++ (bch2_csum_type_is_encryption(op->csum_type) && ++ !(op->flags & BCH_WRITE_PAGES_OWNED))) { ++ dst = bch2_write_bio_alloc(c, wp, src, ++ &page_alloc_failed, ++ ec_buf); ++ bounce = true; ++ } ++ ++ saved_iter = dst->bi_iter; ++ ++ do { ++ struct bch_extent_crc_unpacked crc = { 0 }; ++ struct bversion version = op->version; ++ size_t dst_len = 0, src_len = 0; ++ ++ if (page_alloc_failed && ++ dst->bi_iter.bi_size < (wp->sectors_free << 9) && ++ dst->bi_iter.bi_size < c->opts.encoded_extent_max) ++ break; ++ ++ BUG_ON(op->compression_opt && ++ (op->flags & BCH_WRITE_DATA_ENCODED) && ++ bch2_csum_type_is_encryption(op->crc.csum_type)); ++ BUG_ON(op->compression_opt && !bounce); ++ ++ crc.compression_type = op->incompressible ++ ? BCH_COMPRESSION_TYPE_incompressible ++ : op->compression_opt ++ ? bch2_bio_compress(c, dst, &dst_len, src, &src_len, ++ op->compression_opt) ++ : 0; ++ if (!crc_is_compressed(crc)) { ++ dst_len = min(dst->bi_iter.bi_size, src->bi_iter.bi_size); ++ dst_len = min_t(unsigned, dst_len, wp->sectors_free << 9); ++ ++ if (op->csum_type) ++ dst_len = min_t(unsigned, dst_len, ++ c->opts.encoded_extent_max); ++ ++ if (bounce) { ++ swap(dst->bi_iter.bi_size, dst_len); ++ bio_copy_data(dst, src); ++ swap(dst->bi_iter.bi_size, dst_len); ++ } ++ ++ src_len = dst_len; ++ } ++ ++ BUG_ON(!src_len || !dst_len); ++ ++ if (bch2_csum_type_is_encryption(op->csum_type)) { ++ if (bversion_zero(version)) { ++ version.lo = atomic64_inc_return(&c->key_version); ++ } else { ++ crc.nonce = op->nonce; ++ op->nonce += src_len >> 9; ++ } ++ } ++ ++ if ((op->flags & BCH_WRITE_DATA_ENCODED) && ++ !crc_is_compressed(crc) && ++ bch2_csum_type_is_encryption(op->crc.csum_type) == ++ bch2_csum_type_is_encryption(op->csum_type)) { ++ u8 compression_type = crc.compression_type; ++ u16 nonce = crc.nonce; ++ /* ++ * Note: when we're using rechecksum(), we need to be ++ * checksumming @src because it has all the data our ++ * existing checksum covers - if we bounced (because we ++ * were trying to compress), @dst will only have the ++ * part of the data the new checksum will cover. ++ * ++ * But normally we want to be checksumming post bounce, ++ * because part of the reason for bouncing is so the ++ * data can't be modified (by userspace) while it's in ++ * flight. ++ */ ++ if (bch2_rechecksum_bio(c, src, version, op->crc, ++ &crc, &op->crc, ++ src_len >> 9, ++ bio_sectors(src) - (src_len >> 9), ++ op->csum_type)) ++ goto csum_err; ++ /* ++ * rchecksum_bio sets compression_type on crc from op->crc, ++ * this isn't always correct as sometimes we're changing ++ * an extent from uncompressed to incompressible. ++ */ ++ crc.compression_type = compression_type; ++ crc.nonce = nonce; ++ } else { ++ if ((op->flags & BCH_WRITE_DATA_ENCODED) && ++ bch2_rechecksum_bio(c, src, version, op->crc, ++ NULL, &op->crc, ++ src_len >> 9, ++ bio_sectors(src) - (src_len >> 9), ++ op->crc.csum_type)) ++ goto csum_err; ++ ++ crc.compressed_size = dst_len >> 9; ++ crc.uncompressed_size = src_len >> 9; ++ crc.live_size = src_len >> 9; ++ ++ swap(dst->bi_iter.bi_size, dst_len); ++ ret = bch2_encrypt_bio(c, op->csum_type, ++ extent_nonce(version, crc), dst); ++ if (ret) ++ goto err; ++ ++ crc.csum = bch2_checksum_bio(c, op->csum_type, ++ extent_nonce(version, crc), dst); ++ crc.csum_type = op->csum_type; ++ swap(dst->bi_iter.bi_size, dst_len); ++ } ++ ++ init_append_extent(op, wp, version, crc); ++ ++ if (dst != src) ++ bio_advance(dst, dst_len); ++ bio_advance(src, src_len); ++ total_output += dst_len; ++ total_input += src_len; ++ } while (dst->bi_iter.bi_size && ++ src->bi_iter.bi_size && ++ wp->sectors_free && ++ !bch2_keylist_realloc(&op->insert_keys, ++ op->inline_keys, ++ ARRAY_SIZE(op->inline_keys), ++ BKEY_EXTENT_U64s_MAX)); ++ ++ more = src->bi_iter.bi_size != 0; ++ ++ dst->bi_iter = saved_iter; ++ ++ if (dst == src && more) { ++ BUG_ON(total_output != total_input); ++ ++ dst = bio_split(src, total_input >> 9, ++ GFP_NOFS, &c->bio_write); ++ wbio_init(dst)->put_bio = true; ++ /* copy WRITE_SYNC flag */ ++ dst->bi_opf = src->bi_opf; ++ } ++ ++ dst->bi_iter.bi_size = total_output; ++do_write: ++ *_dst = dst; ++ return more; ++csum_err: ++ bch_err(c, "error verifying existing checksum while rewriting existing data (memory corruption?)"); ++ ret = -EIO; ++err: ++ if (to_wbio(dst)->bounce) ++ bch2_bio_free_pages_pool(c, dst); ++ if (to_wbio(dst)->put_bio) ++ bio_put(dst); ++ ++ return ret; ++} ++ ++static bool bch2_extent_is_writeable(struct bch_write_op *op, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = op->c; ++ struct bkey_s_c_extent e; ++ struct extent_ptr_decoded p; ++ const union bch_extent_entry *entry; ++ unsigned replicas = 0; ++ ++ if (k.k->type != KEY_TYPE_extent) ++ return false; ++ ++ e = bkey_s_c_to_extent(k); ++ extent_for_each_ptr_decode(e, p, entry) { ++ if (p.crc.csum_type || ++ crc_is_compressed(p.crc) || ++ p.has_ec) ++ return false; ++ ++ replicas += bch2_extent_ptr_durability(c, &p); ++ } ++ ++ return replicas >= op->opts.data_replicas; ++} ++ ++static inline void bch2_nocow_write_unlock(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ const struct bch_extent_ptr *ptr; ++ struct bkey_i *k; ++ ++ for_each_keylist_key(&op->insert_keys, k) { ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(bkey_i_to_s_c(k)); ++ ++ bkey_for_each_ptr(ptrs, ptr) ++ bch2_bucket_nocow_unlock(&c->nocow_locks, ++ PTR_BUCKET_POS(c, ptr), ++ BUCKET_NOCOW_LOCK_UPDATE); ++ } ++} ++ ++static int bch2_nocow_write_convert_one_unwritten(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i *orig, ++ struct bkey_s_c k, ++ u64 new_i_size) ++{ ++ struct bkey_i *new; ++ struct bkey_ptrs ptrs; ++ struct bch_extent_ptr *ptr; ++ int ret; ++ ++ if (!bch2_extents_match(bkey_i_to_s_c(orig), k)) { ++ /* trace this */ ++ return 0; ++ } ++ ++ new = bch2_bkey_make_mut_noupdate(trans, k); ++ ret = PTR_ERR_OR_ZERO(new); ++ if (ret) ++ return ret; ++ ++ bch2_cut_front(bkey_start_pos(&orig->k), new); ++ bch2_cut_back(orig->k.p, new); ++ ++ ptrs = bch2_bkey_ptrs(bkey_i_to_s(new)); ++ bkey_for_each_ptr(ptrs, ptr) ++ ptr->unwritten = 0; ++ ++ /* ++ * Note that we're not calling bch2_subvol_get_snapshot() in this path - ++ * that was done when we kicked off the write, and here it's important ++ * that we update the extent that we wrote to - even if a snapshot has ++ * since been created. The write is still outstanding, so we're ok ++ * w.r.t. snapshot atomicity: ++ */ ++ return bch2_extent_update_i_size_sectors(trans, iter, ++ min(new->k.p.offset << 9, new_i_size), 0) ?: ++ bch2_trans_update(trans, iter, new, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++} ++ ++static void bch2_nocow_write_convert_unwritten(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_i *orig; ++ struct bkey_s_c k; ++ int ret; ++ ++ for_each_keylist_key(&op->insert_keys, orig) { ++ ret = for_each_btree_key_upto_commit(trans, iter, BTREE_ID_extents, ++ bkey_start_pos(&orig->k), orig->k.p, ++ BTREE_ITER_INTENT, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL, ({ ++ bch2_nocow_write_convert_one_unwritten(trans, &iter, orig, k, op->new_i_size); ++ })); ++ ++ if (ret && !bch2_err_matches(ret, EROFS)) { ++ struct bkey_i *insert = bch2_keylist_front(&op->insert_keys); ++ ++ bch_err_inum_offset_ratelimited(c, ++ insert->k.p.inode, insert->k.p.offset << 9, ++ "write error while doing btree update: %s", ++ bch2_err_str(ret)); ++ } ++ ++ if (ret) { ++ op->error = ret; ++ break; ++ } ++ } ++ ++ bch2_trans_put(trans); ++} ++ ++static void __bch2_nocow_write_done(struct bch_write_op *op) ++{ ++ bch2_nocow_write_unlock(op); ++ ++ if (unlikely(op->flags & BCH_WRITE_IO_ERROR)) { ++ op->error = -EIO; ++ } else if (unlikely(op->flags & BCH_WRITE_CONVERT_UNWRITTEN)) ++ bch2_nocow_write_convert_unwritten(op); ++} ++ ++static void bch2_nocow_write_done(struct closure *cl) ++{ ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ ++ __bch2_nocow_write_done(op); ++ bch2_write_done(cl); ++} ++ ++static void bch2_nocow_write(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_ptrs_c ptrs; ++ const struct bch_extent_ptr *ptr; ++ struct { ++ struct bpos b; ++ unsigned gen; ++ struct nocow_lock_bucket *l; ++ } buckets[BCH_REPLICAS_MAX]; ++ unsigned nr_buckets = 0; ++ u32 snapshot; ++ int ret, i; ++ ++ if (op->flags & BCH_WRITE_MOVE) ++ return; ++ ++ trans = bch2_trans_get(c); ++retry: ++ bch2_trans_begin(trans); ++ ++ ret = bch2_subvolume_get_snapshot(trans, op->subvol, &snapshot); ++ if (unlikely(ret)) ++ goto err; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ SPOS(op->pos.inode, op->pos.offset, snapshot), ++ BTREE_ITER_SLOTS); ++ while (1) { ++ struct bio *bio = &op->wbio.bio; ++ ++ nr_buckets = 0; ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ break; ++ ++ /* fall back to normal cow write path? */ ++ if (unlikely(k.k->p.snapshot != snapshot || ++ !bch2_extent_is_writeable(op, k))) ++ break; ++ ++ if (bch2_keylist_realloc(&op->insert_keys, ++ op->inline_keys, ++ ARRAY_SIZE(op->inline_keys), ++ k.k->u64s)) ++ break; ++ ++ /* Get iorefs before dropping btree locks: */ ++ ptrs = bch2_bkey_ptrs_c(k); ++ bkey_for_each_ptr(ptrs, ptr) { ++ buckets[nr_buckets].b = PTR_BUCKET_POS(c, ptr); ++ buckets[nr_buckets].gen = ptr->gen; ++ buckets[nr_buckets].l = ++ bucket_nocow_lock(&c->nocow_locks, ++ bucket_to_u64(buckets[nr_buckets].b)); ++ ++ prefetch(buckets[nr_buckets].l); ++ ++ if (unlikely(!bch2_dev_get_ioref(bch_dev_bkey_exists(c, ptr->dev), WRITE))) ++ goto err_get_ioref; ++ ++ nr_buckets++; ++ ++ if (ptr->unwritten) ++ op->flags |= BCH_WRITE_CONVERT_UNWRITTEN; ++ } ++ ++ /* Unlock before taking nocow locks, doing IO: */ ++ bkey_reassemble(op->insert_keys.top, k); ++ bch2_trans_unlock(trans); ++ ++ bch2_cut_front(op->pos, op->insert_keys.top); ++ if (op->flags & BCH_WRITE_CONVERT_UNWRITTEN) ++ bch2_cut_back(POS(op->pos.inode, op->pos.offset + bio_sectors(bio)), op->insert_keys.top); ++ ++ for (i = 0; i < nr_buckets; i++) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, buckets[i].b.inode); ++ struct nocow_lock_bucket *l = buckets[i].l; ++ bool stale; ++ ++ __bch2_bucket_nocow_lock(&c->nocow_locks, l, ++ bucket_to_u64(buckets[i].b), ++ BUCKET_NOCOW_LOCK_UPDATE); ++ ++ rcu_read_lock(); ++ stale = gen_after(*bucket_gen(ca, buckets[i].b.offset), buckets[i].gen); ++ rcu_read_unlock(); ++ ++ if (unlikely(stale)) ++ goto err_bucket_stale; ++ } ++ ++ bio = &op->wbio.bio; ++ if (k.k->p.offset < op->pos.offset + bio_sectors(bio)) { ++ bio = bio_split(bio, k.k->p.offset - op->pos.offset, ++ GFP_KERNEL, &c->bio_write); ++ wbio_init(bio)->put_bio = true; ++ bio->bi_opf = op->wbio.bio.bi_opf; ++ } else { ++ op->flags |= BCH_WRITE_DONE; ++ } ++ ++ op->pos.offset += bio_sectors(bio); ++ op->written += bio_sectors(bio); ++ ++ bio->bi_end_io = bch2_write_endio; ++ bio->bi_private = &op->cl; ++ bio->bi_opf |= REQ_OP_WRITE; ++ closure_get(&op->cl); ++ bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, ++ op->insert_keys.top, true); ++ ++ bch2_keylist_push(&op->insert_keys); ++ if (op->flags & BCH_WRITE_DONE) ++ break; ++ bch2_btree_iter_advance(&iter); ++ } ++out: ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ if (ret) { ++ bch_err_inum_offset_ratelimited(c, ++ op->pos.inode, ++ op->pos.offset << 9, ++ "%s: btree lookup error %s", ++ __func__, bch2_err_str(ret)); ++ op->error = ret; ++ op->flags |= BCH_WRITE_DONE; ++ } ++ ++ bch2_trans_put(trans); ++ ++ /* fallback to cow write path? */ ++ if (!(op->flags & BCH_WRITE_DONE)) { ++ closure_sync(&op->cl); ++ __bch2_nocow_write_done(op); ++ op->insert_keys.top = op->insert_keys.keys; ++ } else if (op->flags & BCH_WRITE_SYNC) { ++ closure_sync(&op->cl); ++ bch2_nocow_write_done(&op->cl); ++ } else { ++ /* ++ * XXX ++ * needs to run out of process context because ei_quota_lock is ++ * a mutex ++ */ ++ continue_at(&op->cl, bch2_nocow_write_done, index_update_wq(op)); ++ } ++ return; ++err_get_ioref: ++ for (i = 0; i < nr_buckets; i++) ++ percpu_ref_put(&bch_dev_bkey_exists(c, buckets[i].b.inode)->io_ref); ++ ++ /* Fall back to COW path: */ ++ goto out; ++err_bucket_stale: ++ while (i >= 0) { ++ bch2_bucket_nocow_unlock(&c->nocow_locks, ++ buckets[i].b, ++ BUCKET_NOCOW_LOCK_UPDATE); ++ --i; ++ } ++ for (i = 0; i < nr_buckets; i++) ++ percpu_ref_put(&bch_dev_bkey_exists(c, buckets[i].b.inode)->io_ref); ++ ++ /* We can retry this: */ ++ ret = -BCH_ERR_transaction_restart; ++ goto out; ++} ++ ++static void __bch2_write(struct bch_write_op *op) ++{ ++ struct bch_fs *c = op->c; ++ struct write_point *wp = NULL; ++ struct bio *bio = NULL; ++ unsigned nofs_flags; ++ int ret; ++ ++ nofs_flags = memalloc_nofs_save(); ++ ++ if (unlikely(op->opts.nocow && c->opts.nocow_enabled)) { ++ bch2_nocow_write(op); ++ if (op->flags & BCH_WRITE_DONE) ++ goto out_nofs_restore; ++ } ++again: ++ memset(&op->failed, 0, sizeof(op->failed)); ++ ++ do { ++ struct bkey_i *key_to_write; ++ unsigned key_to_write_offset = op->insert_keys.top_p - ++ op->insert_keys.keys_p; ++ ++ /* +1 for possible cache device: */ ++ if (op->open_buckets.nr + op->nr_replicas + 1 > ++ ARRAY_SIZE(op->open_buckets.v)) ++ break; ++ ++ if (bch2_keylist_realloc(&op->insert_keys, ++ op->inline_keys, ++ ARRAY_SIZE(op->inline_keys), ++ BKEY_EXTENT_U64s_MAX)) ++ break; ++ ++ /* ++ * The copygc thread is now global, which means it's no longer ++ * freeing up space on specific disks, which means that ++ * allocations for specific disks may hang arbitrarily long: ++ */ ++ ret = bch2_trans_do(c, NULL, NULL, 0, ++ bch2_alloc_sectors_start_trans(trans, ++ op->target, ++ op->opts.erasure_code && !(op->flags & BCH_WRITE_CACHED), ++ op->write_point, ++ &op->devs_have, ++ op->nr_replicas, ++ op->nr_replicas_required, ++ op->watermark, ++ op->flags, ++ (op->flags & (BCH_WRITE_ALLOC_NOWAIT| ++ BCH_WRITE_ONLY_SPECIFIED_DEVS)) ++ ? NULL : &op->cl, &wp)); ++ if (unlikely(ret)) { ++ if (bch2_err_matches(ret, BCH_ERR_operation_blocked)) ++ break; ++ ++ goto err; ++ } ++ ++ EBUG_ON(!wp); ++ ++ bch2_open_bucket_get(c, wp, &op->open_buckets); ++ ret = bch2_write_extent(op, wp, &bio); ++ ++ bch2_alloc_sectors_done_inlined(c, wp); ++err: ++ if (ret <= 0) { ++ op->flags |= BCH_WRITE_DONE; ++ ++ if (ret < 0) { ++ op->error = ret; ++ break; ++ } ++ } ++ ++ bio->bi_end_io = bch2_write_endio; ++ bio->bi_private = &op->cl; ++ bio->bi_opf |= REQ_OP_WRITE; ++ ++ closure_get(bio->bi_private); ++ ++ key_to_write = (void *) (op->insert_keys.keys_p + ++ key_to_write_offset); ++ ++ bch2_submit_wbio_replicas(to_wbio(bio), c, BCH_DATA_user, ++ key_to_write, false); ++ } while (ret); ++ ++ /* ++ * Sync or no? ++ * ++ * If we're running asynchronously, wne may still want to block ++ * synchronously here if we weren't able to submit all of the IO at ++ * once, as that signals backpressure to the caller. ++ */ ++ if ((op->flags & BCH_WRITE_SYNC) || ++ (!(op->flags & BCH_WRITE_DONE) && ++ !(op->flags & BCH_WRITE_IN_WORKER))) { ++ closure_sync(&op->cl); ++ __bch2_write_index(op); ++ ++ if (!(op->flags & BCH_WRITE_DONE)) ++ goto again; ++ bch2_write_done(&op->cl); ++ } else { ++ bch2_write_queue(op, wp); ++ continue_at(&op->cl, bch2_write_index, NULL); ++ } ++out_nofs_restore: ++ memalloc_nofs_restore(nofs_flags); ++} ++ ++static void bch2_write_data_inline(struct bch_write_op *op, unsigned data_len) ++{ ++ struct bio *bio = &op->wbio.bio; ++ struct bvec_iter iter; ++ struct bkey_i_inline_data *id; ++ unsigned sectors; ++ int ret; ++ ++ op->flags |= BCH_WRITE_WROTE_DATA_INLINE; ++ op->flags |= BCH_WRITE_DONE; ++ ++ bch2_check_set_feature(op->c, BCH_FEATURE_inline_data); ++ ++ ret = bch2_keylist_realloc(&op->insert_keys, op->inline_keys, ++ ARRAY_SIZE(op->inline_keys), ++ BKEY_U64s + DIV_ROUND_UP(data_len, 8)); ++ if (ret) { ++ op->error = ret; ++ goto err; ++ } ++ ++ sectors = bio_sectors(bio); ++ op->pos.offset += sectors; ++ ++ id = bkey_inline_data_init(op->insert_keys.top); ++ id->k.p = op->pos; ++ id->k.version = op->version; ++ id->k.size = sectors; ++ ++ iter = bio->bi_iter; ++ iter.bi_size = data_len; ++ memcpy_from_bio(id->v.data, bio, iter); ++ ++ while (data_len & 7) ++ id->v.data[data_len++] = '\0'; ++ set_bkey_val_bytes(&id->k, data_len); ++ bch2_keylist_push(&op->insert_keys); ++ ++ __bch2_write_index(op); ++err: ++ bch2_write_done(&op->cl); ++} ++ ++/** ++ * bch2_write() - handle a write to a cache device or flash only volume ++ * @cl: &bch_write_op->cl ++ * ++ * This is the starting point for any data to end up in a cache device; it could ++ * be from a normal write, or a writeback write, or a write to a flash only ++ * volume - it's also used by the moving garbage collector to compact data in ++ * mostly empty buckets. ++ * ++ * It first writes the data to the cache, creating a list of keys to be inserted ++ * (if the data won't fit in a single open bucket, there will be multiple keys); ++ * after the data is written it calls bch_journal, and after the keys have been ++ * added to the next journal write they're inserted into the btree. ++ * ++ * If op->discard is true, instead of inserting the data it invalidates the ++ * region of the cache represented by op->bio and op->inode. ++ */ ++void bch2_write(struct closure *cl) ++{ ++ struct bch_write_op *op = container_of(cl, struct bch_write_op, cl); ++ struct bio *bio = &op->wbio.bio; ++ struct bch_fs *c = op->c; ++ unsigned data_len; ++ ++ EBUG_ON(op->cl.parent); ++ BUG_ON(!op->nr_replicas); ++ BUG_ON(!op->write_point.v); ++ BUG_ON(bkey_eq(op->pos, POS_MAX)); ++ ++ op->start_time = local_clock(); ++ bch2_keylist_init(&op->insert_keys, op->inline_keys); ++ wbio_init(bio)->put_bio = false; ++ ++ if (bio->bi_iter.bi_size & (c->opts.block_size - 1)) { ++ bch_err_inum_offset_ratelimited(c, ++ op->pos.inode, ++ op->pos.offset << 9, ++ "misaligned write"); ++ op->error = -EIO; ++ goto err; ++ } ++ ++ if (c->opts.nochanges) { ++ op->error = -BCH_ERR_erofs_no_writes; ++ goto err; ++ } ++ ++ if (!(op->flags & BCH_WRITE_MOVE) && ++ !bch2_write_ref_tryget(c, BCH_WRITE_REF_write)) { ++ op->error = -BCH_ERR_erofs_no_writes; ++ goto err; ++ } ++ ++ this_cpu_add(c->counters[BCH_COUNTER_io_write], bio_sectors(bio)); ++ bch2_increment_clock(c, bio_sectors(bio), WRITE); ++ ++ data_len = min_t(u64, bio->bi_iter.bi_size, ++ op->new_i_size - (op->pos.offset << 9)); ++ ++ if (c->opts.inline_data && ++ data_len <= min(block_bytes(c) / 2, 1024U)) { ++ bch2_write_data_inline(op, data_len); ++ return; ++ } ++ ++ __bch2_write(op); ++ return; ++err: ++ bch2_disk_reservation_put(c, &op->res); ++ ++ closure_debug_destroy(&op->cl); ++ if (op->end_io) ++ op->end_io(op); ++} ++ ++static const char * const bch2_write_flags[] = { ++#define x(f) #f, ++ BCH_WRITE_FLAGS() ++#undef x ++ NULL ++}; ++ ++void bch2_write_op_to_text(struct printbuf *out, struct bch_write_op *op) ++{ ++ prt_str(out, "pos: "); ++ bch2_bpos_to_text(out, op->pos); ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ ++ prt_str(out, "started: "); ++ bch2_pr_time_units(out, local_clock() - op->start_time); ++ prt_newline(out); ++ ++ prt_str(out, "flags: "); ++ prt_bitflags(out, bch2_write_flags, op->flags); ++ prt_newline(out); ++ ++ prt_printf(out, "ref: %u", closure_nr_remaining(&op->cl)); ++ prt_newline(out); ++ ++ printbuf_indent_sub(out, 2); ++} ++ ++void bch2_fs_io_write_exit(struct bch_fs *c) ++{ ++ mempool_exit(&c->bio_bounce_pages); ++ bioset_exit(&c->bio_write); ++} ++ ++int bch2_fs_io_write_init(struct bch_fs *c) ++{ ++ if (bioset_init(&c->bio_write, 1, offsetof(struct bch_write_bio, bio), ++ BIOSET_NEED_BVECS)) ++ return -BCH_ERR_ENOMEM_bio_write_init; ++ ++ if (mempool_init_page_pool(&c->bio_bounce_pages, ++ max_t(unsigned, ++ c->opts.btree_node_size, ++ c->opts.encoded_extent_max) / ++ PAGE_SIZE, 0)) ++ return -BCH_ERR_ENOMEM_bio_bounce_pages_init; ++ ++ return 0; ++} +diff --git a/fs/bcachefs/io_write.h b/fs/bcachefs/io_write.h +new file mode 100644 +index 000000000000..9323167229ee +--- /dev/null ++++ b/fs/bcachefs/io_write.h +@@ -0,0 +1,110 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_IO_WRITE_H ++#define _BCACHEFS_IO_WRITE_H ++ ++#include "checksum.h" ++#include "io_write_types.h" ++ ++#define to_wbio(_bio) \ ++ container_of((_bio), struct bch_write_bio, bio) ++ ++void bch2_bio_free_pages_pool(struct bch_fs *, struct bio *); ++void bch2_bio_alloc_pages_pool(struct bch_fs *, struct bio *, size_t); ++ ++#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT ++void bch2_latency_acct(struct bch_dev *, u64, int); ++#else ++static inline void bch2_latency_acct(struct bch_dev *ca, u64 submit_time, int rw) {} ++#endif ++ ++void bch2_submit_wbio_replicas(struct bch_write_bio *, struct bch_fs *, ++ enum bch_data_type, const struct bkey_i *, bool); ++ ++#define BCH_WRITE_FLAGS() \ ++ x(ALLOC_NOWAIT) \ ++ x(CACHED) \ ++ x(DATA_ENCODED) \ ++ x(PAGES_STABLE) \ ++ x(PAGES_OWNED) \ ++ x(ONLY_SPECIFIED_DEVS) \ ++ x(WROTE_DATA_INLINE) \ ++ x(FROM_INTERNAL) \ ++ x(CHECK_ENOSPC) \ ++ x(SYNC) \ ++ x(MOVE) \ ++ x(IN_WORKER) \ ++ x(DONE) \ ++ x(IO_ERROR) \ ++ x(CONVERT_UNWRITTEN) ++ ++enum __bch_write_flags { ++#define x(f) __BCH_WRITE_##f, ++ BCH_WRITE_FLAGS() ++#undef x ++}; ++ ++enum bch_write_flags { ++#define x(f) BCH_WRITE_##f = BIT(__BCH_WRITE_##f), ++ BCH_WRITE_FLAGS() ++#undef x ++}; ++ ++static inline struct workqueue_struct *index_update_wq(struct bch_write_op *op) ++{ ++ return op->watermark == BCH_WATERMARK_copygc ++ ? op->c->copygc_wq ++ : op->c->btree_update_wq; ++} ++ ++int bch2_sum_sector_overwrites(struct btree_trans *, struct btree_iter *, ++ struct bkey_i *, bool *, s64 *, s64 *); ++int bch2_extent_update(struct btree_trans *, subvol_inum, ++ struct btree_iter *, struct bkey_i *, ++ struct disk_reservation *, u64, s64 *, bool); ++ ++static inline void bch2_write_op_init(struct bch_write_op *op, struct bch_fs *c, ++ struct bch_io_opts opts) ++{ ++ op->c = c; ++ op->end_io = NULL; ++ op->flags = 0; ++ op->written = 0; ++ op->error = 0; ++ op->csum_type = bch2_data_checksum_type(c, opts); ++ op->compression_opt = opts.compression; ++ op->nr_replicas = 0; ++ op->nr_replicas_required = c->opts.data_replicas_required; ++ op->watermark = BCH_WATERMARK_normal; ++ op->incompressible = 0; ++ op->open_buckets.nr = 0; ++ op->devs_have.nr = 0; ++ op->target = 0; ++ op->opts = opts; ++ op->subvol = 0; ++ op->pos = POS_MAX; ++ op->version = ZERO_VERSION; ++ op->write_point = (struct write_point_specifier) { 0 }; ++ op->res = (struct disk_reservation) { 0 }; ++ op->new_i_size = U64_MAX; ++ op->i_sectors_delta = 0; ++ op->devs_need_flush = NULL; ++} ++ ++void bch2_write(struct closure *); ++ ++void bch2_write_point_do_index_updates(struct work_struct *); ++ ++static inline struct bch_write_bio *wbio_init(struct bio *bio) ++{ ++ struct bch_write_bio *wbio = to_wbio(bio); ++ ++ memset(&wbio->wbio, 0, sizeof(wbio->wbio)); ++ return wbio; ++} ++ ++void bch2_write_op_to_text(struct printbuf *, struct bch_write_op *); ++ ++void bch2_fs_io_write_exit(struct bch_fs *); ++int bch2_fs_io_write_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_IO_WRITE_H */ +diff --git a/fs/bcachefs/io_write_types.h b/fs/bcachefs/io_write_types.h +new file mode 100644 +index 000000000000..c7f97c2c4805 +--- /dev/null ++++ b/fs/bcachefs/io_write_types.h +@@ -0,0 +1,96 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_IO_WRITE_TYPES_H ++#define _BCACHEFS_IO_WRITE_TYPES_H ++ ++#include "alloc_types.h" ++#include "btree_types.h" ++#include "buckets_types.h" ++#include "extents_types.h" ++#include "keylist_types.h" ++#include "opts.h" ++#include "super_types.h" ++ ++#include ++#include ++ ++struct bch_write_bio { ++ struct_group(wbio, ++ struct bch_fs *c; ++ struct bch_write_bio *parent; ++ ++ u64 submit_time; ++ u64 inode_offset; ++ ++ struct bch_devs_list failed; ++ u8 dev; ++ ++ unsigned split:1, ++ bounce:1, ++ put_bio:1, ++ have_ioref:1, ++ nocow:1, ++ used_mempool:1, ++ first_btree_write:1; ++ ); ++ ++ struct bio bio; ++}; ++ ++struct bch_write_op { ++ struct closure cl; ++ struct bch_fs *c; ++ void (*end_io)(struct bch_write_op *); ++ u64 start_time; ++ ++ unsigned written; /* sectors */ ++ u16 flags; ++ s16 error; /* dio write path expects it to hold -ERESTARTSYS... */ ++ ++ unsigned compression_opt:8; ++ unsigned csum_type:4; ++ unsigned nr_replicas:4; ++ unsigned nr_replicas_required:4; ++ unsigned watermark:3; ++ unsigned incompressible:1; ++ unsigned stripe_waited:1; ++ ++ struct bch_devs_list devs_have; ++ u16 target; ++ u16 nonce; ++ struct bch_io_opts opts; ++ ++ u32 subvol; ++ struct bpos pos; ++ struct bversion version; ++ ++ /* For BCH_WRITE_DATA_ENCODED: */ ++ struct bch_extent_crc_unpacked crc; ++ ++ struct write_point_specifier write_point; ++ ++ struct write_point *wp; ++ struct list_head wp_list; ++ ++ struct disk_reservation res; ++ ++ struct open_buckets open_buckets; ++ ++ u64 new_i_size; ++ s64 i_sectors_delta; ++ ++ struct bch_devs_mask failed; ++ ++ struct keylist insert_keys; ++ u64 inline_keys[BKEY_EXTENT_U64s_MAX * 2]; ++ ++ /* ++ * Bitmask of devices that have had nocow writes issued to them since ++ * last flush: ++ */ ++ struct bch_devs_mask *devs_need_flush; ++ ++ /* Must be last: */ ++ struct bch_write_bio wbio; ++}; ++ ++#endif /* _BCACHEFS_IO_WRITE_TYPES_H */ +diff --git a/fs/bcachefs/journal.c b/fs/bcachefs/journal.c +new file mode 100644 +index 000000000000..0e7a9ffa3671 +--- /dev/null ++++ b/fs/bcachefs/journal.c +@@ -0,0 +1,1449 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * bcachefs journalling code, for btree insertions ++ * ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "bkey_methods.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "error.h" ++#include "journal.h" ++#include "journal_io.h" ++#include "journal_reclaim.h" ++#include "journal_sb.h" ++#include "journal_seq_blacklist.h" ++#include "trace.h" ++ ++static const char * const bch2_journal_errors[] = { ++#define x(n) #n, ++ JOURNAL_ERRORS() ++#undef x ++ NULL ++}; ++ ++static inline bool journal_seq_unwritten(struct journal *j, u64 seq) ++{ ++ return seq > j->seq_ondisk; ++} ++ ++static bool __journal_entry_is_open(union journal_res_state state) ++{ ++ return state.cur_entry_offset < JOURNAL_ENTRY_CLOSED_VAL; ++} ++ ++static inline unsigned nr_unwritten_journal_entries(struct journal *j) ++{ ++ return atomic64_read(&j->seq) - j->seq_ondisk; ++} ++ ++static bool journal_entry_is_open(struct journal *j) ++{ ++ return __journal_entry_is_open(j->reservations); ++} ++ ++static inline struct journal_buf * ++journal_seq_to_buf(struct journal *j, u64 seq) ++{ ++ struct journal_buf *buf = NULL; ++ ++ EBUG_ON(seq > journal_cur_seq(j)); ++ ++ if (journal_seq_unwritten(j, seq)) { ++ buf = j->buf + (seq & JOURNAL_BUF_MASK); ++ EBUG_ON(le64_to_cpu(buf->data->seq) != seq); ++ } ++ return buf; ++} ++ ++static void journal_pin_list_init(struct journal_entry_pin_list *p, int count) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(p->list); i++) ++ INIT_LIST_HEAD(&p->list[i]); ++ INIT_LIST_HEAD(&p->flushed); ++ atomic_set(&p->count, count); ++ p->devs.nr = 0; ++} ++ ++/* ++ * Detect stuck journal conditions and trigger shutdown. Technically the journal ++ * can end up stuck for a variety of reasons, such as a blocked I/O, journal ++ * reservation lockup, etc. Since this is a fatal error with potentially ++ * unpredictable characteristics, we want to be fairly conservative before we ++ * decide to shut things down. ++ * ++ * Consider the journal stuck when it appears full with no ability to commit ++ * btree transactions, to discard journal buckets, nor acquire priority ++ * (reserved watermark) reservation. ++ */ ++static inline bool ++journal_error_check_stuck(struct journal *j, int error, unsigned flags) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ bool stuck = false; ++ struct printbuf buf = PRINTBUF; ++ ++ if (!(error == JOURNAL_ERR_journal_full || ++ error == JOURNAL_ERR_journal_pin_full) || ++ nr_unwritten_journal_entries(j) || ++ (flags & BCH_WATERMARK_MASK) != BCH_WATERMARK_reclaim) ++ return stuck; ++ ++ spin_lock(&j->lock); ++ ++ if (j->can_discard) { ++ spin_unlock(&j->lock); ++ return stuck; ++ } ++ ++ stuck = true; ++ ++ /* ++ * The journal shutdown path will set ->err_seq, but do it here first to ++ * serialize against concurrent failures and avoid duplicate error ++ * reports. ++ */ ++ if (j->err_seq) { ++ spin_unlock(&j->lock); ++ return stuck; ++ } ++ j->err_seq = journal_cur_seq(j); ++ spin_unlock(&j->lock); ++ ++ bch_err(c, "Journal stuck! Hava a pre-reservation but journal full (error %s)", ++ bch2_journal_errors[error]); ++ bch2_journal_debug_to_text(&buf, j); ++ bch_err(c, "%s", buf.buf); ++ ++ printbuf_reset(&buf); ++ bch2_journal_pins_to_text(&buf, j); ++ bch_err(c, "Journal pins:\n%s", buf.buf); ++ printbuf_exit(&buf); ++ ++ bch2_fatal_error(c); ++ dump_stack(); ++ ++ return stuck; ++} ++ ++/* ++ * Final processing when the last reference of a journal buffer has been ++ * dropped. Drop the pin list reference acquired at journal entry open and write ++ * the buffer, if requested. ++ */ ++void bch2_journal_buf_put_final(struct journal *j, u64 seq, bool write) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ ++ lockdep_assert_held(&j->lock); ++ ++ if (__bch2_journal_pin_put(j, seq)) ++ bch2_journal_reclaim_fast(j); ++ if (write) ++ closure_call(&j->io, bch2_journal_write, c->io_complete_wq, NULL); ++} ++ ++/* ++ * Returns true if journal entry is now closed: ++ * ++ * We don't close a journal_buf until the next journal_buf is finished writing, ++ * and can be opened again - this also initializes the next journal_buf: ++ */ ++static void __journal_entry_close(struct journal *j, unsigned closed_val) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_buf *buf = journal_cur_buf(j); ++ union journal_res_state old, new; ++ u64 v = atomic64_read(&j->reservations.counter); ++ unsigned sectors; ++ ++ BUG_ON(closed_val != JOURNAL_ENTRY_CLOSED_VAL && ++ closed_val != JOURNAL_ENTRY_ERROR_VAL); ++ ++ lockdep_assert_held(&j->lock); ++ ++ do { ++ old.v = new.v = v; ++ new.cur_entry_offset = closed_val; ++ ++ if (old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL || ++ old.cur_entry_offset == new.cur_entry_offset) ++ return; ++ } while ((v = atomic64_cmpxchg(&j->reservations.counter, ++ old.v, new.v)) != old.v); ++ ++ if (!__journal_entry_is_open(old)) ++ return; ++ ++ /* Close out old buffer: */ ++ buf->data->u64s = cpu_to_le32(old.cur_entry_offset); ++ ++ sectors = vstruct_blocks_plus(buf->data, c->block_bits, ++ buf->u64s_reserved) << c->block_bits; ++ BUG_ON(sectors > buf->sectors); ++ buf->sectors = sectors; ++ ++ /* ++ * We have to set last_seq here, _before_ opening a new journal entry: ++ * ++ * A threads may replace an old pin with a new pin on their current ++ * journal reservation - the expectation being that the journal will ++ * contain either what the old pin protected or what the new pin ++ * protects. ++ * ++ * After the old pin is dropped journal_last_seq() won't include the old ++ * pin, so we can only write the updated last_seq on the entry that ++ * contains whatever the new pin protects. ++ * ++ * Restated, we can _not_ update last_seq for a given entry if there ++ * could be a newer entry open with reservations/pins that have been ++ * taken against it. ++ * ++ * Hence, we want update/set last_seq on the current journal entry right ++ * before we open a new one: ++ */ ++ buf->last_seq = journal_last_seq(j); ++ buf->data->last_seq = cpu_to_le64(buf->last_seq); ++ BUG_ON(buf->last_seq > le64_to_cpu(buf->data->seq)); ++ ++ cancel_delayed_work(&j->write_work); ++ ++ bch2_journal_space_available(j); ++ ++ __bch2_journal_buf_put(j, old.idx, le64_to_cpu(buf->data->seq)); ++} ++ ++void bch2_journal_halt(struct journal *j) ++{ ++ spin_lock(&j->lock); ++ __journal_entry_close(j, JOURNAL_ENTRY_ERROR_VAL); ++ if (!j->err_seq) ++ j->err_seq = journal_cur_seq(j); ++ journal_wake(j); ++ spin_unlock(&j->lock); ++} ++ ++static bool journal_entry_want_write(struct journal *j) ++{ ++ bool ret = !journal_entry_is_open(j) || ++ journal_cur_seq(j) == journal_last_unwritten_seq(j); ++ ++ /* Don't close it yet if we already have a write in flight: */ ++ if (ret) ++ __journal_entry_close(j, JOURNAL_ENTRY_CLOSED_VAL); ++ else if (nr_unwritten_journal_entries(j)) { ++ struct journal_buf *buf = journal_cur_buf(j); ++ ++ if (!buf->flush_time) { ++ buf->flush_time = local_clock() ?: 1; ++ buf->expires = jiffies; ++ } ++ } ++ ++ return ret; ++} ++ ++static bool journal_entry_close(struct journal *j) ++{ ++ bool ret; ++ ++ spin_lock(&j->lock); ++ ret = journal_entry_want_write(j); ++ spin_unlock(&j->lock); ++ ++ return ret; ++} ++ ++/* ++ * should _only_ called from journal_res_get() - when we actually want a ++ * journal reservation - journal entry is open means journal is dirty: ++ */ ++static int journal_entry_open(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_buf *buf = j->buf + ++ ((journal_cur_seq(j) + 1) & JOURNAL_BUF_MASK); ++ union journal_res_state old, new; ++ int u64s; ++ u64 v; ++ ++ lockdep_assert_held(&j->lock); ++ BUG_ON(journal_entry_is_open(j)); ++ BUG_ON(BCH_SB_CLEAN(c->disk_sb.sb)); ++ ++ if (j->blocked) ++ return JOURNAL_ERR_blocked; ++ ++ if (j->cur_entry_error) ++ return j->cur_entry_error; ++ ++ if (bch2_journal_error(j)) ++ return JOURNAL_ERR_insufficient_devices; /* -EROFS */ ++ ++ if (!fifo_free(&j->pin)) ++ return JOURNAL_ERR_journal_pin_full; ++ ++ if (nr_unwritten_journal_entries(j) == ARRAY_SIZE(j->buf)) ++ return JOURNAL_ERR_max_in_flight; ++ ++ BUG_ON(!j->cur_entry_sectors); ++ ++ buf->expires = ++ (journal_cur_seq(j) == j->flushed_seq_ondisk ++ ? jiffies ++ : j->last_flush_write) + ++ msecs_to_jiffies(c->opts.journal_flush_delay); ++ ++ buf->u64s_reserved = j->entry_u64s_reserved; ++ buf->disk_sectors = j->cur_entry_sectors; ++ buf->sectors = min(buf->disk_sectors, buf->buf_size >> 9); ++ ++ u64s = (int) (buf->sectors << 9) / sizeof(u64) - ++ journal_entry_overhead(j); ++ u64s = clamp_t(int, u64s, 0, JOURNAL_ENTRY_CLOSED_VAL - 1); ++ ++ if (u64s <= (ssize_t) j->early_journal_entries.nr) ++ return JOURNAL_ERR_journal_full; ++ ++ if (fifo_empty(&j->pin) && j->reclaim_thread) ++ wake_up_process(j->reclaim_thread); ++ ++ /* ++ * The fifo_push() needs to happen at the same time as j->seq is ++ * incremented for journal_last_seq() to be calculated correctly ++ */ ++ atomic64_inc(&j->seq); ++ journal_pin_list_init(fifo_push_ref(&j->pin), 1); ++ ++ BUG_ON(j->buf + (journal_cur_seq(j) & JOURNAL_BUF_MASK) != buf); ++ ++ bkey_extent_init(&buf->key); ++ buf->noflush = false; ++ buf->must_flush = false; ++ buf->separate_flush = false; ++ buf->flush_time = 0; ++ ++ memset(buf->data, 0, sizeof(*buf->data)); ++ buf->data->seq = cpu_to_le64(journal_cur_seq(j)); ++ buf->data->u64s = 0; ++ ++ if (j->early_journal_entries.nr) { ++ memcpy(buf->data->_data, j->early_journal_entries.data, ++ j->early_journal_entries.nr * sizeof(u64)); ++ le32_add_cpu(&buf->data->u64s, j->early_journal_entries.nr); ++ } ++ ++ /* ++ * Must be set before marking the journal entry as open: ++ */ ++ j->cur_entry_u64s = u64s; ++ ++ v = atomic64_read(&j->reservations.counter); ++ do { ++ old.v = new.v = v; ++ ++ BUG_ON(old.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL); ++ ++ new.idx++; ++ BUG_ON(journal_state_count(new, new.idx)); ++ BUG_ON(new.idx != (journal_cur_seq(j) & JOURNAL_BUF_MASK)); ++ ++ journal_state_inc(&new); ++ ++ /* Handle any already added entries */ ++ new.cur_entry_offset = le32_to_cpu(buf->data->u64s); ++ } while ((v = atomic64_cmpxchg(&j->reservations.counter, ++ old.v, new.v)) != old.v); ++ ++ if (j->res_get_blocked_start) ++ bch2_time_stats_update(j->blocked_time, ++ j->res_get_blocked_start); ++ j->res_get_blocked_start = 0; ++ ++ mod_delayed_work(c->io_complete_wq, ++ &j->write_work, ++ msecs_to_jiffies(c->opts.journal_flush_delay)); ++ journal_wake(j); ++ ++ if (j->early_journal_entries.nr) ++ darray_exit(&j->early_journal_entries); ++ return 0; ++} ++ ++static bool journal_quiesced(struct journal *j) ++{ ++ bool ret = atomic64_read(&j->seq) == j->seq_ondisk; ++ ++ if (!ret) ++ journal_entry_close(j); ++ return ret; ++} ++ ++static void journal_quiesce(struct journal *j) ++{ ++ wait_event(j->wait, journal_quiesced(j)); ++} ++ ++static void journal_write_work(struct work_struct *work) ++{ ++ struct journal *j = container_of(work, struct journal, write_work.work); ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ long delta; ++ ++ spin_lock(&j->lock); ++ if (!__journal_entry_is_open(j->reservations)) ++ goto unlock; ++ ++ delta = journal_cur_buf(j)->expires - jiffies; ++ ++ if (delta > 0) ++ mod_delayed_work(c->io_complete_wq, &j->write_work, delta); ++ else ++ __journal_entry_close(j, JOURNAL_ENTRY_CLOSED_VAL); ++unlock: ++ spin_unlock(&j->lock); ++} ++ ++static int __journal_res_get(struct journal *j, struct journal_res *res, ++ unsigned flags) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_buf *buf; ++ bool can_discard; ++ int ret; ++retry: ++ if (journal_res_get_fast(j, res, flags)) ++ return 0; ++ ++ if (bch2_journal_error(j)) ++ return -BCH_ERR_erofs_journal_err; ++ ++ spin_lock(&j->lock); ++ ++ /* check once more in case somebody else shut things down... */ ++ if (bch2_journal_error(j)) { ++ spin_unlock(&j->lock); ++ return -BCH_ERR_erofs_journal_err; ++ } ++ ++ /* ++ * Recheck after taking the lock, so we don't race with another thread ++ * that just did journal_entry_open() and call journal_entry_close() ++ * unnecessarily ++ */ ++ if (journal_res_get_fast(j, res, flags)) { ++ spin_unlock(&j->lock); ++ return 0; ++ } ++ ++ if ((flags & BCH_WATERMARK_MASK) < j->watermark) { ++ /* ++ * Don't want to close current journal entry, just need to ++ * invoke reclaim: ++ */ ++ ret = JOURNAL_ERR_journal_full; ++ goto unlock; ++ } ++ ++ /* ++ * If we couldn't get a reservation because the current buf filled up, ++ * and we had room for a bigger entry on disk, signal that we want to ++ * realloc the journal bufs: ++ */ ++ buf = journal_cur_buf(j); ++ if (journal_entry_is_open(j) && ++ buf->buf_size >> 9 < buf->disk_sectors && ++ buf->buf_size < JOURNAL_ENTRY_SIZE_MAX) ++ j->buf_size_want = max(j->buf_size_want, buf->buf_size << 1); ++ ++ __journal_entry_close(j, JOURNAL_ENTRY_CLOSED_VAL); ++ ret = journal_entry_open(j); ++ ++ if (ret == JOURNAL_ERR_max_in_flight) ++ trace_and_count(c, journal_entry_full, c); ++unlock: ++ if ((ret && ret != JOURNAL_ERR_insufficient_devices) && ++ !j->res_get_blocked_start) { ++ j->res_get_blocked_start = local_clock() ?: 1; ++ trace_and_count(c, journal_full, c); ++ } ++ ++ can_discard = j->can_discard; ++ spin_unlock(&j->lock); ++ ++ if (!ret) ++ goto retry; ++ if (journal_error_check_stuck(j, ret, flags)) ++ ret = -BCH_ERR_journal_res_get_blocked; ++ ++ /* ++ * Journal is full - can't rely on reclaim from work item due to ++ * freezing: ++ */ ++ if ((ret == JOURNAL_ERR_journal_full || ++ ret == JOURNAL_ERR_journal_pin_full) && ++ !(flags & JOURNAL_RES_GET_NONBLOCK)) { ++ if (can_discard) { ++ bch2_journal_do_discards(j); ++ goto retry; ++ } ++ ++ if (mutex_trylock(&j->reclaim_lock)) { ++ bch2_journal_reclaim(j); ++ mutex_unlock(&j->reclaim_lock); ++ } ++ } ++ ++ return ret == JOURNAL_ERR_insufficient_devices ++ ? -BCH_ERR_erofs_journal_err ++ : -BCH_ERR_journal_res_get_blocked; ++} ++ ++/* ++ * Essentially the entry function to the journaling code. When bcachefs is doing ++ * a btree insert, it calls this function to get the current journal write. ++ * Journal write is the structure used set up journal writes. The calling ++ * function will then add its keys to the structure, queuing them for the next ++ * write. ++ * ++ * To ensure forward progress, the current task must not be holding any ++ * btree node write locks. ++ */ ++int bch2_journal_res_get_slowpath(struct journal *j, struct journal_res *res, ++ unsigned flags) ++{ ++ int ret; ++ ++ closure_wait_event(&j->async_wait, ++ (ret = __journal_res_get(j, res, flags)) != -BCH_ERR_journal_res_get_blocked || ++ (flags & JOURNAL_RES_GET_NONBLOCK)); ++ return ret; ++} ++ ++/* journal_preres: */ ++ ++static bool journal_preres_available(struct journal *j, ++ struct journal_preres *res, ++ unsigned new_u64s, ++ unsigned flags) ++{ ++ bool ret = bch2_journal_preres_get_fast(j, res, new_u64s, flags, true); ++ ++ if (!ret && mutex_trylock(&j->reclaim_lock)) { ++ bch2_journal_reclaim(j); ++ mutex_unlock(&j->reclaim_lock); ++ } ++ ++ return ret; ++} ++ ++int __bch2_journal_preres_get(struct journal *j, ++ struct journal_preres *res, ++ unsigned new_u64s, ++ unsigned flags) ++{ ++ int ret; ++ ++ closure_wait_event(&j->preres_wait, ++ (ret = bch2_journal_error(j)) || ++ journal_preres_available(j, res, new_u64s, flags)); ++ return ret; ++} ++ ++/* journal_entry_res: */ ++ ++void bch2_journal_entry_res_resize(struct journal *j, ++ struct journal_entry_res *res, ++ unsigned new_u64s) ++{ ++ union journal_res_state state; ++ int d = new_u64s - res->u64s; ++ ++ spin_lock(&j->lock); ++ ++ j->entry_u64s_reserved += d; ++ if (d <= 0) ++ goto out; ++ ++ j->cur_entry_u64s = max_t(int, 0, j->cur_entry_u64s - d); ++ smp_mb(); ++ state = READ_ONCE(j->reservations); ++ ++ if (state.cur_entry_offset < JOURNAL_ENTRY_CLOSED_VAL && ++ state.cur_entry_offset > j->cur_entry_u64s) { ++ j->cur_entry_u64s += d; ++ /* ++ * Not enough room in current journal entry, have to flush it: ++ */ ++ __journal_entry_close(j, JOURNAL_ENTRY_CLOSED_VAL); ++ } else { ++ journal_cur_buf(j)->u64s_reserved += d; ++ } ++out: ++ spin_unlock(&j->lock); ++ res->u64s += d; ++} ++ ++/* journal flushing: */ ++ ++/** ++ * bch2_journal_flush_seq_async - wait for a journal entry to be written ++ * @j: journal object ++ * @seq: seq to flush ++ * @parent: closure object to wait with ++ * Returns: 1 if @seq has already been flushed, 0 if @seq is being flushed, ++ * -EIO if @seq will never be flushed ++ * ++ * Like bch2_journal_wait_on_seq, except that it triggers a write immediately if ++ * necessary ++ */ ++int bch2_journal_flush_seq_async(struct journal *j, u64 seq, ++ struct closure *parent) ++{ ++ struct journal_buf *buf; ++ int ret = 0; ++ ++ if (seq <= j->flushed_seq_ondisk) ++ return 1; ++ ++ spin_lock(&j->lock); ++ ++ if (WARN_ONCE(seq > journal_cur_seq(j), ++ "requested to flush journal seq %llu, but currently at %llu", ++ seq, journal_cur_seq(j))) ++ goto out; ++ ++ /* Recheck under lock: */ ++ if (j->err_seq && seq >= j->err_seq) { ++ ret = -EIO; ++ goto out; ++ } ++ ++ if (seq <= j->flushed_seq_ondisk) { ++ ret = 1; ++ goto out; ++ } ++ ++ /* if seq was written, but not flushed - flush a newer one instead */ ++ seq = max(seq, journal_last_unwritten_seq(j)); ++ ++recheck_need_open: ++ if (seq > journal_cur_seq(j)) { ++ struct journal_res res = { 0 }; ++ ++ if (journal_entry_is_open(j)) ++ __journal_entry_close(j, JOURNAL_ENTRY_CLOSED_VAL); ++ ++ spin_unlock(&j->lock); ++ ++ ret = bch2_journal_res_get(j, &res, jset_u64s(0), 0); ++ if (ret) ++ return ret; ++ ++ seq = res.seq; ++ buf = j->buf + (seq & JOURNAL_BUF_MASK); ++ buf->must_flush = true; ++ ++ if (!buf->flush_time) { ++ buf->flush_time = local_clock() ?: 1; ++ buf->expires = jiffies; ++ } ++ ++ if (parent && !closure_wait(&buf->wait, parent)) ++ BUG(); ++ ++ bch2_journal_res_put(j, &res); ++ ++ spin_lock(&j->lock); ++ goto want_write; ++ } ++ ++ /* ++ * if write was kicked off without a flush, flush the next sequence ++ * number instead ++ */ ++ buf = journal_seq_to_buf(j, seq); ++ if (buf->noflush) { ++ seq++; ++ goto recheck_need_open; ++ } ++ ++ buf->must_flush = true; ++ ++ if (parent && !closure_wait(&buf->wait, parent)) ++ BUG(); ++want_write: ++ if (seq == journal_cur_seq(j)) ++ journal_entry_want_write(j); ++out: ++ spin_unlock(&j->lock); ++ return ret; ++} ++ ++int bch2_journal_flush_seq(struct journal *j, u64 seq) ++{ ++ u64 start_time = local_clock(); ++ int ret, ret2; ++ ++ /* ++ * Don't update time_stats when @seq is already flushed: ++ */ ++ if (seq <= j->flushed_seq_ondisk) ++ return 0; ++ ++ ret = wait_event_interruptible(j->wait, (ret2 = bch2_journal_flush_seq_async(j, seq, NULL))); ++ ++ if (!ret) ++ bch2_time_stats_update(j->flush_seq_time, start_time); ++ ++ return ret ?: ret2 < 0 ? ret2 : 0; ++} ++ ++/* ++ * bch2_journal_flush_async - if there is an open journal entry, or a journal ++ * still being written, write it and wait for the write to complete ++ */ ++void bch2_journal_flush_async(struct journal *j, struct closure *parent) ++{ ++ bch2_journal_flush_seq_async(j, atomic64_read(&j->seq), parent); ++} ++ ++int bch2_journal_flush(struct journal *j) ++{ ++ return bch2_journal_flush_seq(j, atomic64_read(&j->seq)); ++} ++ ++/* ++ * bch2_journal_noflush_seq - tell the journal not to issue any flushes before ++ * @seq ++ */ ++bool bch2_journal_noflush_seq(struct journal *j, u64 seq) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ u64 unwritten_seq; ++ bool ret = false; ++ ++ if (!(c->sb.features & (1ULL << BCH_FEATURE_journal_no_flush))) ++ return false; ++ ++ if (seq <= c->journal.flushed_seq_ondisk) ++ return false; ++ ++ spin_lock(&j->lock); ++ if (seq <= c->journal.flushed_seq_ondisk) ++ goto out; ++ ++ for (unwritten_seq = journal_last_unwritten_seq(j); ++ unwritten_seq < seq; ++ unwritten_seq++) { ++ struct journal_buf *buf = journal_seq_to_buf(j, unwritten_seq); ++ ++ /* journal write is already in flight, and was a flush write: */ ++ if (unwritten_seq == journal_last_unwritten_seq(j) && !buf->noflush) ++ goto out; ++ ++ buf->noflush = true; ++ } ++ ++ ret = true; ++out: ++ spin_unlock(&j->lock); ++ return ret; ++} ++ ++int bch2_journal_meta(struct journal *j) ++{ ++ struct journal_buf *buf; ++ struct journal_res res; ++ int ret; ++ ++ memset(&res, 0, sizeof(res)); ++ ++ ret = bch2_journal_res_get(j, &res, jset_u64s(0), 0); ++ if (ret) ++ return ret; ++ ++ buf = j->buf + (res.seq & JOURNAL_BUF_MASK); ++ buf->must_flush = true; ++ ++ if (!buf->flush_time) { ++ buf->flush_time = local_clock() ?: 1; ++ buf->expires = jiffies; ++ } ++ ++ bch2_journal_res_put(j, &res); ++ ++ return bch2_journal_flush_seq(j, res.seq); ++} ++ ++/* block/unlock the journal: */ ++ ++void bch2_journal_unblock(struct journal *j) ++{ ++ spin_lock(&j->lock); ++ j->blocked--; ++ spin_unlock(&j->lock); ++ ++ journal_wake(j); ++} ++ ++void bch2_journal_block(struct journal *j) ++{ ++ spin_lock(&j->lock); ++ j->blocked++; ++ spin_unlock(&j->lock); ++ ++ journal_quiesce(j); ++} ++ ++/* allocate journal on a device: */ ++ ++static int __bch2_set_nr_journal_buckets(struct bch_dev *ca, unsigned nr, ++ bool new_fs, struct closure *cl) ++{ ++ struct bch_fs *c = ca->fs; ++ struct journal_device *ja = &ca->journal; ++ u64 *new_bucket_seq = NULL, *new_buckets = NULL; ++ struct open_bucket **ob = NULL; ++ long *bu = NULL; ++ unsigned i, pos, nr_got = 0, nr_want = nr - ja->nr; ++ int ret = 0; ++ ++ BUG_ON(nr <= ja->nr); ++ ++ bu = kcalloc(nr_want, sizeof(*bu), GFP_KERNEL); ++ ob = kcalloc(nr_want, sizeof(*ob), GFP_KERNEL); ++ new_buckets = kcalloc(nr, sizeof(u64), GFP_KERNEL); ++ new_bucket_seq = kcalloc(nr, sizeof(u64), GFP_KERNEL); ++ if (!bu || !ob || !new_buckets || !new_bucket_seq) { ++ ret = -BCH_ERR_ENOMEM_set_nr_journal_buckets; ++ goto err_free; ++ } ++ ++ for (nr_got = 0; nr_got < nr_want; nr_got++) { ++ if (new_fs) { ++ bu[nr_got] = bch2_bucket_alloc_new_fs(ca); ++ if (bu[nr_got] < 0) { ++ ret = -BCH_ERR_ENOSPC_bucket_alloc; ++ break; ++ } ++ } else { ++ ob[nr_got] = bch2_bucket_alloc(c, ca, BCH_WATERMARK_normal, cl); ++ ret = PTR_ERR_OR_ZERO(ob[nr_got]); ++ if (ret) ++ break; ++ ++ ret = bch2_trans_run(c, ++ bch2_trans_mark_metadata_bucket(trans, ca, ++ ob[nr_got]->bucket, BCH_DATA_journal, ++ ca->mi.bucket_size)); ++ if (ret) { ++ bch2_open_bucket_put(c, ob[nr_got]); ++ bch_err_msg(c, ret, "marking new journal buckets"); ++ break; ++ } ++ ++ bu[nr_got] = ob[nr_got]->bucket; ++ } ++ } ++ ++ if (!nr_got) ++ goto err_free; ++ ++ /* Don't return an error if we successfully allocated some buckets: */ ++ ret = 0; ++ ++ if (c) { ++ bch2_journal_flush_all_pins(&c->journal); ++ bch2_journal_block(&c->journal); ++ mutex_lock(&c->sb_lock); ++ } ++ ++ memcpy(new_buckets, ja->buckets, ja->nr * sizeof(u64)); ++ memcpy(new_bucket_seq, ja->bucket_seq, ja->nr * sizeof(u64)); ++ ++ BUG_ON(ja->discard_idx > ja->nr); ++ ++ pos = ja->discard_idx ?: ja->nr; ++ ++ memmove(new_buckets + pos + nr_got, ++ new_buckets + pos, ++ sizeof(new_buckets[0]) * (ja->nr - pos)); ++ memmove(new_bucket_seq + pos + nr_got, ++ new_bucket_seq + pos, ++ sizeof(new_bucket_seq[0]) * (ja->nr - pos)); ++ ++ for (i = 0; i < nr_got; i++) { ++ new_buckets[pos + i] = bu[i]; ++ new_bucket_seq[pos + i] = 0; ++ } ++ ++ nr = ja->nr + nr_got; ++ ++ ret = bch2_journal_buckets_to_sb(c, ca, new_buckets, nr); ++ if (ret) ++ goto err_unblock; ++ ++ if (!new_fs) ++ bch2_write_super(c); ++ ++ /* Commit: */ ++ if (c) ++ spin_lock(&c->journal.lock); ++ ++ swap(new_buckets, ja->buckets); ++ swap(new_bucket_seq, ja->bucket_seq); ++ ja->nr = nr; ++ ++ if (pos <= ja->discard_idx) ++ ja->discard_idx = (ja->discard_idx + nr_got) % ja->nr; ++ if (pos <= ja->dirty_idx_ondisk) ++ ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + nr_got) % ja->nr; ++ if (pos <= ja->dirty_idx) ++ ja->dirty_idx = (ja->dirty_idx + nr_got) % ja->nr; ++ if (pos <= ja->cur_idx) ++ ja->cur_idx = (ja->cur_idx + nr_got) % ja->nr; ++ ++ if (c) ++ spin_unlock(&c->journal.lock); ++err_unblock: ++ if (c) { ++ bch2_journal_unblock(&c->journal); ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ if (ret && !new_fs) ++ for (i = 0; i < nr_got; i++) ++ bch2_trans_run(c, ++ bch2_trans_mark_metadata_bucket(trans, ca, ++ bu[i], BCH_DATA_free, 0)); ++err_free: ++ if (!new_fs) ++ for (i = 0; i < nr_got; i++) ++ bch2_open_bucket_put(c, ob[i]); ++ ++ kfree(new_bucket_seq); ++ kfree(new_buckets); ++ kfree(ob); ++ kfree(bu); ++ return ret; ++} ++ ++/* ++ * Allocate more journal space at runtime - not currently making use if it, but ++ * the code works: ++ */ ++int bch2_set_nr_journal_buckets(struct bch_fs *c, struct bch_dev *ca, ++ unsigned nr) ++{ ++ struct journal_device *ja = &ca->journal; ++ struct closure cl; ++ int ret = 0; ++ ++ closure_init_stack(&cl); ++ ++ down_write(&c->state_lock); ++ ++ /* don't handle reducing nr of buckets yet: */ ++ if (nr < ja->nr) ++ goto unlock; ++ ++ while (ja->nr < nr) { ++ struct disk_reservation disk_res = { 0, 0, 0 }; ++ ++ /* ++ * note: journal buckets aren't really counted as _sectors_ used yet, so ++ * we don't need the disk reservation to avoid the BUG_ON() in buckets.c ++ * when space used goes up without a reservation - but we do need the ++ * reservation to ensure we'll actually be able to allocate: ++ * ++ * XXX: that's not right, disk reservations only ensure a ++ * filesystem-wide allocation will succeed, this is a device ++ * specific allocation - we can hang here: ++ */ ++ ++ ret = bch2_disk_reservation_get(c, &disk_res, ++ bucket_to_sector(ca, nr - ja->nr), 1, 0); ++ if (ret) ++ break; ++ ++ ret = __bch2_set_nr_journal_buckets(ca, nr, false, &cl); ++ ++ bch2_disk_reservation_put(c, &disk_res); ++ ++ closure_sync(&cl); ++ ++ if (ret && ret != -BCH_ERR_bucket_alloc_blocked) ++ break; ++ } ++ ++ if (ret) ++ bch_err_fn(c, ret); ++unlock: ++ up_write(&c->state_lock); ++ return ret; ++} ++ ++int bch2_dev_journal_alloc(struct bch_dev *ca) ++{ ++ unsigned nr; ++ int ret; ++ ++ if (dynamic_fault("bcachefs:add:journal_alloc")) { ++ ret = -BCH_ERR_ENOMEM_set_nr_journal_buckets; ++ goto err; ++ } ++ ++ /* 1/128th of the device by default: */ ++ nr = ca->mi.nbuckets >> 7; ++ ++ /* ++ * clamp journal size to 8192 buckets or 8GB (in sectors), whichever ++ * is smaller: ++ */ ++ nr = clamp_t(unsigned, nr, ++ BCH_JOURNAL_BUCKETS_MIN, ++ min(1 << 13, ++ (1 << 24) / ca->mi.bucket_size)); ++ ++ ret = __bch2_set_nr_journal_buckets(ca, nr, true, NULL); ++err: ++ if (ret) ++ bch_err_fn(ca, ret); ++ return ret; ++} ++ ++/* startup/shutdown: */ ++ ++static bool bch2_journal_writing_to_device(struct journal *j, unsigned dev_idx) ++{ ++ bool ret = false; ++ u64 seq; ++ ++ spin_lock(&j->lock); ++ for (seq = journal_last_unwritten_seq(j); ++ seq <= journal_cur_seq(j) && !ret; ++ seq++) { ++ struct journal_buf *buf = journal_seq_to_buf(j, seq); ++ ++ if (bch2_bkey_has_device_c(bkey_i_to_s_c(&buf->key), dev_idx)) ++ ret = true; ++ } ++ spin_unlock(&j->lock); ++ ++ return ret; ++} ++ ++void bch2_dev_journal_stop(struct journal *j, struct bch_dev *ca) ++{ ++ wait_event(j->wait, !bch2_journal_writing_to_device(j, ca->dev_idx)); ++} ++ ++void bch2_fs_journal_stop(struct journal *j) ++{ ++ bch2_journal_reclaim_stop(j); ++ bch2_journal_flush_all_pins(j); ++ ++ wait_event(j->wait, journal_entry_close(j)); ++ ++ /* ++ * Always write a new journal entry, to make sure the clock hands are up ++ * to date (and match the superblock) ++ */ ++ bch2_journal_meta(j); ++ ++ journal_quiesce(j); ++ ++ BUG_ON(!bch2_journal_error(j) && ++ test_bit(JOURNAL_REPLAY_DONE, &j->flags) && ++ j->last_empty_seq != journal_cur_seq(j)); ++ ++ cancel_delayed_work_sync(&j->write_work); ++} ++ ++int bch2_fs_journal_start(struct journal *j, u64 cur_seq) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_entry_pin_list *p; ++ struct journal_replay *i, **_i; ++ struct genradix_iter iter; ++ bool had_entries = false; ++ unsigned ptr; ++ u64 last_seq = cur_seq, nr, seq; ++ ++ genradix_for_each_reverse(&c->journal_entries, iter, _i) { ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ last_seq = le64_to_cpu(i->j.last_seq); ++ break; ++ } ++ ++ nr = cur_seq - last_seq; ++ ++ if (nr + 1 > j->pin.size) { ++ free_fifo(&j->pin); ++ init_fifo(&j->pin, roundup_pow_of_two(nr + 1), GFP_KERNEL); ++ if (!j->pin.data) { ++ bch_err(c, "error reallocating journal fifo (%llu open entries)", nr); ++ return -BCH_ERR_ENOMEM_journal_pin_fifo; ++ } ++ } ++ ++ j->replay_journal_seq = last_seq; ++ j->replay_journal_seq_end = cur_seq; ++ j->last_seq_ondisk = last_seq; ++ j->flushed_seq_ondisk = cur_seq - 1; ++ j->seq_ondisk = cur_seq - 1; ++ j->pin.front = last_seq; ++ j->pin.back = cur_seq; ++ atomic64_set(&j->seq, cur_seq - 1); ++ ++ fifo_for_each_entry_ptr(p, &j->pin, seq) ++ journal_pin_list_init(p, 1); ++ ++ genradix_for_each(&c->journal_entries, iter, _i) { ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ seq = le64_to_cpu(i->j.seq); ++ BUG_ON(seq >= cur_seq); ++ ++ if (seq < last_seq) ++ continue; ++ ++ if (journal_entry_empty(&i->j)) ++ j->last_empty_seq = le64_to_cpu(i->j.seq); ++ ++ p = journal_seq_pin(j, seq); ++ ++ p->devs.nr = 0; ++ for (ptr = 0; ptr < i->nr_ptrs; ptr++) ++ bch2_dev_list_add_dev(&p->devs, i->ptrs[ptr].dev); ++ ++ had_entries = true; ++ } ++ ++ if (!had_entries) ++ j->last_empty_seq = cur_seq; ++ ++ spin_lock(&j->lock); ++ ++ set_bit(JOURNAL_STARTED, &j->flags); ++ j->last_flush_write = jiffies; ++ ++ j->reservations.idx = j->reservations.unwritten_idx = journal_cur_seq(j); ++ j->reservations.unwritten_idx++; ++ ++ c->last_bucket_seq_cleanup = journal_cur_seq(j); ++ ++ bch2_journal_space_available(j); ++ spin_unlock(&j->lock); ++ ++ return bch2_journal_reclaim_start(j); ++} ++ ++/* init/exit: */ ++ ++void bch2_dev_journal_exit(struct bch_dev *ca) ++{ ++ kfree(ca->journal.bio); ++ kfree(ca->journal.buckets); ++ kfree(ca->journal.bucket_seq); ++ ++ ca->journal.bio = NULL; ++ ca->journal.buckets = NULL; ++ ca->journal.bucket_seq = NULL; ++} ++ ++int bch2_dev_journal_init(struct bch_dev *ca, struct bch_sb *sb) ++{ ++ struct journal_device *ja = &ca->journal; ++ struct bch_sb_field_journal *journal_buckets = ++ bch2_sb_field_get(sb, journal); ++ struct bch_sb_field_journal_v2 *journal_buckets_v2 = ++ bch2_sb_field_get(sb, journal_v2); ++ unsigned i, nr_bvecs; ++ ++ ja->nr = 0; ++ ++ if (journal_buckets_v2) { ++ unsigned nr = bch2_sb_field_journal_v2_nr_entries(journal_buckets_v2); ++ ++ for (i = 0; i < nr; i++) ++ ja->nr += le64_to_cpu(journal_buckets_v2->d[i].nr); ++ } else if (journal_buckets) { ++ ja->nr = bch2_nr_journal_buckets(journal_buckets); ++ } ++ ++ ja->bucket_seq = kcalloc(ja->nr, sizeof(u64), GFP_KERNEL); ++ if (!ja->bucket_seq) ++ return -BCH_ERR_ENOMEM_dev_journal_init; ++ ++ nr_bvecs = DIV_ROUND_UP(JOURNAL_ENTRY_SIZE_MAX, PAGE_SIZE); ++ ++ ca->journal.bio = bio_kmalloc(nr_bvecs, GFP_KERNEL); ++ if (!ca->journal.bio) ++ return -BCH_ERR_ENOMEM_dev_journal_init; ++ ++ bio_init(ca->journal.bio, NULL, ca->journal.bio->bi_inline_vecs, nr_bvecs, 0); ++ ++ ja->buckets = kcalloc(ja->nr, sizeof(u64), GFP_KERNEL); ++ if (!ja->buckets) ++ return -BCH_ERR_ENOMEM_dev_journal_init; ++ ++ if (journal_buckets_v2) { ++ unsigned nr = bch2_sb_field_journal_v2_nr_entries(journal_buckets_v2); ++ unsigned j, dst = 0; ++ ++ for (i = 0; i < nr; i++) ++ for (j = 0; j < le64_to_cpu(journal_buckets_v2->d[i].nr); j++) ++ ja->buckets[dst++] = ++ le64_to_cpu(journal_buckets_v2->d[i].start) + j; ++ } else if (journal_buckets) { ++ for (i = 0; i < ja->nr; i++) ++ ja->buckets[i] = le64_to_cpu(journal_buckets->buckets[i]); ++ } ++ ++ return 0; ++} ++ ++void bch2_fs_journal_exit(struct journal *j) ++{ ++ unsigned i; ++ ++ darray_exit(&j->early_journal_entries); ++ ++ for (i = 0; i < ARRAY_SIZE(j->buf); i++) ++ kvpfree(j->buf[i].data, j->buf[i].buf_size); ++ free_fifo(&j->pin); ++} ++ ++int bch2_fs_journal_init(struct journal *j) ++{ ++ static struct lock_class_key res_key; ++ unsigned i; ++ ++ spin_lock_init(&j->lock); ++ spin_lock_init(&j->err_lock); ++ init_waitqueue_head(&j->wait); ++ INIT_DELAYED_WORK(&j->write_work, journal_write_work); ++ init_waitqueue_head(&j->reclaim_wait); ++ init_waitqueue_head(&j->pin_flush_wait); ++ mutex_init(&j->reclaim_lock); ++ mutex_init(&j->discard_lock); ++ ++ lockdep_init_map(&j->res_map, "journal res", &res_key, 0); ++ ++ atomic64_set(&j->reservations.counter, ++ ((union journal_res_state) ++ { .cur_entry_offset = JOURNAL_ENTRY_CLOSED_VAL }).v); ++ ++ if (!(init_fifo(&j->pin, JOURNAL_PIN, GFP_KERNEL))) ++ return -BCH_ERR_ENOMEM_journal_pin_fifo; ++ ++ for (i = 0; i < ARRAY_SIZE(j->buf); i++) { ++ j->buf[i].buf_size = JOURNAL_ENTRY_SIZE_MIN; ++ j->buf[i].data = kvpmalloc(j->buf[i].buf_size, GFP_KERNEL); ++ if (!j->buf[i].data) ++ return -BCH_ERR_ENOMEM_journal_buf; ++ } ++ ++ j->pin.front = j->pin.back = 1; ++ return 0; ++} ++ ++/* debug: */ ++ ++void __bch2_journal_debug_to_text(struct printbuf *out, struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ union journal_res_state s; ++ struct bch_dev *ca; ++ unsigned long now = jiffies; ++ u64 seq; ++ unsigned i; ++ ++ if (!out->nr_tabstops) ++ printbuf_tabstop_push(out, 24); ++ out->atomic++; ++ ++ rcu_read_lock(); ++ s = READ_ONCE(j->reservations); ++ ++ prt_printf(out, "dirty journal entries:\t%llu/%llu\n", fifo_used(&j->pin), j->pin.size); ++ prt_printf(out, "seq:\t\t\t%llu\n", journal_cur_seq(j)); ++ prt_printf(out, "seq_ondisk:\t\t%llu\n", j->seq_ondisk); ++ prt_printf(out, "last_seq:\t\t%llu\n", journal_last_seq(j)); ++ prt_printf(out, "last_seq_ondisk:\t%llu\n", j->last_seq_ondisk); ++ prt_printf(out, "flushed_seq_ondisk:\t%llu\n", j->flushed_seq_ondisk); ++ prt_printf(out, "prereserved:\t\t%u/%u\n", j->prereserved.reserved, j->prereserved.remaining); ++ prt_printf(out, "watermark:\t\t%s\n", bch2_watermarks[j->watermark]); ++ prt_printf(out, "each entry reserved:\t%u\n", j->entry_u64s_reserved); ++ prt_printf(out, "nr flush writes:\t%llu\n", j->nr_flush_writes); ++ prt_printf(out, "nr noflush writes:\t%llu\n", j->nr_noflush_writes); ++ prt_printf(out, "nr direct reclaim:\t%llu\n", j->nr_direct_reclaim); ++ prt_printf(out, "nr background reclaim:\t%llu\n", j->nr_background_reclaim); ++ prt_printf(out, "reclaim kicked:\t\t%u\n", j->reclaim_kicked); ++ prt_printf(out, "reclaim runs in:\t%u ms\n", time_after(j->next_reclaim, now) ++ ? jiffies_to_msecs(j->next_reclaim - jiffies) : 0); ++ prt_printf(out, "current entry sectors:\t%u\n", j->cur_entry_sectors); ++ prt_printf(out, "current entry error:\t%s\n", bch2_journal_errors[j->cur_entry_error]); ++ prt_printf(out, "current entry:\t\t"); ++ ++ switch (s.cur_entry_offset) { ++ case JOURNAL_ENTRY_ERROR_VAL: ++ prt_printf(out, "error"); ++ break; ++ case JOURNAL_ENTRY_CLOSED_VAL: ++ prt_printf(out, "closed"); ++ break; ++ default: ++ prt_printf(out, "%u/%u", s.cur_entry_offset, j->cur_entry_u64s); ++ break; ++ } ++ ++ prt_newline(out); ++ ++ for (seq = journal_cur_seq(j); ++ seq >= journal_last_unwritten_seq(j); ++ --seq) { ++ i = seq & JOURNAL_BUF_MASK; ++ ++ prt_printf(out, "unwritten entry:"); ++ prt_tab(out); ++ prt_printf(out, "%llu", seq); ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ ++ prt_printf(out, "refcount:"); ++ prt_tab(out); ++ prt_printf(out, "%u", journal_state_count(s, i)); ++ prt_newline(out); ++ ++ prt_printf(out, "sectors:"); ++ prt_tab(out); ++ prt_printf(out, "%u", j->buf[i].sectors); ++ prt_newline(out); ++ ++ prt_printf(out, "expires"); ++ prt_tab(out); ++ prt_printf(out, "%li jiffies", j->buf[i].expires - jiffies); ++ prt_newline(out); ++ ++ printbuf_indent_sub(out, 2); ++ } ++ ++ prt_printf(out, ++ "replay done:\t\t%i\n", ++ test_bit(JOURNAL_REPLAY_DONE, &j->flags)); ++ ++ prt_printf(out, "space:\n"); ++ prt_printf(out, "\tdiscarded\t%u:%u\n", ++ j->space[journal_space_discarded].next_entry, ++ j->space[journal_space_discarded].total); ++ prt_printf(out, "\tclean ondisk\t%u:%u\n", ++ j->space[journal_space_clean_ondisk].next_entry, ++ j->space[journal_space_clean_ondisk].total); ++ prt_printf(out, "\tclean\t\t%u:%u\n", ++ j->space[journal_space_clean].next_entry, ++ j->space[journal_space_clean].total); ++ prt_printf(out, "\ttotal\t\t%u:%u\n", ++ j->space[journal_space_total].next_entry, ++ j->space[journal_space_total].total); ++ ++ for_each_member_device_rcu(ca, c, i, ++ &c->rw_devs[BCH_DATA_journal]) { ++ struct journal_device *ja = &ca->journal; ++ ++ if (!test_bit(ca->dev_idx, c->rw_devs[BCH_DATA_journal].d)) ++ continue; ++ ++ if (!ja->nr) ++ continue; ++ ++ prt_printf(out, "dev %u:\n", i); ++ prt_printf(out, "\tnr\t\t%u\n", ja->nr); ++ prt_printf(out, "\tbucket size\t%u\n", ca->mi.bucket_size); ++ prt_printf(out, "\tavailable\t%u:%u\n", bch2_journal_dev_buckets_available(j, ja, journal_space_discarded), ja->sectors_free); ++ prt_printf(out, "\tdiscard_idx\t%u\n", ja->discard_idx); ++ prt_printf(out, "\tdirty_ondisk\t%u (seq %llu)\n", ja->dirty_idx_ondisk, ja->bucket_seq[ja->dirty_idx_ondisk]); ++ prt_printf(out, "\tdirty_idx\t%u (seq %llu)\n", ja->dirty_idx, ja->bucket_seq[ja->dirty_idx]); ++ prt_printf(out, "\tcur_idx\t\t%u (seq %llu)\n", ja->cur_idx, ja->bucket_seq[ja->cur_idx]); ++ } ++ ++ rcu_read_unlock(); ++ ++ --out->atomic; ++} ++ ++void bch2_journal_debug_to_text(struct printbuf *out, struct journal *j) ++{ ++ spin_lock(&j->lock); ++ __bch2_journal_debug_to_text(out, j); ++ spin_unlock(&j->lock); ++} ++ ++bool bch2_journal_seq_pins_to_text(struct printbuf *out, struct journal *j, u64 *seq) ++{ ++ struct journal_entry_pin_list *pin_list; ++ struct journal_entry_pin *pin; ++ unsigned i; ++ ++ spin_lock(&j->lock); ++ *seq = max(*seq, j->pin.front); ++ ++ if (*seq >= j->pin.back) { ++ spin_unlock(&j->lock); ++ return true; ++ } ++ ++ out->atomic++; ++ ++ pin_list = journal_seq_pin(j, *seq); ++ ++ prt_printf(out, "%llu: count %u", *seq, atomic_read(&pin_list->count)); ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ ++ for (i = 0; i < ARRAY_SIZE(pin_list->list); i++) ++ list_for_each_entry(pin, &pin_list->list[i], list) { ++ prt_printf(out, "\t%px %ps", pin, pin->flush); ++ prt_newline(out); ++ } ++ ++ if (!list_empty(&pin_list->flushed)) { ++ prt_printf(out, "flushed:"); ++ prt_newline(out); ++ } ++ ++ list_for_each_entry(pin, &pin_list->flushed, list) { ++ prt_printf(out, "\t%px %ps", pin, pin->flush); ++ prt_newline(out); ++ } ++ ++ printbuf_indent_sub(out, 2); ++ ++ --out->atomic; ++ spin_unlock(&j->lock); ++ ++ return false; ++} ++ ++void bch2_journal_pins_to_text(struct printbuf *out, struct journal *j) ++{ ++ u64 seq = 0; ++ ++ while (!bch2_journal_seq_pins_to_text(out, j, &seq)) ++ seq++; ++} +diff --git a/fs/bcachefs/journal.h b/fs/bcachefs/journal.h +new file mode 100644 +index 000000000000..491133cc52f3 +--- /dev/null ++++ b/fs/bcachefs/journal.h +@@ -0,0 +1,548 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_H ++#define _BCACHEFS_JOURNAL_H ++ ++/* ++ * THE JOURNAL: ++ * ++ * The primary purpose of the journal is to log updates (insertions) to the ++ * b-tree, to avoid having to do synchronous updates to the b-tree on disk. ++ * ++ * Without the journal, the b-tree is always internally consistent on ++ * disk - and in fact, in the earliest incarnations bcache didn't have a journal ++ * but did handle unclean shutdowns by doing all index updates synchronously ++ * (with coalescing). ++ * ++ * Updates to interior nodes still happen synchronously and without the journal ++ * (for simplicity) - this may change eventually but updates to interior nodes ++ * are rare enough it's not a huge priority. ++ * ++ * This means the journal is relatively separate from the b-tree; it consists of ++ * just a list of keys and journal replay consists of just redoing those ++ * insertions in same order that they appear in the journal. ++ * ++ * PERSISTENCE: ++ * ++ * For synchronous updates (where we're waiting on the index update to hit ++ * disk), the journal entry will be written out immediately (or as soon as ++ * possible, if the write for the previous journal entry was still in flight). ++ * ++ * Synchronous updates are specified by passing a closure (@flush_cl) to ++ * bch2_btree_insert() or bch_btree_insert_node(), which then pass that parameter ++ * down to the journalling code. That closure will wait on the journal write to ++ * complete (via closure_wait()). ++ * ++ * If the index update wasn't synchronous, the journal entry will be ++ * written out after 10 ms have elapsed, by default (the delay_ms field ++ * in struct journal). ++ * ++ * JOURNAL ENTRIES: ++ * ++ * A journal entry is variable size (struct jset), it's got a fixed length ++ * header and then a variable number of struct jset_entry entries. ++ * ++ * Journal entries are identified by monotonically increasing 64 bit sequence ++ * numbers - jset->seq; other places in the code refer to this sequence number. ++ * ++ * A jset_entry entry contains one or more bkeys (which is what gets inserted ++ * into the b-tree). We need a container to indicate which b-tree the key is ++ * for; also, the roots of the various b-trees are stored in jset_entry entries ++ * (one for each b-tree) - this lets us add new b-tree types without changing ++ * the on disk format. ++ * ++ * We also keep some things in the journal header that are logically part of the ++ * superblock - all the things that are frequently updated. This is for future ++ * bcache on raw flash support; the superblock (which will become another ++ * journal) can't be moved or wear leveled, so it contains just enough ++ * information to find the main journal, and the superblock only has to be ++ * rewritten when we want to move/wear level the main journal. ++ * ++ * JOURNAL LAYOUT ON DISK: ++ * ++ * The journal is written to a ringbuffer of buckets (which is kept in the ++ * superblock); the individual buckets are not necessarily contiguous on disk ++ * which means that journal entries are not allowed to span buckets, but also ++ * that we can resize the journal at runtime if desired (unimplemented). ++ * ++ * The journal buckets exist in the same pool as all the other buckets that are ++ * managed by the allocator and garbage collection - garbage collection marks ++ * the journal buckets as metadata buckets. ++ * ++ * OPEN/DIRTY JOURNAL ENTRIES: ++ * ++ * Open/dirty journal entries are journal entries that contain b-tree updates ++ * that have not yet been written out to the b-tree on disk. We have to track ++ * which journal entries are dirty, and we also have to avoid wrapping around ++ * the journal and overwriting old but still dirty journal entries with new ++ * journal entries. ++ * ++ * On disk, this is represented with the "last_seq" field of struct jset; ++ * last_seq is the first sequence number that journal replay has to replay. ++ * ++ * To avoid overwriting dirty journal entries on disk, we keep a mapping (in ++ * journal_device->seq) of for each journal bucket, the highest sequence number ++ * any journal entry it contains. Then, by comparing that against last_seq we ++ * can determine whether that journal bucket contains dirty journal entries or ++ * not. ++ * ++ * To track which journal entries are dirty, we maintain a fifo of refcounts ++ * (where each entry corresponds to a specific sequence number) - when a ref ++ * goes to 0, that journal entry is no longer dirty. ++ * ++ * Journalling of index updates is done at the same time as the b-tree itself is ++ * being modified (see btree_insert_key()); when we add the key to the journal ++ * the pending b-tree write takes a ref on the journal entry the key was added ++ * to. If a pending b-tree write would need to take refs on multiple dirty ++ * journal entries, it only keeps the ref on the oldest one (since a newer ++ * journal entry will still be replayed if an older entry was dirty). ++ * ++ * JOURNAL FILLING UP: ++ * ++ * There are two ways the journal could fill up; either we could run out of ++ * space to write to, or we could have too many open journal entries and run out ++ * of room in the fifo of refcounts. Since those refcounts are decremented ++ * without any locking we can't safely resize that fifo, so we handle it the ++ * same way. ++ * ++ * If the journal fills up, we start flushing dirty btree nodes until we can ++ * allocate space for a journal write again - preferentially flushing btree ++ * nodes that are pinning the oldest journal entries first. ++ */ ++ ++#include ++ ++#include "journal_types.h" ++ ++struct bch_fs; ++ ++static inline void journal_wake(struct journal *j) ++{ ++ wake_up(&j->wait); ++ closure_wake_up(&j->async_wait); ++ closure_wake_up(&j->preres_wait); ++} ++ ++static inline struct journal_buf *journal_cur_buf(struct journal *j) ++{ ++ return j->buf + j->reservations.idx; ++} ++ ++/* Sequence number of oldest dirty journal entry */ ++ ++static inline u64 journal_last_seq(struct journal *j) ++{ ++ return j->pin.front; ++} ++ ++static inline u64 journal_cur_seq(struct journal *j) ++{ ++ EBUG_ON(j->pin.back - 1 != atomic64_read(&j->seq)); ++ ++ return j->pin.back - 1; ++} ++ ++static inline u64 journal_last_unwritten_seq(struct journal *j) ++{ ++ return j->seq_ondisk + 1; ++} ++ ++static inline int journal_state_count(union journal_res_state s, int idx) ++{ ++ switch (idx) { ++ case 0: return s.buf0_count; ++ case 1: return s.buf1_count; ++ case 2: return s.buf2_count; ++ case 3: return s.buf3_count; ++ } ++ BUG(); ++} ++ ++static inline void journal_state_inc(union journal_res_state *s) ++{ ++ s->buf0_count += s->idx == 0; ++ s->buf1_count += s->idx == 1; ++ s->buf2_count += s->idx == 2; ++ s->buf3_count += s->idx == 3; ++} ++ ++/* ++ * Amount of space that will be taken up by some keys in the journal (i.e. ++ * including the jset header) ++ */ ++static inline unsigned jset_u64s(unsigned u64s) ++{ ++ return u64s + sizeof(struct jset_entry) / sizeof(u64); ++} ++ ++static inline int journal_entry_overhead(struct journal *j) ++{ ++ return sizeof(struct jset) / sizeof(u64) + j->entry_u64s_reserved; ++} ++ ++static inline struct jset_entry * ++bch2_journal_add_entry_noreservation(struct journal_buf *buf, size_t u64s) ++{ ++ struct jset *jset = buf->data; ++ struct jset_entry *entry = vstruct_idx(jset, le32_to_cpu(jset->u64s)); ++ ++ memset(entry, 0, sizeof(*entry)); ++ entry->u64s = cpu_to_le16(u64s); ++ ++ le32_add_cpu(&jset->u64s, jset_u64s(u64s)); ++ ++ return entry; ++} ++ ++static inline struct jset_entry * ++journal_res_entry(struct journal *j, struct journal_res *res) ++{ ++ return vstruct_idx(j->buf[res->idx].data, res->offset); ++} ++ ++static inline unsigned journal_entry_init(struct jset_entry *entry, unsigned type, ++ enum btree_id id, unsigned level, ++ unsigned u64s) ++{ ++ entry->u64s = cpu_to_le16(u64s); ++ entry->btree_id = id; ++ entry->level = level; ++ entry->type = type; ++ entry->pad[0] = 0; ++ entry->pad[1] = 0; ++ entry->pad[2] = 0; ++ return jset_u64s(u64s); ++} ++ ++static inline unsigned journal_entry_set(struct jset_entry *entry, unsigned type, ++ enum btree_id id, unsigned level, ++ const void *data, unsigned u64s) ++{ ++ unsigned ret = journal_entry_init(entry, type, id, level, u64s); ++ ++ memcpy_u64s_small(entry->_data, data, u64s); ++ return ret; ++} ++ ++static inline struct jset_entry * ++bch2_journal_add_entry(struct journal *j, struct journal_res *res, ++ unsigned type, enum btree_id id, ++ unsigned level, unsigned u64s) ++{ ++ struct jset_entry *entry = journal_res_entry(j, res); ++ unsigned actual = journal_entry_init(entry, type, id, level, u64s); ++ ++ EBUG_ON(!res->ref); ++ EBUG_ON(actual > res->u64s); ++ ++ res->offset += actual; ++ res->u64s -= actual; ++ return entry; ++} ++ ++static inline bool journal_entry_empty(struct jset *j) ++{ ++ struct jset_entry *i; ++ ++ if (j->seq != j->last_seq) ++ return false; ++ ++ vstruct_for_each(j, i) ++ if (i->type == BCH_JSET_ENTRY_btree_keys && i->u64s) ++ return false; ++ return true; ++} ++ ++/* ++ * Drop reference on a buffer index and return true if the count has hit zero. ++ */ ++static inline union journal_res_state journal_state_buf_put(struct journal *j, unsigned idx) ++{ ++ union journal_res_state s; ++ ++ s.v = atomic64_sub_return(((union journal_res_state) { ++ .buf0_count = idx == 0, ++ .buf1_count = idx == 1, ++ .buf2_count = idx == 2, ++ .buf3_count = idx == 3, ++ }).v, &j->reservations.counter); ++ return s; ++} ++ ++void bch2_journal_buf_put_final(struct journal *, u64, bool); ++ ++static inline void __bch2_journal_buf_put(struct journal *j, unsigned idx, u64 seq) ++{ ++ union journal_res_state s; ++ ++ s = journal_state_buf_put(j, idx); ++ if (!journal_state_count(s, idx)) ++ bch2_journal_buf_put_final(j, seq, idx == s.unwritten_idx); ++} ++ ++static inline void bch2_journal_buf_put(struct journal *j, unsigned idx, u64 seq) ++{ ++ union journal_res_state s; ++ ++ s = journal_state_buf_put(j, idx); ++ if (!journal_state_count(s, idx)) { ++ spin_lock(&j->lock); ++ bch2_journal_buf_put_final(j, seq, idx == s.unwritten_idx); ++ spin_unlock(&j->lock); ++ } ++} ++ ++/* ++ * This function releases the journal write structure so other threads can ++ * then proceed to add their keys as well. ++ */ ++static inline void bch2_journal_res_put(struct journal *j, ++ struct journal_res *res) ++{ ++ if (!res->ref) ++ return; ++ ++ lock_release(&j->res_map, _THIS_IP_); ++ ++ while (res->u64s) ++ bch2_journal_add_entry(j, res, ++ BCH_JSET_ENTRY_btree_keys, ++ 0, 0, 0); ++ ++ bch2_journal_buf_put(j, res->idx, res->seq); ++ ++ res->ref = 0; ++} ++ ++int bch2_journal_res_get_slowpath(struct journal *, struct journal_res *, ++ unsigned); ++ ++/* First bits for BCH_WATERMARK: */ ++enum journal_res_flags { ++ __JOURNAL_RES_GET_NONBLOCK = BCH_WATERMARK_BITS, ++ __JOURNAL_RES_GET_CHECK, ++}; ++ ++#define JOURNAL_RES_GET_NONBLOCK (1 << __JOURNAL_RES_GET_NONBLOCK) ++#define JOURNAL_RES_GET_CHECK (1 << __JOURNAL_RES_GET_CHECK) ++ ++static inline int journal_res_get_fast(struct journal *j, ++ struct journal_res *res, ++ unsigned flags) ++{ ++ union journal_res_state old, new; ++ u64 v = atomic64_read(&j->reservations.counter); ++ ++ do { ++ old.v = new.v = v; ++ ++ /* ++ * Check if there is still room in the current journal ++ * entry: ++ */ ++ if (new.cur_entry_offset + res->u64s > j->cur_entry_u64s) ++ return 0; ++ ++ EBUG_ON(!journal_state_count(new, new.idx)); ++ ++ if ((flags & BCH_WATERMARK_MASK) < j->watermark) ++ return 0; ++ ++ new.cur_entry_offset += res->u64s; ++ journal_state_inc(&new); ++ ++ /* ++ * If the refcount would overflow, we have to wait: ++ * XXX - tracepoint this: ++ */ ++ if (!journal_state_count(new, new.idx)) ++ return 0; ++ ++ if (flags & JOURNAL_RES_GET_CHECK) ++ return 1; ++ } while ((v = atomic64_cmpxchg(&j->reservations.counter, ++ old.v, new.v)) != old.v); ++ ++ res->ref = true; ++ res->idx = old.idx; ++ res->offset = old.cur_entry_offset; ++ res->seq = le64_to_cpu(j->buf[old.idx].data->seq); ++ return 1; ++} ++ ++static inline int bch2_journal_res_get(struct journal *j, struct journal_res *res, ++ unsigned u64s, unsigned flags) ++{ ++ int ret; ++ ++ EBUG_ON(res->ref); ++ EBUG_ON(!test_bit(JOURNAL_STARTED, &j->flags)); ++ ++ res->u64s = u64s; ++ ++ if (journal_res_get_fast(j, res, flags)) ++ goto out; ++ ++ ret = bch2_journal_res_get_slowpath(j, res, flags); ++ if (ret) ++ return ret; ++out: ++ if (!(flags & JOURNAL_RES_GET_CHECK)) { ++ lock_acquire_shared(&j->res_map, 0, ++ (flags & JOURNAL_RES_GET_NONBLOCK) != 0, ++ NULL, _THIS_IP_); ++ EBUG_ON(!res->ref); ++ } ++ return 0; ++} ++ ++/* journal_preres: */ ++ ++static inline void journal_set_watermark(struct journal *j) ++{ ++ union journal_preres_state s = READ_ONCE(j->prereserved); ++ unsigned watermark = BCH_WATERMARK_stripe; ++ ++ if (fifo_free(&j->pin) < j->pin.size / 4) ++ watermark = max_t(unsigned, watermark, BCH_WATERMARK_copygc); ++ if (fifo_free(&j->pin) < j->pin.size / 8) ++ watermark = max_t(unsigned, watermark, BCH_WATERMARK_reclaim); ++ ++ if (s.reserved > s.remaining) ++ watermark = max_t(unsigned, watermark, BCH_WATERMARK_copygc); ++ if (!s.remaining) ++ watermark = max_t(unsigned, watermark, BCH_WATERMARK_reclaim); ++ ++ if (watermark == j->watermark) ++ return; ++ ++ swap(watermark, j->watermark); ++ if (watermark > j->watermark) ++ journal_wake(j); ++} ++ ++static inline void bch2_journal_preres_put(struct journal *j, ++ struct journal_preres *res) ++{ ++ union journal_preres_state s = { .reserved = res->u64s }; ++ ++ if (!res->u64s) ++ return; ++ ++ s.v = atomic64_sub_return(s.v, &j->prereserved.counter); ++ res->u64s = 0; ++ ++ if (unlikely(s.waiting)) { ++ clear_bit(ilog2((((union journal_preres_state) { .waiting = 1 }).v)), ++ (unsigned long *) &j->prereserved.v); ++ closure_wake_up(&j->preres_wait); ++ } ++ ++ if (s.reserved <= s.remaining && j->watermark) ++ journal_set_watermark(j); ++} ++ ++int __bch2_journal_preres_get(struct journal *, ++ struct journal_preres *, unsigned, unsigned); ++ ++static inline int bch2_journal_preres_get_fast(struct journal *j, ++ struct journal_preres *res, ++ unsigned new_u64s, ++ unsigned flags, ++ bool set_waiting) ++{ ++ int d = new_u64s - res->u64s; ++ union journal_preres_state old, new; ++ u64 v = atomic64_read(&j->prereserved.counter); ++ enum bch_watermark watermark = flags & BCH_WATERMARK_MASK; ++ int ret; ++ ++ do { ++ old.v = new.v = v; ++ ret = 0; ++ ++ if (watermark == BCH_WATERMARK_reclaim || ++ new.reserved + d < new.remaining) { ++ new.reserved += d; ++ ret = 1; ++ } else if (set_waiting && !new.waiting) ++ new.waiting = true; ++ else ++ return 0; ++ } while ((v = atomic64_cmpxchg(&j->prereserved.counter, ++ old.v, new.v)) != old.v); ++ ++ if (ret) ++ res->u64s += d; ++ return ret; ++} ++ ++static inline int bch2_journal_preres_get(struct journal *j, ++ struct journal_preres *res, ++ unsigned new_u64s, ++ unsigned flags) ++{ ++ if (new_u64s <= res->u64s) ++ return 0; ++ ++ if (bch2_journal_preres_get_fast(j, res, new_u64s, flags, false)) ++ return 0; ++ ++ if (flags & JOURNAL_RES_GET_NONBLOCK) ++ return -BCH_ERR_journal_preres_get_blocked; ++ ++ return __bch2_journal_preres_get(j, res, new_u64s, flags); ++} ++ ++/* journal_entry_res: */ ++ ++void bch2_journal_entry_res_resize(struct journal *, ++ struct journal_entry_res *, ++ unsigned); ++ ++int bch2_journal_flush_seq_async(struct journal *, u64, struct closure *); ++void bch2_journal_flush_async(struct journal *, struct closure *); ++ ++int bch2_journal_flush_seq(struct journal *, u64); ++int bch2_journal_flush(struct journal *); ++bool bch2_journal_noflush_seq(struct journal *, u64); ++int bch2_journal_meta(struct journal *); ++ ++void bch2_journal_halt(struct journal *); ++ ++static inline int bch2_journal_error(struct journal *j) ++{ ++ return j->reservations.cur_entry_offset == JOURNAL_ENTRY_ERROR_VAL ++ ? -EIO : 0; ++} ++ ++struct bch_dev; ++ ++static inline void bch2_journal_set_replay_done(struct journal *j) ++{ ++ BUG_ON(!test_bit(JOURNAL_STARTED, &j->flags)); ++ set_bit(JOURNAL_REPLAY_DONE, &j->flags); ++} ++ ++void bch2_journal_unblock(struct journal *); ++void bch2_journal_block(struct journal *); ++ ++void __bch2_journal_debug_to_text(struct printbuf *, struct journal *); ++void bch2_journal_debug_to_text(struct printbuf *, struct journal *); ++void bch2_journal_pins_to_text(struct printbuf *, struct journal *); ++bool bch2_journal_seq_pins_to_text(struct printbuf *, struct journal *, u64 *); ++ ++int bch2_set_nr_journal_buckets(struct bch_fs *, struct bch_dev *, ++ unsigned nr); ++int bch2_dev_journal_alloc(struct bch_dev *); ++ ++void bch2_dev_journal_stop(struct journal *, struct bch_dev *); ++ ++void bch2_fs_journal_stop(struct journal *); ++int bch2_fs_journal_start(struct journal *, u64); ++ ++void bch2_dev_journal_exit(struct bch_dev *); ++int bch2_dev_journal_init(struct bch_dev *, struct bch_sb *); ++void bch2_fs_journal_exit(struct journal *); ++int bch2_fs_journal_init(struct journal *); ++ ++#endif /* _BCACHEFS_JOURNAL_H */ +diff --git a/fs/bcachefs/journal_io.c b/fs/bcachefs/journal_io.c +new file mode 100644 +index 000000000000..6a3d6a374e9c +--- /dev/null ++++ b/fs/bcachefs/journal_io.c +@@ -0,0 +1,1894 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "btree_io.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "checksum.h" ++#include "disk_groups.h" ++#include "error.h" ++#include "journal.h" ++#include "journal_io.h" ++#include "journal_reclaim.h" ++#include "journal_seq_blacklist.h" ++#include "replicas.h" ++#include "sb-clean.h" ++#include "trace.h" ++ ++static struct nonce journal_nonce(const struct jset *jset) ++{ ++ return (struct nonce) {{ ++ [0] = 0, ++ [1] = ((__le32 *) &jset->seq)[0], ++ [2] = ((__le32 *) &jset->seq)[1], ++ [3] = BCH_NONCE_JOURNAL, ++ }}; ++} ++ ++static bool jset_csum_good(struct bch_fs *c, struct jset *j) ++{ ++ return bch2_checksum_type_valid(c, JSET_CSUM_TYPE(j)) && ++ !bch2_crc_cmp(j->csum, ++ csum_vstruct(c, JSET_CSUM_TYPE(j), journal_nonce(j), j)); ++} ++ ++static inline u32 journal_entry_radix_idx(struct bch_fs *c, u64 seq) ++{ ++ return (seq - c->journal_entries_base_seq) & (~0U >> 1); ++} ++ ++static void __journal_replay_free(struct bch_fs *c, ++ struct journal_replay *i) ++{ ++ struct journal_replay **p = ++ genradix_ptr(&c->journal_entries, ++ journal_entry_radix_idx(c, le64_to_cpu(i->j.seq))); ++ ++ BUG_ON(*p != i); ++ *p = NULL; ++ kvpfree(i, offsetof(struct journal_replay, j) + ++ vstruct_bytes(&i->j)); ++} ++ ++static void journal_replay_free(struct bch_fs *c, struct journal_replay *i) ++{ ++ i->ignore = true; ++ ++ if (!c->opts.read_entire_journal) ++ __journal_replay_free(c, i); ++} ++ ++struct journal_list { ++ struct closure cl; ++ u64 last_seq; ++ struct mutex lock; ++ int ret; ++}; ++ ++#define JOURNAL_ENTRY_ADD_OK 0 ++#define JOURNAL_ENTRY_ADD_OUT_OF_RANGE 5 ++ ++/* ++ * Given a journal entry we just read, add it to the list of journal entries to ++ * be replayed: ++ */ ++static int journal_entry_add(struct bch_fs *c, struct bch_dev *ca, ++ struct journal_ptr entry_ptr, ++ struct journal_list *jlist, struct jset *j) ++{ ++ struct genradix_iter iter; ++ struct journal_replay **_i, *i, *dup; ++ struct journal_ptr *ptr; ++ size_t bytes = vstruct_bytes(j); ++ u64 last_seq = !JSET_NO_FLUSH(j) ? le64_to_cpu(j->last_seq) : 0; ++ int ret = JOURNAL_ENTRY_ADD_OK; ++ ++ /* Is this entry older than the range we need? */ ++ if (!c->opts.read_entire_journal && ++ le64_to_cpu(j->seq) < jlist->last_seq) ++ return JOURNAL_ENTRY_ADD_OUT_OF_RANGE; ++ ++ /* ++ * genradixes are indexed by a ulong, not a u64, so we can't index them ++ * by sequence number directly: Assume instead that they will all fall ++ * within the range of +-2billion of the filrst one we find. ++ */ ++ if (!c->journal_entries_base_seq) ++ c->journal_entries_base_seq = max_t(s64, 1, le64_to_cpu(j->seq) - S32_MAX); ++ ++ /* Drop entries we don't need anymore */ ++ if (last_seq > jlist->last_seq && !c->opts.read_entire_journal) { ++ genradix_for_each_from(&c->journal_entries, iter, _i, ++ journal_entry_radix_idx(c, jlist->last_seq)) { ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ if (le64_to_cpu(i->j.seq) >= last_seq) ++ break; ++ journal_replay_free(c, i); ++ } ++ } ++ ++ jlist->last_seq = max(jlist->last_seq, last_seq); ++ ++ _i = genradix_ptr_alloc(&c->journal_entries, ++ journal_entry_radix_idx(c, le64_to_cpu(j->seq)), ++ GFP_KERNEL); ++ if (!_i) ++ return -BCH_ERR_ENOMEM_journal_entry_add; ++ ++ /* ++ * Duplicate journal entries? If so we want the one that didn't have a ++ * checksum error: ++ */ ++ dup = *_i; ++ if (dup) { ++ if (bytes == vstruct_bytes(&dup->j) && ++ !memcmp(j, &dup->j, bytes)) { ++ i = dup; ++ goto found; ++ } ++ ++ if (!entry_ptr.csum_good) { ++ i = dup; ++ goto found; ++ } ++ ++ if (!dup->csum_good) ++ goto replace; ++ ++ fsck_err(c, "found duplicate but non identical journal entries (seq %llu)", ++ le64_to_cpu(j->seq)); ++ i = dup; ++ goto found; ++ } ++replace: ++ i = kvpmalloc(offsetof(struct journal_replay, j) + bytes, GFP_KERNEL); ++ if (!i) ++ return -BCH_ERR_ENOMEM_journal_entry_add; ++ ++ i->nr_ptrs = 0; ++ i->csum_good = entry_ptr.csum_good; ++ i->ignore = false; ++ unsafe_memcpy(&i->j, j, bytes, "embedded variable length struct"); ++ i->ptrs[i->nr_ptrs++] = entry_ptr; ++ ++ if (dup) { ++ if (dup->nr_ptrs >= ARRAY_SIZE(dup->ptrs)) { ++ bch_err(c, "found too many copies of journal entry %llu", ++ le64_to_cpu(i->j.seq)); ++ dup->nr_ptrs = ARRAY_SIZE(dup->ptrs) - 1; ++ } ++ ++ /* The first ptr should represent the jset we kept: */ ++ memcpy(i->ptrs + i->nr_ptrs, ++ dup->ptrs, ++ sizeof(dup->ptrs[0]) * dup->nr_ptrs); ++ i->nr_ptrs += dup->nr_ptrs; ++ __journal_replay_free(c, dup); ++ } ++ ++ *_i = i; ++ return 0; ++found: ++ for (ptr = i->ptrs; ptr < i->ptrs + i->nr_ptrs; ptr++) { ++ if (ptr->dev == ca->dev_idx) { ++ bch_err(c, "duplicate journal entry %llu on same device", ++ le64_to_cpu(i->j.seq)); ++ goto out; ++ } ++ } ++ ++ if (i->nr_ptrs >= ARRAY_SIZE(i->ptrs)) { ++ bch_err(c, "found too many copies of journal entry %llu", ++ le64_to_cpu(i->j.seq)); ++ goto out; ++ } ++ ++ i->ptrs[i->nr_ptrs++] = entry_ptr; ++out: ++fsck_err: ++ return ret; ++} ++ ++/* this fills in a range with empty jset_entries: */ ++static void journal_entry_null_range(void *start, void *end) ++{ ++ struct jset_entry *entry; ++ ++ for (entry = start; entry != end; entry = vstruct_next(entry)) ++ memset(entry, 0, sizeof(*entry)); ++} ++ ++#define JOURNAL_ENTRY_REREAD 5 ++#define JOURNAL_ENTRY_NONE 6 ++#define JOURNAL_ENTRY_BAD 7 ++ ++static void journal_entry_err_msg(struct printbuf *out, ++ u32 version, ++ struct jset *jset, ++ struct jset_entry *entry) ++{ ++ prt_str(out, "invalid journal entry, version="); ++ bch2_version_to_text(out, version); ++ ++ if (entry) { ++ prt_str(out, " type="); ++ prt_str(out, bch2_jset_entry_types[entry->type]); ++ } ++ ++ if (!jset) { ++ prt_printf(out, " in superblock"); ++ } else { ++ ++ prt_printf(out, " seq=%llu", le64_to_cpu(jset->seq)); ++ ++ if (entry) ++ prt_printf(out, " offset=%zi/%u", ++ (u64 *) entry - jset->_data, ++ le32_to_cpu(jset->u64s)); ++ } ++ ++ prt_str(out, ": "); ++} ++ ++#define journal_entry_err(c, version, jset, entry, msg, ...) \ ++({ \ ++ struct printbuf _buf = PRINTBUF; \ ++ \ ++ journal_entry_err_msg(&_buf, version, jset, entry); \ ++ prt_printf(&_buf, msg, ##__VA_ARGS__); \ ++ \ ++ switch (flags & BKEY_INVALID_WRITE) { \ ++ case READ: \ ++ mustfix_fsck_err(c, "%s", _buf.buf); \ ++ break; \ ++ case WRITE: \ ++ bch_err(c, "corrupt metadata before write: %s\n", _buf.buf);\ ++ if (bch2_fs_inconsistent(c)) { \ ++ ret = -BCH_ERR_fsck_errors_not_fixed; \ ++ goto fsck_err; \ ++ } \ ++ break; \ ++ } \ ++ \ ++ printbuf_exit(&_buf); \ ++ true; \ ++}) ++ ++#define journal_entry_err_on(cond, c, version, jset, entry, msg, ...) \ ++ ((cond) ? journal_entry_err(c, version, jset, entry, msg, ##__VA_ARGS__) : false) ++ ++#define FSCK_DELETED_KEY 5 ++ ++static int journal_validate_key(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned level, enum btree_id btree_id, ++ struct bkey_i *k, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ int write = flags & BKEY_INVALID_WRITE; ++ void *next = vstruct_next(entry); ++ struct printbuf buf = PRINTBUF; ++ int ret = 0; ++ ++ if (journal_entry_err_on(!k->k.u64s, c, version, jset, entry, "k->u64s 0")) { ++ entry->u64s = cpu_to_le16((u64 *) k - entry->_data); ++ journal_entry_null_range(vstruct_next(entry), next); ++ return FSCK_DELETED_KEY; ++ } ++ ++ if (journal_entry_err_on((void *) bkey_next(k) > ++ (void *) vstruct_next(entry), ++ c, version, jset, entry, ++ "extends past end of journal entry")) { ++ entry->u64s = cpu_to_le16((u64 *) k - entry->_data); ++ journal_entry_null_range(vstruct_next(entry), next); ++ return FSCK_DELETED_KEY; ++ } ++ ++ if (journal_entry_err_on(k->k.format != KEY_FORMAT_CURRENT, ++ c, version, jset, entry, ++ "bad format %u", k->k.format)) { ++ le16_add_cpu(&entry->u64s, -((u16) k->k.u64s)); ++ memmove(k, bkey_next(k), next - (void *) bkey_next(k)); ++ journal_entry_null_range(vstruct_next(entry), next); ++ return FSCK_DELETED_KEY; ++ } ++ ++ if (!write) ++ bch2_bkey_compat(level, btree_id, version, big_endian, ++ write, NULL, bkey_to_packed(k)); ++ ++ if (bch2_bkey_invalid(c, bkey_i_to_s_c(k), ++ __btree_node_type(level, btree_id), write, &buf)) { ++ printbuf_reset(&buf); ++ journal_entry_err_msg(&buf, version, jset, entry); ++ prt_newline(&buf); ++ printbuf_indent_add(&buf, 2); ++ ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k)); ++ prt_newline(&buf); ++ bch2_bkey_invalid(c, bkey_i_to_s_c(k), ++ __btree_node_type(level, btree_id), write, &buf); ++ ++ mustfix_fsck_err(c, "%s", buf.buf); ++ ++ le16_add_cpu(&entry->u64s, -((u16) k->k.u64s)); ++ memmove(k, bkey_next(k), next - (void *) bkey_next(k)); ++ journal_entry_null_range(vstruct_next(entry), next); ++ ++ printbuf_exit(&buf); ++ return FSCK_DELETED_KEY; ++ } ++ ++ if (write) ++ bch2_bkey_compat(level, btree_id, version, big_endian, ++ write, NULL, bkey_to_packed(k)); ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++static int journal_entry_btree_keys_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ struct bkey_i *k = entry->start; ++ ++ while (k != vstruct_last(entry)) { ++ int ret = journal_validate_key(c, jset, entry, ++ entry->level, ++ entry->btree_id, ++ k, version, big_endian, ++ flags|BKEY_INVALID_JOURNAL); ++ if (ret == FSCK_DELETED_KEY) ++ continue; ++ ++ k = bkey_next(k); ++ } ++ ++ return 0; ++} ++ ++static void journal_entry_btree_keys_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ struct bkey_i *k; ++ bool first = true; ++ ++ jset_entry_for_each_key(entry, k) { ++ if (!first) { ++ prt_newline(out); ++ prt_printf(out, "%s: ", bch2_jset_entry_types[entry->type]); ++ } ++ prt_printf(out, "btree=%s l=%u ", bch2_btree_ids[entry->btree_id], entry->level); ++ bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(k)); ++ first = false; ++ } ++} ++ ++static int journal_entry_btree_root_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ struct bkey_i *k = entry->start; ++ int ret = 0; ++ ++ if (journal_entry_err_on(!entry->u64s || ++ le16_to_cpu(entry->u64s) != k->k.u64s, ++ c, version, jset, entry, ++ "invalid btree root journal entry: wrong number of keys")) { ++ void *next = vstruct_next(entry); ++ /* ++ * we don't want to null out this jset_entry, ++ * just the contents, so that later we can tell ++ * we were _supposed_ to have a btree root ++ */ ++ entry->u64s = 0; ++ journal_entry_null_range(vstruct_next(entry), next); ++ return 0; ++ } ++ ++ return journal_validate_key(c, jset, entry, 1, entry->btree_id, k, ++ version, big_endian, flags); ++fsck_err: ++ return ret; ++} ++ ++static void journal_entry_btree_root_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ journal_entry_btree_keys_to_text(out, c, entry); ++} ++ ++static int journal_entry_prio_ptrs_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ /* obsolete, don't care: */ ++ return 0; ++} ++ ++static void journal_entry_prio_ptrs_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++} ++ ++static int journal_entry_blacklist_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ int ret = 0; ++ ++ if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 1, ++ c, version, jset, entry, ++ "invalid journal seq blacklist entry: bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ } ++fsck_err: ++ return ret; ++} ++ ++static void journal_entry_blacklist_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ struct jset_entry_blacklist *bl = ++ container_of(entry, struct jset_entry_blacklist, entry); ++ ++ prt_printf(out, "seq=%llu", le64_to_cpu(bl->seq)); ++} ++ ++static int journal_entry_blacklist_v2_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ struct jset_entry_blacklist_v2 *bl_entry; ++ int ret = 0; ++ ++ if (journal_entry_err_on(le16_to_cpu(entry->u64s) != 2, ++ c, version, jset, entry, ++ "invalid journal seq blacklist entry: bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ goto out; ++ } ++ ++ bl_entry = container_of(entry, struct jset_entry_blacklist_v2, entry); ++ ++ if (journal_entry_err_on(le64_to_cpu(bl_entry->start) > ++ le64_to_cpu(bl_entry->end), ++ c, version, jset, entry, ++ "invalid journal seq blacklist entry: start > end")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ } ++out: ++fsck_err: ++ return ret; ++} ++ ++static void journal_entry_blacklist_v2_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ struct jset_entry_blacklist_v2 *bl = ++ container_of(entry, struct jset_entry_blacklist_v2, entry); ++ ++ prt_printf(out, "start=%llu end=%llu", ++ le64_to_cpu(bl->start), ++ le64_to_cpu(bl->end)); ++} ++ ++static int journal_entry_usage_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ struct jset_entry_usage *u = ++ container_of(entry, struct jset_entry_usage, entry); ++ unsigned bytes = jset_u64s(le16_to_cpu(entry->u64s)) * sizeof(u64); ++ int ret = 0; ++ ++ if (journal_entry_err_on(bytes < sizeof(*u), ++ c, version, jset, entry, ++ "invalid journal entry usage: bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++fsck_err: ++ return ret; ++} ++ ++static void journal_entry_usage_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ struct jset_entry_usage *u = ++ container_of(entry, struct jset_entry_usage, entry); ++ ++ prt_printf(out, "type=%s v=%llu", ++ bch2_fs_usage_types[u->entry.btree_id], ++ le64_to_cpu(u->v)); ++} ++ ++static int journal_entry_data_usage_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ struct jset_entry_data_usage *u = ++ container_of(entry, struct jset_entry_data_usage, entry); ++ unsigned bytes = jset_u64s(le16_to_cpu(entry->u64s)) * sizeof(u64); ++ int ret = 0; ++ ++ if (journal_entry_err_on(bytes < sizeof(*u) || ++ bytes < sizeof(*u) + u->r.nr_devs, ++ c, version, jset, entry, ++ "invalid journal entry usage: bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++fsck_err: ++ return ret; ++} ++ ++static void journal_entry_data_usage_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ struct jset_entry_data_usage *u = ++ container_of(entry, struct jset_entry_data_usage, entry); ++ ++ bch2_replicas_entry_to_text(out, &u->r); ++ prt_printf(out, "=%llu", le64_to_cpu(u->v)); ++} ++ ++static int journal_entry_clock_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ struct jset_entry_clock *clock = ++ container_of(entry, struct jset_entry_clock, entry); ++ unsigned bytes = jset_u64s(le16_to_cpu(entry->u64s)) * sizeof(u64); ++ int ret = 0; ++ ++ if (journal_entry_err_on(bytes != sizeof(*clock), ++ c, version, jset, entry, "bad size")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++ if (journal_entry_err_on(clock->rw > 1, ++ c, version, jset, entry, "bad rw")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++fsck_err: ++ return ret; ++} ++ ++static void journal_entry_clock_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ struct jset_entry_clock *clock = ++ container_of(entry, struct jset_entry_clock, entry); ++ ++ prt_printf(out, "%s=%llu", clock->rw ? "write" : "read", le64_to_cpu(clock->time)); ++} ++ ++static int journal_entry_dev_usage_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ struct jset_entry_dev_usage *u = ++ container_of(entry, struct jset_entry_dev_usage, entry); ++ unsigned bytes = jset_u64s(le16_to_cpu(entry->u64s)) * sizeof(u64); ++ unsigned expected = sizeof(*u); ++ unsigned dev; ++ int ret = 0; ++ ++ if (journal_entry_err_on(bytes < expected, ++ c, version, jset, entry, "bad size (%u < %u)", ++ bytes, expected)) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++ dev = le32_to_cpu(u->dev); ++ ++ if (journal_entry_err_on(!bch2_dev_exists2(c, dev), ++ c, version, jset, entry, "bad dev")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++ if (journal_entry_err_on(u->pad, ++ c, version, jset, entry, "bad pad")) { ++ journal_entry_null_range(entry, vstruct_next(entry)); ++ return ret; ++ } ++ ++fsck_err: ++ return ret; ++} ++ ++static void journal_entry_dev_usage_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ struct jset_entry_dev_usage *u = ++ container_of(entry, struct jset_entry_dev_usage, entry); ++ unsigned i, nr_types = jset_entry_dev_usage_nr_types(u); ++ ++ prt_printf(out, "dev=%u", le32_to_cpu(u->dev)); ++ ++ for (i = 0; i < nr_types; i++) { ++ if (i < BCH_DATA_NR) ++ prt_printf(out, " %s", bch2_data_types[i]); ++ else ++ prt_printf(out, " (unknown data type %u)", i); ++ prt_printf(out, ": buckets=%llu sectors=%llu fragmented=%llu", ++ le64_to_cpu(u->d[i].buckets), ++ le64_to_cpu(u->d[i].sectors), ++ le64_to_cpu(u->d[i].fragmented)); ++ } ++ ++ prt_printf(out, " buckets_ec: %llu", le64_to_cpu(u->buckets_ec)); ++} ++ ++static int journal_entry_log_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ return 0; ++} ++ ++static void journal_entry_log_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ struct jset_entry_log *l = container_of(entry, struct jset_entry_log, entry); ++ unsigned bytes = vstruct_bytes(entry) - offsetof(struct jset_entry_log, d); ++ ++ prt_printf(out, "%.*s", bytes, l->d); ++} ++ ++static int journal_entry_overwrite_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ return journal_entry_btree_keys_validate(c, jset, entry, ++ version, big_endian, READ); ++} ++ ++static void journal_entry_overwrite_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ journal_entry_btree_keys_to_text(out, c, entry); ++} ++ ++struct jset_entry_ops { ++ int (*validate)(struct bch_fs *, struct jset *, ++ struct jset_entry *, unsigned, int, ++ enum bkey_invalid_flags); ++ void (*to_text)(struct printbuf *, struct bch_fs *, struct jset_entry *); ++}; ++ ++static const struct jset_entry_ops bch2_jset_entry_ops[] = { ++#define x(f, nr) \ ++ [BCH_JSET_ENTRY_##f] = (struct jset_entry_ops) { \ ++ .validate = journal_entry_##f##_validate, \ ++ .to_text = journal_entry_##f##_to_text, \ ++ }, ++ BCH_JSET_ENTRY_TYPES() ++#undef x ++}; ++ ++int bch2_journal_entry_validate(struct bch_fs *c, ++ struct jset *jset, ++ struct jset_entry *entry, ++ unsigned version, int big_endian, ++ enum bkey_invalid_flags flags) ++{ ++ return entry->type < BCH_JSET_ENTRY_NR ++ ? bch2_jset_entry_ops[entry->type].validate(c, jset, entry, ++ version, big_endian, flags) ++ : 0; ++} ++ ++void bch2_journal_entry_to_text(struct printbuf *out, struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ if (entry->type < BCH_JSET_ENTRY_NR) { ++ prt_printf(out, "%s: ", bch2_jset_entry_types[entry->type]); ++ bch2_jset_entry_ops[entry->type].to_text(out, c, entry); ++ } else { ++ prt_printf(out, "(unknown type %u)", entry->type); ++ } ++} ++ ++static int jset_validate_entries(struct bch_fs *c, struct jset *jset, ++ enum bkey_invalid_flags flags) ++{ ++ struct jset_entry *entry; ++ unsigned version = le32_to_cpu(jset->version); ++ int ret = 0; ++ ++ vstruct_for_each(jset, entry) { ++ if (journal_entry_err_on(vstruct_next(entry) > vstruct_last(jset), ++ c, version, jset, entry, ++ "journal entry extends past end of jset")) { ++ jset->u64s = cpu_to_le32((u64 *) entry - jset->_data); ++ break; ++ } ++ ++ ret = bch2_journal_entry_validate(c, jset, entry, ++ version, JSET_BIG_ENDIAN(jset), flags); ++ if (ret) ++ break; ++ } ++fsck_err: ++ return ret; ++} ++ ++static int jset_validate(struct bch_fs *c, ++ struct bch_dev *ca, ++ struct jset *jset, u64 sector, ++ enum bkey_invalid_flags flags) ++{ ++ unsigned version; ++ int ret = 0; ++ ++ if (le64_to_cpu(jset->magic) != jset_magic(c)) ++ return JOURNAL_ENTRY_NONE; ++ ++ version = le32_to_cpu(jset->version); ++ if (journal_entry_err_on(!bch2_version_compatible(version), ++ c, version, jset, NULL, ++ "%s sector %llu seq %llu: incompatible journal entry version %u.%u", ++ ca ? ca->name : c->name, ++ sector, le64_to_cpu(jset->seq), ++ BCH_VERSION_MAJOR(version), ++ BCH_VERSION_MINOR(version))) { ++ /* don't try to continue: */ ++ return -EINVAL; ++ } ++ ++ if (journal_entry_err_on(!bch2_checksum_type_valid(c, JSET_CSUM_TYPE(jset)), ++ c, version, jset, NULL, ++ "%s sector %llu seq %llu: journal entry with unknown csum type %llu", ++ ca ? ca->name : c->name, ++ sector, le64_to_cpu(jset->seq), ++ JSET_CSUM_TYPE(jset))) ++ ret = JOURNAL_ENTRY_BAD; ++ ++ /* last_seq is ignored when JSET_NO_FLUSH is true */ ++ if (journal_entry_err_on(!JSET_NO_FLUSH(jset) && ++ le64_to_cpu(jset->last_seq) > le64_to_cpu(jset->seq), ++ c, version, jset, NULL, ++ "invalid journal entry: last_seq > seq (%llu > %llu)", ++ le64_to_cpu(jset->last_seq), ++ le64_to_cpu(jset->seq))) { ++ jset->last_seq = jset->seq; ++ return JOURNAL_ENTRY_BAD; ++ } ++ ++ ret = jset_validate_entries(c, jset, flags); ++fsck_err: ++ return ret; ++} ++ ++static int jset_validate_early(struct bch_fs *c, ++ struct bch_dev *ca, ++ struct jset *jset, u64 sector, ++ unsigned bucket_sectors_left, ++ unsigned sectors_read) ++{ ++ size_t bytes = vstruct_bytes(jset); ++ unsigned version; ++ enum bkey_invalid_flags flags = BKEY_INVALID_JOURNAL; ++ int ret = 0; ++ ++ if (le64_to_cpu(jset->magic) != jset_magic(c)) ++ return JOURNAL_ENTRY_NONE; ++ ++ version = le32_to_cpu(jset->version); ++ if (journal_entry_err_on(!bch2_version_compatible(version), ++ c, version, jset, NULL, ++ "%s sector %llu seq %llu: unknown journal entry version %u.%u", ++ ca ? ca->name : c->name, ++ sector, le64_to_cpu(jset->seq), ++ BCH_VERSION_MAJOR(version), ++ BCH_VERSION_MINOR(version))) { ++ /* don't try to continue: */ ++ return -EINVAL; ++ } ++ ++ if (bytes > (sectors_read << 9) && ++ sectors_read < bucket_sectors_left) ++ return JOURNAL_ENTRY_REREAD; ++ ++ if (journal_entry_err_on(bytes > bucket_sectors_left << 9, ++ c, version, jset, NULL, ++ "%s sector %llu seq %llu: journal entry too big (%zu bytes)", ++ ca ? ca->name : c->name, ++ sector, le64_to_cpu(jset->seq), bytes)) ++ le32_add_cpu(&jset->u64s, ++ -((bytes - (bucket_sectors_left << 9)) / 8)); ++fsck_err: ++ return ret; ++} ++ ++struct journal_read_buf { ++ void *data; ++ size_t size; ++}; ++ ++static int journal_read_buf_realloc(struct journal_read_buf *b, ++ size_t new_size) ++{ ++ void *n; ++ ++ /* the bios are sized for this many pages, max: */ ++ if (new_size > JOURNAL_ENTRY_SIZE_MAX) ++ return -BCH_ERR_ENOMEM_journal_read_buf_realloc; ++ ++ new_size = roundup_pow_of_two(new_size); ++ n = kvpmalloc(new_size, GFP_KERNEL); ++ if (!n) ++ return -BCH_ERR_ENOMEM_journal_read_buf_realloc; ++ ++ kvpfree(b->data, b->size); ++ b->data = n; ++ b->size = new_size; ++ return 0; ++} ++ ++static int journal_read_bucket(struct bch_dev *ca, ++ struct journal_read_buf *buf, ++ struct journal_list *jlist, ++ unsigned bucket) ++{ ++ struct bch_fs *c = ca->fs; ++ struct journal_device *ja = &ca->journal; ++ struct jset *j = NULL; ++ unsigned sectors, sectors_read = 0; ++ u64 offset = bucket_to_sector(ca, ja->buckets[bucket]), ++ end = offset + ca->mi.bucket_size; ++ bool saw_bad = false, csum_good; ++ int ret = 0; ++ ++ pr_debug("reading %u", bucket); ++ ++ while (offset < end) { ++ if (!sectors_read) { ++ struct bio *bio; ++ unsigned nr_bvecs; ++reread: ++ sectors_read = min_t(unsigned, ++ end - offset, buf->size >> 9); ++ nr_bvecs = buf_pages(buf->data, sectors_read << 9); ++ ++ bio = bio_kmalloc(nr_bvecs, GFP_KERNEL); ++ bio_init(bio, ca->disk_sb.bdev, bio->bi_inline_vecs, nr_bvecs, REQ_OP_READ); ++ ++ bio->bi_iter.bi_sector = offset; ++ bch2_bio_map(bio, buf->data, sectors_read << 9); ++ ++ ret = submit_bio_wait(bio); ++ kfree(bio); ++ ++ if (bch2_dev_io_err_on(ret, ca, ++ "journal read error: sector %llu", ++ offset) || ++ bch2_meta_read_fault("journal")) { ++ /* ++ * We don't error out of the recovery process ++ * here, since the relevant journal entry may be ++ * found on a different device, and missing or ++ * no journal entries will be handled later ++ */ ++ return 0; ++ } ++ ++ j = buf->data; ++ } ++ ++ ret = jset_validate_early(c, ca, j, offset, ++ end - offset, sectors_read); ++ switch (ret) { ++ case 0: ++ sectors = vstruct_sectors(j, c->block_bits); ++ break; ++ case JOURNAL_ENTRY_REREAD: ++ if (vstruct_bytes(j) > buf->size) { ++ ret = journal_read_buf_realloc(buf, ++ vstruct_bytes(j)); ++ if (ret) ++ return ret; ++ } ++ goto reread; ++ case JOURNAL_ENTRY_NONE: ++ if (!saw_bad) ++ return 0; ++ /* ++ * On checksum error we don't really trust the size ++ * field of the journal entry we read, so try reading ++ * again at next block boundary: ++ */ ++ sectors = block_sectors(c); ++ goto next_block; ++ default: ++ return ret; ++ } ++ ++ /* ++ * This happens sometimes if we don't have discards on - ++ * when we've partially overwritten a bucket with new ++ * journal entries. We don't need the rest of the ++ * bucket: ++ */ ++ if (le64_to_cpu(j->seq) < ja->bucket_seq[bucket]) ++ return 0; ++ ++ ja->bucket_seq[bucket] = le64_to_cpu(j->seq); ++ ++ csum_good = jset_csum_good(c, j); ++ if (!csum_good) ++ saw_bad = true; ++ ++ ret = bch2_encrypt(c, JSET_CSUM_TYPE(j), journal_nonce(j), ++ j->encrypted_start, ++ vstruct_end(j) - (void *) j->encrypted_start); ++ bch2_fs_fatal_err_on(ret, c, ++ "error decrypting journal entry: %i", ret); ++ ++ mutex_lock(&jlist->lock); ++ ret = journal_entry_add(c, ca, (struct journal_ptr) { ++ .csum_good = csum_good, ++ .dev = ca->dev_idx, ++ .bucket = bucket, ++ .bucket_offset = offset - ++ bucket_to_sector(ca, ja->buckets[bucket]), ++ .sector = offset, ++ }, jlist, j); ++ mutex_unlock(&jlist->lock); ++ ++ switch (ret) { ++ case JOURNAL_ENTRY_ADD_OK: ++ break; ++ case JOURNAL_ENTRY_ADD_OUT_OF_RANGE: ++ break; ++ default: ++ return ret; ++ } ++next_block: ++ pr_debug("next"); ++ offset += sectors; ++ sectors_read -= sectors; ++ j = ((void *) j) + (sectors << 9); ++ } ++ ++ return 0; ++} ++ ++static void bch2_journal_read_device(struct closure *cl) ++{ ++ struct journal_device *ja = ++ container_of(cl, struct journal_device, read); ++ struct bch_dev *ca = container_of(ja, struct bch_dev, journal); ++ struct bch_fs *c = ca->fs; ++ struct journal_list *jlist = ++ container_of(cl->parent, struct journal_list, cl); ++ struct journal_replay *r, **_r; ++ struct genradix_iter iter; ++ struct journal_read_buf buf = { NULL, 0 }; ++ unsigned i; ++ int ret = 0; ++ ++ if (!ja->nr) ++ goto out; ++ ++ ret = journal_read_buf_realloc(&buf, PAGE_SIZE); ++ if (ret) ++ goto err; ++ ++ pr_debug("%u journal buckets", ja->nr); ++ ++ for (i = 0; i < ja->nr; i++) { ++ ret = journal_read_bucket(ca, &buf, jlist, i); ++ if (ret) ++ goto err; ++ } ++ ++ ja->sectors_free = ca->mi.bucket_size; ++ ++ mutex_lock(&jlist->lock); ++ genradix_for_each_reverse(&c->journal_entries, iter, _r) { ++ r = *_r; ++ ++ if (!r) ++ continue; ++ ++ for (i = 0; i < r->nr_ptrs; i++) { ++ if (r->ptrs[i].dev == ca->dev_idx) { ++ unsigned wrote = bucket_remainder(ca, r->ptrs[i].sector) + ++ vstruct_sectors(&r->j, c->block_bits); ++ ++ ja->cur_idx = r->ptrs[i].bucket; ++ ja->sectors_free = ca->mi.bucket_size - wrote; ++ goto found; ++ } ++ } ++ } ++found: ++ mutex_unlock(&jlist->lock); ++ ++ if (ja->bucket_seq[ja->cur_idx] && ++ ja->sectors_free == ca->mi.bucket_size) { ++ bch_err(c, "ja->sectors_free == ca->mi.bucket_size"); ++ bch_err(c, "cur_idx %u/%u", ja->cur_idx, ja->nr); ++ for (i = 0; i < 3; i++) { ++ unsigned idx = (ja->cur_idx + ja->nr - 1 + i) % ja->nr; ++ ++ bch_err(c, "bucket_seq[%u] = %llu", idx, ja->bucket_seq[idx]); ++ } ++ ja->sectors_free = 0; ++ } ++ ++ /* ++ * Set dirty_idx to indicate the entire journal is full and needs to be ++ * reclaimed - journal reclaim will immediately reclaim whatever isn't ++ * pinned when it first runs: ++ */ ++ ja->discard_idx = ja->dirty_idx_ondisk = ++ ja->dirty_idx = (ja->cur_idx + 1) % ja->nr; ++out: ++ bch_verbose(c, "journal read done on device %s, ret %i", ca->name, ret); ++ kvpfree(buf.data, buf.size); ++ percpu_ref_put(&ca->io_ref); ++ closure_return(cl); ++ return; ++err: ++ mutex_lock(&jlist->lock); ++ jlist->ret = ret; ++ mutex_unlock(&jlist->lock); ++ goto out; ++} ++ ++void bch2_journal_ptrs_to_text(struct printbuf *out, struct bch_fs *c, ++ struct journal_replay *j) ++{ ++ unsigned i; ++ ++ for (i = 0; i < j->nr_ptrs; i++) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, j->ptrs[i].dev); ++ u64 offset; ++ ++ div64_u64_rem(j->ptrs[i].sector, ca->mi.bucket_size, &offset); ++ ++ if (i) ++ prt_printf(out, " "); ++ prt_printf(out, "%u:%u:%u (sector %llu)", ++ j->ptrs[i].dev, ++ j->ptrs[i].bucket, ++ j->ptrs[i].bucket_offset, ++ j->ptrs[i].sector); ++ } ++} ++ ++int bch2_journal_read(struct bch_fs *c, ++ u64 *last_seq, ++ u64 *blacklist_seq, ++ u64 *start_seq) ++{ ++ struct journal_list jlist; ++ struct journal_replay *i, **_i, *prev = NULL; ++ struct genradix_iter radix_iter; ++ struct bch_dev *ca; ++ unsigned iter; ++ struct printbuf buf = PRINTBUF; ++ bool degraded = false, last_write_torn = false; ++ u64 seq; ++ int ret = 0; ++ ++ closure_init_stack(&jlist.cl); ++ mutex_init(&jlist.lock); ++ jlist.last_seq = 0; ++ jlist.ret = 0; ++ ++ for_each_member_device(ca, c, iter) { ++ if (!c->opts.fsck && ++ !(bch2_dev_has_data(c, ca) & (1 << BCH_DATA_journal))) ++ continue; ++ ++ if ((ca->mi.state == BCH_MEMBER_STATE_rw || ++ ca->mi.state == BCH_MEMBER_STATE_ro) && ++ percpu_ref_tryget(&ca->io_ref)) ++ closure_call(&ca->journal.read, ++ bch2_journal_read_device, ++ system_unbound_wq, ++ &jlist.cl); ++ else ++ degraded = true; ++ } ++ ++ closure_sync(&jlist.cl); ++ ++ if (jlist.ret) ++ return jlist.ret; ++ ++ *last_seq = 0; ++ *start_seq = 0; ++ *blacklist_seq = 0; ++ ++ /* ++ * Find most recent flush entry, and ignore newer non flush entries - ++ * those entries will be blacklisted: ++ */ ++ genradix_for_each_reverse(&c->journal_entries, radix_iter, _i) { ++ enum bkey_invalid_flags flags = BKEY_INVALID_JOURNAL; ++ ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ if (!*start_seq) ++ *blacklist_seq = *start_seq = le64_to_cpu(i->j.seq) + 1; ++ ++ if (JSET_NO_FLUSH(&i->j)) { ++ i->ignore = true; ++ continue; ++ } ++ ++ if (!last_write_torn && !i->csum_good) { ++ last_write_torn = true; ++ i->ignore = true; ++ continue; ++ } ++ ++ if (journal_entry_err_on(le64_to_cpu(i->j.last_seq) > le64_to_cpu(i->j.seq), ++ c, le32_to_cpu(i->j.version), &i->j, NULL, ++ "invalid journal entry: last_seq > seq (%llu > %llu)", ++ le64_to_cpu(i->j.last_seq), ++ le64_to_cpu(i->j.seq))) ++ i->j.last_seq = i->j.seq; ++ ++ *last_seq = le64_to_cpu(i->j.last_seq); ++ *blacklist_seq = le64_to_cpu(i->j.seq) + 1; ++ break; ++ } ++ ++ if (!*start_seq) { ++ bch_info(c, "journal read done, but no entries found"); ++ return 0; ++ } ++ ++ if (!*last_seq) { ++ fsck_err(c, "journal read done, but no entries found after dropping non-flushes"); ++ return 0; ++ } ++ ++ bch_info(c, "journal read done, replaying entries %llu-%llu", ++ *last_seq, *blacklist_seq - 1); ++ ++ if (*start_seq != *blacklist_seq) ++ bch_info(c, "dropped unflushed entries %llu-%llu", ++ *blacklist_seq, *start_seq - 1); ++ ++ /* Drop blacklisted entries and entries older than last_seq: */ ++ genradix_for_each(&c->journal_entries, radix_iter, _i) { ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ seq = le64_to_cpu(i->j.seq); ++ if (seq < *last_seq) { ++ journal_replay_free(c, i); ++ continue; ++ } ++ ++ if (bch2_journal_seq_is_blacklisted(c, seq, true)) { ++ fsck_err_on(!JSET_NO_FLUSH(&i->j), c, ++ "found blacklisted journal entry %llu", seq); ++ i->ignore = true; ++ } ++ } ++ ++ /* Check for missing entries: */ ++ seq = *last_seq; ++ genradix_for_each(&c->journal_entries, radix_iter, _i) { ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ BUG_ON(seq > le64_to_cpu(i->j.seq)); ++ ++ while (seq < le64_to_cpu(i->j.seq)) { ++ u64 missing_start, missing_end; ++ struct printbuf buf1 = PRINTBUF, buf2 = PRINTBUF; ++ ++ while (seq < le64_to_cpu(i->j.seq) && ++ bch2_journal_seq_is_blacklisted(c, seq, false)) ++ seq++; ++ ++ if (seq == le64_to_cpu(i->j.seq)) ++ break; ++ ++ missing_start = seq; ++ ++ while (seq < le64_to_cpu(i->j.seq) && ++ !bch2_journal_seq_is_blacklisted(c, seq, false)) ++ seq++; ++ ++ if (prev) { ++ bch2_journal_ptrs_to_text(&buf1, c, prev); ++ prt_printf(&buf1, " size %zu", vstruct_sectors(&prev->j, c->block_bits)); ++ } else ++ prt_printf(&buf1, "(none)"); ++ bch2_journal_ptrs_to_text(&buf2, c, i); ++ ++ missing_end = seq - 1; ++ fsck_err(c, "journal entries %llu-%llu missing! (replaying %llu-%llu)\n" ++ " prev at %s\n" ++ " next at %s", ++ missing_start, missing_end, ++ *last_seq, *blacklist_seq - 1, ++ buf1.buf, buf2.buf); ++ ++ printbuf_exit(&buf1); ++ printbuf_exit(&buf2); ++ } ++ ++ prev = i; ++ seq++; ++ } ++ ++ genradix_for_each(&c->journal_entries, radix_iter, _i) { ++ struct bch_replicas_padded replicas = { ++ .e.data_type = BCH_DATA_journal, ++ .e.nr_required = 1, ++ }; ++ unsigned ptr; ++ ++ i = *_i; ++ if (!i || i->ignore) ++ continue; ++ ++ for (ptr = 0; ptr < i->nr_ptrs; ptr++) { ++ ca = bch_dev_bkey_exists(c, i->ptrs[ptr].dev); ++ ++ if (!i->ptrs[ptr].csum_good) ++ bch_err_dev_offset(ca, i->ptrs[ptr].sector, ++ "invalid journal checksum, seq %llu%s", ++ le64_to_cpu(i->j.seq), ++ i->csum_good ? " (had good copy on another device)" : ""); ++ } ++ ++ ret = jset_validate(c, ++ bch_dev_bkey_exists(c, i->ptrs[0].dev), ++ &i->j, ++ i->ptrs[0].sector, ++ READ); ++ if (ret) ++ goto err; ++ ++ for (ptr = 0; ptr < i->nr_ptrs; ptr++) ++ replicas.e.devs[replicas.e.nr_devs++] = i->ptrs[ptr].dev; ++ ++ bch2_replicas_entry_sort(&replicas.e); ++ ++ printbuf_reset(&buf); ++ bch2_replicas_entry_to_text(&buf, &replicas.e); ++ ++ if (!degraded && ++ !bch2_replicas_marked(c, &replicas.e) && ++ (le64_to_cpu(i->j.seq) == *last_seq || ++ fsck_err(c, "superblock not marked as containing replicas for journal entry %llu\n %s", ++ le64_to_cpu(i->j.seq), buf.buf))) { ++ ret = bch2_mark_replicas(c, &replicas.e); ++ if (ret) ++ goto err; ++ } ++ } ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++/* journal write: */ ++ ++static void __journal_write_alloc(struct journal *j, ++ struct journal_buf *w, ++ struct dev_alloc_list *devs_sorted, ++ unsigned sectors, ++ unsigned *replicas, ++ unsigned replicas_want) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_device *ja; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ if (*replicas >= replicas_want) ++ return; ++ ++ for (i = 0; i < devs_sorted->nr; i++) { ++ ca = rcu_dereference(c->devs[devs_sorted->devs[i]]); ++ if (!ca) ++ continue; ++ ++ ja = &ca->journal; ++ ++ /* ++ * Check that we can use this device, and aren't already using ++ * it: ++ */ ++ if (!ca->mi.durability || ++ ca->mi.state != BCH_MEMBER_STATE_rw || ++ !ja->nr || ++ bch2_bkey_has_device_c(bkey_i_to_s_c(&w->key), ca->dev_idx) || ++ sectors > ja->sectors_free) ++ continue; ++ ++ bch2_dev_stripe_increment(ca, &j->wp.stripe); ++ ++ bch2_bkey_append_ptr(&w->key, ++ (struct bch_extent_ptr) { ++ .offset = bucket_to_sector(ca, ++ ja->buckets[ja->cur_idx]) + ++ ca->mi.bucket_size - ++ ja->sectors_free, ++ .dev = ca->dev_idx, ++ }); ++ ++ ja->sectors_free -= sectors; ++ ja->bucket_seq[ja->cur_idx] = le64_to_cpu(w->data->seq); ++ ++ *replicas += ca->mi.durability; ++ ++ if (*replicas >= replicas_want) ++ break; ++ } ++} ++ ++/** ++ * journal_write_alloc - decide where to write next journal entry ++ * ++ * @j: journal object ++ * @w: journal buf (entry to be written) ++ * ++ * Returns: 0 on success, or -EROFS on failure ++ */ ++static int journal_write_alloc(struct journal *j, struct journal_buf *w) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_devs_mask devs; ++ struct journal_device *ja; ++ struct bch_dev *ca; ++ struct dev_alloc_list devs_sorted; ++ unsigned sectors = vstruct_sectors(w->data, c->block_bits); ++ unsigned target = c->opts.metadata_target ?: ++ c->opts.foreground_target; ++ unsigned i, replicas = 0, replicas_want = ++ READ_ONCE(c->opts.metadata_replicas); ++ ++ rcu_read_lock(); ++retry: ++ devs = target_rw_devs(c, BCH_DATA_journal, target); ++ ++ devs_sorted = bch2_dev_alloc_list(c, &j->wp.stripe, &devs); ++ ++ __journal_write_alloc(j, w, &devs_sorted, ++ sectors, &replicas, replicas_want); ++ ++ if (replicas >= replicas_want) ++ goto done; ++ ++ for (i = 0; i < devs_sorted.nr; i++) { ++ ca = rcu_dereference(c->devs[devs_sorted.devs[i]]); ++ if (!ca) ++ continue; ++ ++ ja = &ca->journal; ++ ++ if (sectors > ja->sectors_free && ++ sectors <= ca->mi.bucket_size && ++ bch2_journal_dev_buckets_available(j, ja, ++ journal_space_discarded)) { ++ ja->cur_idx = (ja->cur_idx + 1) % ja->nr; ++ ja->sectors_free = ca->mi.bucket_size; ++ ++ /* ++ * ja->bucket_seq[ja->cur_idx] must always have ++ * something sensible: ++ */ ++ ja->bucket_seq[ja->cur_idx] = le64_to_cpu(w->data->seq); ++ } ++ } ++ ++ __journal_write_alloc(j, w, &devs_sorted, ++ sectors, &replicas, replicas_want); ++ ++ if (replicas < replicas_want && target) { ++ /* Retry from all devices: */ ++ target = 0; ++ goto retry; ++ } ++done: ++ rcu_read_unlock(); ++ ++ BUG_ON(bkey_val_u64s(&w->key.k) > BCH_REPLICAS_MAX); ++ ++ return replicas >= c->opts.metadata_replicas_required ? 0 : -EROFS; ++} ++ ++static void journal_buf_realloc(struct journal *j, struct journal_buf *buf) ++{ ++ /* we aren't holding j->lock: */ ++ unsigned new_size = READ_ONCE(j->buf_size_want); ++ void *new_buf; ++ ++ if (buf->buf_size >= new_size) ++ return; ++ ++ new_buf = kvpmalloc(new_size, GFP_NOFS|__GFP_NOWARN); ++ if (!new_buf) ++ return; ++ ++ memcpy(new_buf, buf->data, buf->buf_size); ++ ++ spin_lock(&j->lock); ++ swap(buf->data, new_buf); ++ swap(buf->buf_size, new_size); ++ spin_unlock(&j->lock); ++ ++ kvpfree(new_buf, new_size); ++} ++ ++static inline struct journal_buf *journal_last_unwritten_buf(struct journal *j) ++{ ++ return j->buf + (journal_last_unwritten_seq(j) & JOURNAL_BUF_MASK); ++} ++ ++static void journal_write_done(struct closure *cl) ++{ ++ struct journal *j = container_of(cl, struct journal, io); ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_buf *w = journal_last_unwritten_buf(j); ++ struct bch_replicas_padded replicas; ++ union journal_res_state old, new; ++ u64 v, seq; ++ int err = 0; ++ ++ bch2_time_stats_update(!JSET_NO_FLUSH(w->data) ++ ? j->flush_write_time ++ : j->noflush_write_time, j->write_start_time); ++ ++ if (!w->devs_written.nr) { ++ bch_err(c, "unable to write journal to sufficient devices"); ++ err = -EIO; ++ } else { ++ bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, ++ w->devs_written); ++ if (bch2_mark_replicas(c, &replicas.e)) ++ err = -EIO; ++ } ++ ++ if (err) ++ bch2_fatal_error(c); ++ ++ spin_lock(&j->lock); ++ seq = le64_to_cpu(w->data->seq); ++ ++ if (seq >= j->pin.front) ++ journal_seq_pin(j, seq)->devs = w->devs_written; ++ ++ if (!err) { ++ if (!JSET_NO_FLUSH(w->data)) { ++ j->flushed_seq_ondisk = seq; ++ j->last_seq_ondisk = w->last_seq; ++ ++ bch2_do_discards(c); ++ closure_wake_up(&c->freelist_wait); ++ ++ bch2_reset_alloc_cursors(c); ++ } ++ } else if (!j->err_seq || seq < j->err_seq) ++ j->err_seq = seq; ++ ++ j->seq_ondisk = seq; ++ ++ /* ++ * Updating last_seq_ondisk may let bch2_journal_reclaim_work() discard ++ * more buckets: ++ * ++ * Must come before signaling write completion, for ++ * bch2_fs_journal_stop(): ++ */ ++ if (j->watermark != BCH_WATERMARK_stripe) ++ journal_reclaim_kick(&c->journal); ++ ++ /* also must come before signalling write completion: */ ++ closure_debug_destroy(cl); ++ ++ v = atomic64_read(&j->reservations.counter); ++ do { ++ old.v = new.v = v; ++ BUG_ON(journal_state_count(new, new.unwritten_idx)); ++ ++ new.unwritten_idx++; ++ } while ((v = atomic64_cmpxchg(&j->reservations.counter, ++ old.v, new.v)) != old.v); ++ ++ bch2_journal_space_available(j); ++ ++ closure_wake_up(&w->wait); ++ journal_wake(j); ++ ++ if (!journal_state_count(new, new.unwritten_idx) && ++ journal_last_unwritten_seq(j) <= journal_cur_seq(j)) { ++ spin_unlock(&j->lock); ++ closure_call(&j->io, bch2_journal_write, c->io_complete_wq, NULL); ++ } else if (journal_last_unwritten_seq(j) == journal_cur_seq(j) && ++ new.cur_entry_offset < JOURNAL_ENTRY_CLOSED_VAL) { ++ struct journal_buf *buf = journal_cur_buf(j); ++ long delta = buf->expires - jiffies; ++ ++ /* ++ * We don't close a journal entry to write it while there's ++ * previous entries still in flight - the current journal entry ++ * might want to be written now: ++ */ ++ ++ spin_unlock(&j->lock); ++ mod_delayed_work(c->io_complete_wq, &j->write_work, max(0L, delta)); ++ } else { ++ spin_unlock(&j->lock); ++ } ++} ++ ++static void journal_write_endio(struct bio *bio) ++{ ++ struct bch_dev *ca = bio->bi_private; ++ struct journal *j = &ca->fs->journal; ++ struct journal_buf *w = journal_last_unwritten_buf(j); ++ unsigned long flags; ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "error writing journal entry %llu: %s", ++ le64_to_cpu(w->data->seq), ++ bch2_blk_status_to_str(bio->bi_status)) || ++ bch2_meta_write_fault("journal")) { ++ spin_lock_irqsave(&j->err_lock, flags); ++ bch2_dev_list_drop_dev(&w->devs_written, ca->dev_idx); ++ spin_unlock_irqrestore(&j->err_lock, flags); ++ } ++ ++ closure_put(&j->io); ++ percpu_ref_put(&ca->io_ref); ++} ++ ++static void do_journal_write(struct closure *cl) ++{ ++ struct journal *j = container_of(cl, struct journal, io); ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ struct journal_buf *w = journal_last_unwritten_buf(j); ++ struct bch_extent_ptr *ptr; ++ struct bio *bio; ++ unsigned sectors = vstruct_sectors(w->data, c->block_bits); ++ ++ extent_for_each_ptr(bkey_i_to_s_extent(&w->key), ptr) { ++ ca = bch_dev_bkey_exists(c, ptr->dev); ++ if (!percpu_ref_tryget(&ca->io_ref)) { ++ /* XXX: fix this */ ++ bch_err(c, "missing device for journal write\n"); ++ continue; ++ } ++ ++ this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_journal], ++ sectors); ++ ++ bio = ca->journal.bio; ++ bio_reset(bio, ca->disk_sb.bdev, REQ_OP_WRITE|REQ_SYNC|REQ_META); ++ bio->bi_iter.bi_sector = ptr->offset; ++ bio->bi_end_io = journal_write_endio; ++ bio->bi_private = ca; ++ ++ BUG_ON(bio->bi_iter.bi_sector == ca->prev_journal_sector); ++ ca->prev_journal_sector = bio->bi_iter.bi_sector; ++ ++ if (!JSET_NO_FLUSH(w->data)) ++ bio->bi_opf |= REQ_FUA; ++ if (!JSET_NO_FLUSH(w->data) && !w->separate_flush) ++ bio->bi_opf |= REQ_PREFLUSH; ++ ++ bch2_bio_map(bio, w->data, sectors << 9); ++ ++ trace_and_count(c, journal_write, bio); ++ closure_bio_submit(bio, cl); ++ ++ ca->journal.bucket_seq[ca->journal.cur_idx] = ++ le64_to_cpu(w->data->seq); ++ } ++ ++ continue_at(cl, journal_write_done, c->io_complete_wq); ++} ++ ++static void bch2_journal_entries_postprocess(struct bch_fs *c, struct jset *jset) ++{ ++ struct jset_entry *i, *next, *prev = NULL; ++ ++ /* ++ * Simple compaction, dropping empty jset_entries (from journal ++ * reservations that weren't fully used) and merging jset_entries that ++ * can be. ++ * ++ * If we wanted to be really fancy here, we could sort all the keys in ++ * the jset and drop keys that were overwritten - probably not worth it: ++ */ ++ vstruct_for_each_safe(jset, i, next) { ++ unsigned u64s = le16_to_cpu(i->u64s); ++ ++ /* Empty entry: */ ++ if (!u64s) ++ continue; ++ ++ if (i->type == BCH_JSET_ENTRY_btree_root) ++ bch2_journal_entry_to_btree_root(c, i); ++ ++ /* Can we merge with previous entry? */ ++ if (prev && ++ i->btree_id == prev->btree_id && ++ i->level == prev->level && ++ i->type == prev->type && ++ i->type == BCH_JSET_ENTRY_btree_keys && ++ le16_to_cpu(prev->u64s) + u64s <= U16_MAX) { ++ memmove_u64s_down(vstruct_next(prev), ++ i->_data, ++ u64s); ++ le16_add_cpu(&prev->u64s, u64s); ++ continue; ++ } ++ ++ /* Couldn't merge, move i into new position (after prev): */ ++ prev = prev ? vstruct_next(prev) : jset->start; ++ if (i != prev) ++ memmove_u64s_down(prev, i, jset_u64s(u64s)); ++ } ++ ++ prev = prev ? vstruct_next(prev) : jset->start; ++ jset->u64s = cpu_to_le32((u64 *) prev - jset->_data); ++} ++ ++void bch2_journal_write(struct closure *cl) ++{ ++ struct journal *j = container_of(cl, struct journal, io); ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ struct journal_buf *w = journal_last_unwritten_buf(j); ++ struct bch_replicas_padded replicas; ++ struct jset_entry *start, *end; ++ struct jset *jset; ++ struct bio *bio; ++ struct printbuf journal_debug_buf = PRINTBUF; ++ bool validate_before_checksum = false; ++ unsigned i, sectors, bytes, u64s, nr_rw_members = 0; ++ int ret; ++ ++ BUG_ON(BCH_SB_CLEAN(c->disk_sb.sb)); ++ ++ journal_buf_realloc(j, w); ++ jset = w->data; ++ ++ j->write_start_time = local_clock(); ++ ++ spin_lock(&j->lock); ++ ++ /* ++ * If the journal is in an error state - we did an emergency shutdown - ++ * we prefer to continue doing journal writes. We just mark them as ++ * noflush so they'll never be used, but they'll still be visible by the ++ * list_journal tool - this helps in debugging. ++ * ++ * There's a caveat: the first journal write after marking the ++ * superblock dirty must always be a flush write, because on startup ++ * from a clean shutdown we didn't necessarily read the journal and the ++ * new journal write might overwrite whatever was in the journal ++ * previously - we can't leave the journal without any flush writes in ++ * it. ++ * ++ * So if we're in an error state, and we're still starting up, we don't ++ * write anything at all. ++ */ ++ if (!test_bit(JOURNAL_NEED_FLUSH_WRITE, &j->flags) && ++ (bch2_journal_error(j) || ++ w->noflush || ++ (!w->must_flush && ++ (jiffies - j->last_flush_write) < msecs_to_jiffies(c->opts.journal_flush_delay) && ++ test_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags)))) { ++ w->noflush = true; ++ SET_JSET_NO_FLUSH(jset, true); ++ jset->last_seq = 0; ++ w->last_seq = 0; ++ ++ j->nr_noflush_writes++; ++ } else if (!bch2_journal_error(j)) { ++ j->last_flush_write = jiffies; ++ j->nr_flush_writes++; ++ clear_bit(JOURNAL_NEED_FLUSH_WRITE, &j->flags); ++ } else { ++ spin_unlock(&j->lock); ++ goto err; ++ } ++ spin_unlock(&j->lock); ++ ++ /* ++ * New btree roots are set by journalling them; when the journal entry ++ * gets written we have to propagate them to c->btree_roots ++ * ++ * But, every journal entry we write has to contain all the btree roots ++ * (at least for now); so after we copy btree roots to c->btree_roots we ++ * have to get any missing btree roots and add them to this journal ++ * entry: ++ */ ++ ++ bch2_journal_entries_postprocess(c, jset); ++ ++ start = end = vstruct_last(jset); ++ ++ end = bch2_btree_roots_to_journal_entries(c, jset->start, end); ++ ++ bch2_journal_super_entries_add_common(c, &end, ++ le64_to_cpu(jset->seq)); ++ u64s = (u64 *) end - (u64 *) start; ++ BUG_ON(u64s > j->entry_u64s_reserved); ++ ++ le32_add_cpu(&jset->u64s, u64s); ++ ++ sectors = vstruct_sectors(jset, c->block_bits); ++ bytes = vstruct_bytes(jset); ++ ++ if (sectors > w->sectors) { ++ bch2_fs_fatal_error(c, "aieeee! journal write overran available space, %zu > %u (extra %u reserved %u/%u)", ++ vstruct_bytes(jset), w->sectors << 9, ++ u64s, w->u64s_reserved, j->entry_u64s_reserved); ++ goto err; ++ } ++ ++ jset->magic = cpu_to_le64(jset_magic(c)); ++ jset->version = cpu_to_le32(c->sb.version); ++ ++ SET_JSET_BIG_ENDIAN(jset, CPU_BIG_ENDIAN); ++ SET_JSET_CSUM_TYPE(jset, bch2_meta_checksum_type(c)); ++ ++ if (!JSET_NO_FLUSH(jset) && journal_entry_empty(jset)) ++ j->last_empty_seq = le64_to_cpu(jset->seq); ++ ++ if (bch2_csum_type_is_encryption(JSET_CSUM_TYPE(jset))) ++ validate_before_checksum = true; ++ ++ if (le32_to_cpu(jset->version) < bcachefs_metadata_version_current) ++ validate_before_checksum = true; ++ ++ if (validate_before_checksum && ++ jset_validate(c, NULL, jset, 0, WRITE)) ++ goto err; ++ ++ ret = bch2_encrypt(c, JSET_CSUM_TYPE(jset), journal_nonce(jset), ++ jset->encrypted_start, ++ vstruct_end(jset) - (void *) jset->encrypted_start); ++ if (bch2_fs_fatal_err_on(ret, c, ++ "error decrypting journal entry: %i", ret)) ++ goto err; ++ ++ jset->csum = csum_vstruct(c, JSET_CSUM_TYPE(jset), ++ journal_nonce(jset), jset); ++ ++ if (!validate_before_checksum && ++ jset_validate(c, NULL, jset, 0, WRITE)) ++ goto err; ++ ++ memset((void *) jset + bytes, 0, (sectors << 9) - bytes); ++ ++retry_alloc: ++ spin_lock(&j->lock); ++ ret = journal_write_alloc(j, w); ++ ++ if (ret && j->can_discard) { ++ spin_unlock(&j->lock); ++ bch2_journal_do_discards(j); ++ goto retry_alloc; ++ } ++ ++ if (ret) ++ __bch2_journal_debug_to_text(&journal_debug_buf, j); ++ ++ /* ++ * write is allocated, no longer need to account for it in ++ * bch2_journal_space_available(): ++ */ ++ w->sectors = 0; ++ ++ /* ++ * journal entry has been compacted and allocated, recalculate space ++ * available: ++ */ ++ bch2_journal_space_available(j); ++ spin_unlock(&j->lock); ++ ++ if (ret) { ++ bch_err(c, "Unable to allocate journal write:\n%s", ++ journal_debug_buf.buf); ++ printbuf_exit(&journal_debug_buf); ++ goto err; ++ } ++ ++ w->devs_written = bch2_bkey_devs(bkey_i_to_s_c(&w->key)); ++ ++ if (c->opts.nochanges) ++ goto no_io; ++ ++ for_each_rw_member(ca, c, i) ++ nr_rw_members++; ++ ++ if (nr_rw_members > 1) ++ w->separate_flush = true; ++ ++ /* ++ * Mark journal replicas before we submit the write to guarantee ++ * recovery will find the journal entries after a crash. ++ */ ++ bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, ++ w->devs_written); ++ ret = bch2_mark_replicas(c, &replicas.e); ++ if (ret) ++ goto err; ++ ++ if (!JSET_NO_FLUSH(jset) && w->separate_flush) { ++ for_each_rw_member(ca, c, i) { ++ percpu_ref_get(&ca->io_ref); ++ ++ bio = ca->journal.bio; ++ bio_reset(bio, ca->disk_sb.bdev, REQ_OP_FLUSH); ++ bio->bi_end_io = journal_write_endio; ++ bio->bi_private = ca; ++ closure_bio_submit(bio, cl); ++ } ++ } ++ ++ continue_at(cl, do_journal_write, c->io_complete_wq); ++ return; ++no_io: ++ continue_at(cl, journal_write_done, c->io_complete_wq); ++ return; ++err: ++ bch2_fatal_error(c); ++ continue_at(cl, journal_write_done, c->io_complete_wq); ++} +diff --git a/fs/bcachefs/journal_io.h b/fs/bcachefs/journal_io.h +new file mode 100644 +index 000000000000..a88d097b13f1 +--- /dev/null ++++ b/fs/bcachefs/journal_io.h +@@ -0,0 +1,65 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_IO_H ++#define _BCACHEFS_JOURNAL_IO_H ++ ++/* ++ * Only used for holding the journal entries we read in btree_journal_read() ++ * during cache_registration ++ */ ++struct journal_replay { ++ struct journal_ptr { ++ bool csum_good; ++ u8 dev; ++ u32 bucket; ++ u32 bucket_offset; ++ u64 sector; ++ } ptrs[BCH_REPLICAS_MAX]; ++ unsigned nr_ptrs; ++ ++ bool csum_good; ++ bool ignore; ++ /* must be last: */ ++ struct jset j; ++}; ++ ++static inline struct jset_entry *__jset_entry_type_next(struct jset *jset, ++ struct jset_entry *entry, unsigned type) ++{ ++ while (entry < vstruct_last(jset)) { ++ if (entry->type == type) ++ return entry; ++ ++ entry = vstruct_next(entry); ++ } ++ ++ return NULL; ++} ++ ++#define for_each_jset_entry_type(entry, jset, type) \ ++ for (entry = (jset)->start; \ ++ (entry = __jset_entry_type_next(jset, entry, type)); \ ++ entry = vstruct_next(entry)) ++ ++#define jset_entry_for_each_key(_e, _k) \ ++ for (_k = (_e)->start; \ ++ _k < vstruct_last(_e); \ ++ _k = bkey_next(_k)) ++ ++#define for_each_jset_key(k, entry, jset) \ ++ for_each_jset_entry_type(entry, jset, BCH_JSET_ENTRY_btree_keys)\ ++ jset_entry_for_each_key(entry, k) ++ ++int bch2_journal_entry_validate(struct bch_fs *, struct jset *, ++ struct jset_entry *, unsigned, int, ++ enum bkey_invalid_flags); ++void bch2_journal_entry_to_text(struct printbuf *, struct bch_fs *, ++ struct jset_entry *); ++ ++void bch2_journal_ptrs_to_text(struct printbuf *, struct bch_fs *, ++ struct journal_replay *); ++ ++int bch2_journal_read(struct bch_fs *, u64 *, u64 *, u64 *); ++ ++void bch2_journal_write(struct closure *); ++ ++#endif /* _BCACHEFS_JOURNAL_IO_H */ +diff --git a/fs/bcachefs/journal_reclaim.c b/fs/bcachefs/journal_reclaim.c +new file mode 100644 +index 000000000000..9a584aaaa2eb +--- /dev/null ++++ b/fs/bcachefs/journal_reclaim.c +@@ -0,0 +1,876 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_key_cache.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "errcode.h" ++#include "error.h" ++#include "journal.h" ++#include "journal_io.h" ++#include "journal_reclaim.h" ++#include "replicas.h" ++#include "sb-members.h" ++#include "trace.h" ++ ++#include ++#include ++ ++/* Free space calculations: */ ++ ++static unsigned journal_space_from(struct journal_device *ja, ++ enum journal_space_from from) ++{ ++ switch (from) { ++ case journal_space_discarded: ++ return ja->discard_idx; ++ case journal_space_clean_ondisk: ++ return ja->dirty_idx_ondisk; ++ case journal_space_clean: ++ return ja->dirty_idx; ++ default: ++ BUG(); ++ } ++} ++ ++unsigned bch2_journal_dev_buckets_available(struct journal *j, ++ struct journal_device *ja, ++ enum journal_space_from from) ++{ ++ unsigned available = (journal_space_from(ja, from) - ++ ja->cur_idx - 1 + ja->nr) % ja->nr; ++ ++ /* ++ * Don't use the last bucket unless writing the new last_seq ++ * will make another bucket available: ++ */ ++ if (available && ja->dirty_idx_ondisk == ja->dirty_idx) ++ --available; ++ ++ return available; ++} ++ ++static void journal_set_remaining(struct journal *j, unsigned u64s_remaining) ++{ ++ union journal_preres_state old, new; ++ u64 v = atomic64_read(&j->prereserved.counter); ++ ++ do { ++ old.v = new.v = v; ++ new.remaining = u64s_remaining; ++ } while ((v = atomic64_cmpxchg(&j->prereserved.counter, ++ old.v, new.v)) != old.v); ++} ++ ++static struct journal_space ++journal_dev_space_available(struct journal *j, struct bch_dev *ca, ++ enum journal_space_from from) ++{ ++ struct journal_device *ja = &ca->journal; ++ unsigned sectors, buckets, unwritten; ++ u64 seq; ++ ++ if (from == journal_space_total) ++ return (struct journal_space) { ++ .next_entry = ca->mi.bucket_size, ++ .total = ca->mi.bucket_size * ja->nr, ++ }; ++ ++ buckets = bch2_journal_dev_buckets_available(j, ja, from); ++ sectors = ja->sectors_free; ++ ++ /* ++ * We that we don't allocate the space for a journal entry ++ * until we write it out - thus, account for it here: ++ */ ++ for (seq = journal_last_unwritten_seq(j); ++ seq <= journal_cur_seq(j); ++ seq++) { ++ unwritten = j->buf[seq & JOURNAL_BUF_MASK].sectors; ++ ++ if (!unwritten) ++ continue; ++ ++ /* entry won't fit on this device, skip: */ ++ if (unwritten > ca->mi.bucket_size) ++ continue; ++ ++ if (unwritten >= sectors) { ++ if (!buckets) { ++ sectors = 0; ++ break; ++ } ++ ++ buckets--; ++ sectors = ca->mi.bucket_size; ++ } ++ ++ sectors -= unwritten; ++ } ++ ++ if (sectors < ca->mi.bucket_size && buckets) { ++ buckets--; ++ sectors = ca->mi.bucket_size; ++ } ++ ++ return (struct journal_space) { ++ .next_entry = sectors, ++ .total = sectors + buckets * ca->mi.bucket_size, ++ }; ++} ++ ++static struct journal_space __journal_space_available(struct journal *j, unsigned nr_devs_want, ++ enum journal_space_from from) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ unsigned i, pos, nr_devs = 0; ++ struct journal_space space, dev_space[BCH_SB_MEMBERS_MAX]; ++ ++ BUG_ON(nr_devs_want > ARRAY_SIZE(dev_space)); ++ ++ rcu_read_lock(); ++ for_each_member_device_rcu(ca, c, i, ++ &c->rw_devs[BCH_DATA_journal]) { ++ if (!ca->journal.nr) ++ continue; ++ ++ space = journal_dev_space_available(j, ca, from); ++ if (!space.next_entry) ++ continue; ++ ++ for (pos = 0; pos < nr_devs; pos++) ++ if (space.total > dev_space[pos].total) ++ break; ++ ++ array_insert_item(dev_space, nr_devs, pos, space); ++ } ++ rcu_read_unlock(); ++ ++ if (nr_devs < nr_devs_want) ++ return (struct journal_space) { 0, 0 }; ++ ++ /* ++ * We sorted largest to smallest, and we want the smallest out of the ++ * @nr_devs_want largest devices: ++ */ ++ return dev_space[nr_devs_want - 1]; ++} ++ ++void bch2_journal_space_available(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ unsigned clean, clean_ondisk, total; ++ s64 u64s_remaining = 0; ++ unsigned max_entry_size = min(j->buf[0].buf_size >> 9, ++ j->buf[1].buf_size >> 9); ++ unsigned i, nr_online = 0, nr_devs_want; ++ bool can_discard = false; ++ int ret = 0; ++ ++ lockdep_assert_held(&j->lock); ++ ++ rcu_read_lock(); ++ for_each_member_device_rcu(ca, c, i, ++ &c->rw_devs[BCH_DATA_journal]) { ++ struct journal_device *ja = &ca->journal; ++ ++ if (!ja->nr) ++ continue; ++ ++ while (ja->dirty_idx != ja->cur_idx && ++ ja->bucket_seq[ja->dirty_idx] < journal_last_seq(j)) ++ ja->dirty_idx = (ja->dirty_idx + 1) % ja->nr; ++ ++ while (ja->dirty_idx_ondisk != ja->dirty_idx && ++ ja->bucket_seq[ja->dirty_idx_ondisk] < j->last_seq_ondisk) ++ ja->dirty_idx_ondisk = (ja->dirty_idx_ondisk + 1) % ja->nr; ++ ++ if (ja->discard_idx != ja->dirty_idx_ondisk) ++ can_discard = true; ++ ++ max_entry_size = min_t(unsigned, max_entry_size, ca->mi.bucket_size); ++ nr_online++; ++ } ++ rcu_read_unlock(); ++ ++ j->can_discard = can_discard; ++ ++ if (nr_online < c->opts.metadata_replicas_required) { ++ ret = JOURNAL_ERR_insufficient_devices; ++ goto out; ++ } ++ ++ nr_devs_want = min_t(unsigned, nr_online, c->opts.metadata_replicas); ++ ++ for (i = 0; i < journal_space_nr; i++) ++ j->space[i] = __journal_space_available(j, nr_devs_want, i); ++ ++ clean_ondisk = j->space[journal_space_clean_ondisk].total; ++ clean = j->space[journal_space_clean].total; ++ total = j->space[journal_space_total].total; ++ ++ if (!j->space[journal_space_discarded].next_entry) ++ ret = JOURNAL_ERR_journal_full; ++ ++ if ((j->space[journal_space_clean_ondisk].next_entry < ++ j->space[journal_space_clean_ondisk].total) && ++ (clean - clean_ondisk <= total / 8) && ++ (clean_ondisk * 2 > clean)) ++ set_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags); ++ else ++ clear_bit(JOURNAL_MAY_SKIP_FLUSH, &j->flags); ++ ++ u64s_remaining = (u64) clean << 6; ++ u64s_remaining -= (u64) total << 3; ++ u64s_remaining = max(0LL, u64s_remaining); ++ u64s_remaining /= 4; ++ u64s_remaining = min_t(u64, u64s_remaining, U32_MAX); ++out: ++ j->cur_entry_sectors = !ret ? j->space[journal_space_discarded].next_entry : 0; ++ j->cur_entry_error = ret; ++ journal_set_remaining(j, u64s_remaining); ++ journal_set_watermark(j); ++ ++ if (!ret) ++ journal_wake(j); ++} ++ ++/* Discards - last part of journal reclaim: */ ++ ++static bool should_discard_bucket(struct journal *j, struct journal_device *ja) ++{ ++ bool ret; ++ ++ spin_lock(&j->lock); ++ ret = ja->discard_idx != ja->dirty_idx_ondisk; ++ spin_unlock(&j->lock); ++ ++ return ret; ++} ++ ++/* ++ * Advance ja->discard_idx as long as it points to buckets that are no longer ++ * dirty, issuing discards if necessary: ++ */ ++void bch2_journal_do_discards(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ unsigned iter; ++ ++ mutex_lock(&j->discard_lock); ++ ++ for_each_rw_member(ca, c, iter) { ++ struct journal_device *ja = &ca->journal; ++ ++ while (should_discard_bucket(j, ja)) { ++ if (!c->opts.nochanges && ++ ca->mi.discard && ++ bdev_max_discard_sectors(ca->disk_sb.bdev)) ++ blkdev_issue_discard(ca->disk_sb.bdev, ++ bucket_to_sector(ca, ++ ja->buckets[ja->discard_idx]), ++ ca->mi.bucket_size, GFP_NOFS); ++ ++ spin_lock(&j->lock); ++ ja->discard_idx = (ja->discard_idx + 1) % ja->nr; ++ ++ bch2_journal_space_available(j); ++ spin_unlock(&j->lock); ++ } ++ } ++ ++ mutex_unlock(&j->discard_lock); ++} ++ ++/* ++ * Journal entry pinning - machinery for holding a reference on a given journal ++ * entry, holding it open to ensure it gets replayed during recovery: ++ */ ++ ++void bch2_journal_reclaim_fast(struct journal *j) ++{ ++ bool popped = false; ++ ++ lockdep_assert_held(&j->lock); ++ ++ /* ++ * Unpin journal entries whose reference counts reached zero, meaning ++ * all btree nodes got written out ++ */ ++ while (!fifo_empty(&j->pin) && ++ !atomic_read(&fifo_peek_front(&j->pin).count)) { ++ j->pin.front++; ++ popped = true; ++ } ++ ++ if (popped) ++ bch2_journal_space_available(j); ++} ++ ++bool __bch2_journal_pin_put(struct journal *j, u64 seq) ++{ ++ struct journal_entry_pin_list *pin_list = journal_seq_pin(j, seq); ++ ++ return atomic_dec_and_test(&pin_list->count); ++} ++ ++void bch2_journal_pin_put(struct journal *j, u64 seq) ++{ ++ if (__bch2_journal_pin_put(j, seq)) { ++ spin_lock(&j->lock); ++ bch2_journal_reclaim_fast(j); ++ spin_unlock(&j->lock); ++ } ++} ++ ++static inline bool __journal_pin_drop(struct journal *j, ++ struct journal_entry_pin *pin) ++{ ++ struct journal_entry_pin_list *pin_list; ++ ++ if (!journal_pin_active(pin)) ++ return false; ++ ++ if (j->flush_in_progress == pin) ++ j->flush_in_progress_dropped = true; ++ ++ pin_list = journal_seq_pin(j, pin->seq); ++ pin->seq = 0; ++ list_del_init(&pin->list); ++ ++ /* ++ * Unpinning a journal entry may make journal_next_bucket() succeed, if ++ * writing a new last_seq will now make another bucket available: ++ */ ++ return atomic_dec_and_test(&pin_list->count) && ++ pin_list == &fifo_peek_front(&j->pin); ++} ++ ++void bch2_journal_pin_drop(struct journal *j, ++ struct journal_entry_pin *pin) ++{ ++ spin_lock(&j->lock); ++ if (__journal_pin_drop(j, pin)) ++ bch2_journal_reclaim_fast(j); ++ spin_unlock(&j->lock); ++} ++ ++static enum journal_pin_type journal_pin_type(journal_pin_flush_fn fn) ++{ ++ if (fn == bch2_btree_node_flush0 || ++ fn == bch2_btree_node_flush1) ++ return JOURNAL_PIN_btree; ++ else if (fn == bch2_btree_key_cache_journal_flush) ++ return JOURNAL_PIN_key_cache; ++ else ++ return JOURNAL_PIN_other; ++} ++ ++void bch2_journal_pin_set(struct journal *j, u64 seq, ++ struct journal_entry_pin *pin, ++ journal_pin_flush_fn flush_fn) ++{ ++ struct journal_entry_pin_list *pin_list; ++ bool reclaim; ++ ++ spin_lock(&j->lock); ++ ++ if (seq < journal_last_seq(j)) { ++ /* ++ * bch2_journal_pin_copy() raced with bch2_journal_pin_drop() on ++ * the src pin - with the pin dropped, the entry to pin might no ++ * longer to exist, but that means there's no longer anything to ++ * copy and we can bail out here: ++ */ ++ spin_unlock(&j->lock); ++ return; ++ } ++ ++ pin_list = journal_seq_pin(j, seq); ++ ++ reclaim = __journal_pin_drop(j, pin); ++ ++ atomic_inc(&pin_list->count); ++ pin->seq = seq; ++ pin->flush = flush_fn; ++ ++ if (flush_fn) ++ list_add(&pin->list, &pin_list->list[journal_pin_type(flush_fn)]); ++ else ++ list_add(&pin->list, &pin_list->flushed); ++ ++ if (reclaim) ++ bch2_journal_reclaim_fast(j); ++ spin_unlock(&j->lock); ++ ++ /* ++ * If the journal is currently full, we might want to call flush_fn ++ * immediately: ++ */ ++ journal_wake(j); ++} ++ ++/** ++ * bch2_journal_pin_flush: ensure journal pin callback is no longer running ++ * @j: journal object ++ * @pin: pin to flush ++ */ ++void bch2_journal_pin_flush(struct journal *j, struct journal_entry_pin *pin) ++{ ++ BUG_ON(journal_pin_active(pin)); ++ ++ wait_event(j->pin_flush_wait, j->flush_in_progress != pin); ++} ++ ++/* ++ * Journal reclaim: flush references to open journal entries to reclaim space in ++ * the journal ++ * ++ * May be done by the journal code in the background as needed to free up space ++ * for more journal entries, or as part of doing a clean shutdown, or to migrate ++ * data off of a specific device: ++ */ ++ ++static struct journal_entry_pin * ++journal_get_next_pin(struct journal *j, ++ u64 seq_to_flush, ++ unsigned allowed_below_seq, ++ unsigned allowed_above_seq, ++ u64 *seq) ++{ ++ struct journal_entry_pin_list *pin_list; ++ struct journal_entry_pin *ret = NULL; ++ unsigned i; ++ ++ fifo_for_each_entry_ptr(pin_list, &j->pin, *seq) { ++ if (*seq > seq_to_flush && !allowed_above_seq) ++ break; ++ ++ for (i = 0; i < JOURNAL_PIN_NR; i++) ++ if ((((1U << i) & allowed_below_seq) && *seq <= seq_to_flush) || ++ ((1U << i) & allowed_above_seq)) { ++ ret = list_first_entry_or_null(&pin_list->list[i], ++ struct journal_entry_pin, list); ++ if (ret) ++ return ret; ++ } ++ } ++ ++ return NULL; ++} ++ ++/* returns true if we did work */ ++static size_t journal_flush_pins(struct journal *j, ++ u64 seq_to_flush, ++ unsigned allowed_below_seq, ++ unsigned allowed_above_seq, ++ unsigned min_any, ++ unsigned min_key_cache) ++{ ++ struct journal_entry_pin *pin; ++ size_t nr_flushed = 0; ++ journal_pin_flush_fn flush_fn; ++ u64 seq; ++ int err; ++ ++ lockdep_assert_held(&j->reclaim_lock); ++ ++ while (1) { ++ unsigned allowed_above = allowed_above_seq; ++ unsigned allowed_below = allowed_below_seq; ++ ++ if (min_any) { ++ allowed_above |= ~0; ++ allowed_below |= ~0; ++ } ++ ++ if (min_key_cache) { ++ allowed_above |= 1U << JOURNAL_PIN_key_cache; ++ allowed_below |= 1U << JOURNAL_PIN_key_cache; ++ } ++ ++ cond_resched(); ++ ++ j->last_flushed = jiffies; ++ ++ spin_lock(&j->lock); ++ pin = journal_get_next_pin(j, seq_to_flush, allowed_below, allowed_above, &seq); ++ if (pin) { ++ BUG_ON(j->flush_in_progress); ++ j->flush_in_progress = pin; ++ j->flush_in_progress_dropped = false; ++ flush_fn = pin->flush; ++ } ++ spin_unlock(&j->lock); ++ ++ if (!pin) ++ break; ++ ++ if (min_key_cache && pin->flush == bch2_btree_key_cache_journal_flush) ++ min_key_cache--; ++ ++ if (min_any) ++ min_any--; ++ ++ err = flush_fn(j, pin, seq); ++ ++ spin_lock(&j->lock); ++ /* Pin might have been dropped or rearmed: */ ++ if (likely(!err && !j->flush_in_progress_dropped)) ++ list_move(&pin->list, &journal_seq_pin(j, seq)->flushed); ++ j->flush_in_progress = NULL; ++ j->flush_in_progress_dropped = false; ++ spin_unlock(&j->lock); ++ ++ wake_up(&j->pin_flush_wait); ++ ++ if (err) ++ break; ++ ++ nr_flushed++; ++ } ++ ++ return nr_flushed; ++} ++ ++static u64 journal_seq_to_flush(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct bch_dev *ca; ++ u64 seq_to_flush = 0; ++ unsigned iter; ++ ++ spin_lock(&j->lock); ++ ++ for_each_rw_member(ca, c, iter) { ++ struct journal_device *ja = &ca->journal; ++ unsigned nr_buckets, bucket_to_flush; ++ ++ if (!ja->nr) ++ continue; ++ ++ /* Try to keep the journal at most half full: */ ++ nr_buckets = ja->nr / 2; ++ ++ /* And include pre-reservations: */ ++ nr_buckets += DIV_ROUND_UP(j->prereserved.reserved, ++ (ca->mi.bucket_size << 6) - ++ journal_entry_overhead(j)); ++ ++ nr_buckets = min(nr_buckets, ja->nr); ++ ++ bucket_to_flush = (ja->cur_idx + nr_buckets) % ja->nr; ++ seq_to_flush = max(seq_to_flush, ++ ja->bucket_seq[bucket_to_flush]); ++ } ++ ++ /* Also flush if the pin fifo is more than half full */ ++ seq_to_flush = max_t(s64, seq_to_flush, ++ (s64) journal_cur_seq(j) - ++ (j->pin.size >> 1)); ++ spin_unlock(&j->lock); ++ ++ return seq_to_flush; ++} ++ ++/** ++ * __bch2_journal_reclaim - free up journal buckets ++ * @j: journal object ++ * @direct: direct or background reclaim? ++ * @kicked: requested to run since we last ran? ++ * Returns: 0 on success, or -EIO if the journal has been shutdown ++ * ++ * Background journal reclaim writes out btree nodes. It should be run ++ * early enough so that we never completely run out of journal buckets. ++ * ++ * High watermarks for triggering background reclaim: ++ * - FIFO has fewer than 512 entries left ++ * - fewer than 25% journal buckets free ++ * ++ * Background reclaim runs until low watermarks are reached: ++ * - FIFO has more than 1024 entries left ++ * - more than 50% journal buckets free ++ * ++ * As long as a reclaim can complete in the time it takes to fill up ++ * 512 journal entries or 25% of all journal buckets, then ++ * journal_next_bucket() should not stall. ++ */ ++static int __bch2_journal_reclaim(struct journal *j, bool direct, bool kicked) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ bool kthread = (current->flags & PF_KTHREAD) != 0; ++ u64 seq_to_flush; ++ size_t min_nr, min_key_cache, nr_flushed; ++ unsigned flags; ++ int ret = 0; ++ ++ /* ++ * We can't invoke memory reclaim while holding the reclaim_lock - ++ * journal reclaim is required to make progress for memory reclaim ++ * (cleaning the caches), so we can't get stuck in memory reclaim while ++ * we're holding the reclaim lock: ++ */ ++ lockdep_assert_held(&j->reclaim_lock); ++ flags = memalloc_noreclaim_save(); ++ ++ do { ++ if (kthread && kthread_should_stop()) ++ break; ++ ++ if (bch2_journal_error(j)) { ++ ret = -EIO; ++ break; ++ } ++ ++ bch2_journal_do_discards(j); ++ ++ seq_to_flush = journal_seq_to_flush(j); ++ min_nr = 0; ++ ++ /* ++ * If it's been longer than j->reclaim_delay_ms since we last flushed, ++ * make sure to flush at least one journal pin: ++ */ ++ if (time_after(jiffies, j->last_flushed + ++ msecs_to_jiffies(c->opts.journal_reclaim_delay))) ++ min_nr = 1; ++ ++ if (j->prereserved.reserved * 4 > j->prereserved.remaining) ++ min_nr = 1; ++ ++ if (fifo_free(&j->pin) <= 32) ++ min_nr = 1; ++ ++ if (atomic_read(&c->btree_cache.dirty) * 2 > c->btree_cache.used) ++ min_nr = 1; ++ ++ min_key_cache = min(bch2_nr_btree_keys_need_flush(c), (size_t) 128); ++ ++ trace_and_count(c, journal_reclaim_start, c, ++ direct, kicked, ++ min_nr, min_key_cache, ++ j->prereserved.reserved, ++ j->prereserved.remaining, ++ atomic_read(&c->btree_cache.dirty), ++ c->btree_cache.used, ++ atomic_long_read(&c->btree_key_cache.nr_dirty), ++ atomic_long_read(&c->btree_key_cache.nr_keys)); ++ ++ nr_flushed = journal_flush_pins(j, seq_to_flush, ++ ~0, 0, ++ min_nr, min_key_cache); ++ ++ if (direct) ++ j->nr_direct_reclaim += nr_flushed; ++ else ++ j->nr_background_reclaim += nr_flushed; ++ trace_and_count(c, journal_reclaim_finish, c, nr_flushed); ++ ++ if (nr_flushed) ++ wake_up(&j->reclaim_wait); ++ } while ((min_nr || min_key_cache) && nr_flushed && !direct); ++ ++ memalloc_noreclaim_restore(flags); ++ ++ return ret; ++} ++ ++int bch2_journal_reclaim(struct journal *j) ++{ ++ return __bch2_journal_reclaim(j, true, true); ++} ++ ++static int bch2_journal_reclaim_thread(void *arg) ++{ ++ struct journal *j = arg; ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ unsigned long delay, now; ++ bool journal_empty; ++ int ret = 0; ++ ++ set_freezable(); ++ ++ j->last_flushed = jiffies; ++ ++ while (!ret && !kthread_should_stop()) { ++ bool kicked = j->reclaim_kicked; ++ ++ j->reclaim_kicked = false; ++ ++ mutex_lock(&j->reclaim_lock); ++ ret = __bch2_journal_reclaim(j, false, kicked); ++ mutex_unlock(&j->reclaim_lock); ++ ++ now = jiffies; ++ delay = msecs_to_jiffies(c->opts.journal_reclaim_delay); ++ j->next_reclaim = j->last_flushed + delay; ++ ++ if (!time_in_range(j->next_reclaim, now, now + delay)) ++ j->next_reclaim = now + delay; ++ ++ while (1) { ++ set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); ++ if (kthread_should_stop()) ++ break; ++ if (j->reclaim_kicked) ++ break; ++ ++ spin_lock(&j->lock); ++ journal_empty = fifo_empty(&j->pin); ++ spin_unlock(&j->lock); ++ ++ if (journal_empty) ++ schedule(); ++ else if (time_after(j->next_reclaim, jiffies)) ++ schedule_timeout(j->next_reclaim - jiffies); ++ else ++ break; ++ } ++ __set_current_state(TASK_RUNNING); ++ } ++ ++ return 0; ++} ++ ++void bch2_journal_reclaim_stop(struct journal *j) ++{ ++ struct task_struct *p = j->reclaim_thread; ++ ++ j->reclaim_thread = NULL; ++ ++ if (p) { ++ kthread_stop(p); ++ put_task_struct(p); ++ } ++} ++ ++int bch2_journal_reclaim_start(struct journal *j) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct task_struct *p; ++ int ret; ++ ++ if (j->reclaim_thread) ++ return 0; ++ ++ p = kthread_create(bch2_journal_reclaim_thread, j, ++ "bch-reclaim/%s", c->name); ++ ret = PTR_ERR_OR_ZERO(p); ++ if (ret) { ++ bch_err_msg(c, ret, "creating journal reclaim thread"); ++ return ret; ++ } ++ ++ get_task_struct(p); ++ j->reclaim_thread = p; ++ wake_up_process(p); ++ return 0; ++} ++ ++static int journal_flush_done(struct journal *j, u64 seq_to_flush, ++ bool *did_work) ++{ ++ int ret; ++ ++ ret = bch2_journal_error(j); ++ if (ret) ++ return ret; ++ ++ mutex_lock(&j->reclaim_lock); ++ ++ if (journal_flush_pins(j, seq_to_flush, ++ (1U << JOURNAL_PIN_key_cache)| ++ (1U << JOURNAL_PIN_other), 0, 0, 0) || ++ journal_flush_pins(j, seq_to_flush, ++ (1U << JOURNAL_PIN_btree), 0, 0, 0)) ++ *did_work = true; ++ ++ spin_lock(&j->lock); ++ /* ++ * If journal replay hasn't completed, the unreplayed journal entries ++ * hold refs on their corresponding sequence numbers ++ */ ++ ret = !test_bit(JOURNAL_REPLAY_DONE, &j->flags) || ++ journal_last_seq(j) > seq_to_flush || ++ !fifo_used(&j->pin); ++ ++ spin_unlock(&j->lock); ++ mutex_unlock(&j->reclaim_lock); ++ ++ return ret; ++} ++ ++bool bch2_journal_flush_pins(struct journal *j, u64 seq_to_flush) ++{ ++ bool did_work = false; ++ ++ if (!test_bit(JOURNAL_STARTED, &j->flags)) ++ return false; ++ ++ closure_wait_event(&j->async_wait, ++ journal_flush_done(j, seq_to_flush, &did_work)); ++ ++ return did_work; ++} ++ ++int bch2_journal_flush_device_pins(struct journal *j, int dev_idx) ++{ ++ struct bch_fs *c = container_of(j, struct bch_fs, journal); ++ struct journal_entry_pin_list *p; ++ u64 iter, seq = 0; ++ int ret = 0; ++ ++ spin_lock(&j->lock); ++ fifo_for_each_entry_ptr(p, &j->pin, iter) ++ if (dev_idx >= 0 ++ ? bch2_dev_list_has_dev(p->devs, dev_idx) ++ : p->devs.nr < c->opts.metadata_replicas) ++ seq = iter; ++ spin_unlock(&j->lock); ++ ++ bch2_journal_flush_pins(j, seq); ++ ++ ret = bch2_journal_error(j); ++ if (ret) ++ return ret; ++ ++ mutex_lock(&c->replicas_gc_lock); ++ bch2_replicas_gc_start(c, 1 << BCH_DATA_journal); ++ ++ /* ++ * Now that we've populated replicas_gc, write to the journal to mark ++ * active journal devices. This handles the case where the journal might ++ * be empty. Otherwise we could clear all journal replicas and ++ * temporarily put the fs into an unrecoverable state. Journal recovery ++ * expects to find devices marked for journal data on unclean mount. ++ */ ++ ret = bch2_journal_meta(&c->journal); ++ if (ret) ++ goto err; ++ ++ seq = 0; ++ spin_lock(&j->lock); ++ while (!ret) { ++ struct bch_replicas_padded replicas; ++ ++ seq = max(seq, journal_last_seq(j)); ++ if (seq >= j->pin.back) ++ break; ++ bch2_devlist_to_replicas(&replicas.e, BCH_DATA_journal, ++ journal_seq_pin(j, seq)->devs); ++ seq++; ++ ++ spin_unlock(&j->lock); ++ ret = bch2_mark_replicas(c, &replicas.e); ++ spin_lock(&j->lock); ++ } ++ spin_unlock(&j->lock); ++err: ++ ret = bch2_replicas_gc_end(c, ret); ++ mutex_unlock(&c->replicas_gc_lock); ++ ++ return ret; ++} +diff --git a/fs/bcachefs/journal_reclaim.h b/fs/bcachefs/journal_reclaim.h +new file mode 100644 +index 000000000000..494d1a6eddb0 +--- /dev/null ++++ b/fs/bcachefs/journal_reclaim.h +@@ -0,0 +1,87 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_RECLAIM_H ++#define _BCACHEFS_JOURNAL_RECLAIM_H ++ ++#define JOURNAL_PIN (32 * 1024) ++ ++static inline void journal_reclaim_kick(struct journal *j) ++{ ++ struct task_struct *p = READ_ONCE(j->reclaim_thread); ++ ++ j->reclaim_kicked = true; ++ if (p) ++ wake_up_process(p); ++} ++ ++unsigned bch2_journal_dev_buckets_available(struct journal *, ++ struct journal_device *, ++ enum journal_space_from); ++void bch2_journal_space_available(struct journal *); ++ ++static inline bool journal_pin_active(struct journal_entry_pin *pin) ++{ ++ return pin->seq != 0; ++} ++ ++static inline struct journal_entry_pin_list * ++journal_seq_pin(struct journal *j, u64 seq) ++{ ++ EBUG_ON(seq < j->pin.front || seq >= j->pin.back); ++ ++ return &j->pin.data[seq & j->pin.mask]; ++} ++ ++void bch2_journal_reclaim_fast(struct journal *); ++bool __bch2_journal_pin_put(struct journal *, u64); ++void bch2_journal_pin_put(struct journal *, u64); ++void bch2_journal_pin_drop(struct journal *, struct journal_entry_pin *); ++ ++void bch2_journal_pin_set(struct journal *, u64, struct journal_entry_pin *, ++ journal_pin_flush_fn); ++ ++static inline void bch2_journal_pin_add(struct journal *j, u64 seq, ++ struct journal_entry_pin *pin, ++ journal_pin_flush_fn flush_fn) ++{ ++ if (unlikely(!journal_pin_active(pin) || pin->seq > seq)) ++ bch2_journal_pin_set(j, seq, pin, flush_fn); ++} ++ ++static inline void bch2_journal_pin_copy(struct journal *j, ++ struct journal_entry_pin *dst, ++ struct journal_entry_pin *src, ++ journal_pin_flush_fn flush_fn) ++{ ++ /* Guard against racing with journal_pin_drop(src): */ ++ u64 seq = READ_ONCE(src->seq); ++ ++ if (seq) ++ bch2_journal_pin_add(j, seq, dst, flush_fn); ++} ++ ++static inline void bch2_journal_pin_update(struct journal *j, u64 seq, ++ struct journal_entry_pin *pin, ++ journal_pin_flush_fn flush_fn) ++{ ++ if (unlikely(!journal_pin_active(pin) || pin->seq < seq)) ++ bch2_journal_pin_set(j, seq, pin, flush_fn); ++} ++ ++void bch2_journal_pin_flush(struct journal *, struct journal_entry_pin *); ++ ++void bch2_journal_do_discards(struct journal *); ++int bch2_journal_reclaim(struct journal *); ++ ++void bch2_journal_reclaim_stop(struct journal *); ++int bch2_journal_reclaim_start(struct journal *); ++ ++bool bch2_journal_flush_pins(struct journal *, u64); ++ ++static inline bool bch2_journal_flush_all_pins(struct journal *j) ++{ ++ return bch2_journal_flush_pins(j, U64_MAX); ++} ++ ++int bch2_journal_flush_device_pins(struct journal *, int); ++ ++#endif /* _BCACHEFS_JOURNAL_RECLAIM_H */ +diff --git a/fs/bcachefs/journal_sb.c b/fs/bcachefs/journal_sb.c +new file mode 100644 +index 000000000000..ae4fb8c3a2bc +--- /dev/null ++++ b/fs/bcachefs/journal_sb.c +@@ -0,0 +1,219 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "journal_sb.h" ++#include "darray.h" ++ ++#include ++ ++/* BCH_SB_FIELD_journal: */ ++ ++static int u64_cmp(const void *_l, const void *_r) ++{ ++ const u64 *l = _l; ++ const u64 *r = _r; ++ ++ return cmp_int(*l, *r); ++} ++ ++static int bch2_sb_journal_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_journal *journal = field_to_type(f, journal); ++ struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); ++ int ret = -BCH_ERR_invalid_sb_journal; ++ unsigned nr; ++ unsigned i; ++ u64 *b; ++ ++ nr = bch2_nr_journal_buckets(journal); ++ if (!nr) ++ return 0; ++ ++ b = kmalloc_array(nr, sizeof(u64), GFP_KERNEL); ++ if (!b) ++ return -BCH_ERR_ENOMEM_sb_journal_validate; ++ ++ for (i = 0; i < nr; i++) ++ b[i] = le64_to_cpu(journal->buckets[i]); ++ ++ sort(b, nr, sizeof(u64), u64_cmp, NULL); ++ ++ if (!b[0]) { ++ prt_printf(err, "journal bucket at sector 0"); ++ goto err; ++ } ++ ++ if (b[0] < le16_to_cpu(m.first_bucket)) { ++ prt_printf(err, "journal bucket %llu before first bucket %u", ++ b[0], le16_to_cpu(m.first_bucket)); ++ goto err; ++ } ++ ++ if (b[nr - 1] >= le64_to_cpu(m.nbuckets)) { ++ prt_printf(err, "journal bucket %llu past end of device (nbuckets %llu)", ++ b[nr - 1], le64_to_cpu(m.nbuckets)); ++ goto err; ++ } ++ ++ for (i = 0; i + 1 < nr; i++) ++ if (b[i] == b[i + 1]) { ++ prt_printf(err, "duplicate journal buckets %llu", b[i]); ++ goto err; ++ } ++ ++ ret = 0; ++err: ++ kfree(b); ++ return ret; ++} ++ ++static void bch2_sb_journal_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_journal *journal = field_to_type(f, journal); ++ unsigned i, nr = bch2_nr_journal_buckets(journal); ++ ++ prt_printf(out, "Buckets: "); ++ for (i = 0; i < nr; i++) ++ prt_printf(out, " %llu", le64_to_cpu(journal->buckets[i])); ++ prt_newline(out); ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_journal = { ++ .validate = bch2_sb_journal_validate, ++ .to_text = bch2_sb_journal_to_text, ++}; ++ ++struct u64_range { ++ u64 start; ++ u64 end; ++}; ++ ++static int u64_range_cmp(const void *_l, const void *_r) ++{ ++ const struct u64_range *l = _l; ++ const struct u64_range *r = _r; ++ ++ return cmp_int(l->start, r->start); ++} ++ ++static int bch2_sb_journal_v2_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_journal_v2 *journal = field_to_type(f, journal_v2); ++ struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); ++ int ret = -BCH_ERR_invalid_sb_journal; ++ unsigned nr; ++ unsigned i; ++ struct u64_range *b; ++ ++ nr = bch2_sb_field_journal_v2_nr_entries(journal); ++ if (!nr) ++ return 0; ++ ++ b = kmalloc_array(nr, sizeof(*b), GFP_KERNEL); ++ if (!b) ++ return -BCH_ERR_ENOMEM_sb_journal_v2_validate; ++ ++ for (i = 0; i < nr; i++) { ++ b[i].start = le64_to_cpu(journal->d[i].start); ++ b[i].end = b[i].start + le64_to_cpu(journal->d[i].nr); ++ } ++ ++ sort(b, nr, sizeof(*b), u64_range_cmp, NULL); ++ ++ if (!b[0].start) { ++ prt_printf(err, "journal bucket at sector 0"); ++ goto err; ++ } ++ ++ if (b[0].start < le16_to_cpu(m.first_bucket)) { ++ prt_printf(err, "journal bucket %llu before first bucket %u", ++ b[0].start, le16_to_cpu(m.first_bucket)); ++ goto err; ++ } ++ ++ if (b[nr - 1].end > le64_to_cpu(m.nbuckets)) { ++ prt_printf(err, "journal bucket %llu past end of device (nbuckets %llu)", ++ b[nr - 1].end - 1, le64_to_cpu(m.nbuckets)); ++ goto err; ++ } ++ ++ for (i = 0; i + 1 < nr; i++) { ++ if (b[i].end > b[i + 1].start) { ++ prt_printf(err, "duplicate journal buckets in ranges %llu-%llu, %llu-%llu", ++ b[i].start, b[i].end, b[i + 1].start, b[i + 1].end); ++ goto err; ++ } ++ } ++ ++ ret = 0; ++err: ++ kfree(b); ++ return ret; ++} ++ ++static void bch2_sb_journal_v2_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_journal_v2 *journal = field_to_type(f, journal_v2); ++ unsigned i, nr = bch2_sb_field_journal_v2_nr_entries(journal); ++ ++ prt_printf(out, "Buckets: "); ++ for (i = 0; i < nr; i++) ++ prt_printf(out, " %llu-%llu", ++ le64_to_cpu(journal->d[i].start), ++ le64_to_cpu(journal->d[i].start) + le64_to_cpu(journal->d[i].nr)); ++ prt_newline(out); ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_journal_v2 = { ++ .validate = bch2_sb_journal_v2_validate, ++ .to_text = bch2_sb_journal_v2_to_text, ++}; ++ ++int bch2_journal_buckets_to_sb(struct bch_fs *c, struct bch_dev *ca, ++ u64 *buckets, unsigned nr) ++{ ++ struct bch_sb_field_journal_v2 *j; ++ unsigned i, dst = 0, nr_compacted = 1; ++ ++ if (c) ++ lockdep_assert_held(&c->sb_lock); ++ ++ if (!nr) { ++ bch2_sb_field_delete(&ca->disk_sb, BCH_SB_FIELD_journal); ++ bch2_sb_field_delete(&ca->disk_sb, BCH_SB_FIELD_journal_v2); ++ return 0; ++ } ++ ++ for (i = 0; i + 1 < nr; i++) ++ if (buckets[i] + 1 != buckets[i + 1]) ++ nr_compacted++; ++ ++ j = bch2_sb_field_resize(&ca->disk_sb, journal_v2, ++ (sizeof(*j) + sizeof(j->d[0]) * nr_compacted) / sizeof(u64)); ++ if (!j) ++ return -BCH_ERR_ENOSPC_sb_journal; ++ ++ bch2_sb_field_delete(&ca->disk_sb, BCH_SB_FIELD_journal); ++ ++ j->d[dst].start = cpu_to_le64(buckets[0]); ++ j->d[dst].nr = cpu_to_le64(1); ++ ++ for (i = 1; i < nr; i++) { ++ if (buckets[i] == buckets[i - 1] + 1) { ++ le64_add_cpu(&j->d[dst].nr, 1); ++ } else { ++ dst++; ++ j->d[dst].start = cpu_to_le64(buckets[i]); ++ j->d[dst].nr = cpu_to_le64(1); ++ } ++ } ++ ++ BUG_ON(dst + 1 != nr_compacted); ++ return 0; ++} +diff --git a/fs/bcachefs/journal_sb.h b/fs/bcachefs/journal_sb.h +new file mode 100644 +index 000000000000..ba40a7e8d90a +--- /dev/null ++++ b/fs/bcachefs/journal_sb.h +@@ -0,0 +1,24 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++ ++#include "super-io.h" ++#include "vstructs.h" ++ ++static inline unsigned bch2_nr_journal_buckets(struct bch_sb_field_journal *j) ++{ ++ return j ++ ? (__le64 *) vstruct_end(&j->field) - j->buckets ++ : 0; ++} ++ ++static inline unsigned bch2_sb_field_journal_v2_nr_entries(struct bch_sb_field_journal_v2 *j) ++{ ++ if (!j) ++ return 0; ++ ++ return (struct bch_sb_field_journal_v2_entry *) vstruct_end(&j->field) - &j->d[0]; ++} ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_journal; ++extern const struct bch_sb_field_ops bch_sb_field_ops_journal_v2; ++ ++int bch2_journal_buckets_to_sb(struct bch_fs *, struct bch_dev *, u64 *, unsigned); +diff --git a/fs/bcachefs/journal_seq_blacklist.c b/fs/bcachefs/journal_seq_blacklist.c +new file mode 100644 +index 000000000000..f9d9aa95bf3a +--- /dev/null ++++ b/fs/bcachefs/journal_seq_blacklist.c +@@ -0,0 +1,320 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_iter.h" ++#include "eytzinger.h" ++#include "journal_seq_blacklist.h" ++#include "super-io.h" ++ ++/* ++ * journal_seq_blacklist machinery: ++ * ++ * To guarantee order of btree updates after a crash, we need to detect when a ++ * btree node entry (bset) is newer than the newest journal entry that was ++ * successfully written, and ignore it - effectively ignoring any btree updates ++ * that didn't make it into the journal. ++ * ++ * If we didn't do this, we might have two btree nodes, a and b, both with ++ * updates that weren't written to the journal yet: if b was updated after a, ++ * but b was flushed and not a - oops; on recovery we'll find that the updates ++ * to b happened, but not the updates to a that happened before it. ++ * ++ * Ignoring bsets that are newer than the newest journal entry is always safe, ++ * because everything they contain will also have been journalled - and must ++ * still be present in the journal on disk until a journal entry has been ++ * written _after_ that bset was written. ++ * ++ * To accomplish this, bsets record the newest journal sequence number they ++ * contain updates for; then, on startup, the btree code queries the journal ++ * code to ask "Is this sequence number newer than the newest journal entry? If ++ * so, ignore it." ++ * ++ * When this happens, we must blacklist that journal sequence number: the ++ * journal must not write any entries with that sequence number, and it must ++ * record that it was blacklisted so that a) on recovery we don't think we have ++ * missing journal entries and b) so that the btree code continues to ignore ++ * that bset, until that btree node is rewritten. ++ */ ++ ++static unsigned sb_blacklist_u64s(unsigned nr) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl; ++ ++ return (sizeof(*bl) + sizeof(bl->start[0]) * nr) / sizeof(u64); ++} ++ ++static struct bch_sb_field_journal_seq_blacklist * ++blacklist_entry_try_merge(struct bch_fs *c, ++ struct bch_sb_field_journal_seq_blacklist *bl, ++ unsigned i) ++{ ++ unsigned nr = blacklist_nr_entries(bl); ++ ++ if (le64_to_cpu(bl->start[i].end) >= ++ le64_to_cpu(bl->start[i + 1].start)) { ++ bl->start[i].end = bl->start[i + 1].end; ++ --nr; ++ memmove(&bl->start[i], ++ &bl->start[i + 1], ++ sizeof(bl->start[0]) * (nr - i)); ++ ++ bl = bch2_sb_field_resize(&c->disk_sb, journal_seq_blacklist, ++ sb_blacklist_u64s(nr)); ++ BUG_ON(!bl); ++ } ++ ++ return bl; ++} ++ ++static bool bl_entry_contig_or_overlaps(struct journal_seq_blacklist_entry *e, ++ u64 start, u64 end) ++{ ++ return !(end < le64_to_cpu(e->start) || le64_to_cpu(e->end) < start); ++} ++ ++int bch2_journal_seq_blacklist_add(struct bch_fs *c, u64 start, u64 end) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl; ++ unsigned i, nr; ++ int ret = 0; ++ ++ mutex_lock(&c->sb_lock); ++ bl = bch2_sb_field_get(c->disk_sb.sb, journal_seq_blacklist); ++ nr = blacklist_nr_entries(bl); ++ ++ for (i = 0; i < nr; i++) { ++ struct journal_seq_blacklist_entry *e = ++ bl->start + i; ++ ++ if (bl_entry_contig_or_overlaps(e, start, end)) { ++ e->start = cpu_to_le64(min(start, le64_to_cpu(e->start))); ++ e->end = cpu_to_le64(max(end, le64_to_cpu(e->end))); ++ ++ if (i + 1 < nr) ++ bl = blacklist_entry_try_merge(c, ++ bl, i); ++ if (i) ++ bl = blacklist_entry_try_merge(c, ++ bl, i - 1); ++ goto out_write_sb; ++ } ++ } ++ ++ bl = bch2_sb_field_resize(&c->disk_sb, journal_seq_blacklist, ++ sb_blacklist_u64s(nr + 1)); ++ if (!bl) { ++ ret = -BCH_ERR_ENOSPC_sb_journal_seq_blacklist; ++ goto out; ++ } ++ ++ bl->start[nr].start = cpu_to_le64(start); ++ bl->start[nr].end = cpu_to_le64(end); ++out_write_sb: ++ c->disk_sb.sb->features[0] |= cpu_to_le64(1ULL << BCH_FEATURE_journal_seq_blacklist_v3); ++ ++ ret = bch2_write_super(c); ++out: ++ mutex_unlock(&c->sb_lock); ++ ++ return ret ?: bch2_blacklist_table_initialize(c); ++} ++ ++static int journal_seq_blacklist_table_cmp(const void *_l, ++ const void *_r, size_t size) ++{ ++ const struct journal_seq_blacklist_table_entry *l = _l; ++ const struct journal_seq_blacklist_table_entry *r = _r; ++ ++ return cmp_int(l->start, r->start); ++} ++ ++bool bch2_journal_seq_is_blacklisted(struct bch_fs *c, u64 seq, ++ bool dirty) ++{ ++ struct journal_seq_blacklist_table *t = c->journal_seq_blacklist_table; ++ struct journal_seq_blacklist_table_entry search = { .start = seq }; ++ int idx; ++ ++ if (!t) ++ return false; ++ ++ idx = eytzinger0_find_le(t->entries, t->nr, ++ sizeof(t->entries[0]), ++ journal_seq_blacklist_table_cmp, ++ &search); ++ if (idx < 0) ++ return false; ++ ++ BUG_ON(t->entries[idx].start > seq); ++ ++ if (seq >= t->entries[idx].end) ++ return false; ++ ++ if (dirty) ++ t->entries[idx].dirty = true; ++ return true; ++} ++ ++int bch2_blacklist_table_initialize(struct bch_fs *c) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl = ++ bch2_sb_field_get(c->disk_sb.sb, journal_seq_blacklist); ++ struct journal_seq_blacklist_table *t; ++ unsigned i, nr = blacklist_nr_entries(bl); ++ ++ if (!bl) ++ return 0; ++ ++ t = kzalloc(sizeof(*t) + sizeof(t->entries[0]) * nr, ++ GFP_KERNEL); ++ if (!t) ++ return -BCH_ERR_ENOMEM_blacklist_table_init; ++ ++ t->nr = nr; ++ ++ for (i = 0; i < nr; i++) { ++ t->entries[i].start = le64_to_cpu(bl->start[i].start); ++ t->entries[i].end = le64_to_cpu(bl->start[i].end); ++ } ++ ++ eytzinger0_sort(t->entries, ++ t->nr, ++ sizeof(t->entries[0]), ++ journal_seq_blacklist_table_cmp, ++ NULL); ++ ++ kfree(c->journal_seq_blacklist_table); ++ c->journal_seq_blacklist_table = t; ++ return 0; ++} ++ ++static int bch2_sb_journal_seq_blacklist_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl = ++ field_to_type(f, journal_seq_blacklist); ++ unsigned i, nr = blacklist_nr_entries(bl); ++ ++ for (i = 0; i < nr; i++) { ++ struct journal_seq_blacklist_entry *e = bl->start + i; ++ ++ if (le64_to_cpu(e->start) >= ++ le64_to_cpu(e->end)) { ++ prt_printf(err, "entry %u start >= end (%llu >= %llu)", ++ i, le64_to_cpu(e->start), le64_to_cpu(e->end)); ++ return -BCH_ERR_invalid_sb_journal_seq_blacklist; ++ } ++ ++ if (i + 1 < nr && ++ le64_to_cpu(e[0].end) > ++ le64_to_cpu(e[1].start)) { ++ prt_printf(err, "entry %u out of order with next entry (%llu > %llu)", ++ i + 1, le64_to_cpu(e[0].end), le64_to_cpu(e[1].start)); ++ return -BCH_ERR_invalid_sb_journal_seq_blacklist; ++ } ++ } ++ ++ return 0; ++} ++ ++static void bch2_sb_journal_seq_blacklist_to_text(struct printbuf *out, ++ struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_journal_seq_blacklist *bl = ++ field_to_type(f, journal_seq_blacklist); ++ struct journal_seq_blacklist_entry *i; ++ unsigned nr = blacklist_nr_entries(bl); ++ ++ for (i = bl->start; i < bl->start + nr; i++) { ++ if (i != bl->start) ++ prt_printf(out, " "); ++ ++ prt_printf(out, "%llu-%llu", ++ le64_to_cpu(i->start), ++ le64_to_cpu(i->end)); ++ } ++ prt_newline(out); ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_journal_seq_blacklist = { ++ .validate = bch2_sb_journal_seq_blacklist_validate, ++ .to_text = bch2_sb_journal_seq_blacklist_to_text ++}; ++ ++void bch2_blacklist_entries_gc(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, struct bch_fs, ++ journal_seq_blacklist_gc_work); ++ struct journal_seq_blacklist_table *t; ++ struct bch_sb_field_journal_seq_blacklist *bl; ++ struct journal_seq_blacklist_entry *src, *dst; ++ struct btree_trans *trans = bch2_trans_get(c); ++ unsigned i, nr, new_nr; ++ int ret; ++ ++ for (i = 0; i < BTREE_ID_NR; i++) { ++ struct btree_iter iter; ++ struct btree *b; ++ ++ bch2_trans_node_iter_init(trans, &iter, i, POS_MIN, ++ 0, 0, BTREE_ITER_PREFETCH); ++retry: ++ bch2_trans_begin(trans); ++ ++ b = bch2_btree_iter_peek_node(&iter); ++ ++ while (!(ret = PTR_ERR_OR_ZERO(b)) && ++ b && ++ !test_bit(BCH_FS_STOPPING, &c->flags)) ++ b = bch2_btree_iter_next_node(&iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_iter_exit(trans, &iter); ++ } ++ ++ bch2_trans_put(trans); ++ if (ret) ++ return; ++ ++ mutex_lock(&c->sb_lock); ++ bl = bch2_sb_field_get(c->disk_sb.sb, journal_seq_blacklist); ++ if (!bl) ++ goto out; ++ ++ nr = blacklist_nr_entries(bl); ++ dst = bl->start; ++ ++ t = c->journal_seq_blacklist_table; ++ BUG_ON(nr != t->nr); ++ ++ for (src = bl->start, i = eytzinger0_first(t->nr); ++ src < bl->start + nr; ++ src++, i = eytzinger0_next(i, nr)) { ++ BUG_ON(t->entries[i].start != le64_to_cpu(src->start)); ++ BUG_ON(t->entries[i].end != le64_to_cpu(src->end)); ++ ++ if (t->entries[i].dirty) ++ *dst++ = *src; ++ } ++ ++ new_nr = dst - bl->start; ++ ++ bch_info(c, "nr blacklist entries was %u, now %u", nr, new_nr); ++ ++ if (new_nr != nr) { ++ bl = bch2_sb_field_resize(&c->disk_sb, journal_seq_blacklist, ++ new_nr ? sb_blacklist_u64s(new_nr) : 0); ++ BUG_ON(new_nr && !bl); ++ ++ if (!new_nr) ++ c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_journal_seq_blacklist_v3)); ++ ++ bch2_write_super(c); ++ } ++out: ++ mutex_unlock(&c->sb_lock); ++} +diff --git a/fs/bcachefs/journal_seq_blacklist.h b/fs/bcachefs/journal_seq_blacklist.h +new file mode 100644 +index 000000000000..afb886ec8e25 +--- /dev/null ++++ b/fs/bcachefs/journal_seq_blacklist.h +@@ -0,0 +1,22 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_SEQ_BLACKLIST_H ++#define _BCACHEFS_JOURNAL_SEQ_BLACKLIST_H ++ ++static inline unsigned ++blacklist_nr_entries(struct bch_sb_field_journal_seq_blacklist *bl) ++{ ++ return bl ++ ? ((vstruct_end(&bl->field) - (void *) &bl->start[0]) / ++ sizeof(struct journal_seq_blacklist_entry)) ++ : 0; ++} ++ ++bool bch2_journal_seq_is_blacklisted(struct bch_fs *, u64, bool); ++int bch2_journal_seq_blacklist_add(struct bch_fs *c, u64, u64); ++int bch2_blacklist_table_initialize(struct bch_fs *); ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_journal_seq_blacklist; ++ ++void bch2_blacklist_entries_gc(struct work_struct *); ++ ++#endif /* _BCACHEFS_JOURNAL_SEQ_BLACKLIST_H */ +diff --git a/fs/bcachefs/journal_types.h b/fs/bcachefs/journal_types.h +new file mode 100644 +index 000000000000..42504e16acb6 +--- /dev/null ++++ b/fs/bcachefs/journal_types.h +@@ -0,0 +1,345 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_JOURNAL_TYPES_H ++#define _BCACHEFS_JOURNAL_TYPES_H ++ ++#include ++#include ++ ++#include "alloc_types.h" ++#include "super_types.h" ++#include "fifo.h" ++ ++#define JOURNAL_BUF_BITS 2 ++#define JOURNAL_BUF_NR (1U << JOURNAL_BUF_BITS) ++#define JOURNAL_BUF_MASK (JOURNAL_BUF_NR - 1) ++ ++/* ++ * We put JOURNAL_BUF_NR of these in struct journal; we used them for writes to ++ * the journal that are being staged or in flight. ++ */ ++struct journal_buf { ++ struct jset *data; ++ ++ __BKEY_PADDED(key, BCH_REPLICAS_MAX); ++ struct bch_devs_list devs_written; ++ ++ struct closure_waitlist wait; ++ u64 last_seq; /* copy of data->last_seq */ ++ long expires; ++ u64 flush_time; ++ ++ unsigned buf_size; /* size in bytes of @data */ ++ unsigned sectors; /* maximum size for current entry */ ++ unsigned disk_sectors; /* maximum size entry could have been, if ++ buf_size was bigger */ ++ unsigned u64s_reserved; ++ bool noflush; /* write has already been kicked off, and was noflush */ ++ bool must_flush; /* something wants a flush */ ++ bool separate_flush; ++}; ++ ++/* ++ * Something that makes a journal entry dirty - i.e. a btree node that has to be ++ * flushed: ++ */ ++ ++enum journal_pin_type { ++ JOURNAL_PIN_btree, ++ JOURNAL_PIN_key_cache, ++ JOURNAL_PIN_other, ++ JOURNAL_PIN_NR, ++}; ++ ++struct journal_entry_pin_list { ++ struct list_head list[JOURNAL_PIN_NR]; ++ struct list_head flushed; ++ atomic_t count; ++ struct bch_devs_list devs; ++}; ++ ++struct journal; ++struct journal_entry_pin; ++typedef int (*journal_pin_flush_fn)(struct journal *j, ++ struct journal_entry_pin *, u64); ++ ++struct journal_entry_pin { ++ struct list_head list; ++ journal_pin_flush_fn flush; ++ u64 seq; ++}; ++ ++struct journal_res { ++ bool ref; ++ u8 idx; ++ u16 u64s; ++ u32 offset; ++ u64 seq; ++}; ++ ++/* ++ * For reserving space in the journal prior to getting a reservation on a ++ * particular journal entry: ++ */ ++struct journal_preres { ++ unsigned u64s; ++}; ++ ++union journal_res_state { ++ struct { ++ atomic64_t counter; ++ }; ++ ++ struct { ++ u64 v; ++ }; ++ ++ struct { ++ u64 cur_entry_offset:20, ++ idx:2, ++ unwritten_idx:2, ++ buf0_count:10, ++ buf1_count:10, ++ buf2_count:10, ++ buf3_count:10; ++ }; ++}; ++ ++union journal_preres_state { ++ struct { ++ atomic64_t counter; ++ }; ++ ++ struct { ++ u64 v; ++ }; ++ ++ struct { ++ u64 waiting:1, ++ reserved:31, ++ remaining:32; ++ }; ++}; ++ ++/* bytes: */ ++#define JOURNAL_ENTRY_SIZE_MIN (64U << 10) /* 64k */ ++#define JOURNAL_ENTRY_SIZE_MAX (4U << 20) /* 4M */ ++ ++/* ++ * We stash some journal state as sentinal values in cur_entry_offset: ++ * note - cur_entry_offset is in units of u64s ++ */ ++#define JOURNAL_ENTRY_OFFSET_MAX ((1U << 20) - 1) ++ ++#define JOURNAL_ENTRY_CLOSED_VAL (JOURNAL_ENTRY_OFFSET_MAX - 1) ++#define JOURNAL_ENTRY_ERROR_VAL (JOURNAL_ENTRY_OFFSET_MAX) ++ ++struct journal_space { ++ /* Units of 512 bytes sectors: */ ++ unsigned next_entry; /* How big the next journal entry can be */ ++ unsigned total; ++}; ++ ++enum journal_space_from { ++ journal_space_discarded, ++ journal_space_clean_ondisk, ++ journal_space_clean, ++ journal_space_total, ++ journal_space_nr, ++}; ++ ++enum journal_flags { ++ JOURNAL_REPLAY_DONE, ++ JOURNAL_STARTED, ++ JOURNAL_MAY_SKIP_FLUSH, ++ JOURNAL_NEED_FLUSH_WRITE, ++}; ++ ++/* Reasons we may fail to get a journal reservation: */ ++#define JOURNAL_ERRORS() \ ++ x(ok) \ ++ x(blocked) \ ++ x(max_in_flight) \ ++ x(journal_full) \ ++ x(journal_pin_full) \ ++ x(journal_stuck) \ ++ x(insufficient_devices) ++ ++enum journal_errors { ++#define x(n) JOURNAL_ERR_##n, ++ JOURNAL_ERRORS() ++#undef x ++}; ++ ++typedef DARRAY(u64) darray_u64; ++ ++/* Embedded in struct bch_fs */ ++struct journal { ++ /* Fastpath stuff up front: */ ++ struct { ++ ++ union journal_res_state reservations; ++ enum bch_watermark watermark; ++ ++ union journal_preres_state prereserved; ++ ++ } __aligned(SMP_CACHE_BYTES); ++ ++ unsigned long flags; ++ ++ /* Max size of current journal entry */ ++ unsigned cur_entry_u64s; ++ unsigned cur_entry_sectors; ++ ++ /* Reserved space in journal entry to be used just prior to write */ ++ unsigned entry_u64s_reserved; ++ ++ ++ /* ++ * 0, or -ENOSPC if waiting on journal reclaim, or -EROFS if ++ * insufficient devices: ++ */ ++ enum journal_errors cur_entry_error; ++ ++ unsigned buf_size_want; ++ /* ++ * We may queue up some things to be journalled (log messages) before ++ * the journal has actually started - stash them here: ++ */ ++ darray_u64 early_journal_entries; ++ ++ /* ++ * Two journal entries -- one is currently open for new entries, the ++ * other is possibly being written out. ++ */ ++ struct journal_buf buf[JOURNAL_BUF_NR]; ++ ++ spinlock_t lock; ++ ++ /* if nonzero, we may not open a new journal entry: */ ++ unsigned blocked; ++ ++ /* Used when waiting because the journal was full */ ++ wait_queue_head_t wait; ++ struct closure_waitlist async_wait; ++ struct closure_waitlist preres_wait; ++ ++ struct closure io; ++ struct delayed_work write_work; ++ ++ /* Sequence number of most recent journal entry (last entry in @pin) */ ++ atomic64_t seq; ++ ++ /* seq, last_seq from the most recent journal entry successfully written */ ++ u64 seq_ondisk; ++ u64 flushed_seq_ondisk; ++ u64 last_seq_ondisk; ++ u64 err_seq; ++ u64 last_empty_seq; ++ ++ /* ++ * FIFO of journal entries whose btree updates have not yet been ++ * written out. ++ * ++ * Each entry is a reference count. The position in the FIFO is the ++ * entry's sequence number relative to @seq. ++ * ++ * The journal entry itself holds a reference count, put when the ++ * journal entry is written out. Each btree node modified by the journal ++ * entry also holds a reference count, put when the btree node is ++ * written. ++ * ++ * When a reference count reaches zero, the journal entry is no longer ++ * needed. When all journal entries in the oldest journal bucket are no ++ * longer needed, the bucket can be discarded and reused. ++ */ ++ struct { ++ u64 front, back, size, mask; ++ struct journal_entry_pin_list *data; ++ } pin; ++ ++ struct journal_space space[journal_space_nr]; ++ ++ u64 replay_journal_seq; ++ u64 replay_journal_seq_end; ++ ++ struct write_point wp; ++ spinlock_t err_lock; ++ ++ struct mutex reclaim_lock; ++ /* ++ * Used for waiting until journal reclaim has freed up space in the ++ * journal: ++ */ ++ wait_queue_head_t reclaim_wait; ++ struct task_struct *reclaim_thread; ++ bool reclaim_kicked; ++ unsigned long next_reclaim; ++ u64 nr_direct_reclaim; ++ u64 nr_background_reclaim; ++ ++ unsigned long last_flushed; ++ struct journal_entry_pin *flush_in_progress; ++ bool flush_in_progress_dropped; ++ wait_queue_head_t pin_flush_wait; ++ ++ /* protects advancing ja->discard_idx: */ ++ struct mutex discard_lock; ++ bool can_discard; ++ ++ unsigned long last_flush_write; ++ ++ u64 res_get_blocked_start; ++ u64 write_start_time; ++ ++ u64 nr_flush_writes; ++ u64 nr_noflush_writes; ++ ++ struct bch2_time_stats *flush_write_time; ++ struct bch2_time_stats *noflush_write_time; ++ struct bch2_time_stats *blocked_time; ++ struct bch2_time_stats *flush_seq_time; ++ ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map res_map; ++#endif ++} __aligned(SMP_CACHE_BYTES); ++ ++/* ++ * Embedded in struct bch_dev. First three fields refer to the array of journal ++ * buckets, in bch_sb. ++ */ ++struct journal_device { ++ /* ++ * For each journal bucket, contains the max sequence number of the ++ * journal writes it contains - so we know when a bucket can be reused. ++ */ ++ u64 *bucket_seq; ++ ++ unsigned sectors_free; ++ ++ /* ++ * discard_idx <= dirty_idx_ondisk <= dirty_idx <= cur_idx: ++ */ ++ unsigned discard_idx; /* Next bucket to discard */ ++ unsigned dirty_idx_ondisk; ++ unsigned dirty_idx; ++ unsigned cur_idx; /* Journal bucket we're currently writing to */ ++ unsigned nr; ++ ++ u64 *buckets; ++ ++ /* Bio for journal reads/writes to this device */ ++ struct bio *bio; ++ ++ /* for bch_journal_read_device */ ++ struct closure read; ++}; ++ ++/* ++ * journal_entry_res - reserve space in every journal entry: ++ */ ++struct journal_entry_res { ++ unsigned u64s; ++}; ++ ++#endif /* _BCACHEFS_JOURNAL_TYPES_H */ +diff --git a/fs/bcachefs/keylist.c b/fs/bcachefs/keylist.c +new file mode 100644 +index 000000000000..5699cd4873c8 +--- /dev/null ++++ b/fs/bcachefs/keylist.c +@@ -0,0 +1,52 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey.h" ++#include "keylist.h" ++ ++int bch2_keylist_realloc(struct keylist *l, u64 *inline_u64s, ++ size_t nr_inline_u64s, size_t new_u64s) ++{ ++ size_t oldsize = bch2_keylist_u64s(l); ++ size_t newsize = oldsize + new_u64s; ++ u64 *old_buf = l->keys_p == inline_u64s ? NULL : l->keys_p; ++ u64 *new_keys; ++ ++ newsize = roundup_pow_of_two(newsize); ++ ++ if (newsize <= nr_inline_u64s || ++ (old_buf && roundup_pow_of_two(oldsize) == newsize)) ++ return 0; ++ ++ new_keys = krealloc(old_buf, sizeof(u64) * newsize, GFP_NOFS); ++ if (!new_keys) ++ return -ENOMEM; ++ ++ if (!old_buf) ++ memcpy_u64s(new_keys, inline_u64s, oldsize); ++ ++ l->keys_p = new_keys; ++ l->top_p = new_keys + oldsize; ++ ++ return 0; ++} ++ ++void bch2_keylist_pop_front(struct keylist *l) ++{ ++ l->top_p -= bch2_keylist_front(l)->k.u64s; ++ ++ memmove_u64s_down(l->keys, ++ bkey_next(l->keys), ++ bch2_keylist_u64s(l)); ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_verify_keylist_sorted(struct keylist *l) ++{ ++ struct bkey_i *k; ++ ++ for_each_keylist_key(l, k) ++ BUG_ON(bkey_next(k) != l->top && ++ bpos_ge(k->k.p, bkey_next(k)->k.p)); ++} ++#endif +diff --git a/fs/bcachefs/keylist.h b/fs/bcachefs/keylist.h +new file mode 100644 +index 000000000000..fe759c7031e0 +--- /dev/null ++++ b/fs/bcachefs/keylist.h +@@ -0,0 +1,74 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_KEYLIST_H ++#define _BCACHEFS_KEYLIST_H ++ ++#include "keylist_types.h" ++ ++int bch2_keylist_realloc(struct keylist *, u64 *, size_t, size_t); ++void bch2_keylist_pop_front(struct keylist *); ++ ++static inline void bch2_keylist_init(struct keylist *l, u64 *inline_keys) ++{ ++ l->top_p = l->keys_p = inline_keys; ++} ++ ++static inline void bch2_keylist_free(struct keylist *l, u64 *inline_keys) ++{ ++ if (l->keys_p != inline_keys) ++ kfree(l->keys_p); ++} ++ ++static inline void bch2_keylist_push(struct keylist *l) ++{ ++ l->top = bkey_next(l->top); ++} ++ ++static inline void bch2_keylist_add(struct keylist *l, const struct bkey_i *k) ++{ ++ bkey_copy(l->top, k); ++ bch2_keylist_push(l); ++} ++ ++static inline bool bch2_keylist_empty(struct keylist *l) ++{ ++ return l->top == l->keys; ++} ++ ++static inline size_t bch2_keylist_u64s(struct keylist *l) ++{ ++ return l->top_p - l->keys_p; ++} ++ ++static inline size_t bch2_keylist_bytes(struct keylist *l) ++{ ++ return bch2_keylist_u64s(l) * sizeof(u64); ++} ++ ++static inline struct bkey_i *bch2_keylist_front(struct keylist *l) ++{ ++ return l->keys; ++} ++ ++#define for_each_keylist_key(_keylist, _k) \ ++ for (_k = (_keylist)->keys; \ ++ _k != (_keylist)->top; \ ++ _k = bkey_next(_k)) ++ ++static inline u64 keylist_sectors(struct keylist *keys) ++{ ++ struct bkey_i *k; ++ u64 ret = 0; ++ ++ for_each_keylist_key(keys, k) ++ ret += k->k.size; ++ ++ return ret; ++} ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++void bch2_verify_keylist_sorted(struct keylist *); ++#else ++static inline void bch2_verify_keylist_sorted(struct keylist *l) {} ++#endif ++ ++#endif /* _BCACHEFS_KEYLIST_H */ +diff --git a/fs/bcachefs/keylist_types.h b/fs/bcachefs/keylist_types.h +new file mode 100644 +index 000000000000..4b3ff7d8a875 +--- /dev/null ++++ b/fs/bcachefs/keylist_types.h +@@ -0,0 +1,16 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_KEYLIST_TYPES_H ++#define _BCACHEFS_KEYLIST_TYPES_H ++ ++struct keylist { ++ union { ++ struct bkey_i *keys; ++ u64 *keys_p; ++ }; ++ union { ++ struct bkey_i *top; ++ u64 *top_p; ++ }; ++}; ++ ++#endif /* _BCACHEFS_KEYLIST_TYPES_H */ +diff --git a/fs/bcachefs/logged_ops.c b/fs/bcachefs/logged_ops.c +new file mode 100644 +index 000000000000..8640f7dee0de +--- /dev/null ++++ b/fs/bcachefs/logged_ops.c +@@ -0,0 +1,112 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_buf.h" ++#include "btree_update.h" ++#include "error.h" ++#include "io_misc.h" ++#include "logged_ops.h" ++#include "super.h" ++ ++struct bch_logged_op_fn { ++ u8 type; ++ int (*resume)(struct btree_trans *, struct bkey_i *); ++}; ++ ++static const struct bch_logged_op_fn logged_op_fns[] = { ++#define x(n) { \ ++ .type = KEY_TYPE_logged_op_##n, \ ++ .resume = bch2_resume_logged_op_##n, \ ++}, ++ BCH_LOGGED_OPS() ++#undef x ++}; ++ ++static const struct bch_logged_op_fn *logged_op_fn(enum bch_bkey_type type) ++{ ++ for (unsigned i = 0; i < ARRAY_SIZE(logged_op_fns); i++) ++ if (logged_op_fns[i].type == type) ++ return logged_op_fns + i; ++ return NULL; ++} ++ ++static int resume_logged_op(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ const struct bch_logged_op_fn *fn = logged_op_fn(k.k->type); ++ struct bkey_buf sk; ++ u32 restart_count = trans->restart_count; ++ int ret; ++ ++ if (!fn) ++ return 0; ++ ++ bch2_bkey_buf_init(&sk); ++ bch2_bkey_buf_reassemble(&sk, c, k); ++ ++ ret = drop_locks_do(trans, (bch2_fs_lazy_rw(c), 0)) ?: ++ fn->resume(trans, sk.k) ?: trans_was_restarted(trans, restart_count); ++ ++ bch2_bkey_buf_exit(&sk, c); ++ return ret; ++} ++ ++int bch2_resume_logged_ops(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key2(trans, iter, ++ BTREE_ID_logged_ops, POS_MIN, BTREE_ITER_PREFETCH, k, ++ resume_logged_op(trans, &iter, k))); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int __bch2_logged_op_start(struct btree_trans *trans, struct bkey_i *k) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ ret = bch2_bkey_get_empty_slot(trans, &iter, BTREE_ID_logged_ops, POS_MAX); ++ if (ret) ++ return ret; ++ ++ k->k.p = iter.pos; ++ ++ ret = bch2_trans_update(trans, &iter, k, 0); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_logged_op_start(struct btree_trans *trans, struct bkey_i *k) ++{ ++ return commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ __bch2_logged_op_start(trans, k)); ++} ++ ++void bch2_logged_op_finish(struct btree_trans *trans, struct bkey_i *k) ++{ ++ int ret = commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ bch2_btree_delete(trans, BTREE_ID_logged_ops, k->k.p, 0)); ++ /* ++ * This needs to be a fatal error because we've left an unfinished ++ * operation in the logged ops btree. ++ * ++ * We should only ever see an error here if the filesystem has already ++ * been shut down, but make sure of that here: ++ */ ++ if (ret) { ++ struct bch_fs *c = trans->c; ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(k)); ++ bch2_fs_fatal_error(c, "%s: error deleting logged operation %s: %s", ++ __func__, buf.buf, bch2_err_str(ret)); ++ printbuf_exit(&buf); ++ } ++} +diff --git a/fs/bcachefs/logged_ops.h b/fs/bcachefs/logged_ops.h +new file mode 100644 +index 000000000000..4d1e786a27a8 +--- /dev/null ++++ b/fs/bcachefs/logged_ops.h +@@ -0,0 +1,20 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_LOGGED_OPS_H ++#define _BCACHEFS_LOGGED_OPS_H ++ ++#include "bkey.h" ++ ++#define BCH_LOGGED_OPS() \ ++ x(truncate) \ ++ x(finsert) ++ ++static inline int bch2_logged_op_update(struct btree_trans *trans, struct bkey_i *op) ++{ ++ return bch2_btree_insert_nonextent(trans, BTREE_ID_logged_ops, op, 0); ++} ++ ++int bch2_resume_logged_ops(struct bch_fs *); ++int bch2_logged_op_start(struct btree_trans *, struct bkey_i *); ++void bch2_logged_op_finish(struct btree_trans *, struct bkey_i *); ++ ++#endif /* _BCACHEFS_LOGGED_OPS_H */ +diff --git a/fs/bcachefs/lru.c b/fs/bcachefs/lru.c +new file mode 100644 +index 000000000000..215a653322f3 +--- /dev/null ++++ b/fs/bcachefs/lru.c +@@ -0,0 +1,162 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "btree_iter.h" ++#include "btree_update.h" ++#include "btree_write_buffer.h" ++#include "error.h" ++#include "lru.h" ++#include "recovery.h" ++ ++/* KEY_TYPE_lru is obsolete: */ ++int bch2_lru_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ if (!lru_pos_time(k.k->p)) { ++ prt_printf(err, "lru entry at time=0"); ++ return -BCH_ERR_invalid_bkey; ++ ++ } ++ ++ return 0; ++} ++ ++void bch2_lru_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ const struct bch_lru *lru = bkey_s_c_to_lru(k).v; ++ ++ prt_printf(out, "idx %llu", le64_to_cpu(lru->idx)); ++} ++ ++void bch2_lru_pos_to_text(struct printbuf *out, struct bpos lru) ++{ ++ prt_printf(out, "%llu:%llu -> %llu:%llu", ++ lru_pos_id(lru), ++ lru_pos_time(lru), ++ u64_to_bucket(lru.offset).inode, ++ u64_to_bucket(lru.offset).offset); ++} ++ ++static int __bch2_lru_set(struct btree_trans *trans, u16 lru_id, ++ u64 dev_bucket, u64 time, bool set) ++{ ++ return time ++ ? bch2_btree_bit_mod(trans, BTREE_ID_lru, ++ lru_pos(lru_id, dev_bucket, time), set) ++ : 0; ++} ++ ++int bch2_lru_del(struct btree_trans *trans, u16 lru_id, u64 dev_bucket, u64 time) ++{ ++ return __bch2_lru_set(trans, lru_id, dev_bucket, time, KEY_TYPE_deleted); ++} ++ ++int bch2_lru_set(struct btree_trans *trans, u16 lru_id, u64 dev_bucket, u64 time) ++{ ++ return __bch2_lru_set(trans, lru_id, dev_bucket, time, KEY_TYPE_set); ++} ++ ++int bch2_lru_change(struct btree_trans *trans, ++ u16 lru_id, u64 dev_bucket, ++ u64 old_time, u64 new_time) ++{ ++ if (old_time == new_time) ++ return 0; ++ ++ return bch2_lru_del(trans, lru_id, dev_bucket, old_time) ?: ++ bch2_lru_set(trans, lru_id, dev_bucket, new_time); ++} ++ ++static const char * const bch2_lru_types[] = { ++#define x(n) #n, ++ BCH_LRU_TYPES() ++#undef x ++ NULL ++}; ++ ++static int bch2_check_lru_key(struct btree_trans *trans, ++ struct btree_iter *lru_iter, ++ struct bkey_s_c lru_k, ++ struct bpos *last_flushed_pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a; ++ struct printbuf buf1 = PRINTBUF; ++ struct printbuf buf2 = PRINTBUF; ++ enum bch_lru_type type = lru_type(lru_k); ++ struct bpos alloc_pos = u64_to_bucket(lru_k.k->p.offset); ++ u64 idx; ++ int ret; ++ ++ if (fsck_err_on(!bch2_dev_bucket_exists(c, alloc_pos), c, ++ "lru key points to nonexistent device:bucket %llu:%llu", ++ alloc_pos.inode, alloc_pos.offset)) ++ return bch2_btree_delete_at(trans, lru_iter, 0); ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_alloc, alloc_pos, 0); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ a = bch2_alloc_to_v4(k, &a_convert); ++ ++ switch (type) { ++ case BCH_LRU_read: ++ idx = alloc_lru_idx_read(*a); ++ break; ++ case BCH_LRU_fragmentation: ++ idx = a->fragmentation_lru; ++ break; ++ } ++ ++ if (lru_k.k->type != KEY_TYPE_set || ++ lru_pos_time(lru_k.k->p) != idx) { ++ if (!bpos_eq(*last_flushed_pos, lru_k.k->p)) { ++ *last_flushed_pos = lru_k.k->p; ++ ret = bch2_btree_write_buffer_flush_sync(trans) ?: ++ -BCH_ERR_transaction_restart_write_buffer_flush; ++ goto out; ++ } ++ ++ if (c->opts.reconstruct_alloc || ++ fsck_err(c, "incorrect lru entry: lru %s time %llu\n" ++ " %s\n" ++ " for %s", ++ bch2_lru_types[type], ++ lru_pos_time(lru_k.k->p), ++ (bch2_bkey_val_to_text(&buf1, c, lru_k), buf1.buf), ++ (bch2_bkey_val_to_text(&buf2, c, k), buf2.buf))) ++ ret = bch2_btree_delete_at(trans, lru_iter, 0); ++ } ++out: ++err: ++fsck_err: ++ bch2_trans_iter_exit(trans, &iter); ++ printbuf_exit(&buf2); ++ printbuf_exit(&buf1); ++ return ret; ++} ++ ++int bch2_check_lrus(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bpos last_flushed_pos = POS_MIN; ++ int ret = 0; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, ++ BTREE_ID_lru, POS_MIN, BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL|BTREE_INSERT_LAZY_RW, ++ bch2_check_lru_key(trans, &iter, k, &last_flushed_pos))); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++ ++} +diff --git a/fs/bcachefs/lru.h b/fs/bcachefs/lru.h +new file mode 100644 +index 000000000000..be66bf9ad809 +--- /dev/null ++++ b/fs/bcachefs/lru.h +@@ -0,0 +1,69 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_LRU_H ++#define _BCACHEFS_LRU_H ++ ++#define LRU_TIME_BITS 48 ++#define LRU_TIME_MAX ((1ULL << LRU_TIME_BITS) - 1) ++ ++static inline u64 lru_pos_id(struct bpos pos) ++{ ++ return pos.inode >> LRU_TIME_BITS; ++} ++ ++static inline u64 lru_pos_time(struct bpos pos) ++{ ++ return pos.inode & ~(~0ULL << LRU_TIME_BITS); ++} ++ ++static inline struct bpos lru_pos(u16 lru_id, u64 dev_bucket, u64 time) ++{ ++ struct bpos pos = POS(((u64) lru_id << LRU_TIME_BITS)|time, dev_bucket); ++ ++ EBUG_ON(time > LRU_TIME_MAX); ++ EBUG_ON(lru_pos_id(pos) != lru_id); ++ EBUG_ON(lru_pos_time(pos) != time); ++ EBUG_ON(pos.offset != dev_bucket); ++ ++ return pos; ++} ++ ++#define BCH_LRU_TYPES() \ ++ x(read) \ ++ x(fragmentation) ++ ++enum bch_lru_type { ++#define x(n) BCH_LRU_##n, ++ BCH_LRU_TYPES() ++#undef x ++}; ++ ++#define BCH_LRU_FRAGMENTATION_START ((1U << 16) - 1) ++ ++static inline enum bch_lru_type lru_type(struct bkey_s_c l) ++{ ++ u16 lru_id = l.k->p.inode >> 48; ++ ++ if (lru_id == BCH_LRU_FRAGMENTATION_START) ++ return BCH_LRU_fragmentation; ++ return BCH_LRU_read; ++} ++ ++int bch2_lru_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_lru_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++void bch2_lru_pos_to_text(struct printbuf *, struct bpos); ++ ++#define bch2_bkey_ops_lru ((struct bkey_ops) { \ ++ .key_invalid = bch2_lru_invalid, \ ++ .val_to_text = bch2_lru_to_text, \ ++ .min_val_size = 8, \ ++}) ++ ++int bch2_lru_del(struct btree_trans *, u16, u64, u64); ++int bch2_lru_set(struct btree_trans *, u16, u64, u64); ++int bch2_lru_change(struct btree_trans *, u16, u64, u64, u64); ++ ++int bch2_check_lrus(struct bch_fs *); ++ ++#endif /* _BCACHEFS_LRU_H */ +diff --git a/fs/bcachefs/mean_and_variance.c b/fs/bcachefs/mean_and_variance.c +new file mode 100644 +index 000000000000..1f0801e2e565 +--- /dev/null ++++ b/fs/bcachefs/mean_and_variance.c +@@ -0,0 +1,159 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Functions for incremental mean and variance. ++ * ++ * This program is free software; you can redistribute it and/or modify it ++ * under the terms of the GNU General Public License version 2 as published by ++ * the Free Software Foundation. ++ * ++ * This program is distributed in the hope that it will be useful, but WITHOUT ++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or ++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for ++ * more details. ++ * ++ * Copyright © 2022 Daniel B. Hill ++ * ++ * Author: Daniel B. Hill ++ * ++ * Description: ++ * ++ * This is includes some incremental algorithms for mean and variance calculation ++ * ++ * Derived from the paper: https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf ++ * ++ * Create a struct and if it's the weighted variant set the w field (weight = 2^k). ++ * ++ * Use mean_and_variance[_weighted]_update() on the struct to update it's state. ++ * ++ * Use the mean_and_variance[_weighted]_get_* functions to calculate the mean and variance, some computation ++ * is deferred to these functions for performance reasons. ++ * ++ * see lib/math/mean_and_variance_test.c for examples of usage. ++ * ++ * DO NOT access the mean and variance fields of the weighted variants directly. ++ * DO NOT change the weight after calling update. ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "mean_and_variance.h" ++ ++u128_u u128_div(u128_u n, u64 d) ++{ ++ u128_u r; ++ u64 rem; ++ u64 hi = u128_hi(n); ++ u64 lo = u128_lo(n); ++ u64 h = hi & ((u64) U32_MAX << 32); ++ u64 l = (hi & (u64) U32_MAX) << 32; ++ ++ r = u128_shl(u64_to_u128(div64_u64_rem(h, d, &rem)), 64); ++ r = u128_add(r, u128_shl(u64_to_u128(div64_u64_rem(l + (rem << 32), d, &rem)), 32)); ++ r = u128_add(r, u64_to_u128(div64_u64_rem(lo + (rem << 32), d, &rem))); ++ return r; ++} ++EXPORT_SYMBOL_GPL(u128_div); ++ ++/** ++ * mean_and_variance_get_mean() - get mean from @s ++ */ ++s64 mean_and_variance_get_mean(struct mean_and_variance s) ++{ ++ return s.n ? div64_u64(s.sum, s.n) : 0; ++} ++EXPORT_SYMBOL_GPL(mean_and_variance_get_mean); ++ ++/** ++ * mean_and_variance_get_variance() - get variance from @s1 ++ * ++ * see linked pdf equation 12. ++ */ ++u64 mean_and_variance_get_variance(struct mean_and_variance s1) ++{ ++ if (s1.n) { ++ u128_u s2 = u128_div(s1.sum_squares, s1.n); ++ u64 s3 = abs(mean_and_variance_get_mean(s1)); ++ ++ return u128_lo(u128_sub(s2, u128_square(s3))); ++ } else { ++ return 0; ++ } ++} ++EXPORT_SYMBOL_GPL(mean_and_variance_get_variance); ++ ++/** ++ * mean_and_variance_get_stddev() - get standard deviation from @s ++ */ ++u32 mean_and_variance_get_stddev(struct mean_and_variance s) ++{ ++ return int_sqrt64(mean_and_variance_get_variance(s)); ++} ++EXPORT_SYMBOL_GPL(mean_and_variance_get_stddev); ++ ++/** ++ * mean_and_variance_weighted_update() - exponentially weighted variant of mean_and_variance_update() ++ * @s1: .. ++ * @s2: .. ++ * ++ * see linked pdf: function derived from equations 140-143 where alpha = 2^w. ++ * values are stored bitshifted for performance and added precision. ++ */ ++void mean_and_variance_weighted_update(struct mean_and_variance_weighted *s, s64 x) ++{ ++ // previous weighted variance. ++ u8 w = s->weight; ++ u64 var_w0 = s->variance; ++ // new value weighted. ++ s64 x_w = x << w; ++ s64 diff_w = x_w - s->mean; ++ s64 diff = fast_divpow2(diff_w, w); ++ // new mean weighted. ++ s64 u_w1 = s->mean + diff; ++ ++ if (!s->init) { ++ s->mean = x_w; ++ s->variance = 0; ++ } else { ++ s->mean = u_w1; ++ s->variance = ((var_w0 << w) - var_w0 + ((diff_w * (x_w - u_w1)) >> w)) >> w; ++ } ++ s->init = true; ++} ++EXPORT_SYMBOL_GPL(mean_and_variance_weighted_update); ++ ++/** ++ * mean_and_variance_weighted_get_mean() - get mean from @s ++ */ ++s64 mean_and_variance_weighted_get_mean(struct mean_and_variance_weighted s) ++{ ++ return fast_divpow2(s.mean, s.weight); ++} ++EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_mean); ++ ++/** ++ * mean_and_variance_weighted_get_variance() -- get variance from @s ++ */ ++u64 mean_and_variance_weighted_get_variance(struct mean_and_variance_weighted s) ++{ ++ // always positive don't need fast divpow2 ++ return s.variance >> s.weight; ++} ++EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_variance); ++ ++/** ++ * mean_and_variance_weighted_get_stddev() - get standard deviation from @s ++ */ ++u32 mean_and_variance_weighted_get_stddev(struct mean_and_variance_weighted s) ++{ ++ return int_sqrt64(mean_and_variance_weighted_get_variance(s)); ++} ++EXPORT_SYMBOL_GPL(mean_and_variance_weighted_get_stddev); ++ ++MODULE_AUTHOR("Daniel B. Hill"); ++MODULE_LICENSE("GPL"); +diff --git a/fs/bcachefs/mean_and_variance.h b/fs/bcachefs/mean_and_variance.h +new file mode 100644 +index 000000000000..647505010b39 +--- /dev/null ++++ b/fs/bcachefs/mean_and_variance.h +@@ -0,0 +1,198 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef MEAN_AND_VARIANCE_H_ ++#define MEAN_AND_VARIANCE_H_ ++ ++#include ++#include ++#include ++#include ++ ++#define SQRT_U64_MAX 4294967295ULL ++ ++/* ++ * u128_u: u128 user mode, because not all architectures support a real int128 ++ * type ++ */ ++ ++#ifdef __SIZEOF_INT128__ ++ ++typedef struct { ++ unsigned __int128 v; ++} __aligned(16) u128_u; ++ ++static inline u128_u u64_to_u128(u64 a) ++{ ++ return (u128_u) { .v = a }; ++} ++ ++static inline u64 u128_lo(u128_u a) ++{ ++ return a.v; ++} ++ ++static inline u64 u128_hi(u128_u a) ++{ ++ return a.v >> 64; ++} ++ ++static inline u128_u u128_add(u128_u a, u128_u b) ++{ ++ a.v += b.v; ++ return a; ++} ++ ++static inline u128_u u128_sub(u128_u a, u128_u b) ++{ ++ a.v -= b.v; ++ return a; ++} ++ ++static inline u128_u u128_shl(u128_u a, s8 shift) ++{ ++ a.v <<= shift; ++ return a; ++} ++ ++static inline u128_u u128_square(u64 a) ++{ ++ u128_u b = u64_to_u128(a); ++ ++ b.v *= b.v; ++ return b; ++} ++ ++#else ++ ++typedef struct { ++ u64 hi, lo; ++} __aligned(16) u128_u; ++ ++/* conversions */ ++ ++static inline u128_u u64_to_u128(u64 a) ++{ ++ return (u128_u) { .lo = a }; ++} ++ ++static inline u64 u128_lo(u128_u a) ++{ ++ return a.lo; ++} ++ ++static inline u64 u128_hi(u128_u a) ++{ ++ return a.hi; ++} ++ ++/* arithmetic */ ++ ++static inline u128_u u128_add(u128_u a, u128_u b) ++{ ++ u128_u c; ++ ++ c.lo = a.lo + b.lo; ++ c.hi = a.hi + b.hi + (c.lo < a.lo); ++ return c; ++} ++ ++static inline u128_u u128_sub(u128_u a, u128_u b) ++{ ++ u128_u c; ++ ++ c.lo = a.lo - b.lo; ++ c.hi = a.hi - b.hi - (c.lo > a.lo); ++ return c; ++} ++ ++static inline u128_u u128_shl(u128_u i, s8 shift) ++{ ++ u128_u r; ++ ++ r.lo = i.lo << shift; ++ if (shift < 64) ++ r.hi = (i.hi << shift) | (i.lo >> (64 - shift)); ++ else { ++ r.hi = i.lo << (shift - 64); ++ r.lo = 0; ++ } ++ return r; ++} ++ ++static inline u128_u u128_square(u64 i) ++{ ++ u128_u r; ++ u64 h = i >> 32, l = i & U32_MAX; ++ ++ r = u128_shl(u64_to_u128(h*h), 64); ++ r = u128_add(r, u128_shl(u64_to_u128(h*l), 32)); ++ r = u128_add(r, u128_shl(u64_to_u128(l*h), 32)); ++ r = u128_add(r, u64_to_u128(l*l)); ++ return r; ++} ++ ++#endif ++ ++static inline u128_u u64s_to_u128(u64 hi, u64 lo) ++{ ++ u128_u c = u64_to_u128(hi); ++ ++ c = u128_shl(c, 64); ++ c = u128_add(c, u64_to_u128(lo)); ++ return c; ++} ++ ++u128_u u128_div(u128_u n, u64 d); ++ ++struct mean_and_variance { ++ s64 n; ++ s64 sum; ++ u128_u sum_squares; ++}; ++ ++/* expontentially weighted variant */ ++struct mean_and_variance_weighted { ++ bool init; ++ u8 weight; /* base 2 logarithim */ ++ s64 mean; ++ u64 variance; ++}; ++ ++/** ++ * fast_divpow2() - fast approximation for n / (1 << d) ++ * @n: numerator ++ * @d: the power of 2 denominator. ++ * ++ * note: this rounds towards 0. ++ */ ++static inline s64 fast_divpow2(s64 n, u8 d) ++{ ++ return (n + ((n < 0) ? ((1 << d) - 1) : 0)) >> d; ++} ++ ++/** ++ * mean_and_variance_update() - update a mean_and_variance struct @s1 with a new sample @v1 ++ * and return it. ++ * @s1: the mean_and_variance to update. ++ * @v1: the new sample. ++ * ++ * see linked pdf equation 12. ++ */ ++static inline void ++mean_and_variance_update(struct mean_and_variance *s, s64 v) ++{ ++ s->n++; ++ s->sum += v; ++ s->sum_squares = u128_add(s->sum_squares, u128_square(abs(v))); ++} ++ ++s64 mean_and_variance_get_mean(struct mean_and_variance s); ++u64 mean_and_variance_get_variance(struct mean_and_variance s1); ++u32 mean_and_variance_get_stddev(struct mean_and_variance s); ++ ++void mean_and_variance_weighted_update(struct mean_and_variance_weighted *s, s64 v); ++ ++s64 mean_and_variance_weighted_get_mean(struct mean_and_variance_weighted s); ++u64 mean_and_variance_weighted_get_variance(struct mean_and_variance_weighted s); ++u32 mean_and_variance_weighted_get_stddev(struct mean_and_variance_weighted s); ++ ++#endif // MEAN_AND_VAIRANCE_H_ +diff --git a/fs/bcachefs/mean_and_variance_test.c b/fs/bcachefs/mean_and_variance_test.c +new file mode 100644 +index 000000000000..019583c3ca0e +--- /dev/null ++++ b/fs/bcachefs/mean_and_variance_test.c +@@ -0,0 +1,240 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include ++ ++#include "mean_and_variance.h" ++ ++#define MAX_SQR (SQRT_U64_MAX*SQRT_U64_MAX) ++ ++static void mean_and_variance_basic_test(struct kunit *test) ++{ ++ struct mean_and_variance s = {}; ++ ++ mean_and_variance_update(&s, 2); ++ mean_and_variance_update(&s, 2); ++ ++ KUNIT_EXPECT_EQ(test, mean_and_variance_get_mean(s), 2); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_get_variance(s), 0); ++ KUNIT_EXPECT_EQ(test, s.n, 2); ++ ++ mean_and_variance_update(&s, 4); ++ mean_and_variance_update(&s, 4); ++ ++ KUNIT_EXPECT_EQ(test, mean_and_variance_get_mean(s), 3); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_get_variance(s), 1); ++ KUNIT_EXPECT_EQ(test, s.n, 4); ++} ++ ++/* ++ * Test values computed using a spreadsheet from the psuedocode at the bottom: ++ * https://fanf2.user.srcf.net/hermes/doc/antiforgery/stats.pdf ++ */ ++ ++static void mean_and_variance_weighted_test(struct kunit *test) ++{ ++ struct mean_and_variance_weighted s = { .weight = 2 }; ++ ++ mean_and_variance_weighted_update(&s, 10); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(s), 10); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_variance(s), 0); ++ ++ mean_and_variance_weighted_update(&s, 20); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(s), 12); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_variance(s), 18); ++ ++ mean_and_variance_weighted_update(&s, 30); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(s), 16); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_variance(s), 72); ++ ++ s = (struct mean_and_variance_weighted) { .weight = 2 }; ++ ++ mean_and_variance_weighted_update(&s, -10); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(s), -10); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_variance(s), 0); ++ ++ mean_and_variance_weighted_update(&s, -20); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(s), -12); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_variance(s), 18); ++ ++ mean_and_variance_weighted_update(&s, -30); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(s), -16); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_variance(s), 72); ++} ++ ++static void mean_and_variance_weighted_advanced_test(struct kunit *test) ++{ ++ struct mean_and_variance_weighted s = { .weight = 8 }; ++ s64 i; ++ ++ for (i = 10; i <= 100; i += 10) ++ mean_and_variance_weighted_update(&s, i); ++ ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(s), 11); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_variance(s), 107); ++ ++ s = (struct mean_and_variance_weighted) { .weight = 8 }; ++ ++ for (i = -10; i >= -100; i -= 10) ++ mean_and_variance_weighted_update(&s, i); ++ ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(s), -11); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_variance(s), 107); ++} ++ ++static void do_mean_and_variance_test(struct kunit *test, ++ s64 initial_value, ++ s64 initial_n, ++ s64 n, ++ unsigned weight, ++ s64 *data, ++ s64 *mean, ++ s64 *stddev, ++ s64 *weighted_mean, ++ s64 *weighted_stddev) ++{ ++ struct mean_and_variance mv = {}; ++ struct mean_and_variance_weighted vw = { .weight = weight }; ++ ++ for (unsigned i = 0; i < initial_n; i++) { ++ mean_and_variance_update(&mv, initial_value); ++ mean_and_variance_weighted_update(&vw, initial_value); ++ ++ KUNIT_EXPECT_EQ(test, mean_and_variance_get_mean(mv), initial_value); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_get_stddev(mv), 0); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(vw), initial_value); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_stddev(vw),0); ++ } ++ ++ for (unsigned i = 0; i < n; i++) { ++ mean_and_variance_update(&mv, data[i]); ++ mean_and_variance_weighted_update(&vw, data[i]); ++ ++ KUNIT_EXPECT_EQ(test, mean_and_variance_get_mean(mv), mean[i]); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_get_stddev(mv), stddev[i]); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_mean(vw), weighted_mean[i]); ++ KUNIT_EXPECT_EQ(test, mean_and_variance_weighted_get_stddev(vw),weighted_stddev[i]); ++ } ++ ++ KUNIT_EXPECT_EQ(test, mv.n, initial_n + n); ++} ++ ++/* Test behaviour with a single outlier, then back to steady state: */ ++static void mean_and_variance_test_1(struct kunit *test) ++{ ++ s64 d[] = { 100, 10, 10, 10, 10, 10, 10 }; ++ s64 mean[] = { 22, 21, 20, 19, 18, 17, 16 }; ++ s64 stddev[] = { 32, 29, 28, 27, 26, 25, 24 }; ++ s64 weighted_mean[] = { 32, 27, 22, 19, 17, 15, 14 }; ++ s64 weighted_stddev[] = { 38, 35, 31, 27, 24, 21, 18 }; ++ ++ do_mean_and_variance_test(test, 10, 6, ARRAY_SIZE(d), 2, ++ d, mean, stddev, weighted_mean, weighted_stddev); ++} ++ ++static void mean_and_variance_test_2(struct kunit *test) ++{ ++ s64 d[] = { 100, 10, 10, 10, 10, 10, 10 }; ++ s64 mean[] = { 10, 10, 10, 10, 10, 10, 10 }; ++ s64 stddev[] = { 9, 9, 9, 9, 9, 9, 9 }; ++ s64 weighted_mean[] = { 32, 27, 22, 19, 17, 15, 14 }; ++ s64 weighted_stddev[] = { 38, 35, 31, 27, 24, 21, 18 }; ++ ++ do_mean_and_variance_test(test, 10, 6, ARRAY_SIZE(d), 2, ++ d, mean, stddev, weighted_mean, weighted_stddev); ++} ++ ++/* Test behaviour where we switch from one steady state to another: */ ++static void mean_and_variance_test_3(struct kunit *test) ++{ ++ s64 d[] = { 100, 100, 100, 100, 100 }; ++ s64 mean[] = { 22, 32, 40, 46, 50 }; ++ s64 stddev[] = { 32, 39, 42, 44, 45 }; ++ s64 weighted_mean[] = { 32, 49, 61, 71, 78 }; ++ s64 weighted_stddev[] = { 38, 44, 44, 41, 38 }; ++ ++ do_mean_and_variance_test(test, 10, 6, ARRAY_SIZE(d), 2, ++ d, mean, stddev, weighted_mean, weighted_stddev); ++} ++ ++static void mean_and_variance_test_4(struct kunit *test) ++{ ++ s64 d[] = { 100, 100, 100, 100, 100 }; ++ s64 mean[] = { 10, 11, 12, 13, 14 }; ++ s64 stddev[] = { 9, 13, 15, 17, 19 }; ++ s64 weighted_mean[] = { 32, 49, 61, 71, 78 }; ++ s64 weighted_stddev[] = { 38, 44, 44, 41, 38 }; ++ ++ do_mean_and_variance_test(test, 10, 6, ARRAY_SIZE(d), 2, ++ d, mean, stddev, weighted_mean, weighted_stddev); ++} ++ ++static void mean_and_variance_fast_divpow2(struct kunit *test) ++{ ++ s64 i; ++ u8 d; ++ ++ for (i = 0; i < 100; i++) { ++ d = 0; ++ KUNIT_EXPECT_EQ(test, fast_divpow2(i, d), div_u64(i, 1LLU << d)); ++ KUNIT_EXPECT_EQ(test, abs(fast_divpow2(-i, d)), div_u64(i, 1LLU << d)); ++ for (d = 1; d < 32; d++) { ++ KUNIT_EXPECT_EQ_MSG(test, abs(fast_divpow2(i, d)), ++ div_u64(i, 1 << d), "%lld %u", i, d); ++ KUNIT_EXPECT_EQ_MSG(test, abs(fast_divpow2(-i, d)), ++ div_u64(i, 1 << d), "%lld %u", -i, d); ++ } ++ } ++} ++ ++static void mean_and_variance_u128_basic_test(struct kunit *test) ++{ ++ u128_u a = u64s_to_u128(0, U64_MAX); ++ u128_u a1 = u64s_to_u128(0, 1); ++ u128_u b = u64s_to_u128(1, 0); ++ u128_u c = u64s_to_u128(0, 1LLU << 63); ++ u128_u c2 = u64s_to_u128(U64_MAX, U64_MAX); ++ ++ KUNIT_EXPECT_EQ(test, u128_hi(u128_add(a, a1)), 1); ++ KUNIT_EXPECT_EQ(test, u128_lo(u128_add(a, a1)), 0); ++ KUNIT_EXPECT_EQ(test, u128_hi(u128_add(a1, a)), 1); ++ KUNIT_EXPECT_EQ(test, u128_lo(u128_add(a1, a)), 0); ++ ++ KUNIT_EXPECT_EQ(test, u128_lo(u128_sub(b, a1)), U64_MAX); ++ KUNIT_EXPECT_EQ(test, u128_hi(u128_sub(b, a1)), 0); ++ ++ KUNIT_EXPECT_EQ(test, u128_hi(u128_shl(c, 1)), 1); ++ KUNIT_EXPECT_EQ(test, u128_lo(u128_shl(c, 1)), 0); ++ ++ KUNIT_EXPECT_EQ(test, u128_hi(u128_square(U64_MAX)), U64_MAX - 1); ++ KUNIT_EXPECT_EQ(test, u128_lo(u128_square(U64_MAX)), 1); ++ ++ KUNIT_EXPECT_EQ(test, u128_lo(u128_div(b, 2)), 1LLU << 63); ++ ++ KUNIT_EXPECT_EQ(test, u128_hi(u128_div(c2, 2)), U64_MAX >> 1); ++ KUNIT_EXPECT_EQ(test, u128_lo(u128_div(c2, 2)), U64_MAX); ++ ++ KUNIT_EXPECT_EQ(test, u128_hi(u128_div(u128_shl(u64_to_u128(U64_MAX), 32), 2)), U32_MAX >> 1); ++ KUNIT_EXPECT_EQ(test, u128_lo(u128_div(u128_shl(u64_to_u128(U64_MAX), 32), 2)), U64_MAX << 31); ++} ++ ++static struct kunit_case mean_and_variance_test_cases[] = { ++ KUNIT_CASE(mean_and_variance_fast_divpow2), ++ KUNIT_CASE(mean_and_variance_u128_basic_test), ++ KUNIT_CASE(mean_and_variance_basic_test), ++ KUNIT_CASE(mean_and_variance_weighted_test), ++ KUNIT_CASE(mean_and_variance_weighted_advanced_test), ++ KUNIT_CASE(mean_and_variance_test_1), ++ KUNIT_CASE(mean_and_variance_test_2), ++ KUNIT_CASE(mean_and_variance_test_3), ++ KUNIT_CASE(mean_and_variance_test_4), ++ {} ++}; ++ ++static struct kunit_suite mean_and_variance_test_suite = { ++ .name = "mean and variance tests", ++ .test_cases = mean_and_variance_test_cases ++}; ++ ++kunit_test_suite(mean_and_variance_test_suite); ++ ++MODULE_AUTHOR("Daniel B. Hill"); ++MODULE_LICENSE("GPL"); +diff --git a/fs/bcachefs/migrate.c b/fs/bcachefs/migrate.c +new file mode 100644 +index 000000000000..e3a51f6d6c9b +--- /dev/null ++++ b/fs/bcachefs/migrate.c +@@ -0,0 +1,179 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Code for moving data off a device. ++ */ ++ ++#include "bcachefs.h" ++#include "bkey_buf.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "errcode.h" ++#include "extents.h" ++#include "io_write.h" ++#include "journal.h" ++#include "keylist.h" ++#include "migrate.h" ++#include "move.h" ++#include "replicas.h" ++#include "super-io.h" ++ ++static int drop_dev_ptrs(struct bch_fs *c, struct bkey_s k, ++ unsigned dev_idx, int flags, bool metadata) ++{ ++ unsigned replicas = metadata ? c->opts.metadata_replicas : c->opts.data_replicas; ++ unsigned lost = metadata ? BCH_FORCE_IF_METADATA_LOST : BCH_FORCE_IF_DATA_LOST; ++ unsigned degraded = metadata ? BCH_FORCE_IF_METADATA_DEGRADED : BCH_FORCE_IF_DATA_DEGRADED; ++ unsigned nr_good; ++ ++ bch2_bkey_drop_device(k, dev_idx); ++ ++ nr_good = bch2_bkey_durability(c, k.s_c); ++ if ((!nr_good && !(flags & lost)) || ++ (nr_good < replicas && !(flags & degraded))) ++ return -EINVAL; ++ ++ return 0; ++} ++ ++static int bch2_dev_usrdata_drop_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ unsigned dev_idx, ++ int flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_i *n; ++ int ret; ++ ++ if (!bch2_bkey_has_device_c(k, dev_idx)) ++ return 0; ++ ++ n = bch2_bkey_make_mut(trans, iter, &k, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ ret = PTR_ERR_OR_ZERO(n); ++ if (ret) ++ return ret; ++ ++ ret = drop_dev_ptrs(c, bkey_i_to_s(n), dev_idx, flags, false); ++ if (ret) ++ return ret; ++ ++ /* ++ * If the new extent no longer has any pointers, bch2_extent_normalize() ++ * will do the appropriate thing with it (turning it into a ++ * KEY_TYPE_error key, or just a discard if it was a cached extent) ++ */ ++ bch2_extent_normalize(c, bkey_i_to_s(n)); ++ ++ /* ++ * Since we're not inserting through an extent iterator ++ * (BTREE_ITER_ALL_SNAPSHOTS iterators aren't extent iterators), ++ * we aren't using the extent overwrite path to delete, we're ++ * just using the normal key deletion path: ++ */ ++ if (bkey_deleted(&n->k)) ++ n->k.size = 0; ++ return 0; ++} ++ ++static int bch2_dev_usrdata_drop(struct bch_fs *c, unsigned dev_idx, int flags) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ enum btree_id id; ++ int ret = 0; ++ ++ for (id = 0; id < BTREE_ID_NR; id++) { ++ if (!btree_type_has_ptrs(id)) ++ continue; ++ ++ ret = for_each_btree_key_commit(trans, iter, id, POS_MIN, ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL, ++ bch2_dev_usrdata_drop_key(trans, &iter, k, dev_idx, flags)); ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_put(trans); ++ ++ return ret; ++} ++ ++static int bch2_dev_metadata_drop(struct bch_fs *c, unsigned dev_idx, int flags) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct closure cl; ++ struct btree *b; ++ struct bkey_buf k; ++ unsigned id; ++ int ret; ++ ++ /* don't handle this yet: */ ++ if (flags & BCH_FORCE_IF_METADATA_LOST) ++ return -EINVAL; ++ ++ trans = bch2_trans_get(c); ++ bch2_bkey_buf_init(&k); ++ closure_init_stack(&cl); ++ ++ for (id = 0; id < BTREE_ID_NR; id++) { ++ bch2_trans_node_iter_init(trans, &iter, id, POS_MIN, 0, 0, ++ BTREE_ITER_PREFETCH); ++retry: ++ ret = 0; ++ while (bch2_trans_begin(trans), ++ (b = bch2_btree_iter_peek_node(&iter)) && ++ !(ret = PTR_ERR_OR_ZERO(b))) { ++ if (!bch2_bkey_has_device_c(bkey_i_to_s_c(&b->key), dev_idx)) ++ goto next; ++ ++ bch2_bkey_buf_copy(&k, c, &b->key); ++ ++ ret = drop_dev_ptrs(c, bkey_i_to_s(k.k), ++ dev_idx, flags, true); ++ if (ret) { ++ bch_err(c, "Cannot drop device without losing data"); ++ break; ++ } ++ ++ ret = bch2_btree_node_update_key(trans, &iter, b, k.k, 0, false); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) { ++ ret = 0; ++ continue; ++ } ++ ++ if (ret) { ++ bch_err_msg(c, ret, "updating btree node key"); ++ break; ++ } ++next: ++ bch2_btree_iter_next_node(&iter); ++ } ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) ++ goto err; ++ } ++ ++ bch2_btree_interior_updates_flush(c); ++ ret = 0; ++err: ++ bch2_bkey_buf_exit(&k, c); ++ bch2_trans_put(trans); ++ ++ BUG_ON(bch2_err_matches(ret, BCH_ERR_transaction_restart)); ++ ++ return ret; ++} ++ ++int bch2_dev_data_drop(struct bch_fs *c, unsigned dev_idx, int flags) ++{ ++ return bch2_dev_usrdata_drop(c, dev_idx, flags) ?: ++ bch2_dev_metadata_drop(c, dev_idx, flags); ++} +diff --git a/fs/bcachefs/migrate.h b/fs/bcachefs/migrate.h +new file mode 100644 +index 000000000000..027efaa0d575 +--- /dev/null ++++ b/fs/bcachefs/migrate.h +@@ -0,0 +1,7 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_MIGRATE_H ++#define _BCACHEFS_MIGRATE_H ++ ++int bch2_dev_data_drop(struct bch_fs *, unsigned, int); ++ ++#endif /* _BCACHEFS_MIGRATE_H */ +diff --git a/fs/bcachefs/move.c b/fs/bcachefs/move.c +new file mode 100644 +index 000000000000..39a14e321680 +--- /dev/null ++++ b/fs/bcachefs/move.c +@@ -0,0 +1,1159 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "backpointers.h" ++#include "bkey_buf.h" ++#include "btree_gc.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_write_buffer.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "errcode.h" ++#include "error.h" ++#include "inode.h" ++#include "io_read.h" ++#include "io_write.h" ++#include "journal_reclaim.h" ++#include "keylist.h" ++#include "move.h" ++#include "replicas.h" ++#include "super-io.h" ++#include "trace.h" ++ ++#include ++#include ++ ++static void trace_move_extent2(struct bch_fs *c, struct bkey_s_c k) ++{ ++ if (trace_move_extent_enabled()) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, k); ++ trace_move_extent(c, buf.buf); ++ printbuf_exit(&buf); ++ } ++} ++ ++static void trace_move_extent_read2(struct bch_fs *c, struct bkey_s_c k) ++{ ++ if (trace_move_extent_read_enabled()) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, k); ++ trace_move_extent_read(c, buf.buf); ++ printbuf_exit(&buf); ++ } ++} ++ ++static void trace_move_extent_alloc_mem_fail2(struct bch_fs *c, struct bkey_s_c k) ++{ ++ if (trace_move_extent_alloc_mem_fail_enabled()) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_bkey_val_to_text(&buf, c, k); ++ trace_move_extent_alloc_mem_fail(c, buf.buf); ++ printbuf_exit(&buf); ++ } ++} ++ ++static void progress_list_add(struct bch_fs *c, struct bch_move_stats *stats) ++{ ++ mutex_lock(&c->data_progress_lock); ++ list_add(&stats->list, &c->data_progress_list); ++ mutex_unlock(&c->data_progress_lock); ++} ++ ++static void progress_list_del(struct bch_fs *c, struct bch_move_stats *stats) ++{ ++ mutex_lock(&c->data_progress_lock); ++ list_del(&stats->list); ++ mutex_unlock(&c->data_progress_lock); ++} ++ ++struct moving_io { ++ struct list_head read_list; ++ struct list_head io_list; ++ struct move_bucket_in_flight *b; ++ struct closure cl; ++ bool read_completed; ++ ++ unsigned read_sectors; ++ unsigned write_sectors; ++ ++ struct bch_read_bio rbio; ++ ++ struct data_update write; ++ /* Must be last since it is variable size */ ++ struct bio_vec bi_inline_vecs[0]; ++}; ++ ++static void move_free(struct moving_io *io) ++{ ++ struct moving_context *ctxt = io->write.ctxt; ++ ++ if (io->b) ++ atomic_dec(&io->b->count); ++ ++ bch2_data_update_exit(&io->write); ++ ++ mutex_lock(&ctxt->lock); ++ list_del(&io->io_list); ++ wake_up(&ctxt->wait); ++ mutex_unlock(&ctxt->lock); ++ ++ kfree(io); ++} ++ ++static void move_write_done(struct bch_write_op *op) ++{ ++ struct moving_io *io = container_of(op, struct moving_io, write.op); ++ struct moving_context *ctxt = io->write.ctxt; ++ ++ if (io->write.op.error) ++ ctxt->write_error = true; ++ ++ atomic_sub(io->write_sectors, &io->write.ctxt->write_sectors); ++ atomic_dec(&io->write.ctxt->write_ios); ++ move_free(io); ++ closure_put(&ctxt->cl); ++} ++ ++static void move_write(struct moving_io *io) ++{ ++ if (unlikely(io->rbio.bio.bi_status || io->rbio.hole)) { ++ move_free(io); ++ return; ++ } ++ ++ closure_get(&io->write.ctxt->cl); ++ atomic_add(io->write_sectors, &io->write.ctxt->write_sectors); ++ atomic_inc(&io->write.ctxt->write_ios); ++ ++ bch2_data_update_read_done(&io->write, io->rbio.pick.crc); ++} ++ ++struct moving_io *bch2_moving_ctxt_next_pending_write(struct moving_context *ctxt) ++{ ++ struct moving_io *io = ++ list_first_entry_or_null(&ctxt->reads, struct moving_io, read_list); ++ ++ return io && io->read_completed ? io : NULL; ++} ++ ++static void move_read_endio(struct bio *bio) ++{ ++ struct moving_io *io = container_of(bio, struct moving_io, rbio.bio); ++ struct moving_context *ctxt = io->write.ctxt; ++ ++ atomic_sub(io->read_sectors, &ctxt->read_sectors); ++ atomic_dec(&ctxt->read_ios); ++ io->read_completed = true; ++ ++ wake_up(&ctxt->wait); ++ closure_put(&ctxt->cl); ++} ++ ++void bch2_moving_ctxt_do_pending_writes(struct moving_context *ctxt, ++ struct btree_trans *trans) ++{ ++ struct moving_io *io; ++ ++ if (trans) ++ bch2_trans_unlock(trans); ++ ++ while ((io = bch2_moving_ctxt_next_pending_write(ctxt))) { ++ list_del(&io->read_list); ++ move_write(io); ++ } ++} ++ ++static void bch2_move_ctxt_wait_for_io(struct moving_context *ctxt, ++ struct btree_trans *trans) ++{ ++ unsigned sectors_pending = atomic_read(&ctxt->write_sectors); ++ ++ move_ctxt_wait_event(ctxt, trans, ++ !atomic_read(&ctxt->write_sectors) || ++ atomic_read(&ctxt->write_sectors) != sectors_pending); ++} ++ ++void bch2_moving_ctxt_exit(struct moving_context *ctxt) ++{ ++ struct bch_fs *c = ctxt->c; ++ ++ move_ctxt_wait_event(ctxt, NULL, list_empty(&ctxt->reads)); ++ closure_sync(&ctxt->cl); ++ ++ EBUG_ON(atomic_read(&ctxt->write_sectors)); ++ EBUG_ON(atomic_read(&ctxt->write_ios)); ++ EBUG_ON(atomic_read(&ctxt->read_sectors)); ++ EBUG_ON(atomic_read(&ctxt->read_ios)); ++ ++ if (ctxt->stats) { ++ progress_list_del(c, ctxt->stats); ++ trace_move_data(c, ++ atomic64_read(&ctxt->stats->sectors_moved), ++ atomic64_read(&ctxt->stats->keys_moved)); ++ } ++ ++ mutex_lock(&c->moving_context_lock); ++ list_del(&ctxt->list); ++ mutex_unlock(&c->moving_context_lock); ++} ++ ++void bch2_moving_ctxt_init(struct moving_context *ctxt, ++ struct bch_fs *c, ++ struct bch_ratelimit *rate, ++ struct bch_move_stats *stats, ++ struct write_point_specifier wp, ++ bool wait_on_copygc) ++{ ++ memset(ctxt, 0, sizeof(*ctxt)); ++ ++ ctxt->c = c; ++ ctxt->fn = (void *) _RET_IP_; ++ ctxt->rate = rate; ++ ctxt->stats = stats; ++ ctxt->wp = wp; ++ ctxt->wait_on_copygc = wait_on_copygc; ++ ++ closure_init_stack(&ctxt->cl); ++ ++ mutex_init(&ctxt->lock); ++ INIT_LIST_HEAD(&ctxt->reads); ++ INIT_LIST_HEAD(&ctxt->ios); ++ init_waitqueue_head(&ctxt->wait); ++ ++ mutex_lock(&c->moving_context_lock); ++ list_add(&ctxt->list, &c->moving_context_list); ++ mutex_unlock(&c->moving_context_lock); ++ ++ if (stats) { ++ progress_list_add(c, stats); ++ stats->data_type = BCH_DATA_user; ++ } ++} ++ ++void bch2_move_stats_init(struct bch_move_stats *stats, char *name) ++{ ++ memset(stats, 0, sizeof(*stats)); ++ scnprintf(stats->name, sizeof(stats->name), "%s", name); ++} ++ ++static int bch2_extent_drop_ptrs(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ struct data_update_opts data_opts) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_i *n; ++ int ret; ++ ++ n = bch2_bkey_make_mut_noupdate(trans, k); ++ ret = PTR_ERR_OR_ZERO(n); ++ if (ret) ++ return ret; ++ ++ while (data_opts.kill_ptrs) { ++ unsigned i = 0, drop = __fls(data_opts.kill_ptrs); ++ struct bch_extent_ptr *ptr; ++ ++ bch2_bkey_drop_ptrs(bkey_i_to_s(n), ptr, i++ == drop); ++ data_opts.kill_ptrs ^= 1U << drop; ++ } ++ ++ /* ++ * If the new extent no longer has any pointers, bch2_extent_normalize() ++ * will do the appropriate thing with it (turning it into a ++ * KEY_TYPE_error key, or just a discard if it was a cached extent) ++ */ ++ bch2_extent_normalize(c, bkey_i_to_s(n)); ++ ++ /* ++ * Since we're not inserting through an extent iterator ++ * (BTREE_ITER_ALL_SNAPSHOTS iterators aren't extent iterators), ++ * we aren't using the extent overwrite path to delete, we're ++ * just using the normal key deletion path: ++ */ ++ if (bkey_deleted(&n->k)) ++ n->k.size = 0; ++ ++ return bch2_trans_relock(trans) ?: ++ bch2_trans_update(trans, iter, n, BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: ++ bch2_trans_commit(trans, NULL, NULL, BTREE_INSERT_NOFAIL); ++} ++ ++static int bch2_move_extent(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct moving_context *ctxt, ++ struct move_bucket_in_flight *bucket_in_flight, ++ struct bch_io_opts io_opts, ++ enum btree_id btree_id, ++ struct bkey_s_c k, ++ struct data_update_opts data_opts) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ struct moving_io *io; ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ unsigned sectors = k.k->size, pages; ++ int ret = -ENOMEM; ++ ++ trace_move_extent2(c, k); ++ ++ bch2_data_update_opts_normalize(k, &data_opts); ++ ++ if (!data_opts.rewrite_ptrs && ++ !data_opts.extra_replicas) { ++ if (data_opts.kill_ptrs) ++ return bch2_extent_drop_ptrs(trans, iter, k, data_opts); ++ return 0; ++ } ++ ++ /* ++ * Before memory allocations & taking nocow locks in ++ * bch2_data_update_init(): ++ */ ++ bch2_trans_unlock(trans); ++ ++ /* write path might have to decompress data: */ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) ++ sectors = max_t(unsigned, sectors, p.crc.uncompressed_size); ++ ++ pages = DIV_ROUND_UP(sectors, PAGE_SECTORS); ++ io = kzalloc(sizeof(struct moving_io) + ++ sizeof(struct bio_vec) * pages, GFP_KERNEL); ++ if (!io) ++ goto err; ++ ++ INIT_LIST_HEAD(&io->io_list); ++ io->write.ctxt = ctxt; ++ io->read_sectors = k.k->size; ++ io->write_sectors = k.k->size; ++ ++ bio_init(&io->write.op.wbio.bio, NULL, io->bi_inline_vecs, pages, 0); ++ bio_set_prio(&io->write.op.wbio.bio, ++ IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); ++ ++ if (bch2_bio_alloc_pages(&io->write.op.wbio.bio, sectors << 9, ++ GFP_KERNEL)) ++ goto err_free; ++ ++ io->rbio.c = c; ++ io->rbio.opts = io_opts; ++ bio_init(&io->rbio.bio, NULL, io->bi_inline_vecs, pages, 0); ++ io->rbio.bio.bi_vcnt = pages; ++ bio_set_prio(&io->rbio.bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0)); ++ io->rbio.bio.bi_iter.bi_size = sectors << 9; ++ ++ io->rbio.bio.bi_opf = REQ_OP_READ; ++ io->rbio.bio.bi_iter.bi_sector = bkey_start_offset(k.k); ++ io->rbio.bio.bi_end_io = move_read_endio; ++ ++ ret = bch2_data_update_init(trans, ctxt, &io->write, ctxt->wp, ++ io_opts, data_opts, btree_id, k); ++ if (ret && ret != -BCH_ERR_unwritten_extent_update) ++ goto err_free_pages; ++ ++ if (ret == -BCH_ERR_unwritten_extent_update) { ++ bch2_update_unwritten_extent(trans, &io->write); ++ move_free(io); ++ return 0; ++ } ++ ++ BUG_ON(ret); ++ ++ io->write.ctxt = ctxt; ++ io->write.op.end_io = move_write_done; ++ ++ if (ctxt->stats) { ++ atomic64_inc(&ctxt->stats->keys_moved); ++ atomic64_add(k.k->size, &ctxt->stats->sectors_moved); ++ } ++ ++ if (bucket_in_flight) { ++ io->b = bucket_in_flight; ++ atomic_inc(&io->b->count); ++ } ++ ++ this_cpu_add(c->counters[BCH_COUNTER_io_move], k.k->size); ++ this_cpu_add(c->counters[BCH_COUNTER_move_extent_read], k.k->size); ++ trace_move_extent_read2(c, k); ++ ++ mutex_lock(&ctxt->lock); ++ atomic_add(io->read_sectors, &ctxt->read_sectors); ++ atomic_inc(&ctxt->read_ios); ++ ++ list_add_tail(&io->read_list, &ctxt->reads); ++ list_add_tail(&io->io_list, &ctxt->ios); ++ mutex_unlock(&ctxt->lock); ++ ++ /* ++ * dropped by move_read_endio() - guards against use after free of ++ * ctxt when doing wakeup ++ */ ++ closure_get(&ctxt->cl); ++ bch2_read_extent(trans, &io->rbio, ++ bkey_start_pos(k.k), ++ btree_id, k, 0, ++ BCH_READ_NODECODE| ++ BCH_READ_LAST_FRAGMENT); ++ return 0; ++err_free_pages: ++ bio_free_pages(&io->write.op.wbio.bio); ++err_free: ++ kfree(io); ++err: ++ this_cpu_inc(c->counters[BCH_COUNTER_move_extent_alloc_mem_fail]); ++ trace_move_extent_alloc_mem_fail2(c, k); ++ return ret; ++} ++ ++static int lookup_inode(struct btree_trans *trans, struct bpos pos, ++ struct bch_inode_unpacked *inode) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_inodes, pos, ++ BTREE_ITER_ALL_SNAPSHOTS); ++ k = bch2_btree_iter_peek(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (!k.k || !bkey_eq(k.k->p, pos)) { ++ ret = -BCH_ERR_ENOENT_inode; ++ goto err; ++ } ++ ++ ret = bkey_is_inode(k.k) ? 0 : -EIO; ++ if (ret) ++ goto err; ++ ++ ret = bch2_inode_unpack(k, inode); ++ if (ret) ++ goto err; ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int move_ratelimit(struct btree_trans *trans, ++ struct moving_context *ctxt) ++{ ++ struct bch_fs *c = trans->c; ++ u64 delay; ++ ++ if (ctxt->wait_on_copygc) { ++ bch2_trans_unlock(trans); ++ wait_event_killable(c->copygc_running_wq, ++ !c->copygc_running || ++ kthread_should_stop()); ++ } ++ ++ do { ++ delay = ctxt->rate ? bch2_ratelimit_delay(ctxt->rate) : 0; ++ ++ if (delay) { ++ bch2_trans_unlock(trans); ++ set_current_state(TASK_INTERRUPTIBLE); ++ } ++ ++ if ((current->flags & PF_KTHREAD) && kthread_should_stop()) { ++ __set_current_state(TASK_RUNNING); ++ return 1; ++ } ++ ++ if (delay) ++ schedule_timeout(delay); ++ ++ if (unlikely(freezing(current))) { ++ move_ctxt_wait_event(ctxt, trans, list_empty(&ctxt->reads)); ++ try_to_freeze(); ++ } ++ } while (delay); ++ ++ /* ++ * XXX: these limits really ought to be per device, SSDs and hard drives ++ * will want different limits ++ */ ++ move_ctxt_wait_event(ctxt, trans, ++ atomic_read(&ctxt->write_sectors) < c->opts.move_bytes_in_flight >> 9 && ++ atomic_read(&ctxt->read_sectors) < c->opts.move_bytes_in_flight >> 9 && ++ atomic_read(&ctxt->write_ios) < c->opts.move_ios_in_flight && ++ atomic_read(&ctxt->read_ios) < c->opts.move_ios_in_flight); ++ ++ return 0; ++} ++ ++static int move_get_io_opts(struct btree_trans *trans, ++ struct bch_io_opts *io_opts, ++ struct bkey_s_c k, u64 *cur_inum) ++{ ++ struct bch_inode_unpacked inode; ++ int ret; ++ ++ if (*cur_inum == k.k->p.inode) ++ return 0; ++ ++ ret = lookup_inode(trans, ++ SPOS(0, k.k->p.inode, k.k->p.snapshot), ++ &inode); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ return ret; ++ ++ if (!ret) ++ bch2_inode_opts_get(io_opts, trans->c, &inode); ++ else ++ *io_opts = bch2_opts_to_inode_opts(trans->c->opts); ++ *cur_inum = k.k->p.inode; ++ return 0; ++} ++ ++static int __bch2_move_data(struct moving_context *ctxt, ++ struct bpos start, ++ struct bpos end, ++ move_pred_fn pred, void *arg, ++ enum btree_id btree_id) ++{ ++ struct bch_fs *c = ctxt->c; ++ struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); ++ struct bkey_buf sk; ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct data_update_opts data_opts; ++ u64 cur_inum = U64_MAX; ++ int ret = 0, ret2; ++ ++ bch2_bkey_buf_init(&sk); ++ ++ if (ctxt->stats) { ++ ctxt->stats->data_type = BCH_DATA_user; ++ ctxt->stats->btree_id = btree_id; ++ ctxt->stats->pos = start; ++ } ++ ++ bch2_trans_iter_init(trans, &iter, btree_id, start, ++ BTREE_ITER_PREFETCH| ++ BTREE_ITER_ALL_SNAPSHOTS); ++ ++ if (ctxt->rate) ++ bch2_ratelimit_reset(ctxt->rate); ++ ++ while (!move_ratelimit(trans, ctxt)) { ++ bch2_trans_begin(trans); ++ ++ k = bch2_btree_iter_peek(&iter); ++ if (!k.k) ++ break; ++ ++ ret = bkey_err(k); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ break; ++ ++ if (bkey_ge(bkey_start_pos(k.k), end)) ++ break; ++ ++ if (ctxt->stats) ++ ctxt->stats->pos = iter.pos; ++ ++ if (!bkey_extent_is_direct_data(k.k)) ++ goto next_nondata; ++ ++ ret = move_get_io_opts(trans, &io_opts, k, &cur_inum); ++ if (ret) ++ continue; ++ ++ memset(&data_opts, 0, sizeof(data_opts)); ++ if (!pred(c, arg, k, &io_opts, &data_opts)) ++ goto next; ++ ++ /* ++ * The iterator gets unlocked by __bch2_read_extent - need to ++ * save a copy of @k elsewhere: ++ */ ++ bch2_bkey_buf_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ ++ ret2 = bch2_move_extent(trans, &iter, ctxt, NULL, ++ io_opts, btree_id, k, data_opts); ++ if (ret2) { ++ if (bch2_err_matches(ret2, BCH_ERR_transaction_restart)) ++ continue; ++ ++ if (ret2 == -ENOMEM) { ++ /* memory allocation failure, wait for some IO to finish */ ++ bch2_move_ctxt_wait_for_io(ctxt, trans); ++ continue; ++ } ++ ++ /* XXX signal failure */ ++ goto next; ++ } ++ ++ if (ctxt->rate) ++ bch2_ratelimit_increment(ctxt->rate, k.k->size); ++next: ++ if (ctxt->stats) ++ atomic64_add(k.k->size, &ctxt->stats->sectors_seen); ++next_nondata: ++ bch2_btree_iter_advance(&iter); ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ bch2_bkey_buf_exit(&sk, c); ++ ++ return ret; ++} ++ ++int bch2_move_data(struct bch_fs *c, ++ enum btree_id start_btree_id, struct bpos start_pos, ++ enum btree_id end_btree_id, struct bpos end_pos, ++ struct bch_ratelimit *rate, ++ struct bch_move_stats *stats, ++ struct write_point_specifier wp, ++ bool wait_on_copygc, ++ move_pred_fn pred, void *arg) ++{ ++ struct moving_context ctxt; ++ enum btree_id id; ++ int ret = 0; ++ ++ bch2_moving_ctxt_init(&ctxt, c, rate, stats, wp, wait_on_copygc); ++ ++ for (id = start_btree_id; ++ id <= min_t(unsigned, end_btree_id, btree_id_nr_alive(c) - 1); ++ id++) { ++ stats->btree_id = id; ++ ++ if (id != BTREE_ID_extents && ++ id != BTREE_ID_reflink) ++ continue; ++ ++ if (!bch2_btree_id_root(c, id)->b) ++ continue; ++ ++ ret = __bch2_move_data(&ctxt, ++ id == start_btree_id ? start_pos : POS_MIN, ++ id == end_btree_id ? end_pos : POS_MAX, ++ pred, arg, id); ++ if (ret) ++ break; ++ } ++ ++ bch2_moving_ctxt_exit(&ctxt); ++ ++ return ret; ++} ++ ++int __bch2_evacuate_bucket(struct btree_trans *trans, ++ struct moving_context *ctxt, ++ struct move_bucket_in_flight *bucket_in_flight, ++ struct bpos bucket, int gen, ++ struct data_update_opts _data_opts) ++{ ++ struct bch_fs *c = ctxt->c; ++ struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); ++ struct btree_iter iter; ++ struct bkey_buf sk; ++ struct bch_backpointer bp; ++ struct bch_alloc_v4 a_convert; ++ const struct bch_alloc_v4 *a; ++ struct bkey_s_c k; ++ struct data_update_opts data_opts; ++ unsigned dirty_sectors, bucket_size; ++ u64 fragmentation; ++ u64 cur_inum = U64_MAX; ++ struct bpos bp_pos = POS_MIN; ++ int ret = 0; ++ ++ trace_bucket_evacuate(c, &bucket); ++ ++ bch2_bkey_buf_init(&sk); ++ ++ /* ++ * We're not run in a context that handles transaction restarts: ++ */ ++ bch2_trans_begin(trans); ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_alloc, ++ bucket, BTREE_ITER_CACHED); ++ ret = lockrestart_do(trans, ++ bkey_err(k = bch2_btree_iter_peek_slot(&iter))); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) { ++ bch_err_msg(c, ret, "looking up alloc key"); ++ goto err; ++ } ++ ++ a = bch2_alloc_to_v4(k, &a_convert); ++ dirty_sectors = a->dirty_sectors; ++ bucket_size = bch_dev_bkey_exists(c, bucket.inode)->mi.bucket_size; ++ fragmentation = a->fragmentation_lru; ++ ++ ret = bch2_btree_write_buffer_flush(trans); ++ if (ret) { ++ bch_err_msg(c, ret, "flushing btree write buffer"); ++ goto err; ++ } ++ ++ while (!(ret = move_ratelimit(trans, ctxt))) { ++ bch2_trans_begin(trans); ++ ++ ret = bch2_get_next_backpointer(trans, bucket, gen, ++ &bp_pos, &bp, ++ BTREE_ITER_CACHED); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ goto err; ++ if (bkey_eq(bp_pos, POS_MAX)) ++ break; ++ ++ if (!bp.level) { ++ const struct bch_extent_ptr *ptr; ++ unsigned i = 0; ++ ++ k = bch2_backpointer_get_key(trans, &iter, bp_pos, bp, 0); ++ ret = bkey_err(k); ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ goto err; ++ if (!k.k) ++ goto next; ++ ++ bch2_bkey_buf_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ ++ ret = move_get_io_opts(trans, &io_opts, k, &cur_inum); ++ if (ret) { ++ bch2_trans_iter_exit(trans, &iter); ++ continue; ++ } ++ ++ data_opts = _data_opts; ++ data_opts.target = io_opts.background_target; ++ data_opts.rewrite_ptrs = 0; ++ ++ bkey_for_each_ptr(bch2_bkey_ptrs_c(k), ptr) { ++ if (ptr->dev == bucket.inode) { ++ data_opts.rewrite_ptrs |= 1U << i; ++ if (ptr->cached) { ++ bch2_trans_iter_exit(trans, &iter); ++ goto next; ++ } ++ } ++ i++; ++ } ++ ++ ret = bch2_move_extent(trans, &iter, ctxt, ++ bucket_in_flight, ++ io_opts, bp.btree_id, k, data_opts); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret == -ENOMEM) { ++ /* memory allocation failure, wait for some IO to finish */ ++ bch2_move_ctxt_wait_for_io(ctxt, trans); ++ continue; ++ } ++ if (ret) ++ goto err; ++ ++ if (ctxt->rate) ++ bch2_ratelimit_increment(ctxt->rate, k.k->size); ++ if (ctxt->stats) ++ atomic64_add(k.k->size, &ctxt->stats->sectors_seen); ++ } else { ++ struct btree *b; ++ ++ b = bch2_backpointer_get_node(trans, &iter, bp_pos, bp); ++ ret = PTR_ERR_OR_ZERO(b); ++ if (ret == -BCH_ERR_backpointer_to_overwritten_btree_node) ++ continue; ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ goto err; ++ if (!b) ++ goto next; ++ ++ ret = bch2_btree_node_rewrite(trans, &iter, b, 0); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ goto err; ++ ++ if (ctxt->rate) ++ bch2_ratelimit_increment(ctxt->rate, ++ c->opts.btree_node_size >> 9); ++ if (ctxt->stats) { ++ atomic64_add(c->opts.btree_node_size >> 9, &ctxt->stats->sectors_seen); ++ atomic64_add(c->opts.btree_node_size >> 9, &ctxt->stats->sectors_moved); ++ } ++ } ++next: ++ bp_pos = bpos_nosnap_successor(bp_pos); ++ } ++ ++ trace_evacuate_bucket(c, &bucket, dirty_sectors, bucket_size, fragmentation, ret); ++err: ++ bch2_bkey_buf_exit(&sk, c); ++ return ret; ++} ++ ++int bch2_evacuate_bucket(struct bch_fs *c, ++ struct bpos bucket, int gen, ++ struct data_update_opts data_opts, ++ struct bch_ratelimit *rate, ++ struct bch_move_stats *stats, ++ struct write_point_specifier wp, ++ bool wait_on_copygc) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct moving_context ctxt; ++ int ret; ++ ++ bch2_moving_ctxt_init(&ctxt, c, rate, stats, wp, wait_on_copygc); ++ ret = __bch2_evacuate_bucket(trans, &ctxt, NULL, bucket, gen, data_opts); ++ bch2_moving_ctxt_exit(&ctxt); ++ bch2_trans_put(trans); ++ ++ return ret; ++} ++ ++typedef bool (*move_btree_pred)(struct bch_fs *, void *, ++ struct btree *, struct bch_io_opts *, ++ struct data_update_opts *); ++ ++static int bch2_move_btree(struct bch_fs *c, ++ enum btree_id start_btree_id, struct bpos start_pos, ++ enum btree_id end_btree_id, struct bpos end_pos, ++ move_btree_pred pred, void *arg, ++ struct bch_move_stats *stats) ++{ ++ bool kthread = (current->flags & PF_KTHREAD) != 0; ++ struct bch_io_opts io_opts = bch2_opts_to_inode_opts(c->opts); ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct btree *b; ++ enum btree_id id; ++ struct data_update_opts data_opts; ++ int ret = 0; ++ ++ progress_list_add(c, stats); ++ ++ stats->data_type = BCH_DATA_btree; ++ ++ for (id = start_btree_id; ++ id <= min_t(unsigned, end_btree_id, btree_id_nr_alive(c) - 1); ++ id++) { ++ stats->btree_id = id; ++ ++ if (!bch2_btree_id_root(c, id)->b) ++ continue; ++ ++ bch2_trans_node_iter_init(trans, &iter, id, POS_MIN, 0, 0, ++ BTREE_ITER_PREFETCH); ++retry: ++ ret = 0; ++ while (bch2_trans_begin(trans), ++ (b = bch2_btree_iter_peek_node(&iter)) && ++ !(ret = PTR_ERR_OR_ZERO(b))) { ++ if (kthread && kthread_should_stop()) ++ break; ++ ++ if ((cmp_int(id, end_btree_id) ?: ++ bpos_cmp(b->key.k.p, end_pos)) > 0) ++ break; ++ ++ stats->pos = iter.pos; ++ ++ if (!pred(c, arg, b, &io_opts, &data_opts)) ++ goto next; ++ ++ ret = bch2_btree_node_rewrite(trans, &iter, b, 0) ?: ret; ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ continue; ++ if (ret) ++ break; ++next: ++ bch2_btree_iter_next_node(&iter); ++ } ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (kthread && kthread_should_stop()) ++ break; ++ } ++ ++ bch2_trans_put(trans); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ ++ bch2_btree_interior_updates_flush(c); ++ ++ progress_list_del(c, stats); ++ return ret; ++} ++ ++static bool rereplicate_pred(struct bch_fs *c, void *arg, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts, ++ struct data_update_opts *data_opts) ++{ ++ unsigned nr_good = bch2_bkey_durability(c, k); ++ unsigned replicas = bkey_is_btree_ptr(k.k) ++ ? c->opts.metadata_replicas ++ : io_opts->data_replicas; ++ ++ if (!nr_good || nr_good >= replicas) ++ return false; ++ ++ data_opts->target = 0; ++ data_opts->extra_replicas = replicas - nr_good; ++ data_opts->btree_insert_flags = 0; ++ return true; ++} ++ ++static bool migrate_pred(struct bch_fs *c, void *arg, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts, ++ struct data_update_opts *data_opts) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const struct bch_extent_ptr *ptr; ++ struct bch_ioctl_data *op = arg; ++ unsigned i = 0; ++ ++ data_opts->rewrite_ptrs = 0; ++ data_opts->target = 0; ++ data_opts->extra_replicas = 0; ++ data_opts->btree_insert_flags = 0; ++ ++ bkey_for_each_ptr(ptrs, ptr) { ++ if (ptr->dev == op->migrate.dev) ++ data_opts->rewrite_ptrs |= 1U << i; ++ i++; ++ } ++ ++ return data_opts->rewrite_ptrs != 0; ++} ++ ++static bool rereplicate_btree_pred(struct bch_fs *c, void *arg, ++ struct btree *b, ++ struct bch_io_opts *io_opts, ++ struct data_update_opts *data_opts) ++{ ++ return rereplicate_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts); ++} ++ ++static bool migrate_btree_pred(struct bch_fs *c, void *arg, ++ struct btree *b, ++ struct bch_io_opts *io_opts, ++ struct data_update_opts *data_opts) ++{ ++ return migrate_pred(c, arg, bkey_i_to_s_c(&b->key), io_opts, data_opts); ++} ++ ++static bool bformat_needs_redo(struct bkey_format *f) ++{ ++ unsigned i; ++ ++ for (i = 0; i < f->nr_fields; i++) { ++ unsigned unpacked_bits = bch2_bkey_format_current.bits_per_field[i]; ++ u64 unpacked_mask = ~((~0ULL << 1) << (unpacked_bits - 1)); ++ u64 field_offset = le64_to_cpu(f->field_offset[i]); ++ ++ if (f->bits_per_field[i] > unpacked_bits) ++ return true; ++ ++ if ((f->bits_per_field[i] == unpacked_bits) && field_offset) ++ return true; ++ ++ if (((field_offset + ((1ULL << f->bits_per_field[i]) - 1)) & ++ unpacked_mask) < ++ field_offset) ++ return true; ++ } ++ ++ return false; ++} ++ ++static bool rewrite_old_nodes_pred(struct bch_fs *c, void *arg, ++ struct btree *b, ++ struct bch_io_opts *io_opts, ++ struct data_update_opts *data_opts) ++{ ++ if (b->version_ondisk != c->sb.version || ++ btree_node_need_rewrite(b) || ++ bformat_needs_redo(&b->format)) { ++ data_opts->target = 0; ++ data_opts->extra_replicas = 0; ++ data_opts->btree_insert_flags = 0; ++ return true; ++ } ++ ++ return false; ++} ++ ++int bch2_scan_old_btree_nodes(struct bch_fs *c, struct bch_move_stats *stats) ++{ ++ int ret; ++ ++ ret = bch2_move_btree(c, ++ 0, POS_MIN, ++ BTREE_ID_NR, SPOS_MAX, ++ rewrite_old_nodes_pred, c, stats); ++ if (!ret) { ++ mutex_lock(&c->sb_lock); ++ c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done); ++ c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done); ++ c->disk_sb.sb->version_min = c->disk_sb.sb->version; ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++int bch2_data_job(struct bch_fs *c, ++ struct bch_move_stats *stats, ++ struct bch_ioctl_data op) ++{ ++ int ret = 0; ++ ++ switch (op.op) { ++ case BCH_DATA_OP_REREPLICATE: ++ bch2_move_stats_init(stats, "rereplicate"); ++ stats->data_type = BCH_DATA_journal; ++ ret = bch2_journal_flush_device_pins(&c->journal, -1); ++ ++ ret = bch2_move_btree(c, ++ op.start_btree, op.start_pos, ++ op.end_btree, op.end_pos, ++ rereplicate_btree_pred, c, stats) ?: ret; ++ ret = bch2_replicas_gc2(c) ?: ret; ++ ++ ret = bch2_move_data(c, ++ op.start_btree, op.start_pos, ++ op.end_btree, op.end_pos, ++ NULL, ++ stats, ++ writepoint_hashed((unsigned long) current), ++ true, ++ rereplicate_pred, c) ?: ret; ++ ret = bch2_replicas_gc2(c) ?: ret; ++ break; ++ case BCH_DATA_OP_MIGRATE: ++ if (op.migrate.dev >= c->sb.nr_devices) ++ return -EINVAL; ++ ++ bch2_move_stats_init(stats, "migrate"); ++ stats->data_type = BCH_DATA_journal; ++ ret = bch2_journal_flush_device_pins(&c->journal, op.migrate.dev); ++ ++ ret = bch2_move_btree(c, ++ op.start_btree, op.start_pos, ++ op.end_btree, op.end_pos, ++ migrate_btree_pred, &op, stats) ?: ret; ++ ret = bch2_replicas_gc2(c) ?: ret; ++ ++ ret = bch2_move_data(c, ++ op.start_btree, op.start_pos, ++ op.end_btree, op.end_pos, ++ NULL, ++ stats, ++ writepoint_hashed((unsigned long) current), ++ true, ++ migrate_pred, &op) ?: ret; ++ ret = bch2_replicas_gc2(c) ?: ret; ++ break; ++ case BCH_DATA_OP_REWRITE_OLD_NODES: ++ bch2_move_stats_init(stats, "rewrite_old_nodes"); ++ ret = bch2_scan_old_btree_nodes(c, stats); ++ break; ++ default: ++ ret = -EINVAL; ++ } ++ ++ return ret; ++} ++ ++static void bch2_moving_ctxt_to_text(struct printbuf *out, struct bch_fs *c, struct moving_context *ctxt) ++{ ++ struct bch_move_stats *stats = ctxt->stats; ++ struct moving_io *io; ++ ++ prt_printf(out, "%s (%ps):", stats->name, ctxt->fn); ++ prt_newline(out); ++ ++ prt_printf(out, " data type %s btree_id %s position: ", ++ bch2_data_types[stats->data_type], ++ bch2_btree_ids[stats->btree_id]); ++ bch2_bpos_to_text(out, stats->pos); ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ ++ prt_printf(out, "reads: ios %u/%u sectors %u/%u", ++ atomic_read(&ctxt->read_ios), ++ c->opts.move_ios_in_flight, ++ atomic_read(&ctxt->read_sectors), ++ c->opts.move_bytes_in_flight >> 9); ++ prt_newline(out); ++ ++ prt_printf(out, "writes: ios %u/%u sectors %u/%u", ++ atomic_read(&ctxt->write_ios), ++ c->opts.move_ios_in_flight, ++ atomic_read(&ctxt->write_sectors), ++ c->opts.move_bytes_in_flight >> 9); ++ prt_newline(out); ++ ++ printbuf_indent_add(out, 2); ++ ++ mutex_lock(&ctxt->lock); ++ list_for_each_entry(io, &ctxt->ios, io_list) ++ bch2_write_op_to_text(out, &io->write.op); ++ mutex_unlock(&ctxt->lock); ++ ++ printbuf_indent_sub(out, 4); ++} ++ ++void bch2_fs_moving_ctxts_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct moving_context *ctxt; ++ ++ mutex_lock(&c->moving_context_lock); ++ list_for_each_entry(ctxt, &c->moving_context_list, list) ++ bch2_moving_ctxt_to_text(out, c, ctxt); ++ mutex_unlock(&c->moving_context_lock); ++} ++ ++void bch2_fs_move_init(struct bch_fs *c) ++{ ++ INIT_LIST_HEAD(&c->moving_context_list); ++ mutex_init(&c->moving_context_lock); ++ ++ INIT_LIST_HEAD(&c->data_progress_list); ++ mutex_init(&c->data_progress_lock); ++} +diff --git a/fs/bcachefs/move.h b/fs/bcachefs/move.h +new file mode 100644 +index 000000000000..cbdd58db8782 +--- /dev/null ++++ b/fs/bcachefs/move.h +@@ -0,0 +1,96 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_MOVE_H ++#define _BCACHEFS_MOVE_H ++ ++#include "bcachefs_ioctl.h" ++#include "btree_iter.h" ++#include "buckets.h" ++#include "data_update.h" ++#include "move_types.h" ++ ++struct bch_read_bio; ++ ++struct moving_context { ++ struct bch_fs *c; ++ struct list_head list; ++ void *fn; ++ ++ struct bch_ratelimit *rate; ++ struct bch_move_stats *stats; ++ struct write_point_specifier wp; ++ bool wait_on_copygc; ++ bool write_error; ++ ++ /* For waiting on outstanding reads and writes: */ ++ struct closure cl; ++ ++ struct mutex lock; ++ struct list_head reads; ++ struct list_head ios; ++ ++ /* in flight sectors: */ ++ atomic_t read_sectors; ++ atomic_t write_sectors; ++ atomic_t read_ios; ++ atomic_t write_ios; ++ ++ wait_queue_head_t wait; ++}; ++ ++#define move_ctxt_wait_event(_ctxt, _trans, _cond) \ ++do { \ ++ bool cond_finished = false; \ ++ bch2_moving_ctxt_do_pending_writes(_ctxt, _trans); \ ++ \ ++ if (_cond) \ ++ break; \ ++ __wait_event((_ctxt)->wait, \ ++ bch2_moving_ctxt_next_pending_write(_ctxt) || \ ++ (cond_finished = (_cond))); \ ++ if (cond_finished) \ ++ break; \ ++} while (1) ++ ++typedef bool (*move_pred_fn)(struct bch_fs *, void *, struct bkey_s_c, ++ struct bch_io_opts *, struct data_update_opts *); ++ ++void bch2_moving_ctxt_exit(struct moving_context *); ++void bch2_moving_ctxt_init(struct moving_context *, struct bch_fs *, ++ struct bch_ratelimit *, struct bch_move_stats *, ++ struct write_point_specifier, bool); ++struct moving_io *bch2_moving_ctxt_next_pending_write(struct moving_context *); ++void bch2_moving_ctxt_do_pending_writes(struct moving_context *, ++ struct btree_trans *); ++ ++int bch2_scan_old_btree_nodes(struct bch_fs *, struct bch_move_stats *); ++ ++int bch2_move_data(struct bch_fs *, ++ enum btree_id, struct bpos, ++ enum btree_id, struct bpos, ++ struct bch_ratelimit *, ++ struct bch_move_stats *, ++ struct write_point_specifier, ++ bool, ++ move_pred_fn, void *); ++ ++int __bch2_evacuate_bucket(struct btree_trans *, ++ struct moving_context *, ++ struct move_bucket_in_flight *, ++ struct bpos, int, ++ struct data_update_opts); ++int bch2_evacuate_bucket(struct bch_fs *, struct bpos, int, ++ struct data_update_opts, ++ struct bch_ratelimit *, ++ struct bch_move_stats *, ++ struct write_point_specifier, ++ bool); ++int bch2_data_job(struct bch_fs *, ++ struct bch_move_stats *, ++ struct bch_ioctl_data); ++ ++void bch2_move_stats_init(struct bch_move_stats *stats, char *name); ++void bch2_fs_moving_ctxts_to_text(struct printbuf *, struct bch_fs *); ++ ++void bch2_fs_move_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_MOVE_H */ +diff --git a/fs/bcachefs/move_types.h b/fs/bcachefs/move_types.h +new file mode 100644 +index 000000000000..baf1f8570b3f +--- /dev/null ++++ b/fs/bcachefs/move_types.h +@@ -0,0 +1,36 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_MOVE_TYPES_H ++#define _BCACHEFS_MOVE_TYPES_H ++ ++struct bch_move_stats { ++ enum bch_data_type data_type; ++ enum btree_id btree_id; ++ struct bpos pos; ++ struct list_head list; ++ char name[32]; ++ ++ atomic64_t keys_moved; ++ atomic64_t keys_raced; ++ atomic64_t sectors_moved; ++ atomic64_t sectors_seen; ++ atomic64_t sectors_raced; ++}; ++ ++struct move_bucket_key { ++ struct bpos bucket; ++ u8 gen; ++}; ++ ++struct move_bucket { ++ struct move_bucket_key k; ++ unsigned sectors; ++}; ++ ++struct move_bucket_in_flight { ++ struct move_bucket_in_flight *next; ++ struct rhash_head hash; ++ struct move_bucket bucket; ++ atomic_t count; ++}; ++ ++#endif /* _BCACHEFS_MOVE_TYPES_H */ +diff --git a/fs/bcachefs/movinggc.c b/fs/bcachefs/movinggc.c +new file mode 100644 +index 000000000000..4017120baeee +--- /dev/null ++++ b/fs/bcachefs/movinggc.c +@@ -0,0 +1,414 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * Moving/copying garbage collector ++ * ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "btree_iter.h" ++#include "btree_update.h" ++#include "btree_write_buffer.h" ++#include "buckets.h" ++#include "clock.h" ++#include "errcode.h" ++#include "error.h" ++#include "lru.h" ++#include "move.h" ++#include "movinggc.h" ++#include "trace.h" ++ ++#include ++#include ++#include ++#include ++#include ++ ++struct buckets_in_flight { ++ struct rhashtable table; ++ struct move_bucket_in_flight *first; ++ struct move_bucket_in_flight *last; ++ size_t nr; ++ size_t sectors; ++}; ++ ++static const struct rhashtable_params bch_move_bucket_params = { ++ .head_offset = offsetof(struct move_bucket_in_flight, hash), ++ .key_offset = offsetof(struct move_bucket_in_flight, bucket.k), ++ .key_len = sizeof(struct move_bucket_key), ++}; ++ ++static struct move_bucket_in_flight * ++move_bucket_in_flight_add(struct buckets_in_flight *list, struct move_bucket b) ++{ ++ struct move_bucket_in_flight *new = kzalloc(sizeof(*new), GFP_KERNEL); ++ int ret; ++ ++ if (!new) ++ return ERR_PTR(-ENOMEM); ++ ++ new->bucket = b; ++ ++ ret = rhashtable_lookup_insert_fast(&list->table, &new->hash, ++ bch_move_bucket_params); ++ if (ret) { ++ kfree(new); ++ return ERR_PTR(ret); ++ } ++ ++ if (!list->first) ++ list->first = new; ++ else ++ list->last->next = new; ++ ++ list->last = new; ++ list->nr++; ++ list->sectors += b.sectors; ++ return new; ++} ++ ++static int bch2_bucket_is_movable(struct btree_trans *trans, ++ struct move_bucket *b, u64 time) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_alloc_v4 _a; ++ const struct bch_alloc_v4 *a; ++ int ret; ++ ++ if (bch2_bucket_is_open(trans->c, ++ b->k.bucket.inode, ++ b->k.bucket.offset)) ++ return 0; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_alloc, ++ b->k.bucket, BTREE_ITER_CACHED); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ ++ a = bch2_alloc_to_v4(k, &_a); ++ b->k.gen = a->gen; ++ b->sectors = a->dirty_sectors; ++ ++ ret = data_type_movable(a->data_type) && ++ a->fragmentation_lru && ++ a->fragmentation_lru <= time; ++ ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static void move_buckets_wait(struct btree_trans *trans, ++ struct moving_context *ctxt, ++ struct buckets_in_flight *list, ++ bool flush) ++{ ++ struct move_bucket_in_flight *i; ++ int ret; ++ ++ while ((i = list->first)) { ++ if (flush) ++ move_ctxt_wait_event(ctxt, trans, !atomic_read(&i->count)); ++ ++ if (atomic_read(&i->count)) ++ break; ++ ++ list->first = i->next; ++ if (!list->first) ++ list->last = NULL; ++ ++ list->nr--; ++ list->sectors -= i->bucket.sectors; ++ ++ ret = rhashtable_remove_fast(&list->table, &i->hash, ++ bch_move_bucket_params); ++ BUG_ON(ret); ++ kfree(i); ++ } ++ ++ bch2_trans_unlock(trans); ++} ++ ++static bool bucket_in_flight(struct buckets_in_flight *list, ++ struct move_bucket_key k) ++{ ++ return rhashtable_lookup_fast(&list->table, &k, bch_move_bucket_params); ++} ++ ++typedef DARRAY(struct move_bucket) move_buckets; ++ ++static int bch2_copygc_get_buckets(struct btree_trans *trans, ++ struct moving_context *ctxt, ++ struct buckets_in_flight *buckets_in_flight, ++ move_buckets *buckets) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ size_t nr_to_get = max_t(size_t, 16U, buckets_in_flight->nr / 4); ++ size_t saw = 0, in_flight = 0, not_movable = 0, sectors = 0; ++ int ret; ++ ++ move_buckets_wait(trans, ctxt, buckets_in_flight, false); ++ ++ ret = bch2_btree_write_buffer_flush(trans); ++ if (bch2_fs_fatal_err_on(ret, c, "%s: error %s from bch2_btree_write_buffer_flush()", ++ __func__, bch2_err_str(ret))) ++ return ret; ++ ++ ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_lru, ++ lru_pos(BCH_LRU_FRAGMENTATION_START, 0, 0), ++ lru_pos(BCH_LRU_FRAGMENTATION_START, U64_MAX, LRU_TIME_MAX), ++ 0, k, ({ ++ struct move_bucket b = { .k.bucket = u64_to_bucket(k.k->p.offset) }; ++ int ret2 = 0; ++ ++ saw++; ++ ++ if (!bch2_bucket_is_movable(trans, &b, lru_pos_time(k.k->p))) ++ not_movable++; ++ else if (bucket_in_flight(buckets_in_flight, b.k)) ++ in_flight++; ++ else { ++ ret2 = darray_push(buckets, b) ?: buckets->nr >= nr_to_get; ++ if (ret2 >= 0) ++ sectors += b.sectors; ++ } ++ ret2; ++ })); ++ ++ pr_debug("have: %zu (%zu) saw %zu in flight %zu not movable %zu got %zu (%zu)/%zu buckets ret %i", ++ buckets_in_flight->nr, buckets_in_flight->sectors, ++ saw, in_flight, not_movable, buckets->nr, sectors, nr_to_get, ret); ++ ++ return ret < 0 ? ret : 0; ++} ++ ++noinline ++static int bch2_copygc(struct btree_trans *trans, ++ struct moving_context *ctxt, ++ struct buckets_in_flight *buckets_in_flight) ++{ ++ struct bch_fs *c = trans->c; ++ struct data_update_opts data_opts = { ++ .btree_insert_flags = BCH_WATERMARK_copygc, ++ }; ++ move_buckets buckets = { 0 }; ++ struct move_bucket_in_flight *f; ++ struct move_bucket *i; ++ u64 moved = atomic64_read(&ctxt->stats->sectors_moved); ++ int ret = 0; ++ ++ ret = bch2_copygc_get_buckets(trans, ctxt, buckets_in_flight, &buckets); ++ if (ret) ++ goto err; ++ ++ darray_for_each(buckets, i) { ++ if (unlikely(freezing(current))) ++ break; ++ ++ f = move_bucket_in_flight_add(buckets_in_flight, *i); ++ ret = PTR_ERR_OR_ZERO(f); ++ if (ret == -EEXIST) { /* rare race: copygc_get_buckets returned same bucket more than once */ ++ ret = 0; ++ continue; ++ } ++ if (ret == -ENOMEM) { /* flush IO, continue later */ ++ ret = 0; ++ break; ++ } ++ ++ ret = __bch2_evacuate_bucket(trans, ctxt, f, f->bucket.k.bucket, ++ f->bucket.k.gen, data_opts); ++ if (ret) ++ goto err; ++ } ++err: ++ darray_exit(&buckets); ++ ++ /* no entries in LRU btree found, or got to end: */ ++ if (bch2_err_matches(ret, ENOENT)) ++ ret = 0; ++ ++ if (ret < 0 && !bch2_err_matches(ret, EROFS)) ++ bch_err_msg(c, ret, "from bch2_move_data()"); ++ ++ moved = atomic64_read(&ctxt->stats->sectors_moved) - moved; ++ trace_and_count(c, copygc, c, moved, 0, 0, 0); ++ return ret; ++} ++ ++/* ++ * Copygc runs when the amount of fragmented data is above some arbitrary ++ * threshold: ++ * ++ * The threshold at the limit - when the device is full - is the amount of space ++ * we reserved in bch2_recalc_capacity; we can't have more than that amount of ++ * disk space stranded due to fragmentation and store everything we have ++ * promised to store. ++ * ++ * But we don't want to be running copygc unnecessarily when the device still ++ * has plenty of free space - rather, we want copygc to smoothly run every so ++ * often and continually reduce the amount of fragmented space as the device ++ * fills up. So, we increase the threshold by half the current free space. ++ */ ++unsigned long bch2_copygc_wait_amount(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned dev_idx; ++ s64 wait = S64_MAX, fragmented_allowed, fragmented; ++ unsigned i; ++ ++ for_each_rw_member(ca, c, dev_idx) { ++ struct bch_dev_usage usage = bch2_dev_usage_read(ca); ++ ++ fragmented_allowed = ((__dev_buckets_available(ca, usage, BCH_WATERMARK_stripe) * ++ ca->mi.bucket_size) >> 1); ++ fragmented = 0; ++ ++ for (i = 0; i < BCH_DATA_NR; i++) ++ if (data_type_movable(i)) ++ fragmented += usage.d[i].fragmented; ++ ++ wait = min(wait, max(0LL, fragmented_allowed - fragmented)); ++ } ++ ++ return wait; ++} ++ ++void bch2_copygc_wait_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ prt_printf(out, "Currently waiting for: "); ++ prt_human_readable_u64(out, max(0LL, c->copygc_wait - ++ atomic64_read(&c->io_clock[WRITE].now)) << 9); ++ prt_newline(out); ++ ++ prt_printf(out, "Currently waiting since: "); ++ prt_human_readable_u64(out, max(0LL, ++ atomic64_read(&c->io_clock[WRITE].now) - ++ c->copygc_wait_at) << 9); ++ prt_newline(out); ++ ++ prt_printf(out, "Currently calculated wait: "); ++ prt_human_readable_u64(out, bch2_copygc_wait_amount(c)); ++ prt_newline(out); ++} ++ ++static int bch2_copygc_thread(void *arg) ++{ ++ struct bch_fs *c = arg; ++ struct btree_trans *trans; ++ struct moving_context ctxt; ++ struct bch_move_stats move_stats; ++ struct io_clock *clock = &c->io_clock[WRITE]; ++ struct buckets_in_flight buckets; ++ u64 last, wait; ++ int ret = 0; ++ ++ memset(&buckets, 0, sizeof(buckets)); ++ ++ ret = rhashtable_init(&buckets.table, &bch_move_bucket_params); ++ if (ret) { ++ bch_err_msg(c, ret, "allocating copygc buckets in flight"); ++ return ret; ++ } ++ ++ set_freezable(); ++ trans = bch2_trans_get(c); ++ ++ bch2_move_stats_init(&move_stats, "copygc"); ++ bch2_moving_ctxt_init(&ctxt, c, NULL, &move_stats, ++ writepoint_ptr(&c->copygc_write_point), ++ false); ++ ++ while (!ret && !kthread_should_stop()) { ++ bch2_trans_unlock(trans); ++ cond_resched(); ++ ++ if (!c->copy_gc_enabled) { ++ move_buckets_wait(trans, &ctxt, &buckets, true); ++ kthread_wait_freezable(c->copy_gc_enabled); ++ } ++ ++ if (unlikely(freezing(current))) { ++ move_buckets_wait(trans, &ctxt, &buckets, true); ++ __refrigerator(false); ++ continue; ++ } ++ ++ last = atomic64_read(&clock->now); ++ wait = bch2_copygc_wait_amount(c); ++ ++ if (wait > clock->max_slop) { ++ c->copygc_wait_at = last; ++ c->copygc_wait = last + wait; ++ move_buckets_wait(trans, &ctxt, &buckets, true); ++ trace_and_count(c, copygc_wait, c, wait, last + wait); ++ bch2_kthread_io_clock_wait(clock, last + wait, ++ MAX_SCHEDULE_TIMEOUT); ++ continue; ++ } ++ ++ c->copygc_wait = 0; ++ ++ c->copygc_running = true; ++ ret = bch2_copygc(trans, &ctxt, &buckets); ++ c->copygc_running = false; ++ ++ wake_up(&c->copygc_running_wq); ++ } ++ ++ move_buckets_wait(trans, &ctxt, &buckets, true); ++ rhashtable_destroy(&buckets.table); ++ bch2_trans_put(trans); ++ bch2_moving_ctxt_exit(&ctxt); ++ ++ return 0; ++} ++ ++void bch2_copygc_stop(struct bch_fs *c) ++{ ++ if (c->copygc_thread) { ++ kthread_stop(c->copygc_thread); ++ put_task_struct(c->copygc_thread); ++ } ++ c->copygc_thread = NULL; ++} ++ ++int bch2_copygc_start(struct bch_fs *c) ++{ ++ struct task_struct *t; ++ int ret; ++ ++ if (c->copygc_thread) ++ return 0; ++ ++ if (c->opts.nochanges) ++ return 0; ++ ++ if (bch2_fs_init_fault("copygc_start")) ++ return -ENOMEM; ++ ++ t = kthread_create(bch2_copygc_thread, c, "bch-copygc/%s", c->name); ++ ret = PTR_ERR_OR_ZERO(t); ++ if (ret) { ++ bch_err_msg(c, ret, "creating copygc thread"); ++ return ret; ++ } ++ ++ get_task_struct(t); ++ ++ c->copygc_thread = t; ++ wake_up_process(c->copygc_thread); ++ ++ return 0; ++} ++ ++void bch2_fs_copygc_init(struct bch_fs *c) ++{ ++ init_waitqueue_head(&c->copygc_running_wq); ++ c->copygc_running = false; ++} +diff --git a/fs/bcachefs/movinggc.h b/fs/bcachefs/movinggc.h +new file mode 100644 +index 000000000000..ea181fef5bc9 +--- /dev/null ++++ b/fs/bcachefs/movinggc.h +@@ -0,0 +1,12 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_MOVINGGC_H ++#define _BCACHEFS_MOVINGGC_H ++ ++unsigned long bch2_copygc_wait_amount(struct bch_fs *); ++void bch2_copygc_wait_to_text(struct printbuf *, struct bch_fs *); ++ ++void bch2_copygc_stop(struct bch_fs *); ++int bch2_copygc_start(struct bch_fs *); ++void bch2_fs_copygc_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_MOVINGGC_H */ +diff --git a/fs/bcachefs/nocow_locking.c b/fs/bcachefs/nocow_locking.c +new file mode 100644 +index 000000000000..3c21981a4a1c +--- /dev/null ++++ b/fs/bcachefs/nocow_locking.c +@@ -0,0 +1,144 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_methods.h" ++#include "nocow_locking.h" ++#include "util.h" ++ ++#include ++ ++bool bch2_bucket_nocow_is_locked(struct bucket_nocow_lock_table *t, struct bpos bucket) ++{ ++ u64 dev_bucket = bucket_to_u64(bucket); ++ struct nocow_lock_bucket *l = bucket_nocow_lock(t, dev_bucket); ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(l->b); i++) ++ if (l->b[i] == dev_bucket && atomic_read(&l->l[i])) ++ return true; ++ return false; ++} ++ ++#define sign(v) (v < 0 ? -1 : v > 0 ? 1 : 0) ++ ++void bch2_bucket_nocow_unlock(struct bucket_nocow_lock_table *t, struct bpos bucket, int flags) ++{ ++ u64 dev_bucket = bucket_to_u64(bucket); ++ struct nocow_lock_bucket *l = bucket_nocow_lock(t, dev_bucket); ++ int lock_val = flags ? 1 : -1; ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(l->b); i++) ++ if (l->b[i] == dev_bucket) { ++ int v = atomic_sub_return(lock_val, &l->l[i]); ++ ++ BUG_ON(v && sign(v) != lock_val); ++ if (!v) ++ closure_wake_up(&l->wait); ++ return; ++ } ++ ++ BUG(); ++} ++ ++bool __bch2_bucket_nocow_trylock(struct nocow_lock_bucket *l, ++ u64 dev_bucket, int flags) ++{ ++ int v, lock_val = flags ? 1 : -1; ++ unsigned i; ++ ++ spin_lock(&l->lock); ++ ++ for (i = 0; i < ARRAY_SIZE(l->b); i++) ++ if (l->b[i] == dev_bucket) ++ goto got_entry; ++ ++ for (i = 0; i < ARRAY_SIZE(l->b); i++) ++ if (!atomic_read(&l->l[i])) { ++ l->b[i] = dev_bucket; ++ goto take_lock; ++ } ++fail: ++ spin_unlock(&l->lock); ++ return false; ++got_entry: ++ v = atomic_read(&l->l[i]); ++ if (lock_val > 0 ? v < 0 : v > 0) ++ goto fail; ++take_lock: ++ v = atomic_read(&l->l[i]); ++ /* Overflow? */ ++ if (v && sign(v + lock_val) != sign(v)) ++ goto fail; ++ ++ atomic_add(lock_val, &l->l[i]); ++ spin_unlock(&l->lock); ++ return true; ++} ++ ++void __bch2_bucket_nocow_lock(struct bucket_nocow_lock_table *t, ++ struct nocow_lock_bucket *l, ++ u64 dev_bucket, int flags) ++{ ++ if (!__bch2_bucket_nocow_trylock(l, dev_bucket, flags)) { ++ struct bch_fs *c = container_of(t, struct bch_fs, nocow_locks); ++ u64 start_time = local_clock(); ++ ++ __closure_wait_event(&l->wait, __bch2_bucket_nocow_trylock(l, dev_bucket, flags)); ++ bch2_time_stats_update(&c->times[BCH_TIME_nocow_lock_contended], start_time); ++ } ++} ++ ++void bch2_nocow_locks_to_text(struct printbuf *out, struct bucket_nocow_lock_table *t) ++ ++{ ++ unsigned i, nr_zero = 0; ++ struct nocow_lock_bucket *l; ++ ++ for (l = t->l; l < t->l + ARRAY_SIZE(t->l); l++) { ++ unsigned v = 0; ++ ++ for (i = 0; i < ARRAY_SIZE(l->l); i++) ++ v |= atomic_read(&l->l[i]); ++ ++ if (!v) { ++ nr_zero++; ++ continue; ++ } ++ ++ if (nr_zero) ++ prt_printf(out, "(%u empty entries)\n", nr_zero); ++ nr_zero = 0; ++ ++ for (i = 0; i < ARRAY_SIZE(l->l); i++) { ++ int v = atomic_read(&l->l[i]); ++ if (v) { ++ bch2_bpos_to_text(out, u64_to_bucket(l->b[i])); ++ prt_printf(out, ": %s %u ", v < 0 ? "copy" : "update", abs(v)); ++ } ++ } ++ prt_newline(out); ++ } ++ ++ if (nr_zero) ++ prt_printf(out, "(%u empty entries)\n", nr_zero); ++} ++ ++void bch2_fs_nocow_locking_exit(struct bch_fs *c) ++{ ++ struct bucket_nocow_lock_table *t = &c->nocow_locks; ++ ++ for (struct nocow_lock_bucket *l = t->l; l < t->l + ARRAY_SIZE(t->l); l++) ++ for (unsigned j = 0; j < ARRAY_SIZE(l->l); j++) ++ BUG_ON(atomic_read(&l->l[j])); ++} ++ ++int bch2_fs_nocow_locking_init(struct bch_fs *c) ++{ ++ struct bucket_nocow_lock_table *t = &c->nocow_locks; ++ ++ for (struct nocow_lock_bucket *l = t->l; l < t->l + ARRAY_SIZE(t->l); l++) ++ spin_lock_init(&l->lock); ++ ++ return 0; ++} +diff --git a/fs/bcachefs/nocow_locking.h b/fs/bcachefs/nocow_locking.h +new file mode 100644 +index 000000000000..f9d6a426a960 +--- /dev/null ++++ b/fs/bcachefs/nocow_locking.h +@@ -0,0 +1,50 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_NOCOW_LOCKING_H ++#define _BCACHEFS_NOCOW_LOCKING_H ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "nocow_locking_types.h" ++ ++#include ++ ++static inline struct nocow_lock_bucket *bucket_nocow_lock(struct bucket_nocow_lock_table *t, ++ u64 dev_bucket) ++{ ++ unsigned h = hash_64(dev_bucket, BUCKET_NOCOW_LOCKS_BITS); ++ ++ return t->l + (h & (BUCKET_NOCOW_LOCKS - 1)); ++} ++ ++#define BUCKET_NOCOW_LOCK_UPDATE (1 << 0) ++ ++bool bch2_bucket_nocow_is_locked(struct bucket_nocow_lock_table *, struct bpos); ++void bch2_bucket_nocow_unlock(struct bucket_nocow_lock_table *, struct bpos, int); ++bool __bch2_bucket_nocow_trylock(struct nocow_lock_bucket *, u64, int); ++void __bch2_bucket_nocow_lock(struct bucket_nocow_lock_table *, ++ struct nocow_lock_bucket *, u64, int); ++ ++static inline void bch2_bucket_nocow_lock(struct bucket_nocow_lock_table *t, ++ struct bpos bucket, int flags) ++{ ++ u64 dev_bucket = bucket_to_u64(bucket); ++ struct nocow_lock_bucket *l = bucket_nocow_lock(t, dev_bucket); ++ ++ __bch2_bucket_nocow_lock(t, l, dev_bucket, flags); ++} ++ ++static inline bool bch2_bucket_nocow_trylock(struct bucket_nocow_lock_table *t, ++ struct bpos bucket, int flags) ++{ ++ u64 dev_bucket = bucket_to_u64(bucket); ++ struct nocow_lock_bucket *l = bucket_nocow_lock(t, dev_bucket); ++ ++ return __bch2_bucket_nocow_trylock(l, dev_bucket, flags); ++} ++ ++void bch2_nocow_locks_to_text(struct printbuf *, struct bucket_nocow_lock_table *); ++ ++void bch2_fs_nocow_locking_exit(struct bch_fs *); ++int bch2_fs_nocow_locking_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_NOCOW_LOCKING_H */ +diff --git a/fs/bcachefs/nocow_locking_types.h b/fs/bcachefs/nocow_locking_types.h +new file mode 100644 +index 000000000000..bd12bf677924 +--- /dev/null ++++ b/fs/bcachefs/nocow_locking_types.h +@@ -0,0 +1,20 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_NOCOW_LOCKING_TYPES_H ++#define _BCACHEFS_NOCOW_LOCKING_TYPES_H ++ ++#define BUCKET_NOCOW_LOCKS_BITS 10 ++#define BUCKET_NOCOW_LOCKS (1U << BUCKET_NOCOW_LOCKS_BITS) ++ ++struct nocow_lock_bucket { ++ struct closure_waitlist wait; ++ spinlock_t lock; ++ u64 b[4]; ++ atomic_t l[4]; ++} __aligned(SMP_CACHE_BYTES); ++ ++struct bucket_nocow_lock_table { ++ struct nocow_lock_bucket l[BUCKET_NOCOW_LOCKS]; ++}; ++ ++#endif /* _BCACHEFS_NOCOW_LOCKING_TYPES_H */ ++ +diff --git a/fs/bcachefs/opts.c b/fs/bcachefs/opts.c +new file mode 100644 +index 000000000000..232f50c73a94 +--- /dev/null ++++ b/fs/bcachefs/opts.c +@@ -0,0 +1,605 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include ++ ++#include "bcachefs.h" ++#include "compress.h" ++#include "disk_groups.h" ++#include "error.h" ++#include "opts.h" ++#include "super-io.h" ++#include "util.h" ++ ++#define x(t, n, ...) [n] = #t, ++ ++const char * const bch2_iops_measurements[] = { ++ BCH_IOPS_MEASUREMENTS() ++ NULL ++}; ++ ++const char * const bch2_error_actions[] = { ++ BCH_ERROR_ACTIONS() ++ NULL ++}; ++ ++const char * const bch2_fsck_fix_opts[] = { ++ BCH_FIX_ERRORS_OPTS() ++ NULL ++}; ++ ++const char * const bch2_version_upgrade_opts[] = { ++ BCH_VERSION_UPGRADE_OPTS() ++ NULL ++}; ++ ++const char * const bch2_sb_features[] = { ++ BCH_SB_FEATURES() ++ NULL ++}; ++ ++const char * const bch2_sb_compat[] = { ++ BCH_SB_COMPAT() ++ NULL ++}; ++ ++const char * const bch2_btree_ids[] = { ++ BCH_BTREE_IDS() ++ "interior btree node", ++ NULL ++}; ++ ++const char * const bch2_csum_types[] = { ++ BCH_CSUM_TYPES() ++ NULL ++}; ++ ++const char * const bch2_csum_opts[] = { ++ BCH_CSUM_OPTS() ++ NULL ++}; ++ ++const char * const bch2_compression_types[] = { ++ BCH_COMPRESSION_TYPES() ++ NULL ++}; ++ ++const char * const bch2_compression_opts[] = { ++ BCH_COMPRESSION_OPTS() ++ NULL ++}; ++ ++const char * const bch2_str_hash_types[] = { ++ BCH_STR_HASH_TYPES() ++ NULL ++}; ++ ++const char * const bch2_str_hash_opts[] = { ++ BCH_STR_HASH_OPTS() ++ NULL ++}; ++ ++const char * const bch2_data_types[] = { ++ BCH_DATA_TYPES() ++ NULL ++}; ++ ++const char * const bch2_member_states[] = { ++ BCH_MEMBER_STATES() ++ NULL ++}; ++ ++const char * const bch2_jset_entry_types[] = { ++ BCH_JSET_ENTRY_TYPES() ++ NULL ++}; ++ ++const char * const bch2_fs_usage_types[] = { ++ BCH_FS_USAGE_TYPES() ++ NULL ++}; ++ ++#undef x ++ ++static int bch2_opt_fix_errors_parse(struct bch_fs *c, const char *val, u64 *res, ++ struct printbuf *err) ++{ ++ if (!val) { ++ *res = FSCK_FIX_yes; ++ } else { ++ int ret = match_string(bch2_fsck_fix_opts, -1, val); ++ ++ if (ret < 0 && err) ++ prt_str(err, "fix_errors: invalid selection"); ++ if (ret < 0) ++ return ret; ++ *res = ret; ++ } ++ ++ return 0; ++} ++ ++static void bch2_opt_fix_errors_to_text(struct printbuf *out, ++ struct bch_fs *c, ++ struct bch_sb *sb, ++ u64 v) ++{ ++ prt_str(out, bch2_fsck_fix_opts[v]); ++} ++ ++#define bch2_opt_fix_errors (struct bch_opt_fn) { \ ++ .parse = bch2_opt_fix_errors_parse, \ ++ .to_text = bch2_opt_fix_errors_to_text, \ ++} ++ ++const char * const bch2_d_types[BCH_DT_MAX] = { ++ [DT_UNKNOWN] = "unknown", ++ [DT_FIFO] = "fifo", ++ [DT_CHR] = "chr", ++ [DT_DIR] = "dir", ++ [DT_BLK] = "blk", ++ [DT_REG] = "reg", ++ [DT_LNK] = "lnk", ++ [DT_SOCK] = "sock", ++ [DT_WHT] = "whiteout", ++ [DT_SUBVOL] = "subvol", ++}; ++ ++u64 BCH2_NO_SB_OPT(const struct bch_sb *sb) ++{ ++ BUG(); ++} ++ ++void SET_BCH2_NO_SB_OPT(struct bch_sb *sb, u64 v) ++{ ++ BUG(); ++} ++ ++void bch2_opts_apply(struct bch_opts *dst, struct bch_opts src) ++{ ++#define x(_name, ...) \ ++ if (opt_defined(src, _name)) \ ++ opt_set(*dst, _name, src._name); ++ ++ BCH_OPTS() ++#undef x ++} ++ ++bool bch2_opt_defined_by_id(const struct bch_opts *opts, enum bch_opt_id id) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Opt_##_name: \ ++ return opt_defined(*opts, _name); ++ BCH_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++u64 bch2_opt_get_by_id(const struct bch_opts *opts, enum bch_opt_id id) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Opt_##_name: \ ++ return opts->_name; ++ BCH_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++void bch2_opt_set_by_id(struct bch_opts *opts, enum bch_opt_id id, u64 v) ++{ ++ switch (id) { ++#define x(_name, ...) \ ++ case Opt_##_name: \ ++ opt_set(*opts, _name, v); \ ++ break; ++ BCH_OPTS() ++#undef x ++ default: ++ BUG(); ++ } ++} ++ ++const struct bch_option bch2_opt_table[] = { ++#define OPT_BOOL() .type = BCH_OPT_BOOL, .min = 0, .max = 2 ++#define OPT_UINT(_min, _max) .type = BCH_OPT_UINT, \ ++ .min = _min, .max = _max ++#define OPT_STR(_choices) .type = BCH_OPT_STR, \ ++ .min = 0, .max = ARRAY_SIZE(_choices), \ ++ .choices = _choices ++#define OPT_FN(_fn) .type = BCH_OPT_FN, .fn = _fn ++ ++#define x(_name, _bits, _flags, _type, _sb_opt, _default, _hint, _help) \ ++ [Opt_##_name] = { \ ++ .attr = { \ ++ .name = #_name, \ ++ .mode = (_flags) & OPT_RUNTIME ? 0644 : 0444, \ ++ }, \ ++ .flags = _flags, \ ++ .hint = _hint, \ ++ .help = _help, \ ++ .get_sb = _sb_opt, \ ++ .set_sb = SET_##_sb_opt, \ ++ _type \ ++ }, ++ ++ BCH_OPTS() ++#undef x ++}; ++ ++int bch2_opt_lookup(const char *name) ++{ ++ const struct bch_option *i; ++ ++ for (i = bch2_opt_table; ++ i < bch2_opt_table + ARRAY_SIZE(bch2_opt_table); ++ i++) ++ if (!strcmp(name, i->attr.name)) ++ return i - bch2_opt_table; ++ ++ return -1; ++} ++ ++struct synonym { ++ const char *s1, *s2; ++}; ++ ++static const struct synonym bch_opt_synonyms[] = { ++ { "quota", "usrquota" }, ++}; ++ ++static int bch2_mount_opt_lookup(const char *name) ++{ ++ const struct synonym *i; ++ ++ for (i = bch_opt_synonyms; ++ i < bch_opt_synonyms + ARRAY_SIZE(bch_opt_synonyms); ++ i++) ++ if (!strcmp(name, i->s1)) ++ name = i->s2; ++ ++ return bch2_opt_lookup(name); ++} ++ ++int bch2_opt_validate(const struct bch_option *opt, u64 v, struct printbuf *err) ++{ ++ if (v < opt->min) { ++ if (err) ++ prt_printf(err, "%s: too small (min %llu)", ++ opt->attr.name, opt->min); ++ return -ERANGE; ++ } ++ ++ if (opt->max && v >= opt->max) { ++ if (err) ++ prt_printf(err, "%s: too big (max %llu)", ++ opt->attr.name, opt->max); ++ return -ERANGE; ++ } ++ ++ if ((opt->flags & OPT_SB_FIELD_SECTORS) && (v & 511)) { ++ if (err) ++ prt_printf(err, "%s: not a multiple of 512", ++ opt->attr.name); ++ return -EINVAL; ++ } ++ ++ if ((opt->flags & OPT_MUST_BE_POW_2) && !is_power_of_2(v)) { ++ if (err) ++ prt_printf(err, "%s: must be a power of two", ++ opt->attr.name); ++ return -EINVAL; ++ } ++ ++ return 0; ++} ++ ++int bch2_opt_parse(struct bch_fs *c, ++ const struct bch_option *opt, ++ const char *val, u64 *res, ++ struct printbuf *err) ++{ ++ ssize_t ret; ++ ++ switch (opt->type) { ++ case BCH_OPT_BOOL: ++ if (val) { ++ ret = kstrtou64(val, 10, res); ++ } else { ++ ret = 0; ++ *res = 1; ++ } ++ ++ if (ret < 0 || (*res != 0 && *res != 1)) { ++ if (err) ++ prt_printf(err, "%s: must be bool", opt->attr.name); ++ return ret; ++ } ++ break; ++ case BCH_OPT_UINT: ++ if (!val) { ++ prt_printf(err, "%s: required value", ++ opt->attr.name); ++ return -EINVAL; ++ } ++ ++ ret = opt->flags & OPT_HUMAN_READABLE ++ ? bch2_strtou64_h(val, res) ++ : kstrtou64(val, 10, res); ++ if (ret < 0) { ++ if (err) ++ prt_printf(err, "%s: must be a number", ++ opt->attr.name); ++ return ret; ++ } ++ break; ++ case BCH_OPT_STR: ++ if (!val) { ++ prt_printf(err, "%s: required value", ++ opt->attr.name); ++ return -EINVAL; ++ } ++ ++ ret = match_string(opt->choices, -1, val); ++ if (ret < 0) { ++ if (err) ++ prt_printf(err, "%s: invalid selection", ++ opt->attr.name); ++ return ret; ++ } ++ ++ *res = ret; ++ break; ++ case BCH_OPT_FN: ++ ret = opt->fn.parse(c, val, res, err); ++ if (ret < 0) { ++ if (err) ++ prt_printf(err, "%s: parse error", ++ opt->attr.name); ++ return ret; ++ } ++ } ++ ++ return bch2_opt_validate(opt, *res, err); ++} ++ ++void bch2_opt_to_text(struct printbuf *out, ++ struct bch_fs *c, struct bch_sb *sb, ++ const struct bch_option *opt, u64 v, ++ unsigned flags) ++{ ++ if (flags & OPT_SHOW_MOUNT_STYLE) { ++ if (opt->type == BCH_OPT_BOOL) { ++ prt_printf(out, "%s%s", ++ v ? "" : "no", ++ opt->attr.name); ++ return; ++ } ++ ++ prt_printf(out, "%s=", opt->attr.name); ++ } ++ ++ switch (opt->type) { ++ case BCH_OPT_BOOL: ++ case BCH_OPT_UINT: ++ if (opt->flags & OPT_HUMAN_READABLE) ++ prt_human_readable_u64(out, v); ++ else ++ prt_printf(out, "%lli", v); ++ break; ++ case BCH_OPT_STR: ++ if (flags & OPT_SHOW_FULL_LIST) ++ prt_string_option(out, opt->choices, v); ++ else ++ prt_str(out, opt->choices[v]); ++ break; ++ case BCH_OPT_FN: ++ opt->fn.to_text(out, c, sb, v); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++int bch2_opt_check_may_set(struct bch_fs *c, int id, u64 v) ++{ ++ int ret = 0; ++ ++ switch (id) { ++ case Opt_compression: ++ case Opt_background_compression: ++ ret = bch2_check_set_has_compressed_data(c, v); ++ break; ++ case Opt_erasure_code: ++ if (v) ++ bch2_check_set_feature(c, BCH_FEATURE_ec); ++ break; ++ } ++ ++ return ret; ++} ++ ++int bch2_opts_check_may_set(struct bch_fs *c) ++{ ++ unsigned i; ++ int ret; ++ ++ for (i = 0; i < bch2_opts_nr; i++) { ++ ret = bch2_opt_check_may_set(c, i, ++ bch2_opt_get_by_id(&c->opts, i)); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++int bch2_parse_mount_opts(struct bch_fs *c, struct bch_opts *opts, ++ char *options) ++{ ++ char *copied_opts, *copied_opts_start; ++ char *opt, *name, *val; ++ int ret, id; ++ struct printbuf err = PRINTBUF; ++ u64 v; ++ ++ if (!options) ++ return 0; ++ ++ /* ++ * sys_fsconfig() is now occasionally providing us with option lists ++ * starting with a comma - weird. ++ */ ++ if (*options == ',') ++ options++; ++ ++ copied_opts = kstrdup(options, GFP_KERNEL); ++ if (!copied_opts) ++ return -1; ++ copied_opts_start = copied_opts; ++ ++ while ((opt = strsep(&copied_opts, ",")) != NULL) { ++ name = strsep(&opt, "="); ++ val = opt; ++ ++ id = bch2_mount_opt_lookup(name); ++ ++ /* Check for the form "noopt", negation of a boolean opt: */ ++ if (id < 0 && ++ !val && ++ !strncmp("no", name, 2)) { ++ id = bch2_mount_opt_lookup(name + 2); ++ val = "0"; ++ } ++ ++ /* Unknown options are ignored: */ ++ if (id < 0) ++ continue; ++ ++ if (!(bch2_opt_table[id].flags & OPT_MOUNT)) ++ goto bad_opt; ++ ++ if (id == Opt_acl && ++ !IS_ENABLED(CONFIG_BCACHEFS_POSIX_ACL)) ++ goto bad_opt; ++ ++ if ((id == Opt_usrquota || ++ id == Opt_grpquota) && ++ !IS_ENABLED(CONFIG_BCACHEFS_QUOTA)) ++ goto bad_opt; ++ ++ ret = bch2_opt_parse(c, &bch2_opt_table[id], val, &v, &err); ++ if (ret < 0) ++ goto bad_val; ++ ++ bch2_opt_set_by_id(opts, id, v); ++ } ++ ++ ret = 0; ++ goto out; ++ ++bad_opt: ++ pr_err("Bad mount option %s", name); ++ ret = -1; ++ goto out; ++bad_val: ++ pr_err("Invalid mount option %s", err.buf); ++ ret = -1; ++ goto out; ++out: ++ kfree(copied_opts_start); ++ printbuf_exit(&err); ++ return ret; ++} ++ ++u64 bch2_opt_from_sb(struct bch_sb *sb, enum bch_opt_id id) ++{ ++ const struct bch_option *opt = bch2_opt_table + id; ++ u64 v; ++ ++ v = opt->get_sb(sb); ++ ++ if (opt->flags & OPT_SB_FIELD_ILOG2) ++ v = 1ULL << v; ++ ++ if (opt->flags & OPT_SB_FIELD_SECTORS) ++ v <<= 9; ++ ++ return v; ++} ++ ++/* ++ * Initial options from superblock - here we don't want any options undefined, ++ * any options the superblock doesn't specify are set to 0: ++ */ ++int bch2_opts_from_sb(struct bch_opts *opts, struct bch_sb *sb) ++{ ++ unsigned id; ++ ++ for (id = 0; id < bch2_opts_nr; id++) { ++ const struct bch_option *opt = bch2_opt_table + id; ++ ++ if (opt->get_sb == BCH2_NO_SB_OPT) ++ continue; ++ ++ bch2_opt_set_by_id(opts, id, bch2_opt_from_sb(sb, id)); ++ } ++ ++ return 0; ++} ++ ++void __bch2_opt_set_sb(struct bch_sb *sb, const struct bch_option *opt, u64 v) ++{ ++ if (opt->set_sb == SET_BCH2_NO_SB_OPT) ++ return; ++ ++ if (opt->flags & OPT_SB_FIELD_SECTORS) ++ v >>= 9; ++ ++ if (opt->flags & OPT_SB_FIELD_ILOG2) ++ v = ilog2(v); ++ ++ opt->set_sb(sb, v); ++} ++ ++void bch2_opt_set_sb(struct bch_fs *c, const struct bch_option *opt, u64 v) ++{ ++ if (opt->set_sb == SET_BCH2_NO_SB_OPT) ++ return; ++ ++ mutex_lock(&c->sb_lock); ++ __bch2_opt_set_sb(c->disk_sb.sb, opt, v); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++} ++ ++/* io opts: */ ++ ++struct bch_io_opts bch2_opts_to_inode_opts(struct bch_opts src) ++{ ++ return (struct bch_io_opts) { ++#define x(_name, _bits) ._name = src._name, ++ BCH_INODE_OPTS() ++#undef x ++ }; ++} ++ ++bool bch2_opt_is_inode_opt(enum bch_opt_id id) ++{ ++ static const enum bch_opt_id inode_opt_list[] = { ++#define x(_name, _bits) Opt_##_name, ++ BCH_INODE_OPTS() ++#undef x ++ }; ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(inode_opt_list); i++) ++ if (inode_opt_list[i] == id) ++ return true; ++ ++ return false; ++} +diff --git a/fs/bcachefs/opts.h b/fs/bcachefs/opts.h +new file mode 100644 +index 000000000000..55014336c5f7 +--- /dev/null ++++ b/fs/bcachefs/opts.h +@@ -0,0 +1,564 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_OPTS_H ++#define _BCACHEFS_OPTS_H ++ ++#include ++#include ++#include ++#include ++#include "bcachefs_format.h" ++ ++struct bch_fs; ++ ++extern const char * const bch2_iops_measurements[]; ++extern const char * const bch2_error_actions[]; ++extern const char * const bch2_fsck_fix_opts[]; ++extern const char * const bch2_version_upgrade_opts[]; ++extern const char * const bch2_sb_features[]; ++extern const char * const bch2_sb_compat[]; ++extern const char * const bch2_btree_ids[]; ++extern const char * const bch2_csum_types[]; ++extern const char * const bch2_csum_opts[]; ++extern const char * const bch2_compression_types[]; ++extern const char * const bch2_compression_opts[]; ++extern const char * const bch2_str_hash_types[]; ++extern const char * const bch2_str_hash_opts[]; ++extern const char * const bch2_data_types[]; ++extern const char * const bch2_member_states[]; ++extern const char * const bch2_jset_entry_types[]; ++extern const char * const bch2_fs_usage_types[]; ++extern const char * const bch2_d_types[]; ++ ++static inline const char *bch2_d_type_str(unsigned d_type) ++{ ++ return (d_type < BCH_DT_MAX ? bch2_d_types[d_type] : NULL) ?: "(bad d_type)"; ++} ++ ++/* ++ * Mount options; we also store defaults in the superblock. ++ * ++ * Also exposed via sysfs: if an option is writeable, and it's also stored in ++ * the superblock, changing it via sysfs (currently? might change this) also ++ * updates the superblock. ++ * ++ * We store options as signed integers, where -1 means undefined. This means we ++ * can pass the mount options to bch2_fs_alloc() as a whole struct, and then only ++ * apply the options from that struct that are defined. ++ */ ++ ++/* dummy option, for options that aren't stored in the superblock */ ++u64 BCH2_NO_SB_OPT(const struct bch_sb *); ++void SET_BCH2_NO_SB_OPT(struct bch_sb *, u64); ++ ++/* When can be set: */ ++enum opt_flags { ++ OPT_FS = (1 << 0), /* Filesystem option */ ++ OPT_DEVICE = (1 << 1), /* Device option */ ++ OPT_INODE = (1 << 2), /* Inode option */ ++ OPT_FORMAT = (1 << 3), /* May be specified at format time */ ++ OPT_MOUNT = (1 << 4), /* May be specified at mount time */ ++ OPT_RUNTIME = (1 << 5), /* May be specified at runtime */ ++ OPT_HUMAN_READABLE = (1 << 6), ++ OPT_MUST_BE_POW_2 = (1 << 7), /* Must be power of 2 */ ++ OPT_SB_FIELD_SECTORS = (1 << 8),/* Superblock field is >> 9 of actual value */ ++ OPT_SB_FIELD_ILOG2 = (1 << 9), /* Superblock field is ilog2 of actual value */ ++}; ++ ++enum opt_type { ++ BCH_OPT_BOOL, ++ BCH_OPT_UINT, ++ BCH_OPT_STR, ++ BCH_OPT_FN, ++}; ++ ++struct bch_opt_fn { ++ int (*parse)(struct bch_fs *, const char *, u64 *, struct printbuf *); ++ void (*to_text)(struct printbuf *, struct bch_fs *, struct bch_sb *, u64); ++}; ++ ++/** ++ * x(name, shortopt, type, in mem type, mode, sb_opt) ++ * ++ * @name - name of mount option, sysfs attribute, and struct bch_opts ++ * member ++ * ++ * @mode - when opt may be set ++ * ++ * @sb_option - name of corresponding superblock option ++ * ++ * @type - one of OPT_BOOL, OPT_UINT, OPT_STR ++ */ ++ ++/* ++ * XXX: add fields for ++ * - default value ++ * - helptext ++ */ ++ ++#ifdef __KERNEL__ ++#define RATELIMIT_ERRORS_DEFAULT true ++#else ++#define RATELIMIT_ERRORS_DEFAULT false ++#endif ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++#define BCACHEFS_VERBOSE_DEFAULT true ++#else ++#define BCACHEFS_VERBOSE_DEFAULT false ++#endif ++ ++#define BCH_FIX_ERRORS_OPTS() \ ++ x(exit, 0) \ ++ x(yes, 1) \ ++ x(no, 2) \ ++ x(ask, 3) ++ ++enum fsck_err_opts { ++#define x(t, n) FSCK_FIX_##t, ++ BCH_FIX_ERRORS_OPTS() ++#undef x ++}; ++ ++#define BCH_OPTS() \ ++ x(block_size, u16, \ ++ OPT_FS|OPT_FORMAT| \ ++ OPT_HUMAN_READABLE|OPT_MUST_BE_POW_2|OPT_SB_FIELD_SECTORS, \ ++ OPT_UINT(512, 1U << 16), \ ++ BCH_SB_BLOCK_SIZE, 8, \ ++ "size", NULL) \ ++ x(btree_node_size, u32, \ ++ OPT_FS|OPT_FORMAT| \ ++ OPT_HUMAN_READABLE|OPT_MUST_BE_POW_2|OPT_SB_FIELD_SECTORS, \ ++ OPT_UINT(512, 1U << 20), \ ++ BCH_SB_BTREE_NODE_SIZE, 512, \ ++ "size", "Btree node size, default 256k") \ ++ x(errors, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_STR(bch2_error_actions), \ ++ BCH_SB_ERROR_ACTION, BCH_ON_ERROR_ro, \ ++ NULL, "Action to take on filesystem error") \ ++ x(metadata_replicas, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(1, BCH_REPLICAS_MAX), \ ++ BCH_SB_META_REPLICAS_WANT, 1, \ ++ "#", "Number of metadata replicas") \ ++ x(data_replicas, u8, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(1, BCH_REPLICAS_MAX), \ ++ BCH_SB_DATA_REPLICAS_WANT, 1, \ ++ "#", "Number of data replicas") \ ++ x(metadata_replicas_required, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT, \ ++ OPT_UINT(1, BCH_REPLICAS_MAX), \ ++ BCH_SB_META_REPLICAS_REQ, 1, \ ++ "#", NULL) \ ++ x(data_replicas_required, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT, \ ++ OPT_UINT(1, BCH_REPLICAS_MAX), \ ++ BCH_SB_DATA_REPLICAS_REQ, 1, \ ++ "#", NULL) \ ++ x(encoded_extent_max, u32, \ ++ OPT_FS|OPT_FORMAT| \ ++ OPT_HUMAN_READABLE|OPT_MUST_BE_POW_2|OPT_SB_FIELD_SECTORS|OPT_SB_FIELD_ILOG2,\ ++ OPT_UINT(4096, 2U << 20), \ ++ BCH_SB_ENCODED_EXTENT_MAX_BITS, 64 << 10, \ ++ "size", "Maximum size of checksummed/compressed extents")\ ++ x(metadata_checksum, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_STR(bch2_csum_opts), \ ++ BCH_SB_META_CSUM_TYPE, BCH_CSUM_OPT_crc32c, \ ++ NULL, NULL) \ ++ x(data_checksum, u8, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_STR(bch2_csum_opts), \ ++ BCH_SB_DATA_CSUM_TYPE, BCH_CSUM_OPT_crc32c, \ ++ NULL, NULL) \ ++ x(compression, u8, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_FN(bch2_opt_compression), \ ++ BCH_SB_COMPRESSION_TYPE, BCH_COMPRESSION_OPT_none, \ ++ NULL, NULL) \ ++ x(background_compression, u8, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_FN(bch2_opt_compression), \ ++ BCH_SB_BACKGROUND_COMPRESSION_TYPE,BCH_COMPRESSION_OPT_none, \ ++ NULL, NULL) \ ++ x(str_hash, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_STR(bch2_str_hash_opts), \ ++ BCH_SB_STR_HASH_TYPE, BCH_STR_HASH_OPT_siphash, \ ++ NULL, "Hash function for directory entries and xattrs")\ ++ x(metadata_target, u16, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_FN(bch2_opt_target), \ ++ BCH_SB_METADATA_TARGET, 0, \ ++ "(target)", "Device or label for metadata writes") \ ++ x(foreground_target, u16, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_FN(bch2_opt_target), \ ++ BCH_SB_FOREGROUND_TARGET, 0, \ ++ "(target)", "Device or label for foreground writes") \ ++ x(background_target, u16, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_FN(bch2_opt_target), \ ++ BCH_SB_BACKGROUND_TARGET, 0, \ ++ "(target)", "Device or label to move data to in the background")\ ++ x(promote_target, u16, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_FN(bch2_opt_target), \ ++ BCH_SB_PROMOTE_TARGET, 0, \ ++ "(target)", "Device or label to promote data to on read") \ ++ x(erasure_code, u16, \ ++ OPT_FS|OPT_INODE|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_ERASURE_CODE, false, \ ++ NULL, "Enable erasure coding (DO NOT USE YET)") \ ++ x(inodes_32bit, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_INODE_32BIT, true, \ ++ NULL, "Constrain inode numbers to 32 bits") \ ++ x(shard_inode_numbers, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_SHARD_INUMS, true, \ ++ NULL, "Shard new inode numbers by CPU id") \ ++ x(inodes_use_key_cache, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_INODES_USE_KEY_CACHE, true, \ ++ NULL, "Use the btree key cache for the inodes btree") \ ++ x(btree_node_mem_ptr_optimization, u8, \ ++ OPT_FS|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, true, \ ++ NULL, "Stash pointer to in memory btree node in btree ptr")\ ++ x(btree_write_buffer_size, u32, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_UINT(16, (1U << 20) - 1), \ ++ BCH2_NO_SB_OPT, 1U << 13, \ ++ NULL, "Number of btree write buffer entries") \ ++ x(gc_reserve_percent, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(5, 21), \ ++ BCH_SB_GC_RESERVE, 8, \ ++ "%", "Percentage of disk space to reserve for copygc")\ ++ x(gc_reserve_bytes, u64, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME| \ ++ OPT_HUMAN_READABLE|OPT_SB_FIELD_SECTORS, \ ++ OPT_UINT(0, U64_MAX), \ ++ BCH_SB_GC_RESERVE_BYTES, 0, \ ++ "%", "Amount of disk space to reserve for copygc\n" \ ++ "Takes precedence over gc_reserve_percent if set")\ ++ x(root_reserve_percent, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT, \ ++ OPT_UINT(0, 100), \ ++ BCH_SB_ROOT_RESERVE, 0, \ ++ "%", "Percentage of disk space to reserve for superuser")\ ++ x(wide_macs, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_128_BIT_MACS, false, \ ++ NULL, "Store full 128 bits of cryptographic MACs, instead of 80")\ ++ x(inline_data, u8, \ ++ OPT_FS|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, true, \ ++ NULL, "Enable inline data extents") \ ++ x(acl, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_POSIX_ACL, true, \ ++ NULL, "Enable POSIX acls") \ ++ x(usrquota, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_USRQUOTA, false, \ ++ NULL, "Enable user quotas") \ ++ x(grpquota, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_GRPQUOTA, false, \ ++ NULL, "Enable group quotas") \ ++ x(prjquota, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH_SB_PRJQUOTA, false, \ ++ NULL, "Enable project quotas") \ ++ x(degraded, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Allow mounting in degraded mode") \ ++ x(very_degraded, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Allow mounting in when data will be missing") \ ++ x(discard, u8, \ ++ OPT_FS|OPT_MOUNT|OPT_DEVICE, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, true, \ ++ NULL, "Enable discard/TRIM support") \ ++ x(verbose, u8, \ ++ OPT_FS|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, BCACHEFS_VERBOSE_DEFAULT, \ ++ NULL, "Extra debugging information during mount/recovery")\ ++ x(journal_flush_delay, u32, \ ++ OPT_FS|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(1, U32_MAX), \ ++ BCH_SB_JOURNAL_FLUSH_DELAY, 1000, \ ++ NULL, "Delay in milliseconds before automatic journal commits")\ ++ x(journal_flush_disabled, u8, \ ++ OPT_FS|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_JOURNAL_FLUSH_DISABLED,false, \ ++ NULL, "Disable journal flush on sync/fsync\n" \ ++ "If enabled, writes can be lost, but only since the\n"\ ++ "last journal write (default 1 second)") \ ++ x(journal_reclaim_delay, u32, \ ++ OPT_FS|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(0, U32_MAX), \ ++ BCH_SB_JOURNAL_RECLAIM_DELAY, 100, \ ++ NULL, "Delay in milliseconds before automatic journal reclaim")\ ++ x(move_bytes_in_flight, u32, \ ++ OPT_HUMAN_READABLE|OPT_FS|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(1024, U32_MAX), \ ++ BCH2_NO_SB_OPT, 1U << 20, \ ++ NULL, "Maximum Amount of IO to keep in flight by the move path")\ ++ x(move_ios_in_flight, u32, \ ++ OPT_FS|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_UINT(1, 1024), \ ++ BCH2_NO_SB_OPT, 32, \ ++ NULL, "Maximum number of IOs to keep in flight by the move path")\ ++ x(fsck, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Run fsck on mount") \ ++ x(fix_errors, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_FN(bch2_opt_fix_errors), \ ++ BCH2_NO_SB_OPT, FSCK_FIX_exit, \ ++ NULL, "Fix errors during fsck without asking") \ ++ x(ratelimit_errors, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, RATELIMIT_ERRORS_DEFAULT, \ ++ NULL, "Ratelimit error messages during fsck") \ ++ x(nochanges, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Super read only mode - no writes at all will be issued,\n"\ ++ "even if we have to replay the journal") \ ++ x(norecovery, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Don't replay the journal") \ ++ x(keep_journal, u8, \ ++ 0, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Don't free journal entries/keys after startup")\ ++ x(read_entire_journal, u8, \ ++ 0, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Read all journal entries, not just dirty ones")\ ++ x(read_journal_only, u8, \ ++ 0, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Only read the journal, skip the rest of recovery")\ ++ x(journal_transaction_names, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME, \ ++ OPT_BOOL(), \ ++ BCH_SB_JOURNAL_TRANSACTION_NAMES, true, \ ++ NULL, "Log transaction function names in journal") \ ++ x(noexcl, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Don't open device in exclusive mode") \ ++ x(direct_io, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, true, \ ++ NULL, "Use O_DIRECT (userspace only)") \ ++ x(sb, u64, \ ++ OPT_MOUNT, \ ++ OPT_UINT(0, S64_MAX), \ ++ BCH2_NO_SB_OPT, BCH_SB_SECTOR, \ ++ "offset", "Sector offset of superblock") \ ++ x(read_only, u8, \ ++ OPT_FS, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, NULL) \ ++ x(nostart, u8, \ ++ 0, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Don\'t start filesystem, only open devices") \ ++ x(reconstruct_alloc, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Reconstruct alloc btree") \ ++ x(version_upgrade, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_STR(bch2_version_upgrade_opts), \ ++ BCH_SB_VERSION_UPGRADE, BCH_VERSION_UPGRADE_compatible, \ ++ NULL, "Set superblock to latest version,\n" \ ++ "allowing any new features to be used") \ ++ x(buckets_nouse, u8, \ ++ 0, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Allocate the buckets_nouse bitmap") \ ++ x(project, u8, \ ++ OPT_INODE, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, NULL) \ ++ x(nocow, u8, \ ++ OPT_FS|OPT_FORMAT|OPT_MOUNT|OPT_RUNTIME|OPT_INODE, \ ++ OPT_BOOL(), \ ++ BCH_SB_NOCOW, false, \ ++ NULL, "Nocow mode: Writes will be done in place when possible.\n"\ ++ "Snapshots and reflink will still caused writes to be COW\n"\ ++ "Implicitly disables data checksumming, compression and encryption")\ ++ x(nocow_enabled, u8, \ ++ OPT_FS|OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, true, \ ++ NULL, "Enable nocow mode: enables runtime locking in\n"\ ++ "data move path needed if nocow will ever be in use\n")\ ++ x(no_data_io, u8, \ ++ OPT_MOUNT, \ ++ OPT_BOOL(), \ ++ BCH2_NO_SB_OPT, false, \ ++ NULL, "Skip submit_bio() for data reads and writes, " \ ++ "for performance testing purposes") \ ++ x(fs_size, u64, \ ++ OPT_DEVICE, \ ++ OPT_UINT(0, S64_MAX), \ ++ BCH2_NO_SB_OPT, 0, \ ++ "size", "Size of filesystem on device") \ ++ x(bucket, u32, \ ++ OPT_DEVICE, \ ++ OPT_UINT(0, S64_MAX), \ ++ BCH2_NO_SB_OPT, 0, \ ++ "size", "Size of filesystem on device") \ ++ x(durability, u8, \ ++ OPT_DEVICE, \ ++ OPT_UINT(0, BCH_REPLICAS_MAX), \ ++ BCH2_NO_SB_OPT, 1, \ ++ "n", "Data written to this device will be considered\n"\ ++ "to have already been replicated n times") ++ ++struct bch_opts { ++#define x(_name, _bits, ...) unsigned _name##_defined:1; ++ BCH_OPTS() ++#undef x ++ ++#define x(_name, _bits, ...) _bits _name; ++ BCH_OPTS() ++#undef x ++}; ++ ++static const __maybe_unused struct bch_opts bch2_opts_default = { ++#define x(_name, _bits, _mode, _type, _sb_opt, _default, ...) \ ++ ._name##_defined = true, \ ++ ._name = _default, \ ++ ++ BCH_OPTS() ++#undef x ++}; ++ ++#define opt_defined(_opts, _name) ((_opts)._name##_defined) ++ ++#define opt_get(_opts, _name) \ ++ (opt_defined(_opts, _name) ? (_opts)._name : bch2_opts_default._name) ++ ++#define opt_set(_opts, _name, _v) \ ++do { \ ++ (_opts)._name##_defined = true; \ ++ (_opts)._name = _v; \ ++} while (0) ++ ++static inline struct bch_opts bch2_opts_empty(void) ++{ ++ return (struct bch_opts) { 0 }; ++} ++ ++void bch2_opts_apply(struct bch_opts *, struct bch_opts); ++ ++enum bch_opt_id { ++#define x(_name, ...) Opt_##_name, ++ BCH_OPTS() ++#undef x ++ bch2_opts_nr ++}; ++ ++struct bch_fs; ++struct printbuf; ++ ++struct bch_option { ++ struct attribute attr; ++ u64 (*get_sb)(const struct bch_sb *); ++ void (*set_sb)(struct bch_sb *, u64); ++ enum opt_type type; ++ enum opt_flags flags; ++ u64 min, max; ++ ++ const char * const *choices; ++ ++ struct bch_opt_fn fn; ++ ++ const char *hint; ++ const char *help; ++ ++}; ++ ++extern const struct bch_option bch2_opt_table[]; ++ ++bool bch2_opt_defined_by_id(const struct bch_opts *, enum bch_opt_id); ++u64 bch2_opt_get_by_id(const struct bch_opts *, enum bch_opt_id); ++void bch2_opt_set_by_id(struct bch_opts *, enum bch_opt_id, u64); ++ ++u64 bch2_opt_from_sb(struct bch_sb *, enum bch_opt_id); ++int bch2_opts_from_sb(struct bch_opts *, struct bch_sb *); ++void __bch2_opt_set_sb(struct bch_sb *, const struct bch_option *, u64); ++void bch2_opt_set_sb(struct bch_fs *, const struct bch_option *, u64); ++ ++int bch2_opt_lookup(const char *); ++int bch2_opt_validate(const struct bch_option *, u64, struct printbuf *); ++int bch2_opt_parse(struct bch_fs *, const struct bch_option *, ++ const char *, u64 *, struct printbuf *); ++ ++#define OPT_SHOW_FULL_LIST (1 << 0) ++#define OPT_SHOW_MOUNT_STYLE (1 << 1) ++ ++void bch2_opt_to_text(struct printbuf *, struct bch_fs *, struct bch_sb *, ++ const struct bch_option *, u64, unsigned); ++ ++int bch2_opt_check_may_set(struct bch_fs *, int, u64); ++int bch2_opts_check_may_set(struct bch_fs *); ++int bch2_parse_mount_opts(struct bch_fs *, struct bch_opts *, char *); ++ ++/* inode opts: */ ++ ++struct bch_io_opts { ++#define x(_name, _bits) u##_bits _name; ++ BCH_INODE_OPTS() ++#undef x ++}; ++ ++struct bch_io_opts bch2_opts_to_inode_opts(struct bch_opts); ++bool bch2_opt_is_inode_opt(enum bch_opt_id); ++ ++#endif /* _BCACHEFS_OPTS_H */ +diff --git a/fs/bcachefs/printbuf.c b/fs/bcachefs/printbuf.c +new file mode 100644 +index 000000000000..de41f9a14492 +--- /dev/null ++++ b/fs/bcachefs/printbuf.c +@@ -0,0 +1,425 @@ ++// SPDX-License-Identifier: LGPL-2.1+ ++/* Copyright (C) 2022 Kent Overstreet */ ++ ++#include ++#include ++#include ++#include ++#include ++ ++#include "printbuf.h" ++ ++static inline unsigned printbuf_linelen(struct printbuf *buf) ++{ ++ return buf->pos - buf->last_newline; ++} ++ ++int bch2_printbuf_make_room(struct printbuf *out, unsigned extra) ++{ ++ unsigned new_size; ++ char *buf; ++ ++ if (!out->heap_allocated) ++ return 0; ++ ++ /* Reserved space for terminating nul: */ ++ extra += 1; ++ ++ if (out->pos + extra < out->size) ++ return 0; ++ ++ new_size = roundup_pow_of_two(out->size + extra); ++ ++ /* ++ * Note: output buffer must be freeable with kfree(), it's not required ++ * that the user use printbuf_exit(). ++ */ ++ buf = krealloc(out->buf, new_size, !out->atomic ? GFP_KERNEL : GFP_NOWAIT); ++ ++ if (!buf) { ++ out->allocation_failure = true; ++ return -ENOMEM; ++ } ++ ++ out->buf = buf; ++ out->size = new_size; ++ return 0; ++} ++ ++void bch2_prt_vprintf(struct printbuf *out, const char *fmt, va_list args) ++{ ++ int len; ++ ++ do { ++ va_list args2; ++ ++ va_copy(args2, args); ++ len = vsnprintf(out->buf + out->pos, printbuf_remaining(out), fmt, args2); ++ } while (len + 1 >= printbuf_remaining(out) && ++ !bch2_printbuf_make_room(out, len + 1)); ++ ++ len = min_t(size_t, len, ++ printbuf_remaining(out) ? printbuf_remaining(out) - 1 : 0); ++ out->pos += len; ++} ++ ++void bch2_prt_printf(struct printbuf *out, const char *fmt, ...) ++{ ++ va_list args; ++ int len; ++ ++ do { ++ va_start(args, fmt); ++ len = vsnprintf(out->buf + out->pos, printbuf_remaining(out), fmt, args); ++ va_end(args); ++ } while (len + 1 >= printbuf_remaining(out) && ++ !bch2_printbuf_make_room(out, len + 1)); ++ ++ len = min_t(size_t, len, ++ printbuf_remaining(out) ? printbuf_remaining(out) - 1 : 0); ++ out->pos += len; ++} ++ ++/** ++ * bch2_printbuf_str() - returns printbuf's buf as a C string, guaranteed to be ++ * null terminated ++ * @buf: printbuf to terminate ++ * Returns: Printbuf contents, as a nul terminated C string ++ */ ++const char *bch2_printbuf_str(const struct printbuf *buf) ++{ ++ /* ++ * If we've written to a printbuf then it's guaranteed to be a null ++ * terminated string - but if we haven't, then we might not have ++ * allocated a buffer at all: ++ */ ++ return buf->pos ++ ? buf->buf ++ : ""; ++} ++ ++/** ++ * bch2_printbuf_exit() - exit a printbuf, freeing memory it owns and poisoning it ++ * against accidental use. ++ * @buf: printbuf to exit ++ */ ++void bch2_printbuf_exit(struct printbuf *buf) ++{ ++ if (buf->heap_allocated) { ++ kfree(buf->buf); ++ buf->buf = ERR_PTR(-EINTR); /* poison value */ ++ } ++} ++ ++void bch2_printbuf_tabstops_reset(struct printbuf *buf) ++{ ++ buf->nr_tabstops = 0; ++} ++ ++void bch2_printbuf_tabstop_pop(struct printbuf *buf) ++{ ++ if (buf->nr_tabstops) ++ --buf->nr_tabstops; ++} ++ ++/* ++ * bch2_printbuf_tabstop_set() - add a tabstop, n spaces from the previous tabstop ++ * ++ * @buf: printbuf to control ++ * @spaces: number of spaces from previous tabpstop ++ * ++ * In the future this function may allocate memory if setting more than ++ * PRINTBUF_INLINE_TABSTOPS or setting tabstops more than 255 spaces from start ++ * of line. ++ */ ++int bch2_printbuf_tabstop_push(struct printbuf *buf, unsigned spaces) ++{ ++ unsigned prev_tabstop = buf->nr_tabstops ++ ? buf->_tabstops[buf->nr_tabstops - 1] ++ : 0; ++ ++ if (WARN_ON(buf->nr_tabstops >= ARRAY_SIZE(buf->_tabstops))) ++ return -EINVAL; ++ ++ buf->_tabstops[buf->nr_tabstops++] = prev_tabstop + spaces; ++ buf->has_indent_or_tabstops = true; ++ return 0; ++} ++ ++/** ++ * bch2_printbuf_indent_add() - add to the current indent level ++ * ++ * @buf: printbuf to control ++ * @spaces: number of spaces to add to the current indent level ++ * ++ * Subsequent lines, and the current line if the output position is at the start ++ * of the current line, will be indented by @spaces more spaces. ++ */ ++void bch2_printbuf_indent_add(struct printbuf *buf, unsigned spaces) ++{ ++ if (WARN_ON_ONCE(buf->indent + spaces < buf->indent)) ++ spaces = 0; ++ ++ buf->indent += spaces; ++ prt_chars(buf, ' ', spaces); ++ ++ buf->has_indent_or_tabstops = true; ++} ++ ++/** ++ * bch2_printbuf_indent_sub() - subtract from the current indent level ++ * ++ * @buf: printbuf to control ++ * @spaces: number of spaces to subtract from the current indent level ++ * ++ * Subsequent lines, and the current line if the output position is at the start ++ * of the current line, will be indented by @spaces less spaces. ++ */ ++void bch2_printbuf_indent_sub(struct printbuf *buf, unsigned spaces) ++{ ++ if (WARN_ON_ONCE(spaces > buf->indent)) ++ spaces = buf->indent; ++ ++ if (buf->last_newline + buf->indent == buf->pos) { ++ buf->pos -= spaces; ++ printbuf_nul_terminate(buf); ++ } ++ buf->indent -= spaces; ++ ++ if (!buf->indent && !buf->nr_tabstops) ++ buf->has_indent_or_tabstops = false; ++} ++ ++void bch2_prt_newline(struct printbuf *buf) ++{ ++ unsigned i; ++ ++ bch2_printbuf_make_room(buf, 1 + buf->indent); ++ ++ __prt_char(buf, '\n'); ++ ++ buf->last_newline = buf->pos; ++ ++ for (i = 0; i < buf->indent; i++) ++ __prt_char(buf, ' '); ++ ++ printbuf_nul_terminate(buf); ++ ++ buf->last_field = buf->pos; ++ buf->cur_tabstop = 0; ++} ++ ++/* ++ * Returns spaces from start of line, if set, or 0 if unset: ++ */ ++static inline unsigned cur_tabstop(struct printbuf *buf) ++{ ++ return buf->cur_tabstop < buf->nr_tabstops ++ ? buf->_tabstops[buf->cur_tabstop] ++ : 0; ++} ++ ++static void __prt_tab(struct printbuf *out) ++{ ++ int spaces = max_t(int, 0, cur_tabstop(out) - printbuf_linelen(out)); ++ ++ prt_chars(out, ' ', spaces); ++ ++ out->last_field = out->pos; ++ out->cur_tabstop++; ++} ++ ++/** ++ * bch2_prt_tab() - Advance printbuf to the next tabstop ++ * @out: printbuf to control ++ * ++ * Advance output to the next tabstop by printing spaces. ++ */ ++void bch2_prt_tab(struct printbuf *out) ++{ ++ if (WARN_ON(!cur_tabstop(out))) ++ return; ++ ++ __prt_tab(out); ++} ++ ++static void __prt_tab_rjust(struct printbuf *buf) ++{ ++ unsigned move = buf->pos - buf->last_field; ++ int pad = (int) cur_tabstop(buf) - (int) printbuf_linelen(buf); ++ ++ if (pad > 0) { ++ bch2_printbuf_make_room(buf, pad); ++ ++ if (buf->last_field + pad < buf->size) ++ memmove(buf->buf + buf->last_field + pad, ++ buf->buf + buf->last_field, ++ min(move, buf->size - 1 - buf->last_field - pad)); ++ ++ if (buf->last_field < buf->size) ++ memset(buf->buf + buf->last_field, ' ', ++ min((unsigned) pad, buf->size - buf->last_field)); ++ ++ buf->pos += pad; ++ printbuf_nul_terminate(buf); ++ } ++ ++ buf->last_field = buf->pos; ++ buf->cur_tabstop++; ++} ++ ++/** ++ * bch2_prt_tab_rjust - Advance printbuf to the next tabstop, right justifying ++ * previous output ++ * ++ * @buf: printbuf to control ++ * ++ * Advance output to the next tabstop by inserting spaces immediately after the ++ * previous tabstop, right justifying previously outputted text. ++ */ ++void bch2_prt_tab_rjust(struct printbuf *buf) ++{ ++ if (WARN_ON(!cur_tabstop(buf))) ++ return; ++ ++ __prt_tab_rjust(buf); ++} ++ ++/** ++ * bch2_prt_bytes_indented() - Print an array of chars, handling embedded control characters ++ * ++ * @out: output printbuf ++ * @str: string to print ++ * @count: number of bytes to print ++ * ++ * The following contol characters are handled as so: ++ * \n: prt_newline newline that obeys current indent level ++ * \t: prt_tab advance to next tabstop ++ * \r: prt_tab_rjust advance to next tabstop, with right justification ++ */ ++void bch2_prt_bytes_indented(struct printbuf *out, const char *str, unsigned count) ++{ ++ const char *unprinted_start = str; ++ const char *end = str + count; ++ ++ if (!out->has_indent_or_tabstops || out->suppress_indent_tabstop_handling) { ++ prt_bytes(out, str, count); ++ return; ++ } ++ ++ while (str != end) { ++ switch (*str) { ++ case '\n': ++ prt_bytes(out, unprinted_start, str - unprinted_start); ++ unprinted_start = str + 1; ++ bch2_prt_newline(out); ++ break; ++ case '\t': ++ if (likely(cur_tabstop(out))) { ++ prt_bytes(out, unprinted_start, str - unprinted_start); ++ unprinted_start = str + 1; ++ __prt_tab(out); ++ } ++ break; ++ case '\r': ++ if (likely(cur_tabstop(out))) { ++ prt_bytes(out, unprinted_start, str - unprinted_start); ++ unprinted_start = str + 1; ++ __prt_tab_rjust(out); ++ } ++ break; ++ } ++ ++ str++; ++ } ++ ++ prt_bytes(out, unprinted_start, str - unprinted_start); ++} ++ ++/** ++ * bch2_prt_human_readable_u64() - Print out a u64 in human readable units ++ * @out: output printbuf ++ * @v: integer to print ++ * ++ * Units of 2^10 (default) or 10^3 are controlled via @out->si_units ++ */ ++void bch2_prt_human_readable_u64(struct printbuf *out, u64 v) ++{ ++ bch2_printbuf_make_room(out, 10); ++ out->pos += string_get_size(v, 1, !out->si_units, ++ out->buf + out->pos, ++ printbuf_remaining_size(out)); ++} ++ ++/** ++ * bch2_prt_human_readable_s64() - Print out a s64 in human readable units ++ * @out: output printbuf ++ * @v: integer to print ++ * ++ * Units of 2^10 (default) or 10^3 are controlled via @out->si_units ++ */ ++void bch2_prt_human_readable_s64(struct printbuf *out, s64 v) ++{ ++ if (v < 0) ++ prt_char(out, '-'); ++ bch2_prt_human_readable_u64(out, abs(v)); ++} ++ ++/** ++ * bch2_prt_units_u64() - Print out a u64 according to printbuf unit options ++ * @out: output printbuf ++ * @v: integer to print ++ * ++ * Units are either raw (default), or human reabable units (controlled via ++ * @buf->human_readable_units) ++ */ ++void bch2_prt_units_u64(struct printbuf *out, u64 v) ++{ ++ if (out->human_readable_units) ++ bch2_prt_human_readable_u64(out, v); ++ else ++ bch2_prt_printf(out, "%llu", v); ++} ++ ++/** ++ * bch2_prt_units_s64() - Print out a s64 according to printbuf unit options ++ * @out: output printbuf ++ * @v: integer to print ++ * ++ * Units are either raw (default), or human reabable units (controlled via ++ * @buf->human_readable_units) ++ */ ++void bch2_prt_units_s64(struct printbuf *out, s64 v) ++{ ++ if (v < 0) ++ prt_char(out, '-'); ++ bch2_prt_units_u64(out, abs(v)); ++} ++ ++void bch2_prt_string_option(struct printbuf *out, ++ const char * const list[], ++ size_t selected) ++{ ++ size_t i; ++ ++ for (i = 0; list[i]; i++) ++ bch2_prt_printf(out, i == selected ? "[%s] " : "%s ", list[i]); ++} ++ ++void bch2_prt_bitflags(struct printbuf *out, ++ const char * const list[], u64 flags) ++{ ++ unsigned bit, nr = 0; ++ bool first = true; ++ ++ while (list[nr]) ++ nr++; ++ ++ while (flags && (bit = __ffs(flags)) < nr) { ++ if (!first) ++ bch2_prt_printf(out, ","); ++ first = false; ++ bch2_prt_printf(out, "%s", list[bit]); ++ flags ^= 1 << bit; ++ } ++} +diff --git a/fs/bcachefs/printbuf.h b/fs/bcachefs/printbuf.h +new file mode 100644 +index 000000000000..2191423d9f22 +--- /dev/null ++++ b/fs/bcachefs/printbuf.h +@@ -0,0 +1,284 @@ ++/* SPDX-License-Identifier: LGPL-2.1+ */ ++/* Copyright (C) 2022 Kent Overstreet */ ++ ++#ifndef _BCACHEFS_PRINTBUF_H ++#define _BCACHEFS_PRINTBUF_H ++ ++/* ++ * Printbufs: Simple strings for printing to, with optional heap allocation ++ * ++ * This code has provisions for use in userspace, to aid in making other code ++ * portable between kernelspace and userspace. ++ * ++ * Basic example: ++ * struct printbuf buf = PRINTBUF; ++ * ++ * prt_printf(&buf, "foo="); ++ * foo_to_text(&buf, foo); ++ * printk("%s", buf.buf); ++ * printbuf_exit(&buf); ++ * ++ * Or ++ * struct printbuf buf = PRINTBUF_EXTERN(char_buf, char_buf_size) ++ * ++ * We can now write pretty printers instead of writing code that dumps ++ * everything to the kernel log buffer, and then those pretty-printers can be ++ * used by other code that outputs to kernel log, sysfs, debugfs, etc. ++ * ++ * Memory allocation: Outputing to a printbuf may allocate memory. This ++ * allocation is done with GFP_KERNEL, by default: use the newer ++ * memalloc_*_(save|restore) functions as needed. ++ * ++ * Since no equivalent yet exists for GFP_ATOMIC/GFP_NOWAIT, memory allocations ++ * will be done with GFP_NOWAIT if printbuf->atomic is nonzero. ++ * ++ * It's allowed to grab the output buffer and free it later with kfree() instead ++ * of using printbuf_exit(), if the user just needs a heap allocated string at ++ * the end. ++ * ++ * Memory allocation failures: We don't return errors directly, because on ++ * memory allocation failure we usually don't want to bail out and unwind - we ++ * want to print what we've got, on a best-effort basis. But code that does want ++ * to return -ENOMEM may check printbuf.allocation_failure. ++ * ++ * Indenting, tabstops: ++ * ++ * To aid is writing multi-line pretty printers spread across multiple ++ * functions, printbufs track the current indent level. ++ * ++ * printbuf_indent_push() and printbuf_indent_pop() increase and decrease the current indent ++ * level, respectively. ++ * ++ * To use tabstops, set printbuf->tabstops[]; they are in units of spaces, from ++ * start of line. Once set, prt_tab() will output spaces up to the next tabstop. ++ * prt_tab_rjust() will also advance the current line of text up to the next ++ * tabstop, but it does so by shifting text since the previous tabstop up to the ++ * next tabstop - right justifying it. ++ * ++ * Make sure you use prt_newline() instead of \n in the format string for indent ++ * level and tabstops to work corretly. ++ * ++ * Output units: printbuf->units exists to tell pretty-printers how to output ++ * numbers: a raw value (e.g. directly from a superblock field), as bytes, or as ++ * human readable bytes. prt_units() obeys it. ++ */ ++ ++#include ++#include ++ ++enum printbuf_si { ++ PRINTBUF_UNITS_2, /* use binary powers of 2^10 */ ++ PRINTBUF_UNITS_10, /* use powers of 10^3 (standard SI) */ ++}; ++ ++#define PRINTBUF_INLINE_TABSTOPS 6 ++ ++struct printbuf { ++ char *buf; ++ unsigned size; ++ unsigned pos; ++ unsigned last_newline; ++ unsigned last_field; ++ unsigned indent; ++ /* ++ * If nonzero, allocations will be done with GFP_ATOMIC: ++ */ ++ u8 atomic; ++ bool allocation_failure:1; ++ bool heap_allocated:1; ++ enum printbuf_si si_units:1; ++ bool human_readable_units:1; ++ bool has_indent_or_tabstops:1; ++ bool suppress_indent_tabstop_handling:1; ++ u8 nr_tabstops; ++ ++ /* ++ * Do not modify directly: use printbuf_tabstop_add(), ++ * printbuf_tabstop_get() ++ */ ++ u8 cur_tabstop; ++ u8 _tabstops[PRINTBUF_INLINE_TABSTOPS]; ++}; ++ ++int bch2_printbuf_make_room(struct printbuf *, unsigned); ++__printf(2, 3) void bch2_prt_printf(struct printbuf *out, const char *fmt, ...); ++__printf(2, 0) void bch2_prt_vprintf(struct printbuf *out, const char *fmt, va_list); ++const char *bch2_printbuf_str(const struct printbuf *); ++void bch2_printbuf_exit(struct printbuf *); ++ ++void bch2_printbuf_tabstops_reset(struct printbuf *); ++void bch2_printbuf_tabstop_pop(struct printbuf *); ++int bch2_printbuf_tabstop_push(struct printbuf *, unsigned); ++ ++void bch2_printbuf_indent_add(struct printbuf *, unsigned); ++void bch2_printbuf_indent_sub(struct printbuf *, unsigned); ++ ++void bch2_prt_newline(struct printbuf *); ++void bch2_prt_tab(struct printbuf *); ++void bch2_prt_tab_rjust(struct printbuf *); ++ ++void bch2_prt_bytes_indented(struct printbuf *, const char *, unsigned); ++void bch2_prt_human_readable_u64(struct printbuf *, u64); ++void bch2_prt_human_readable_s64(struct printbuf *, s64); ++void bch2_prt_units_u64(struct printbuf *, u64); ++void bch2_prt_units_s64(struct printbuf *, s64); ++void bch2_prt_string_option(struct printbuf *, const char * const[], size_t); ++void bch2_prt_bitflags(struct printbuf *, const char * const[], u64); ++ ++/* Initializer for a heap allocated printbuf: */ ++#define PRINTBUF ((struct printbuf) { .heap_allocated = true }) ++ ++/* Initializer a printbuf that points to an external buffer: */ ++#define PRINTBUF_EXTERN(_buf, _size) \ ++((struct printbuf) { \ ++ .buf = _buf, \ ++ .size = _size, \ ++}) ++ ++/* ++ * Returns size remaining of output buffer: ++ */ ++static inline unsigned printbuf_remaining_size(struct printbuf *out) ++{ ++ return out->pos < out->size ? out->size - out->pos : 0; ++} ++ ++/* ++ * Returns number of characters we can print to the output buffer - i.e. ++ * excluding the terminating nul: ++ */ ++static inline unsigned printbuf_remaining(struct printbuf *out) ++{ ++ return out->pos < out->size ? out->size - out->pos - 1 : 0; ++} ++ ++static inline unsigned printbuf_written(struct printbuf *out) ++{ ++ return out->size ? min(out->pos, out->size - 1) : 0; ++} ++ ++/* ++ * Returns true if output was truncated: ++ */ ++static inline bool printbuf_overflowed(struct printbuf *out) ++{ ++ return out->pos >= out->size; ++} ++ ++static inline void printbuf_nul_terminate(struct printbuf *out) ++{ ++ bch2_printbuf_make_room(out, 1); ++ ++ if (out->pos < out->size) ++ out->buf[out->pos] = 0; ++ else if (out->size) ++ out->buf[out->size - 1] = 0; ++} ++ ++/* Doesn't call bch2_printbuf_make_room(), doesn't nul terminate: */ ++static inline void __prt_char_reserved(struct printbuf *out, char c) ++{ ++ if (printbuf_remaining(out)) ++ out->buf[out->pos] = c; ++ out->pos++; ++} ++ ++/* Doesn't nul terminate: */ ++static inline void __prt_char(struct printbuf *out, char c) ++{ ++ bch2_printbuf_make_room(out, 1); ++ __prt_char_reserved(out, c); ++} ++ ++static inline void prt_char(struct printbuf *out, char c) ++{ ++ __prt_char(out, c); ++ printbuf_nul_terminate(out); ++} ++ ++static inline void __prt_chars_reserved(struct printbuf *out, char c, unsigned n) ++{ ++ unsigned i, can_print = min(n, printbuf_remaining(out)); ++ ++ for (i = 0; i < can_print; i++) ++ out->buf[out->pos++] = c; ++ out->pos += n - can_print; ++} ++ ++static inline void prt_chars(struct printbuf *out, char c, unsigned n) ++{ ++ bch2_printbuf_make_room(out, n); ++ __prt_chars_reserved(out, c, n); ++ printbuf_nul_terminate(out); ++} ++ ++static inline void prt_bytes(struct printbuf *out, const void *b, unsigned n) ++{ ++ unsigned i, can_print; ++ ++ bch2_printbuf_make_room(out, n); ++ ++ can_print = min(n, printbuf_remaining(out)); ++ ++ for (i = 0; i < can_print; i++) ++ out->buf[out->pos++] = ((char *) b)[i]; ++ out->pos += n - can_print; ++ ++ printbuf_nul_terminate(out); ++} ++ ++static inline void prt_str(struct printbuf *out, const char *str) ++{ ++ prt_bytes(out, str, strlen(str)); ++} ++ ++static inline void prt_str_indented(struct printbuf *out, const char *str) ++{ ++ bch2_prt_bytes_indented(out, str, strlen(str)); ++} ++ ++static inline void prt_hex_byte(struct printbuf *out, u8 byte) ++{ ++ bch2_printbuf_make_room(out, 2); ++ __prt_char_reserved(out, hex_asc_hi(byte)); ++ __prt_char_reserved(out, hex_asc_lo(byte)); ++ printbuf_nul_terminate(out); ++} ++ ++static inline void prt_hex_byte_upper(struct printbuf *out, u8 byte) ++{ ++ bch2_printbuf_make_room(out, 2); ++ __prt_char_reserved(out, hex_asc_upper_hi(byte)); ++ __prt_char_reserved(out, hex_asc_upper_lo(byte)); ++ printbuf_nul_terminate(out); ++} ++ ++/** ++ * printbuf_reset - re-use a printbuf without freeing and re-initializing it: ++ */ ++static inline void printbuf_reset(struct printbuf *buf) ++{ ++ buf->pos = 0; ++ buf->allocation_failure = 0; ++ buf->indent = 0; ++ buf->nr_tabstops = 0; ++ buf->cur_tabstop = 0; ++} ++ ++/** ++ * printbuf_atomic_inc - mark as entering an atomic section ++ */ ++static inline void printbuf_atomic_inc(struct printbuf *buf) ++{ ++ buf->atomic++; ++} ++ ++/** ++ * printbuf_atomic_inc - mark as leaving an atomic section ++ */ ++static inline void printbuf_atomic_dec(struct printbuf *buf) ++{ ++ buf->atomic--; ++} ++ ++#endif /* _BCACHEFS_PRINTBUF_H */ +diff --git a/fs/bcachefs/quota.c b/fs/bcachefs/quota.c +new file mode 100644 +index 000000000000..cb68ae44d597 +--- /dev/null ++++ b/fs/bcachefs/quota.c +@@ -0,0 +1,978 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "btree_update.h" ++#include "errcode.h" ++#include "error.h" ++#include "inode.h" ++#include "quota.h" ++#include "snapshot.h" ++#include "super-io.h" ++ ++static const char * const bch2_quota_types[] = { ++ "user", ++ "group", ++ "project", ++}; ++ ++static const char * const bch2_quota_counters[] = { ++ "space", ++ "inodes", ++}; ++ ++static int bch2_sb_quota_validate(struct bch_sb *sb, struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_quota *q = field_to_type(f, quota); ++ ++ if (vstruct_bytes(&q->field) < sizeof(*q)) { ++ prt_printf(err, "wrong size (got %zu should be %zu)", ++ vstruct_bytes(&q->field), sizeof(*q)); ++ return -BCH_ERR_invalid_sb_quota; ++ } ++ ++ return 0; ++} ++ ++static void bch2_sb_quota_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_quota *q = field_to_type(f, quota); ++ unsigned qtyp, counter; ++ ++ for (qtyp = 0; qtyp < ARRAY_SIZE(q->q); qtyp++) { ++ prt_printf(out, "%s: flags %llx", ++ bch2_quota_types[qtyp], ++ le64_to_cpu(q->q[qtyp].flags)); ++ ++ for (counter = 0; counter < Q_COUNTERS; counter++) ++ prt_printf(out, " %s timelimit %u warnlimit %u", ++ bch2_quota_counters[counter], ++ le32_to_cpu(q->q[qtyp].c[counter].timelimit), ++ le32_to_cpu(q->q[qtyp].c[counter].warnlimit)); ++ ++ prt_newline(out); ++ } ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_quota = { ++ .validate = bch2_sb_quota_validate, ++ .to_text = bch2_sb_quota_to_text, ++}; ++ ++int bch2_quota_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ if (k.k->p.inode >= QTYP_NR) { ++ prt_printf(err, "invalid quota type (%llu >= %u)", ++ k.k->p.inode, QTYP_NR); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_quota_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_quota dq = bkey_s_c_to_quota(k); ++ unsigned i; ++ ++ for (i = 0; i < Q_COUNTERS; i++) ++ prt_printf(out, "%s hardlimit %llu softlimit %llu", ++ bch2_quota_counters[i], ++ le64_to_cpu(dq.v->c[i].hardlimit), ++ le64_to_cpu(dq.v->c[i].softlimit)); ++} ++ ++#ifdef CONFIG_BCACHEFS_QUOTA ++ ++#include ++#include ++#include ++ ++static void qc_info_to_text(struct printbuf *out, struct qc_info *i) ++{ ++ printbuf_tabstops_reset(out); ++ printbuf_tabstop_push(out, 20); ++ ++ prt_str(out, "i_fieldmask"); ++ prt_tab(out); ++ prt_printf(out, "%x", i->i_fieldmask); ++ prt_newline(out); ++ ++ prt_str(out, "i_flags"); ++ prt_tab(out); ++ prt_printf(out, "%u", i->i_flags); ++ prt_newline(out); ++ ++ prt_str(out, "i_spc_timelimit"); ++ prt_tab(out); ++ prt_printf(out, "%u", i->i_spc_timelimit); ++ prt_newline(out); ++ ++ prt_str(out, "i_ino_timelimit"); ++ prt_tab(out); ++ prt_printf(out, "%u", i->i_ino_timelimit); ++ prt_newline(out); ++ ++ prt_str(out, "i_rt_spc_timelimit"); ++ prt_tab(out); ++ prt_printf(out, "%u", i->i_rt_spc_timelimit); ++ prt_newline(out); ++ ++ prt_str(out, "i_spc_warnlimit"); ++ prt_tab(out); ++ prt_printf(out, "%u", i->i_spc_warnlimit); ++ prt_newline(out); ++ ++ prt_str(out, "i_ino_warnlimit"); ++ prt_tab(out); ++ prt_printf(out, "%u", i->i_ino_warnlimit); ++ prt_newline(out); ++ ++ prt_str(out, "i_rt_spc_warnlimit"); ++ prt_tab(out); ++ prt_printf(out, "%u", i->i_rt_spc_warnlimit); ++ prt_newline(out); ++} ++ ++static void qc_dqblk_to_text(struct printbuf *out, struct qc_dqblk *q) ++{ ++ printbuf_tabstops_reset(out); ++ printbuf_tabstop_push(out, 20); ++ ++ prt_str(out, "d_fieldmask"); ++ prt_tab(out); ++ prt_printf(out, "%x", q->d_fieldmask); ++ prt_newline(out); ++ ++ prt_str(out, "d_spc_hardlimit"); ++ prt_tab(out); ++ prt_printf(out, "%llu", q->d_spc_hardlimit); ++ prt_newline(out); ++ ++ prt_str(out, "d_spc_softlimit"); ++ prt_tab(out); ++ prt_printf(out, "%llu", q->d_spc_softlimit); ++ prt_newline(out); ++ ++ prt_str(out, "d_ino_hardlimit"); ++ prt_tab(out); ++ prt_printf(out, "%llu", q->d_ino_hardlimit); ++ prt_newline(out); ++ ++ prt_str(out, "d_ino_softlimit"); ++ prt_tab(out); ++ prt_printf(out, "%llu", q->d_ino_softlimit); ++ prt_newline(out); ++ ++ prt_str(out, "d_space"); ++ prt_tab(out); ++ prt_printf(out, "%llu", q->d_space); ++ prt_newline(out); ++ ++ prt_str(out, "d_ino_count"); ++ prt_tab(out); ++ prt_printf(out, "%llu", q->d_ino_count); ++ prt_newline(out); ++ ++ prt_str(out, "d_ino_timer"); ++ prt_tab(out); ++ prt_printf(out, "%llu", q->d_ino_timer); ++ prt_newline(out); ++ ++ prt_str(out, "d_spc_timer"); ++ prt_tab(out); ++ prt_printf(out, "%llu", q->d_spc_timer); ++ prt_newline(out); ++ ++ prt_str(out, "d_ino_warns"); ++ prt_tab(out); ++ prt_printf(out, "%i", q->d_ino_warns); ++ prt_newline(out); ++ ++ prt_str(out, "d_spc_warns"); ++ prt_tab(out); ++ prt_printf(out, "%i", q->d_spc_warns); ++ prt_newline(out); ++} ++ ++static inline unsigned __next_qtype(unsigned i, unsigned qtypes) ++{ ++ qtypes >>= i; ++ return qtypes ? i + __ffs(qtypes) : QTYP_NR; ++} ++ ++#define for_each_set_qtype(_c, _i, _q, _qtypes) \ ++ for (_i = 0; \ ++ (_i = __next_qtype(_i, _qtypes), \ ++ _q = &(_c)->quotas[_i], \ ++ _i < QTYP_NR); \ ++ _i++) ++ ++static bool ignore_hardlimit(struct bch_memquota_type *q) ++{ ++ if (capable(CAP_SYS_RESOURCE)) ++ return true; ++#if 0 ++ struct mem_dqinfo *info = &sb_dqopt(dquot->dq_sb)->info[dquot->dq_id.type]; ++ ++ return capable(CAP_SYS_RESOURCE) && ++ (info->dqi_format->qf_fmt_id != QFMT_VFS_OLD || ++ !(info->dqi_flags & DQF_ROOT_SQUASH)); ++#endif ++ return false; ++} ++ ++enum quota_msg { ++ SOFTWARN, /* Softlimit reached */ ++ SOFTLONGWARN, /* Grace time expired */ ++ HARDWARN, /* Hardlimit reached */ ++ ++ HARDBELOW, /* Usage got below inode hardlimit */ ++ SOFTBELOW, /* Usage got below inode softlimit */ ++}; ++ ++static int quota_nl[][Q_COUNTERS] = { ++ [HARDWARN][Q_SPC] = QUOTA_NL_BHARDWARN, ++ [SOFTLONGWARN][Q_SPC] = QUOTA_NL_BSOFTLONGWARN, ++ [SOFTWARN][Q_SPC] = QUOTA_NL_BSOFTWARN, ++ [HARDBELOW][Q_SPC] = QUOTA_NL_BHARDBELOW, ++ [SOFTBELOW][Q_SPC] = QUOTA_NL_BSOFTBELOW, ++ ++ [HARDWARN][Q_INO] = QUOTA_NL_IHARDWARN, ++ [SOFTLONGWARN][Q_INO] = QUOTA_NL_ISOFTLONGWARN, ++ [SOFTWARN][Q_INO] = QUOTA_NL_ISOFTWARN, ++ [HARDBELOW][Q_INO] = QUOTA_NL_IHARDBELOW, ++ [SOFTBELOW][Q_INO] = QUOTA_NL_ISOFTBELOW, ++}; ++ ++struct quota_msgs { ++ u8 nr; ++ struct { ++ u8 qtype; ++ u8 msg; ++ } m[QTYP_NR * Q_COUNTERS]; ++}; ++ ++static void prepare_msg(unsigned qtype, ++ enum quota_counters counter, ++ struct quota_msgs *msgs, ++ enum quota_msg msg_type) ++{ ++ BUG_ON(msgs->nr >= ARRAY_SIZE(msgs->m)); ++ ++ msgs->m[msgs->nr].qtype = qtype; ++ msgs->m[msgs->nr].msg = quota_nl[msg_type][counter]; ++ msgs->nr++; ++} ++ ++static void prepare_warning(struct memquota_counter *qc, ++ unsigned qtype, ++ enum quota_counters counter, ++ struct quota_msgs *msgs, ++ enum quota_msg msg_type) ++{ ++ if (qc->warning_issued & (1 << msg_type)) ++ return; ++ ++ prepare_msg(qtype, counter, msgs, msg_type); ++} ++ ++static void flush_warnings(struct bch_qid qid, ++ struct super_block *sb, ++ struct quota_msgs *msgs) ++{ ++ unsigned i; ++ ++ for (i = 0; i < msgs->nr; i++) ++ quota_send_warning(make_kqid(&init_user_ns, msgs->m[i].qtype, qid.q[i]), ++ sb->s_dev, msgs->m[i].msg); ++} ++ ++static int bch2_quota_check_limit(struct bch_fs *c, ++ unsigned qtype, ++ struct bch_memquota *mq, ++ struct quota_msgs *msgs, ++ enum quota_counters counter, ++ s64 v, ++ enum quota_acct_mode mode) ++{ ++ struct bch_memquota_type *q = &c->quotas[qtype]; ++ struct memquota_counter *qc = &mq->c[counter]; ++ u64 n = qc->v + v; ++ ++ BUG_ON((s64) n < 0); ++ ++ if (mode == KEY_TYPE_QUOTA_NOCHECK) ++ return 0; ++ ++ if (v <= 0) { ++ if (n < qc->hardlimit && ++ (qc->warning_issued & (1 << HARDWARN))) { ++ qc->warning_issued &= ~(1 << HARDWARN); ++ prepare_msg(qtype, counter, msgs, HARDBELOW); ++ } ++ ++ if (n < qc->softlimit && ++ (qc->warning_issued & (1 << SOFTWARN))) { ++ qc->warning_issued &= ~(1 << SOFTWARN); ++ prepare_msg(qtype, counter, msgs, SOFTBELOW); ++ } ++ ++ qc->warning_issued = 0; ++ return 0; ++ } ++ ++ if (qc->hardlimit && ++ qc->hardlimit < n && ++ !ignore_hardlimit(q)) { ++ prepare_warning(qc, qtype, counter, msgs, HARDWARN); ++ return -EDQUOT; ++ } ++ ++ if (qc->softlimit && ++ qc->softlimit < n) { ++ if (qc->timer == 0) { ++ qc->timer = ktime_get_real_seconds() + q->limits[counter].timelimit; ++ prepare_warning(qc, qtype, counter, msgs, SOFTWARN); ++ } else if (ktime_get_real_seconds() >= qc->timer && ++ !ignore_hardlimit(q)) { ++ prepare_warning(qc, qtype, counter, msgs, SOFTLONGWARN); ++ return -EDQUOT; ++ } ++ } ++ ++ return 0; ++} ++ ++int bch2_quota_acct(struct bch_fs *c, struct bch_qid qid, ++ enum quota_counters counter, s64 v, ++ enum quota_acct_mode mode) ++{ ++ unsigned qtypes = enabled_qtypes(c); ++ struct bch_memquota_type *q; ++ struct bch_memquota *mq[QTYP_NR]; ++ struct quota_msgs msgs; ++ unsigned i; ++ int ret = 0; ++ ++ memset(&msgs, 0, sizeof(msgs)); ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ mq[i] = genradix_ptr_alloc(&q->table, qid.q[i], GFP_KERNEL); ++ if (!mq[i]) ++ return -ENOMEM; ++ } ++ ++ for_each_set_qtype(c, i, q, qtypes) ++ mutex_lock_nested(&q->lock, i); ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ ret = bch2_quota_check_limit(c, i, mq[i], &msgs, counter, v, mode); ++ if (ret) ++ goto err; ++ } ++ ++ for_each_set_qtype(c, i, q, qtypes) ++ mq[i]->c[counter].v += v; ++err: ++ for_each_set_qtype(c, i, q, qtypes) ++ mutex_unlock(&q->lock); ++ ++ flush_warnings(qid, c->vfs_sb, &msgs); ++ ++ return ret; ++} ++ ++static void __bch2_quota_transfer(struct bch_memquota *src_q, ++ struct bch_memquota *dst_q, ++ enum quota_counters counter, s64 v) ++{ ++ BUG_ON(v > src_q->c[counter].v); ++ BUG_ON(v + dst_q->c[counter].v < v); ++ ++ src_q->c[counter].v -= v; ++ dst_q->c[counter].v += v; ++} ++ ++int bch2_quota_transfer(struct bch_fs *c, unsigned qtypes, ++ struct bch_qid dst, ++ struct bch_qid src, u64 space, ++ enum quota_acct_mode mode) ++{ ++ struct bch_memquota_type *q; ++ struct bch_memquota *src_q[3], *dst_q[3]; ++ struct quota_msgs msgs; ++ unsigned i; ++ int ret = 0; ++ ++ qtypes &= enabled_qtypes(c); ++ ++ memset(&msgs, 0, sizeof(msgs)); ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ src_q[i] = genradix_ptr_alloc(&q->table, src.q[i], GFP_KERNEL); ++ dst_q[i] = genradix_ptr_alloc(&q->table, dst.q[i], GFP_KERNEL); ++ if (!src_q[i] || !dst_q[i]) ++ return -ENOMEM; ++ } ++ ++ for_each_set_qtype(c, i, q, qtypes) ++ mutex_lock_nested(&q->lock, i); ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ ret = bch2_quota_check_limit(c, i, dst_q[i], &msgs, Q_SPC, ++ dst_q[i]->c[Q_SPC].v + space, ++ mode); ++ if (ret) ++ goto err; ++ ++ ret = bch2_quota_check_limit(c, i, dst_q[i], &msgs, Q_INO, ++ dst_q[i]->c[Q_INO].v + 1, ++ mode); ++ if (ret) ++ goto err; ++ } ++ ++ for_each_set_qtype(c, i, q, qtypes) { ++ __bch2_quota_transfer(src_q[i], dst_q[i], Q_SPC, space); ++ __bch2_quota_transfer(src_q[i], dst_q[i], Q_INO, 1); ++ } ++ ++err: ++ for_each_set_qtype(c, i, q, qtypes) ++ mutex_unlock(&q->lock); ++ ++ flush_warnings(dst, c->vfs_sb, &msgs); ++ ++ return ret; ++} ++ ++static int __bch2_quota_set(struct bch_fs *c, struct bkey_s_c k, ++ struct qc_dqblk *qdq) ++{ ++ struct bkey_s_c_quota dq; ++ struct bch_memquota_type *q; ++ struct bch_memquota *mq; ++ unsigned i; ++ ++ BUG_ON(k.k->p.inode >= QTYP_NR); ++ ++ if (!((1U << k.k->p.inode) & enabled_qtypes(c))) ++ return 0; ++ ++ switch (k.k->type) { ++ case KEY_TYPE_quota: ++ dq = bkey_s_c_to_quota(k); ++ q = &c->quotas[k.k->p.inode]; ++ ++ mutex_lock(&q->lock); ++ mq = genradix_ptr_alloc(&q->table, k.k->p.offset, GFP_KERNEL); ++ if (!mq) { ++ mutex_unlock(&q->lock); ++ return -ENOMEM; ++ } ++ ++ for (i = 0; i < Q_COUNTERS; i++) { ++ mq->c[i].hardlimit = le64_to_cpu(dq.v->c[i].hardlimit); ++ mq->c[i].softlimit = le64_to_cpu(dq.v->c[i].softlimit); ++ } ++ ++ if (qdq && qdq->d_fieldmask & QC_SPC_TIMER) ++ mq->c[Q_SPC].timer = qdq->d_spc_timer; ++ if (qdq && qdq->d_fieldmask & QC_SPC_WARNS) ++ mq->c[Q_SPC].warns = qdq->d_spc_warns; ++ if (qdq && qdq->d_fieldmask & QC_INO_TIMER) ++ mq->c[Q_INO].timer = qdq->d_ino_timer; ++ if (qdq && qdq->d_fieldmask & QC_INO_WARNS) ++ mq->c[Q_INO].warns = qdq->d_ino_warns; ++ ++ mutex_unlock(&q->lock); ++ } ++ ++ return 0; ++} ++ ++void bch2_fs_quota_exit(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(c->quotas); i++) ++ genradix_free(&c->quotas[i].table); ++} ++ ++void bch2_fs_quota_init(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ for (i = 0; i < ARRAY_SIZE(c->quotas); i++) ++ mutex_init(&c->quotas[i].lock); ++} ++ ++static struct bch_sb_field_quota *bch2_sb_get_or_create_quota(struct bch_sb_handle *sb) ++{ ++ struct bch_sb_field_quota *sb_quota = bch2_sb_field_get(sb->sb, quota); ++ ++ if (sb_quota) ++ return sb_quota; ++ ++ sb_quota = bch2_sb_field_resize(sb, quota, sizeof(*sb_quota) / sizeof(u64)); ++ if (sb_quota) { ++ unsigned qtype, qc; ++ ++ for (qtype = 0; qtype < QTYP_NR; qtype++) ++ for (qc = 0; qc < Q_COUNTERS; qc++) ++ sb_quota->q[qtype].c[qc].timelimit = ++ cpu_to_le32(7 * 24 * 60 * 60); ++ } ++ ++ return sb_quota; ++} ++ ++static void bch2_sb_quota_read(struct bch_fs *c) ++{ ++ struct bch_sb_field_quota *sb_quota; ++ unsigned i, j; ++ ++ sb_quota = bch2_sb_field_get(c->disk_sb.sb, quota); ++ if (!sb_quota) ++ return; ++ ++ for (i = 0; i < QTYP_NR; i++) { ++ struct bch_memquota_type *q = &c->quotas[i]; ++ ++ for (j = 0; j < Q_COUNTERS; j++) { ++ q->limits[j].timelimit = ++ le32_to_cpu(sb_quota->q[i].c[j].timelimit); ++ q->limits[j].warnlimit = ++ le32_to_cpu(sb_quota->q[i].c[j].warnlimit); ++ } ++ } ++} ++ ++static int bch2_fs_quota_read_inode(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_inode_unpacked u; ++ struct bch_snapshot_tree s_t; ++ int ret; ++ ++ ret = bch2_snapshot_tree_lookup(trans, ++ bch2_snapshot_tree(c, k.k->p.snapshot), &s_t); ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), c, ++ "%s: snapshot tree %u not found", __func__, ++ snapshot_t(c, k.k->p.snapshot)->tree); ++ if (ret) ++ return ret; ++ ++ if (!s_t.master_subvol) ++ goto advance; ++ ++ ret = bch2_inode_find_by_inum_nowarn_trans(trans, ++ (subvol_inum) { ++ le32_to_cpu(s_t.master_subvol), ++ k.k->p.offset, ++ }, &u); ++ /* ++ * Inode might be deleted in this snapshot - the easiest way to handle ++ * that is to just skip it here: ++ */ ++ if (bch2_err_matches(ret, ENOENT)) ++ goto advance; ++ ++ if (ret) ++ return ret; ++ ++ bch2_quota_acct(c, bch_qid(&u), Q_SPC, u.bi_sectors, ++ KEY_TYPE_QUOTA_NOCHECK); ++ bch2_quota_acct(c, bch_qid(&u), Q_INO, 1, ++ KEY_TYPE_QUOTA_NOCHECK); ++advance: ++ bch2_btree_iter_set_pos(iter, bpos_nosnap_successor(iter->pos)); ++ return 0; ++} ++ ++int bch2_fs_quota_read(struct bch_fs *c) ++{ ++ struct bch_sb_field_quota *sb_quota; ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ mutex_lock(&c->sb_lock); ++ sb_quota = bch2_sb_get_or_create_quota(&c->disk_sb); ++ if (!sb_quota) { ++ mutex_unlock(&c->sb_lock); ++ return -BCH_ERR_ENOSPC_sb_quota; ++ } ++ ++ bch2_sb_quota_read(c); ++ mutex_unlock(&c->sb_lock); ++ ++ trans = bch2_trans_get(c); ++ ++ ret = for_each_btree_key2(trans, iter, BTREE_ID_quotas, ++ POS_MIN, BTREE_ITER_PREFETCH, k, ++ __bch2_quota_set(c, k, NULL)) ?: ++ for_each_btree_key2(trans, iter, BTREE_ID_inodes, ++ POS_MIN, BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ++ bch2_fs_quota_read_inode(trans, &iter, k)); ++ ++ bch2_trans_put(trans); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* Enable/disable/delete quotas for an entire filesystem: */ ++ ++static int bch2_quota_enable(struct super_block *sb, unsigned uflags) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_sb_field_quota *sb_quota; ++ int ret = 0; ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ /* Accounting must be enabled at mount time: */ ++ if (uflags & (FS_QUOTA_UDQ_ACCT|FS_QUOTA_GDQ_ACCT|FS_QUOTA_PDQ_ACCT)) ++ return -EINVAL; ++ ++ /* Can't enable enforcement without accounting: */ ++ if ((uflags & FS_QUOTA_UDQ_ENFD) && !c->opts.usrquota) ++ return -EINVAL; ++ ++ if ((uflags & FS_QUOTA_GDQ_ENFD) && !c->opts.grpquota) ++ return -EINVAL; ++ ++ if (uflags & FS_QUOTA_PDQ_ENFD && !c->opts.prjquota) ++ return -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ sb_quota = bch2_sb_get_or_create_quota(&c->disk_sb); ++ if (!sb_quota) { ++ ret = -BCH_ERR_ENOSPC_sb_quota; ++ goto unlock; ++ } ++ ++ if (uflags & FS_QUOTA_UDQ_ENFD) ++ SET_BCH_SB_USRQUOTA(c->disk_sb.sb, true); ++ ++ if (uflags & FS_QUOTA_GDQ_ENFD) ++ SET_BCH_SB_GRPQUOTA(c->disk_sb.sb, true); ++ ++ if (uflags & FS_QUOTA_PDQ_ENFD) ++ SET_BCH_SB_PRJQUOTA(c->disk_sb.sb, true); ++ ++ bch2_write_super(c); ++unlock: ++ mutex_unlock(&c->sb_lock); ++ ++ return bch2_err_class(ret); ++} ++ ++static int bch2_quota_disable(struct super_block *sb, unsigned uflags) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ mutex_lock(&c->sb_lock); ++ if (uflags & FS_QUOTA_UDQ_ENFD) ++ SET_BCH_SB_USRQUOTA(c->disk_sb.sb, false); ++ ++ if (uflags & FS_QUOTA_GDQ_ENFD) ++ SET_BCH_SB_GRPQUOTA(c->disk_sb.sb, false); ++ ++ if (uflags & FS_QUOTA_PDQ_ENFD) ++ SET_BCH_SB_PRJQUOTA(c->disk_sb.sb, false); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++static int bch2_quota_remove(struct super_block *sb, unsigned uflags) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ int ret; ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ if (uflags & FS_USER_QUOTA) { ++ if (c->opts.usrquota) ++ return -EINVAL; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_quotas, ++ POS(QTYP_USR, 0), ++ POS(QTYP_USR, U64_MAX), ++ 0, NULL); ++ if (ret) ++ return ret; ++ } ++ ++ if (uflags & FS_GROUP_QUOTA) { ++ if (c->opts.grpquota) ++ return -EINVAL; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_quotas, ++ POS(QTYP_GRP, 0), ++ POS(QTYP_GRP, U64_MAX), ++ 0, NULL); ++ if (ret) ++ return ret; ++ } ++ ++ if (uflags & FS_PROJ_QUOTA) { ++ if (c->opts.prjquota) ++ return -EINVAL; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_quotas, ++ POS(QTYP_PRJ, 0), ++ POS(QTYP_PRJ, U64_MAX), ++ 0, NULL); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++/* ++ * Return quota status information, such as enforcements, quota file inode ++ * numbers etc. ++ */ ++static int bch2_quota_get_state(struct super_block *sb, struct qc_state *state) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ unsigned qtypes = enabled_qtypes(c); ++ unsigned i; ++ ++ memset(state, 0, sizeof(*state)); ++ ++ for (i = 0; i < QTYP_NR; i++) { ++ state->s_state[i].flags |= QCI_SYSFILE; ++ ++ if (!(qtypes & (1 << i))) ++ continue; ++ ++ state->s_state[i].flags |= QCI_ACCT_ENABLED; ++ ++ state->s_state[i].spc_timelimit = c->quotas[i].limits[Q_SPC].timelimit; ++ state->s_state[i].spc_warnlimit = c->quotas[i].limits[Q_SPC].warnlimit; ++ ++ state->s_state[i].ino_timelimit = c->quotas[i].limits[Q_INO].timelimit; ++ state->s_state[i].ino_warnlimit = c->quotas[i].limits[Q_INO].warnlimit; ++ } ++ ++ return 0; ++} ++ ++/* ++ * Adjust quota timers & warnings ++ */ ++static int bch2_quota_set_info(struct super_block *sb, int type, ++ struct qc_info *info) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_sb_field_quota *sb_quota; ++ int ret = 0; ++ ++ if (0) { ++ struct printbuf buf = PRINTBUF; ++ ++ qc_info_to_text(&buf, info); ++ pr_info("setting:\n%s", buf.buf); ++ printbuf_exit(&buf); ++ } ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ if (type >= QTYP_NR) ++ return -EINVAL; ++ ++ if (!((1 << type) & enabled_qtypes(c))) ++ return -ESRCH; ++ ++ if (info->i_fieldmask & ++ ~(QC_SPC_TIMER|QC_INO_TIMER|QC_SPC_WARNS|QC_INO_WARNS)) ++ return -EINVAL; ++ ++ mutex_lock(&c->sb_lock); ++ sb_quota = bch2_sb_get_or_create_quota(&c->disk_sb); ++ if (!sb_quota) { ++ ret = -BCH_ERR_ENOSPC_sb_quota; ++ goto unlock; ++ } ++ ++ if (info->i_fieldmask & QC_SPC_TIMER) ++ sb_quota->q[type].c[Q_SPC].timelimit = ++ cpu_to_le32(info->i_spc_timelimit); ++ ++ if (info->i_fieldmask & QC_SPC_WARNS) ++ sb_quota->q[type].c[Q_SPC].warnlimit = ++ cpu_to_le32(info->i_spc_warnlimit); ++ ++ if (info->i_fieldmask & QC_INO_TIMER) ++ sb_quota->q[type].c[Q_INO].timelimit = ++ cpu_to_le32(info->i_ino_timelimit); ++ ++ if (info->i_fieldmask & QC_INO_WARNS) ++ sb_quota->q[type].c[Q_INO].warnlimit = ++ cpu_to_le32(info->i_ino_warnlimit); ++ ++ bch2_sb_quota_read(c); ++ ++ bch2_write_super(c); ++unlock: ++ mutex_unlock(&c->sb_lock); ++ ++ return bch2_err_class(ret); ++} ++ ++/* Get/set individual quotas: */ ++ ++static void __bch2_quota_get(struct qc_dqblk *dst, struct bch_memquota *src) ++{ ++ dst->d_space = src->c[Q_SPC].v << 9; ++ dst->d_spc_hardlimit = src->c[Q_SPC].hardlimit << 9; ++ dst->d_spc_softlimit = src->c[Q_SPC].softlimit << 9; ++ dst->d_spc_timer = src->c[Q_SPC].timer; ++ dst->d_spc_warns = src->c[Q_SPC].warns; ++ ++ dst->d_ino_count = src->c[Q_INO].v; ++ dst->d_ino_hardlimit = src->c[Q_INO].hardlimit; ++ dst->d_ino_softlimit = src->c[Q_INO].softlimit; ++ dst->d_ino_timer = src->c[Q_INO].timer; ++ dst->d_ino_warns = src->c[Q_INO].warns; ++} ++ ++static int bch2_get_quota(struct super_block *sb, struct kqid kqid, ++ struct qc_dqblk *qdq) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_memquota_type *q = &c->quotas[kqid.type]; ++ qid_t qid = from_kqid(&init_user_ns, kqid); ++ struct bch_memquota *mq; ++ ++ memset(qdq, 0, sizeof(*qdq)); ++ ++ mutex_lock(&q->lock); ++ mq = genradix_ptr(&q->table, qid); ++ if (mq) ++ __bch2_quota_get(qdq, mq); ++ mutex_unlock(&q->lock); ++ ++ return 0; ++} ++ ++static int bch2_get_next_quota(struct super_block *sb, struct kqid *kqid, ++ struct qc_dqblk *qdq) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bch_memquota_type *q = &c->quotas[kqid->type]; ++ qid_t qid = from_kqid(&init_user_ns, *kqid); ++ struct genradix_iter iter; ++ struct bch_memquota *mq; ++ int ret = 0; ++ ++ mutex_lock(&q->lock); ++ ++ genradix_for_each_from(&q->table, iter, mq, qid) ++ if (memcmp(mq, page_address(ZERO_PAGE(0)), sizeof(*mq))) { ++ __bch2_quota_get(qdq, mq); ++ *kqid = make_kqid(current_user_ns(), kqid->type, iter.pos); ++ goto found; ++ } ++ ++ ret = -ENOENT; ++found: ++ mutex_unlock(&q->lock); ++ return bch2_err_class(ret); ++} ++ ++static int bch2_set_quota_trans(struct btree_trans *trans, ++ struct bkey_i_quota *new_quota, ++ struct qc_dqblk *qdq) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_quotas, new_quota->k.p, ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT); ++ ret = bkey_err(k); ++ if (unlikely(ret)) ++ return ret; ++ ++ if (k.k->type == KEY_TYPE_quota) ++ new_quota->v = *bkey_s_c_to_quota(k).v; ++ ++ if (qdq->d_fieldmask & QC_SPC_SOFT) ++ new_quota->v.c[Q_SPC].softlimit = cpu_to_le64(qdq->d_spc_softlimit >> 9); ++ if (qdq->d_fieldmask & QC_SPC_HARD) ++ new_quota->v.c[Q_SPC].hardlimit = cpu_to_le64(qdq->d_spc_hardlimit >> 9); ++ ++ if (qdq->d_fieldmask & QC_INO_SOFT) ++ new_quota->v.c[Q_INO].softlimit = cpu_to_le64(qdq->d_ino_softlimit); ++ if (qdq->d_fieldmask & QC_INO_HARD) ++ new_quota->v.c[Q_INO].hardlimit = cpu_to_le64(qdq->d_ino_hardlimit); ++ ++ ret = bch2_trans_update(trans, &iter, &new_quota->k_i, 0); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int bch2_set_quota(struct super_block *sb, struct kqid qid, ++ struct qc_dqblk *qdq) ++{ ++ struct bch_fs *c = sb->s_fs_info; ++ struct bkey_i_quota new_quota; ++ int ret; ++ ++ if (0) { ++ struct printbuf buf = PRINTBUF; ++ ++ qc_dqblk_to_text(&buf, qdq); ++ pr_info("setting:\n%s", buf.buf); ++ printbuf_exit(&buf); ++ } ++ ++ if (sb->s_flags & SB_RDONLY) ++ return -EROFS; ++ ++ bkey_quota_init(&new_quota.k_i); ++ new_quota.k.p = POS(qid.type, from_kqid(&init_user_ns, qid)); ++ ++ ret = bch2_trans_do(c, NULL, NULL, 0, ++ bch2_set_quota_trans(trans, &new_quota, qdq)) ?: ++ __bch2_quota_set(c, bkey_i_to_s_c(&new_quota.k_i), qdq); ++ ++ return bch2_err_class(ret); ++} ++ ++const struct quotactl_ops bch2_quotactl_operations = { ++ .quota_enable = bch2_quota_enable, ++ .quota_disable = bch2_quota_disable, ++ .rm_xquota = bch2_quota_remove, ++ ++ .get_state = bch2_quota_get_state, ++ .set_info = bch2_quota_set_info, ++ ++ .get_dqblk = bch2_get_quota, ++ .get_nextdqblk = bch2_get_next_quota, ++ .set_dqblk = bch2_set_quota, ++}; ++ ++#endif /* CONFIG_BCACHEFS_QUOTA */ +diff --git a/fs/bcachefs/quota.h b/fs/bcachefs/quota.h +new file mode 100644 +index 000000000000..2f463874a362 +--- /dev/null ++++ b/fs/bcachefs/quota.h +@@ -0,0 +1,74 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_QUOTA_H ++#define _BCACHEFS_QUOTA_H ++ ++#include "inode.h" ++#include "quota_types.h" ++ ++enum bkey_invalid_flags; ++extern const struct bch_sb_field_ops bch_sb_field_ops_quota; ++ ++int bch2_quota_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_quota_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_quota ((struct bkey_ops) { \ ++ .key_invalid = bch2_quota_invalid, \ ++ .val_to_text = bch2_quota_to_text, \ ++ .min_val_size = 32, \ ++}) ++ ++static inline struct bch_qid bch_qid(struct bch_inode_unpacked *u) ++{ ++ return (struct bch_qid) { ++ .q[QTYP_USR] = u->bi_uid, ++ .q[QTYP_GRP] = u->bi_gid, ++ .q[QTYP_PRJ] = u->bi_project ? u->bi_project - 1 : 0, ++ }; ++} ++ ++static inline unsigned enabled_qtypes(struct bch_fs *c) ++{ ++ return ((c->opts.usrquota << QTYP_USR)| ++ (c->opts.grpquota << QTYP_GRP)| ++ (c->opts.prjquota << QTYP_PRJ)); ++} ++ ++#ifdef CONFIG_BCACHEFS_QUOTA ++ ++int bch2_quota_acct(struct bch_fs *, struct bch_qid, enum quota_counters, ++ s64, enum quota_acct_mode); ++ ++int bch2_quota_transfer(struct bch_fs *, unsigned, struct bch_qid, ++ struct bch_qid, u64, enum quota_acct_mode); ++ ++void bch2_fs_quota_exit(struct bch_fs *); ++void bch2_fs_quota_init(struct bch_fs *); ++int bch2_fs_quota_read(struct bch_fs *); ++ ++extern const struct quotactl_ops bch2_quotactl_operations; ++ ++#else ++ ++static inline int bch2_quota_acct(struct bch_fs *c, struct bch_qid qid, ++ enum quota_counters counter, s64 v, ++ enum quota_acct_mode mode) ++{ ++ return 0; ++} ++ ++static inline int bch2_quota_transfer(struct bch_fs *c, unsigned qtypes, ++ struct bch_qid dst, ++ struct bch_qid src, u64 space, ++ enum quota_acct_mode mode) ++{ ++ return 0; ++} ++ ++static inline void bch2_fs_quota_exit(struct bch_fs *c) {} ++static inline void bch2_fs_quota_init(struct bch_fs *c) {} ++static inline int bch2_fs_quota_read(struct bch_fs *c) { return 0; } ++ ++#endif ++ ++#endif /* _BCACHEFS_QUOTA_H */ +diff --git a/fs/bcachefs/quota_types.h b/fs/bcachefs/quota_types.h +new file mode 100644 +index 000000000000..6a136083d389 +--- /dev/null ++++ b/fs/bcachefs/quota_types.h +@@ -0,0 +1,43 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_QUOTA_TYPES_H ++#define _BCACHEFS_QUOTA_TYPES_H ++ ++#include ++ ++struct bch_qid { ++ u32 q[QTYP_NR]; ++}; ++ ++enum quota_acct_mode { ++ KEY_TYPE_QUOTA_PREALLOC, ++ KEY_TYPE_QUOTA_WARN, ++ KEY_TYPE_QUOTA_NOCHECK, ++}; ++ ++struct memquota_counter { ++ u64 v; ++ u64 hardlimit; ++ u64 softlimit; ++ s64 timer; ++ int warns; ++ int warning_issued; ++}; ++ ++struct bch_memquota { ++ struct memquota_counter c[Q_COUNTERS]; ++}; ++ ++typedef GENRADIX(struct bch_memquota) bch_memquota_table; ++ ++struct quota_limit { ++ u32 timelimit; ++ u32 warnlimit; ++}; ++ ++struct bch_memquota_type { ++ struct quota_limit limits[Q_COUNTERS]; ++ bch_memquota_table table; ++ struct mutex lock; ++}; ++ ++#endif /* _BCACHEFS_QUOTA_TYPES_H */ +diff --git a/fs/bcachefs/rebalance.c b/fs/bcachefs/rebalance.c +new file mode 100644 +index 000000000000..568f1e8e7507 +--- /dev/null ++++ b/fs/bcachefs/rebalance.c +@@ -0,0 +1,366 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "alloc_foreground.h" ++#include "btree_iter.h" ++#include "buckets.h" ++#include "clock.h" ++#include "compress.h" ++#include "disk_groups.h" ++#include "errcode.h" ++#include "move.h" ++#include "rebalance.h" ++#include "super-io.h" ++#include "trace.h" ++ ++#include ++#include ++#include ++ ++/* ++ * Check if an extent should be moved: ++ * returns -1 if it should not be moved, or ++ * device of pointer that should be moved, if known, or INT_MAX if unknown ++ */ ++static bool rebalance_pred(struct bch_fs *c, void *arg, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts, ++ struct data_update_opts *data_opts) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ unsigned i; ++ ++ data_opts->rewrite_ptrs = 0; ++ data_opts->target = io_opts->background_target; ++ data_opts->extra_replicas = 0; ++ data_opts->btree_insert_flags = 0; ++ ++ if (io_opts->background_compression && ++ !bch2_bkey_is_incompressible(k)) { ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ i = 0; ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ if (!p.ptr.cached && ++ p.crc.compression_type != ++ bch2_compression_opt_to_type(io_opts->background_compression)) ++ data_opts->rewrite_ptrs |= 1U << i; ++ i++; ++ } ++ } ++ ++ if (io_opts->background_target) { ++ const struct bch_extent_ptr *ptr; ++ ++ i = 0; ++ bkey_for_each_ptr(ptrs, ptr) { ++ if (!ptr->cached && ++ !bch2_dev_in_target(c, ptr->dev, io_opts->background_target) && ++ bch2_target_accepts_data(c, BCH_DATA_user, io_opts->background_target)) ++ data_opts->rewrite_ptrs |= 1U << i; ++ i++; ++ } ++ } ++ ++ return data_opts->rewrite_ptrs != 0; ++} ++ ++void bch2_rebalance_add_key(struct bch_fs *c, ++ struct bkey_s_c k, ++ struct bch_io_opts *io_opts) ++{ ++ struct data_update_opts update_opts = { 0 }; ++ struct bkey_ptrs_c ptrs; ++ const struct bch_extent_ptr *ptr; ++ unsigned i; ++ ++ if (!rebalance_pred(c, NULL, k, io_opts, &update_opts)) ++ return; ++ ++ i = 0; ++ ptrs = bch2_bkey_ptrs_c(k); ++ bkey_for_each_ptr(ptrs, ptr) { ++ if ((1U << i) && update_opts.rewrite_ptrs) ++ if (atomic64_add_return(k.k->size, ++ &bch_dev_bkey_exists(c, ptr->dev)->rebalance_work) == ++ k.k->size) ++ rebalance_wakeup(c); ++ i++; ++ } ++} ++ ++void bch2_rebalance_add_work(struct bch_fs *c, u64 sectors) ++{ ++ if (atomic64_add_return(sectors, &c->rebalance.work_unknown_dev) == ++ sectors) ++ rebalance_wakeup(c); ++} ++ ++struct rebalance_work { ++ int dev_most_full_idx; ++ unsigned dev_most_full_percent; ++ u64 dev_most_full_work; ++ u64 dev_most_full_capacity; ++ u64 total_work; ++}; ++ ++static void rebalance_work_accumulate(struct rebalance_work *w, ++ u64 dev_work, u64 unknown_dev, u64 capacity, int idx) ++{ ++ unsigned percent_full; ++ u64 work = dev_work + unknown_dev; ++ ++ /* avoid divide by 0 */ ++ if (!capacity) ++ return; ++ ++ if (work < dev_work || work < unknown_dev) ++ work = U64_MAX; ++ work = min(work, capacity); ++ ++ percent_full = div64_u64(work * 100, capacity); ++ ++ if (percent_full >= w->dev_most_full_percent) { ++ w->dev_most_full_idx = idx; ++ w->dev_most_full_percent = percent_full; ++ w->dev_most_full_work = work; ++ w->dev_most_full_capacity = capacity; ++ } ++ ++ if (w->total_work + dev_work >= w->total_work && ++ w->total_work + dev_work >= dev_work) ++ w->total_work += dev_work; ++} ++ ++static struct rebalance_work rebalance_work(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ struct rebalance_work ret = { .dev_most_full_idx = -1 }; ++ u64 unknown_dev = atomic64_read(&c->rebalance.work_unknown_dev); ++ unsigned i; ++ ++ for_each_online_member(ca, c, i) ++ rebalance_work_accumulate(&ret, ++ atomic64_read(&ca->rebalance_work), ++ unknown_dev, ++ bucket_to_sector(ca, ca->mi.nbuckets - ++ ca->mi.first_bucket), ++ i); ++ ++ rebalance_work_accumulate(&ret, ++ unknown_dev, 0, c->capacity, -1); ++ ++ return ret; ++} ++ ++static void rebalance_work_reset(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ for_each_online_member(ca, c, i) ++ atomic64_set(&ca->rebalance_work, 0); ++ ++ atomic64_set(&c->rebalance.work_unknown_dev, 0); ++} ++ ++static unsigned long curr_cputime(void) ++{ ++ u64 utime, stime; ++ ++ task_cputime_adjusted(current, &utime, &stime); ++ return nsecs_to_jiffies(utime + stime); ++} ++ ++static int bch2_rebalance_thread(void *arg) ++{ ++ struct bch_fs *c = arg; ++ struct bch_fs_rebalance *r = &c->rebalance; ++ struct io_clock *clock = &c->io_clock[WRITE]; ++ struct rebalance_work w, p; ++ struct bch_move_stats move_stats; ++ unsigned long start, prev_start; ++ unsigned long prev_run_time, prev_run_cputime; ++ unsigned long cputime, prev_cputime; ++ u64 io_start; ++ long throttle; ++ ++ set_freezable(); ++ ++ io_start = atomic64_read(&clock->now); ++ p = rebalance_work(c); ++ prev_start = jiffies; ++ prev_cputime = curr_cputime(); ++ ++ bch2_move_stats_init(&move_stats, "rebalance"); ++ while (!kthread_wait_freezable(r->enabled)) { ++ cond_resched(); ++ ++ start = jiffies; ++ cputime = curr_cputime(); ++ ++ prev_run_time = start - prev_start; ++ prev_run_cputime = cputime - prev_cputime; ++ ++ w = rebalance_work(c); ++ BUG_ON(!w.dev_most_full_capacity); ++ ++ if (!w.total_work) { ++ r->state = REBALANCE_WAITING; ++ kthread_wait_freezable(rebalance_work(c).total_work); ++ continue; ++ } ++ ++ /* ++ * If there isn't much work to do, throttle cpu usage: ++ */ ++ throttle = prev_run_cputime * 100 / ++ max(1U, w.dev_most_full_percent) - ++ prev_run_time; ++ ++ if (w.dev_most_full_percent < 20 && throttle > 0) { ++ r->throttled_until_iotime = io_start + ++ div_u64(w.dev_most_full_capacity * ++ (20 - w.dev_most_full_percent), ++ 50); ++ ++ if (atomic64_read(&clock->now) + clock->max_slop < ++ r->throttled_until_iotime) { ++ r->throttled_until_cputime = start + throttle; ++ r->state = REBALANCE_THROTTLED; ++ ++ bch2_kthread_io_clock_wait(clock, ++ r->throttled_until_iotime, ++ throttle); ++ continue; ++ } ++ } ++ ++ /* minimum 1 mb/sec: */ ++ r->pd.rate.rate = ++ max_t(u64, 1 << 11, ++ r->pd.rate.rate * ++ max(p.dev_most_full_percent, 1U) / ++ max(w.dev_most_full_percent, 1U)); ++ ++ io_start = atomic64_read(&clock->now); ++ p = w; ++ prev_start = start; ++ prev_cputime = cputime; ++ ++ r->state = REBALANCE_RUNNING; ++ memset(&move_stats, 0, sizeof(move_stats)); ++ rebalance_work_reset(c); ++ ++ bch2_move_data(c, ++ 0, POS_MIN, ++ BTREE_ID_NR, POS_MAX, ++ /* ratelimiting disabled for now */ ++ NULL, /* &r->pd.rate, */ ++ &move_stats, ++ writepoint_ptr(&c->rebalance_write_point), ++ true, ++ rebalance_pred, NULL); ++ } ++ ++ return 0; ++} ++ ++void bch2_rebalance_work_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct bch_fs_rebalance *r = &c->rebalance; ++ struct rebalance_work w = rebalance_work(c); ++ ++ if (!out->nr_tabstops) ++ printbuf_tabstop_push(out, 20); ++ ++ prt_printf(out, "fullest_dev (%i):", w.dev_most_full_idx); ++ prt_tab(out); ++ ++ prt_human_readable_u64(out, w.dev_most_full_work << 9); ++ prt_printf(out, "/"); ++ prt_human_readable_u64(out, w.dev_most_full_capacity << 9); ++ prt_newline(out); ++ ++ prt_printf(out, "total work:"); ++ prt_tab(out); ++ ++ prt_human_readable_u64(out, w.total_work << 9); ++ prt_printf(out, "/"); ++ prt_human_readable_u64(out, c->capacity << 9); ++ prt_newline(out); ++ ++ prt_printf(out, "rate:"); ++ prt_tab(out); ++ prt_printf(out, "%u", r->pd.rate.rate); ++ prt_newline(out); ++ ++ switch (r->state) { ++ case REBALANCE_WAITING: ++ prt_printf(out, "waiting"); ++ break; ++ case REBALANCE_THROTTLED: ++ prt_printf(out, "throttled for %lu sec or ", ++ (r->throttled_until_cputime - jiffies) / HZ); ++ prt_human_readable_u64(out, ++ (r->throttled_until_iotime - ++ atomic64_read(&c->io_clock[WRITE].now)) << 9); ++ prt_printf(out, " io"); ++ break; ++ case REBALANCE_RUNNING: ++ prt_printf(out, "running"); ++ break; ++ } ++ prt_newline(out); ++} ++ ++void bch2_rebalance_stop(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ c->rebalance.pd.rate.rate = UINT_MAX; ++ bch2_ratelimit_reset(&c->rebalance.pd.rate); ++ ++ p = rcu_dereference_protected(c->rebalance.thread, 1); ++ c->rebalance.thread = NULL; ++ ++ if (p) { ++ /* for sychronizing with rebalance_wakeup() */ ++ synchronize_rcu(); ++ ++ kthread_stop(p); ++ put_task_struct(p); ++ } ++} ++ ++int bch2_rebalance_start(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ int ret; ++ ++ if (c->rebalance.thread) ++ return 0; ++ ++ if (c->opts.nochanges) ++ return 0; ++ ++ p = kthread_create(bch2_rebalance_thread, c, "bch-rebalance/%s", c->name); ++ ret = PTR_ERR_OR_ZERO(p); ++ if (ret) { ++ bch_err_msg(c, ret, "creating rebalance thread"); ++ return ret; ++ } ++ ++ get_task_struct(p); ++ rcu_assign_pointer(c->rebalance.thread, p); ++ wake_up_process(p); ++ return 0; ++} ++ ++void bch2_fs_rebalance_init(struct bch_fs *c) ++{ ++ bch2_pd_controller_init(&c->rebalance.pd); ++ ++ atomic64_set(&c->rebalance.work_unknown_dev, S64_MAX); ++} +diff --git a/fs/bcachefs/rebalance.h b/fs/bcachefs/rebalance.h +new file mode 100644 +index 000000000000..7ade0bb81cce +--- /dev/null ++++ b/fs/bcachefs/rebalance.h +@@ -0,0 +1,28 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REBALANCE_H ++#define _BCACHEFS_REBALANCE_H ++ ++#include "rebalance_types.h" ++ ++static inline void rebalance_wakeup(struct bch_fs *c) ++{ ++ struct task_struct *p; ++ ++ rcu_read_lock(); ++ p = rcu_dereference(c->rebalance.thread); ++ if (p) ++ wake_up_process(p); ++ rcu_read_unlock(); ++} ++ ++void bch2_rebalance_add_key(struct bch_fs *, struct bkey_s_c, ++ struct bch_io_opts *); ++void bch2_rebalance_add_work(struct bch_fs *, u64); ++ ++void bch2_rebalance_work_to_text(struct printbuf *, struct bch_fs *); ++ ++void bch2_rebalance_stop(struct bch_fs *); ++int bch2_rebalance_start(struct bch_fs *); ++void bch2_fs_rebalance_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_REBALANCE_H */ +diff --git a/fs/bcachefs/rebalance_types.h b/fs/bcachefs/rebalance_types.h +new file mode 100644 +index 000000000000..7462a92e9598 +--- /dev/null ++++ b/fs/bcachefs/rebalance_types.h +@@ -0,0 +1,26 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REBALANCE_TYPES_H ++#define _BCACHEFS_REBALANCE_TYPES_H ++ ++#include "move_types.h" ++ ++enum rebalance_state { ++ REBALANCE_WAITING, ++ REBALANCE_THROTTLED, ++ REBALANCE_RUNNING, ++}; ++ ++struct bch_fs_rebalance { ++ struct task_struct __rcu *thread; ++ struct bch_pd_controller pd; ++ ++ atomic64_t work_unknown_dev; ++ ++ enum rebalance_state state; ++ u64 throttled_until_iotime; ++ unsigned long throttled_until_cputime; ++ ++ unsigned enabled:1; ++}; ++ ++#endif /* _BCACHEFS_REBALANCE_TYPES_H */ +diff --git a/fs/bcachefs/recovery.c b/fs/bcachefs/recovery.c +new file mode 100644 +index 000000000000..4cd660650e5b +--- /dev/null ++++ b/fs/bcachefs/recovery.c +@@ -0,0 +1,1049 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "backpointers.h" ++#include "bkey_buf.h" ++#include "alloc_background.h" ++#include "btree_gc.h" ++#include "btree_journal_iter.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_io.h" ++#include "buckets.h" ++#include "dirent.h" ++#include "ec.h" ++#include "errcode.h" ++#include "error.h" ++#include "fs-common.h" ++#include "fsck.h" ++#include "journal_io.h" ++#include "journal_reclaim.h" ++#include "journal_seq_blacklist.h" ++#include "lru.h" ++#include "logged_ops.h" ++#include "move.h" ++#include "quota.h" ++#include "recovery.h" ++#include "replicas.h" ++#include "sb-clean.h" ++#include "snapshot.h" ++#include "subvolume.h" ++#include "super-io.h" ++ ++#include ++#include ++ ++#define QSTR(n) { { { .len = strlen(n) } }, .name = n } ++ ++static bool btree_id_is_alloc(enum btree_id id) ++{ ++ switch (id) { ++ case BTREE_ID_alloc: ++ case BTREE_ID_backpointers: ++ case BTREE_ID_need_discard: ++ case BTREE_ID_freespace: ++ case BTREE_ID_bucket_gens: ++ return true; ++ default: ++ return false; ++ } ++} ++ ++/* for -o reconstruct_alloc: */ ++static void drop_alloc_keys(struct journal_keys *keys) ++{ ++ size_t src, dst; ++ ++ for (src = 0, dst = 0; src < keys->nr; src++) ++ if (!btree_id_is_alloc(keys->d[src].btree_id)) ++ keys->d[dst++] = keys->d[src]; ++ ++ keys->nr = dst; ++} ++ ++/* ++ * Btree node pointers have a field to stack a pointer to the in memory btree ++ * node; we need to zero out this field when reading in btree nodes, or when ++ * reading in keys from the journal: ++ */ ++static void zero_out_btree_mem_ptr(struct journal_keys *keys) ++{ ++ struct journal_key *i; ++ ++ for (i = keys->d; i < keys->d + keys->nr; i++) ++ if (i->k->k.type == KEY_TYPE_btree_ptr_v2) ++ bkey_i_to_btree_ptr_v2(i->k)->v.mem_ptr = 0; ++} ++ ++/* journal replay: */ ++ ++static void replay_now_at(struct journal *j, u64 seq) ++{ ++ BUG_ON(seq < j->replay_journal_seq); ++ ++ seq = min(seq, j->replay_journal_seq_end); ++ ++ while (j->replay_journal_seq < seq) ++ bch2_journal_pin_put(j, j->replay_journal_seq++); ++} ++ ++static int bch2_journal_replay_key(struct btree_trans *trans, ++ struct journal_key *k) ++{ ++ struct btree_iter iter; ++ unsigned iter_flags = ++ BTREE_ITER_INTENT| ++ BTREE_ITER_NOT_EXTENTS; ++ unsigned update_flags = BTREE_TRIGGER_NORUN; ++ int ret; ++ ++ /* ++ * BTREE_UPDATE_KEY_CACHE_RECLAIM disables key cache lookup/update to ++ * keep the key cache coherent with the underlying btree. Nothing ++ * besides the allocator is doing updates yet so we don't need key cache ++ * coherency for non-alloc btrees, and key cache fills for snapshots ++ * btrees use BTREE_ITER_FILTER_SNAPSHOTS, which isn't available until ++ * the snapshots recovery pass runs. ++ */ ++ if (!k->level && k->btree_id == BTREE_ID_alloc) ++ iter_flags |= BTREE_ITER_CACHED; ++ else ++ update_flags |= BTREE_UPDATE_KEY_CACHE_RECLAIM; ++ ++ bch2_trans_node_iter_init(trans, &iter, k->btree_id, k->k->k.p, ++ BTREE_MAX_DEPTH, k->level, ++ iter_flags); ++ ret = bch2_btree_iter_traverse(&iter); ++ if (ret) ++ goto out; ++ ++ /* Must be checked with btree locked: */ ++ if (k->overwritten) ++ goto out; ++ ++ ret = bch2_trans_update(trans, &iter, k->k, update_flags); ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int journal_sort_seq_cmp(const void *_l, const void *_r) ++{ ++ const struct journal_key *l = *((const struct journal_key **)_l); ++ const struct journal_key *r = *((const struct journal_key **)_r); ++ ++ return cmp_int(l->journal_seq, r->journal_seq); ++} ++ ++static int bch2_journal_replay(struct bch_fs *c) ++{ ++ struct journal_keys *keys = &c->journal_keys; ++ struct journal_key **keys_sorted, *k; ++ struct journal *j = &c->journal; ++ u64 start_seq = c->journal_replay_seq_start; ++ u64 end_seq = c->journal_replay_seq_start; ++ size_t i; ++ int ret; ++ ++ move_gap(keys->d, keys->nr, keys->size, keys->gap, keys->nr); ++ keys->gap = keys->nr; ++ ++ keys_sorted = kvmalloc_array(keys->nr, sizeof(*keys_sorted), GFP_KERNEL); ++ if (!keys_sorted) ++ return -BCH_ERR_ENOMEM_journal_replay; ++ ++ for (i = 0; i < keys->nr; i++) ++ keys_sorted[i] = &keys->d[i]; ++ ++ sort(keys_sorted, keys->nr, ++ sizeof(keys_sorted[0]), ++ journal_sort_seq_cmp, NULL); ++ ++ if (keys->nr) { ++ ret = bch2_journal_log_msg(c, "Starting journal replay (%zu keys in entries %llu-%llu)", ++ keys->nr, start_seq, end_seq); ++ if (ret) ++ goto err; ++ } ++ ++ for (i = 0; i < keys->nr; i++) { ++ k = keys_sorted[i]; ++ ++ cond_resched(); ++ ++ replay_now_at(j, k->journal_seq); ++ ++ ret = bch2_trans_do(c, NULL, NULL, ++ BTREE_INSERT_LAZY_RW| ++ BTREE_INSERT_NOFAIL| ++ (!k->allocated ++ ? BTREE_INSERT_JOURNAL_REPLAY|BCH_WATERMARK_reclaim ++ : 0), ++ bch2_journal_replay_key(trans, k)); ++ if (ret) { ++ bch_err(c, "journal replay: error while replaying key at btree %s level %u: %s", ++ bch2_btree_ids[k->btree_id], k->level, bch2_err_str(ret)); ++ goto err; ++ } ++ } ++ ++ replay_now_at(j, j->replay_journal_seq_end); ++ j->replay_journal_seq = 0; ++ ++ bch2_journal_set_replay_done(j); ++ bch2_journal_flush_all_pins(j); ++ ret = bch2_journal_error(j); ++ ++ if (keys->nr && !ret) ++ bch2_journal_log_msg(c, "journal replay finished"); ++err: ++ kvfree(keys_sorted); ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* journal replay early: */ ++ ++static int journal_replay_entry_early(struct bch_fs *c, ++ struct jset_entry *entry) ++{ ++ int ret = 0; ++ ++ switch (entry->type) { ++ case BCH_JSET_ENTRY_btree_root: { ++ struct btree_root *r; ++ ++ while (entry->btree_id >= c->btree_roots_extra.nr + BTREE_ID_NR) { ++ ret = darray_push(&c->btree_roots_extra, (struct btree_root) { NULL }); ++ if (ret) ++ return ret; ++ } ++ ++ r = bch2_btree_id_root(c, entry->btree_id); ++ ++ if (entry->u64s) { ++ r->level = entry->level; ++ bkey_copy(&r->key, &entry->start[0]); ++ r->error = 0; ++ } else { ++ r->error = -EIO; ++ } ++ r->alive = true; ++ break; ++ } ++ case BCH_JSET_ENTRY_usage: { ++ struct jset_entry_usage *u = ++ container_of(entry, struct jset_entry_usage, entry); ++ ++ switch (entry->btree_id) { ++ case BCH_FS_USAGE_reserved: ++ if (entry->level < BCH_REPLICAS_MAX) ++ c->usage_base->persistent_reserved[entry->level] = ++ le64_to_cpu(u->v); ++ break; ++ case BCH_FS_USAGE_inodes: ++ c->usage_base->nr_inodes = le64_to_cpu(u->v); ++ break; ++ case BCH_FS_USAGE_key_version: ++ atomic64_set(&c->key_version, ++ le64_to_cpu(u->v)); ++ break; ++ } ++ ++ break; ++ } ++ case BCH_JSET_ENTRY_data_usage: { ++ struct jset_entry_data_usage *u = ++ container_of(entry, struct jset_entry_data_usage, entry); ++ ++ ret = bch2_replicas_set_usage(c, &u->r, ++ le64_to_cpu(u->v)); ++ break; ++ } ++ case BCH_JSET_ENTRY_dev_usage: { ++ struct jset_entry_dev_usage *u = ++ container_of(entry, struct jset_entry_dev_usage, entry); ++ struct bch_dev *ca = bch_dev_bkey_exists(c, le32_to_cpu(u->dev)); ++ unsigned i, nr_types = jset_entry_dev_usage_nr_types(u); ++ ++ ca->usage_base->buckets_ec = le64_to_cpu(u->buckets_ec); ++ ++ for (i = 0; i < min_t(unsigned, nr_types, BCH_DATA_NR); i++) { ++ ca->usage_base->d[i].buckets = le64_to_cpu(u->d[i].buckets); ++ ca->usage_base->d[i].sectors = le64_to_cpu(u->d[i].sectors); ++ ca->usage_base->d[i].fragmented = le64_to_cpu(u->d[i].fragmented); ++ } ++ ++ break; ++ } ++ case BCH_JSET_ENTRY_blacklist: { ++ struct jset_entry_blacklist *bl_entry = ++ container_of(entry, struct jset_entry_blacklist, entry); ++ ++ ret = bch2_journal_seq_blacklist_add(c, ++ le64_to_cpu(bl_entry->seq), ++ le64_to_cpu(bl_entry->seq) + 1); ++ break; ++ } ++ case BCH_JSET_ENTRY_blacklist_v2: { ++ struct jset_entry_blacklist_v2 *bl_entry = ++ container_of(entry, struct jset_entry_blacklist_v2, entry); ++ ++ ret = bch2_journal_seq_blacklist_add(c, ++ le64_to_cpu(bl_entry->start), ++ le64_to_cpu(bl_entry->end) + 1); ++ break; ++ } ++ case BCH_JSET_ENTRY_clock: { ++ struct jset_entry_clock *clock = ++ container_of(entry, struct jset_entry_clock, entry); ++ ++ atomic64_set(&c->io_clock[clock->rw].now, le64_to_cpu(clock->time)); ++ } ++ } ++ ++ return ret; ++} ++ ++static int journal_replay_early(struct bch_fs *c, ++ struct bch_sb_field_clean *clean) ++{ ++ struct jset_entry *entry; ++ int ret; ++ ++ if (clean) { ++ for (entry = clean->start; ++ entry != vstruct_end(&clean->field); ++ entry = vstruct_next(entry)) { ++ ret = journal_replay_entry_early(c, entry); ++ if (ret) ++ return ret; ++ } ++ } else { ++ struct genradix_iter iter; ++ struct journal_replay *i, **_i; ++ ++ genradix_for_each(&c->journal_entries, iter, _i) { ++ i = *_i; ++ ++ if (!i || i->ignore) ++ continue; ++ ++ vstruct_for_each(&i->j, entry) { ++ ret = journal_replay_entry_early(c, entry); ++ if (ret) ++ return ret; ++ } ++ } ++ } ++ ++ bch2_fs_usage_initialize(c); ++ ++ return 0; ++} ++ ++/* sb clean section: */ ++ ++static int read_btree_roots(struct bch_fs *c) ++{ ++ unsigned i; ++ int ret = 0; ++ ++ for (i = 0; i < btree_id_nr_alive(c); i++) { ++ struct btree_root *r = bch2_btree_id_root(c, i); ++ ++ if (!r->alive) ++ continue; ++ ++ if (btree_id_is_alloc(i) && ++ c->opts.reconstruct_alloc) { ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); ++ continue; ++ } ++ ++ if (r->error) { ++ __fsck_err(c, btree_id_is_alloc(i) ++ ? FSCK_CAN_IGNORE : 0, ++ "invalid btree root %s", ++ bch2_btree_ids[i]); ++ if (i == BTREE_ID_alloc) ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); ++ } ++ ++ ret = bch2_btree_root_read(c, i, &r->key, r->level); ++ if (ret) { ++ fsck_err(c, ++ "error reading btree root %s", ++ bch2_btree_ids[i]); ++ if (btree_id_is_alloc(i)) ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); ++ ret = 0; ++ } ++ } ++ ++ for (i = 0; i < BTREE_ID_NR; i++) { ++ struct btree_root *r = bch2_btree_id_root(c, i); ++ ++ if (!r->b) { ++ r->alive = false; ++ r->level = 0; ++ bch2_btree_root_alloc(c, i); ++ } ++ } ++fsck_err: ++ return ret; ++} ++ ++static int bch2_initialize_subvolumes(struct bch_fs *c) ++{ ++ struct bkey_i_snapshot_tree root_tree; ++ struct bkey_i_snapshot root_snapshot; ++ struct bkey_i_subvolume root_volume; ++ int ret; ++ ++ bkey_snapshot_tree_init(&root_tree.k_i); ++ root_tree.k.p.offset = 1; ++ root_tree.v.master_subvol = cpu_to_le32(1); ++ root_tree.v.root_snapshot = cpu_to_le32(U32_MAX); ++ ++ bkey_snapshot_init(&root_snapshot.k_i); ++ root_snapshot.k.p.offset = U32_MAX; ++ root_snapshot.v.flags = 0; ++ root_snapshot.v.parent = 0; ++ root_snapshot.v.subvol = cpu_to_le32(BCACHEFS_ROOT_SUBVOL); ++ root_snapshot.v.tree = cpu_to_le32(1); ++ SET_BCH_SNAPSHOT_SUBVOL(&root_snapshot.v, true); ++ ++ bkey_subvolume_init(&root_volume.k_i); ++ root_volume.k.p.offset = BCACHEFS_ROOT_SUBVOL; ++ root_volume.v.flags = 0; ++ root_volume.v.snapshot = cpu_to_le32(U32_MAX); ++ root_volume.v.inode = cpu_to_le64(BCACHEFS_ROOT_INO); ++ ++ ret = bch2_btree_insert(c, BTREE_ID_snapshot_trees, &root_tree.k_i, NULL, 0) ?: ++ bch2_btree_insert(c, BTREE_ID_snapshots, &root_snapshot.k_i, NULL, 0) ?: ++ bch2_btree_insert(c, BTREE_ID_subvolumes, &root_volume.k_i, NULL, 0); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int __bch2_fs_upgrade_for_subvolumes(struct btree_trans *trans) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_inode_unpacked inode; ++ int ret; ++ ++ k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_inodes, ++ SPOS(0, BCACHEFS_ROOT_INO, U32_MAX), 0); ++ ret = bkey_err(k); ++ if (ret) ++ return ret; ++ ++ if (!bkey_is_inode(k.k)) { ++ bch_err(trans->c, "root inode not found"); ++ ret = -BCH_ERR_ENOENT_inode; ++ goto err; ++ } ++ ++ ret = bch2_inode_unpack(k, &inode); ++ BUG_ON(ret); ++ ++ inode.bi_subvol = BCACHEFS_ROOT_SUBVOL; ++ ++ ret = bch2_inode_write(trans, &iter, &inode); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++/* set bi_subvol on root inode */ ++noinline_for_stack ++static int bch2_fs_upgrade_for_subvolumes(struct bch_fs *c) ++{ ++ int ret = bch2_trans_do(c, NULL, NULL, BTREE_INSERT_LAZY_RW, ++ __bch2_fs_upgrade_for_subvolumes(trans)); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++const char * const bch2_recovery_passes[] = { ++#define x(_fn, _when) #_fn, ++ BCH_RECOVERY_PASSES() ++#undef x ++ NULL ++}; ++ ++static int bch2_check_allocations(struct bch_fs *c) ++{ ++ return bch2_gc(c, true, c->opts.norecovery); ++} ++ ++static int bch2_set_may_go_rw(struct bch_fs *c) ++{ ++ set_bit(BCH_FS_MAY_GO_RW, &c->flags); ++ return 0; ++} ++ ++struct recovery_pass_fn { ++ int (*fn)(struct bch_fs *); ++ unsigned when; ++}; ++ ++static struct recovery_pass_fn recovery_pass_fns[] = { ++#define x(_fn, _when) { .fn = bch2_##_fn, .when = _when }, ++ BCH_RECOVERY_PASSES() ++#undef x ++}; ++ ++static void check_version_upgrade(struct bch_fs *c) ++{ ++ unsigned latest_compatible = bch2_latest_compatible_version(c->sb.version); ++ unsigned latest_version = bcachefs_metadata_version_current; ++ unsigned old_version = c->sb.version_upgrade_complete ?: c->sb.version; ++ unsigned new_version = 0; ++ u64 recovery_passes; ++ ++ if (old_version < bcachefs_metadata_required_upgrade_below) { ++ if (c->opts.version_upgrade == BCH_VERSION_UPGRADE_incompatible || ++ latest_compatible < bcachefs_metadata_required_upgrade_below) ++ new_version = latest_version; ++ else ++ new_version = latest_compatible; ++ } else { ++ switch (c->opts.version_upgrade) { ++ case BCH_VERSION_UPGRADE_compatible: ++ new_version = latest_compatible; ++ break; ++ case BCH_VERSION_UPGRADE_incompatible: ++ new_version = latest_version; ++ break; ++ case BCH_VERSION_UPGRADE_none: ++ new_version = old_version; ++ break; ++ } ++ } ++ ++ if (new_version > old_version) { ++ struct printbuf buf = PRINTBUF; ++ ++ if (old_version < bcachefs_metadata_required_upgrade_below) ++ prt_str(&buf, "Version upgrade required:\n"); ++ ++ if (old_version != c->sb.version) { ++ prt_str(&buf, "Version upgrade from "); ++ bch2_version_to_text(&buf, c->sb.version_upgrade_complete); ++ prt_str(&buf, " to "); ++ bch2_version_to_text(&buf, c->sb.version); ++ prt_str(&buf, " incomplete\n"); ++ } ++ ++ prt_printf(&buf, "Doing %s version upgrade from ", ++ BCH_VERSION_MAJOR(old_version) != BCH_VERSION_MAJOR(new_version) ++ ? "incompatible" : "compatible"); ++ bch2_version_to_text(&buf, old_version); ++ prt_str(&buf, " to "); ++ bch2_version_to_text(&buf, new_version); ++ prt_newline(&buf); ++ ++ recovery_passes = bch2_upgrade_recovery_passes(c, old_version, new_version); ++ if (recovery_passes) { ++ if ((recovery_passes & RECOVERY_PASS_ALL_FSCK) == RECOVERY_PASS_ALL_FSCK) ++ prt_str(&buf, "fsck required"); ++ else { ++ prt_str(&buf, "running recovery passes: "); ++ prt_bitflags(&buf, bch2_recovery_passes, recovery_passes); ++ } ++ ++ c->recovery_passes_explicit |= recovery_passes; ++ c->opts.fix_errors = FSCK_FIX_yes; ++ } ++ ++ bch_info(c, "%s", buf.buf); ++ ++ mutex_lock(&c->sb_lock); ++ bch2_sb_upgrade(c, new_version); ++ mutex_unlock(&c->sb_lock); ++ ++ printbuf_exit(&buf); ++ } ++} ++ ++u64 bch2_fsck_recovery_passes(void) ++{ ++ u64 ret = 0; ++ ++ for (unsigned i = 0; i < ARRAY_SIZE(recovery_pass_fns); i++) ++ if (recovery_pass_fns[i].when & PASS_FSCK) ++ ret |= BIT_ULL(i); ++ return ret; ++} ++ ++static bool should_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass) ++{ ++ struct recovery_pass_fn *p = recovery_pass_fns + c->curr_recovery_pass; ++ ++ if (c->opts.norecovery && pass > BCH_RECOVERY_PASS_snapshots_read) ++ return false; ++ if (c->recovery_passes_explicit & BIT_ULL(pass)) ++ return true; ++ if ((p->when & PASS_FSCK) && c->opts.fsck) ++ return true; ++ if ((p->when & PASS_UNCLEAN) && !c->sb.clean) ++ return true; ++ if (p->when & PASS_ALWAYS) ++ return true; ++ return false; ++} ++ ++static int bch2_run_recovery_pass(struct bch_fs *c, enum bch_recovery_pass pass) ++{ ++ int ret; ++ ++ c->curr_recovery_pass = pass; ++ ++ if (should_run_recovery_pass(c, pass)) { ++ struct recovery_pass_fn *p = recovery_pass_fns + pass; ++ ++ if (!(p->when & PASS_SILENT)) ++ printk(KERN_INFO bch2_log_msg(c, "%s..."), ++ bch2_recovery_passes[pass]); ++ ret = p->fn(c); ++ if (ret) ++ return ret; ++ if (!(p->when & PASS_SILENT)) ++ printk(KERN_CONT " done\n"); ++ ++ c->recovery_passes_complete |= BIT_ULL(pass); ++ } ++ ++ return 0; ++} ++ ++static int bch2_run_recovery_passes(struct bch_fs *c) ++{ ++ int ret = 0; ++ ++ while (c->curr_recovery_pass < ARRAY_SIZE(recovery_pass_fns)) { ++ ret = bch2_run_recovery_pass(c, c->curr_recovery_pass); ++ if (bch2_err_matches(ret, BCH_ERR_restart_recovery)) ++ continue; ++ if (ret) ++ break; ++ c->curr_recovery_pass++; ++ } ++ ++ return ret; ++} ++ ++int bch2_fs_recovery(struct bch_fs *c) ++{ ++ struct bch_sb_field_clean *clean = NULL; ++ struct jset *last_journal_entry = NULL; ++ u64 last_seq = 0, blacklist_seq, journal_seq; ++ bool write_sb = false; ++ int ret = 0; ++ ++ if (c->sb.clean) { ++ clean = bch2_read_superblock_clean(c); ++ ret = PTR_ERR_OR_ZERO(clean); ++ if (ret) ++ goto err; ++ ++ bch_info(c, "recovering from clean shutdown, journal seq %llu", ++ le64_to_cpu(clean->journal_seq)); ++ } else { ++ bch_info(c, "recovering from unclean shutdown"); ++ } ++ ++ if (!(c->sb.features & (1ULL << BCH_FEATURE_new_extent_overwrite))) { ++ bch_err(c, "feature new_extent_overwrite not set, filesystem no longer supported"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ if (!c->sb.clean && ++ !(c->sb.features & (1ULL << BCH_FEATURE_extents_above_btree_updates))) { ++ bch_err(c, "filesystem needs recovery from older version; run fsck from older bcachefs-tools to fix"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ if (c->opts.fsck || !(c->opts.nochanges && c->opts.norecovery)) ++ check_version_upgrade(c); ++ ++ if (c->opts.fsck && c->opts.norecovery) { ++ bch_err(c, "cannot select both norecovery and fsck"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ ret = bch2_blacklist_table_initialize(c); ++ if (ret) { ++ bch_err(c, "error initializing blacklist table"); ++ goto err; ++ } ++ ++ if (!c->sb.clean || c->opts.fsck || c->opts.keep_journal) { ++ struct genradix_iter iter; ++ struct journal_replay **i; ++ ++ bch_verbose(c, "starting journal read"); ++ ret = bch2_journal_read(c, &last_seq, &blacklist_seq, &journal_seq); ++ if (ret) ++ goto err; ++ ++ /* ++ * note: cmd_list_journal needs the blacklist table fully up to date so ++ * it can asterisk ignored journal entries: ++ */ ++ if (c->opts.read_journal_only) ++ goto out; ++ ++ genradix_for_each_reverse(&c->journal_entries, iter, i) ++ if (*i && !(*i)->ignore) { ++ last_journal_entry = &(*i)->j; ++ break; ++ } ++ ++ if (mustfix_fsck_err_on(c->sb.clean && ++ last_journal_entry && ++ !journal_entry_empty(last_journal_entry), c, ++ "filesystem marked clean but journal not empty")) { ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, false); ++ c->sb.clean = false; ++ } ++ ++ if (!last_journal_entry) { ++ fsck_err_on(!c->sb.clean, c, "no journal entries found"); ++ if (clean) ++ goto use_clean; ++ ++ genradix_for_each_reverse(&c->journal_entries, iter, i) ++ if (*i) { ++ last_journal_entry = &(*i)->j; ++ (*i)->ignore = false; ++ break; ++ } ++ } ++ ++ ret = bch2_journal_keys_sort(c); ++ if (ret) ++ goto err; ++ ++ if (c->sb.clean && last_journal_entry) { ++ ret = bch2_verify_superblock_clean(c, &clean, ++ last_journal_entry); ++ if (ret) ++ goto err; ++ } ++ } else { ++use_clean: ++ if (!clean) { ++ bch_err(c, "no superblock clean section found"); ++ ret = -BCH_ERR_fsck_repair_impossible; ++ goto err; ++ ++ } ++ blacklist_seq = journal_seq = le64_to_cpu(clean->journal_seq) + 1; ++ } ++ ++ c->journal_replay_seq_start = last_seq; ++ c->journal_replay_seq_end = blacklist_seq - 1; ++ ++ if (c->opts.reconstruct_alloc) { ++ c->sb.compat &= ~(1ULL << BCH_COMPAT_alloc_info); ++ drop_alloc_keys(&c->journal_keys); ++ } ++ ++ zero_out_btree_mem_ptr(&c->journal_keys); ++ ++ ret = journal_replay_early(c, clean); ++ if (ret) ++ goto err; ++ ++ /* ++ * After an unclean shutdown, skip then next few journal sequence ++ * numbers as they may have been referenced by btree writes that ++ * happened before their corresponding journal writes - those btree ++ * writes need to be ignored, by skipping and blacklisting the next few ++ * journal sequence numbers: ++ */ ++ if (!c->sb.clean) ++ journal_seq += 8; ++ ++ if (blacklist_seq != journal_seq) { ++ ret = bch2_journal_log_msg(c, "blacklisting entries %llu-%llu", ++ blacklist_seq, journal_seq) ?: ++ bch2_journal_seq_blacklist_add(c, ++ blacklist_seq, journal_seq); ++ if (ret) { ++ bch_err(c, "error creating new journal seq blacklist entry"); ++ goto err; ++ } ++ } ++ ++ ret = bch2_journal_log_msg(c, "starting journal at entry %llu, replaying %llu-%llu", ++ journal_seq, last_seq, blacklist_seq - 1) ?: ++ bch2_fs_journal_start(&c->journal, journal_seq); ++ if (ret) ++ goto err; ++ ++ if (c->opts.reconstruct_alloc) ++ bch2_journal_log_msg(c, "dropping alloc info"); ++ ++ /* ++ * Skip past versions that might have possibly been used (as nonces), ++ * but hadn't had their pointers written: ++ */ ++ if (c->sb.encryption_type && !c->sb.clean) ++ atomic64_add(1 << 16, &c->key_version); ++ ++ ret = read_btree_roots(c); ++ if (ret) ++ goto err; ++ ++ if (c->opts.fsck && ++ (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) || ++ BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb))) ++ c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_check_topology); ++ ++ ret = bch2_run_recovery_passes(c); ++ if (ret) ++ goto err; ++ ++ /* If we fixed errors, verify that fs is actually clean now: */ ++ if (IS_ENABLED(CONFIG_BCACHEFS_DEBUG) && ++ test_bit(BCH_FS_ERRORS_FIXED, &c->flags) && ++ !test_bit(BCH_FS_ERRORS_NOT_FIXED, &c->flags) && ++ !test_bit(BCH_FS_ERROR, &c->flags)) { ++ bch_info(c, "Fixed errors, running fsck a second time to verify fs is clean"); ++ clear_bit(BCH_FS_ERRORS_FIXED, &c->flags); ++ ++ c->curr_recovery_pass = BCH_RECOVERY_PASS_check_alloc_info; ++ ++ ret = bch2_run_recovery_passes(c); ++ if (ret) ++ goto err; ++ ++ if (test_bit(BCH_FS_ERRORS_FIXED, &c->flags) || ++ test_bit(BCH_FS_ERRORS_NOT_FIXED, &c->flags)) { ++ bch_err(c, "Second fsck run was not clean"); ++ set_bit(BCH_FS_ERRORS_NOT_FIXED, &c->flags); ++ } ++ ++ set_bit(BCH_FS_ERRORS_FIXED, &c->flags); ++ } ++ ++ if (enabled_qtypes(c)) { ++ bch_verbose(c, "reading quotas"); ++ ret = bch2_fs_quota_read(c); ++ if (ret) ++ goto err; ++ bch_verbose(c, "quotas done"); ++ } ++ ++ mutex_lock(&c->sb_lock); ++ if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) != c->sb.version) { ++ SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, c->sb.version); ++ write_sb = true; ++ } ++ ++ if (!test_bit(BCH_FS_ERROR, &c->flags)) { ++ c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info); ++ write_sb = true; ++ } ++ ++ if (c->opts.fsck && ++ !test_bit(BCH_FS_ERROR, &c->flags) && ++ !test_bit(BCH_FS_ERRORS_NOT_FIXED, &c->flags)) { ++ SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 0); ++ SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 0); ++ write_sb = true; ++ } ++ ++ if (write_sb) ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ if (!(c->sb.compat & (1ULL << BCH_COMPAT_extents_above_btree_updates_done)) || ++ c->sb.version_min < bcachefs_metadata_version_btree_ptr_sectors_written) { ++ struct bch_move_stats stats; ++ ++ bch2_move_stats_init(&stats, "recovery"); ++ ++ bch_info(c, "scanning for old btree nodes"); ++ ret = bch2_fs_read_write(c) ?: ++ bch2_scan_old_btree_nodes(c, &stats); ++ if (ret) ++ goto err; ++ bch_info(c, "scanning for old btree nodes done"); ++ } ++ ++ if (c->journal_seq_blacklist_table && ++ c->journal_seq_blacklist_table->nr > 128) ++ queue_work(system_long_wq, &c->journal_seq_blacklist_gc_work); ++ ++ ret = 0; ++out: ++ set_bit(BCH_FS_FSCK_DONE, &c->flags); ++ bch2_flush_fsck_errs(c); ++ ++ if (!c->opts.keep_journal && ++ test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags)) { ++ bch2_journal_keys_free(&c->journal_keys); ++ bch2_journal_entries_free(c); ++ } ++ kfree(clean); ++ ++ if (!ret && test_bit(BCH_FS_HAVE_DELETED_SNAPSHOTS, &c->flags)) { ++ bch2_fs_read_write_early(c); ++ bch2_delete_dead_snapshots_async(c); ++ } ++ ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++err: ++fsck_err: ++ bch2_fs_emergency_read_only(c); ++ goto out; ++} ++ ++int bch2_fs_initialize(struct bch_fs *c) ++{ ++ struct bch_inode_unpacked root_inode, lostfound_inode; ++ struct bkey_inode_buf packed_inode; ++ struct qstr lostfound = QSTR("lost+found"); ++ struct bch_dev *ca; ++ unsigned i; ++ int ret; ++ ++ bch_notice(c, "initializing new filesystem"); ++ ++ mutex_lock(&c->sb_lock); ++ c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_extents_above_btree_updates_done); ++ c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_bformat_overflow_done); ++ ++ bch2_sb_maybe_downgrade(c); ++ ++ if (c->opts.version_upgrade != BCH_VERSION_UPGRADE_none) { ++ bch2_sb_upgrade(c, bcachefs_metadata_version_current); ++ SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current); ++ bch2_write_super(c); ++ } ++ mutex_unlock(&c->sb_lock); ++ ++ c->curr_recovery_pass = ARRAY_SIZE(recovery_pass_fns); ++ set_bit(BCH_FS_MAY_GO_RW, &c->flags); ++ set_bit(BCH_FS_FSCK_DONE, &c->flags); ++ ++ for (i = 0; i < BTREE_ID_NR; i++) ++ bch2_btree_root_alloc(c, i); ++ ++ for_each_online_member(ca, c, i) ++ bch2_dev_usage_init(ca); ++ ++ for_each_online_member(ca, c, i) { ++ ret = bch2_dev_journal_alloc(ca); ++ if (ret) { ++ percpu_ref_put(&ca->io_ref); ++ goto err; ++ } ++ } ++ ++ /* ++ * journal_res_get() will crash if called before this has ++ * set up the journal.pin FIFO and journal.cur pointer: ++ */ ++ bch2_fs_journal_start(&c->journal, 1); ++ bch2_journal_set_replay_done(&c->journal); ++ ++ ret = bch2_fs_read_write_early(c); ++ if (ret) ++ goto err; ++ ++ /* ++ * Write out the superblock and journal buckets, now that we can do ++ * btree updates ++ */ ++ bch_verbose(c, "marking superblocks"); ++ for_each_member_device(ca, c, i) { ++ ret = bch2_trans_mark_dev_sb(c, ca); ++ if (ret) { ++ percpu_ref_put(&ca->ref); ++ goto err; ++ } ++ ++ ca->new_fs_bucket_idx = 0; ++ } ++ ++ ret = bch2_fs_freespace_init(c); ++ if (ret) ++ goto err; ++ ++ ret = bch2_initialize_subvolumes(c); ++ if (ret) ++ goto err; ++ ++ bch_verbose(c, "reading snapshots table"); ++ ret = bch2_snapshots_read(c); ++ if (ret) ++ goto err; ++ bch_verbose(c, "reading snapshots done"); ++ ++ bch2_inode_init(c, &root_inode, 0, 0, S_IFDIR|0755, 0, NULL); ++ root_inode.bi_inum = BCACHEFS_ROOT_INO; ++ root_inode.bi_subvol = BCACHEFS_ROOT_SUBVOL; ++ bch2_inode_pack(&packed_inode, &root_inode); ++ packed_inode.inode.k.p.snapshot = U32_MAX; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_inodes, &packed_inode.inode.k_i, NULL, 0); ++ if (ret) { ++ bch_err_msg(c, ret, "creating root directory"); ++ goto err; ++ } ++ ++ bch2_inode_init_early(c, &lostfound_inode); ++ ++ ret = bch2_trans_do(c, NULL, NULL, 0, ++ bch2_create_trans(trans, ++ BCACHEFS_ROOT_SUBVOL_INUM, ++ &root_inode, &lostfound_inode, ++ &lostfound, ++ 0, 0, S_IFDIR|0700, 0, ++ NULL, NULL, (subvol_inum) { 0 }, 0)); ++ if (ret) { ++ bch_err_msg(c, ret, "creating lost+found"); ++ goto err; ++ } ++ ++ if (enabled_qtypes(c)) { ++ ret = bch2_fs_quota_read(c); ++ if (ret) ++ goto err; ++ } ++ ++ ret = bch2_journal_flush(&c->journal); ++ if (ret) { ++ bch_err_msg(c, ret, "writing first journal entry"); ++ goto err; ++ } ++ ++ mutex_lock(&c->sb_lock); ++ SET_BCH_SB_INITIALIZED(c->disk_sb.sb, true); ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, false); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++err: ++ bch_err_fn(ca, ret); ++ return ret; ++} +diff --git a/fs/bcachefs/recovery.h b/fs/bcachefs/recovery.h +new file mode 100644 +index 000000000000..852d30567da9 +--- /dev/null ++++ b/fs/bcachefs/recovery.h +@@ -0,0 +1,33 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_RECOVERY_H ++#define _BCACHEFS_RECOVERY_H ++ ++extern const char * const bch2_recovery_passes[]; ++ ++/* ++ * For when we need to rewind recovery passes and run a pass we skipped: ++ */ ++static inline int bch2_run_explicit_recovery_pass(struct bch_fs *c, ++ enum bch_recovery_pass pass) ++{ ++ bch_info(c, "running explicit recovery pass %s (%u), currently at %s (%u)", ++ bch2_recovery_passes[pass], pass, ++ bch2_recovery_passes[c->curr_recovery_pass], c->curr_recovery_pass); ++ ++ c->recovery_passes_explicit |= BIT_ULL(pass); ++ ++ if (c->curr_recovery_pass >= pass) { ++ c->curr_recovery_pass = pass; ++ c->recovery_passes_complete &= (1ULL << pass) >> 1; ++ return -BCH_ERR_restart_recovery; ++ } else { ++ return 0; ++ } ++} ++ ++u64 bch2_fsck_recovery_passes(void); ++ ++int bch2_fs_recovery(struct bch_fs *); ++int bch2_fs_initialize(struct bch_fs *); ++ ++#endif /* _BCACHEFS_RECOVERY_H */ +diff --git a/fs/bcachefs/recovery_types.h b/fs/bcachefs/recovery_types.h +new file mode 100644 +index 000000000000..fbfa9d831d6f +--- /dev/null ++++ b/fs/bcachefs/recovery_types.h +@@ -0,0 +1,49 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_RECOVERY_TYPES_H ++#define _BCACHEFS_RECOVERY_TYPES_H ++ ++#define PASS_SILENT BIT(0) ++#define PASS_FSCK BIT(1) ++#define PASS_UNCLEAN BIT(2) ++#define PASS_ALWAYS BIT(3) ++ ++#define BCH_RECOVERY_PASSES() \ ++ x(alloc_read, PASS_ALWAYS) \ ++ x(stripes_read, PASS_ALWAYS) \ ++ x(initialize_subvolumes, 0) \ ++ x(snapshots_read, PASS_ALWAYS) \ ++ x(check_topology, 0) \ ++ x(check_allocations, PASS_FSCK) \ ++ x(set_may_go_rw, PASS_ALWAYS|PASS_SILENT) \ ++ x(journal_replay, PASS_ALWAYS) \ ++ x(check_alloc_info, PASS_FSCK) \ ++ x(check_lrus, PASS_FSCK) \ ++ x(check_btree_backpointers, PASS_FSCK) \ ++ x(check_backpointers_to_extents,PASS_FSCK) \ ++ x(check_extents_to_backpointers,PASS_FSCK) \ ++ x(check_alloc_to_lru_refs, PASS_FSCK) \ ++ x(fs_freespace_init, PASS_ALWAYS|PASS_SILENT) \ ++ x(bucket_gens_init, 0) \ ++ x(check_snapshot_trees, PASS_FSCK) \ ++ x(check_snapshots, PASS_FSCK) \ ++ x(check_subvols, PASS_FSCK) \ ++ x(delete_dead_snapshots, PASS_FSCK|PASS_UNCLEAN) \ ++ x(fs_upgrade_for_subvolumes, 0) \ ++ x(resume_logged_ops, PASS_ALWAYS) \ ++ x(check_inodes, PASS_FSCK) \ ++ x(check_extents, PASS_FSCK) \ ++ x(check_dirents, PASS_FSCK) \ ++ x(check_xattrs, PASS_FSCK) \ ++ x(check_root, PASS_FSCK) \ ++ x(check_directory_structure, PASS_FSCK) \ ++ x(check_nlinks, PASS_FSCK) \ ++ x(delete_dead_inodes, PASS_FSCK|PASS_UNCLEAN) \ ++ x(fix_reflink_p, 0) \ ++ ++enum bch_recovery_pass { ++#define x(n, when) BCH_RECOVERY_PASS_##n, ++ BCH_RECOVERY_PASSES() ++#undef x ++}; ++ ++#endif /* _BCACHEFS_RECOVERY_TYPES_H */ +diff --git a/fs/bcachefs/reflink.c b/fs/bcachefs/reflink.c +new file mode 100644 +index 000000000000..d77d0ea9afff +--- /dev/null ++++ b/fs/bcachefs/reflink.c +@@ -0,0 +1,405 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "bkey_buf.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "extents.h" ++#include "inode.h" ++#include "io_misc.h" ++#include "io_write.h" ++#include "reflink.h" ++#include "subvolume.h" ++#include "super-io.h" ++ ++#include ++ ++static inline unsigned bkey_type_to_indirect(const struct bkey *k) ++{ ++ switch (k->type) { ++ case KEY_TYPE_extent: ++ return KEY_TYPE_reflink_v; ++ case KEY_TYPE_inline_data: ++ return KEY_TYPE_indirect_inline_data; ++ default: ++ return 0; ++ } ++} ++ ++/* reflink pointers */ ++ ++int bch2_reflink_p_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); ++ ++ if (c->sb.version >= bcachefs_metadata_version_reflink_p_fix && ++ le64_to_cpu(p.v->idx) < le32_to_cpu(p.v->front_pad)) { ++ prt_printf(err, "idx < front_pad (%llu < %u)", ++ le64_to_cpu(p.v->idx), le32_to_cpu(p.v->front_pad)); ++ return -EINVAL; ++ } ++ ++ return 0; ++} ++ ++void bch2_reflink_p_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_reflink_p p = bkey_s_c_to_reflink_p(k); ++ ++ prt_printf(out, "idx %llu front_pad %u back_pad %u", ++ le64_to_cpu(p.v->idx), ++ le32_to_cpu(p.v->front_pad), ++ le32_to_cpu(p.v->back_pad)); ++} ++ ++bool bch2_reflink_p_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) ++{ ++ struct bkey_s_reflink_p l = bkey_s_to_reflink_p(_l); ++ struct bkey_s_c_reflink_p r = bkey_s_c_to_reflink_p(_r); ++ ++ /* ++ * Disabled for now, the triggers code needs to be reworked for merging ++ * of reflink pointers to work: ++ */ ++ return false; ++ ++ if (le64_to_cpu(l.v->idx) + l.k->size != le64_to_cpu(r.v->idx)) ++ return false; ++ ++ bch2_key_resize(l.k, l.k->size + r.k->size); ++ return true; ++} ++ ++/* indirect extents */ ++ ++int bch2_reflink_v_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ return bch2_bkey_ptrs_invalid(c, k, flags, err); ++} ++ ++void bch2_reflink_v_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_reflink_v r = bkey_s_c_to_reflink_v(k); ++ ++ prt_printf(out, "refcount: %llu ", le64_to_cpu(r.v->refcount)); ++ ++ bch2_bkey_ptrs_to_text(out, c, k); ++} ++ ++#if 0 ++Currently disabled, needs to be debugged: ++ ++bool bch2_reflink_v_merge(struct bch_fs *c, struct bkey_s _l, struct bkey_s_c _r) ++{ ++ struct bkey_s_reflink_v l = bkey_s_to_reflink_v(_l); ++ struct bkey_s_c_reflink_v r = bkey_s_c_to_reflink_v(_r); ++ ++ return l.v->refcount == r.v->refcount && bch2_extent_merge(c, _l, _r); ++} ++#endif ++ ++int bch2_trans_mark_reflink_v(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_i *new, ++ unsigned flags) ++{ ++ if (!(flags & BTREE_TRIGGER_OVERWRITE)) { ++ struct bkey_i_reflink_v *r = bkey_i_to_reflink_v(new); ++ ++ if (!r->v.refcount) { ++ r->k.type = KEY_TYPE_deleted; ++ r->k.size = 0; ++ set_bkey_val_u64s(&r->k, 0); ++ return 0; ++ } ++ } ++ ++ return bch2_trans_mark_extent(trans, btree_id, level, old, new, flags); ++} ++ ++/* indirect inline data */ ++ ++int bch2_indirect_inline_data_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ return 0; ++} ++ ++void bch2_indirect_inline_data_to_text(struct printbuf *out, ++ struct bch_fs *c, struct bkey_s_c k) ++{ ++ struct bkey_s_c_indirect_inline_data d = bkey_s_c_to_indirect_inline_data(k); ++ unsigned datalen = bkey_inline_data_bytes(k.k); ++ ++ prt_printf(out, "refcount %llu datalen %u: %*phN", ++ le64_to_cpu(d.v->refcount), datalen, ++ min(datalen, 32U), d.v->data); ++} ++ ++int bch2_trans_mark_indirect_inline_data(struct btree_trans *trans, ++ enum btree_id btree_id, unsigned level, ++ struct bkey_s_c old, struct bkey_i *new, ++ unsigned flags) ++{ ++ if (!(flags & BTREE_TRIGGER_OVERWRITE)) { ++ struct bkey_i_indirect_inline_data *r = ++ bkey_i_to_indirect_inline_data(new); ++ ++ if (!r->v.refcount) { ++ r->k.type = KEY_TYPE_deleted; ++ r->k.size = 0; ++ set_bkey_val_u64s(&r->k, 0); ++ } ++ } ++ ++ return 0; ++} ++ ++static int bch2_make_extent_indirect(struct btree_trans *trans, ++ struct btree_iter *extent_iter, ++ struct bkey_i *orig) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter reflink_iter = { NULL }; ++ struct bkey_s_c k; ++ struct bkey_i *r_v; ++ struct bkey_i_reflink_p *r_p; ++ __le64 *refcount; ++ int ret; ++ ++ if (orig->k.type == KEY_TYPE_inline_data) ++ bch2_check_set_feature(c, BCH_FEATURE_reflink_inline_data); ++ ++ bch2_trans_iter_init(trans, &reflink_iter, BTREE_ID_reflink, POS_MAX, ++ BTREE_ITER_INTENT); ++ k = bch2_btree_iter_peek_prev(&reflink_iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ r_v = bch2_trans_kmalloc(trans, sizeof(__le64) + bkey_bytes(&orig->k)); ++ ret = PTR_ERR_OR_ZERO(r_v); ++ if (ret) ++ goto err; ++ ++ bkey_init(&r_v->k); ++ r_v->k.type = bkey_type_to_indirect(&orig->k); ++ r_v->k.p = reflink_iter.pos; ++ bch2_key_resize(&r_v->k, orig->k.size); ++ r_v->k.version = orig->k.version; ++ ++ set_bkey_val_bytes(&r_v->k, sizeof(__le64) + bkey_val_bytes(&orig->k)); ++ ++ refcount = bkey_refcount(r_v); ++ *refcount = 0; ++ memcpy(refcount + 1, &orig->v, bkey_val_bytes(&orig->k)); ++ ++ ret = bch2_trans_update(trans, &reflink_iter, r_v, 0); ++ if (ret) ++ goto err; ++ ++ /* ++ * orig is in a bkey_buf which statically allocates 5 64s for the val, ++ * so we know it will be big enough: ++ */ ++ orig->k.type = KEY_TYPE_reflink_p; ++ r_p = bkey_i_to_reflink_p(orig); ++ set_bkey_val_bytes(&r_p->k, sizeof(r_p->v)); ++ ++ /* FORTIFY_SOURCE is broken here, and doesn't provide unsafe_memset() */ ++#if !defined(__NO_FORTIFY) && defined(__OPTIMIZE__) && defined(CONFIG_FORTIFY_SOURCE) ++ __underlying_memset(&r_p->v, 0, sizeof(r_p->v)); ++#else ++ memset(&r_p->v, 0, sizeof(r_p->v)); ++#endif ++ ++ r_p->v.idx = cpu_to_le64(bkey_start_offset(&r_v->k)); ++ ++ ret = bch2_trans_update(trans, extent_iter, &r_p->k_i, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++err: ++ bch2_trans_iter_exit(trans, &reflink_iter); ++ ++ return ret; ++} ++ ++static struct bkey_s_c get_next_src(struct btree_iter *iter, struct bpos end) ++{ ++ struct bkey_s_c k; ++ int ret; ++ ++ for_each_btree_key_upto_continue_norestart(*iter, end, 0, k, ret) { ++ if (bkey_extent_is_unwritten(k)) ++ continue; ++ ++ if (bkey_extent_is_data(k.k)) ++ return k; ++ } ++ ++ if (bkey_ge(iter->pos, end)) ++ bch2_btree_iter_set_pos(iter, end); ++ return ret ? bkey_s_c_err(ret) : bkey_s_c_null; ++} ++ ++s64 bch2_remap_range(struct bch_fs *c, ++ subvol_inum dst_inum, u64 dst_offset, ++ subvol_inum src_inum, u64 src_offset, ++ u64 remap_sectors, ++ u64 new_i_size, s64 *i_sectors_delta) ++{ ++ struct btree_trans *trans; ++ struct btree_iter dst_iter, src_iter; ++ struct bkey_s_c src_k; ++ struct bkey_buf new_dst, new_src; ++ struct bpos dst_start = POS(dst_inum.inum, dst_offset); ++ struct bpos src_start = POS(src_inum.inum, src_offset); ++ struct bpos dst_end = dst_start, src_end = src_start; ++ struct bpos src_want; ++ u64 dst_done; ++ u32 dst_snapshot, src_snapshot; ++ int ret = 0, ret2 = 0; ++ ++ if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_reflink)) ++ return -BCH_ERR_erofs_no_writes; ++ ++ bch2_check_set_feature(c, BCH_FEATURE_reflink); ++ ++ dst_end.offset += remap_sectors; ++ src_end.offset += remap_sectors; ++ ++ bch2_bkey_buf_init(&new_dst); ++ bch2_bkey_buf_init(&new_src); ++ trans = bch2_trans_get(c); ++ ++ bch2_trans_iter_init(trans, &src_iter, BTREE_ID_extents, src_start, ++ BTREE_ITER_INTENT); ++ bch2_trans_iter_init(trans, &dst_iter, BTREE_ID_extents, dst_start, ++ BTREE_ITER_INTENT); ++ ++ while ((ret == 0 || ++ bch2_err_matches(ret, BCH_ERR_transaction_restart)) && ++ bkey_lt(dst_iter.pos, dst_end)) { ++ struct disk_reservation disk_res = { 0 }; ++ ++ bch2_trans_begin(trans); ++ ++ if (fatal_signal_pending(current)) { ++ ret = -EINTR; ++ break; ++ } ++ ++ ret = bch2_subvolume_get_snapshot(trans, src_inum.subvol, ++ &src_snapshot); ++ if (ret) ++ continue; ++ ++ bch2_btree_iter_set_snapshot(&src_iter, src_snapshot); ++ ++ ret = bch2_subvolume_get_snapshot(trans, dst_inum.subvol, ++ &dst_snapshot); ++ if (ret) ++ continue; ++ ++ bch2_btree_iter_set_snapshot(&dst_iter, dst_snapshot); ++ ++ dst_done = dst_iter.pos.offset - dst_start.offset; ++ src_want = POS(src_start.inode, src_start.offset + dst_done); ++ bch2_btree_iter_set_pos(&src_iter, src_want); ++ ++ src_k = get_next_src(&src_iter, src_end); ++ ret = bkey_err(src_k); ++ if (ret) ++ continue; ++ ++ if (bkey_lt(src_want, src_iter.pos)) { ++ ret = bch2_fpunch_at(trans, &dst_iter, dst_inum, ++ min(dst_end.offset, ++ dst_iter.pos.offset + ++ src_iter.pos.offset - src_want.offset), ++ i_sectors_delta); ++ continue; ++ } ++ ++ if (src_k.k->type != KEY_TYPE_reflink_p) { ++ bch2_btree_iter_set_pos_to_extent_start(&src_iter); ++ ++ bch2_bkey_buf_reassemble(&new_src, c, src_k); ++ src_k = bkey_i_to_s_c(new_src.k); ++ ++ ret = bch2_make_extent_indirect(trans, &src_iter, ++ new_src.k); ++ if (ret) ++ continue; ++ ++ BUG_ON(src_k.k->type != KEY_TYPE_reflink_p); ++ } ++ ++ if (src_k.k->type == KEY_TYPE_reflink_p) { ++ struct bkey_s_c_reflink_p src_p = ++ bkey_s_c_to_reflink_p(src_k); ++ struct bkey_i_reflink_p *dst_p = ++ bkey_reflink_p_init(new_dst.k); ++ ++ u64 offset = le64_to_cpu(src_p.v->idx) + ++ (src_want.offset - ++ bkey_start_offset(src_k.k)); ++ ++ dst_p->v.idx = cpu_to_le64(offset); ++ } else { ++ BUG(); ++ } ++ ++ new_dst.k->k.p = dst_iter.pos; ++ bch2_key_resize(&new_dst.k->k, ++ min(src_k.k->p.offset - src_want.offset, ++ dst_end.offset - dst_iter.pos.offset)); ++ ++ ret = bch2_extent_update(trans, dst_inum, &dst_iter, ++ new_dst.k, &disk_res, ++ new_i_size, i_sectors_delta, ++ true); ++ bch2_disk_reservation_put(c, &disk_res); ++ } ++ bch2_trans_iter_exit(trans, &dst_iter); ++ bch2_trans_iter_exit(trans, &src_iter); ++ ++ BUG_ON(!ret && !bkey_eq(dst_iter.pos, dst_end)); ++ BUG_ON(bkey_gt(dst_iter.pos, dst_end)); ++ ++ dst_done = dst_iter.pos.offset - dst_start.offset; ++ new_i_size = min(dst_iter.pos.offset << 9, new_i_size); ++ ++ do { ++ struct bch_inode_unpacked inode_u; ++ struct btree_iter inode_iter = { NULL }; ++ ++ bch2_trans_begin(trans); ++ ++ ret2 = bch2_inode_peek(trans, &inode_iter, &inode_u, ++ dst_inum, BTREE_ITER_INTENT); ++ ++ if (!ret2 && ++ inode_u.bi_size < new_i_size) { ++ inode_u.bi_size = new_i_size; ++ ret2 = bch2_inode_write(trans, &inode_iter, &inode_u) ?: ++ bch2_trans_commit(trans, NULL, NULL, ++ BTREE_INSERT_NOFAIL); ++ } ++ ++ bch2_trans_iter_exit(trans, &inode_iter); ++ } while (bch2_err_matches(ret2, BCH_ERR_transaction_restart)); ++ ++ bch2_trans_put(trans); ++ bch2_bkey_buf_exit(&new_src, c); ++ bch2_bkey_buf_exit(&new_dst, c); ++ ++ bch2_write_ref_put(c, BCH_WRITE_REF_reflink); ++ ++ return dst_done ?: ret ?: ret2; ++} +diff --git a/fs/bcachefs/reflink.h b/fs/bcachefs/reflink.h +new file mode 100644 +index 000000000000..fe52538efb52 +--- /dev/null ++++ b/fs/bcachefs/reflink.h +@@ -0,0 +1,81 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REFLINK_H ++#define _BCACHEFS_REFLINK_H ++ ++enum bkey_invalid_flags; ++ ++int bch2_reflink_p_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_reflink_p_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++bool bch2_reflink_p_merge(struct bch_fs *, struct bkey_s, struct bkey_s_c); ++ ++#define bch2_bkey_ops_reflink_p ((struct bkey_ops) { \ ++ .key_invalid = bch2_reflink_p_invalid, \ ++ .val_to_text = bch2_reflink_p_to_text, \ ++ .key_merge = bch2_reflink_p_merge, \ ++ .trans_trigger = bch2_trans_mark_reflink_p, \ ++ .atomic_trigger = bch2_mark_reflink_p, \ ++ .min_val_size = 16, \ ++}) ++ ++int bch2_reflink_v_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_reflink_v_to_text(struct printbuf *, struct bch_fs *, ++ struct bkey_s_c); ++int bch2_trans_mark_reflink_v(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_i *, unsigned); ++ ++#define bch2_bkey_ops_reflink_v ((struct bkey_ops) { \ ++ .key_invalid = bch2_reflink_v_invalid, \ ++ .val_to_text = bch2_reflink_v_to_text, \ ++ .swab = bch2_ptr_swab, \ ++ .trans_trigger = bch2_trans_mark_reflink_v, \ ++ .atomic_trigger = bch2_mark_extent, \ ++ .min_val_size = 8, \ ++}) ++ ++int bch2_indirect_inline_data_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_indirect_inline_data_to_text(struct printbuf *, ++ struct bch_fs *, struct bkey_s_c); ++int bch2_trans_mark_indirect_inline_data(struct btree_trans *, ++ enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_i *, ++ unsigned); ++ ++#define bch2_bkey_ops_indirect_inline_data ((struct bkey_ops) { \ ++ .key_invalid = bch2_indirect_inline_data_invalid, \ ++ .val_to_text = bch2_indirect_inline_data_to_text, \ ++ .trans_trigger = bch2_trans_mark_indirect_inline_data, \ ++ .min_val_size = 8, \ ++}) ++ ++static inline const __le64 *bkey_refcount_c(struct bkey_s_c k) ++{ ++ switch (k.k->type) { ++ case KEY_TYPE_reflink_v: ++ return &bkey_s_c_to_reflink_v(k).v->refcount; ++ case KEY_TYPE_indirect_inline_data: ++ return &bkey_s_c_to_indirect_inline_data(k).v->refcount; ++ default: ++ return NULL; ++ } ++} ++ ++static inline __le64 *bkey_refcount(struct bkey_i *k) ++{ ++ switch (k->k.type) { ++ case KEY_TYPE_reflink_v: ++ return &bkey_i_to_reflink_v(k)->v.refcount; ++ case KEY_TYPE_indirect_inline_data: ++ return &bkey_i_to_indirect_inline_data(k)->v.refcount; ++ default: ++ return NULL; ++ } ++} ++ ++s64 bch2_remap_range(struct bch_fs *, subvol_inum, u64, ++ subvol_inum, u64, u64, u64, s64 *); ++ ++#endif /* _BCACHEFS_REFLINK_H */ +diff --git a/fs/bcachefs/replicas.c b/fs/bcachefs/replicas.c +new file mode 100644 +index 000000000000..cef2a0447b86 +--- /dev/null ++++ b/fs/bcachefs/replicas.c +@@ -0,0 +1,1058 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "buckets.h" ++#include "journal.h" ++#include "replicas.h" ++#include "super-io.h" ++ ++static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *, ++ struct bch_replicas_cpu *); ++ ++/* Replicas tracking - in memory: */ ++ ++static void verify_replicas_entry(struct bch_replicas_entry *e) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ unsigned i; ++ ++ BUG_ON(e->data_type >= BCH_DATA_NR); ++ BUG_ON(!e->nr_devs); ++ BUG_ON(e->nr_required > 1 && ++ e->nr_required >= e->nr_devs); ++ ++ for (i = 0; i + 1 < e->nr_devs; i++) ++ BUG_ON(e->devs[i] >= e->devs[i + 1]); ++#endif ++} ++ ++void bch2_replicas_entry_sort(struct bch_replicas_entry *e) ++{ ++ bubble_sort(e->devs, e->nr_devs, u8_cmp); ++} ++ ++static void bch2_cpu_replicas_sort(struct bch_replicas_cpu *r) ++{ ++ eytzinger0_sort(r->entries, r->nr, r->entry_size, memcmp, NULL); ++} ++ ++static void bch2_replicas_entry_v0_to_text(struct printbuf *out, ++ struct bch_replicas_entry_v0 *e) ++{ ++ unsigned i; ++ ++ if (e->data_type < BCH_DATA_NR) ++ prt_printf(out, "%s", bch2_data_types[e->data_type]); ++ else ++ prt_printf(out, "(invalid data type %u)", e->data_type); ++ ++ prt_printf(out, ": %u [", e->nr_devs); ++ for (i = 0; i < e->nr_devs; i++) ++ prt_printf(out, i ? " %u" : "%u", e->devs[i]); ++ prt_printf(out, "]"); ++} ++ ++void bch2_replicas_entry_to_text(struct printbuf *out, ++ struct bch_replicas_entry *e) ++{ ++ unsigned i; ++ ++ if (e->data_type < BCH_DATA_NR) ++ prt_printf(out, "%s", bch2_data_types[e->data_type]); ++ else ++ prt_printf(out, "(invalid data type %u)", e->data_type); ++ ++ prt_printf(out, ": %u/%u [", e->nr_required, e->nr_devs); ++ for (i = 0; i < e->nr_devs; i++) ++ prt_printf(out, i ? " %u" : "%u", e->devs[i]); ++ prt_printf(out, "]"); ++} ++ ++void bch2_cpu_replicas_to_text(struct printbuf *out, ++ struct bch_replicas_cpu *r) ++{ ++ struct bch_replicas_entry *e; ++ bool first = true; ++ ++ for_each_cpu_replicas_entry(r, e) { ++ if (!first) ++ prt_printf(out, " "); ++ first = false; ++ ++ bch2_replicas_entry_to_text(out, e); ++ } ++} ++ ++static void extent_to_replicas(struct bkey_s_c k, ++ struct bch_replicas_entry *r) ++{ ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ ++ r->nr_required = 1; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ if (p.ptr.cached) ++ continue; ++ ++ if (!p.has_ec) ++ r->devs[r->nr_devs++] = p.ptr.dev; ++ else ++ r->nr_required = 0; ++ } ++} ++ ++static void stripe_to_replicas(struct bkey_s_c k, ++ struct bch_replicas_entry *r) ++{ ++ struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k); ++ const struct bch_extent_ptr *ptr; ++ ++ r->nr_required = s.v->nr_blocks - s.v->nr_redundant; ++ ++ for (ptr = s.v->ptrs; ++ ptr < s.v->ptrs + s.v->nr_blocks; ++ ptr++) ++ r->devs[r->nr_devs++] = ptr->dev; ++} ++ ++void bch2_bkey_to_replicas(struct bch_replicas_entry *e, ++ struct bkey_s_c k) ++{ ++ e->nr_devs = 0; ++ ++ switch (k.k->type) { ++ case KEY_TYPE_btree_ptr: ++ case KEY_TYPE_btree_ptr_v2: ++ e->data_type = BCH_DATA_btree; ++ extent_to_replicas(k, e); ++ break; ++ case KEY_TYPE_extent: ++ case KEY_TYPE_reflink_v: ++ e->data_type = BCH_DATA_user; ++ extent_to_replicas(k, e); ++ break; ++ case KEY_TYPE_stripe: ++ e->data_type = BCH_DATA_parity; ++ stripe_to_replicas(k, e); ++ break; ++ } ++ ++ bch2_replicas_entry_sort(e); ++} ++ ++void bch2_devlist_to_replicas(struct bch_replicas_entry *e, ++ enum bch_data_type data_type, ++ struct bch_devs_list devs) ++{ ++ unsigned i; ++ ++ BUG_ON(!data_type || ++ data_type == BCH_DATA_sb || ++ data_type >= BCH_DATA_NR); ++ ++ e->data_type = data_type; ++ e->nr_devs = 0; ++ e->nr_required = 1; ++ ++ for (i = 0; i < devs.nr; i++) ++ e->devs[e->nr_devs++] = devs.devs[i]; ++ ++ bch2_replicas_entry_sort(e); ++} ++ ++static struct bch_replicas_cpu ++cpu_replicas_add_entry(struct bch_replicas_cpu *old, ++ struct bch_replicas_entry *new_entry) ++{ ++ unsigned i; ++ struct bch_replicas_cpu new = { ++ .nr = old->nr + 1, ++ .entry_size = max_t(unsigned, old->entry_size, ++ replicas_entry_bytes(new_entry)), ++ }; ++ ++ BUG_ON(!new_entry->data_type); ++ verify_replicas_entry(new_entry); ++ ++ new.entries = kcalloc(new.nr, new.entry_size, GFP_KERNEL); ++ if (!new.entries) ++ return new; ++ ++ for (i = 0; i < old->nr; i++) ++ memcpy(cpu_replicas_entry(&new, i), ++ cpu_replicas_entry(old, i), ++ old->entry_size); ++ ++ memcpy(cpu_replicas_entry(&new, old->nr), ++ new_entry, ++ replicas_entry_bytes(new_entry)); ++ ++ bch2_cpu_replicas_sort(&new); ++ return new; ++} ++ ++static inline int __replicas_entry_idx(struct bch_replicas_cpu *r, ++ struct bch_replicas_entry *search) ++{ ++ int idx, entry_size = replicas_entry_bytes(search); ++ ++ if (unlikely(entry_size > r->entry_size)) ++ return -1; ++ ++ verify_replicas_entry(search); ++ ++#define entry_cmp(_l, _r, size) memcmp(_l, _r, entry_size) ++ idx = eytzinger0_find(r->entries, r->nr, r->entry_size, ++ entry_cmp, search); ++#undef entry_cmp ++ ++ return idx < r->nr ? idx : -1; ++} ++ ++int bch2_replicas_entry_idx(struct bch_fs *c, ++ struct bch_replicas_entry *search) ++{ ++ bch2_replicas_entry_sort(search); ++ ++ return __replicas_entry_idx(&c->replicas, search); ++} ++ ++static bool __replicas_has_entry(struct bch_replicas_cpu *r, ++ struct bch_replicas_entry *search) ++{ ++ return __replicas_entry_idx(r, search) >= 0; ++} ++ ++bool bch2_replicas_marked(struct bch_fs *c, ++ struct bch_replicas_entry *search) ++{ ++ bool marked; ++ ++ if (!search->nr_devs) ++ return true; ++ ++ verify_replicas_entry(search); ++ ++ percpu_down_read(&c->mark_lock); ++ marked = __replicas_has_entry(&c->replicas, search) && ++ (likely((!c->replicas_gc.entries)) || ++ __replicas_has_entry(&c->replicas_gc, search)); ++ percpu_up_read(&c->mark_lock); ++ ++ return marked; ++} ++ ++static void __replicas_table_update(struct bch_fs_usage *dst, ++ struct bch_replicas_cpu *dst_r, ++ struct bch_fs_usage *src, ++ struct bch_replicas_cpu *src_r) ++{ ++ int src_idx, dst_idx; ++ ++ *dst = *src; ++ ++ for (src_idx = 0; src_idx < src_r->nr; src_idx++) { ++ if (!src->replicas[src_idx]) ++ continue; ++ ++ dst_idx = __replicas_entry_idx(dst_r, ++ cpu_replicas_entry(src_r, src_idx)); ++ BUG_ON(dst_idx < 0); ++ ++ dst->replicas[dst_idx] = src->replicas[src_idx]; ++ } ++} ++ ++static void __replicas_table_update_pcpu(struct bch_fs_usage __percpu *dst_p, ++ struct bch_replicas_cpu *dst_r, ++ struct bch_fs_usage __percpu *src_p, ++ struct bch_replicas_cpu *src_r) ++{ ++ unsigned src_nr = sizeof(struct bch_fs_usage) / sizeof(u64) + src_r->nr; ++ struct bch_fs_usage *dst, *src = (void *) ++ bch2_acc_percpu_u64s((u64 __percpu *) src_p, src_nr); ++ ++ preempt_disable(); ++ dst = this_cpu_ptr(dst_p); ++ preempt_enable(); ++ ++ __replicas_table_update(dst, dst_r, src, src_r); ++} ++ ++/* ++ * Resize filesystem accounting: ++ */ ++static int replicas_table_update(struct bch_fs *c, ++ struct bch_replicas_cpu *new_r) ++{ ++ struct bch_fs_usage __percpu *new_usage[JOURNAL_BUF_NR]; ++ struct bch_fs_usage_online *new_scratch = NULL; ++ struct bch_fs_usage __percpu *new_gc = NULL; ++ struct bch_fs_usage *new_base = NULL; ++ unsigned i, bytes = sizeof(struct bch_fs_usage) + ++ sizeof(u64) * new_r->nr; ++ unsigned scratch_bytes = sizeof(struct bch_fs_usage_online) + ++ sizeof(u64) * new_r->nr; ++ int ret = 0; ++ ++ memset(new_usage, 0, sizeof(new_usage)); ++ ++ for (i = 0; i < ARRAY_SIZE(new_usage); i++) ++ if (!(new_usage[i] = __alloc_percpu_gfp(bytes, ++ sizeof(u64), GFP_KERNEL))) ++ goto err; ++ ++ if (!(new_base = kzalloc(bytes, GFP_KERNEL)) || ++ !(new_scratch = kmalloc(scratch_bytes, GFP_KERNEL)) || ++ (c->usage_gc && ++ !(new_gc = __alloc_percpu_gfp(bytes, sizeof(u64), GFP_KERNEL)))) ++ goto err; ++ ++ for (i = 0; i < ARRAY_SIZE(new_usage); i++) ++ if (c->usage[i]) ++ __replicas_table_update_pcpu(new_usage[i], new_r, ++ c->usage[i], &c->replicas); ++ if (c->usage_base) ++ __replicas_table_update(new_base, new_r, ++ c->usage_base, &c->replicas); ++ if (c->usage_gc) ++ __replicas_table_update_pcpu(new_gc, new_r, ++ c->usage_gc, &c->replicas); ++ ++ for (i = 0; i < ARRAY_SIZE(new_usage); i++) ++ swap(c->usage[i], new_usage[i]); ++ swap(c->usage_base, new_base); ++ swap(c->usage_scratch, new_scratch); ++ swap(c->usage_gc, new_gc); ++ swap(c->replicas, *new_r); ++out: ++ free_percpu(new_gc); ++ kfree(new_scratch); ++ for (i = 0; i < ARRAY_SIZE(new_usage); i++) ++ free_percpu(new_usage[i]); ++ kfree(new_base); ++ return ret; ++err: ++ bch_err(c, "error updating replicas table: memory allocation failure"); ++ ret = -BCH_ERR_ENOMEM_replicas_table; ++ goto out; ++} ++ ++static unsigned reserve_journal_replicas(struct bch_fs *c, ++ struct bch_replicas_cpu *r) ++{ ++ struct bch_replicas_entry *e; ++ unsigned journal_res_u64s = 0; ++ ++ /* nr_inodes: */ ++ journal_res_u64s += ++ DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)); ++ ++ /* key_version: */ ++ journal_res_u64s += ++ DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)); ++ ++ /* persistent_reserved: */ ++ journal_res_u64s += ++ DIV_ROUND_UP(sizeof(struct jset_entry_usage), sizeof(u64)) * ++ BCH_REPLICAS_MAX; ++ ++ for_each_cpu_replicas_entry(r, e) ++ journal_res_u64s += ++ DIV_ROUND_UP(sizeof(struct jset_entry_data_usage) + ++ e->nr_devs, sizeof(u64)); ++ return journal_res_u64s; ++} ++ ++noinline ++static int bch2_mark_replicas_slowpath(struct bch_fs *c, ++ struct bch_replicas_entry *new_entry) ++{ ++ struct bch_replicas_cpu new_r, new_gc; ++ int ret = 0; ++ ++ verify_replicas_entry(new_entry); ++ ++ memset(&new_r, 0, sizeof(new_r)); ++ memset(&new_gc, 0, sizeof(new_gc)); ++ ++ mutex_lock(&c->sb_lock); ++ ++ if (c->replicas_gc.entries && ++ !__replicas_has_entry(&c->replicas_gc, new_entry)) { ++ new_gc = cpu_replicas_add_entry(&c->replicas_gc, new_entry); ++ if (!new_gc.entries) { ++ ret = -BCH_ERR_ENOMEM_cpu_replicas; ++ goto err; ++ } ++ } ++ ++ if (!__replicas_has_entry(&c->replicas, new_entry)) { ++ new_r = cpu_replicas_add_entry(&c->replicas, new_entry); ++ if (!new_r.entries) { ++ ret = -BCH_ERR_ENOMEM_cpu_replicas; ++ goto err; ++ } ++ ++ ret = bch2_cpu_replicas_to_sb_replicas(c, &new_r); ++ if (ret) ++ goto err; ++ ++ bch2_journal_entry_res_resize(&c->journal, ++ &c->replicas_journal_res, ++ reserve_journal_replicas(c, &new_r)); ++ } ++ ++ if (!new_r.entries && ++ !new_gc.entries) ++ goto out; ++ ++ /* allocations done, now commit: */ ++ ++ if (new_r.entries) ++ bch2_write_super(c); ++ ++ /* don't update in memory replicas until changes are persistent */ ++ percpu_down_write(&c->mark_lock); ++ if (new_r.entries) ++ ret = replicas_table_update(c, &new_r); ++ if (new_gc.entries) ++ swap(new_gc, c->replicas_gc); ++ percpu_up_write(&c->mark_lock); ++out: ++ mutex_unlock(&c->sb_lock); ++ ++ kfree(new_r.entries); ++ kfree(new_gc.entries); ++ ++ return ret; ++err: ++ bch_err_msg(c, ret, "adding replicas entry"); ++ goto out; ++} ++ ++int bch2_mark_replicas(struct bch_fs *c, struct bch_replicas_entry *r) ++{ ++ return likely(bch2_replicas_marked(c, r)) ++ ? 0 : bch2_mark_replicas_slowpath(c, r); ++} ++ ++/* replicas delta list: */ ++ ++int bch2_replicas_delta_list_mark(struct bch_fs *c, ++ struct replicas_delta_list *r) ++{ ++ struct replicas_delta *d = r->d; ++ struct replicas_delta *top = (void *) r->d + r->used; ++ int ret = 0; ++ ++ for (d = r->d; !ret && d != top; d = replicas_delta_next(d)) ++ ret = bch2_mark_replicas(c, &d->r); ++ return ret; ++} ++ ++/* ++ * Old replicas_gc mechanism: only used for journal replicas entries now, should ++ * die at some point: ++ */ ++ ++int bch2_replicas_gc_end(struct bch_fs *c, int ret) ++{ ++ lockdep_assert_held(&c->replicas_gc_lock); ++ ++ if (ret) ++ goto err; ++ ++ mutex_lock(&c->sb_lock); ++ percpu_down_write(&c->mark_lock); ++ ++ ret = bch2_cpu_replicas_to_sb_replicas(c, &c->replicas_gc); ++ if (ret) ++ goto err; ++ ++ ret = replicas_table_update(c, &c->replicas_gc); ++err: ++ kfree(c->replicas_gc.entries); ++ c->replicas_gc.entries = NULL; ++ ++ percpu_up_write(&c->mark_lock); ++ ++ if (!ret) ++ bch2_write_super(c); ++ ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++int bch2_replicas_gc_start(struct bch_fs *c, unsigned typemask) ++{ ++ struct bch_replicas_entry *e; ++ unsigned i = 0; ++ ++ lockdep_assert_held(&c->replicas_gc_lock); ++ ++ mutex_lock(&c->sb_lock); ++ BUG_ON(c->replicas_gc.entries); ++ ++ c->replicas_gc.nr = 0; ++ c->replicas_gc.entry_size = 0; ++ ++ for_each_cpu_replicas_entry(&c->replicas, e) ++ if (!((1 << e->data_type) & typemask)) { ++ c->replicas_gc.nr++; ++ c->replicas_gc.entry_size = ++ max_t(unsigned, c->replicas_gc.entry_size, ++ replicas_entry_bytes(e)); ++ } ++ ++ c->replicas_gc.entries = kcalloc(c->replicas_gc.nr, ++ c->replicas_gc.entry_size, ++ GFP_KERNEL); ++ if (!c->replicas_gc.entries) { ++ mutex_unlock(&c->sb_lock); ++ bch_err(c, "error allocating c->replicas_gc"); ++ return -BCH_ERR_ENOMEM_replicas_gc; ++ } ++ ++ for_each_cpu_replicas_entry(&c->replicas, e) ++ if (!((1 << e->data_type) & typemask)) ++ memcpy(cpu_replicas_entry(&c->replicas_gc, i++), ++ e, c->replicas_gc.entry_size); ++ ++ bch2_cpu_replicas_sort(&c->replicas_gc); ++ mutex_unlock(&c->sb_lock); ++ ++ return 0; ++} ++ ++/* ++ * New much simpler mechanism for clearing out unneeded replicas entries - drop ++ * replicas entries that have 0 sectors used. ++ * ++ * However, we don't track sector counts for journal usage, so this doesn't drop ++ * any BCH_DATA_journal entries; the old bch2_replicas_gc_(start|end) mechanism ++ * is retained for that. ++ */ ++int bch2_replicas_gc2(struct bch_fs *c) ++{ ++ struct bch_replicas_cpu new = { 0 }; ++ unsigned i, nr; ++ int ret = 0; ++ ++ bch2_journal_meta(&c->journal); ++retry: ++ nr = READ_ONCE(c->replicas.nr); ++ new.entry_size = READ_ONCE(c->replicas.entry_size); ++ new.entries = kcalloc(nr, new.entry_size, GFP_KERNEL); ++ if (!new.entries) { ++ bch_err(c, "error allocating c->replicas_gc"); ++ return -BCH_ERR_ENOMEM_replicas_gc; ++ } ++ ++ mutex_lock(&c->sb_lock); ++ percpu_down_write(&c->mark_lock); ++ ++ if (nr != c->replicas.nr || ++ new.entry_size != c->replicas.entry_size) { ++ percpu_up_write(&c->mark_lock); ++ mutex_unlock(&c->sb_lock); ++ kfree(new.entries); ++ goto retry; ++ } ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ ++ if (e->data_type == BCH_DATA_journal || ++ c->usage_base->replicas[i] || ++ percpu_u64_get(&c->usage[0]->replicas[i]) || ++ percpu_u64_get(&c->usage[1]->replicas[i]) || ++ percpu_u64_get(&c->usage[2]->replicas[i]) || ++ percpu_u64_get(&c->usage[3]->replicas[i])) ++ memcpy(cpu_replicas_entry(&new, new.nr++), ++ e, new.entry_size); ++ } ++ ++ bch2_cpu_replicas_sort(&new); ++ ++ ret = bch2_cpu_replicas_to_sb_replicas(c, &new); ++ if (ret) ++ goto err; ++ ++ ret = replicas_table_update(c, &new); ++err: ++ kfree(new.entries); ++ ++ percpu_up_write(&c->mark_lock); ++ ++ if (!ret) ++ bch2_write_super(c); ++ ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++int bch2_replicas_set_usage(struct bch_fs *c, ++ struct bch_replicas_entry *r, ++ u64 sectors) ++{ ++ int ret, idx = bch2_replicas_entry_idx(c, r); ++ ++ if (idx < 0) { ++ struct bch_replicas_cpu n; ++ ++ n = cpu_replicas_add_entry(&c->replicas, r); ++ if (!n.entries) ++ return -BCH_ERR_ENOMEM_cpu_replicas; ++ ++ ret = replicas_table_update(c, &n); ++ if (ret) ++ return ret; ++ ++ kfree(n.entries); ++ ++ idx = bch2_replicas_entry_idx(c, r); ++ BUG_ON(ret < 0); ++ } ++ ++ c->usage_base->replicas[idx] = sectors; ++ ++ return 0; ++} ++ ++/* Replicas tracking - superblock: */ ++ ++static int ++__bch2_sb_replicas_to_cpu_replicas(struct bch_sb_field_replicas *sb_r, ++ struct bch_replicas_cpu *cpu_r) ++{ ++ struct bch_replicas_entry *e, *dst; ++ unsigned nr = 0, entry_size = 0, idx = 0; ++ ++ for_each_replicas_entry(sb_r, e) { ++ entry_size = max_t(unsigned, entry_size, ++ replicas_entry_bytes(e)); ++ nr++; ++ } ++ ++ cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL); ++ if (!cpu_r->entries) ++ return -BCH_ERR_ENOMEM_cpu_replicas; ++ ++ cpu_r->nr = nr; ++ cpu_r->entry_size = entry_size; ++ ++ for_each_replicas_entry(sb_r, e) { ++ dst = cpu_replicas_entry(cpu_r, idx++); ++ memcpy(dst, e, replicas_entry_bytes(e)); ++ bch2_replicas_entry_sort(dst); ++ } ++ ++ return 0; ++} ++ ++static int ++__bch2_sb_replicas_v0_to_cpu_replicas(struct bch_sb_field_replicas_v0 *sb_r, ++ struct bch_replicas_cpu *cpu_r) ++{ ++ struct bch_replicas_entry_v0 *e; ++ unsigned nr = 0, entry_size = 0, idx = 0; ++ ++ for_each_replicas_entry(sb_r, e) { ++ entry_size = max_t(unsigned, entry_size, ++ replicas_entry_bytes(e)); ++ nr++; ++ } ++ ++ entry_size += sizeof(struct bch_replicas_entry) - ++ sizeof(struct bch_replicas_entry_v0); ++ ++ cpu_r->entries = kcalloc(nr, entry_size, GFP_KERNEL); ++ if (!cpu_r->entries) ++ return -BCH_ERR_ENOMEM_cpu_replicas; ++ ++ cpu_r->nr = nr; ++ cpu_r->entry_size = entry_size; ++ ++ for_each_replicas_entry(sb_r, e) { ++ struct bch_replicas_entry *dst = ++ cpu_replicas_entry(cpu_r, idx++); ++ ++ dst->data_type = e->data_type; ++ dst->nr_devs = e->nr_devs; ++ dst->nr_required = 1; ++ memcpy(dst->devs, e->devs, e->nr_devs); ++ bch2_replicas_entry_sort(dst); ++ } ++ ++ return 0; ++} ++ ++int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *c) ++{ ++ struct bch_sb_field_replicas *sb_v1; ++ struct bch_sb_field_replicas_v0 *sb_v0; ++ struct bch_replicas_cpu new_r = { 0, 0, NULL }; ++ int ret = 0; ++ ++ if ((sb_v1 = bch2_sb_field_get(c->disk_sb.sb, replicas))) ++ ret = __bch2_sb_replicas_to_cpu_replicas(sb_v1, &new_r); ++ else if ((sb_v0 = bch2_sb_field_get(c->disk_sb.sb, replicas_v0))) ++ ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_v0, &new_r); ++ if (ret) ++ return ret; ++ ++ bch2_cpu_replicas_sort(&new_r); ++ ++ percpu_down_write(&c->mark_lock); ++ ++ ret = replicas_table_update(c, &new_r); ++ percpu_up_write(&c->mark_lock); ++ ++ kfree(new_r.entries); ++ ++ return 0; ++} ++ ++static int bch2_cpu_replicas_to_sb_replicas_v0(struct bch_fs *c, ++ struct bch_replicas_cpu *r) ++{ ++ struct bch_sb_field_replicas_v0 *sb_r; ++ struct bch_replicas_entry_v0 *dst; ++ struct bch_replicas_entry *src; ++ size_t bytes; ++ ++ bytes = sizeof(struct bch_sb_field_replicas); ++ ++ for_each_cpu_replicas_entry(r, src) ++ bytes += replicas_entry_bytes(src) - 1; ++ ++ sb_r = bch2_sb_field_resize(&c->disk_sb, replicas_v0, ++ DIV_ROUND_UP(bytes, sizeof(u64))); ++ if (!sb_r) ++ return -BCH_ERR_ENOSPC_sb_replicas; ++ ++ bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas); ++ sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas_v0); ++ ++ memset(&sb_r->entries, 0, ++ vstruct_end(&sb_r->field) - ++ (void *) &sb_r->entries); ++ ++ dst = sb_r->entries; ++ for_each_cpu_replicas_entry(r, src) { ++ dst->data_type = src->data_type; ++ dst->nr_devs = src->nr_devs; ++ memcpy(dst->devs, src->devs, src->nr_devs); ++ ++ dst = replicas_entry_next(dst); ++ ++ BUG_ON((void *) dst > vstruct_end(&sb_r->field)); ++ } ++ ++ return 0; ++} ++ ++static int bch2_cpu_replicas_to_sb_replicas(struct bch_fs *c, ++ struct bch_replicas_cpu *r) ++{ ++ struct bch_sb_field_replicas *sb_r; ++ struct bch_replicas_entry *dst, *src; ++ bool need_v1 = false; ++ size_t bytes; ++ ++ bytes = sizeof(struct bch_sb_field_replicas); ++ ++ for_each_cpu_replicas_entry(r, src) { ++ bytes += replicas_entry_bytes(src); ++ if (src->nr_required != 1) ++ need_v1 = true; ++ } ++ ++ if (!need_v1) ++ return bch2_cpu_replicas_to_sb_replicas_v0(c, r); ++ ++ sb_r = bch2_sb_field_resize(&c->disk_sb, replicas, ++ DIV_ROUND_UP(bytes, sizeof(u64))); ++ if (!sb_r) ++ return -BCH_ERR_ENOSPC_sb_replicas; ++ ++ bch2_sb_field_delete(&c->disk_sb, BCH_SB_FIELD_replicas_v0); ++ sb_r = bch2_sb_field_get(c->disk_sb.sb, replicas); ++ ++ memset(&sb_r->entries, 0, ++ vstruct_end(&sb_r->field) - ++ (void *) &sb_r->entries); ++ ++ dst = sb_r->entries; ++ for_each_cpu_replicas_entry(r, src) { ++ memcpy(dst, src, replicas_entry_bytes(src)); ++ ++ dst = replicas_entry_next(dst); ++ ++ BUG_ON((void *) dst > vstruct_end(&sb_r->field)); ++ } ++ ++ return 0; ++} ++ ++static int bch2_cpu_replicas_validate(struct bch_replicas_cpu *cpu_r, ++ struct bch_sb *sb, ++ struct printbuf *err) ++{ ++ unsigned i, j; ++ ++ sort_cmp_size(cpu_r->entries, ++ cpu_r->nr, ++ cpu_r->entry_size, ++ memcmp, NULL); ++ ++ for (i = 0; i < cpu_r->nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(cpu_r, i); ++ ++ if (e->data_type >= BCH_DATA_NR) { ++ prt_printf(err, "invalid data type in entry "); ++ bch2_replicas_entry_to_text(err, e); ++ return -BCH_ERR_invalid_sb_replicas; ++ } ++ ++ if (!e->nr_devs) { ++ prt_printf(err, "no devices in entry "); ++ bch2_replicas_entry_to_text(err, e); ++ return -BCH_ERR_invalid_sb_replicas; ++ } ++ ++ if (e->nr_required > 1 && ++ e->nr_required >= e->nr_devs) { ++ prt_printf(err, "bad nr_required in entry "); ++ bch2_replicas_entry_to_text(err, e); ++ return -BCH_ERR_invalid_sb_replicas; ++ } ++ ++ for (j = 0; j < e->nr_devs; j++) ++ if (!bch2_dev_exists(sb, e->devs[j])) { ++ prt_printf(err, "invalid device %u in entry ", e->devs[j]); ++ bch2_replicas_entry_to_text(err, e); ++ return -BCH_ERR_invalid_sb_replicas; ++ } ++ ++ if (i + 1 < cpu_r->nr) { ++ struct bch_replicas_entry *n = ++ cpu_replicas_entry(cpu_r, i + 1); ++ ++ BUG_ON(memcmp(e, n, cpu_r->entry_size) > 0); ++ ++ if (!memcmp(e, n, cpu_r->entry_size)) { ++ prt_printf(err, "duplicate replicas entry "); ++ bch2_replicas_entry_to_text(err, e); ++ return -BCH_ERR_invalid_sb_replicas; ++ } ++ } ++ } ++ ++ return 0; ++} ++ ++static int bch2_sb_replicas_validate(struct bch_sb *sb, struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_replicas *sb_r = field_to_type(f, replicas); ++ struct bch_replicas_cpu cpu_r; ++ int ret; ++ ++ ret = __bch2_sb_replicas_to_cpu_replicas(sb_r, &cpu_r); ++ if (ret) ++ return ret; ++ ++ ret = bch2_cpu_replicas_validate(&cpu_r, sb, err); ++ kfree(cpu_r.entries); ++ return ret; ++} ++ ++static void bch2_sb_replicas_to_text(struct printbuf *out, ++ struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_replicas *r = field_to_type(f, replicas); ++ struct bch_replicas_entry *e; ++ bool first = true; ++ ++ for_each_replicas_entry(r, e) { ++ if (!first) ++ prt_printf(out, " "); ++ first = false; ++ ++ bch2_replicas_entry_to_text(out, e); ++ } ++ prt_newline(out); ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_replicas = { ++ .validate = bch2_sb_replicas_validate, ++ .to_text = bch2_sb_replicas_to_text, ++}; ++ ++static int bch2_sb_replicas_v0_validate(struct bch_sb *sb, struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); ++ struct bch_replicas_cpu cpu_r; ++ int ret; ++ ++ ret = __bch2_sb_replicas_v0_to_cpu_replicas(sb_r, &cpu_r); ++ if (ret) ++ return ret; ++ ++ ret = bch2_cpu_replicas_validate(&cpu_r, sb, err); ++ kfree(cpu_r.entries); ++ return ret; ++} ++ ++static void bch2_sb_replicas_v0_to_text(struct printbuf *out, ++ struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_replicas_v0 *sb_r = field_to_type(f, replicas_v0); ++ struct bch_replicas_entry_v0 *e; ++ bool first = true; ++ ++ for_each_replicas_entry(sb_r, e) { ++ if (!first) ++ prt_printf(out, " "); ++ first = false; ++ ++ bch2_replicas_entry_v0_to_text(out, e); ++ } ++ prt_newline(out); ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0 = { ++ .validate = bch2_sb_replicas_v0_validate, ++ .to_text = bch2_sb_replicas_v0_to_text, ++}; ++ ++/* Query replicas: */ ++ ++bool bch2_have_enough_devs(struct bch_fs *c, struct bch_devs_mask devs, ++ unsigned flags, bool print) ++{ ++ struct bch_replicas_entry *e; ++ bool ret = true; ++ ++ percpu_down_read(&c->mark_lock); ++ for_each_cpu_replicas_entry(&c->replicas, e) { ++ unsigned i, nr_online = 0, nr_failed = 0, dflags = 0; ++ bool metadata = e->data_type < BCH_DATA_user; ++ ++ if (e->data_type == BCH_DATA_cached) ++ continue; ++ ++ for (i = 0; i < e->nr_devs; i++) { ++ struct bch_dev *ca = bch_dev_bkey_exists(c, e->devs[i]); ++ ++ nr_online += test_bit(e->devs[i], devs.d); ++ nr_failed += ca->mi.state == BCH_MEMBER_STATE_failed; ++ } ++ ++ if (nr_failed == e->nr_devs) ++ continue; ++ ++ if (nr_online < e->nr_required) ++ dflags |= metadata ++ ? BCH_FORCE_IF_METADATA_LOST ++ : BCH_FORCE_IF_DATA_LOST; ++ ++ if (nr_online < e->nr_devs) ++ dflags |= metadata ++ ? BCH_FORCE_IF_METADATA_DEGRADED ++ : BCH_FORCE_IF_DATA_DEGRADED; ++ ++ if (dflags & ~flags) { ++ if (print) { ++ struct printbuf buf = PRINTBUF; ++ ++ bch2_replicas_entry_to_text(&buf, e); ++ bch_err(c, "insufficient devices online (%u) for replicas entry %s", ++ nr_online, buf.buf); ++ printbuf_exit(&buf); ++ } ++ ret = false; ++ break; ++ } ++ ++ } ++ percpu_up_read(&c->mark_lock); ++ ++ return ret; ++} ++ ++unsigned bch2_sb_dev_has_data(struct bch_sb *sb, unsigned dev) ++{ ++ struct bch_sb_field_replicas *replicas; ++ struct bch_sb_field_replicas_v0 *replicas_v0; ++ unsigned i, data_has = 0; ++ ++ replicas = bch2_sb_field_get(sb, replicas); ++ replicas_v0 = bch2_sb_field_get(sb, replicas_v0); ++ ++ if (replicas) { ++ struct bch_replicas_entry *r; ++ ++ for_each_replicas_entry(replicas, r) ++ for (i = 0; i < r->nr_devs; i++) ++ if (r->devs[i] == dev) ++ data_has |= 1 << r->data_type; ++ } else if (replicas_v0) { ++ struct bch_replicas_entry_v0 *r; ++ ++ for_each_replicas_entry_v0(replicas_v0, r) ++ for (i = 0; i < r->nr_devs; i++) ++ if (r->devs[i] == dev) ++ data_has |= 1 << r->data_type; ++ } ++ ++ ++ return data_has; ++} ++ ++unsigned bch2_dev_has_data(struct bch_fs *c, struct bch_dev *ca) ++{ ++ unsigned ret; ++ ++ mutex_lock(&c->sb_lock); ++ ret = bch2_sb_dev_has_data(c->disk_sb.sb, ca->dev_idx); ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++void bch2_fs_replicas_exit(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ kfree(c->usage_scratch); ++ for (i = 0; i < ARRAY_SIZE(c->usage); i++) ++ free_percpu(c->usage[i]); ++ kfree(c->usage_base); ++ kfree(c->replicas.entries); ++ kfree(c->replicas_gc.entries); ++ ++ mempool_exit(&c->replicas_delta_pool); ++} ++ ++int bch2_fs_replicas_init(struct bch_fs *c) ++{ ++ bch2_journal_entry_res_resize(&c->journal, ++ &c->replicas_journal_res, ++ reserve_journal_replicas(c, &c->replicas)); ++ ++ return mempool_init_kmalloc_pool(&c->replicas_delta_pool, 1, ++ REPLICAS_DELTA_LIST_MAX) ?: ++ replicas_table_update(c, &c->replicas); ++} +diff --git a/fs/bcachefs/replicas.h b/fs/bcachefs/replicas.h +new file mode 100644 +index 000000000000..4887675a86f0 +--- /dev/null ++++ b/fs/bcachefs/replicas.h +@@ -0,0 +1,91 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REPLICAS_H ++#define _BCACHEFS_REPLICAS_H ++ ++#include "bkey.h" ++#include "eytzinger.h" ++#include "replicas_types.h" ++ ++void bch2_replicas_entry_sort(struct bch_replicas_entry *); ++void bch2_replicas_entry_to_text(struct printbuf *, ++ struct bch_replicas_entry *); ++void bch2_cpu_replicas_to_text(struct printbuf *, struct bch_replicas_cpu *); ++ ++static inline struct bch_replicas_entry * ++cpu_replicas_entry(struct bch_replicas_cpu *r, unsigned i) ++{ ++ return (void *) r->entries + r->entry_size * i; ++} ++ ++int bch2_replicas_entry_idx(struct bch_fs *, ++ struct bch_replicas_entry *); ++ ++void bch2_devlist_to_replicas(struct bch_replicas_entry *, ++ enum bch_data_type, ++ struct bch_devs_list); ++bool bch2_replicas_marked(struct bch_fs *, struct bch_replicas_entry *); ++int bch2_mark_replicas(struct bch_fs *, ++ struct bch_replicas_entry *); ++ ++static inline struct replicas_delta * ++replicas_delta_next(struct replicas_delta *d) ++{ ++ return (void *) d + replicas_entry_bytes(&d->r) + 8; ++} ++ ++int bch2_replicas_delta_list_mark(struct bch_fs *, struct replicas_delta_list *); ++ ++void bch2_bkey_to_replicas(struct bch_replicas_entry *, struct bkey_s_c); ++ ++static inline void bch2_replicas_entry_cached(struct bch_replicas_entry *e, ++ unsigned dev) ++{ ++ e->data_type = BCH_DATA_cached; ++ e->nr_devs = 1; ++ e->nr_required = 1; ++ e->devs[0] = dev; ++} ++ ++bool bch2_have_enough_devs(struct bch_fs *, struct bch_devs_mask, ++ unsigned, bool); ++ ++unsigned bch2_sb_dev_has_data(struct bch_sb *, unsigned); ++unsigned bch2_dev_has_data(struct bch_fs *, struct bch_dev *); ++ ++int bch2_replicas_gc_end(struct bch_fs *, int); ++int bch2_replicas_gc_start(struct bch_fs *, unsigned); ++int bch2_replicas_gc2(struct bch_fs *); ++ ++int bch2_replicas_set_usage(struct bch_fs *, ++ struct bch_replicas_entry *, ++ u64); ++ ++#define for_each_cpu_replicas_entry(_r, _i) \ ++ for (_i = (_r)->entries; \ ++ (void *) (_i) < (void *) (_r)->entries + (_r)->nr * (_r)->entry_size;\ ++ _i = (void *) (_i) + (_r)->entry_size) ++ ++/* iterate over superblock replicas - used by userspace tools: */ ++ ++#define replicas_entry_next(_i) \ ++ ((typeof(_i)) ((void *) (_i) + replicas_entry_bytes(_i))) ++ ++#define for_each_replicas_entry(_r, _i) \ ++ for (_i = (_r)->entries; \ ++ (void *) (_i) < vstruct_end(&(_r)->field) && (_i)->data_type;\ ++ (_i) = replicas_entry_next(_i)) ++ ++#define for_each_replicas_entry_v0(_r, _i) \ ++ for (_i = (_r)->entries; \ ++ (void *) (_i) < vstruct_end(&(_r)->field) && (_i)->data_type;\ ++ (_i) = replicas_entry_next(_i)) ++ ++int bch2_sb_replicas_to_cpu_replicas(struct bch_fs *); ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_replicas; ++extern const struct bch_sb_field_ops bch_sb_field_ops_replicas_v0; ++ ++void bch2_fs_replicas_exit(struct bch_fs *); ++int bch2_fs_replicas_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_REPLICAS_H */ +diff --git a/fs/bcachefs/replicas_types.h b/fs/bcachefs/replicas_types.h +new file mode 100644 +index 000000000000..5cfff489bbc3 +--- /dev/null ++++ b/fs/bcachefs/replicas_types.h +@@ -0,0 +1,27 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_REPLICAS_TYPES_H ++#define _BCACHEFS_REPLICAS_TYPES_H ++ ++struct bch_replicas_cpu { ++ unsigned nr; ++ unsigned entry_size; ++ struct bch_replicas_entry *entries; ++}; ++ ++struct replicas_delta { ++ s64 delta; ++ struct bch_replicas_entry r; ++} __packed; ++ ++struct replicas_delta_list { ++ unsigned size; ++ unsigned used; ++ ++ struct {} memset_start; ++ u64 nr_inodes; ++ u64 persistent_reserved[BCH_REPLICAS_MAX]; ++ struct {} memset_end; ++ struct replicas_delta d[0]; ++}; ++ ++#endif /* _BCACHEFS_REPLICAS_TYPES_H */ +diff --git a/fs/bcachefs/sb-clean.c b/fs/bcachefs/sb-clean.c +new file mode 100644 +index 000000000000..61203d7c8d36 +--- /dev/null ++++ b/fs/bcachefs/sb-clean.c +@@ -0,0 +1,395 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_update_interior.h" ++#include "buckets.h" ++#include "error.h" ++#include "journal_io.h" ++#include "replicas.h" ++#include "sb-clean.h" ++#include "super-io.h" ++ ++/* ++ * BCH_SB_FIELD_clean: ++ * ++ * Btree roots, and a few other things, are recovered from the journal after an ++ * unclean shutdown - but after a clean shutdown, to avoid having to read the ++ * journal, we can store them in the superblock. ++ * ++ * bch_sb_field_clean simply contains a list of journal entries, stored exactly ++ * as they would be in the journal: ++ */ ++ ++int bch2_sb_clean_validate_late(struct bch_fs *c, struct bch_sb_field_clean *clean, ++ int write) ++{ ++ struct jset_entry *entry; ++ int ret; ++ ++ for (entry = clean->start; ++ entry < (struct jset_entry *) vstruct_end(&clean->field); ++ entry = vstruct_next(entry)) { ++ ret = bch2_journal_entry_validate(c, NULL, entry, ++ le16_to_cpu(c->disk_sb.sb->version), ++ BCH_SB_BIG_ENDIAN(c->disk_sb.sb), ++ write); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static struct bkey_i *btree_root_find(struct bch_fs *c, ++ struct bch_sb_field_clean *clean, ++ struct jset *j, ++ enum btree_id id, unsigned *level) ++{ ++ struct bkey_i *k; ++ struct jset_entry *entry, *start, *end; ++ ++ if (clean) { ++ start = clean->start; ++ end = vstruct_end(&clean->field); ++ } else { ++ start = j->start; ++ end = vstruct_last(j); ++ } ++ ++ for (entry = start; entry < end; entry = vstruct_next(entry)) ++ if (entry->type == BCH_JSET_ENTRY_btree_root && ++ entry->btree_id == id) ++ goto found; ++ ++ return NULL; ++found: ++ if (!entry->u64s) ++ return ERR_PTR(-EINVAL); ++ ++ k = entry->start; ++ *level = entry->level; ++ return k; ++} ++ ++int bch2_verify_superblock_clean(struct bch_fs *c, ++ struct bch_sb_field_clean **cleanp, ++ struct jset *j) ++{ ++ unsigned i; ++ struct bch_sb_field_clean *clean = *cleanp; ++ struct printbuf buf1 = PRINTBUF; ++ struct printbuf buf2 = PRINTBUF; ++ int ret = 0; ++ ++ if (mustfix_fsck_err_on(j->seq != clean->journal_seq, c, ++ "superblock journal seq (%llu) doesn't match journal (%llu) after clean shutdown", ++ le64_to_cpu(clean->journal_seq), ++ le64_to_cpu(j->seq))) { ++ kfree(clean); ++ *cleanp = NULL; ++ return 0; ++ } ++ ++ for (i = 0; i < BTREE_ID_NR; i++) { ++ struct bkey_i *k1, *k2; ++ unsigned l1 = 0, l2 = 0; ++ ++ k1 = btree_root_find(c, clean, NULL, i, &l1); ++ k2 = btree_root_find(c, NULL, j, i, &l2); ++ ++ if (!k1 && !k2) ++ continue; ++ ++ printbuf_reset(&buf1); ++ printbuf_reset(&buf2); ++ ++ if (k1) ++ bch2_bkey_val_to_text(&buf1, c, bkey_i_to_s_c(k1)); ++ else ++ prt_printf(&buf1, "(none)"); ++ ++ if (k2) ++ bch2_bkey_val_to_text(&buf2, c, bkey_i_to_s_c(k2)); ++ else ++ prt_printf(&buf2, "(none)"); ++ ++ mustfix_fsck_err_on(!k1 || !k2 || ++ IS_ERR(k1) || ++ IS_ERR(k2) || ++ k1->k.u64s != k2->k.u64s || ++ memcmp(k1, k2, bkey_bytes(&k1->k)) || ++ l1 != l2, c, ++ "superblock btree root %u doesn't match journal after clean shutdown\n" ++ "sb: l=%u %s\n" ++ "journal: l=%u %s\n", i, ++ l1, buf1.buf, ++ l2, buf2.buf); ++ } ++fsck_err: ++ printbuf_exit(&buf2); ++ printbuf_exit(&buf1); ++ return ret; ++} ++ ++struct bch_sb_field_clean *bch2_read_superblock_clean(struct bch_fs *c) ++{ ++ struct bch_sb_field_clean *clean, *sb_clean; ++ int ret; ++ ++ mutex_lock(&c->sb_lock); ++ sb_clean = bch2_sb_field_get(c->disk_sb.sb, clean); ++ ++ if (fsck_err_on(!sb_clean, c, ++ "superblock marked clean but clean section not present")) { ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, false); ++ c->sb.clean = false; ++ mutex_unlock(&c->sb_lock); ++ return NULL; ++ } ++ ++ clean = kmemdup(sb_clean, vstruct_bytes(&sb_clean->field), ++ GFP_KERNEL); ++ if (!clean) { ++ mutex_unlock(&c->sb_lock); ++ return ERR_PTR(-BCH_ERR_ENOMEM_read_superblock_clean); ++ } ++ ++ ret = bch2_sb_clean_validate_late(c, clean, READ); ++ if (ret) { ++ mutex_unlock(&c->sb_lock); ++ return ERR_PTR(ret); ++ } ++ ++ mutex_unlock(&c->sb_lock); ++ ++ return clean; ++fsck_err: ++ mutex_unlock(&c->sb_lock); ++ return ERR_PTR(ret); ++} ++ ++static struct jset_entry *jset_entry_init(struct jset_entry **end, size_t size) ++{ ++ struct jset_entry *entry = *end; ++ unsigned u64s = DIV_ROUND_UP(size, sizeof(u64)); ++ ++ memset(entry, 0, u64s * sizeof(u64)); ++ /* ++ * The u64s field counts from the start of data, ignoring the shared ++ * fields. ++ */ ++ entry->u64s = cpu_to_le16(u64s - 1); ++ ++ *end = vstruct_next(*end); ++ return entry; ++} ++ ++void bch2_journal_super_entries_add_common(struct bch_fs *c, ++ struct jset_entry **end, ++ u64 journal_seq) ++{ ++ struct bch_dev *ca; ++ unsigned i, dev; ++ ++ percpu_down_read(&c->mark_lock); ++ ++ if (!journal_seq) { ++ for (i = 0; i < ARRAY_SIZE(c->usage); i++) ++ bch2_fs_usage_acc_to_base(c, i); ++ } else { ++ bch2_fs_usage_acc_to_base(c, journal_seq & JOURNAL_BUF_MASK); ++ } ++ ++ { ++ struct jset_entry_usage *u = ++ container_of(jset_entry_init(end, sizeof(*u)), ++ struct jset_entry_usage, entry); ++ ++ u->entry.type = BCH_JSET_ENTRY_usage; ++ u->entry.btree_id = BCH_FS_USAGE_inodes; ++ u->v = cpu_to_le64(c->usage_base->nr_inodes); ++ } ++ ++ { ++ struct jset_entry_usage *u = ++ container_of(jset_entry_init(end, sizeof(*u)), ++ struct jset_entry_usage, entry); ++ ++ u->entry.type = BCH_JSET_ENTRY_usage; ++ u->entry.btree_id = BCH_FS_USAGE_key_version; ++ u->v = cpu_to_le64(atomic64_read(&c->key_version)); ++ } ++ ++ for (i = 0; i < BCH_REPLICAS_MAX; i++) { ++ struct jset_entry_usage *u = ++ container_of(jset_entry_init(end, sizeof(*u)), ++ struct jset_entry_usage, entry); ++ ++ u->entry.type = BCH_JSET_ENTRY_usage; ++ u->entry.btree_id = BCH_FS_USAGE_reserved; ++ u->entry.level = i; ++ u->v = cpu_to_le64(c->usage_base->persistent_reserved[i]); ++ } ++ ++ for (i = 0; i < c->replicas.nr; i++) { ++ struct bch_replicas_entry *e = ++ cpu_replicas_entry(&c->replicas, i); ++ struct jset_entry_data_usage *u = ++ container_of(jset_entry_init(end, sizeof(*u) + e->nr_devs), ++ struct jset_entry_data_usage, entry); ++ ++ u->entry.type = BCH_JSET_ENTRY_data_usage; ++ u->v = cpu_to_le64(c->usage_base->replicas[i]); ++ unsafe_memcpy(&u->r, e, replicas_entry_bytes(e), ++ "embedded variable length struct"); ++ } ++ ++ for_each_member_device(ca, c, dev) { ++ unsigned b = sizeof(struct jset_entry_dev_usage) + ++ sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR; ++ struct jset_entry_dev_usage *u = ++ container_of(jset_entry_init(end, b), ++ struct jset_entry_dev_usage, entry); ++ ++ u->entry.type = BCH_JSET_ENTRY_dev_usage; ++ u->dev = cpu_to_le32(dev); ++ u->buckets_ec = cpu_to_le64(ca->usage_base->buckets_ec); ++ ++ for (i = 0; i < BCH_DATA_NR; i++) { ++ u->d[i].buckets = cpu_to_le64(ca->usage_base->d[i].buckets); ++ u->d[i].sectors = cpu_to_le64(ca->usage_base->d[i].sectors); ++ u->d[i].fragmented = cpu_to_le64(ca->usage_base->d[i].fragmented); ++ } ++ } ++ ++ percpu_up_read(&c->mark_lock); ++ ++ for (i = 0; i < 2; i++) { ++ struct jset_entry_clock *clock = ++ container_of(jset_entry_init(end, sizeof(*clock)), ++ struct jset_entry_clock, entry); ++ ++ clock->entry.type = BCH_JSET_ENTRY_clock; ++ clock->rw = i; ++ clock->time = cpu_to_le64(atomic64_read(&c->io_clock[i].now)); ++ } ++} ++ ++static int bch2_sb_clean_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_clean *clean = field_to_type(f, clean); ++ ++ if (vstruct_bytes(&clean->field) < sizeof(*clean)) { ++ prt_printf(err, "wrong size (got %zu should be %zu)", ++ vstruct_bytes(&clean->field), sizeof(*clean)); ++ return -BCH_ERR_invalid_sb_clean; ++ } ++ ++ return 0; ++} ++ ++static void bch2_sb_clean_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_clean *clean = field_to_type(f, clean); ++ struct jset_entry *entry; ++ ++ prt_printf(out, "flags: %x", le32_to_cpu(clean->flags)); ++ prt_newline(out); ++ prt_printf(out, "journal_seq: %llu", le64_to_cpu(clean->journal_seq)); ++ prt_newline(out); ++ ++ for (entry = clean->start; ++ entry != vstruct_end(&clean->field); ++ entry = vstruct_next(entry)) { ++ if (entry->type == BCH_JSET_ENTRY_btree_keys && ++ !entry->u64s) ++ continue; ++ ++ bch2_journal_entry_to_text(out, NULL, entry); ++ prt_newline(out); ++ } ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_clean = { ++ .validate = bch2_sb_clean_validate, ++ .to_text = bch2_sb_clean_to_text, ++}; ++ ++int bch2_fs_mark_dirty(struct bch_fs *c) ++{ ++ int ret; ++ ++ /* ++ * Unconditionally write superblock, to verify it hasn't changed before ++ * we go rw: ++ */ ++ ++ mutex_lock(&c->sb_lock); ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, false); ++ ++ bch2_sb_maybe_downgrade(c); ++ c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALWAYS); ++ ++ ret = bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ return ret; ++} ++ ++void bch2_fs_mark_clean(struct bch_fs *c) ++{ ++ struct bch_sb_field_clean *sb_clean; ++ struct jset_entry *entry; ++ unsigned u64s; ++ int ret; ++ ++ mutex_lock(&c->sb_lock); ++ if (BCH_SB_CLEAN(c->disk_sb.sb)) ++ goto out; ++ ++ SET_BCH_SB_CLEAN(c->disk_sb.sb, true); ++ ++ c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_info); ++ c->disk_sb.sb->compat[0] |= cpu_to_le64(1ULL << BCH_COMPAT_alloc_metadata); ++ c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_extents_above_btree_updates)); ++ c->disk_sb.sb->features[0] &= cpu_to_le64(~(1ULL << BCH_FEATURE_btree_updates_journalled)); ++ ++ u64s = sizeof(*sb_clean) / sizeof(u64) + c->journal.entry_u64s_reserved; ++ ++ sb_clean = bch2_sb_field_resize(&c->disk_sb, clean, u64s); ++ if (!sb_clean) { ++ bch_err(c, "error resizing superblock while setting filesystem clean"); ++ goto out; ++ } ++ ++ sb_clean->flags = 0; ++ sb_clean->journal_seq = cpu_to_le64(atomic64_read(&c->journal.seq)); ++ ++ /* Trying to catch outstanding bug: */ ++ BUG_ON(le64_to_cpu(sb_clean->journal_seq) > S64_MAX); ++ ++ entry = sb_clean->start; ++ bch2_journal_super_entries_add_common(c, &entry, 0); ++ entry = bch2_btree_roots_to_journal_entries(c, entry, entry); ++ BUG_ON((void *) entry > vstruct_end(&sb_clean->field)); ++ ++ memset(entry, 0, ++ vstruct_end(&sb_clean->field) - (void *) entry); ++ ++ /* ++ * this should be in the write path, and we should be validating every ++ * superblock section: ++ */ ++ ret = bch2_sb_clean_validate_late(c, sb_clean, WRITE); ++ if (ret) { ++ bch_err(c, "error writing marking filesystem clean: validate error"); ++ goto out; ++ } ++ ++ bch2_write_super(c); ++out: ++ mutex_unlock(&c->sb_lock); ++} +diff --git a/fs/bcachefs/sb-clean.h b/fs/bcachefs/sb-clean.h +new file mode 100644 +index 000000000000..71caef281239 +--- /dev/null ++++ b/fs/bcachefs/sb-clean.h +@@ -0,0 +1,16 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SB_CLEAN_H ++#define _BCACHEFS_SB_CLEAN_H ++ ++int bch2_sb_clean_validate_late(struct bch_fs *, struct bch_sb_field_clean *, int); ++int bch2_verify_superblock_clean(struct bch_fs *, struct bch_sb_field_clean **, ++ struct jset *); ++struct bch_sb_field_clean *bch2_read_superblock_clean(struct bch_fs *); ++void bch2_journal_super_entries_add_common(struct bch_fs *, struct jset_entry **, u64); ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_clean; ++ ++int bch2_fs_mark_dirty(struct bch_fs *); ++void bch2_fs_mark_clean(struct bch_fs *); ++ ++#endif /* _BCACHEFS_SB_CLEAN_H */ +diff --git a/fs/bcachefs/sb-members.c b/fs/bcachefs/sb-members.c +new file mode 100644 +index 000000000000..6dd85bb996fe +--- /dev/null ++++ b/fs/bcachefs/sb-members.c +@@ -0,0 +1,339 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "disk_groups.h" ++#include "opts.h" ++#include "replicas.h" ++#include "sb-members.h" ++#include "super-io.h" ++ ++/* Code for bch_sb_field_members_v1: */ ++ ++static struct bch_member *members_v2_get_mut(struct bch_sb_field_members_v2 *mi, int i) ++{ ++ return (void *) mi->_members + (i * le16_to_cpu(mi->member_bytes)); ++} ++ ++struct bch_member *bch2_members_v2_get_mut(struct bch_sb *sb, int i) ++{ ++ return members_v2_get_mut(bch2_sb_field_get(sb, members_v2), i); ++} ++ ++static struct bch_member members_v2_get(struct bch_sb_field_members_v2 *mi, int i) ++{ ++ struct bch_member ret, *p = members_v2_get_mut(mi, i); ++ memset(&ret, 0, sizeof(ret)); ++ memcpy(&ret, p, min_t(size_t, le16_to_cpu(mi->member_bytes), sizeof(ret))); ++ return ret; ++} ++ ++static struct bch_member *members_v1_get_mut(struct bch_sb_field_members_v1 *mi, int i) ++{ ++ return (void *) mi->_members + (i * BCH_MEMBER_V1_BYTES); ++} ++ ++static struct bch_member members_v1_get(struct bch_sb_field_members_v1 *mi, int i) ++{ ++ struct bch_member ret, *p = members_v1_get_mut(mi, i); ++ memset(&ret, 0, sizeof(ret)); ++ memcpy(&ret, p, min_t(size_t, sizeof(struct bch_member), sizeof(ret))); return ret; ++} ++ ++struct bch_member bch2_sb_member_get(struct bch_sb *sb, int i) ++{ ++ struct bch_sb_field_members_v2 *mi2 = bch2_sb_field_get(sb, members_v2); ++ if (mi2) ++ return members_v2_get(mi2, i); ++ struct bch_sb_field_members_v1 *mi1 = bch2_sb_field_get(sb, members_v1); ++ return members_v1_get(mi1, i); ++} ++ ++static int sb_members_v2_resize_entries(struct bch_fs *c) ++{ ++ struct bch_sb_field_members_v2 *mi = bch2_sb_field_get(c->disk_sb.sb, members_v2); ++ ++ if (le16_to_cpu(mi->member_bytes) < sizeof(struct bch_member)) { ++ unsigned u64s = DIV_ROUND_UP((sizeof(*mi) + sizeof(mi->_members[0]) * ++ c->disk_sb.sb->nr_devices), 8); ++ ++ mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); ++ if (!mi) ++ return -BCH_ERR_ENOSPC_sb_members_v2; ++ ++ for (int i = c->disk_sb.sb->nr_devices - 1; i >= 0; --i) { ++ void *dst = (void *) mi->_members + (i * sizeof(struct bch_member)); ++ memmove(dst, members_v2_get_mut(mi, i), le16_to_cpu(mi->member_bytes)); ++ memset(dst + le16_to_cpu(mi->member_bytes), ++ 0, (sizeof(struct bch_member) - le16_to_cpu(mi->member_bytes))); ++ } ++ mi->member_bytes = cpu_to_le16(sizeof(struct bch_member)); ++ } ++ return 0; ++} ++ ++int bch2_members_v2_init(struct bch_fs *c) ++{ ++ struct bch_sb_field_members_v1 *mi1; ++ struct bch_sb_field_members_v2 *mi2; ++ ++ if (!bch2_sb_field_get(c->disk_sb.sb, members_v2)) { ++ mi2 = bch2_sb_field_resize(&c->disk_sb, members_v2, ++ DIV_ROUND_UP(sizeof(*mi2) + ++ sizeof(struct bch_member) * c->sb.nr_devices, ++ sizeof(u64))); ++ mi1 = bch2_sb_field_get(c->disk_sb.sb, members_v1); ++ memcpy(&mi2->_members[0], &mi1->_members[0], ++ BCH_MEMBER_V1_BYTES * c->sb.nr_devices); ++ memset(&mi2->pad[0], 0, sizeof(mi2->pad)); ++ mi2->member_bytes = cpu_to_le16(BCH_MEMBER_V1_BYTES); ++ } ++ ++ return sb_members_v2_resize_entries(c); ++} ++ ++int bch_members_cpy_v2_v1(struct bch_sb_handle *disk_sb) ++{ ++ struct bch_sb_field_members_v1 *mi1; ++ struct bch_sb_field_members_v2 *mi2; ++ ++ mi1 = bch2_sb_field_resize(disk_sb, members_v1, ++ DIV_ROUND_UP(sizeof(*mi1) + BCH_MEMBER_V1_BYTES * ++ disk_sb->sb->nr_devices, sizeof(u64))); ++ if (!mi1) ++ return -BCH_ERR_ENOSPC_sb_members; ++ ++ mi2 = bch2_sb_field_get(disk_sb->sb, members_v2); ++ ++ for (unsigned i = 0; i < disk_sb->sb->nr_devices; i++) ++ memcpy(members_v1_get_mut(mi1, i), members_v2_get_mut(mi2, i), BCH_MEMBER_V1_BYTES); ++ ++ return 0; ++} ++ ++static int validate_member(struct printbuf *err, ++ struct bch_member m, ++ struct bch_sb *sb, ++ int i) ++{ ++ if (le64_to_cpu(m.nbuckets) > LONG_MAX) { ++ prt_printf(err, "device %u: too many buckets (got %llu, max %lu)", ++ i, le64_to_cpu(m.nbuckets), LONG_MAX); ++ return -BCH_ERR_invalid_sb_members; ++ } ++ ++ if (le64_to_cpu(m.nbuckets) - ++ le16_to_cpu(m.first_bucket) < BCH_MIN_NR_NBUCKETS) { ++ prt_printf(err, "device %u: not enough buckets (got %llu, max %u)", ++ i, le64_to_cpu(m.nbuckets), BCH_MIN_NR_NBUCKETS); ++ return -BCH_ERR_invalid_sb_members; ++ } ++ ++ if (le16_to_cpu(m.bucket_size) < ++ le16_to_cpu(sb->block_size)) { ++ prt_printf(err, "device %u: bucket size %u smaller than block size %u", ++ i, le16_to_cpu(m.bucket_size), le16_to_cpu(sb->block_size)); ++ return -BCH_ERR_invalid_sb_members; ++ } ++ ++ if (le16_to_cpu(m.bucket_size) < ++ BCH_SB_BTREE_NODE_SIZE(sb)) { ++ prt_printf(err, "device %u: bucket size %u smaller than btree node size %llu", ++ i, le16_to_cpu(m.bucket_size), BCH_SB_BTREE_NODE_SIZE(sb)); ++ return -BCH_ERR_invalid_sb_members; ++ } ++ ++ return 0; ++} ++ ++static void member_to_text(struct printbuf *out, ++ struct bch_member m, ++ struct bch_sb_field_disk_groups *gi, ++ struct bch_sb *sb, ++ int i) ++{ ++ unsigned data_have = bch2_sb_dev_has_data(sb, i); ++ u64 bucket_size = le16_to_cpu(m.bucket_size); ++ u64 device_size = le64_to_cpu(m.nbuckets) * bucket_size; ++ ++ ++ prt_printf(out, "Device:"); ++ prt_tab(out); ++ prt_printf(out, "%u", i); ++ prt_newline(out); ++ ++ printbuf_indent_add(out, 2); ++ ++ prt_printf(out, "UUID:"); ++ prt_tab(out); ++ pr_uuid(out, m.uuid.b); ++ prt_newline(out); ++ ++ prt_printf(out, "Size:"); ++ prt_tab(out); ++ prt_units_u64(out, device_size << 9); ++ prt_newline(out); ++ ++ for (unsigned i = 0; i < BCH_IOPS_NR; i++) { ++ prt_printf(out, "%s iops:", bch2_iops_measurements[i]); ++ prt_tab(out); ++ prt_printf(out, "%u", le32_to_cpu(m.iops[i])); ++ prt_newline(out); ++ } ++ ++ prt_printf(out, "Bucket size:"); ++ prt_tab(out); ++ prt_units_u64(out, bucket_size << 9); ++ prt_newline(out); ++ ++ prt_printf(out, "First bucket:"); ++ prt_tab(out); ++ prt_printf(out, "%u", le16_to_cpu(m.first_bucket)); ++ prt_newline(out); ++ ++ prt_printf(out, "Buckets:"); ++ prt_tab(out); ++ prt_printf(out, "%llu", le64_to_cpu(m.nbuckets)); ++ prt_newline(out); ++ ++ prt_printf(out, "Last mount:"); ++ prt_tab(out); ++ if (m.last_mount) ++ pr_time(out, le64_to_cpu(m.last_mount)); ++ else ++ prt_printf(out, "(never)"); ++ prt_newline(out); ++ ++ prt_printf(out, "State:"); ++ prt_tab(out); ++ prt_printf(out, "%s", ++ BCH_MEMBER_STATE(&m) < BCH_MEMBER_STATE_NR ++ ? bch2_member_states[BCH_MEMBER_STATE(&m)] ++ : "unknown"); ++ prt_newline(out); ++ ++ prt_printf(out, "Label:"); ++ prt_tab(out); ++ if (BCH_MEMBER_GROUP(&m)) { ++ unsigned idx = BCH_MEMBER_GROUP(&m) - 1; ++ ++ if (idx < disk_groups_nr(gi)) ++ prt_printf(out, "%s (%u)", ++ gi->entries[idx].label, idx); ++ else ++ prt_printf(out, "(bad disk labels section)"); ++ } else { ++ prt_printf(out, "(none)"); ++ } ++ prt_newline(out); ++ ++ prt_printf(out, "Data allowed:"); ++ prt_tab(out); ++ if (BCH_MEMBER_DATA_ALLOWED(&m)) ++ prt_bitflags(out, bch2_data_types, BCH_MEMBER_DATA_ALLOWED(&m)); ++ else ++ prt_printf(out, "(none)"); ++ prt_newline(out); ++ ++ prt_printf(out, "Has data:"); ++ prt_tab(out); ++ if (data_have) ++ prt_bitflags(out, bch2_data_types, data_have); ++ else ++ prt_printf(out, "(none)"); ++ prt_newline(out); ++ ++ prt_printf(out, "Discard:"); ++ prt_tab(out); ++ prt_printf(out, "%llu", BCH_MEMBER_DISCARD(&m)); ++ prt_newline(out); ++ ++ prt_printf(out, "Freespace initialized:"); ++ prt_tab(out); ++ prt_printf(out, "%llu", BCH_MEMBER_FREESPACE_INITIALIZED(&m)); ++ prt_newline(out); ++ ++ printbuf_indent_sub(out, 2); ++} ++ ++static int bch2_sb_members_v1_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_members_v1 *mi = field_to_type(f, members_v1); ++ unsigned i; ++ ++ if ((void *) members_v1_get_mut(mi, sb->nr_devices) > ++ vstruct_end(&mi->field)) { ++ prt_printf(err, "too many devices for section size"); ++ return -BCH_ERR_invalid_sb_members; ++ } ++ ++ for (i = 0; i < sb->nr_devices; i++) { ++ struct bch_member m = members_v1_get(mi, i); ++ ++ int ret = validate_member(err, m, sb, i); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static void bch2_sb_members_v1_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_members_v1 *mi = field_to_type(f, members_v1); ++ struct bch_sb_field_disk_groups *gi = bch2_sb_field_get(sb, disk_groups); ++ unsigned i; ++ ++ for (i = 0; i < sb->nr_devices; i++) { ++ struct bch_member m = members_v1_get(mi, i); ++ member_to_text(out, m, gi, sb, i); ++ } ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_members_v1 = { ++ .validate = bch2_sb_members_v1_validate, ++ .to_text = bch2_sb_members_v1_to_text, ++}; ++ ++static void bch2_sb_members_v2_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ struct bch_sb_field_members_v2 *mi = field_to_type(f, members_v2); ++ struct bch_sb_field_disk_groups *gi = bch2_sb_field_get(sb, disk_groups); ++ unsigned i; ++ ++ for (i = 0; i < sb->nr_devices; i++) { ++ struct bch_member m = members_v2_get(mi, i); ++ member_to_text(out, m, gi, sb, i); ++ } ++} ++ ++static int bch2_sb_members_v2_validate(struct bch_sb *sb, ++ struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ struct bch_sb_field_members_v2 *mi = field_to_type(f, members_v2); ++ size_t mi_bytes = (void *) members_v2_get_mut(mi, sb->nr_devices) - ++ (void *) mi; ++ ++ if (mi_bytes > vstruct_bytes(&mi->field)) { ++ prt_printf(err, "section too small (%zu > %zu)", ++ mi_bytes, vstruct_bytes(&mi->field)); ++ return -BCH_ERR_invalid_sb_members; ++ } ++ ++ for (unsigned i = 0; i < sb->nr_devices; i++) { ++ int ret = validate_member(err, members_v2_get(mi, i), sb, i); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++const struct bch_sb_field_ops bch_sb_field_ops_members_v2 = { ++ .validate = bch2_sb_members_v2_validate, ++ .to_text = bch2_sb_members_v2_to_text, ++}; +diff --git a/fs/bcachefs/sb-members.h b/fs/bcachefs/sb-members.h +new file mode 100644 +index 000000000000..430f3457bfd4 +--- /dev/null ++++ b/fs/bcachefs/sb-members.h +@@ -0,0 +1,182 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SB_MEMBERS_H ++#define _BCACHEFS_SB_MEMBERS_H ++ ++int bch2_members_v2_init(struct bch_fs *c); ++int bch_members_cpy_v2_v1(struct bch_sb_handle *disk_sb); ++struct bch_member *bch2_members_v2_get_mut(struct bch_sb *sb, int i); ++struct bch_member bch2_sb_member_get(struct bch_sb *sb, int i); ++ ++static inline bool bch2_dev_is_online(struct bch_dev *ca) ++{ ++ return !percpu_ref_is_zero(&ca->io_ref); ++} ++ ++static inline bool bch2_dev_is_readable(struct bch_dev *ca) ++{ ++ return bch2_dev_is_online(ca) && ++ ca->mi.state != BCH_MEMBER_STATE_failed; ++} ++ ++static inline bool bch2_dev_get_ioref(struct bch_dev *ca, int rw) ++{ ++ if (!percpu_ref_tryget(&ca->io_ref)) ++ return false; ++ ++ if (ca->mi.state == BCH_MEMBER_STATE_rw || ++ (ca->mi.state == BCH_MEMBER_STATE_ro && rw == READ)) ++ return true; ++ ++ percpu_ref_put(&ca->io_ref); ++ return false; ++} ++ ++static inline unsigned dev_mask_nr(const struct bch_devs_mask *devs) ++{ ++ return bitmap_weight(devs->d, BCH_SB_MEMBERS_MAX); ++} ++ ++static inline bool bch2_dev_list_has_dev(struct bch_devs_list devs, ++ unsigned dev) ++{ ++ unsigned i; ++ ++ for (i = 0; i < devs.nr; i++) ++ if (devs.devs[i] == dev) ++ return true; ++ ++ return false; ++} ++ ++static inline void bch2_dev_list_drop_dev(struct bch_devs_list *devs, ++ unsigned dev) ++{ ++ unsigned i; ++ ++ for (i = 0; i < devs->nr; i++) ++ if (devs->devs[i] == dev) { ++ array_remove_item(devs->devs, devs->nr, i); ++ return; ++ } ++} ++ ++static inline void bch2_dev_list_add_dev(struct bch_devs_list *devs, ++ unsigned dev) ++{ ++ if (!bch2_dev_list_has_dev(*devs, dev)) { ++ BUG_ON(devs->nr >= ARRAY_SIZE(devs->devs)); ++ devs->devs[devs->nr++] = dev; ++ } ++} ++ ++static inline struct bch_devs_list bch2_dev_list_single(unsigned dev) ++{ ++ return (struct bch_devs_list) { .nr = 1, .devs[0] = dev }; ++} ++ ++static inline struct bch_dev *__bch2_next_dev(struct bch_fs *c, unsigned *iter, ++ const struct bch_devs_mask *mask) ++{ ++ struct bch_dev *ca = NULL; ++ ++ while ((*iter = mask ++ ? find_next_bit(mask->d, c->sb.nr_devices, *iter) ++ : *iter) < c->sb.nr_devices && ++ !(ca = rcu_dereference_check(c->devs[*iter], ++ lockdep_is_held(&c->state_lock)))) ++ (*iter)++; ++ ++ return ca; ++} ++ ++#define for_each_member_device_rcu(ca, c, iter, mask) \ ++ for ((iter) = 0; ((ca) = __bch2_next_dev((c), &(iter), mask)); (iter)++) ++ ++static inline struct bch_dev *bch2_get_next_dev(struct bch_fs *c, unsigned *iter) ++{ ++ struct bch_dev *ca; ++ ++ rcu_read_lock(); ++ if ((ca = __bch2_next_dev(c, iter, NULL))) ++ percpu_ref_get(&ca->ref); ++ rcu_read_unlock(); ++ ++ return ca; ++} ++ ++/* ++ * If you break early, you must drop your ref on the current device ++ */ ++#define for_each_member_device(ca, c, iter) \ ++ for ((iter) = 0; \ ++ (ca = bch2_get_next_dev(c, &(iter))); \ ++ percpu_ref_put(&ca->ref), (iter)++) ++ ++static inline struct bch_dev *bch2_get_next_online_dev(struct bch_fs *c, ++ unsigned *iter, ++ int state_mask) ++{ ++ struct bch_dev *ca; ++ ++ rcu_read_lock(); ++ while ((ca = __bch2_next_dev(c, iter, NULL)) && ++ (!((1 << ca->mi.state) & state_mask) || ++ !percpu_ref_tryget(&ca->io_ref))) ++ (*iter)++; ++ rcu_read_unlock(); ++ ++ return ca; ++} ++ ++#define __for_each_online_member(ca, c, iter, state_mask) \ ++ for ((iter) = 0; \ ++ (ca = bch2_get_next_online_dev(c, &(iter), state_mask)); \ ++ percpu_ref_put(&ca->io_ref), (iter)++) ++ ++#define for_each_online_member(ca, c, iter) \ ++ __for_each_online_member(ca, c, iter, ~0) ++ ++#define for_each_rw_member(ca, c, iter) \ ++ __for_each_online_member(ca, c, iter, 1 << BCH_MEMBER_STATE_rw) ++ ++#define for_each_readable_member(ca, c, iter) \ ++ __for_each_online_member(ca, c, iter, \ ++ (1 << BCH_MEMBER_STATE_rw)|(1 << BCH_MEMBER_STATE_ro)) ++ ++/* ++ * If a key exists that references a device, the device won't be going away and ++ * we can omit rcu_read_lock(): ++ */ ++static inline struct bch_dev *bch_dev_bkey_exists(const struct bch_fs *c, unsigned idx) ++{ ++ EBUG_ON(idx >= c->sb.nr_devices || !c->devs[idx]); ++ ++ return rcu_dereference_check(c->devs[idx], 1); ++} ++ ++static inline struct bch_dev *bch_dev_locked(struct bch_fs *c, unsigned idx) ++{ ++ EBUG_ON(idx >= c->sb.nr_devices || !c->devs[idx]); ++ ++ return rcu_dereference_protected(c->devs[idx], ++ lockdep_is_held(&c->sb_lock) || ++ lockdep_is_held(&c->state_lock)); ++} ++ ++/* XXX kill, move to struct bch_fs */ ++static inline struct bch_devs_mask bch2_online_devs(struct bch_fs *c) ++{ ++ struct bch_devs_mask devs; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ memset(&devs, 0, sizeof(devs)); ++ for_each_online_member(ca, c, i) ++ __set_bit(ca->dev_idx, devs.d); ++ return devs; ++} ++ ++extern const struct bch_sb_field_ops bch_sb_field_ops_members_v1; ++extern const struct bch_sb_field_ops bch_sb_field_ops_members_v2; ++ ++#endif /* _BCACHEFS_SB_MEMBERS_H */ +diff --git a/fs/bcachefs/seqmutex.h b/fs/bcachefs/seqmutex.h +new file mode 100644 +index 000000000000..c1860d8163fb +--- /dev/null ++++ b/fs/bcachefs/seqmutex.h +@@ -0,0 +1,48 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SEQMUTEX_H ++#define _BCACHEFS_SEQMUTEX_H ++ ++#include ++ ++struct seqmutex { ++ struct mutex lock; ++ u32 seq; ++}; ++ ++#define seqmutex_init(_lock) mutex_init(&(_lock)->lock) ++ ++static inline bool seqmutex_trylock(struct seqmutex *lock) ++{ ++ return mutex_trylock(&lock->lock); ++} ++ ++static inline void seqmutex_lock(struct seqmutex *lock) ++{ ++ mutex_lock(&lock->lock); ++} ++ ++static inline void seqmutex_unlock(struct seqmutex *lock) ++{ ++ lock->seq++; ++ mutex_unlock(&lock->lock); ++} ++ ++static inline u32 seqmutex_seq(struct seqmutex *lock) ++{ ++ return lock->seq; ++} ++ ++static inline bool seqmutex_relock(struct seqmutex *lock, u32 seq) ++{ ++ if (lock->seq != seq || !mutex_trylock(&lock->lock)) ++ return false; ++ ++ if (lock->seq != seq) { ++ mutex_unlock(&lock->lock); ++ return false; ++ } ++ ++ return true; ++} ++ ++#endif /* _BCACHEFS_SEQMUTEX_H */ +diff --git a/fs/bcachefs/siphash.c b/fs/bcachefs/siphash.c +new file mode 100644 +index 000000000000..dc1a27cc31cd +--- /dev/null ++++ b/fs/bcachefs/siphash.c +@@ -0,0 +1,173 @@ ++// SPDX-License-Identifier: BSD-3-Clause ++/* $OpenBSD: siphash.c,v 1.3 2015/02/20 11:51:03 tedu Exp $ */ ++ ++/*- ++ * Copyright (c) 2013 Andre Oppermann ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote ++ * products derived from this software without specific prior written ++ * permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ */ ++ ++/* ++ * SipHash is a family of PRFs SipHash-c-d where the integer parameters c and d ++ * are the number of compression rounds and the number of finalization rounds. ++ * A compression round is identical to a finalization round and this round ++ * function is called SipRound. Given a 128-bit key k and a (possibly empty) ++ * byte string m, SipHash-c-d returns a 64-bit value SipHash-c-d(k; m). ++ * ++ * Implemented from the paper "SipHash: a fast short-input PRF", 2012.09.18, ++ * by Jean-Philippe Aumasson and Daniel J. Bernstein, ++ * Permanent Document ID b9a943a805fbfc6fde808af9fc0ecdfa ++ * https://131002.net/siphash/siphash.pdf ++ * https://131002.net/siphash/ ++ */ ++ ++#include ++#include ++#include ++#include ++ ++#include "siphash.h" ++ ++static void SipHash_Rounds(SIPHASH_CTX *ctx, int rounds) ++{ ++ while (rounds--) { ++ ctx->v[0] += ctx->v[1]; ++ ctx->v[2] += ctx->v[3]; ++ ctx->v[1] = rol64(ctx->v[1], 13); ++ ctx->v[3] = rol64(ctx->v[3], 16); ++ ++ ctx->v[1] ^= ctx->v[0]; ++ ctx->v[3] ^= ctx->v[2]; ++ ctx->v[0] = rol64(ctx->v[0], 32); ++ ++ ctx->v[2] += ctx->v[1]; ++ ctx->v[0] += ctx->v[3]; ++ ctx->v[1] = rol64(ctx->v[1], 17); ++ ctx->v[3] = rol64(ctx->v[3], 21); ++ ++ ctx->v[1] ^= ctx->v[2]; ++ ctx->v[3] ^= ctx->v[0]; ++ ctx->v[2] = rol64(ctx->v[2], 32); ++ } ++} ++ ++static void SipHash_CRounds(SIPHASH_CTX *ctx, const void *ptr, int rounds) ++{ ++ u64 m = get_unaligned_le64(ptr); ++ ++ ctx->v[3] ^= m; ++ SipHash_Rounds(ctx, rounds); ++ ctx->v[0] ^= m; ++} ++ ++void SipHash_Init(SIPHASH_CTX *ctx, const SIPHASH_KEY *key) ++{ ++ u64 k0, k1; ++ ++ k0 = le64_to_cpu(key->k0); ++ k1 = le64_to_cpu(key->k1); ++ ++ ctx->v[0] = 0x736f6d6570736575ULL ^ k0; ++ ctx->v[1] = 0x646f72616e646f6dULL ^ k1; ++ ctx->v[2] = 0x6c7967656e657261ULL ^ k0; ++ ctx->v[3] = 0x7465646279746573ULL ^ k1; ++ ++ memset(ctx->buf, 0, sizeof(ctx->buf)); ++ ctx->bytes = 0; ++} ++ ++void SipHash_Update(SIPHASH_CTX *ctx, int rc, int rf, ++ const void *src, size_t len) ++{ ++ const u8 *ptr = src; ++ size_t left, used; ++ ++ if (len == 0) ++ return; ++ ++ used = ctx->bytes % sizeof(ctx->buf); ++ ctx->bytes += len; ++ ++ if (used > 0) { ++ left = sizeof(ctx->buf) - used; ++ ++ if (len >= left) { ++ memcpy(&ctx->buf[used], ptr, left); ++ SipHash_CRounds(ctx, ctx->buf, rc); ++ len -= left; ++ ptr += left; ++ } else { ++ memcpy(&ctx->buf[used], ptr, len); ++ return; ++ } ++ } ++ ++ while (len >= sizeof(ctx->buf)) { ++ SipHash_CRounds(ctx, ptr, rc); ++ len -= sizeof(ctx->buf); ++ ptr += sizeof(ctx->buf); ++ } ++ ++ if (len > 0) ++ memcpy(&ctx->buf[used], ptr, len); ++} ++ ++void SipHash_Final(void *dst, SIPHASH_CTX *ctx, int rc, int rf) ++{ ++ u64 r; ++ ++ r = SipHash_End(ctx, rc, rf); ++ ++ *((__le64 *) dst) = cpu_to_le64(r); ++} ++ ++u64 SipHash_End(SIPHASH_CTX *ctx, int rc, int rf) ++{ ++ u64 r; ++ size_t left, used; ++ ++ used = ctx->bytes % sizeof(ctx->buf); ++ left = sizeof(ctx->buf) - used; ++ memset(&ctx->buf[used], 0, left - 1); ++ ctx->buf[7] = ctx->bytes; ++ ++ SipHash_CRounds(ctx, ctx->buf, rc); ++ ctx->v[2] ^= 0xff; ++ SipHash_Rounds(ctx, rf); ++ ++ r = (ctx->v[0] ^ ctx->v[1]) ^ (ctx->v[2] ^ ctx->v[3]); ++ memset(ctx, 0, sizeof(*ctx)); ++ return r; ++} ++ ++u64 SipHash(const SIPHASH_KEY *key, int rc, int rf, const void *src, size_t len) ++{ ++ SIPHASH_CTX ctx; ++ ++ SipHash_Init(&ctx, key); ++ SipHash_Update(&ctx, rc, rf, src, len); ++ return SipHash_End(&ctx, rc, rf); ++} +diff --git a/fs/bcachefs/siphash.h b/fs/bcachefs/siphash.h +new file mode 100644 +index 000000000000..3dfaf34a43b2 +--- /dev/null ++++ b/fs/bcachefs/siphash.h +@@ -0,0 +1,87 @@ ++/* SPDX-License-Identifier: BSD-3-Clause */ ++/* $OpenBSD: siphash.h,v 1.5 2015/02/20 11:51:03 tedu Exp $ */ ++/*- ++ * Copyright (c) 2013 Andre Oppermann ++ * All rights reserved. ++ * ++ * Redistribution and use in source and binary forms, with or without ++ * modification, are permitted provided that the following conditions ++ * are met: ++ * 1. Redistributions of source code must retain the above copyright ++ * notice, this list of conditions and the following disclaimer. ++ * 2. Redistributions in binary form must reproduce the above copyright ++ * notice, this list of conditions and the following disclaimer in the ++ * documentation and/or other materials provided with the distribution. ++ * 3. The name of the author may not be used to endorse or promote ++ * products derived from this software without specific prior written ++ * permission. ++ * ++ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND ++ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ++ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ++ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE ++ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ++ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS ++ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) ++ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT ++ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY ++ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ++ * SUCH DAMAGE. ++ * ++ * $FreeBSD$ ++ */ ++ ++/* ++ * SipHash is a family of pseudorandom functions (a.k.a. keyed hash functions) ++ * optimized for speed on short messages returning a 64bit hash/digest value. ++ * ++ * The number of rounds is defined during the initialization: ++ * SipHash24_Init() for the fast and resonable strong version ++ * SipHash48_Init() for the strong version (half as fast) ++ * ++ * struct SIPHASH_CTX ctx; ++ * SipHash24_Init(&ctx); ++ * SipHash_SetKey(&ctx, "16bytes long key"); ++ * SipHash_Update(&ctx, pointer_to_string, length_of_string); ++ * SipHash_Final(output, &ctx); ++ */ ++ ++#ifndef _SIPHASH_H_ ++#define _SIPHASH_H_ ++ ++#include ++ ++#define SIPHASH_BLOCK_LENGTH 8 ++#define SIPHASH_KEY_LENGTH 16 ++#define SIPHASH_DIGEST_LENGTH 8 ++ ++typedef struct _SIPHASH_CTX { ++ u64 v[4]; ++ u8 buf[SIPHASH_BLOCK_LENGTH]; ++ u32 bytes; ++} SIPHASH_CTX; ++ ++typedef struct { ++ __le64 k0; ++ __le64 k1; ++} SIPHASH_KEY; ++ ++void SipHash_Init(SIPHASH_CTX *, const SIPHASH_KEY *); ++void SipHash_Update(SIPHASH_CTX *, int, int, const void *, size_t); ++u64 SipHash_End(SIPHASH_CTX *, int, int); ++void SipHash_Final(void *, SIPHASH_CTX *, int, int); ++u64 SipHash(const SIPHASH_KEY *, int, int, const void *, size_t); ++ ++#define SipHash24_Init(_c, _k) SipHash_Init((_c), (_k)) ++#define SipHash24_Update(_c, _p, _l) SipHash_Update((_c), 2, 4, (_p), (_l)) ++#define SipHash24_End(_d) SipHash_End((_d), 2, 4) ++#define SipHash24_Final(_d, _c) SipHash_Final((_d), (_c), 2, 4) ++#define SipHash24(_k, _p, _l) SipHash((_k), 2, 4, (_p), (_l)) ++ ++#define SipHash48_Init(_c, _k) SipHash_Init((_c), (_k)) ++#define SipHash48_Update(_c, _p, _l) SipHash_Update((_c), 4, 8, (_p), (_l)) ++#define SipHash48_End(_d) SipHash_End((_d), 4, 8) ++#define SipHash48_Final(_d, _c) SipHash_Final((_d), (_c), 4, 8) ++#define SipHash48(_k, _p, _l) SipHash((_k), 4, 8, (_p), (_l)) ++ ++#endif /* _SIPHASH_H_ */ +diff --git a/fs/bcachefs/six.c b/fs/bcachefs/six.c +new file mode 100644 +index 000000000000..b684b9f00c1b +--- /dev/null ++++ b/fs/bcachefs/six.c +@@ -0,0 +1,913 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "six.h" ++ ++#ifdef DEBUG ++#define EBUG_ON(cond) BUG_ON(cond) ++#else ++#define EBUG_ON(cond) do {} while (0) ++#endif ++ ++#define six_acquire(l, t, r, ip) lock_acquire(l, 0, t, r, 1, NULL, ip) ++#define six_release(l, ip) lock_release(l, ip) ++ ++static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type); ++ ++#define SIX_LOCK_HELD_read_OFFSET 0 ++#define SIX_LOCK_HELD_read ~(~0U << 26) ++#define SIX_LOCK_HELD_intent (1U << 26) ++#define SIX_LOCK_HELD_write (1U << 27) ++#define SIX_LOCK_WAITING_read (1U << (28 + SIX_LOCK_read)) ++#define SIX_LOCK_WAITING_write (1U << (28 + SIX_LOCK_write)) ++#define SIX_LOCK_NOSPIN (1U << 31) ++ ++struct six_lock_vals { ++ /* Value we add to the lock in order to take the lock: */ ++ u32 lock_val; ++ ++ /* If the lock has this value (used as a mask), taking the lock fails: */ ++ u32 lock_fail; ++ ++ /* Mask that indicates lock is held for this type: */ ++ u32 held_mask; ++ ++ /* Waitlist we wakeup when releasing the lock: */ ++ enum six_lock_type unlock_wakeup; ++}; ++ ++static const struct six_lock_vals l[] = { ++ [SIX_LOCK_read] = { ++ .lock_val = 1U << SIX_LOCK_HELD_read_OFFSET, ++ .lock_fail = SIX_LOCK_HELD_write, ++ .held_mask = SIX_LOCK_HELD_read, ++ .unlock_wakeup = SIX_LOCK_write, ++ }, ++ [SIX_LOCK_intent] = { ++ .lock_val = SIX_LOCK_HELD_intent, ++ .lock_fail = SIX_LOCK_HELD_intent, ++ .held_mask = SIX_LOCK_HELD_intent, ++ .unlock_wakeup = SIX_LOCK_intent, ++ }, ++ [SIX_LOCK_write] = { ++ .lock_val = SIX_LOCK_HELD_write, ++ .lock_fail = SIX_LOCK_HELD_read, ++ .held_mask = SIX_LOCK_HELD_write, ++ .unlock_wakeup = SIX_LOCK_read, ++ }, ++}; ++ ++static inline void six_set_bitmask(struct six_lock *lock, u32 mask) ++{ ++ if ((atomic_read(&lock->state) & mask) != mask) ++ atomic_or(mask, &lock->state); ++} ++ ++static inline void six_clear_bitmask(struct six_lock *lock, u32 mask) ++{ ++ if (atomic_read(&lock->state) & mask) ++ atomic_and(~mask, &lock->state); ++} ++ ++static inline void six_set_owner(struct six_lock *lock, enum six_lock_type type, ++ u32 old, struct task_struct *owner) ++{ ++ if (type != SIX_LOCK_intent) ++ return; ++ ++ if (!(old & SIX_LOCK_HELD_intent)) { ++ EBUG_ON(lock->owner); ++ lock->owner = owner; ++ } else { ++ EBUG_ON(lock->owner != current); ++ } ++} ++ ++static inline unsigned pcpu_read_count(struct six_lock *lock) ++{ ++ unsigned read_count = 0; ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ read_count += *per_cpu_ptr(lock->readers, cpu); ++ return read_count; ++} ++ ++/* ++ * __do_six_trylock() - main trylock routine ++ * ++ * Returns 1 on success, 0 on failure ++ * ++ * In percpu reader mode, a failed trylock may cause a spurious trylock failure ++ * for anoter thread taking the competing lock type, and we may havve to do a ++ * wakeup: when a wakeup is required, we return -1 - wakeup_type. ++ */ ++static int __do_six_trylock(struct six_lock *lock, enum six_lock_type type, ++ struct task_struct *task, bool try) ++{ ++ int ret; ++ u32 old; ++ ++ EBUG_ON(type == SIX_LOCK_write && lock->owner != task); ++ EBUG_ON(type == SIX_LOCK_write && ++ (try != !(atomic_read(&lock->state) & SIX_LOCK_HELD_write))); ++ ++ /* ++ * Percpu reader mode: ++ * ++ * The basic idea behind this algorithm is that you can implement a lock ++ * between two threads without any atomics, just memory barriers: ++ * ++ * For two threads you'll need two variables, one variable for "thread a ++ * has the lock" and another for "thread b has the lock". ++ * ++ * To take the lock, a thread sets its variable indicating that it holds ++ * the lock, then issues a full memory barrier, then reads from the ++ * other thread's variable to check if the other thread thinks it has ++ * the lock. If we raced, we backoff and retry/sleep. ++ * ++ * Failure to take the lock may cause a spurious trylock failure in ++ * another thread, because we temporarily set the lock to indicate that ++ * we held it. This would be a problem for a thread in six_lock(), when ++ * they are calling trylock after adding themself to the waitlist and ++ * prior to sleeping. ++ * ++ * Therefore, if we fail to get the lock, and there were waiters of the ++ * type we conflict with, we will have to issue a wakeup. ++ * ++ * Since we may be called under wait_lock (and by the wakeup code ++ * itself), we return that the wakeup has to be done instead of doing it ++ * here. ++ */ ++ if (type == SIX_LOCK_read && lock->readers) { ++ preempt_disable(); ++ this_cpu_inc(*lock->readers); /* signal that we own lock */ ++ ++ smp_mb(); ++ ++ old = atomic_read(&lock->state); ++ ret = !(old & l[type].lock_fail); ++ ++ this_cpu_sub(*lock->readers, !ret); ++ preempt_enable(); ++ ++ if (!ret && (old & SIX_LOCK_WAITING_write)) ++ ret = -1 - SIX_LOCK_write; ++ } else if (type == SIX_LOCK_write && lock->readers) { ++ if (try) { ++ atomic_add(SIX_LOCK_HELD_write, &lock->state); ++ smp_mb__after_atomic(); ++ } ++ ++ ret = !pcpu_read_count(lock); ++ ++ if (try && !ret) { ++ old = atomic_sub_return(SIX_LOCK_HELD_write, &lock->state); ++ if (old & SIX_LOCK_WAITING_read) ++ ret = -1 - SIX_LOCK_read; ++ } ++ } else { ++ old = atomic_read(&lock->state); ++ do { ++ ret = !(old & l[type].lock_fail); ++ if (!ret || (type == SIX_LOCK_write && !try)) { ++ smp_mb(); ++ break; ++ } ++ } while (!atomic_try_cmpxchg_acquire(&lock->state, &old, old + l[type].lock_val)); ++ ++ EBUG_ON(ret && !(atomic_read(&lock->state) & l[type].held_mask)); ++ } ++ ++ if (ret > 0) ++ six_set_owner(lock, type, old, task); ++ ++ EBUG_ON(type == SIX_LOCK_write && try && ret <= 0 && ++ (atomic_read(&lock->state) & SIX_LOCK_HELD_write)); ++ ++ return ret; ++} ++ ++static void __six_lock_wakeup(struct six_lock *lock, enum six_lock_type lock_type) ++{ ++ struct six_lock_waiter *w, *next; ++ struct task_struct *task; ++ bool saw_one; ++ int ret; ++again: ++ ret = 0; ++ saw_one = false; ++ raw_spin_lock(&lock->wait_lock); ++ ++ list_for_each_entry_safe(w, next, &lock->wait_list, list) { ++ if (w->lock_want != lock_type) ++ continue; ++ ++ if (saw_one && lock_type != SIX_LOCK_read) ++ goto unlock; ++ saw_one = true; ++ ++ ret = __do_six_trylock(lock, lock_type, w->task, false); ++ if (ret <= 0) ++ goto unlock; ++ ++ /* ++ * Similar to percpu_rwsem_wake_function(), we need to guard ++ * against the wakee noticing w->lock_acquired, returning, and ++ * then exiting before we do the wakeup: ++ */ ++ task = get_task_struct(w->task); ++ __list_del(w->list.prev, w->list.next); ++ /* ++ * The release barrier here ensures the ordering of the ++ * __list_del before setting w->lock_acquired; @w is on the ++ * stack of the thread doing the waiting and will be reused ++ * after it sees w->lock_acquired with no other locking: ++ * pairs with smp_load_acquire() in six_lock_slowpath() ++ */ ++ smp_store_release(&w->lock_acquired, true); ++ wake_up_process(task); ++ put_task_struct(task); ++ } ++ ++ six_clear_bitmask(lock, SIX_LOCK_WAITING_read << lock_type); ++unlock: ++ raw_spin_unlock(&lock->wait_lock); ++ ++ if (ret < 0) { ++ lock_type = -ret - 1; ++ goto again; ++ } ++} ++ ++__always_inline ++static void six_lock_wakeup(struct six_lock *lock, u32 state, ++ enum six_lock_type lock_type) ++{ ++ if (lock_type == SIX_LOCK_write && (state & SIX_LOCK_HELD_read)) ++ return; ++ ++ if (!(state & (SIX_LOCK_WAITING_read << lock_type))) ++ return; ++ ++ __six_lock_wakeup(lock, lock_type); ++} ++ ++__always_inline ++static bool do_six_trylock(struct six_lock *lock, enum six_lock_type type, bool try) ++{ ++ int ret; ++ ++ ret = __do_six_trylock(lock, type, current, try); ++ if (ret < 0) ++ __six_lock_wakeup(lock, -ret - 1); ++ ++ return ret > 0; ++} ++ ++/** ++ * six_trylock_ip - attempt to take a six lock without blocking ++ * @lock: lock to take ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ ++ * ++ * Return: true on success, false on failure. ++ */ ++bool six_trylock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip) ++{ ++ if (!do_six_trylock(lock, type, true)) ++ return false; ++ ++ if (type != SIX_LOCK_write) ++ six_acquire(&lock->dep_map, 1, type == SIX_LOCK_read, ip); ++ return true; ++} ++EXPORT_SYMBOL_GPL(six_trylock_ip); ++ ++/** ++ * six_relock_ip - attempt to re-take a lock that was held previously ++ * @lock: lock to take ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * @seq: lock sequence number obtained from six_lock_seq() while lock was ++ * held previously ++ * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ ++ * ++ * Return: true on success, false on failure. ++ */ ++bool six_relock_ip(struct six_lock *lock, enum six_lock_type type, ++ unsigned seq, unsigned long ip) ++{ ++ if (six_lock_seq(lock) != seq || !six_trylock_ip(lock, type, ip)) ++ return false; ++ ++ if (six_lock_seq(lock) != seq) { ++ six_unlock_ip(lock, type, ip); ++ return false; ++ } ++ ++ return true; ++} ++EXPORT_SYMBOL_GPL(six_relock_ip); ++ ++#ifdef CONFIG_SIX_LOCK_SPIN_ON_OWNER ++ ++static inline bool six_can_spin_on_owner(struct six_lock *lock) ++{ ++ struct task_struct *owner; ++ bool ret; ++ ++ if (need_resched()) ++ return false; ++ ++ rcu_read_lock(); ++ owner = READ_ONCE(lock->owner); ++ ret = !owner || owner_on_cpu(owner); ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++static inline bool six_spin_on_owner(struct six_lock *lock, ++ struct task_struct *owner, ++ u64 end_time) ++{ ++ bool ret = true; ++ unsigned loop = 0; ++ ++ rcu_read_lock(); ++ while (lock->owner == owner) { ++ /* ++ * Ensure we emit the owner->on_cpu, dereference _after_ ++ * checking lock->owner still matches owner. If that fails, ++ * owner might point to freed memory. If it still matches, ++ * the rcu_read_lock() ensures the memory stays valid. ++ */ ++ barrier(); ++ ++ if (!owner_on_cpu(owner) || need_resched()) { ++ ret = false; ++ break; ++ } ++ ++ if (!(++loop & 0xf) && (time_after64(sched_clock(), end_time))) { ++ six_set_bitmask(lock, SIX_LOCK_NOSPIN); ++ ret = false; ++ break; ++ } ++ ++ cpu_relax(); ++ } ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type) ++{ ++ struct task_struct *task = current; ++ u64 end_time; ++ ++ if (type == SIX_LOCK_write) ++ return false; ++ ++ preempt_disable(); ++ if (!six_can_spin_on_owner(lock)) ++ goto fail; ++ ++ if (!osq_lock(&lock->osq)) ++ goto fail; ++ ++ end_time = sched_clock() + 10 * NSEC_PER_USEC; ++ ++ while (1) { ++ struct task_struct *owner; ++ ++ /* ++ * If there's an owner, wait for it to either ++ * release the lock or go to sleep. ++ */ ++ owner = READ_ONCE(lock->owner); ++ if (owner && !six_spin_on_owner(lock, owner, end_time)) ++ break; ++ ++ if (do_six_trylock(lock, type, false)) { ++ osq_unlock(&lock->osq); ++ preempt_enable(); ++ return true; ++ } ++ ++ /* ++ * When there's no owner, we might have preempted between the ++ * owner acquiring the lock and setting the owner field. If ++ * we're an RT task that will live-lock because we won't let ++ * the owner complete. ++ */ ++ if (!owner && (need_resched() || rt_task(task))) ++ break; ++ ++ /* ++ * The cpu_relax() call is a compiler barrier which forces ++ * everything in this loop to be re-loaded. We don't need ++ * memory barriers as we'll eventually observe the right ++ * values at the cost of a few extra spins. ++ */ ++ cpu_relax(); ++ } ++ ++ osq_unlock(&lock->osq); ++fail: ++ preempt_enable(); ++ ++ /* ++ * If we fell out of the spin path because of need_resched(), ++ * reschedule now, before we try-lock again. This avoids getting ++ * scheduled out right after we obtained the lock. ++ */ ++ if (need_resched()) ++ schedule(); ++ ++ return false; ++} ++ ++#else /* CONFIG_SIX_LOCK_SPIN_ON_OWNER */ ++ ++static inline bool six_optimistic_spin(struct six_lock *lock, enum six_lock_type type) ++{ ++ return false; ++} ++ ++#endif ++ ++noinline ++static int six_lock_slowpath(struct six_lock *lock, enum six_lock_type type, ++ struct six_lock_waiter *wait, ++ six_lock_should_sleep_fn should_sleep_fn, void *p, ++ unsigned long ip) ++{ ++ int ret = 0; ++ ++ if (type == SIX_LOCK_write) { ++ EBUG_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_write); ++ atomic_add(SIX_LOCK_HELD_write, &lock->state); ++ smp_mb__after_atomic(); ++ } ++ ++ if (six_optimistic_spin(lock, type)) ++ goto out; ++ ++ lock_contended(&lock->dep_map, ip); ++ ++ wait->task = current; ++ wait->lock_want = type; ++ wait->lock_acquired = false; ++ ++ raw_spin_lock(&lock->wait_lock); ++ six_set_bitmask(lock, SIX_LOCK_WAITING_read << type); ++ /* ++ * Retry taking the lock after taking waitlist lock, in case we raced ++ * with an unlock: ++ */ ++ ret = __do_six_trylock(lock, type, current, false); ++ if (ret <= 0) { ++ wait->start_time = local_clock(); ++ ++ if (!list_empty(&lock->wait_list)) { ++ struct six_lock_waiter *last = ++ list_last_entry(&lock->wait_list, ++ struct six_lock_waiter, list); ++ ++ if (time_before_eq64(wait->start_time, last->start_time)) ++ wait->start_time = last->start_time + 1; ++ } ++ ++ list_add_tail(&wait->list, &lock->wait_list); ++ } ++ raw_spin_unlock(&lock->wait_lock); ++ ++ if (unlikely(ret > 0)) { ++ ret = 0; ++ goto out; ++ } ++ ++ if (unlikely(ret < 0)) { ++ __six_lock_wakeup(lock, -ret - 1); ++ ret = 0; ++ } ++ ++ while (1) { ++ set_current_state(TASK_UNINTERRUPTIBLE); ++ ++ /* ++ * Ensures that writes to the waitlist entry happen after we see ++ * wait->lock_acquired: pairs with the smp_store_release in ++ * __six_lock_wakeup ++ */ ++ if (smp_load_acquire(&wait->lock_acquired)) ++ break; ++ ++ ret = should_sleep_fn ? should_sleep_fn(lock, p) : 0; ++ if (unlikely(ret)) { ++ bool acquired; ++ ++ /* ++ * If should_sleep_fn() returns an error, we are ++ * required to return that error even if we already ++ * acquired the lock - should_sleep_fn() might have ++ * modified external state (e.g. when the deadlock cycle ++ * detector in bcachefs issued a transaction restart) ++ */ ++ raw_spin_lock(&lock->wait_lock); ++ acquired = wait->lock_acquired; ++ if (!acquired) ++ list_del(&wait->list); ++ raw_spin_unlock(&lock->wait_lock); ++ ++ if (unlikely(acquired)) ++ do_six_unlock_type(lock, type); ++ break; ++ } ++ ++ schedule(); ++ } ++ ++ __set_current_state(TASK_RUNNING); ++out: ++ if (ret && type == SIX_LOCK_write) { ++ six_clear_bitmask(lock, SIX_LOCK_HELD_write); ++ six_lock_wakeup(lock, atomic_read(&lock->state), SIX_LOCK_read); ++ } ++ ++ return ret; ++} ++ ++/** ++ * six_lock_ip_waiter - take a lock, with full waitlist interface ++ * @lock: lock to take ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * @wait: pointer to wait object, which will be added to lock's waitlist ++ * @should_sleep_fn: callback run after adding to waitlist, immediately prior ++ * to scheduling ++ * @p: passed through to @should_sleep_fn ++ * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ ++ * ++ * This is the most general six_lock() variant, with parameters to support full ++ * cycle detection for deadlock avoidance. ++ * ++ * The code calling this function must implement tracking of held locks, and the ++ * @wait object should be embedded into the struct that tracks held locks - ++ * which must also be accessible in a thread-safe way. ++ * ++ * @should_sleep_fn should invoke the cycle detector; it should walk each ++ * lock's waiters, and for each waiter recursively walk their held locks. ++ * ++ * When this function must block, @wait will be added to @lock's waitlist before ++ * calling trylock, and before calling @should_sleep_fn, and @wait will not be ++ * removed from the lock waitlist until the lock has been successfully acquired, ++ * or we abort. ++ * ++ * @wait.start_time will be monotonically increasing for any given waitlist, and ++ * thus may be used as a loop cursor. ++ * ++ * Return: 0 on success, or the return code from @should_sleep_fn on failure. ++ */ ++int six_lock_ip_waiter(struct six_lock *lock, enum six_lock_type type, ++ struct six_lock_waiter *wait, ++ six_lock_should_sleep_fn should_sleep_fn, void *p, ++ unsigned long ip) ++{ ++ int ret; ++ ++ wait->start_time = 0; ++ ++ if (type != SIX_LOCK_write) ++ six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, ip); ++ ++ ret = do_six_trylock(lock, type, true) ? 0 ++ : six_lock_slowpath(lock, type, wait, should_sleep_fn, p, ip); ++ ++ if (ret && type != SIX_LOCK_write) ++ six_release(&lock->dep_map, ip); ++ if (!ret) ++ lock_acquired(&lock->dep_map, ip); ++ ++ return ret; ++} ++EXPORT_SYMBOL_GPL(six_lock_ip_waiter); ++ ++__always_inline ++static void do_six_unlock_type(struct six_lock *lock, enum six_lock_type type) ++{ ++ u32 state; ++ ++ if (type == SIX_LOCK_intent) ++ lock->owner = NULL; ++ ++ if (type == SIX_LOCK_read && ++ lock->readers) { ++ smp_mb(); /* unlock barrier */ ++ this_cpu_dec(*lock->readers); ++ smp_mb(); /* between unlocking and checking for waiters */ ++ state = atomic_read(&lock->state); ++ } else { ++ u32 v = l[type].lock_val; ++ ++ if (type != SIX_LOCK_read) ++ v += atomic_read(&lock->state) & SIX_LOCK_NOSPIN; ++ ++ EBUG_ON(!(atomic_read(&lock->state) & l[type].held_mask)); ++ state = atomic_sub_return_release(v, &lock->state); ++ } ++ ++ six_lock_wakeup(lock, state, l[type].unlock_wakeup); ++} ++ ++/** ++ * six_unlock_ip - drop a six lock ++ * @lock: lock to unlock ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ ++ * ++ * When a lock is held multiple times (because six_lock_incement()) was used), ++ * this decrements the 'lock held' counter by one. ++ * ++ * For example: ++ * six_lock_read(&foo->lock); read count 1 ++ * six_lock_increment(&foo->lock, SIX_LOCK_read); read count 2 ++ * six_lock_unlock(&foo->lock, SIX_LOCK_read); read count 1 ++ * six_lock_unlock(&foo->lock, SIX_LOCK_read); read count 0 ++ */ ++void six_unlock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip) ++{ ++ EBUG_ON(type == SIX_LOCK_write && ++ !(atomic_read(&lock->state) & SIX_LOCK_HELD_intent)); ++ EBUG_ON((type == SIX_LOCK_write || ++ type == SIX_LOCK_intent) && ++ lock->owner != current); ++ ++ if (type != SIX_LOCK_write) ++ six_release(&lock->dep_map, ip); ++ else ++ lock->seq++; ++ ++ if (type == SIX_LOCK_intent && ++ lock->intent_lock_recurse) { ++ --lock->intent_lock_recurse; ++ return; ++ } ++ ++ do_six_unlock_type(lock, type); ++} ++EXPORT_SYMBOL_GPL(six_unlock_ip); ++ ++/** ++ * six_lock_downgrade - convert an intent lock to a read lock ++ * @lock: lock to dowgrade ++ * ++ * @lock will have read count incremented and intent count decremented ++ */ ++void six_lock_downgrade(struct six_lock *lock) ++{ ++ six_lock_increment(lock, SIX_LOCK_read); ++ six_unlock_intent(lock); ++} ++EXPORT_SYMBOL_GPL(six_lock_downgrade); ++ ++/** ++ * six_lock_tryupgrade - attempt to convert read lock to an intent lock ++ * @lock: lock to upgrade ++ * ++ * On success, @lock will have intent count incremented and read count ++ * decremented ++ * ++ * Return: true on success, false on failure ++ */ ++bool six_lock_tryupgrade(struct six_lock *lock) ++{ ++ u32 old = atomic_read(&lock->state), new; ++ ++ do { ++ new = old; ++ ++ if (new & SIX_LOCK_HELD_intent) ++ return false; ++ ++ if (!lock->readers) { ++ EBUG_ON(!(new & SIX_LOCK_HELD_read)); ++ new -= l[SIX_LOCK_read].lock_val; ++ } ++ ++ new |= SIX_LOCK_HELD_intent; ++ } while (!atomic_try_cmpxchg_acquire(&lock->state, &old, new)); ++ ++ if (lock->readers) ++ this_cpu_dec(*lock->readers); ++ ++ six_set_owner(lock, SIX_LOCK_intent, old, current); ++ ++ return true; ++} ++EXPORT_SYMBOL_GPL(six_lock_tryupgrade); ++ ++/** ++ * six_trylock_convert - attempt to convert a held lock from one type to another ++ * @lock: lock to upgrade ++ * @from: SIX_LOCK_read or SIX_LOCK_intent ++ * @to: SIX_LOCK_read or SIX_LOCK_intent ++ * ++ * On success, @lock will have intent count incremented and read count ++ * decremented ++ * ++ * Return: true on success, false on failure ++ */ ++bool six_trylock_convert(struct six_lock *lock, ++ enum six_lock_type from, ++ enum six_lock_type to) ++{ ++ EBUG_ON(to == SIX_LOCK_write || from == SIX_LOCK_write); ++ ++ if (to == from) ++ return true; ++ ++ if (to == SIX_LOCK_read) { ++ six_lock_downgrade(lock); ++ return true; ++ } else { ++ return six_lock_tryupgrade(lock); ++ } ++} ++EXPORT_SYMBOL_GPL(six_trylock_convert); ++ ++/** ++ * six_lock_increment - increase held lock count on a lock that is already held ++ * @lock: lock to increment ++ * @type: SIX_LOCK_read or SIX_LOCK_intent ++ * ++ * @lock must already be held, with a lock type that is greater than or equal to ++ * @type ++ * ++ * A corresponding six_unlock_type() call will be required for @lock to be fully ++ * unlocked. ++ */ ++void six_lock_increment(struct six_lock *lock, enum six_lock_type type) ++{ ++ six_acquire(&lock->dep_map, 0, type == SIX_LOCK_read, _RET_IP_); ++ ++ /* XXX: assert already locked, and that we don't overflow: */ ++ ++ switch (type) { ++ case SIX_LOCK_read: ++ if (lock->readers) { ++ this_cpu_inc(*lock->readers); ++ } else { ++ EBUG_ON(!(atomic_read(&lock->state) & ++ (SIX_LOCK_HELD_read| ++ SIX_LOCK_HELD_intent))); ++ atomic_add(l[type].lock_val, &lock->state); ++ } ++ break; ++ case SIX_LOCK_intent: ++ EBUG_ON(!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent)); ++ lock->intent_lock_recurse++; ++ break; ++ case SIX_LOCK_write: ++ BUG(); ++ break; ++ } ++} ++EXPORT_SYMBOL_GPL(six_lock_increment); ++ ++/** ++ * six_lock_wakeup_all - wake up all waiters on @lock ++ * @lock: lock to wake up waiters for ++ * ++ * Wakeing up waiters will cause them to re-run should_sleep_fn, which may then ++ * abort the lock operation. ++ * ++ * This function is never needed in a bug-free program; it's only useful in ++ * debug code, e.g. to determine if a cycle detector is at fault. ++ */ ++void six_lock_wakeup_all(struct six_lock *lock) ++{ ++ u32 state = atomic_read(&lock->state); ++ struct six_lock_waiter *w; ++ ++ six_lock_wakeup(lock, state, SIX_LOCK_read); ++ six_lock_wakeup(lock, state, SIX_LOCK_intent); ++ six_lock_wakeup(lock, state, SIX_LOCK_write); ++ ++ raw_spin_lock(&lock->wait_lock); ++ list_for_each_entry(w, &lock->wait_list, list) ++ wake_up_process(w->task); ++ raw_spin_unlock(&lock->wait_lock); ++} ++EXPORT_SYMBOL_GPL(six_lock_wakeup_all); ++ ++/** ++ * six_lock_counts - return held lock counts, for each lock type ++ * @lock: lock to return counters for ++ * ++ * Return: the number of times a lock is held for read, intent and write. ++ */ ++struct six_lock_count six_lock_counts(struct six_lock *lock) ++{ ++ struct six_lock_count ret; ++ ++ ret.n[SIX_LOCK_read] = !lock->readers ++ ? atomic_read(&lock->state) & SIX_LOCK_HELD_read ++ : pcpu_read_count(lock); ++ ret.n[SIX_LOCK_intent] = !!(atomic_read(&lock->state) & SIX_LOCK_HELD_intent) + ++ lock->intent_lock_recurse; ++ ret.n[SIX_LOCK_write] = !!(atomic_read(&lock->state) & SIX_LOCK_HELD_write); ++ ++ return ret; ++} ++EXPORT_SYMBOL_GPL(six_lock_counts); ++ ++/** ++ * six_lock_readers_add - directly manipulate reader count of a lock ++ * @lock: lock to add/subtract readers for ++ * @nr: reader count to add/subtract ++ * ++ * When an upper layer is implementing lock reentrency, we may have both read ++ * and intent locks on the same lock. ++ * ++ * When we need to take a write lock, the read locks will cause self-deadlock, ++ * because six locks themselves do not track which read locks are held by the ++ * current thread and which are held by a different thread - it does no ++ * per-thread tracking of held locks. ++ * ++ * The upper layer that is tracking held locks may however, if trylock() has ++ * failed, count up its own read locks, subtract them, take the write lock, and ++ * then re-add them. ++ * ++ * As in any other situation when taking a write lock, @lock must be held for ++ * intent one (or more) times, so @lock will never be left unlocked. ++ */ ++void six_lock_readers_add(struct six_lock *lock, int nr) ++{ ++ if (lock->readers) { ++ this_cpu_add(*lock->readers, nr); ++ } else { ++ EBUG_ON((int) (atomic_read(&lock->state) & SIX_LOCK_HELD_read) + nr < 0); ++ /* reader count starts at bit 0 */ ++ atomic_add(nr, &lock->state); ++ } ++} ++EXPORT_SYMBOL_GPL(six_lock_readers_add); ++ ++/** ++ * six_lock_exit - release resources held by a lock prior to freeing ++ * @lock: lock to exit ++ * ++ * When a lock was initialized in percpu mode (SIX_OLCK_INIT_PCPU), this is ++ * required to free the percpu read counts. ++ */ ++void six_lock_exit(struct six_lock *lock) ++{ ++ WARN_ON(lock->readers && pcpu_read_count(lock)); ++ WARN_ON(atomic_read(&lock->state) & SIX_LOCK_HELD_read); ++ ++ free_percpu(lock->readers); ++ lock->readers = NULL; ++} ++EXPORT_SYMBOL_GPL(six_lock_exit); ++ ++void __six_lock_init(struct six_lock *lock, const char *name, ++ struct lock_class_key *key, enum six_lock_init_flags flags) ++{ ++ atomic_set(&lock->state, 0); ++ raw_spin_lock_init(&lock->wait_lock); ++ INIT_LIST_HEAD(&lock->wait_list); ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ debug_check_no_locks_freed((void *) lock, sizeof(*lock)); ++ lockdep_init_map(&lock->dep_map, name, key, 0); ++#endif ++ ++ /* ++ * Don't assume that we have real percpu variables available in ++ * userspace: ++ */ ++#ifdef __KERNEL__ ++ if (flags & SIX_LOCK_INIT_PCPU) { ++ /* ++ * We don't return an error here on memory allocation failure ++ * since percpu is an optimization, and locks will work with the ++ * same semantics in non-percpu mode: callers can check for ++ * failure if they wish by checking lock->readers, but generally ++ * will not want to treat it as an error. ++ */ ++ lock->readers = alloc_percpu(unsigned); ++ } ++#endif ++} ++EXPORT_SYMBOL_GPL(__six_lock_init); +diff --git a/fs/bcachefs/six.h b/fs/bcachefs/six.h +new file mode 100644 +index 000000000000..4c268b0b8316 +--- /dev/null ++++ b/fs/bcachefs/six.h +@@ -0,0 +1,393 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++ ++#ifndef _LINUX_SIX_H ++#define _LINUX_SIX_H ++ ++/** ++ * DOC: SIX locks overview ++ * ++ * Shared/intent/exclusive locks: sleepable read/write locks, like rw semaphores ++ * but with an additional state: read/shared, intent, exclusive/write ++ * ++ * The purpose of the intent state is to allow for greater concurrency on tree ++ * structures without deadlocking. In general, a read can't be upgraded to a ++ * write lock without deadlocking, so an operation that updates multiple nodes ++ * will have to take write locks for the full duration of the operation. ++ * ++ * But by adding an intent state, which is exclusive with other intent locks but ++ * not with readers, we can take intent locks at thte start of the operation, ++ * and then take write locks only for the actual update to each individual ++ * nodes, without deadlocking. ++ * ++ * Example usage: ++ * six_lock_read(&foo->lock); ++ * six_unlock_read(&foo->lock); ++ * ++ * An intent lock must be held before taking a write lock: ++ * six_lock_intent(&foo->lock); ++ * six_lock_write(&foo->lock); ++ * six_unlock_write(&foo->lock); ++ * six_unlock_intent(&foo->lock); ++ * ++ * Other operations: ++ * six_trylock_read() ++ * six_trylock_intent() ++ * six_trylock_write() ++ * ++ * six_lock_downgrade() convert from intent to read ++ * six_lock_tryupgrade() attempt to convert from read to intent, may fail ++ * ++ * There are also interfaces that take the lock type as an enum: ++ * ++ * six_lock_type(&foo->lock, SIX_LOCK_read); ++ * six_trylock_convert(&foo->lock, SIX_LOCK_read, SIX_LOCK_intent) ++ * six_lock_type(&foo->lock, SIX_LOCK_write); ++ * six_unlock_type(&foo->lock, SIX_LOCK_write); ++ * six_unlock_type(&foo->lock, SIX_LOCK_intent); ++ * ++ * Lock sequence numbers - unlock(), relock(): ++ * ++ * Locks embed sequences numbers, which are incremented on write lock/unlock. ++ * This allows locks to be dropped and the retaken iff the state they protect ++ * hasn't changed; this makes it much easier to avoid holding locks while e.g. ++ * doing IO or allocating memory. ++ * ++ * Example usage: ++ * six_lock_read(&foo->lock); ++ * u32 seq = six_lock_seq(&foo->lock); ++ * six_unlock_read(&foo->lock); ++ * ++ * some_operation_that_may_block(); ++ * ++ * if (six_relock_read(&foo->lock, seq)) { ... } ++ * ++ * If the relock operation succeeds, it is as if the lock was never unlocked. ++ * ++ * Reentrancy: ++ * ++ * Six locks are not by themselves reentrent, but have counters for both the ++ * read and intent states that can be used to provide reentrency by an upper ++ * layer that tracks held locks. If a lock is known to already be held in the ++ * read or intent state, six_lock_increment() can be used to bump the "lock ++ * held in this state" counter, increasing the number of unlock calls that ++ * will be required to fully unlock it. ++ * ++ * Example usage: ++ * six_lock_read(&foo->lock); ++ * six_lock_increment(&foo->lock, SIX_LOCK_read); ++ * six_unlock_read(&foo->lock); ++ * six_unlock_read(&foo->lock); ++ * foo->lock is now fully unlocked. ++ * ++ * Since the intent state supercedes read, it's legal to increment the read ++ * counter when holding an intent lock, but not the reverse. ++ * ++ * A lock may only be held once for write: six_lock_increment(.., SIX_LOCK_write) ++ * is not legal. ++ * ++ * should_sleep_fn: ++ * ++ * There is a six_lock() variant that takes a function pointer that is called ++ * immediately prior to schedule() when blocking, and may return an error to ++ * abort. ++ * ++ * One possible use for this feature is when objects being locked are part of ++ * a cache and may reused, and lock ordering is based on a property of the ++ * object that will change when the object is reused - i.e. logical key order. ++ * ++ * If looking up an object in the cache may race with object reuse, and lock ++ * ordering is required to prevent deadlock, object reuse may change the ++ * correct lock order for that object and cause a deadlock. should_sleep_fn ++ * can be used to check if the object is still the object we want and avoid ++ * this deadlock. ++ * ++ * Wait list entry interface: ++ * ++ * There is a six_lock() variant, six_lock_waiter(), that takes a pointer to a ++ * wait list entry. By embedding six_lock_waiter into another object, and by ++ * traversing lock waitlists, it is then possible for an upper layer to ++ * implement full cycle detection for deadlock avoidance. ++ * ++ * should_sleep_fn should be used for invoking the cycle detector, walking the ++ * graph of held locks to check for a deadlock. The upper layer must track ++ * held locks for each thread, and each thread's held locks must be reachable ++ * from its six_lock_waiter object. ++ * ++ * six_lock_waiter() will add the wait object to the waitlist re-trying taking ++ * the lock, and before calling should_sleep_fn, and the wait object will not ++ * be removed from the waitlist until either the lock has been successfully ++ * acquired, or we aborted because should_sleep_fn returned an error. ++ * ++ * Also, six_lock_waiter contains a timestamp, and waiters on a waitlist will ++ * have timestamps in strictly ascending order - this is so the timestamp can ++ * be used as a cursor for lock graph traverse. ++ */ ++ ++#include ++#include ++#include ++ ++#ifdef CONFIG_SIX_LOCK_SPIN_ON_OWNER ++#include ++#endif ++ ++enum six_lock_type { ++ SIX_LOCK_read, ++ SIX_LOCK_intent, ++ SIX_LOCK_write, ++}; ++ ++struct six_lock { ++ atomic_t state; ++ u32 seq; ++ unsigned intent_lock_recurse; ++ struct task_struct *owner; ++ unsigned __percpu *readers; ++#ifdef CONFIG_SIX_LOCK_SPIN_ON_OWNER ++ struct optimistic_spin_queue osq; ++#endif ++ raw_spinlock_t wait_lock; ++ struct list_head wait_list; ++#ifdef CONFIG_DEBUG_LOCK_ALLOC ++ struct lockdep_map dep_map; ++#endif ++}; ++ ++struct six_lock_waiter { ++ struct list_head list; ++ struct task_struct *task; ++ enum six_lock_type lock_want; ++ bool lock_acquired; ++ u64 start_time; ++}; ++ ++typedef int (*six_lock_should_sleep_fn)(struct six_lock *lock, void *); ++ ++void six_lock_exit(struct six_lock *lock); ++ ++enum six_lock_init_flags { ++ SIX_LOCK_INIT_PCPU = 1U << 0, ++}; ++ ++void __six_lock_init(struct six_lock *lock, const char *name, ++ struct lock_class_key *key, enum six_lock_init_flags flags); ++ ++/** ++ * six_lock_init - initialize a six lock ++ * @lock: lock to initialize ++ * @flags: optional flags, i.e. SIX_LOCK_INIT_PCPU ++ */ ++#define six_lock_init(lock, flags) \ ++do { \ ++ static struct lock_class_key __key; \ ++ \ ++ __six_lock_init((lock), #lock, &__key, flags); \ ++} while (0) ++ ++/** ++ * six_lock_seq - obtain current lock sequence number ++ * @lock: six_lock to obtain sequence number for ++ * ++ * @lock should be held for read or intent, and not write ++ * ++ * By saving the lock sequence number, we can unlock @lock and then (typically ++ * after some blocking operation) attempt to relock it: the relock will succeed ++ * if the sequence number hasn't changed, meaning no write locks have been taken ++ * and state corresponding to what @lock protects is still valid. ++ */ ++static inline u32 six_lock_seq(const struct six_lock *lock) ++{ ++ return lock->seq; ++} ++ ++bool six_trylock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip); ++ ++/** ++ * six_trylock_type - attempt to take a six lock without blocking ++ * @lock: lock to take ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * ++ * Return: true on success, false on failure. ++ */ ++static inline bool six_trylock_type(struct six_lock *lock, enum six_lock_type type) ++{ ++ return six_trylock_ip(lock, type, _THIS_IP_); ++} ++ ++int six_lock_ip_waiter(struct six_lock *lock, enum six_lock_type type, ++ struct six_lock_waiter *wait, ++ six_lock_should_sleep_fn should_sleep_fn, void *p, ++ unsigned long ip); ++ ++/** ++ * six_lock_waiter - take a lock, with full waitlist interface ++ * @lock: lock to take ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * @wait: pointer to wait object, which will be added to lock's waitlist ++ * @should_sleep_fn: callback run after adding to waitlist, immediately prior ++ * to scheduling ++ * @p: passed through to @should_sleep_fn ++ * ++ * This is a convenience wrapper around six_lock_ip_waiter(), see that function ++ * for full documentation. ++ * ++ * Return: 0 on success, or the return code from @should_sleep_fn on failure. ++ */ ++static inline int six_lock_waiter(struct six_lock *lock, enum six_lock_type type, ++ struct six_lock_waiter *wait, ++ six_lock_should_sleep_fn should_sleep_fn, void *p) ++{ ++ return six_lock_ip_waiter(lock, type, wait, should_sleep_fn, p, _THIS_IP_); ++} ++ ++/** ++ * six_lock_ip - take a six lock lock ++ * @lock: lock to take ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * @should_sleep_fn: callback run after adding to waitlist, immediately prior ++ * to scheduling ++ * @p: passed through to @should_sleep_fn ++ * @ip: ip parameter for lockdep/lockstat, i.e. _THIS_IP_ ++ * ++ * Return: 0 on success, or the return code from @should_sleep_fn on failure. ++ */ ++static inline int six_lock_ip(struct six_lock *lock, enum six_lock_type type, ++ six_lock_should_sleep_fn should_sleep_fn, void *p, ++ unsigned long ip) ++{ ++ struct six_lock_waiter wait; ++ ++ return six_lock_ip_waiter(lock, type, &wait, should_sleep_fn, p, ip); ++} ++ ++/** ++ * six_lock_type - take a six lock lock ++ * @lock: lock to take ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * @should_sleep_fn: callback run after adding to waitlist, immediately prior ++ * to scheduling ++ * @p: passed through to @should_sleep_fn ++ * ++ * Return: 0 on success, or the return code from @should_sleep_fn on failure. ++ */ ++static inline int six_lock_type(struct six_lock *lock, enum six_lock_type type, ++ six_lock_should_sleep_fn should_sleep_fn, void *p) ++{ ++ struct six_lock_waiter wait; ++ ++ return six_lock_ip_waiter(lock, type, &wait, should_sleep_fn, p, _THIS_IP_); ++} ++ ++bool six_relock_ip(struct six_lock *lock, enum six_lock_type type, ++ unsigned seq, unsigned long ip); ++ ++/** ++ * six_relock_type - attempt to re-take a lock that was held previously ++ * @lock: lock to take ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * @seq: lock sequence number obtained from six_lock_seq() while lock was ++ * held previously ++ * ++ * Return: true on success, false on failure. ++ */ ++static inline bool six_relock_type(struct six_lock *lock, enum six_lock_type type, ++ unsigned seq) ++{ ++ return six_relock_ip(lock, type, seq, _THIS_IP_); ++} ++ ++void six_unlock_ip(struct six_lock *lock, enum six_lock_type type, unsigned long ip); ++ ++/** ++ * six_unlock_type - drop a six lock ++ * @lock: lock to unlock ++ * @type: SIX_LOCK_read, SIX_LOCK_intent, or SIX_LOCK_write ++ * ++ * When a lock is held multiple times (because six_lock_incement()) was used), ++ * this decrements the 'lock held' counter by one. ++ * ++ * For example: ++ * six_lock_read(&foo->lock); read count 1 ++ * six_lock_increment(&foo->lock, SIX_LOCK_read); read count 2 ++ * six_lock_unlock(&foo->lock, SIX_LOCK_read); read count 1 ++ * six_lock_unlock(&foo->lock, SIX_LOCK_read); read count 0 ++ */ ++static inline void six_unlock_type(struct six_lock *lock, enum six_lock_type type) ++{ ++ six_unlock_ip(lock, type, _THIS_IP_); ++} ++ ++#define __SIX_LOCK(type) \ ++static inline bool six_trylock_ip_##type(struct six_lock *lock, unsigned long ip)\ ++{ \ ++ return six_trylock_ip(lock, SIX_LOCK_##type, ip); \ ++} \ ++ \ ++static inline bool six_trylock_##type(struct six_lock *lock) \ ++{ \ ++ return six_trylock_ip(lock, SIX_LOCK_##type, _THIS_IP_); \ ++} \ ++ \ ++static inline int six_lock_ip_waiter_##type(struct six_lock *lock, \ ++ struct six_lock_waiter *wait, \ ++ six_lock_should_sleep_fn should_sleep_fn, void *p,\ ++ unsigned long ip) \ ++{ \ ++ return six_lock_ip_waiter(lock, SIX_LOCK_##type, wait, should_sleep_fn, p, ip);\ ++} \ ++ \ ++static inline int six_lock_ip_##type(struct six_lock *lock, \ ++ six_lock_should_sleep_fn should_sleep_fn, void *p, \ ++ unsigned long ip) \ ++{ \ ++ return six_lock_ip(lock, SIX_LOCK_##type, should_sleep_fn, p, ip);\ ++} \ ++ \ ++static inline bool six_relock_ip_##type(struct six_lock *lock, u32 seq, unsigned long ip)\ ++{ \ ++ return six_relock_ip(lock, SIX_LOCK_##type, seq, ip); \ ++} \ ++ \ ++static inline bool six_relock_##type(struct six_lock *lock, u32 seq) \ ++{ \ ++ return six_relock_ip(lock, SIX_LOCK_##type, seq, _THIS_IP_); \ ++} \ ++ \ ++static inline int six_lock_##type(struct six_lock *lock, \ ++ six_lock_should_sleep_fn fn, void *p)\ ++{ \ ++ return six_lock_ip_##type(lock, fn, p, _THIS_IP_); \ ++} \ ++ \ ++static inline void six_unlock_ip_##type(struct six_lock *lock, unsigned long ip) \ ++{ \ ++ six_unlock_ip(lock, SIX_LOCK_##type, ip); \ ++} \ ++ \ ++static inline void six_unlock_##type(struct six_lock *lock) \ ++{ \ ++ six_unlock_ip(lock, SIX_LOCK_##type, _THIS_IP_); \ ++} ++ ++__SIX_LOCK(read) ++__SIX_LOCK(intent) ++__SIX_LOCK(write) ++#undef __SIX_LOCK ++ ++void six_lock_downgrade(struct six_lock *); ++bool six_lock_tryupgrade(struct six_lock *); ++bool six_trylock_convert(struct six_lock *, enum six_lock_type, ++ enum six_lock_type); ++ ++void six_lock_increment(struct six_lock *, enum six_lock_type); ++ ++void six_lock_wakeup_all(struct six_lock *); ++ ++struct six_lock_count { ++ unsigned n[3]; ++}; ++ ++struct six_lock_count six_lock_counts(struct six_lock *); ++void six_lock_readers_add(struct six_lock *, int); ++ ++#endif /* _LINUX_SIX_H */ +diff --git a/fs/bcachefs/snapshot.c b/fs/bcachefs/snapshot.c +new file mode 100644 +index 000000000000..4982468bfe11 +--- /dev/null ++++ b/fs/bcachefs/snapshot.c +@@ -0,0 +1,1689 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "bkey_buf.h" ++#include "btree_key_cache.h" ++#include "btree_update.h" ++#include "buckets.h" ++#include "errcode.h" ++#include "error.h" ++#include "fs.h" ++#include "snapshot.h" ++ ++#include ++ ++/* ++ * Snapshot trees: ++ * ++ * Keys in BTREE_ID_snapshot_trees identify a whole tree of snapshot nodes; they ++ * exist to provide a stable identifier for the whole lifetime of a snapshot ++ * tree. ++ */ ++ ++void bch2_snapshot_tree_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_snapshot_tree t = bkey_s_c_to_snapshot_tree(k); ++ ++ prt_printf(out, "subvol %u root snapshot %u", ++ le32_to_cpu(t.v->master_subvol), ++ le32_to_cpu(t.v->root_snapshot)); ++} ++ ++int bch2_snapshot_tree_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ if (bkey_gt(k.k->p, POS(0, U32_MAX)) || ++ bkey_lt(k.k->p, POS(0, 1))) { ++ prt_printf(err, "bad pos"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++int bch2_snapshot_tree_lookup(struct btree_trans *trans, u32 id, ++ struct bch_snapshot_tree *s) ++{ ++ int ret = bch2_bkey_get_val_typed(trans, BTREE_ID_snapshot_trees, POS(0, id), ++ BTREE_ITER_WITH_UPDATES, snapshot_tree, s); ++ ++ if (bch2_err_matches(ret, ENOENT)) ++ ret = -BCH_ERR_ENOENT_snapshot_tree; ++ return ret; ++} ++ ++struct bkey_i_snapshot_tree * ++__bch2_snapshot_tree_create(struct btree_trans *trans) ++{ ++ struct btree_iter iter; ++ int ret = bch2_bkey_get_empty_slot(trans, &iter, ++ BTREE_ID_snapshot_trees, POS(0, U32_MAX)); ++ struct bkey_i_snapshot_tree *s_t; ++ ++ if (ret == -BCH_ERR_ENOSPC_btree_slot) ++ ret = -BCH_ERR_ENOSPC_snapshot_tree; ++ if (ret) ++ return ERR_PTR(ret); ++ ++ s_t = bch2_bkey_alloc(trans, &iter, 0, snapshot_tree); ++ ret = PTR_ERR_OR_ZERO(s_t); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret ? ERR_PTR(ret) : s_t; ++} ++ ++static int bch2_snapshot_tree_create(struct btree_trans *trans, ++ u32 root_id, u32 subvol_id, u32 *tree_id) ++{ ++ struct bkey_i_snapshot_tree *n_tree = ++ __bch2_snapshot_tree_create(trans); ++ ++ if (IS_ERR(n_tree)) ++ return PTR_ERR(n_tree); ++ ++ n_tree->v.master_subvol = cpu_to_le32(subvol_id); ++ n_tree->v.root_snapshot = cpu_to_le32(root_id); ++ *tree_id = n_tree->k.p.offset; ++ return 0; ++} ++ ++/* Snapshot nodes: */ ++ ++static bool bch2_snapshot_is_ancestor_early(struct bch_fs *c, u32 id, u32 ancestor) ++{ ++ struct snapshot_table *t; ++ ++ rcu_read_lock(); ++ t = rcu_dereference(c->snapshots); ++ ++ while (id && id < ancestor) ++ id = __snapshot_t(t, id)->parent; ++ rcu_read_unlock(); ++ ++ return id == ancestor; ++} ++ ++static inline u32 get_ancestor_below(struct snapshot_table *t, u32 id, u32 ancestor) ++{ ++ const struct snapshot_t *s = __snapshot_t(t, id); ++ ++ if (s->skip[2] <= ancestor) ++ return s->skip[2]; ++ if (s->skip[1] <= ancestor) ++ return s->skip[1]; ++ if (s->skip[0] <= ancestor) ++ return s->skip[0]; ++ return s->parent; ++} ++ ++bool __bch2_snapshot_is_ancestor(struct bch_fs *c, u32 id, u32 ancestor) ++{ ++ struct snapshot_table *t; ++ bool ret; ++ ++ EBUG_ON(c->curr_recovery_pass <= BCH_RECOVERY_PASS_check_snapshots); ++ ++ rcu_read_lock(); ++ t = rcu_dereference(c->snapshots); ++ ++ while (id && id < ancestor - IS_ANCESTOR_BITMAP) ++ id = get_ancestor_below(t, id, ancestor); ++ ++ if (id && id < ancestor) { ++ ret = test_bit(ancestor - id - 1, __snapshot_t(t, id)->is_ancestor); ++ ++ EBUG_ON(ret != bch2_snapshot_is_ancestor_early(c, id, ancestor)); ++ } else { ++ ret = id == ancestor; ++ } ++ ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++static noinline struct snapshot_t *__snapshot_t_mut(struct bch_fs *c, u32 id) ++{ ++ size_t idx = U32_MAX - id; ++ size_t new_size; ++ struct snapshot_table *new, *old; ++ ++ new_size = max(16UL, roundup_pow_of_two(idx + 1)); ++ ++ new = kvzalloc(struct_size(new, s, new_size), GFP_KERNEL); ++ if (!new) ++ return NULL; ++ ++ old = rcu_dereference_protected(c->snapshots, true); ++ if (old) ++ memcpy(new->s, ++ rcu_dereference_protected(c->snapshots, true)->s, ++ sizeof(new->s[0]) * c->snapshot_table_size); ++ ++ rcu_assign_pointer(c->snapshots, new); ++ c->snapshot_table_size = new_size; ++ kvfree_rcu_mightsleep(old); ++ ++ return &rcu_dereference_protected(c->snapshots, true)->s[idx]; ++} ++ ++static inline struct snapshot_t *snapshot_t_mut(struct bch_fs *c, u32 id) ++{ ++ size_t idx = U32_MAX - id; ++ ++ lockdep_assert_held(&c->snapshot_table_lock); ++ ++ if (likely(idx < c->snapshot_table_size)) ++ return &rcu_dereference_protected(c->snapshots, true)->s[idx]; ++ ++ return __snapshot_t_mut(c, id); ++} ++ ++void bch2_snapshot_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_snapshot s = bkey_s_c_to_snapshot(k); ++ ++ prt_printf(out, "is_subvol %llu deleted %llu parent %10u children %10u %10u subvol %u tree %u", ++ BCH_SNAPSHOT_SUBVOL(s.v), ++ BCH_SNAPSHOT_DELETED(s.v), ++ le32_to_cpu(s.v->parent), ++ le32_to_cpu(s.v->children[0]), ++ le32_to_cpu(s.v->children[1]), ++ le32_to_cpu(s.v->subvol), ++ le32_to_cpu(s.v->tree)); ++ ++ if (bkey_val_bytes(k.k) > offsetof(struct bch_snapshot, depth)) ++ prt_printf(out, " depth %u skiplist %u %u %u", ++ le32_to_cpu(s.v->depth), ++ le32_to_cpu(s.v->skip[0]), ++ le32_to_cpu(s.v->skip[1]), ++ le32_to_cpu(s.v->skip[2])); ++} ++ ++int bch2_snapshot_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ struct bkey_s_c_snapshot s; ++ u32 i, id; ++ ++ if (bkey_gt(k.k->p, POS(0, U32_MAX)) || ++ bkey_lt(k.k->p, POS(0, 1))) { ++ prt_printf(err, "bad pos"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ s = bkey_s_c_to_snapshot(k); ++ ++ id = le32_to_cpu(s.v->parent); ++ if (id && id <= k.k->p.offset) { ++ prt_printf(err, "bad parent node (%u <= %llu)", ++ id, k.k->p.offset); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (le32_to_cpu(s.v->children[0]) < le32_to_cpu(s.v->children[1])) { ++ prt_printf(err, "children not normalized"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (s.v->children[0] && ++ s.v->children[0] == s.v->children[1]) { ++ prt_printf(err, "duplicate child nodes"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ for (i = 0; i < 2; i++) { ++ id = le32_to_cpu(s.v->children[i]); ++ ++ if (id >= k.k->p.offset) { ++ prt_printf(err, "bad child node (%u >= %llu)", ++ id, k.k->p.offset); ++ return -BCH_ERR_invalid_bkey; ++ } ++ } ++ ++ if (bkey_val_bytes(k.k) > offsetof(struct bch_snapshot, skip)) { ++ if (le32_to_cpu(s.v->skip[0]) > le32_to_cpu(s.v->skip[1]) || ++ le32_to_cpu(s.v->skip[1]) > le32_to_cpu(s.v->skip[2])) { ++ prt_printf(err, "skiplist not normalized"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ for (i = 0; i < ARRAY_SIZE(s.v->skip); i++) { ++ id = le32_to_cpu(s.v->skip[i]); ++ ++ if ((id && !s.v->parent) || ++ (id && id <= k.k->p.offset)) { ++ prt_printf(err, "bad skiplist node %u", id); ++ return -BCH_ERR_invalid_bkey; ++ } ++ } ++ } ++ ++ return 0; ++} ++ ++static void __set_is_ancestor_bitmap(struct bch_fs *c, u32 id) ++{ ++ struct snapshot_t *t = snapshot_t_mut(c, id); ++ u32 parent = id; ++ ++ while ((parent = bch2_snapshot_parent_early(c, parent)) && ++ parent - id - 1 < IS_ANCESTOR_BITMAP) ++ __set_bit(parent - id - 1, t->is_ancestor); ++} ++ ++static void set_is_ancestor_bitmap(struct bch_fs *c, u32 id) ++{ ++ mutex_lock(&c->snapshot_table_lock); ++ __set_is_ancestor_bitmap(c, id); ++ mutex_unlock(&c->snapshot_table_lock); ++} ++ ++int bch2_mark_snapshot(struct btree_trans *trans, ++ enum btree_id btree, unsigned level, ++ struct bkey_s_c old, struct bkey_s_c new, ++ unsigned flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct snapshot_t *t; ++ u32 id = new.k->p.offset; ++ int ret = 0; ++ ++ mutex_lock(&c->snapshot_table_lock); ++ ++ t = snapshot_t_mut(c, id); ++ if (!t) { ++ ret = -BCH_ERR_ENOMEM_mark_snapshot; ++ goto err; ++ } ++ ++ if (new.k->type == KEY_TYPE_snapshot) { ++ struct bkey_s_c_snapshot s = bkey_s_c_to_snapshot(new); ++ ++ t->parent = le32_to_cpu(s.v->parent); ++ t->children[0] = le32_to_cpu(s.v->children[0]); ++ t->children[1] = le32_to_cpu(s.v->children[1]); ++ t->subvol = BCH_SNAPSHOT_SUBVOL(s.v) ? le32_to_cpu(s.v->subvol) : 0; ++ t->tree = le32_to_cpu(s.v->tree); ++ ++ if (bkey_val_bytes(s.k) > offsetof(struct bch_snapshot, depth)) { ++ t->depth = le32_to_cpu(s.v->depth); ++ t->skip[0] = le32_to_cpu(s.v->skip[0]); ++ t->skip[1] = le32_to_cpu(s.v->skip[1]); ++ t->skip[2] = le32_to_cpu(s.v->skip[2]); ++ } else { ++ t->depth = 0; ++ t->skip[0] = 0; ++ t->skip[1] = 0; ++ t->skip[2] = 0; ++ } ++ ++ __set_is_ancestor_bitmap(c, id); ++ ++ if (BCH_SNAPSHOT_DELETED(s.v)) { ++ set_bit(BCH_FS_HAVE_DELETED_SNAPSHOTS, &c->flags); ++ c->recovery_passes_explicit |= BIT_ULL(BCH_RECOVERY_PASS_delete_dead_snapshots); ++ } ++ } else { ++ memset(t, 0, sizeof(*t)); ++ } ++err: ++ mutex_unlock(&c->snapshot_table_lock); ++ return ret; ++} ++ ++int bch2_snapshot_lookup(struct btree_trans *trans, u32 id, ++ struct bch_snapshot *s) ++{ ++ return bch2_bkey_get_val_typed(trans, BTREE_ID_snapshots, POS(0, id), ++ BTREE_ITER_WITH_UPDATES, snapshot, s); ++} ++ ++static int bch2_snapshot_live(struct btree_trans *trans, u32 id) ++{ ++ struct bch_snapshot v; ++ int ret; ++ ++ if (!id) ++ return 0; ++ ++ ret = bch2_snapshot_lookup(trans, id, &v); ++ if (bch2_err_matches(ret, ENOENT)) ++ bch_err(trans->c, "snapshot node %u not found", id); ++ if (ret) ++ return ret; ++ ++ return !BCH_SNAPSHOT_DELETED(&v); ++} ++ ++/* ++ * If @k is a snapshot with just one live child, it's part of a linear chain, ++ * which we consider to be an equivalence class: and then after snapshot ++ * deletion cleanup, there should only be a single key at a given position in ++ * this equivalence class. ++ * ++ * This sets the equivalence class of @k to be the child's equivalence class, if ++ * it's part of such a linear chain: this correctly sets equivalence classes on ++ * startup if we run leaf to root (i.e. in natural key order). ++ */ ++static int bch2_snapshot_set_equiv(struct btree_trans *trans, struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ unsigned i, nr_live = 0, live_idx = 0; ++ struct bkey_s_c_snapshot snap; ++ u32 id = k.k->p.offset, child[2]; ++ ++ if (k.k->type != KEY_TYPE_snapshot) ++ return 0; ++ ++ snap = bkey_s_c_to_snapshot(k); ++ ++ child[0] = le32_to_cpu(snap.v->children[0]); ++ child[1] = le32_to_cpu(snap.v->children[1]); ++ ++ for (i = 0; i < 2; i++) { ++ int ret = bch2_snapshot_live(trans, child[i]); ++ ++ if (ret < 0) ++ return ret; ++ ++ if (ret) ++ live_idx = i; ++ nr_live += ret; ++ } ++ ++ mutex_lock(&c->snapshot_table_lock); ++ ++ snapshot_t_mut(c, id)->equiv = nr_live == 1 ++ ? snapshot_t_mut(c, child[live_idx])->equiv ++ : id; ++ ++ mutex_unlock(&c->snapshot_table_lock); ++ ++ return 0; ++} ++ ++/* fsck: */ ++ ++static u32 bch2_snapshot_child(struct bch_fs *c, u32 id, unsigned child) ++{ ++ return snapshot_t(c, id)->children[child]; ++} ++ ++static u32 bch2_snapshot_left_child(struct bch_fs *c, u32 id) ++{ ++ return bch2_snapshot_child(c, id, 0); ++} ++ ++static u32 bch2_snapshot_right_child(struct bch_fs *c, u32 id) ++{ ++ return bch2_snapshot_child(c, id, 1); ++} ++ ++static u32 bch2_snapshot_tree_next(struct bch_fs *c, u32 id) ++{ ++ u32 n, parent; ++ ++ n = bch2_snapshot_left_child(c, id); ++ if (n) ++ return n; ++ ++ while ((parent = bch2_snapshot_parent(c, id))) { ++ n = bch2_snapshot_right_child(c, parent); ++ if (n && n != id) ++ return n; ++ id = parent; ++ } ++ ++ return 0; ++} ++ ++static u32 bch2_snapshot_tree_oldest_subvol(struct bch_fs *c, u32 snapshot_root) ++{ ++ u32 id = snapshot_root; ++ u32 subvol = 0, s; ++ ++ while (id) { ++ s = snapshot_t(c, id)->subvol; ++ ++ if (s && (!subvol || s < subvol)) ++ subvol = s; ++ ++ id = bch2_snapshot_tree_next(c, id); ++ } ++ ++ return subvol; ++} ++ ++static int bch2_snapshot_tree_master_subvol(struct btree_trans *trans, ++ u32 snapshot_root, u32 *subvol_id) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_subvolume s; ++ bool found = false; ++ int ret; ++ ++ for_each_btree_key_norestart(trans, iter, BTREE_ID_subvolumes, POS_MIN, ++ 0, k, ret) { ++ if (k.k->type != KEY_TYPE_subvolume) ++ continue; ++ ++ s = bkey_s_c_to_subvolume(k); ++ if (!bch2_snapshot_is_ancestor(c, le32_to_cpu(s.v->snapshot), snapshot_root)) ++ continue; ++ if (!BCH_SUBVOLUME_SNAP(s.v)) { ++ *subvol_id = s.k->p.offset; ++ found = true; ++ break; ++ } ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (!ret && !found) { ++ struct bkey_i_subvolume *u; ++ ++ *subvol_id = bch2_snapshot_tree_oldest_subvol(c, snapshot_root); ++ ++ u = bch2_bkey_get_mut_typed(trans, &iter, ++ BTREE_ID_subvolumes, POS(0, *subvol_id), ++ 0, subvolume); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ return ret; ++ ++ SET_BCH_SUBVOLUME_SNAP(&u->v, false); ++ } ++ ++ return ret; ++} ++ ++static int check_snapshot_tree(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c_snapshot_tree st; ++ struct bch_snapshot s; ++ struct bch_subvolume subvol; ++ struct printbuf buf = PRINTBUF; ++ u32 root_id; ++ int ret; ++ ++ if (k.k->type != KEY_TYPE_snapshot_tree) ++ return 0; ++ ++ st = bkey_s_c_to_snapshot_tree(k); ++ root_id = le32_to_cpu(st.v->root_snapshot); ++ ++ ret = bch2_snapshot_lookup(trans, root_id, &s); ++ if (ret && !bch2_err_matches(ret, ENOENT)) ++ goto err; ++ ++ if (fsck_err_on(ret || ++ root_id != bch2_snapshot_root(c, root_id) || ++ st.k->p.offset != le32_to_cpu(s.tree), ++ c, ++ "snapshot tree points to missing/incorrect snapshot:\n %s", ++ (bch2_bkey_val_to_text(&buf, c, st.s_c), buf.buf))) { ++ ret = bch2_btree_delete_at(trans, iter, 0); ++ goto err; ++ } ++ ++ ret = bch2_subvolume_get(trans, le32_to_cpu(st.v->master_subvol), ++ false, 0, &subvol); ++ if (ret && !bch2_err_matches(ret, ENOENT)) ++ goto err; ++ ++ if (fsck_err_on(ret, c, ++ "snapshot tree points to missing subvolume:\n %s", ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, st.s_c), buf.buf)) || ++ fsck_err_on(!bch2_snapshot_is_ancestor_early(c, ++ le32_to_cpu(subvol.snapshot), ++ root_id), c, ++ "snapshot tree points to subvolume that does not point to snapshot in this tree:\n %s", ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, st.s_c), buf.buf)) || ++ fsck_err_on(BCH_SUBVOLUME_SNAP(&subvol), c, ++ "snapshot tree points to snapshot subvolume:\n %s", ++ (printbuf_reset(&buf), ++ bch2_bkey_val_to_text(&buf, c, st.s_c), buf.buf))) { ++ struct bkey_i_snapshot_tree *u; ++ u32 subvol_id; ++ ++ ret = bch2_snapshot_tree_master_subvol(trans, root_id, &subvol_id); ++ if (ret) ++ goto err; ++ ++ u = bch2_bkey_make_mut_typed(trans, iter, &k, 0, snapshot_tree); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ goto err; ++ ++ u->v.master_subvol = cpu_to_le32(subvol_id); ++ st = snapshot_tree_i_to_s_c(u); ++ } ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++/* ++ * For each snapshot_tree, make sure it points to the root of a snapshot tree ++ * and that snapshot entry points back to it, or delete it. ++ * ++ * And, make sure it points to a subvolume within that snapshot tree, or correct ++ * it to point to the oldest subvolume within that snapshot tree. ++ */ ++int bch2_check_snapshot_trees(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, ++ BTREE_ID_snapshot_trees, POS_MIN, ++ BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ check_snapshot_tree(trans, &iter, k))); ++ ++ if (ret) ++ bch_err(c, "error %i checking snapshot trees", ret); ++ return ret; ++} ++ ++/* ++ * Look up snapshot tree for @tree_id and find root, ++ * make sure @snap_id is a descendent: ++ */ ++static int snapshot_tree_ptr_good(struct btree_trans *trans, ++ u32 snap_id, u32 tree_id) ++{ ++ struct bch_snapshot_tree s_t; ++ int ret = bch2_snapshot_tree_lookup(trans, tree_id, &s_t); ++ ++ if (bch2_err_matches(ret, ENOENT)) ++ return 0; ++ if (ret) ++ return ret; ++ ++ return bch2_snapshot_is_ancestor_early(trans->c, snap_id, le32_to_cpu(s_t.root_snapshot)); ++} ++ ++u32 bch2_snapshot_skiplist_get(struct bch_fs *c, u32 id) ++{ ++ const struct snapshot_t *s; ++ ++ if (!id) ++ return 0; ++ ++ rcu_read_lock(); ++ s = snapshot_t(c, id); ++ if (s->parent) ++ id = bch2_snapshot_nth_parent(c, id, get_random_u32_below(s->depth)); ++ rcu_read_unlock(); ++ ++ return id; ++} ++ ++static int snapshot_skiplist_good(struct btree_trans *trans, u32 id, struct bch_snapshot s) ++{ ++ unsigned i; ++ ++ for (i = 0; i < 3; i++) ++ if (!s.parent) { ++ if (s.skip[i]) ++ return false; ++ } else { ++ if (!bch2_snapshot_is_ancestor_early(trans->c, id, le32_to_cpu(s.skip[i]))) ++ return false; ++ } ++ ++ return true; ++} ++ ++/* ++ * snapshot_tree pointer was incorrect: look up root snapshot node, make sure ++ * its snapshot_tree pointer is correct (allocate new one if necessary), then ++ * update this node's pointer to root node's pointer: ++ */ ++static int snapshot_tree_ptr_repair(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ struct bch_snapshot *s) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter root_iter; ++ struct bch_snapshot_tree s_t; ++ struct bkey_s_c_snapshot root; ++ struct bkey_i_snapshot *u; ++ u32 root_id = bch2_snapshot_root(c, k.k->p.offset), tree_id; ++ int ret; ++ ++ root = bch2_bkey_get_iter_typed(trans, &root_iter, ++ BTREE_ID_snapshots, POS(0, root_id), ++ BTREE_ITER_WITH_UPDATES, snapshot); ++ ret = bkey_err(root); ++ if (ret) ++ goto err; ++ ++ tree_id = le32_to_cpu(root.v->tree); ++ ++ ret = bch2_snapshot_tree_lookup(trans, tree_id, &s_t); ++ if (ret && !bch2_err_matches(ret, ENOENT)) ++ return ret; ++ ++ if (ret || le32_to_cpu(s_t.root_snapshot) != root_id) { ++ u = bch2_bkey_make_mut_typed(trans, &root_iter, &root.s_c, 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(u) ?: ++ bch2_snapshot_tree_create(trans, root_id, ++ bch2_snapshot_tree_oldest_subvol(c, root_id), ++ &tree_id); ++ if (ret) ++ goto err; ++ ++ u->v.tree = cpu_to_le32(tree_id); ++ if (k.k->p.offset == root_id) ++ *s = u->v; ++ } ++ ++ if (k.k->p.offset != root_id) { ++ u = bch2_bkey_make_mut_typed(trans, iter, &k, 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ goto err; ++ ++ u->v.tree = cpu_to_le32(tree_id); ++ *s = u->v; ++ } ++err: ++ bch2_trans_iter_exit(trans, &root_iter); ++ return ret; ++} ++ ++static int check_snapshot(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bch_snapshot s; ++ struct bch_subvolume subvol; ++ struct bch_snapshot v; ++ struct bkey_i_snapshot *u; ++ u32 parent_id = bch2_snapshot_parent_early(c, k.k->p.offset); ++ u32 real_depth; ++ struct printbuf buf = PRINTBUF; ++ bool should_have_subvol; ++ u32 i, id; ++ int ret = 0; ++ ++ if (k.k->type != KEY_TYPE_snapshot) ++ return 0; ++ ++ memset(&s, 0, sizeof(s)); ++ memcpy(&s, k.v, bkey_val_bytes(k.k)); ++ ++ id = le32_to_cpu(s.parent); ++ if (id) { ++ ret = bch2_snapshot_lookup(trans, id, &v); ++ if (bch2_err_matches(ret, ENOENT)) ++ bch_err(c, "snapshot with nonexistent parent:\n %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ if (ret) ++ goto err; ++ ++ if (le32_to_cpu(v.children[0]) != k.k->p.offset && ++ le32_to_cpu(v.children[1]) != k.k->p.offset) { ++ bch_err(c, "snapshot parent %u missing pointer to child %llu", ++ id, k.k->p.offset); ++ ret = -EINVAL; ++ goto err; ++ } ++ } ++ ++ for (i = 0; i < 2 && s.children[i]; i++) { ++ id = le32_to_cpu(s.children[i]); ++ ++ ret = bch2_snapshot_lookup(trans, id, &v); ++ if (bch2_err_matches(ret, ENOENT)) ++ bch_err(c, "snapshot node %llu has nonexistent child %u", ++ k.k->p.offset, id); ++ if (ret) ++ goto err; ++ ++ if (le32_to_cpu(v.parent) != k.k->p.offset) { ++ bch_err(c, "snapshot child %u has wrong parent (got %u should be %llu)", ++ id, le32_to_cpu(v.parent), k.k->p.offset); ++ ret = -EINVAL; ++ goto err; ++ } ++ } ++ ++ should_have_subvol = BCH_SNAPSHOT_SUBVOL(&s) && ++ !BCH_SNAPSHOT_DELETED(&s); ++ ++ if (should_have_subvol) { ++ id = le32_to_cpu(s.subvol); ++ ret = bch2_subvolume_get(trans, id, 0, false, &subvol); ++ if (bch2_err_matches(ret, ENOENT)) ++ bch_err(c, "snapshot points to nonexistent subvolume:\n %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf)); ++ if (ret) ++ goto err; ++ ++ if (BCH_SNAPSHOT_SUBVOL(&s) != (le32_to_cpu(subvol.snapshot) == k.k->p.offset)) { ++ bch_err(c, "snapshot node %llu has wrong BCH_SNAPSHOT_SUBVOL", ++ k.k->p.offset); ++ ret = -EINVAL; ++ goto err; ++ } ++ } else { ++ if (fsck_err_on(s.subvol, c, "snapshot should not point to subvol:\n %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ u = bch2_bkey_make_mut_typed(trans, iter, &k, 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ goto err; ++ ++ u->v.subvol = 0; ++ s = u->v; ++ } ++ } ++ ++ ret = snapshot_tree_ptr_good(trans, k.k->p.offset, le32_to_cpu(s.tree)); ++ if (ret < 0) ++ goto err; ++ ++ if (fsck_err_on(!ret, c, "snapshot points to missing/incorrect tree:\n %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf))) { ++ ret = snapshot_tree_ptr_repair(trans, iter, k, &s); ++ if (ret) ++ goto err; ++ } ++ ret = 0; ++ ++ real_depth = bch2_snapshot_depth(c, parent_id); ++ ++ if (le32_to_cpu(s.depth) != real_depth && ++ (c->sb.version_upgrade_complete < bcachefs_metadata_version_snapshot_skiplists || ++ fsck_err(c, "snapshot with incorrect depth field, should be %u:\n %s", ++ real_depth, (bch2_bkey_val_to_text(&buf, c, k), buf.buf)))) { ++ u = bch2_bkey_make_mut_typed(trans, iter, &k, 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ goto err; ++ ++ u->v.depth = cpu_to_le32(real_depth); ++ s = u->v; ++ } ++ ++ ret = snapshot_skiplist_good(trans, k.k->p.offset, s); ++ if (ret < 0) ++ goto err; ++ ++ if (!ret && ++ (c->sb.version_upgrade_complete < bcachefs_metadata_version_snapshot_skiplists || ++ fsck_err(c, "snapshot with bad skiplist field:\n %s", ++ (bch2_bkey_val_to_text(&buf, c, k), buf.buf)))) { ++ u = bch2_bkey_make_mut_typed(trans, iter, &k, 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(u); ++ if (ret) ++ goto err; ++ ++ for (i = 0; i < ARRAY_SIZE(u->v.skip); i++) ++ u->v.skip[i] = cpu_to_le32(bch2_snapshot_skiplist_get(c, parent_id)); ++ ++ bubble_sort(u->v.skip, ARRAY_SIZE(u->v.skip), cmp_le32); ++ s = u->v; ++ } ++ ret = 0; ++err: ++fsck_err: ++ printbuf_exit(&buf); ++ return ret; ++} ++ ++int bch2_check_snapshots(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ /* ++ * We iterate backwards as checking/fixing the depth field requires that ++ * the parent's depth already be correct: ++ */ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_reverse_commit(trans, iter, ++ BTREE_ID_snapshots, POS_MAX, ++ BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ check_snapshot(trans, &iter, k))); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* ++ * Mark a snapshot as deleted, for future cleanup: ++ */ ++int bch2_snapshot_node_set_deleted(struct btree_trans *trans, u32 id) ++{ ++ struct btree_iter iter; ++ struct bkey_i_snapshot *s; ++ int ret = 0; ++ ++ s = bch2_bkey_get_mut_typed(trans, &iter, ++ BTREE_ID_snapshots, POS(0, id), ++ 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(s); ++ if (unlikely(ret)) { ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), ++ trans->c, "missing snapshot %u", id); ++ return ret; ++ } ++ ++ /* already deleted? */ ++ if (BCH_SNAPSHOT_DELETED(&s->v)) ++ goto err; ++ ++ SET_BCH_SNAPSHOT_DELETED(&s->v, true); ++ SET_BCH_SNAPSHOT_SUBVOL(&s->v, false); ++ s->v.subvol = 0; ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static inline void normalize_snapshot_child_pointers(struct bch_snapshot *s) ++{ ++ if (le32_to_cpu(s->children[0]) < le32_to_cpu(s->children[1])) ++ swap(s->children[0], s->children[1]); ++} ++ ++static int bch2_snapshot_node_delete(struct btree_trans *trans, u32 id) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter, p_iter = (struct btree_iter) { NULL }; ++ struct btree_iter c_iter = (struct btree_iter) { NULL }; ++ struct btree_iter tree_iter = (struct btree_iter) { NULL }; ++ struct bkey_s_c_snapshot s; ++ u32 parent_id, child_id; ++ unsigned i; ++ int ret = 0; ++ ++ s = bch2_bkey_get_iter_typed(trans, &iter, BTREE_ID_snapshots, POS(0, id), ++ BTREE_ITER_INTENT, snapshot); ++ ret = bkey_err(s); ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), c, ++ "missing snapshot %u", id); ++ ++ if (ret) ++ goto err; ++ ++ BUG_ON(s.v->children[1]); ++ ++ parent_id = le32_to_cpu(s.v->parent); ++ child_id = le32_to_cpu(s.v->children[0]); ++ ++ if (parent_id) { ++ struct bkey_i_snapshot *parent; ++ ++ parent = bch2_bkey_get_mut_typed(trans, &p_iter, ++ BTREE_ID_snapshots, POS(0, parent_id), ++ 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(parent); ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), c, ++ "missing snapshot %u", parent_id); ++ if (unlikely(ret)) ++ goto err; ++ ++ /* find entry in parent->children for node being deleted */ ++ for (i = 0; i < 2; i++) ++ if (le32_to_cpu(parent->v.children[i]) == id) ++ break; ++ ++ if (bch2_fs_inconsistent_on(i == 2, c, ++ "snapshot %u missing child pointer to %u", ++ parent_id, id)) ++ goto err; ++ ++ parent->v.children[i] = le32_to_cpu(child_id); ++ ++ normalize_snapshot_child_pointers(&parent->v); ++ } ++ ++ if (child_id) { ++ struct bkey_i_snapshot *child; ++ ++ child = bch2_bkey_get_mut_typed(trans, &c_iter, ++ BTREE_ID_snapshots, POS(0, child_id), ++ 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(child); ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), c, ++ "missing snapshot %u", child_id); ++ if (unlikely(ret)) ++ goto err; ++ ++ child->v.parent = cpu_to_le32(parent_id); ++ ++ if (!child->v.parent) { ++ child->v.skip[0] = 0; ++ child->v.skip[1] = 0; ++ child->v.skip[2] = 0; ++ } ++ } ++ ++ if (!parent_id) { ++ /* ++ * We're deleting the root of a snapshot tree: update the ++ * snapshot_tree entry to point to the new root, or delete it if ++ * this is the last snapshot ID in this tree: ++ */ ++ struct bkey_i_snapshot_tree *s_t; ++ ++ BUG_ON(s.v->children[1]); ++ ++ s_t = bch2_bkey_get_mut_typed(trans, &tree_iter, ++ BTREE_ID_snapshot_trees, POS(0, le32_to_cpu(s.v->tree)), ++ 0, snapshot_tree); ++ ret = PTR_ERR_OR_ZERO(s_t); ++ if (ret) ++ goto err; ++ ++ if (s.v->children[0]) { ++ s_t->v.root_snapshot = s.v->children[0]; ++ } else { ++ s_t->k.type = KEY_TYPE_deleted; ++ set_bkey_val_u64s(&s_t->k, 0); ++ } ++ } ++ ++ ret = bch2_btree_delete_at(trans, &iter, 0); ++err: ++ bch2_trans_iter_exit(trans, &tree_iter); ++ bch2_trans_iter_exit(trans, &p_iter); ++ bch2_trans_iter_exit(trans, &c_iter); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int create_snapids(struct btree_trans *trans, u32 parent, u32 tree, ++ u32 *new_snapids, ++ u32 *snapshot_subvols, ++ unsigned nr_snapids) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_i_snapshot *n; ++ struct bkey_s_c k; ++ unsigned i, j; ++ u32 depth = bch2_snapshot_depth(c, parent); ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_snapshots, ++ POS_MIN, BTREE_ITER_INTENT); ++ k = bch2_btree_iter_peek(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ for (i = 0; i < nr_snapids; i++) { ++ k = bch2_btree_iter_prev_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (!k.k || !k.k->p.offset) { ++ ret = -BCH_ERR_ENOSPC_snapshot_create; ++ goto err; ++ } ++ ++ n = bch2_bkey_alloc(trans, &iter, 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(n); ++ if (ret) ++ goto err; ++ ++ n->v.flags = 0; ++ n->v.parent = cpu_to_le32(parent); ++ n->v.subvol = cpu_to_le32(snapshot_subvols[i]); ++ n->v.tree = cpu_to_le32(tree); ++ n->v.depth = cpu_to_le32(depth); ++ ++ for (j = 0; j < ARRAY_SIZE(n->v.skip); j++) ++ n->v.skip[j] = cpu_to_le32(bch2_snapshot_skiplist_get(c, parent)); ++ ++ bubble_sort(n->v.skip, ARRAY_SIZE(n->v.skip), cmp_le32); ++ SET_BCH_SNAPSHOT_SUBVOL(&n->v, true); ++ ++ ret = bch2_mark_snapshot(trans, BTREE_ID_snapshots, 0, ++ bkey_s_c_null, bkey_i_to_s_c(&n->k_i), 0); ++ if (ret) ++ goto err; ++ ++ new_snapids[i] = iter.pos.offset; ++ ++ mutex_lock(&c->snapshot_table_lock); ++ snapshot_t_mut(c, new_snapids[i])->equiv = new_snapids[i]; ++ mutex_unlock(&c->snapshot_table_lock); ++ } ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++/* ++ * Create new snapshot IDs as children of an existing snapshot ID: ++ */ ++static int bch2_snapshot_node_create_children(struct btree_trans *trans, u32 parent, ++ u32 *new_snapids, ++ u32 *snapshot_subvols, ++ unsigned nr_snapids) ++{ ++ struct btree_iter iter; ++ struct bkey_i_snapshot *n_parent; ++ int ret = 0; ++ ++ n_parent = bch2_bkey_get_mut_typed(trans, &iter, ++ BTREE_ID_snapshots, POS(0, parent), ++ 0, snapshot); ++ ret = PTR_ERR_OR_ZERO(n_parent); ++ if (unlikely(ret)) { ++ if (bch2_err_matches(ret, ENOENT)) ++ bch_err(trans->c, "snapshot %u not found", parent); ++ return ret; ++ } ++ ++ if (n_parent->v.children[0] || n_parent->v.children[1]) { ++ bch_err(trans->c, "Trying to add child snapshot nodes to parent that already has children"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ ret = create_snapids(trans, parent, le32_to_cpu(n_parent->v.tree), ++ new_snapids, snapshot_subvols, nr_snapids); ++ if (ret) ++ goto err; ++ ++ n_parent->v.children[0] = cpu_to_le32(new_snapids[0]); ++ n_parent->v.children[1] = cpu_to_le32(new_snapids[1]); ++ n_parent->v.subvol = 0; ++ SET_BCH_SNAPSHOT_SUBVOL(&n_parent->v, false); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++/* ++ * Create a snapshot node that is the root of a new tree: ++ */ ++static int bch2_snapshot_node_create_tree(struct btree_trans *trans, ++ u32 *new_snapids, ++ u32 *snapshot_subvols, ++ unsigned nr_snapids) ++{ ++ struct bkey_i_snapshot_tree *n_tree; ++ int ret; ++ ++ n_tree = __bch2_snapshot_tree_create(trans); ++ ret = PTR_ERR_OR_ZERO(n_tree) ?: ++ create_snapids(trans, 0, n_tree->k.p.offset, ++ new_snapids, snapshot_subvols, nr_snapids); ++ if (ret) ++ return ret; ++ ++ n_tree->v.master_subvol = cpu_to_le32(snapshot_subvols[0]); ++ n_tree->v.root_snapshot = cpu_to_le32(new_snapids[0]); ++ return 0; ++} ++ ++int bch2_snapshot_node_create(struct btree_trans *trans, u32 parent, ++ u32 *new_snapids, ++ u32 *snapshot_subvols, ++ unsigned nr_snapids) ++{ ++ BUG_ON((parent == 0) != (nr_snapids == 1)); ++ BUG_ON((parent != 0) != (nr_snapids == 2)); ++ ++ return parent ++ ? bch2_snapshot_node_create_children(trans, parent, ++ new_snapids, snapshot_subvols, nr_snapids) ++ : bch2_snapshot_node_create_tree(trans, ++ new_snapids, snapshot_subvols, nr_snapids); ++ ++} ++ ++/* ++ * If we have an unlinked inode in an internal snapshot node, and the inode ++ * really has been deleted in all child snapshots, how does this get cleaned up? ++ * ++ * first there is the problem of how keys that have been overwritten in all ++ * child snapshots get deleted (unimplemented?), but inodes may perhaps be ++ * special? ++ * ++ * also: unlinked inode in internal snapshot appears to not be getting deleted ++ * correctly if inode doesn't exist in leaf snapshots ++ * ++ * solution: ++ * ++ * for a key in an interior snapshot node that needs work to be done that ++ * requires it to be mutated: iterate over all descendent leaf nodes and copy ++ * that key to snapshot leaf nodes, where we can mutate it ++ */ ++ ++static int snapshot_delete_key(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ snapshot_id_list *deleted, ++ snapshot_id_list *equiv_seen, ++ struct bpos *last_pos) ++{ ++ struct bch_fs *c = trans->c; ++ u32 equiv = bch2_snapshot_equiv(c, k.k->p.snapshot); ++ ++ if (!bkey_eq(k.k->p, *last_pos)) ++ equiv_seen->nr = 0; ++ *last_pos = k.k->p; ++ ++ if (snapshot_list_has_id(deleted, k.k->p.snapshot) || ++ snapshot_list_has_id(equiv_seen, equiv)) { ++ return bch2_btree_delete_at(trans, iter, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ } else { ++ return snapshot_list_add(c, equiv_seen, equiv); ++ } ++} ++ ++static int move_key_to_correct_snapshot(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ u32 equiv = bch2_snapshot_equiv(c, k.k->p.snapshot); ++ ++ /* ++ * When we have a linear chain of snapshot nodes, we consider ++ * those to form an equivalence class: we're going to collapse ++ * them all down to a single node, and keep the leaf-most node - ++ * which has the same id as the equivalence class id. ++ * ++ * If there are multiple keys in different snapshots at the same ++ * position, we're only going to keep the one in the newest ++ * snapshot - the rest have been overwritten and are redundant, ++ * and for the key we're going to keep we need to move it to the ++ * equivalance class ID if it's not there already. ++ */ ++ if (equiv != k.k->p.snapshot) { ++ struct bkey_i *new = bch2_bkey_make_mut_noupdate(trans, k); ++ struct btree_iter new_iter; ++ int ret; ++ ++ ret = PTR_ERR_OR_ZERO(new); ++ if (ret) ++ return ret; ++ ++ new->k.p.snapshot = equiv; ++ ++ bch2_trans_iter_init(trans, &new_iter, iter->btree_id, new->k.p, ++ BTREE_ITER_ALL_SNAPSHOTS| ++ BTREE_ITER_CACHED| ++ BTREE_ITER_INTENT); ++ ++ ret = bch2_btree_iter_traverse(&new_iter) ?: ++ bch2_trans_update(trans, &new_iter, new, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE) ?: ++ bch2_btree_delete_at(trans, iter, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE); ++ bch2_trans_iter_exit(trans, &new_iter); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++/* ++ * For a given snapshot, if it doesn't have a subvolume that points to it, and ++ * it doesn't have child snapshot nodes - it's now redundant and we can mark it ++ * as deleted. ++ */ ++static int bch2_delete_redundant_snapshot(struct btree_trans *trans, struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_snapshot snap; ++ u32 children[2]; ++ int ret; ++ ++ if (k.k->type != KEY_TYPE_snapshot) ++ return 0; ++ ++ snap = bkey_s_c_to_snapshot(k); ++ if (BCH_SNAPSHOT_DELETED(snap.v) || ++ BCH_SNAPSHOT_SUBVOL(snap.v)) ++ return 0; ++ ++ children[0] = le32_to_cpu(snap.v->children[0]); ++ children[1] = le32_to_cpu(snap.v->children[1]); ++ ++ ret = bch2_snapshot_live(trans, children[0]) ?: ++ bch2_snapshot_live(trans, children[1]); ++ if (ret < 0) ++ return ret; ++ ++ if (!ret) ++ return bch2_snapshot_node_set_deleted(trans, k.k->p.offset); ++ return 0; ++} ++ ++static inline u32 bch2_snapshot_nth_parent_skip(struct bch_fs *c, u32 id, u32 n, ++ snapshot_id_list *skip) ++{ ++ rcu_read_lock(); ++ while (snapshot_list_has_id(skip, id)) ++ id = __bch2_snapshot_parent(c, id); ++ ++ while (n--) { ++ do { ++ id = __bch2_snapshot_parent(c, id); ++ } while (snapshot_list_has_id(skip, id)); ++ } ++ rcu_read_unlock(); ++ ++ return id; ++} ++ ++static int bch2_fix_child_of_deleted_snapshot(struct btree_trans *trans, ++ struct btree_iter *iter, struct bkey_s_c k, ++ snapshot_id_list *deleted) ++{ ++ struct bch_fs *c = trans->c; ++ u32 nr_deleted_ancestors = 0; ++ struct bkey_i_snapshot *s; ++ u32 *i; ++ int ret; ++ ++ if (k.k->type != KEY_TYPE_snapshot) ++ return 0; ++ ++ if (snapshot_list_has_id(deleted, k.k->p.offset)) ++ return 0; ++ ++ s = bch2_bkey_make_mut_noupdate_typed(trans, k, snapshot); ++ ret = PTR_ERR_OR_ZERO(s); ++ if (ret) ++ return ret; ++ ++ darray_for_each(*deleted, i) ++ nr_deleted_ancestors += bch2_snapshot_is_ancestor(c, s->k.p.offset, *i); ++ ++ if (!nr_deleted_ancestors) ++ return 0; ++ ++ le32_add_cpu(&s->v.depth, -nr_deleted_ancestors); ++ ++ if (!s->v.depth) { ++ s->v.skip[0] = 0; ++ s->v.skip[1] = 0; ++ s->v.skip[2] = 0; ++ } else { ++ u32 depth = le32_to_cpu(s->v.depth); ++ u32 parent = bch2_snapshot_parent(c, s->k.p.offset); ++ ++ for (unsigned j = 0; j < ARRAY_SIZE(s->v.skip); j++) { ++ u32 id = le32_to_cpu(s->v.skip[j]); ++ ++ if (snapshot_list_has_id(deleted, id)) { ++ id = depth > 1 ++ ? bch2_snapshot_nth_parent_skip(c, ++ parent, ++ get_random_u32_below(depth - 1), ++ deleted) ++ : parent; ++ s->v.skip[j] = cpu_to_le32(id); ++ } ++ } ++ ++ bubble_sort(s->v.skip, ARRAY_SIZE(s->v.skip), cmp_le32); ++ } ++ ++ return bch2_trans_update(trans, iter, &s->k_i, 0); ++} ++ ++int bch2_delete_dead_snapshots(struct bch_fs *c) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_s_c_snapshot snap; ++ snapshot_id_list deleted = { 0 }; ++ snapshot_id_list deleted_interior = { 0 }; ++ u32 *i, id; ++ int ret = 0; ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) { ++ ret = bch2_fs_read_write_early(c); ++ if (ret) { ++ bch_err_msg(c, ret, "deleting dead snapshots: error going rw"); ++ return ret; ++ } ++ } ++ ++ trans = bch2_trans_get(c); ++ ++ /* ++ * For every snapshot node: If we have no live children and it's not ++ * pointed to by a subvolume, delete it: ++ */ ++ ret = for_each_btree_key_commit(trans, iter, BTREE_ID_snapshots, ++ POS_MIN, 0, k, ++ NULL, NULL, 0, ++ bch2_delete_redundant_snapshot(trans, &iter, k)); ++ if (ret) { ++ bch_err_msg(c, ret, "deleting redundant snapshots"); ++ goto err; ++ } ++ ++ ret = for_each_btree_key2(trans, iter, BTREE_ID_snapshots, ++ POS_MIN, 0, k, ++ bch2_snapshot_set_equiv(trans, k)); ++ if (ret) { ++ bch_err_msg(c, ret, "in bch2_snapshots_set_equiv"); ++ goto err; ++ } ++ ++ for_each_btree_key(trans, iter, BTREE_ID_snapshots, ++ POS_MIN, 0, k, ret) { ++ if (k.k->type != KEY_TYPE_snapshot) ++ continue; ++ ++ snap = bkey_s_c_to_snapshot(k); ++ if (BCH_SNAPSHOT_DELETED(snap.v)) { ++ ret = snapshot_list_add(c, &deleted, k.k->p.offset); ++ if (ret) ++ break; ++ } ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) { ++ bch_err_msg(c, ret, "walking snapshots"); ++ goto err; ++ } ++ ++ for (id = 0; id < BTREE_ID_NR; id++) { ++ struct bpos last_pos = POS_MIN; ++ snapshot_id_list equiv_seen = { 0 }; ++ struct disk_reservation res = { 0 }; ++ ++ if (!btree_type_has_snapshots(id)) ++ continue; ++ ++ ret = for_each_btree_key_commit(trans, iter, ++ id, POS_MIN, ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ++ &res, NULL, BTREE_INSERT_NOFAIL, ++ snapshot_delete_key(trans, &iter, k, &deleted, &equiv_seen, &last_pos)) ?: ++ for_each_btree_key_commit(trans, iter, ++ id, POS_MIN, ++ BTREE_ITER_PREFETCH|BTREE_ITER_ALL_SNAPSHOTS, k, ++ &res, NULL, BTREE_INSERT_NOFAIL, ++ move_key_to_correct_snapshot(trans, &iter, k)); ++ ++ bch2_disk_reservation_put(c, &res); ++ darray_exit(&equiv_seen); ++ ++ if (ret) { ++ bch_err_msg(c, ret, "deleting keys from dying snapshots"); ++ goto err; ++ } ++ } ++ ++ down_write(&c->snapshot_create_lock); ++ ++ for_each_btree_key(trans, iter, BTREE_ID_snapshots, ++ POS_MIN, 0, k, ret) { ++ u32 snapshot = k.k->p.offset; ++ u32 equiv = bch2_snapshot_equiv(c, snapshot); ++ ++ if (equiv != snapshot) ++ snapshot_list_add(c, &deleted_interior, snapshot); ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ if (ret) ++ goto err_create_lock; ++ ++ /* ++ * Fixing children of deleted snapshots can't be done completely ++ * atomically, if we crash between here and when we delete the interior ++ * nodes some depth fields will be off: ++ */ ++ ret = for_each_btree_key_commit(trans, iter, BTREE_ID_snapshots, POS_MIN, ++ BTREE_ITER_INTENT, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL, ++ bch2_fix_child_of_deleted_snapshot(trans, &iter, k, &deleted_interior)); ++ if (ret) ++ goto err_create_lock; ++ ++ darray_for_each(deleted, i) { ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_snapshot_node_delete(trans, *i)); ++ if (ret) { ++ bch_err_msg(c, ret, "deleting snapshot %u", *i); ++ goto err_create_lock; ++ } ++ } ++ ++ darray_for_each(deleted_interior, i) { ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_snapshot_node_delete(trans, *i)); ++ if (ret) { ++ bch_err_msg(c, ret, "deleting snapshot %u", *i); ++ goto err_create_lock; ++ } ++ } ++ ++ clear_bit(BCH_FS_HAVE_DELETED_SNAPSHOTS, &c->flags); ++err_create_lock: ++ up_write(&c->snapshot_create_lock); ++err: ++ darray_exit(&deleted_interior); ++ darray_exit(&deleted); ++ bch2_trans_put(trans); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++void bch2_delete_dead_snapshots_work(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, struct bch_fs, snapshot_delete_work); ++ ++ if (test_bit(BCH_FS_HAVE_DELETED_SNAPSHOTS, &c->flags)) ++ bch2_delete_dead_snapshots(c); ++ bch2_write_ref_put(c, BCH_WRITE_REF_delete_dead_snapshots); ++} ++ ++void bch2_delete_dead_snapshots_async(struct bch_fs *c) ++{ ++ if (bch2_write_ref_tryget(c, BCH_WRITE_REF_delete_dead_snapshots) && ++ !queue_work(c->write_ref_wq, &c->snapshot_delete_work)) ++ bch2_write_ref_put(c, BCH_WRITE_REF_delete_dead_snapshots); ++} ++ ++int bch2_delete_dead_snapshots_hook(struct btree_trans *trans, ++ struct btree_trans_commit_hook *h) ++{ ++ struct bch_fs *c = trans->c; ++ ++ set_bit(BCH_FS_HAVE_DELETED_SNAPSHOTS, &c->flags); ++ ++ if (c->curr_recovery_pass <= BCH_RECOVERY_PASS_delete_dead_snapshots) ++ return 0; ++ ++ bch2_delete_dead_snapshots_async(c); ++ return 0; ++} ++ ++int __bch2_key_has_snapshot_overwrites(struct btree_trans *trans, ++ enum btree_id id, ++ struct bpos pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_trans_iter_init(trans, &iter, id, pos, ++ BTREE_ITER_NOT_EXTENTS| ++ BTREE_ITER_ALL_SNAPSHOTS); ++ while (1) { ++ k = bch2_btree_iter_prev(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ break; ++ ++ if (!k.k) ++ break; ++ ++ if (!bkey_eq(pos, k.k->p)) ++ break; ++ ++ if (bch2_snapshot_is_ancestor(c, k.k->p.snapshot, pos.snapshot)) { ++ ret = 1; ++ break; ++ } ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret; ++} ++ ++static u32 bch2_snapshot_smallest_child(struct bch_fs *c, u32 id) ++{ ++ const struct snapshot_t *s = snapshot_t(c, id); ++ ++ return s->children[1] ?: s->children[0]; ++} ++ ++static u32 bch2_snapshot_smallest_descendent(struct bch_fs *c, u32 id) ++{ ++ u32 child; ++ ++ while ((child = bch2_snapshot_smallest_child(c, id))) ++ id = child; ++ return id; ++} ++ ++static int bch2_propagate_key_to_snapshot_leaf(struct btree_trans *trans, ++ enum btree_id btree, ++ struct bkey_s_c interior_k, ++ u32 leaf_id, struct bpos *new_min_pos) ++{ ++ struct btree_iter iter; ++ struct bpos pos = interior_k.k->p; ++ struct bkey_s_c k; ++ struct bkey_i *new; ++ int ret; ++ ++ pos.snapshot = leaf_id; ++ ++ bch2_trans_iter_init(trans, &iter, btree, pos, BTREE_ITER_INTENT); ++ k = bch2_btree_iter_peek_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto out; ++ ++ /* key already overwritten in this snapshot? */ ++ if (k.k->p.snapshot != interior_k.k->p.snapshot) ++ goto out; ++ ++ if (bpos_eq(*new_min_pos, POS_MIN)) { ++ *new_min_pos = k.k->p; ++ new_min_pos->snapshot = leaf_id; ++ } ++ ++ new = bch2_bkey_make_mut_noupdate(trans, interior_k); ++ ret = PTR_ERR_OR_ZERO(new); ++ if (ret) ++ goto out; ++ ++ new->k.p.snapshot = leaf_id; ++ ret = bch2_trans_update(trans, &iter, new, 0); ++out: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_propagate_key_to_snapshot_leaves(struct btree_trans *trans, ++ enum btree_id btree, ++ struct bkey_s_c k, ++ struct bpos *new_min_pos) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_buf sk; ++ u32 restart_count = trans->restart_count; ++ int ret = 0; ++ ++ bch2_bkey_buf_init(&sk); ++ bch2_bkey_buf_reassemble(&sk, c, k); ++ k = bkey_i_to_s_c(sk.k); ++ ++ *new_min_pos = POS_MIN; ++ ++ for (u32 id = bch2_snapshot_smallest_descendent(c, k.k->p.snapshot); ++ id < k.k->p.snapshot; ++ id++) { ++ if (!bch2_snapshot_is_ancestor(c, id, k.k->p.snapshot) || ++ !bch2_snapshot_is_leaf(c, id)) ++ continue; ++again: ++ ret = btree_trans_too_many_iters(trans) ?: ++ bch2_propagate_key_to_snapshot_leaf(trans, btree, k, id, new_min_pos) ?: ++ bch2_trans_commit(trans, NULL, NULL, 0); ++ if (ret && bch2_err_matches(ret, BCH_ERR_transaction_restart)) { ++ bch2_trans_begin(trans); ++ goto again; ++ } ++ ++ if (ret) ++ break; ++ } ++ ++ bch2_bkey_buf_exit(&sk, c); ++ ++ return ret ?: trans_was_restarted(trans, restart_count); ++} ++ ++int bch2_snapshots_read(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key2(trans, iter, BTREE_ID_snapshots, ++ POS_MIN, 0, k, ++ bch2_mark_snapshot(trans, BTREE_ID_snapshots, 0, bkey_s_c_null, k, 0) ?: ++ bch2_snapshot_set_equiv(trans, k)) ?: ++ for_each_btree_key2(trans, iter, BTREE_ID_snapshots, ++ POS_MIN, 0, k, ++ (set_is_ancestor_bitmap(c, k.k->p.offset), 0))); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++void bch2_fs_snapshots_exit(struct bch_fs *c) ++{ ++ kfree(rcu_dereference_protected(c->snapshots, true)); ++} +diff --git a/fs/bcachefs/snapshot.h b/fs/bcachefs/snapshot.h +new file mode 100644 +index 000000000000..de215d9d1252 +--- /dev/null ++++ b/fs/bcachefs/snapshot.h +@@ -0,0 +1,270 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SNAPSHOT_H ++#define _BCACHEFS_SNAPSHOT_H ++ ++enum bkey_invalid_flags; ++ ++void bch2_snapshot_tree_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++int bch2_snapshot_tree_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++ ++#define bch2_bkey_ops_snapshot_tree ((struct bkey_ops) { \ ++ .key_invalid = bch2_snapshot_tree_invalid, \ ++ .val_to_text = bch2_snapshot_tree_to_text, \ ++ .min_val_size = 8, \ ++}) ++ ++struct bkey_i_snapshot_tree *__bch2_snapshot_tree_create(struct btree_trans *); ++ ++int bch2_snapshot_tree_lookup(struct btree_trans *, u32, struct bch_snapshot_tree *); ++ ++void bch2_snapshot_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++int bch2_snapshot_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++int bch2_mark_snapshot(struct btree_trans *, enum btree_id, unsigned, ++ struct bkey_s_c, struct bkey_s_c, unsigned); ++ ++#define bch2_bkey_ops_snapshot ((struct bkey_ops) { \ ++ .key_invalid = bch2_snapshot_invalid, \ ++ .val_to_text = bch2_snapshot_to_text, \ ++ .atomic_trigger = bch2_mark_snapshot, \ ++ .min_val_size = 24, \ ++}) ++ ++static inline struct snapshot_t *__snapshot_t(struct snapshot_table *t, u32 id) ++{ ++ return &t->s[U32_MAX - id]; ++} ++ ++static inline const struct snapshot_t *snapshot_t(struct bch_fs *c, u32 id) ++{ ++ return __snapshot_t(rcu_dereference(c->snapshots), id); ++} ++ ++static inline u32 bch2_snapshot_tree(struct bch_fs *c, u32 id) ++{ ++ rcu_read_lock(); ++ id = snapshot_t(c, id)->tree; ++ rcu_read_unlock(); ++ ++ return id; ++} ++ ++static inline u32 __bch2_snapshot_parent_early(struct bch_fs *c, u32 id) ++{ ++ return snapshot_t(c, id)->parent; ++} ++ ++static inline u32 bch2_snapshot_parent_early(struct bch_fs *c, u32 id) ++{ ++ rcu_read_lock(); ++ id = __bch2_snapshot_parent_early(c, id); ++ rcu_read_unlock(); ++ ++ return id; ++} ++ ++static inline u32 __bch2_snapshot_parent(struct bch_fs *c, u32 id) ++{ ++#ifdef CONFIG_BCACHEFS_DEBUG ++ u32 parent = snapshot_t(c, id)->parent; ++ ++ if (parent && ++ snapshot_t(c, id)->depth != snapshot_t(c, parent)->depth + 1) ++ panic("id %u depth=%u parent %u depth=%u\n", ++ id, snapshot_t(c, id)->depth, ++ parent, snapshot_t(c, parent)->depth); ++ ++ return parent; ++#else ++ return snapshot_t(c, id)->parent; ++#endif ++} ++ ++static inline u32 bch2_snapshot_parent(struct bch_fs *c, u32 id) ++{ ++ rcu_read_lock(); ++ id = __bch2_snapshot_parent(c, id); ++ rcu_read_unlock(); ++ ++ return id; ++} ++ ++static inline u32 bch2_snapshot_nth_parent(struct bch_fs *c, u32 id, u32 n) ++{ ++ rcu_read_lock(); ++ while (n--) ++ id = __bch2_snapshot_parent(c, id); ++ rcu_read_unlock(); ++ ++ return id; ++} ++ ++u32 bch2_snapshot_skiplist_get(struct bch_fs *, u32); ++ ++static inline u32 bch2_snapshot_root(struct bch_fs *c, u32 id) ++{ ++ u32 parent; ++ ++ rcu_read_lock(); ++ while ((parent = __bch2_snapshot_parent(c, id))) ++ id = parent; ++ rcu_read_unlock(); ++ ++ return id; ++} ++ ++static inline u32 __bch2_snapshot_equiv(struct bch_fs *c, u32 id) ++{ ++ return snapshot_t(c, id)->equiv; ++} ++ ++static inline u32 bch2_snapshot_equiv(struct bch_fs *c, u32 id) ++{ ++ rcu_read_lock(); ++ id = __bch2_snapshot_equiv(c, id); ++ rcu_read_unlock(); ++ ++ return id; ++} ++ ++static inline bool bch2_snapshot_is_equiv(struct bch_fs *c, u32 id) ++{ ++ return id == bch2_snapshot_equiv(c, id); ++} ++ ++static inline bool bch2_snapshot_is_internal_node(struct bch_fs *c, u32 id) ++{ ++ const struct snapshot_t *s; ++ bool ret; ++ ++ rcu_read_lock(); ++ s = snapshot_t(c, id); ++ ret = s->children[0]; ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++static inline u32 bch2_snapshot_is_leaf(struct bch_fs *c, u32 id) ++{ ++ return !bch2_snapshot_is_internal_node(c, id); ++} ++ ++static inline u32 bch2_snapshot_sibling(struct bch_fs *c, u32 id) ++{ ++ const struct snapshot_t *s; ++ u32 parent = __bch2_snapshot_parent(c, id); ++ ++ if (!parent) ++ return 0; ++ ++ s = snapshot_t(c, __bch2_snapshot_parent(c, id)); ++ if (id == s->children[0]) ++ return s->children[1]; ++ if (id == s->children[1]) ++ return s->children[0]; ++ return 0; ++} ++ ++static inline u32 bch2_snapshot_depth(struct bch_fs *c, u32 parent) ++{ ++ u32 depth; ++ ++ rcu_read_lock(); ++ depth = parent ? snapshot_t(c, parent)->depth + 1 : 0; ++ rcu_read_unlock(); ++ ++ return depth; ++} ++ ++bool __bch2_snapshot_is_ancestor(struct bch_fs *, u32, u32); ++ ++static inline bool bch2_snapshot_is_ancestor(struct bch_fs *c, u32 id, u32 ancestor) ++{ ++ return id == ancestor ++ ? true ++ : __bch2_snapshot_is_ancestor(c, id, ancestor); ++} ++ ++static inline bool bch2_snapshot_has_children(struct bch_fs *c, u32 id) ++{ ++ const struct snapshot_t *t; ++ bool ret; ++ ++ rcu_read_lock(); ++ t = snapshot_t(c, id); ++ ret = (t->children[0]|t->children[1]) != 0; ++ rcu_read_unlock(); ++ ++ return ret; ++} ++ ++static inline bool snapshot_list_has_id(snapshot_id_list *s, u32 id) ++{ ++ u32 *i; ++ ++ darray_for_each(*s, i) ++ if (*i == id) ++ return true; ++ return false; ++} ++ ++static inline bool snapshot_list_has_ancestor(struct bch_fs *c, snapshot_id_list *s, u32 id) ++{ ++ u32 *i; ++ ++ darray_for_each(*s, i) ++ if (bch2_snapshot_is_ancestor(c, id, *i)) ++ return true; ++ return false; ++} ++ ++static inline int snapshot_list_add(struct bch_fs *c, snapshot_id_list *s, u32 id) ++{ ++ int ret; ++ ++ BUG_ON(snapshot_list_has_id(s, id)); ++ ret = darray_push(s, id); ++ if (ret) ++ bch_err(c, "error reallocating snapshot_id_list (size %zu)", s->size); ++ return ret; ++} ++ ++int bch2_snapshot_lookup(struct btree_trans *trans, u32 id, ++ struct bch_snapshot *s); ++int bch2_snapshot_get_subvol(struct btree_trans *, u32, ++ struct bch_subvolume *); ++ ++/* only exported for tests: */ ++int bch2_snapshot_node_create(struct btree_trans *, u32, ++ u32 *, u32 *, unsigned); ++ ++int bch2_check_snapshot_trees(struct bch_fs *); ++int bch2_check_snapshots(struct bch_fs *); ++ ++int bch2_snapshot_node_set_deleted(struct btree_trans *, u32); ++int bch2_delete_dead_snapshots_hook(struct btree_trans *, ++ struct btree_trans_commit_hook *); ++void bch2_delete_dead_snapshots_work(struct work_struct *); ++ ++int __bch2_key_has_snapshot_overwrites(struct btree_trans *, enum btree_id, struct bpos); ++ ++static inline int bch2_key_has_snapshot_overwrites(struct btree_trans *trans, ++ enum btree_id id, ++ struct bpos pos) ++{ ++ if (!btree_type_has_snapshots(id) || ++ bch2_snapshot_is_leaf(trans->c, pos.snapshot)) ++ return 0; ++ ++ return __bch2_key_has_snapshot_overwrites(trans, id, pos); ++} ++ ++int bch2_propagate_key_to_snapshot_leaves(struct btree_trans *, enum btree_id, ++ struct bkey_s_c, struct bpos *); ++ ++int bch2_snapshots_read(struct bch_fs *); ++void bch2_fs_snapshots_exit(struct bch_fs *); ++ ++#endif /* _BCACHEFS_SNAPSHOT_H */ +diff --git a/fs/bcachefs/str_hash.h b/fs/bcachefs/str_hash.h +new file mode 100644 +index 000000000000..ae21a8cca1b4 +--- /dev/null ++++ b/fs/bcachefs/str_hash.h +@@ -0,0 +1,370 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_STR_HASH_H ++#define _BCACHEFS_STR_HASH_H ++ ++#include "btree_iter.h" ++#include "btree_update.h" ++#include "checksum.h" ++#include "error.h" ++#include "inode.h" ++#include "siphash.h" ++#include "subvolume.h" ++#include "super.h" ++ ++#include ++#include ++#include ++ ++static inline enum bch_str_hash_type ++bch2_str_hash_opt_to_type(struct bch_fs *c, enum bch_str_hash_opts opt) ++{ ++ switch (opt) { ++ case BCH_STR_HASH_OPT_crc32c: ++ return BCH_STR_HASH_crc32c; ++ case BCH_STR_HASH_OPT_crc64: ++ return BCH_STR_HASH_crc64; ++ case BCH_STR_HASH_OPT_siphash: ++ return c->sb.features & (1ULL << BCH_FEATURE_new_siphash) ++ ? BCH_STR_HASH_siphash ++ : BCH_STR_HASH_siphash_old; ++ default: ++ BUG(); ++ } ++} ++ ++struct bch_hash_info { ++ u8 type; ++ /* ++ * For crc32 or crc64 string hashes the first key value of ++ * the siphash_key (k0) is used as the key. ++ */ ++ SIPHASH_KEY siphash_key; ++}; ++ ++static inline struct bch_hash_info ++bch2_hash_info_init(struct bch_fs *c, const struct bch_inode_unpacked *bi) ++{ ++ /* XXX ick */ ++ struct bch_hash_info info = { ++ .type = (bi->bi_flags >> INODE_STR_HASH_OFFSET) & ++ ~(~0U << INODE_STR_HASH_BITS), ++ .siphash_key = { .k0 = bi->bi_hash_seed } ++ }; ++ ++ if (unlikely(info.type == BCH_STR_HASH_siphash_old)) { ++ SHASH_DESC_ON_STACK(desc, c->sha256); ++ u8 digest[SHA256_DIGEST_SIZE]; ++ ++ desc->tfm = c->sha256; ++ ++ crypto_shash_digest(desc, (void *) &bi->bi_hash_seed, ++ sizeof(bi->bi_hash_seed), digest); ++ memcpy(&info.siphash_key, digest, sizeof(info.siphash_key)); ++ } ++ ++ return info; ++} ++ ++struct bch_str_hash_ctx { ++ union { ++ u32 crc32c; ++ u64 crc64; ++ SIPHASH_CTX siphash; ++ }; ++}; ++ ++static inline void bch2_str_hash_init(struct bch_str_hash_ctx *ctx, ++ const struct bch_hash_info *info) ++{ ++ switch (info->type) { ++ case BCH_STR_HASH_crc32c: ++ ctx->crc32c = crc32c(~0, &info->siphash_key.k0, ++ sizeof(info->siphash_key.k0)); ++ break; ++ case BCH_STR_HASH_crc64: ++ ctx->crc64 = crc64_be(~0, &info->siphash_key.k0, ++ sizeof(info->siphash_key.k0)); ++ break; ++ case BCH_STR_HASH_siphash_old: ++ case BCH_STR_HASH_siphash: ++ SipHash24_Init(&ctx->siphash, &info->siphash_key); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++static inline void bch2_str_hash_update(struct bch_str_hash_ctx *ctx, ++ const struct bch_hash_info *info, ++ const void *data, size_t len) ++{ ++ switch (info->type) { ++ case BCH_STR_HASH_crc32c: ++ ctx->crc32c = crc32c(ctx->crc32c, data, len); ++ break; ++ case BCH_STR_HASH_crc64: ++ ctx->crc64 = crc64_be(ctx->crc64, data, len); ++ break; ++ case BCH_STR_HASH_siphash_old: ++ case BCH_STR_HASH_siphash: ++ SipHash24_Update(&ctx->siphash, data, len); ++ break; ++ default: ++ BUG(); ++ } ++} ++ ++static inline u64 bch2_str_hash_end(struct bch_str_hash_ctx *ctx, ++ const struct bch_hash_info *info) ++{ ++ switch (info->type) { ++ case BCH_STR_HASH_crc32c: ++ return ctx->crc32c; ++ case BCH_STR_HASH_crc64: ++ return ctx->crc64 >> 1; ++ case BCH_STR_HASH_siphash_old: ++ case BCH_STR_HASH_siphash: ++ return SipHash24_End(&ctx->siphash) >> 1; ++ default: ++ BUG(); ++ } ++} ++ ++struct bch_hash_desc { ++ enum btree_id btree_id; ++ u8 key_type; ++ ++ u64 (*hash_key)(const struct bch_hash_info *, const void *); ++ u64 (*hash_bkey)(const struct bch_hash_info *, struct bkey_s_c); ++ bool (*cmp_key)(struct bkey_s_c, const void *); ++ bool (*cmp_bkey)(struct bkey_s_c, struct bkey_s_c); ++ bool (*is_visible)(subvol_inum inum, struct bkey_s_c); ++}; ++ ++static inline bool is_visible_key(struct bch_hash_desc desc, subvol_inum inum, struct bkey_s_c k) ++{ ++ return k.k->type == desc.key_type && ++ (!desc.is_visible || ++ !inum.inum || ++ desc.is_visible(inum, k)); ++} ++ ++static __always_inline int ++bch2_hash_lookup(struct btree_trans *trans, ++ struct btree_iter *iter, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ subvol_inum inum, const void *key, ++ unsigned flags) ++{ ++ struct bkey_s_c k; ++ u32 snapshot; ++ int ret; ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ return ret; ++ ++ for_each_btree_key_upto_norestart(trans, *iter, desc.btree_id, ++ SPOS(inum.inum, desc.hash_key(info, key), snapshot), ++ POS(inum.inum, U64_MAX), ++ BTREE_ITER_SLOTS|flags, k, ret) { ++ if (is_visible_key(desc, inum, k)) { ++ if (!desc.cmp_key(k, key)) ++ return 0; ++ } else if (k.k->type == KEY_TYPE_hash_whiteout) { ++ ; ++ } else { ++ /* hole, not found */ ++ break; ++ } ++ } ++ bch2_trans_iter_exit(trans, iter); ++ ++ return ret ?: -BCH_ERR_ENOENT_str_hash_lookup; ++} ++ ++static __always_inline int ++bch2_hash_hole(struct btree_trans *trans, ++ struct btree_iter *iter, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ subvol_inum inum, const void *key) ++{ ++ struct bkey_s_c k; ++ u32 snapshot; ++ int ret; ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ return ret; ++ ++ for_each_btree_key_upto_norestart(trans, *iter, desc.btree_id, ++ SPOS(inum.inum, desc.hash_key(info, key), snapshot), ++ POS(inum.inum, U64_MAX), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) ++ if (!is_visible_key(desc, inum, k)) ++ return 0; ++ bch2_trans_iter_exit(trans, iter); ++ ++ return ret ?: -BCH_ERR_ENOSPC_str_hash_create; ++} ++ ++static __always_inline ++int bch2_hash_needs_whiteout(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ struct btree_iter *start) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_trans_copy_iter(&iter, start); ++ ++ bch2_btree_iter_advance(&iter); ++ ++ for_each_btree_key_continue_norestart(iter, BTREE_ITER_SLOTS, k, ret) { ++ if (k.k->type != desc.key_type && ++ k.k->type != KEY_TYPE_hash_whiteout) ++ break; ++ ++ if (k.k->type == desc.key_type && ++ desc.hash_bkey(info, k) <= start->pos.offset) { ++ ret = 1; ++ break; ++ } ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static __always_inline ++int bch2_hash_set_snapshot(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ subvol_inum inum, u32 snapshot, ++ struct bkey_i *insert, ++ int flags, ++ int update_flags) ++{ ++ struct btree_iter iter, slot = { NULL }; ++ struct bkey_s_c k; ++ bool found = false; ++ int ret; ++ ++ for_each_btree_key_upto_norestart(trans, iter, desc.btree_id, ++ SPOS(insert->k.p.inode, ++ desc.hash_bkey(info, bkey_i_to_s_c(insert)), ++ snapshot), ++ POS(insert->k.p.inode, U64_MAX), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ret) { ++ if (is_visible_key(desc, inum, k)) { ++ if (!desc.cmp_bkey(k, bkey_i_to_s_c(insert))) ++ goto found; ++ ++ /* hash collision: */ ++ continue; ++ } ++ ++ if (!slot.path && ++ !(flags & BCH_HASH_SET_MUST_REPLACE)) ++ bch2_trans_copy_iter(&slot, &iter); ++ ++ if (k.k->type != KEY_TYPE_hash_whiteout) ++ goto not_found; ++ } ++ ++ if (!ret) ++ ret = -BCH_ERR_ENOSPC_str_hash_create; ++out: ++ bch2_trans_iter_exit(trans, &slot); ++ bch2_trans_iter_exit(trans, &iter); ++ ++ return ret; ++found: ++ found = true; ++not_found: ++ ++ if (!found && (flags & BCH_HASH_SET_MUST_REPLACE)) { ++ ret = -BCH_ERR_ENOENT_str_hash_set_must_replace; ++ } else if (found && (flags & BCH_HASH_SET_MUST_CREATE)) { ++ ret = -EEXIST; ++ } else { ++ if (!found && slot.path) ++ swap(iter, slot); ++ ++ insert->k.p = iter.pos; ++ ret = bch2_trans_update(trans, &iter, insert, 0); ++ } ++ ++ goto out; ++} ++ ++static __always_inline ++int bch2_hash_set(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ subvol_inum inum, ++ struct bkey_i *insert, int flags) ++{ ++ u32 snapshot; ++ int ret; ++ ++ ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot); ++ if (ret) ++ return ret; ++ ++ insert->k.p.inode = inum.inum; ++ ++ return bch2_hash_set_snapshot(trans, desc, info, inum, ++ snapshot, insert, flags, 0); ++} ++ ++static __always_inline ++int bch2_hash_delete_at(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ struct btree_iter *iter, ++ unsigned update_flags) ++{ ++ struct bkey_i *delete; ++ int ret; ++ ++ delete = bch2_trans_kmalloc(trans, sizeof(*delete)); ++ ret = PTR_ERR_OR_ZERO(delete); ++ if (ret) ++ return ret; ++ ++ ret = bch2_hash_needs_whiteout(trans, desc, info, iter); ++ if (ret < 0) ++ return ret; ++ ++ bkey_init(&delete->k); ++ delete->k.p = iter->pos; ++ delete->k.type = ret ? KEY_TYPE_hash_whiteout : KEY_TYPE_deleted; ++ ++ return bch2_trans_update(trans, iter, delete, update_flags); ++} ++ ++static __always_inline ++int bch2_hash_delete(struct btree_trans *trans, ++ const struct bch_hash_desc desc, ++ const struct bch_hash_info *info, ++ subvol_inum inum, const void *key) ++{ ++ struct btree_iter iter; ++ int ret; ++ ++ ret = bch2_hash_lookup(trans, &iter, desc, info, inum, key, ++ BTREE_ITER_INTENT); ++ if (ret) ++ return ret; ++ ++ ret = bch2_hash_delete_at(trans, desc, info, &iter, 0); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++#endif /* _BCACHEFS_STR_HASH_H */ +diff --git a/fs/bcachefs/subvolume.c b/fs/bcachefs/subvolume.c +new file mode 100644 +index 000000000000..caf2dd7dafff +--- /dev/null ++++ b/fs/bcachefs/subvolume.c +@@ -0,0 +1,450 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "btree_key_cache.h" ++#include "btree_update.h" ++#include "errcode.h" ++#include "error.h" ++#include "fs.h" ++#include "snapshot.h" ++#include "subvolume.h" ++ ++#include ++ ++static int bch2_subvolume_delete(struct btree_trans *, u32); ++ ++static int check_subvol(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k) ++{ ++ struct bch_fs *c = trans->c; ++ struct bkey_s_c_subvolume subvol; ++ struct bch_snapshot snapshot; ++ unsigned snapid; ++ int ret = 0; ++ ++ if (k.k->type != KEY_TYPE_subvolume) ++ return 0; ++ ++ subvol = bkey_s_c_to_subvolume(k); ++ snapid = le32_to_cpu(subvol.v->snapshot); ++ ret = bch2_snapshot_lookup(trans, snapid, &snapshot); ++ ++ if (bch2_err_matches(ret, ENOENT)) ++ bch_err(c, "subvolume %llu points to nonexistent snapshot %u", ++ k.k->p.offset, snapid); ++ if (ret) ++ return ret; ++ ++ if (BCH_SUBVOLUME_UNLINKED(subvol.v)) { ++ bch2_fs_lazy_rw(c); ++ ++ ret = bch2_subvolume_delete(trans, iter->pos.offset); ++ if (ret) ++ bch_err_msg(c, ret, "deleting subvolume %llu", iter->pos.offset); ++ return ret ?: -BCH_ERR_transaction_restart_nested; ++ } ++ ++ if (!BCH_SUBVOLUME_SNAP(subvol.v)) { ++ u32 snapshot_root = bch2_snapshot_root(c, le32_to_cpu(subvol.v->snapshot)); ++ u32 snapshot_tree; ++ struct bch_snapshot_tree st; ++ ++ rcu_read_lock(); ++ snapshot_tree = snapshot_t(c, snapshot_root)->tree; ++ rcu_read_unlock(); ++ ++ ret = bch2_snapshot_tree_lookup(trans, snapshot_tree, &st); ++ ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), c, ++ "%s: snapshot tree %u not found", __func__, snapshot_tree); ++ ++ if (ret) ++ return ret; ++ ++ if (fsck_err_on(le32_to_cpu(st.master_subvol) != subvol.k->p.offset, c, ++ "subvolume %llu is not set as snapshot but is not master subvolume", ++ k.k->p.offset)) { ++ struct bkey_i_subvolume *s = ++ bch2_bkey_make_mut_typed(trans, iter, &subvol.s_c, 0, subvolume); ++ ret = PTR_ERR_OR_ZERO(s); ++ if (ret) ++ return ret; ++ ++ SET_BCH_SUBVOLUME_SNAP(&s->v, true); ++ } ++ } ++ ++fsck_err: ++ return ret; ++} ++ ++int bch2_check_subvols(struct bch_fs *c) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret; ++ ++ ret = bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, ++ BTREE_ID_subvolumes, POS_MIN, BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_LAZY_RW|BTREE_INSERT_NOFAIL, ++ check_subvol(trans, &iter, k))); ++ if (ret) ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++/* Subvolumes: */ ++ ++int bch2_subvolume_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, struct printbuf *err) ++{ ++ if (bkey_lt(k.k->p, SUBVOL_POS_MIN) || ++ bkey_gt(k.k->p, SUBVOL_POS_MAX)) { ++ prt_printf(err, "invalid pos"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_subvolume_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ struct bkey_s_c_subvolume s = bkey_s_c_to_subvolume(k); ++ ++ prt_printf(out, "root %llu snapshot id %u", ++ le64_to_cpu(s.v->inode), ++ le32_to_cpu(s.v->snapshot)); ++ ++ if (bkey_val_bytes(s.k) > offsetof(struct bch_subvolume, parent)) ++ prt_printf(out, " parent %u", le32_to_cpu(s.v->parent)); ++} ++ ++static __always_inline int ++bch2_subvolume_get_inlined(struct btree_trans *trans, unsigned subvol, ++ bool inconsistent_if_not_found, ++ int iter_flags, ++ struct bch_subvolume *s) ++{ ++ int ret = bch2_bkey_get_val_typed(trans, BTREE_ID_subvolumes, POS(0, subvol), ++ iter_flags, subvolume, s); ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT) && ++ inconsistent_if_not_found, ++ trans->c, "missing subvolume %u", subvol); ++ return ret; ++} ++ ++int bch2_subvolume_get(struct btree_trans *trans, unsigned subvol, ++ bool inconsistent_if_not_found, ++ int iter_flags, ++ struct bch_subvolume *s) ++{ ++ return bch2_subvolume_get_inlined(trans, subvol, inconsistent_if_not_found, iter_flags, s); ++} ++ ++int bch2_snapshot_get_subvol(struct btree_trans *trans, u32 snapshot, ++ struct bch_subvolume *subvol) ++{ ++ struct bch_snapshot snap; ++ ++ return bch2_snapshot_lookup(trans, snapshot, &snap) ?: ++ bch2_subvolume_get(trans, le32_to_cpu(snap.subvol), true, 0, subvol); ++} ++ ++int bch2_subvolume_get_snapshot(struct btree_trans *trans, u32 subvolid, ++ u32 *snapid) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c_subvolume subvol; ++ int ret; ++ ++ subvol = bch2_bkey_get_iter_typed(trans, &iter, ++ BTREE_ID_subvolumes, POS(0, subvolid), ++ BTREE_ITER_CACHED|BTREE_ITER_WITH_UPDATES, ++ subvolume); ++ ret = bkey_err(subvol); ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), trans->c, ++ "missing subvolume %u", subvolid); ++ ++ if (likely(!ret)) ++ *snapid = le32_to_cpu(subvol.v->snapshot); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int bch2_subvolume_reparent(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_s_c k, ++ u32 old_parent, u32 new_parent) ++{ ++ struct bkey_i_subvolume *s; ++ int ret; ++ ++ if (k.k->type != KEY_TYPE_subvolume) ++ return 0; ++ ++ if (bkey_val_bytes(k.k) > offsetof(struct bch_subvolume, parent) && ++ le32_to_cpu(bkey_s_c_to_subvolume(k).v->parent) != old_parent) ++ return 0; ++ ++ s = bch2_bkey_make_mut_typed(trans, iter, &k, 0, subvolume); ++ ret = PTR_ERR_OR_ZERO(s); ++ if (ret) ++ return ret; ++ ++ s->v.parent = cpu_to_le32(new_parent); ++ return 0; ++} ++ ++/* ++ * Separate from the snapshot tree in the snapshots btree, we record the tree ++ * structure of how snapshot subvolumes were created - the parent subvolume of ++ * each snapshot subvolume. ++ * ++ * When a subvolume is deleted, we scan for child subvolumes and reparant them, ++ * to avoid dangling references: ++ */ ++static int bch2_subvolumes_reparent(struct btree_trans *trans, u32 subvolid_to_delete) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bch_subvolume s; ++ ++ return lockrestart_do(trans, ++ bch2_subvolume_get(trans, subvolid_to_delete, true, ++ BTREE_ITER_CACHED, &s)) ?: ++ for_each_btree_key_commit(trans, iter, ++ BTREE_ID_subvolumes, POS_MIN, BTREE_ITER_PREFETCH, k, ++ NULL, NULL, BTREE_INSERT_NOFAIL, ++ bch2_subvolume_reparent(trans, &iter, k, ++ subvolid_to_delete, le32_to_cpu(s.parent))); ++} ++ ++/* ++ * Delete subvolume, mark snapshot ID as deleted, queue up snapshot ++ * deletion/cleanup: ++ */ ++static int __bch2_subvolume_delete(struct btree_trans *trans, u32 subvolid) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c_subvolume subvol; ++ struct btree_trans_commit_hook *h; ++ u32 snapid; ++ int ret = 0; ++ ++ subvol = bch2_bkey_get_iter_typed(trans, &iter, ++ BTREE_ID_subvolumes, POS(0, subvolid), ++ BTREE_ITER_CACHED|BTREE_ITER_INTENT, ++ subvolume); ++ ret = bkey_err(subvol); ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), trans->c, ++ "missing subvolume %u", subvolid); ++ if (ret) ++ return ret; ++ ++ snapid = le32_to_cpu(subvol.v->snapshot); ++ ++ ret = bch2_btree_delete_at(trans, &iter, 0); ++ if (ret) ++ goto err; ++ ++ ret = bch2_snapshot_node_set_deleted(trans, snapid); ++ if (ret) ++ goto err; ++ ++ h = bch2_trans_kmalloc(trans, sizeof(*h)); ++ ret = PTR_ERR_OR_ZERO(h); ++ if (ret) ++ goto err; ++ ++ h->fn = bch2_delete_dead_snapshots_hook; ++ bch2_trans_commit_hook(trans, h); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int bch2_subvolume_delete(struct btree_trans *trans, u32 subvolid) ++{ ++ return bch2_subvolumes_reparent(trans, subvolid) ?: ++ commit_do(trans, NULL, NULL, BTREE_INSERT_NOFAIL, ++ __bch2_subvolume_delete(trans, subvolid)); ++} ++ ++static void bch2_subvolume_wait_for_pagecache_and_delete(struct work_struct *work) ++{ ++ struct bch_fs *c = container_of(work, struct bch_fs, ++ snapshot_wait_for_pagecache_and_delete_work); ++ snapshot_id_list s; ++ u32 *id; ++ int ret = 0; ++ ++ while (!ret) { ++ mutex_lock(&c->snapshots_unlinked_lock); ++ s = c->snapshots_unlinked; ++ darray_init(&c->snapshots_unlinked); ++ mutex_unlock(&c->snapshots_unlinked_lock); ++ ++ if (!s.nr) ++ break; ++ ++ bch2_evict_subvolume_inodes(c, &s); ++ ++ for (id = s.data; id < s.data + s.nr; id++) { ++ ret = bch2_trans_run(c, bch2_subvolume_delete(trans, *id)); ++ if (ret) { ++ bch_err_msg(c, ret, "deleting subvolume %u", *id); ++ break; ++ } ++ } ++ ++ darray_exit(&s); ++ } ++ ++ bch2_write_ref_put(c, BCH_WRITE_REF_snapshot_delete_pagecache); ++} ++ ++struct subvolume_unlink_hook { ++ struct btree_trans_commit_hook h; ++ u32 subvol; ++}; ++ ++static int bch2_subvolume_wait_for_pagecache_and_delete_hook(struct btree_trans *trans, ++ struct btree_trans_commit_hook *_h) ++{ ++ struct subvolume_unlink_hook *h = container_of(_h, struct subvolume_unlink_hook, h); ++ struct bch_fs *c = trans->c; ++ int ret = 0; ++ ++ mutex_lock(&c->snapshots_unlinked_lock); ++ if (!snapshot_list_has_id(&c->snapshots_unlinked, h->subvol)) ++ ret = snapshot_list_add(c, &c->snapshots_unlinked, h->subvol); ++ mutex_unlock(&c->snapshots_unlinked_lock); ++ ++ if (ret) ++ return ret; ++ ++ if (!bch2_write_ref_tryget(c, BCH_WRITE_REF_snapshot_delete_pagecache)) ++ return -EROFS; ++ ++ if (!queue_work(c->write_ref_wq, &c->snapshot_wait_for_pagecache_and_delete_work)) ++ bch2_write_ref_put(c, BCH_WRITE_REF_snapshot_delete_pagecache); ++ return 0; ++} ++ ++int bch2_subvolume_unlink(struct btree_trans *trans, u32 subvolid) ++{ ++ struct btree_iter iter; ++ struct bkey_i_subvolume *n; ++ struct subvolume_unlink_hook *h; ++ int ret = 0; ++ ++ h = bch2_trans_kmalloc(trans, sizeof(*h)); ++ ret = PTR_ERR_OR_ZERO(h); ++ if (ret) ++ return ret; ++ ++ h->h.fn = bch2_subvolume_wait_for_pagecache_and_delete_hook; ++ h->subvol = subvolid; ++ bch2_trans_commit_hook(trans, &h->h); ++ ++ n = bch2_bkey_get_mut_typed(trans, &iter, ++ BTREE_ID_subvolumes, POS(0, subvolid), ++ BTREE_ITER_CACHED, subvolume); ++ ret = PTR_ERR_OR_ZERO(n); ++ if (unlikely(ret)) { ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), trans->c, ++ "missing subvolume %u", subvolid); ++ return ret; ++ } ++ ++ SET_BCH_SUBVOLUME_UNLINKED(&n->v, true); ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++int bch2_subvolume_create(struct btree_trans *trans, u64 inode, ++ u32 src_subvolid, ++ u32 *new_subvolid, ++ u32 *new_snapshotid, ++ bool ro) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter dst_iter, src_iter = (struct btree_iter) { NULL }; ++ struct bkey_i_subvolume *new_subvol = NULL; ++ struct bkey_i_subvolume *src_subvol = NULL; ++ u32 parent = 0, new_nodes[2], snapshot_subvols[2]; ++ int ret = 0; ++ ++ ret = bch2_bkey_get_empty_slot(trans, &dst_iter, ++ BTREE_ID_subvolumes, POS(0, U32_MAX)); ++ if (ret == -BCH_ERR_ENOSPC_btree_slot) ++ ret = -BCH_ERR_ENOSPC_subvolume_create; ++ if (ret) ++ return ret; ++ ++ snapshot_subvols[0] = dst_iter.pos.offset; ++ snapshot_subvols[1] = src_subvolid; ++ ++ if (src_subvolid) { ++ /* Creating a snapshot: */ ++ ++ src_subvol = bch2_bkey_get_mut_typed(trans, &src_iter, ++ BTREE_ID_subvolumes, POS(0, src_subvolid), ++ BTREE_ITER_CACHED, subvolume); ++ ret = PTR_ERR_OR_ZERO(src_subvol); ++ if (unlikely(ret)) { ++ bch2_fs_inconsistent_on(bch2_err_matches(ret, ENOENT), c, ++ "subvolume %u not found", src_subvolid); ++ goto err; ++ } ++ ++ parent = le32_to_cpu(src_subvol->v.snapshot); ++ } ++ ++ ret = bch2_snapshot_node_create(trans, parent, new_nodes, ++ snapshot_subvols, ++ src_subvolid ? 2 : 1); ++ if (ret) ++ goto err; ++ ++ if (src_subvolid) { ++ src_subvol->v.snapshot = cpu_to_le32(new_nodes[1]); ++ ret = bch2_trans_update(trans, &src_iter, &src_subvol->k_i, 0); ++ if (ret) ++ goto err; ++ } ++ ++ new_subvol = bch2_bkey_alloc(trans, &dst_iter, 0, subvolume); ++ ret = PTR_ERR_OR_ZERO(new_subvol); ++ if (ret) ++ goto err; ++ ++ new_subvol->v.flags = 0; ++ new_subvol->v.snapshot = cpu_to_le32(new_nodes[0]); ++ new_subvol->v.inode = cpu_to_le64(inode); ++ new_subvol->v.parent = cpu_to_le32(src_subvolid); ++ new_subvol->v.otime.lo = cpu_to_le64(bch2_current_time(c)); ++ new_subvol->v.otime.hi = 0; ++ ++ SET_BCH_SUBVOLUME_RO(&new_subvol->v, ro); ++ SET_BCH_SUBVOLUME_SNAP(&new_subvol->v, src_subvolid != 0); ++ ++ *new_subvolid = new_subvol->k.p.offset; ++ *new_snapshotid = new_nodes[0]; ++err: ++ bch2_trans_iter_exit(trans, &src_iter); ++ bch2_trans_iter_exit(trans, &dst_iter); ++ return ret; ++} ++ ++int bch2_fs_subvolumes_init(struct bch_fs *c) ++{ ++ INIT_WORK(&c->snapshot_delete_work, bch2_delete_dead_snapshots_work); ++ INIT_WORK(&c->snapshot_wait_for_pagecache_and_delete_work, ++ bch2_subvolume_wait_for_pagecache_and_delete); ++ mutex_init(&c->snapshots_unlinked_lock); ++ return 0; ++} +diff --git a/fs/bcachefs/subvolume.h b/fs/bcachefs/subvolume.h +new file mode 100644 +index 000000000000..bb14f92e8687 +--- /dev/null ++++ b/fs/bcachefs/subvolume.h +@@ -0,0 +1,35 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SUBVOLUME_H ++#define _BCACHEFS_SUBVOLUME_H ++ ++#include "darray.h" ++#include "subvolume_types.h" ++ ++enum bkey_invalid_flags; ++ ++int bch2_check_subvols(struct bch_fs *); ++ ++int bch2_subvolume_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_subvolume_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_subvolume ((struct bkey_ops) { \ ++ .key_invalid = bch2_subvolume_invalid, \ ++ .val_to_text = bch2_subvolume_to_text, \ ++ .min_val_size = 16, \ ++}) ++ ++int bch2_subvolume_get(struct btree_trans *, unsigned, ++ bool, int, struct bch_subvolume *); ++int bch2_subvolume_get_snapshot(struct btree_trans *, u32, u32 *); ++ ++int bch2_delete_dead_snapshots(struct bch_fs *); ++void bch2_delete_dead_snapshots_async(struct bch_fs *); ++ ++int bch2_subvolume_unlink(struct btree_trans *, u32); ++int bch2_subvolume_create(struct btree_trans *, u64, u32, ++ u32 *, u32 *, bool); ++ ++int bch2_fs_subvolumes_init(struct bch_fs *); ++ ++#endif /* _BCACHEFS_SUBVOLUME_H */ +diff --git a/fs/bcachefs/subvolume_types.h b/fs/bcachefs/subvolume_types.h +new file mode 100644 +index 000000000000..86833445af20 +--- /dev/null ++++ b/fs/bcachefs/subvolume_types.h +@@ -0,0 +1,31 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SUBVOLUME_TYPES_H ++#define _BCACHEFS_SUBVOLUME_TYPES_H ++ ++#include "darray.h" ++ ++typedef DARRAY(u32) snapshot_id_list; ++ ++#define IS_ANCESTOR_BITMAP 128 ++ ++struct snapshot_t { ++ u32 parent; ++ u32 skip[3]; ++ u32 depth; ++ u32 children[2]; ++ u32 subvol; /* Nonzero only if a subvolume points to this node: */ ++ u32 tree; ++ u32 equiv; ++ unsigned long is_ancestor[BITS_TO_LONGS(IS_ANCESTOR_BITMAP)]; ++}; ++ ++struct snapshot_table { ++ struct snapshot_t s[0]; ++}; ++ ++typedef struct { ++ u32 subvol; ++ u64 inum; ++} subvol_inum; ++ ++#endif /* _BCACHEFS_SUBVOLUME_TYPES_H */ +diff --git a/fs/bcachefs/super-io.c b/fs/bcachefs/super-io.c +new file mode 100644 +index 000000000000..332d41e1c0a3 +--- /dev/null ++++ b/fs/bcachefs/super-io.c +@@ -0,0 +1,1258 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "checksum.h" ++#include "counters.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "error.h" ++#include "journal.h" ++#include "journal_sb.h" ++#include "journal_seq_blacklist.h" ++#include "recovery.h" ++#include "replicas.h" ++#include "quota.h" ++#include "sb-clean.h" ++#include "sb-members.h" ++#include "super-io.h" ++#include "super.h" ++#include "trace.h" ++#include "vstructs.h" ++ ++#include ++#include ++ ++static const struct blk_holder_ops bch2_sb_handle_bdev_ops = { ++}; ++ ++struct bch2_metadata_version { ++ u16 version; ++ const char *name; ++ u64 recovery_passes; ++}; ++ ++static const struct bch2_metadata_version bch2_metadata_versions[] = { ++#define x(n, v, _recovery_passes) { \ ++ .version = v, \ ++ .name = #n, \ ++ .recovery_passes = _recovery_passes, \ ++}, ++ BCH_METADATA_VERSIONS() ++#undef x ++}; ++ ++void bch2_version_to_text(struct printbuf *out, unsigned v) ++{ ++ const char *str = "(unknown version)"; ++ ++ for (unsigned i = 0; i < ARRAY_SIZE(bch2_metadata_versions); i++) ++ if (bch2_metadata_versions[i].version == v) { ++ str = bch2_metadata_versions[i].name; ++ break; ++ } ++ ++ prt_printf(out, "%u.%u: %s", BCH_VERSION_MAJOR(v), BCH_VERSION_MINOR(v), str); ++} ++ ++unsigned bch2_latest_compatible_version(unsigned v) ++{ ++ if (!BCH_VERSION_MAJOR(v)) ++ return v; ++ ++ for (unsigned i = 0; i < ARRAY_SIZE(bch2_metadata_versions); i++) ++ if (bch2_metadata_versions[i].version > v && ++ BCH_VERSION_MAJOR(bch2_metadata_versions[i].version) == ++ BCH_VERSION_MAJOR(v)) ++ v = bch2_metadata_versions[i].version; ++ ++ return v; ++} ++ ++u64 bch2_upgrade_recovery_passes(struct bch_fs *c, ++ unsigned old_version, ++ unsigned new_version) ++{ ++ u64 ret = 0; ++ ++ for (const struct bch2_metadata_version *i = bch2_metadata_versions; ++ i < bch2_metadata_versions + ARRAY_SIZE(bch2_metadata_versions); ++ i++) ++ if (i->version > old_version && i->version <= new_version) { ++ if (i->recovery_passes & RECOVERY_PASS_ALL_FSCK) ++ ret |= bch2_fsck_recovery_passes(); ++ ret |= i->recovery_passes; ++ } ++ ++ return ret &= ~RECOVERY_PASS_ALL_FSCK; ++} ++ ++const char * const bch2_sb_fields[] = { ++#define x(name, nr) #name, ++ BCH_SB_FIELDS() ++#undef x ++ NULL ++}; ++ ++static int bch2_sb_field_validate(struct bch_sb *, struct bch_sb_field *, ++ struct printbuf *); ++ ++struct bch_sb_field *bch2_sb_field_get_id(struct bch_sb *sb, ++ enum bch_sb_field_type type) ++{ ++ struct bch_sb_field *f; ++ ++ /* XXX: need locking around superblock to access optional fields */ ++ ++ vstruct_for_each(sb, f) ++ if (le32_to_cpu(f->type) == type) ++ return f; ++ return NULL; ++} ++ ++static struct bch_sb_field *__bch2_sb_field_resize(struct bch_sb_handle *sb, ++ struct bch_sb_field *f, ++ unsigned u64s) ++{ ++ unsigned old_u64s = f ? le32_to_cpu(f->u64s) : 0; ++ unsigned sb_u64s = le32_to_cpu(sb->sb->u64s) + u64s - old_u64s; ++ ++ BUG_ON(__vstruct_bytes(struct bch_sb, sb_u64s) > sb->buffer_size); ++ ++ if (!f && !u64s) { ++ /* nothing to do: */ ++ } else if (!f) { ++ f = vstruct_last(sb->sb); ++ memset(f, 0, sizeof(u64) * u64s); ++ f->u64s = cpu_to_le32(u64s); ++ f->type = 0; ++ } else { ++ void *src, *dst; ++ ++ src = vstruct_end(f); ++ ++ if (u64s) { ++ f->u64s = cpu_to_le32(u64s); ++ dst = vstruct_end(f); ++ } else { ++ dst = f; ++ } ++ ++ memmove(dst, src, vstruct_end(sb->sb) - src); ++ ++ if (dst > src) ++ memset(src, 0, dst - src); ++ } ++ ++ sb->sb->u64s = cpu_to_le32(sb_u64s); ++ ++ return u64s ? f : NULL; ++} ++ ++void bch2_sb_field_delete(struct bch_sb_handle *sb, ++ enum bch_sb_field_type type) ++{ ++ struct bch_sb_field *f = bch2_sb_field_get_id(sb->sb, type); ++ ++ if (f) ++ __bch2_sb_field_resize(sb, f, 0); ++} ++ ++/* Superblock realloc/free: */ ++ ++void bch2_free_super(struct bch_sb_handle *sb) ++{ ++ kfree(sb->bio); ++ if (!IS_ERR_OR_NULL(sb->bdev)) ++ blkdev_put(sb->bdev, sb->holder); ++ kfree(sb->holder); ++ ++ kfree(sb->sb); ++ memset(sb, 0, sizeof(*sb)); ++} ++ ++int bch2_sb_realloc(struct bch_sb_handle *sb, unsigned u64s) ++{ ++ size_t new_bytes = __vstruct_bytes(struct bch_sb, u64s); ++ size_t new_buffer_size; ++ struct bch_sb *new_sb; ++ struct bio *bio; ++ ++ if (sb->bdev) ++ new_bytes = max_t(size_t, new_bytes, bdev_logical_block_size(sb->bdev)); ++ ++ new_buffer_size = roundup_pow_of_two(new_bytes); ++ ++ if (sb->sb && sb->buffer_size >= new_buffer_size) ++ return 0; ++ ++ if (sb->sb && sb->have_layout) { ++ u64 max_bytes = 512 << sb->sb->layout.sb_max_size_bits; ++ ++ if (new_bytes > max_bytes) { ++ pr_err("%pg: superblock too big: want %zu but have %llu", ++ sb->bdev, new_bytes, max_bytes); ++ return -BCH_ERR_ENOSPC_sb; ++ } ++ } ++ ++ if (sb->buffer_size >= new_buffer_size && sb->sb) ++ return 0; ++ ++ if (dynamic_fault("bcachefs:add:super_realloc")) ++ return -BCH_ERR_ENOMEM_sb_realloc_injected; ++ ++ new_sb = krealloc(sb->sb, new_buffer_size, GFP_NOFS|__GFP_ZERO); ++ if (!new_sb) ++ return -BCH_ERR_ENOMEM_sb_buf_realloc; ++ ++ sb->sb = new_sb; ++ ++ if (sb->have_bio) { ++ unsigned nr_bvecs = buf_pages(sb->sb, new_buffer_size); ++ ++ bio = bio_kmalloc(nr_bvecs, GFP_KERNEL); ++ if (!bio) ++ return -BCH_ERR_ENOMEM_sb_bio_realloc; ++ ++ bio_init(bio, NULL, bio->bi_inline_vecs, nr_bvecs, 0); ++ ++ kfree(sb->bio); ++ sb->bio = bio; ++ } ++ ++ sb->buffer_size = new_buffer_size; ++ ++ return 0; ++} ++ ++struct bch_sb_field *bch2_sb_field_resize_id(struct bch_sb_handle *sb, ++ enum bch_sb_field_type type, ++ unsigned u64s) ++{ ++ struct bch_sb_field *f = bch2_sb_field_get_id(sb->sb, type); ++ ssize_t old_u64s = f ? le32_to_cpu(f->u64s) : 0; ++ ssize_t d = -old_u64s + u64s; ++ ++ if (bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s) + d)) ++ return NULL; ++ ++ if (sb->fs_sb) { ++ struct bch_fs *c = container_of(sb, struct bch_fs, disk_sb); ++ struct bch_dev *ca; ++ unsigned i; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ /* XXX: we're not checking that offline device have enough space */ ++ ++ for_each_online_member(ca, c, i) { ++ struct bch_sb_handle *dev_sb = &ca->disk_sb; ++ ++ if (bch2_sb_realloc(dev_sb, le32_to_cpu(dev_sb->sb->u64s) + d)) { ++ percpu_ref_put(&ca->ref); ++ return NULL; ++ } ++ } ++ } ++ ++ f = bch2_sb_field_get_id(sb->sb, type); ++ f = __bch2_sb_field_resize(sb, f, u64s); ++ if (f) ++ f->type = cpu_to_le32(type); ++ return f; ++} ++ ++/* Superblock validate: */ ++ ++static int validate_sb_layout(struct bch_sb_layout *layout, struct printbuf *out) ++{ ++ u64 offset, prev_offset, max_sectors; ++ unsigned i; ++ ++ BUILD_BUG_ON(sizeof(struct bch_sb_layout) != 512); ++ ++ if (!uuid_equal(&layout->magic, &BCACHE_MAGIC) && ++ !uuid_equal(&layout->magic, &BCHFS_MAGIC)) { ++ prt_printf(out, "Not a bcachefs superblock layout"); ++ return -BCH_ERR_invalid_sb_layout; ++ } ++ ++ if (layout->layout_type != 0) { ++ prt_printf(out, "Invalid superblock layout type %u", ++ layout->layout_type); ++ return -BCH_ERR_invalid_sb_layout_type; ++ } ++ ++ if (!layout->nr_superblocks) { ++ prt_printf(out, "Invalid superblock layout: no superblocks"); ++ return -BCH_ERR_invalid_sb_layout_nr_superblocks; ++ } ++ ++ if (layout->nr_superblocks > ARRAY_SIZE(layout->sb_offset)) { ++ prt_printf(out, "Invalid superblock layout: too many superblocks"); ++ return -BCH_ERR_invalid_sb_layout_nr_superblocks; ++ } ++ ++ max_sectors = 1 << layout->sb_max_size_bits; ++ ++ prev_offset = le64_to_cpu(layout->sb_offset[0]); ++ ++ for (i = 1; i < layout->nr_superblocks; i++) { ++ offset = le64_to_cpu(layout->sb_offset[i]); ++ ++ if (offset < prev_offset + max_sectors) { ++ prt_printf(out, "Invalid superblock layout: superblocks overlap\n" ++ " (sb %u ends at %llu next starts at %llu", ++ i - 1, prev_offset + max_sectors, offset); ++ return -BCH_ERR_invalid_sb_layout_superblocks_overlap; ++ } ++ prev_offset = offset; ++ } ++ ++ return 0; ++} ++ ++static int bch2_sb_compatible(struct bch_sb *sb, struct printbuf *out) ++{ ++ u16 version = le16_to_cpu(sb->version); ++ u16 version_min = le16_to_cpu(sb->version_min); ++ ++ if (!bch2_version_compatible(version)) { ++ prt_str(out, "Unsupported superblock version "); ++ bch2_version_to_text(out, version); ++ prt_str(out, " (min "); ++ bch2_version_to_text(out, bcachefs_metadata_version_min); ++ prt_str(out, ", max "); ++ bch2_version_to_text(out, bcachefs_metadata_version_current); ++ prt_str(out, ")"); ++ return -BCH_ERR_invalid_sb_version; ++ } ++ ++ if (!bch2_version_compatible(version_min)) { ++ prt_str(out, "Unsupported superblock version_min "); ++ bch2_version_to_text(out, version_min); ++ prt_str(out, " (min "); ++ bch2_version_to_text(out, bcachefs_metadata_version_min); ++ prt_str(out, ", max "); ++ bch2_version_to_text(out, bcachefs_metadata_version_current); ++ prt_str(out, ")"); ++ return -BCH_ERR_invalid_sb_version; ++ } ++ ++ if (version_min > version) { ++ prt_str(out, "Bad minimum version "); ++ bch2_version_to_text(out, version_min); ++ prt_str(out, ", greater than version field "); ++ bch2_version_to_text(out, version); ++ return -BCH_ERR_invalid_sb_version; ++ } ++ ++ return 0; ++} ++ ++static int bch2_sb_validate(struct bch_sb_handle *disk_sb, struct printbuf *out, ++ int rw) ++{ ++ struct bch_sb *sb = disk_sb->sb; ++ struct bch_sb_field *f; ++ struct bch_sb_field_members_v1 *mi; ++ enum bch_opt_id opt_id; ++ u16 block_size; ++ int ret; ++ ++ ret = bch2_sb_compatible(sb, out); ++ if (ret) ++ return ret; ++ ++ if (sb->features[1] || ++ (le64_to_cpu(sb->features[0]) & (~0ULL << BCH_FEATURE_NR))) { ++ prt_printf(out, "Filesystem has incompatible features"); ++ return -BCH_ERR_invalid_sb_features; ++ } ++ ++ block_size = le16_to_cpu(sb->block_size); ++ ++ if (block_size > PAGE_SECTORS) { ++ prt_printf(out, "Block size too big (got %u, max %u)", ++ block_size, PAGE_SECTORS); ++ return -BCH_ERR_invalid_sb_block_size; ++ } ++ ++ if (bch2_is_zero(sb->user_uuid.b, sizeof(sb->user_uuid))) { ++ prt_printf(out, "Bad user UUID (got zeroes)"); ++ return -BCH_ERR_invalid_sb_uuid; ++ } ++ ++ if (bch2_is_zero(sb->uuid.b, sizeof(sb->uuid))) { ++ prt_printf(out, "Bad internal UUID (got zeroes)"); ++ return -BCH_ERR_invalid_sb_uuid; ++ } ++ ++ if (!sb->nr_devices || ++ sb->nr_devices > BCH_SB_MEMBERS_MAX) { ++ prt_printf(out, "Bad number of member devices %u (max %u)", ++ sb->nr_devices, BCH_SB_MEMBERS_MAX); ++ return -BCH_ERR_invalid_sb_too_many_members; ++ } ++ ++ if (sb->dev_idx >= sb->nr_devices) { ++ prt_printf(out, "Bad dev_idx (got %u, nr_devices %u)", ++ sb->dev_idx, sb->nr_devices); ++ return -BCH_ERR_invalid_sb_dev_idx; ++ } ++ ++ if (!sb->time_precision || ++ le32_to_cpu(sb->time_precision) > NSEC_PER_SEC) { ++ prt_printf(out, "Invalid time precision: %u (min 1, max %lu)", ++ le32_to_cpu(sb->time_precision), NSEC_PER_SEC); ++ return -BCH_ERR_invalid_sb_time_precision; ++ } ++ ++ if (rw == READ) { ++ /* ++ * Been seeing a bug where these are getting inexplicably ++ * zeroed, so we're now validating them, but we have to be ++ * careful not to preven people's filesystems from mounting: ++ */ ++ if (!BCH_SB_JOURNAL_FLUSH_DELAY(sb)) ++ SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); ++ if (!BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) ++ SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 1000); ++ ++ if (!BCH_SB_VERSION_UPGRADE_COMPLETE(sb)) ++ SET_BCH_SB_VERSION_UPGRADE_COMPLETE(sb, le16_to_cpu(sb->version)); ++ } ++ ++ for (opt_id = 0; opt_id < bch2_opts_nr; opt_id++) { ++ const struct bch_option *opt = bch2_opt_table + opt_id; ++ ++ if (opt->get_sb != BCH2_NO_SB_OPT) { ++ u64 v = bch2_opt_from_sb(sb, opt_id); ++ ++ prt_printf(out, "Invalid option "); ++ ret = bch2_opt_validate(opt, v, out); ++ if (ret) ++ return ret; ++ ++ printbuf_reset(out); ++ } ++ } ++ ++ /* validate layout */ ++ ret = validate_sb_layout(&sb->layout, out); ++ if (ret) ++ return ret; ++ ++ vstruct_for_each(sb, f) { ++ if (!f->u64s) { ++ prt_printf(out, "Invalid superblock: optional field with size 0 (type %u)", ++ le32_to_cpu(f->type)); ++ return -BCH_ERR_invalid_sb_field_size; ++ } ++ ++ if (vstruct_next(f) > vstruct_last(sb)) { ++ prt_printf(out, "Invalid superblock: optional field extends past end of superblock (type %u)", ++ le32_to_cpu(f->type)); ++ return -BCH_ERR_invalid_sb_field_size; ++ } ++ } ++ ++ /* members must be validated first: */ ++ mi = bch2_sb_field_get(sb, members_v1); ++ if (!mi) { ++ prt_printf(out, "Invalid superblock: member info area missing"); ++ return -BCH_ERR_invalid_sb_members_missing; ++ } ++ ++ ret = bch2_sb_field_validate(sb, &mi->field, out); ++ if (ret) ++ return ret; ++ ++ vstruct_for_each(sb, f) { ++ if (le32_to_cpu(f->type) == BCH_SB_FIELD_members_v1) ++ continue; ++ ++ ret = bch2_sb_field_validate(sb, f, out); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++/* device open: */ ++ ++static void bch2_sb_update(struct bch_fs *c) ++{ ++ struct bch_sb *src = c->disk_sb.sb; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ c->sb.uuid = src->uuid; ++ c->sb.user_uuid = src->user_uuid; ++ c->sb.version = le16_to_cpu(src->version); ++ c->sb.version_min = le16_to_cpu(src->version_min); ++ c->sb.version_upgrade_complete = BCH_SB_VERSION_UPGRADE_COMPLETE(src); ++ c->sb.nr_devices = src->nr_devices; ++ c->sb.clean = BCH_SB_CLEAN(src); ++ c->sb.encryption_type = BCH_SB_ENCRYPTION_TYPE(src); ++ ++ c->sb.nsec_per_time_unit = le32_to_cpu(src->time_precision); ++ c->sb.time_units_per_sec = NSEC_PER_SEC / c->sb.nsec_per_time_unit; ++ ++ /* XXX this is wrong, we need a 96 or 128 bit integer type */ ++ c->sb.time_base_lo = div_u64(le64_to_cpu(src->time_base_lo), ++ c->sb.nsec_per_time_unit); ++ c->sb.time_base_hi = le32_to_cpu(src->time_base_hi); ++ ++ c->sb.features = le64_to_cpu(src->features[0]); ++ c->sb.compat = le64_to_cpu(src->compat[0]); ++ ++ for_each_member_device(ca, c, i) { ++ struct bch_member m = bch2_sb_member_get(src, i); ++ ca->mi = bch2_mi_to_cpu(&m); ++ } ++} ++ ++static int __copy_super(struct bch_sb_handle *dst_handle, struct bch_sb *src) ++{ ++ struct bch_sb_field *src_f, *dst_f; ++ struct bch_sb *dst = dst_handle->sb; ++ unsigned i; ++ ++ dst->version = src->version; ++ dst->version_min = src->version_min; ++ dst->seq = src->seq; ++ dst->uuid = src->uuid; ++ dst->user_uuid = src->user_uuid; ++ memcpy(dst->label, src->label, sizeof(dst->label)); ++ ++ dst->block_size = src->block_size; ++ dst->nr_devices = src->nr_devices; ++ ++ dst->time_base_lo = src->time_base_lo; ++ dst->time_base_hi = src->time_base_hi; ++ dst->time_precision = src->time_precision; ++ ++ memcpy(dst->flags, src->flags, sizeof(dst->flags)); ++ memcpy(dst->features, src->features, sizeof(dst->features)); ++ memcpy(dst->compat, src->compat, sizeof(dst->compat)); ++ ++ for (i = 0; i < BCH_SB_FIELD_NR; i++) { ++ int d; ++ ++ if ((1U << i) & BCH_SINGLE_DEVICE_SB_FIELDS) ++ continue; ++ ++ src_f = bch2_sb_field_get_id(src, i); ++ dst_f = bch2_sb_field_get_id(dst, i); ++ ++ d = (src_f ? le32_to_cpu(src_f->u64s) : 0) - ++ (dst_f ? le32_to_cpu(dst_f->u64s) : 0); ++ if (d > 0) { ++ int ret = bch2_sb_realloc(dst_handle, ++ le32_to_cpu(dst_handle->sb->u64s) + d); ++ ++ if (ret) ++ return ret; ++ ++ dst = dst_handle->sb; ++ dst_f = bch2_sb_field_get_id(dst, i); ++ } ++ ++ dst_f = __bch2_sb_field_resize(dst_handle, dst_f, ++ src_f ? le32_to_cpu(src_f->u64s) : 0); ++ ++ if (src_f) ++ memcpy(dst_f, src_f, vstruct_bytes(src_f)); ++ } ++ ++ return 0; ++} ++ ++int bch2_sb_to_fs(struct bch_fs *c, struct bch_sb *src) ++{ ++ int ret; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ ret = bch2_sb_realloc(&c->disk_sb, 0) ?: ++ __copy_super(&c->disk_sb, src) ?: ++ bch2_sb_replicas_to_cpu_replicas(c) ?: ++ bch2_sb_disk_groups_to_cpu(c); ++ if (ret) ++ return ret; ++ ++ bch2_sb_update(c); ++ return 0; ++} ++ ++int bch2_sb_from_fs(struct bch_fs *c, struct bch_dev *ca) ++{ ++ return __copy_super(&ca->disk_sb, c->disk_sb.sb); ++} ++ ++/* read superblock: */ ++ ++static int read_one_super(struct bch_sb_handle *sb, u64 offset, struct printbuf *err) ++{ ++ struct bch_csum csum; ++ size_t bytes; ++ int ret; ++reread: ++ bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META); ++ sb->bio->bi_iter.bi_sector = offset; ++ bch2_bio_map(sb->bio, sb->sb, sb->buffer_size); ++ ++ ret = submit_bio_wait(sb->bio); ++ if (ret) { ++ prt_printf(err, "IO error: %i", ret); ++ return ret; ++ } ++ ++ if (!uuid_equal(&sb->sb->magic, &BCACHE_MAGIC) && ++ !uuid_equal(&sb->sb->magic, &BCHFS_MAGIC)) { ++ prt_printf(err, "Not a bcachefs superblock"); ++ return -BCH_ERR_invalid_sb_magic; ++ } ++ ++ ret = bch2_sb_compatible(sb->sb, err); ++ if (ret) ++ return ret; ++ ++ bytes = vstruct_bytes(sb->sb); ++ ++ if (bytes > 512 << sb->sb->layout.sb_max_size_bits) { ++ prt_printf(err, "Invalid superblock: too big (got %zu bytes, layout max %lu)", ++ bytes, 512UL << sb->sb->layout.sb_max_size_bits); ++ return -BCH_ERR_invalid_sb_too_big; ++ } ++ ++ if (bytes > sb->buffer_size) { ++ ret = bch2_sb_realloc(sb, le32_to_cpu(sb->sb->u64s)); ++ if (ret) ++ return ret; ++ goto reread; ++ } ++ ++ if (BCH_SB_CSUM_TYPE(sb->sb) >= BCH_CSUM_NR) { ++ prt_printf(err, "unknown checksum type %llu", BCH_SB_CSUM_TYPE(sb->sb)); ++ return -BCH_ERR_invalid_sb_csum_type; ++ } ++ ++ /* XXX: verify MACs */ ++ csum = csum_vstruct(NULL, BCH_SB_CSUM_TYPE(sb->sb), ++ null_nonce(), sb->sb); ++ ++ if (bch2_crc_cmp(csum, sb->sb->csum)) { ++ prt_printf(err, "bad checksum"); ++ return -BCH_ERR_invalid_sb_csum; ++ } ++ ++ sb->seq = le64_to_cpu(sb->sb->seq); ++ ++ return 0; ++} ++ ++int bch2_read_super(const char *path, struct bch_opts *opts, ++ struct bch_sb_handle *sb) ++{ ++ u64 offset = opt_get(*opts, sb); ++ struct bch_sb_layout layout; ++ struct printbuf err = PRINTBUF; ++ __le64 *i; ++ int ret; ++#ifndef __KERNEL__ ++retry: ++#endif ++ memset(sb, 0, sizeof(*sb)); ++ sb->mode = BLK_OPEN_READ; ++ sb->have_bio = true; ++ sb->holder = kmalloc(1, GFP_KERNEL); ++ if (!sb->holder) ++ return -ENOMEM; ++ ++#ifndef __KERNEL__ ++ if (opt_get(*opts, direct_io) == false) ++ sb->mode |= BLK_OPEN_BUFFERED; ++#endif ++ ++ if (!opt_get(*opts, noexcl)) ++ sb->mode |= BLK_OPEN_EXCL; ++ ++ if (!opt_get(*opts, nochanges)) ++ sb->mode |= BLK_OPEN_WRITE; ++ ++ sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops); ++ if (IS_ERR(sb->bdev) && ++ PTR_ERR(sb->bdev) == -EACCES && ++ opt_get(*opts, read_only)) { ++ sb->mode &= ~BLK_OPEN_WRITE; ++ ++ sb->bdev = blkdev_get_by_path(path, sb->mode, sb->holder, &bch2_sb_handle_bdev_ops); ++ if (!IS_ERR(sb->bdev)) ++ opt_set(*opts, nochanges, true); ++ } ++ ++ if (IS_ERR(sb->bdev)) { ++ ret = PTR_ERR(sb->bdev); ++ goto out; ++ } ++ ++ ret = bch2_sb_realloc(sb, 0); ++ if (ret) { ++ prt_printf(&err, "error allocating memory for superblock"); ++ goto err; ++ } ++ ++ if (bch2_fs_init_fault("read_super")) { ++ prt_printf(&err, "dynamic fault"); ++ ret = -EFAULT; ++ goto err; ++ } ++ ++ ret = read_one_super(sb, offset, &err); ++ if (!ret) ++ goto got_super; ++ ++ if (opt_defined(*opts, sb)) ++ goto err; ++ ++ printk(KERN_ERR "bcachefs (%s): error reading default superblock: %s", ++ path, err.buf); ++ printbuf_reset(&err); ++ ++ /* ++ * Error reading primary superblock - read location of backup ++ * superblocks: ++ */ ++ bio_reset(sb->bio, sb->bdev, REQ_OP_READ|REQ_SYNC|REQ_META); ++ sb->bio->bi_iter.bi_sector = BCH_SB_LAYOUT_SECTOR; ++ /* ++ * use sb buffer to read layout, since sb buffer is page aligned but ++ * layout won't be: ++ */ ++ bch2_bio_map(sb->bio, sb->sb, sizeof(struct bch_sb_layout)); ++ ++ ret = submit_bio_wait(sb->bio); ++ if (ret) { ++ prt_printf(&err, "IO error: %i", ret); ++ goto err; ++ } ++ ++ memcpy(&layout, sb->sb, sizeof(layout)); ++ ret = validate_sb_layout(&layout, &err); ++ if (ret) ++ goto err; ++ ++ for (i = layout.sb_offset; ++ i < layout.sb_offset + layout.nr_superblocks; i++) { ++ offset = le64_to_cpu(*i); ++ ++ if (offset == opt_get(*opts, sb)) ++ continue; ++ ++ ret = read_one_super(sb, offset, &err); ++ if (!ret) ++ goto got_super; ++ } ++ ++ goto err; ++ ++got_super: ++ if (le16_to_cpu(sb->sb->block_size) << 9 < ++ bdev_logical_block_size(sb->bdev) && ++ opt_get(*opts, direct_io)) { ++#ifndef __KERNEL__ ++ opt_set(*opts, direct_io, false); ++ bch2_free_super(sb); ++ goto retry; ++#endif ++ prt_printf(&err, "block size (%u) smaller than device block size (%u)", ++ le16_to_cpu(sb->sb->block_size) << 9, ++ bdev_logical_block_size(sb->bdev)); ++ ret = -BCH_ERR_block_size_too_small; ++ goto err; ++ } ++ ++ ret = 0; ++ sb->have_layout = true; ++ ++ ret = bch2_sb_validate(sb, &err, READ); ++ if (ret) { ++ printk(KERN_ERR "bcachefs (%s): error validating superblock: %s", ++ path, err.buf); ++ goto err_no_print; ++ } ++out: ++ printbuf_exit(&err); ++ return ret; ++err: ++ printk(KERN_ERR "bcachefs (%s): error reading superblock: %s", ++ path, err.buf); ++err_no_print: ++ bch2_free_super(sb); ++ goto out; ++} ++ ++/* write superblock: */ ++ ++static void write_super_endio(struct bio *bio) ++{ ++ struct bch_dev *ca = bio->bi_private; ++ ++ /* XXX: return errors directly */ ++ ++ if (bch2_dev_io_err_on(bio->bi_status, ca, "superblock write error: %s", ++ bch2_blk_status_to_str(bio->bi_status))) ++ ca->sb_write_error = 1; ++ ++ closure_put(&ca->fs->sb_write); ++ percpu_ref_put(&ca->io_ref); ++} ++ ++static void read_back_super(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct bch_sb *sb = ca->disk_sb.sb; ++ struct bio *bio = ca->disk_sb.bio; ++ ++ bio_reset(bio, ca->disk_sb.bdev, REQ_OP_READ|REQ_SYNC|REQ_META); ++ bio->bi_iter.bi_sector = le64_to_cpu(sb->layout.sb_offset[0]); ++ bio->bi_end_io = write_super_endio; ++ bio->bi_private = ca; ++ bch2_bio_map(bio, ca->sb_read_scratch, PAGE_SIZE); ++ ++ this_cpu_add(ca->io_done->sectors[READ][BCH_DATA_sb], ++ bio_sectors(bio)); ++ ++ percpu_ref_get(&ca->io_ref); ++ closure_bio_submit(bio, &c->sb_write); ++} ++ ++static void write_one_super(struct bch_fs *c, struct bch_dev *ca, unsigned idx) ++{ ++ struct bch_sb *sb = ca->disk_sb.sb; ++ struct bio *bio = ca->disk_sb.bio; ++ ++ sb->offset = sb->layout.sb_offset[idx]; ++ ++ SET_BCH_SB_CSUM_TYPE(sb, bch2_csum_opt_to_type(c->opts.metadata_checksum, false)); ++ sb->csum = csum_vstruct(c, BCH_SB_CSUM_TYPE(sb), ++ null_nonce(), sb); ++ ++ bio_reset(bio, ca->disk_sb.bdev, REQ_OP_WRITE|REQ_SYNC|REQ_META); ++ bio->bi_iter.bi_sector = le64_to_cpu(sb->offset); ++ bio->bi_end_io = write_super_endio; ++ bio->bi_private = ca; ++ bch2_bio_map(bio, sb, ++ roundup((size_t) vstruct_bytes(sb), ++ bdev_logical_block_size(ca->disk_sb.bdev))); ++ ++ this_cpu_add(ca->io_done->sectors[WRITE][BCH_DATA_sb], ++ bio_sectors(bio)); ++ ++ percpu_ref_get(&ca->io_ref); ++ closure_bio_submit(bio, &c->sb_write); ++} ++ ++int bch2_write_super(struct bch_fs *c) ++{ ++ struct closure *cl = &c->sb_write; ++ struct bch_dev *ca; ++ struct printbuf err = PRINTBUF; ++ unsigned i, sb = 0, nr_wrote; ++ struct bch_devs_mask sb_written; ++ bool wrote, can_mount_without_written, can_mount_with_written; ++ unsigned degraded_flags = BCH_FORCE_IF_DEGRADED; ++ int ret = 0; ++ ++ trace_and_count(c, write_super, c, _RET_IP_); ++ ++ if (c->opts.very_degraded) ++ degraded_flags |= BCH_FORCE_IF_LOST; ++ ++ lockdep_assert_held(&c->sb_lock); ++ ++ closure_init_stack(cl); ++ memset(&sb_written, 0, sizeof(sb_written)); ++ ++ /* Make sure we're using the new magic numbers: */ ++ c->disk_sb.sb->magic = BCHFS_MAGIC; ++ c->disk_sb.sb->layout.magic = BCHFS_MAGIC; ++ ++ le64_add_cpu(&c->disk_sb.sb->seq, 1); ++ ++ if (test_bit(BCH_FS_ERROR, &c->flags)) ++ SET_BCH_SB_HAS_ERRORS(c->disk_sb.sb, 1); ++ if (test_bit(BCH_FS_TOPOLOGY_ERROR, &c->flags)) ++ SET_BCH_SB_HAS_TOPOLOGY_ERRORS(c->disk_sb.sb, 1); ++ ++ SET_BCH_SB_BIG_ENDIAN(c->disk_sb.sb, CPU_BIG_ENDIAN); ++ ++ bch2_sb_counters_from_cpu(c); ++ bch_members_cpy_v2_v1(&c->disk_sb); ++ ++ for_each_online_member(ca, c, i) ++ bch2_sb_from_fs(c, ca); ++ ++ for_each_online_member(ca, c, i) { ++ printbuf_reset(&err); ++ ++ ret = bch2_sb_validate(&ca->disk_sb, &err, WRITE); ++ if (ret) { ++ bch2_fs_inconsistent(c, "sb invalid before write: %s", err.buf); ++ percpu_ref_put(&ca->io_ref); ++ goto out; ++ } ++ } ++ ++ if (c->opts.nochanges) ++ goto out; ++ ++ /* ++ * Defer writing the superblock until filesystem initialization is ++ * complete - don't write out a partly initialized superblock: ++ */ ++ if (!BCH_SB_INITIALIZED(c->disk_sb.sb)) ++ goto out; ++ ++ for_each_online_member(ca, c, i) { ++ __set_bit(ca->dev_idx, sb_written.d); ++ ca->sb_write_error = 0; ++ } ++ ++ for_each_online_member(ca, c, i) ++ read_back_super(c, ca); ++ closure_sync(cl); ++ ++ for_each_online_member(ca, c, i) { ++ if (ca->sb_write_error) ++ continue; ++ ++ if (le64_to_cpu(ca->sb_read_scratch->seq) < ca->disk_sb.seq) { ++ bch2_fs_fatal_error(c, ++ "Superblock write was silently dropped! (seq %llu expected %llu)", ++ le64_to_cpu(ca->sb_read_scratch->seq), ++ ca->disk_sb.seq); ++ percpu_ref_put(&ca->io_ref); ++ ret = -BCH_ERR_erofs_sb_err; ++ goto out; ++ } ++ ++ if (le64_to_cpu(ca->sb_read_scratch->seq) > ca->disk_sb.seq) { ++ bch2_fs_fatal_error(c, ++ "Superblock modified by another process (seq %llu expected %llu)", ++ le64_to_cpu(ca->sb_read_scratch->seq), ++ ca->disk_sb.seq); ++ percpu_ref_put(&ca->io_ref); ++ ret = -BCH_ERR_erofs_sb_err; ++ goto out; ++ } ++ } ++ ++ do { ++ wrote = false; ++ for_each_online_member(ca, c, i) ++ if (!ca->sb_write_error && ++ sb < ca->disk_sb.sb->layout.nr_superblocks) { ++ write_one_super(c, ca, sb); ++ wrote = true; ++ } ++ closure_sync(cl); ++ sb++; ++ } while (wrote); ++ ++ for_each_online_member(ca, c, i) { ++ if (ca->sb_write_error) ++ __clear_bit(ca->dev_idx, sb_written.d); ++ else ++ ca->disk_sb.seq = le64_to_cpu(ca->disk_sb.sb->seq); ++ } ++ ++ nr_wrote = dev_mask_nr(&sb_written); ++ ++ can_mount_with_written = ++ bch2_have_enough_devs(c, sb_written, degraded_flags, false); ++ ++ for (i = 0; i < ARRAY_SIZE(sb_written.d); i++) ++ sb_written.d[i] = ~sb_written.d[i]; ++ ++ can_mount_without_written = ++ bch2_have_enough_devs(c, sb_written, degraded_flags, false); ++ ++ /* ++ * If we would be able to mount _without_ the devices we successfully ++ * wrote superblocks to, we weren't able to write to enough devices: ++ * ++ * Exception: if we can mount without the successes because we haven't ++ * written anything (new filesystem), we continue if we'd be able to ++ * mount with the devices we did successfully write to: ++ */ ++ if (bch2_fs_fatal_err_on(!nr_wrote || ++ !can_mount_with_written || ++ (can_mount_without_written && ++ !can_mount_with_written), c, ++ "Unable to write superblock to sufficient devices (from %ps)", ++ (void *) _RET_IP_)) ++ ret = -1; ++out: ++ /* Make new options visible after they're persistent: */ ++ bch2_sb_update(c); ++ printbuf_exit(&err); ++ return ret; ++} ++ ++void __bch2_check_set_feature(struct bch_fs *c, unsigned feat) ++{ ++ mutex_lock(&c->sb_lock); ++ if (!(c->sb.features & (1ULL << feat))) { ++ c->disk_sb.sb->features[0] |= cpu_to_le64(1ULL << feat); ++ ++ bch2_write_super(c); ++ } ++ mutex_unlock(&c->sb_lock); ++} ++ ++/* Downgrade if superblock is at a higher version than currently supported: */ ++void bch2_sb_maybe_downgrade(struct bch_fs *c) ++{ ++ lockdep_assert_held(&c->sb_lock); ++ ++ /* ++ * Downgrade, if superblock is at a higher version than currently ++ * supported: ++ */ ++ if (BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb) > bcachefs_metadata_version_current) ++ SET_BCH_SB_VERSION_UPGRADE_COMPLETE(c->disk_sb.sb, bcachefs_metadata_version_current); ++ if (c->sb.version > bcachefs_metadata_version_current) ++ c->disk_sb.sb->version = cpu_to_le16(bcachefs_metadata_version_current); ++ if (c->sb.version_min > bcachefs_metadata_version_current) ++ c->disk_sb.sb->version_min = cpu_to_le16(bcachefs_metadata_version_current); ++ c->disk_sb.sb->compat[0] &= cpu_to_le64((1ULL << BCH_COMPAT_NR) - 1); ++} ++ ++void bch2_sb_upgrade(struct bch_fs *c, unsigned new_version) ++{ ++ lockdep_assert_held(&c->sb_lock); ++ ++ c->disk_sb.sb->version = cpu_to_le16(new_version); ++ c->disk_sb.sb->features[0] |= cpu_to_le64(BCH_SB_FEATURES_ALL); ++} ++ ++static const struct bch_sb_field_ops *bch2_sb_field_ops[] = { ++#define x(f, nr) \ ++ [BCH_SB_FIELD_##f] = &bch_sb_field_ops_##f, ++ BCH_SB_FIELDS() ++#undef x ++}; ++ ++static const struct bch_sb_field_ops bch2_sb_field_null_ops; ++ ++static const struct bch_sb_field_ops *bch2_sb_field_type_ops(unsigned type) ++{ ++ return likely(type < ARRAY_SIZE(bch2_sb_field_ops)) ++ ? bch2_sb_field_ops[type] ++ : &bch2_sb_field_null_ops; ++} ++ ++static int bch2_sb_field_validate(struct bch_sb *sb, struct bch_sb_field *f, ++ struct printbuf *err) ++{ ++ unsigned type = le32_to_cpu(f->type); ++ struct printbuf field_err = PRINTBUF; ++ const struct bch_sb_field_ops *ops = bch2_sb_field_type_ops(type); ++ int ret; ++ ++ ret = ops->validate ? ops->validate(sb, f, &field_err) : 0; ++ if (ret) { ++ prt_printf(err, "Invalid superblock section %s: %s", ++ bch2_sb_fields[type], field_err.buf); ++ prt_newline(err); ++ bch2_sb_field_to_text(err, sb, f); ++ } ++ ++ printbuf_exit(&field_err); ++ return ret; ++} ++ ++void bch2_sb_field_to_text(struct printbuf *out, struct bch_sb *sb, ++ struct bch_sb_field *f) ++{ ++ unsigned type = le32_to_cpu(f->type); ++ const struct bch_sb_field_ops *ops = bch2_sb_field_type_ops(type); ++ ++ if (!out->nr_tabstops) ++ printbuf_tabstop_push(out, 32); ++ ++ if (type < BCH_SB_FIELD_NR) ++ prt_printf(out, "%s", bch2_sb_fields[type]); ++ else ++ prt_printf(out, "(unknown field %u)", type); ++ ++ prt_printf(out, " (size %zu):", vstruct_bytes(f)); ++ prt_newline(out); ++ ++ if (ops->to_text) { ++ printbuf_indent_add(out, 2); ++ ops->to_text(out, sb, f); ++ printbuf_indent_sub(out, 2); ++ } ++} ++ ++void bch2_sb_layout_to_text(struct printbuf *out, struct bch_sb_layout *l) ++{ ++ unsigned i; ++ ++ prt_printf(out, "Type: %u", l->layout_type); ++ prt_newline(out); ++ ++ prt_str(out, "Superblock max size: "); ++ prt_units_u64(out, 512 << l->sb_max_size_bits); ++ prt_newline(out); ++ ++ prt_printf(out, "Nr superblocks: %u", l->nr_superblocks); ++ prt_newline(out); ++ ++ prt_str(out, "Offsets: "); ++ for (i = 0; i < l->nr_superblocks; i++) { ++ if (i) ++ prt_str(out, ", "); ++ prt_printf(out, "%llu", le64_to_cpu(l->sb_offset[i])); ++ } ++ prt_newline(out); ++} ++ ++void bch2_sb_to_text(struct printbuf *out, struct bch_sb *sb, ++ bool print_layout, unsigned fields) ++{ ++ struct bch_sb_field *f; ++ u64 fields_have = 0; ++ unsigned nr_devices = 0; ++ ++ if (!out->nr_tabstops) ++ printbuf_tabstop_push(out, 44); ++ ++ for (int i = 0; i < sb->nr_devices; i++) ++ nr_devices += bch2_dev_exists(sb, i); ++ ++ prt_printf(out, "External UUID:"); ++ prt_tab(out); ++ pr_uuid(out, sb->user_uuid.b); ++ prt_newline(out); ++ ++ prt_printf(out, "Internal UUID:"); ++ prt_tab(out); ++ pr_uuid(out, sb->uuid.b); ++ prt_newline(out); ++ ++ prt_str(out, "Device index:"); ++ prt_tab(out); ++ prt_printf(out, "%u", sb->dev_idx); ++ prt_newline(out); ++ ++ prt_str(out, "Label:"); ++ prt_tab(out); ++ prt_printf(out, "%.*s", (int) sizeof(sb->label), sb->label); ++ prt_newline(out); ++ ++ prt_str(out, "Version:"); ++ prt_tab(out); ++ bch2_version_to_text(out, le16_to_cpu(sb->version)); ++ prt_newline(out); ++ ++ prt_str(out, "Version upgrade complete:"); ++ prt_tab(out); ++ bch2_version_to_text(out, BCH_SB_VERSION_UPGRADE_COMPLETE(sb)); ++ prt_newline(out); ++ ++ prt_printf(out, "Oldest version on disk:"); ++ prt_tab(out); ++ bch2_version_to_text(out, le16_to_cpu(sb->version_min)); ++ prt_newline(out); ++ ++ prt_printf(out, "Created:"); ++ prt_tab(out); ++ if (sb->time_base_lo) ++ pr_time(out, div_u64(le64_to_cpu(sb->time_base_lo), NSEC_PER_SEC)); ++ else ++ prt_printf(out, "(not set)"); ++ prt_newline(out); ++ ++ prt_printf(out, "Sequence number:"); ++ prt_tab(out); ++ prt_printf(out, "%llu", le64_to_cpu(sb->seq)); ++ prt_newline(out); ++ ++ prt_printf(out, "Superblock size:"); ++ prt_tab(out); ++ prt_printf(out, "%zu", vstruct_bytes(sb)); ++ prt_newline(out); ++ ++ prt_printf(out, "Clean:"); ++ prt_tab(out); ++ prt_printf(out, "%llu", BCH_SB_CLEAN(sb)); ++ prt_newline(out); ++ ++ prt_printf(out, "Devices:"); ++ prt_tab(out); ++ prt_printf(out, "%u", nr_devices); ++ prt_newline(out); ++ ++ prt_printf(out, "Sections:"); ++ vstruct_for_each(sb, f) ++ fields_have |= 1 << le32_to_cpu(f->type); ++ prt_tab(out); ++ prt_bitflags(out, bch2_sb_fields, fields_have); ++ prt_newline(out); ++ ++ prt_printf(out, "Features:"); ++ prt_tab(out); ++ prt_bitflags(out, bch2_sb_features, le64_to_cpu(sb->features[0])); ++ prt_newline(out); ++ ++ prt_printf(out, "Compat features:"); ++ prt_tab(out); ++ prt_bitflags(out, bch2_sb_compat, le64_to_cpu(sb->compat[0])); ++ prt_newline(out); ++ ++ prt_newline(out); ++ prt_printf(out, "Options:"); ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ { ++ enum bch_opt_id id; ++ ++ for (id = 0; id < bch2_opts_nr; id++) { ++ const struct bch_option *opt = bch2_opt_table + id; ++ ++ if (opt->get_sb != BCH2_NO_SB_OPT) { ++ u64 v = bch2_opt_from_sb(sb, id); ++ ++ prt_printf(out, "%s:", opt->attr.name); ++ prt_tab(out); ++ bch2_opt_to_text(out, NULL, sb, opt, v, ++ OPT_HUMAN_READABLE|OPT_SHOW_FULL_LIST); ++ prt_newline(out); ++ } ++ } ++ } ++ ++ printbuf_indent_sub(out, 2); ++ ++ if (print_layout) { ++ prt_newline(out); ++ prt_printf(out, "layout:"); ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ bch2_sb_layout_to_text(out, &sb->layout); ++ printbuf_indent_sub(out, 2); ++ } ++ ++ vstruct_for_each(sb, f) ++ if (fields & (1 << le32_to_cpu(f->type))) { ++ prt_newline(out); ++ bch2_sb_field_to_text(out, sb, f); ++ } ++} +diff --git a/fs/bcachefs/super-io.h b/fs/bcachefs/super-io.h +new file mode 100644 +index 000000000000..b0d8584f475f +--- /dev/null ++++ b/fs/bcachefs/super-io.h +@@ -0,0 +1,124 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SUPER_IO_H ++#define _BCACHEFS_SUPER_IO_H ++ ++#include "extents.h" ++#include "eytzinger.h" ++#include "super_types.h" ++#include "super.h" ++#include "sb-members.h" ++ ++#include ++ ++static inline bool bch2_version_compatible(u16 version) ++{ ++ return BCH_VERSION_MAJOR(version) <= BCH_VERSION_MAJOR(bcachefs_metadata_version_current) && ++ version >= bcachefs_metadata_version_min; ++} ++ ++void bch2_version_to_text(struct printbuf *, unsigned); ++unsigned bch2_latest_compatible_version(unsigned); ++ ++u64 bch2_upgrade_recovery_passes(struct bch_fs *c, ++ unsigned, ++ unsigned); ++ ++#define field_to_type(_f, _name) \ ++ container_of_or_null(_f, struct bch_sb_field_##_name, field) ++ ++struct bch_sb_field *bch2_sb_field_get_id(struct bch_sb *, enum bch_sb_field_type); ++#define bch2_sb_field_get(_sb, _name) \ ++ field_to_type(bch2_sb_field_get_id(_sb, BCH_SB_FIELD_##_name), _name) ++ ++struct bch_sb_field *bch2_sb_field_resize_id(struct bch_sb_handle *, ++ enum bch_sb_field_type, unsigned); ++#define bch2_sb_field_resize(_sb, _name, _u64s) \ ++ field_to_type(bch2_sb_field_resize_id(_sb, BCH_SB_FIELD_##_name, _u64s), _name) ++ ++void bch2_sb_field_delete(struct bch_sb_handle *, enum bch_sb_field_type); ++ ++extern const char * const bch2_sb_fields[]; ++ ++struct bch_sb_field_ops { ++ int (*validate)(struct bch_sb *, struct bch_sb_field *, struct printbuf *); ++ void (*to_text)(struct printbuf *, struct bch_sb *, struct bch_sb_field *); ++}; ++ ++static inline __le64 bch2_sb_magic(struct bch_fs *c) ++{ ++ __le64 ret; ++ ++ memcpy(&ret, &c->sb.uuid, sizeof(ret)); ++ return ret; ++} ++ ++static inline __u64 jset_magic(struct bch_fs *c) ++{ ++ return __le64_to_cpu(bch2_sb_magic(c) ^ JSET_MAGIC); ++} ++ ++static inline __u64 bset_magic(struct bch_fs *c) ++{ ++ return __le64_to_cpu(bch2_sb_magic(c) ^ BSET_MAGIC); ++} ++ ++int bch2_sb_to_fs(struct bch_fs *, struct bch_sb *); ++int bch2_sb_from_fs(struct bch_fs *, struct bch_dev *); ++ ++void bch2_free_super(struct bch_sb_handle *); ++int bch2_sb_realloc(struct bch_sb_handle *, unsigned); ++ ++int bch2_read_super(const char *, struct bch_opts *, struct bch_sb_handle *); ++int bch2_write_super(struct bch_fs *); ++void __bch2_check_set_feature(struct bch_fs *, unsigned); ++ ++static inline void bch2_check_set_feature(struct bch_fs *c, unsigned feat) ++{ ++ if (!(c->sb.features & (1ULL << feat))) ++ __bch2_check_set_feature(c, feat); ++} ++ ++/* BCH_SB_FIELD_members_v1: */ ++ ++static inline bool bch2_member_exists(struct bch_member *m) ++{ ++ return !bch2_is_zero(&m->uuid, sizeof(m->uuid)); ++} ++ ++static inline bool bch2_dev_exists(struct bch_sb *sb, ++ unsigned dev) ++{ ++ if (dev < sb->nr_devices) { ++ struct bch_member m = bch2_sb_member_get(sb, dev); ++ return bch2_member_exists(&m); ++ } ++ return false; ++} ++ ++static inline struct bch_member_cpu bch2_mi_to_cpu(struct bch_member *mi) ++{ ++ return (struct bch_member_cpu) { ++ .nbuckets = le64_to_cpu(mi->nbuckets), ++ .first_bucket = le16_to_cpu(mi->first_bucket), ++ .bucket_size = le16_to_cpu(mi->bucket_size), ++ .group = BCH_MEMBER_GROUP(mi), ++ .state = BCH_MEMBER_STATE(mi), ++ .discard = BCH_MEMBER_DISCARD(mi), ++ .data_allowed = BCH_MEMBER_DATA_ALLOWED(mi), ++ .durability = BCH_MEMBER_DURABILITY(mi) ++ ? BCH_MEMBER_DURABILITY(mi) - 1 ++ : 1, ++ .freespace_initialized = BCH_MEMBER_FREESPACE_INITIALIZED(mi), ++ .valid = bch2_member_exists(mi), ++ }; ++} ++ ++void bch2_sb_maybe_downgrade(struct bch_fs *); ++void bch2_sb_upgrade(struct bch_fs *, unsigned); ++ ++void bch2_sb_field_to_text(struct printbuf *, struct bch_sb *, ++ struct bch_sb_field *); ++void bch2_sb_layout_to_text(struct printbuf *, struct bch_sb_layout *); ++void bch2_sb_to_text(struct printbuf *, struct bch_sb *, bool, unsigned); ++ ++#endif /* _BCACHEFS_SUPER_IO_H */ +diff --git a/fs/bcachefs/super.c b/fs/bcachefs/super.c +new file mode 100644 +index 000000000000..0e85c22672be +--- /dev/null ++++ b/fs/bcachefs/super.c +@@ -0,0 +1,2022 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * bcachefs setup/teardown code, and some metadata io - read a superblock and ++ * figure out what to do with it. ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "bkey_sort.h" ++#include "btree_cache.h" ++#include "btree_gc.h" ++#include "btree_journal_iter.h" ++#include "btree_key_cache.h" ++#include "btree_update_interior.h" ++#include "btree_io.h" ++#include "btree_write_buffer.h" ++#include "buckets_waiting_for_journal.h" ++#include "chardev.h" ++#include "checksum.h" ++#include "clock.h" ++#include "compress.h" ++#include "counters.h" ++#include "debug.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "errcode.h" ++#include "error.h" ++#include "fs.h" ++#include "fs-io.h" ++#include "fs-io-buffered.h" ++#include "fs-io-direct.h" ++#include "fsck.h" ++#include "inode.h" ++#include "io_read.h" ++#include "io_write.h" ++#include "journal.h" ++#include "journal_reclaim.h" ++#include "journal_seq_blacklist.h" ++#include "move.h" ++#include "migrate.h" ++#include "movinggc.h" ++#include "nocow_locking.h" ++#include "quota.h" ++#include "rebalance.h" ++#include "recovery.h" ++#include "replicas.h" ++#include "sb-clean.h" ++#include "sb-members.h" ++#include "snapshot.h" ++#include "subvolume.h" ++#include "super.h" ++#include "super-io.h" ++#include "sysfs.h" ++#include "trace.h" ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++MODULE_LICENSE("GPL"); ++MODULE_AUTHOR("Kent Overstreet "); ++MODULE_DESCRIPTION("bcachefs filesystem"); ++ ++#define KTYPE(type) \ ++static const struct attribute_group type ## _group = { \ ++ .attrs = type ## _files \ ++}; \ ++ \ ++static const struct attribute_group *type ## _groups[] = { \ ++ &type ## _group, \ ++ NULL \ ++}; \ ++ \ ++static const struct kobj_type type ## _ktype = { \ ++ .release = type ## _release, \ ++ .sysfs_ops = &type ## _sysfs_ops, \ ++ .default_groups = type ## _groups \ ++} ++ ++static void bch2_fs_release(struct kobject *); ++static void bch2_dev_release(struct kobject *); ++static void bch2_fs_counters_release(struct kobject *k) ++{ ++} ++ ++static void bch2_fs_internal_release(struct kobject *k) ++{ ++} ++ ++static void bch2_fs_opts_dir_release(struct kobject *k) ++{ ++} ++ ++static void bch2_fs_time_stats_release(struct kobject *k) ++{ ++} ++ ++KTYPE(bch2_fs); ++KTYPE(bch2_fs_counters); ++KTYPE(bch2_fs_internal); ++KTYPE(bch2_fs_opts_dir); ++KTYPE(bch2_fs_time_stats); ++KTYPE(bch2_dev); ++ ++static struct kset *bcachefs_kset; ++static LIST_HEAD(bch_fs_list); ++static DEFINE_MUTEX(bch_fs_list_lock); ++ ++DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait); ++ ++static void bch2_dev_free(struct bch_dev *); ++static int bch2_dev_alloc(struct bch_fs *, unsigned); ++static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *); ++static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *); ++ ++struct bch_fs *bch2_dev_to_fs(dev_t dev) ++{ ++ struct bch_fs *c; ++ struct bch_dev *ca; ++ unsigned i; ++ ++ mutex_lock(&bch_fs_list_lock); ++ rcu_read_lock(); ++ ++ list_for_each_entry(c, &bch_fs_list, list) ++ for_each_member_device_rcu(ca, c, i, NULL) ++ if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) { ++ closure_get(&c->cl); ++ goto found; ++ } ++ c = NULL; ++found: ++ rcu_read_unlock(); ++ mutex_unlock(&bch_fs_list_lock); ++ ++ return c; ++} ++ ++static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid) ++{ ++ struct bch_fs *c; ++ ++ lockdep_assert_held(&bch_fs_list_lock); ++ ++ list_for_each_entry(c, &bch_fs_list, list) ++ if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid))) ++ return c; ++ ++ return NULL; ++} ++ ++struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid) ++{ ++ struct bch_fs *c; ++ ++ mutex_lock(&bch_fs_list_lock); ++ c = __bch2_uuid_to_fs(uuid); ++ if (c) ++ closure_get(&c->cl); ++ mutex_unlock(&bch_fs_list_lock); ++ ++ return c; ++} ++ ++static void bch2_dev_usage_journal_reserve(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i, nr = 0, u64s = ++ ((sizeof(struct jset_entry_dev_usage) + ++ sizeof(struct jset_entry_dev_usage_type) * BCH_DATA_NR)) / ++ sizeof(u64); ++ ++ rcu_read_lock(); ++ for_each_member_device_rcu(ca, c, i, NULL) ++ nr++; ++ rcu_read_unlock(); ++ ++ bch2_journal_entry_res_resize(&c->journal, ++ &c->dev_usage_journal_res, u64s * nr); ++} ++ ++/* Filesystem RO/RW: */ ++ ++/* ++ * For startup/shutdown of RW stuff, the dependencies are: ++ * ++ * - foreground writes depend on copygc and rebalance (to free up space) ++ * ++ * - copygc and rebalance depend on mark and sweep gc (they actually probably ++ * don't because they either reserve ahead of time or don't block if ++ * allocations fail, but allocations can require mark and sweep gc to run ++ * because of generation number wraparound) ++ * ++ * - all of the above depends on the allocator threads ++ * ++ * - allocator depends on the journal (when it rewrites prios and gens) ++ */ ++ ++static void __bch2_fs_read_only(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i, clean_passes = 0; ++ u64 seq = 0; ++ ++ bch2_fs_ec_stop(c); ++ bch2_open_buckets_stop(c, NULL, true); ++ bch2_rebalance_stop(c); ++ bch2_copygc_stop(c); ++ bch2_gc_thread_stop(c); ++ bch2_fs_ec_flush(c); ++ ++ bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu", ++ journal_cur_seq(&c->journal)); ++ ++ do { ++ clean_passes++; ++ ++ if (bch2_btree_interior_updates_flush(c) || ++ bch2_journal_flush_all_pins(&c->journal) || ++ bch2_btree_flush_all_writes(c) || ++ seq != atomic64_read(&c->journal.seq)) { ++ seq = atomic64_read(&c->journal.seq); ++ clean_passes = 0; ++ } ++ } while (clean_passes < 2); ++ ++ bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu", ++ journal_cur_seq(&c->journal)); ++ ++ if (test_bit(JOURNAL_REPLAY_DONE, &c->journal.flags) && ++ !test_bit(BCH_FS_EMERGENCY_RO, &c->flags)) ++ set_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags); ++ bch2_fs_journal_stop(&c->journal); ++ ++ /* ++ * After stopping journal: ++ */ ++ for_each_member_device(ca, c, i) ++ bch2_dev_allocator_remove(c, ca); ++} ++ ++#ifndef BCH_WRITE_REF_DEBUG ++static void bch2_writes_disabled(struct percpu_ref *writes) ++{ ++ struct bch_fs *c = container_of(writes, struct bch_fs, writes); ++ ++ set_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); ++ wake_up(&bch2_read_only_wait); ++} ++#endif ++ ++void bch2_fs_read_only(struct bch_fs *c) ++{ ++ if (!test_bit(BCH_FS_RW, &c->flags)) { ++ bch2_journal_reclaim_stop(&c->journal); ++ return; ++ } ++ ++ BUG_ON(test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); ++ ++ /* ++ * Block new foreground-end write operations from starting - any new ++ * writes will return -EROFS: ++ */ ++ set_bit(BCH_FS_GOING_RO, &c->flags); ++#ifndef BCH_WRITE_REF_DEBUG ++ percpu_ref_kill(&c->writes); ++#else ++ for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) ++ bch2_write_ref_put(c, i); ++#endif ++ ++ /* ++ * If we're not doing an emergency shutdown, we want to wait on ++ * outstanding writes to complete so they don't see spurious errors due ++ * to shutting down the allocator: ++ * ++ * If we are doing an emergency shutdown outstanding writes may ++ * hang until we shutdown the allocator so we don't want to wait ++ * on outstanding writes before shutting everything down - but ++ * we do need to wait on them before returning and signalling ++ * that going RO is complete: ++ */ ++ wait_event(bch2_read_only_wait, ++ test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags) || ++ test_bit(BCH_FS_EMERGENCY_RO, &c->flags)); ++ ++ __bch2_fs_read_only(c); ++ ++ wait_event(bch2_read_only_wait, ++ test_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags)); ++ ++ clear_bit(BCH_FS_WRITE_DISABLE_COMPLETE, &c->flags); ++ clear_bit(BCH_FS_GOING_RO, &c->flags); ++ ++ if (!bch2_journal_error(&c->journal) && ++ !test_bit(BCH_FS_ERROR, &c->flags) && ++ !test_bit(BCH_FS_EMERGENCY_RO, &c->flags) && ++ test_bit(BCH_FS_STARTED, &c->flags) && ++ test_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags) && ++ !c->opts.norecovery) { ++ BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal)); ++ BUG_ON(atomic_read(&c->btree_cache.dirty)); ++ BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty)); ++ BUG_ON(c->btree_write_buffer.state.nr); ++ ++ bch_verbose(c, "marking filesystem clean"); ++ bch2_fs_mark_clean(c); ++ } ++ ++ clear_bit(BCH_FS_RW, &c->flags); ++} ++ ++static void bch2_fs_read_only_work(struct work_struct *work) ++{ ++ struct bch_fs *c = ++ container_of(work, struct bch_fs, read_only_work); ++ ++ down_write(&c->state_lock); ++ bch2_fs_read_only(c); ++ up_write(&c->state_lock); ++} ++ ++static void bch2_fs_read_only_async(struct bch_fs *c) ++{ ++ queue_work(system_long_wq, &c->read_only_work); ++} ++ ++bool bch2_fs_emergency_read_only(struct bch_fs *c) ++{ ++ bool ret = !test_and_set_bit(BCH_FS_EMERGENCY_RO, &c->flags); ++ ++ bch2_journal_halt(&c->journal); ++ bch2_fs_read_only_async(c); ++ ++ wake_up(&bch2_read_only_wait); ++ return ret; ++} ++ ++static int bch2_fs_read_write_late(struct bch_fs *c) ++{ ++ int ret; ++ ++ /* ++ * Data move operations can't run until after check_snapshots has ++ * completed, and bch2_snapshot_is_ancestor() is available. ++ * ++ * Ideally we'd start copygc/rebalance earlier instead of waiting for ++ * all of recovery/fsck to complete: ++ */ ++ ret = bch2_copygc_start(c); ++ if (ret) { ++ bch_err(c, "error starting copygc thread"); ++ return ret; ++ } ++ ++ ret = bch2_rebalance_start(c); ++ if (ret) { ++ bch_err(c, "error starting rebalance thread"); ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static int __bch2_fs_read_write(struct bch_fs *c, bool early) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ int ret; ++ ++ if (test_bit(BCH_FS_INITIAL_GC_UNFIXED, &c->flags)) { ++ bch_err(c, "cannot go rw, unfixed btree errors"); ++ return -BCH_ERR_erofs_unfixed_errors; ++ } ++ ++ if (test_bit(BCH_FS_RW, &c->flags)) ++ return 0; ++ ++ if (c->opts.norecovery) ++ return -BCH_ERR_erofs_norecovery; ++ ++ /* ++ * nochanges is used for fsck -n mode - we have to allow going rw ++ * during recovery for that to work: ++ */ ++ if (c->opts.nochanges && (!early || c->opts.read_only)) ++ return -BCH_ERR_erofs_nochanges; ++ ++ bch_info(c, "going read-write"); ++ ++ ret = bch2_members_v2_init(c); ++ if (ret) ++ goto err; ++ ++ ret = bch2_fs_mark_dirty(c); ++ if (ret) ++ goto err; ++ ++ clear_bit(BCH_FS_CLEAN_SHUTDOWN, &c->flags); ++ ++ /* ++ * First journal write must be a flush write: after a clean shutdown we ++ * don't read the journal, so the first journal write may end up ++ * overwriting whatever was there previously, and there must always be ++ * at least one non-flush write in the journal or recovery will fail: ++ */ ++ set_bit(JOURNAL_NEED_FLUSH_WRITE, &c->journal.flags); ++ ++ for_each_rw_member(ca, c, i) ++ bch2_dev_allocator_add(c, ca); ++ bch2_recalc_capacity(c); ++ ++ ret = bch2_gc_thread_start(c); ++ if (ret) { ++ bch_err(c, "error starting gc thread"); ++ return ret; ++ } ++ ++ ret = bch2_journal_reclaim_start(&c->journal); ++ if (ret) ++ goto err; ++ ++ if (!early) { ++ ret = bch2_fs_read_write_late(c); ++ if (ret) ++ goto err; ++ } ++ ++#ifndef BCH_WRITE_REF_DEBUG ++ percpu_ref_reinit(&c->writes); ++#else ++ for (i = 0; i < BCH_WRITE_REF_NR; i++) { ++ BUG_ON(atomic_long_read(&c->writes[i])); ++ atomic_long_inc(&c->writes[i]); ++ } ++#endif ++ set_bit(BCH_FS_RW, &c->flags); ++ set_bit(BCH_FS_WAS_RW, &c->flags); ++ ++ bch2_do_discards(c); ++ bch2_do_invalidates(c); ++ bch2_do_stripe_deletes(c); ++ bch2_do_pending_node_rewrites(c); ++ return 0; ++err: ++ __bch2_fs_read_only(c); ++ return ret; ++} ++ ++int bch2_fs_read_write(struct bch_fs *c) ++{ ++ return __bch2_fs_read_write(c, false); ++} ++ ++int bch2_fs_read_write_early(struct bch_fs *c) ++{ ++ lockdep_assert_held(&c->state_lock); ++ ++ return __bch2_fs_read_write(c, true); ++} ++ ++/* Filesystem startup/shutdown: */ ++ ++static void __bch2_fs_free(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ for (i = 0; i < BCH_TIME_STAT_NR; i++) ++ bch2_time_stats_exit(&c->times[i]); ++ ++ bch2_free_pending_node_rewrites(c); ++ bch2_fs_counters_exit(c); ++ bch2_fs_snapshots_exit(c); ++ bch2_fs_quota_exit(c); ++ bch2_fs_fs_io_direct_exit(c); ++ bch2_fs_fs_io_buffered_exit(c); ++ bch2_fs_fsio_exit(c); ++ bch2_fs_ec_exit(c); ++ bch2_fs_encryption_exit(c); ++ bch2_fs_nocow_locking_exit(c); ++ bch2_fs_io_write_exit(c); ++ bch2_fs_io_read_exit(c); ++ bch2_fs_buckets_waiting_for_journal_exit(c); ++ bch2_fs_btree_interior_update_exit(c); ++ bch2_fs_btree_iter_exit(c); ++ bch2_fs_btree_key_cache_exit(&c->btree_key_cache); ++ bch2_fs_btree_cache_exit(c); ++ bch2_fs_replicas_exit(c); ++ bch2_fs_journal_exit(&c->journal); ++ bch2_io_clock_exit(&c->io_clock[WRITE]); ++ bch2_io_clock_exit(&c->io_clock[READ]); ++ bch2_fs_compress_exit(c); ++ bch2_journal_keys_free(&c->journal_keys); ++ bch2_journal_entries_free(c); ++ bch2_fs_btree_write_buffer_exit(c); ++ percpu_free_rwsem(&c->mark_lock); ++ free_percpu(c->online_reserved); ++ ++ darray_exit(&c->btree_roots_extra); ++ free_percpu(c->pcpu); ++ mempool_exit(&c->large_bkey_pool); ++ mempool_exit(&c->btree_bounce_pool); ++ bioset_exit(&c->btree_bio); ++ mempool_exit(&c->fill_iter); ++#ifndef BCH_WRITE_REF_DEBUG ++ percpu_ref_exit(&c->writes); ++#endif ++ kfree(rcu_dereference_protected(c->disk_groups, 1)); ++ kfree(c->journal_seq_blacklist_table); ++ kfree(c->unused_inode_hints); ++ ++ if (c->write_ref_wq) ++ destroy_workqueue(c->write_ref_wq); ++ if (c->io_complete_wq) ++ destroy_workqueue(c->io_complete_wq); ++ if (c->copygc_wq) ++ destroy_workqueue(c->copygc_wq); ++ if (c->btree_io_complete_wq) ++ destroy_workqueue(c->btree_io_complete_wq); ++ if (c->btree_update_wq) ++ destroy_workqueue(c->btree_update_wq); ++ ++ bch2_free_super(&c->disk_sb); ++ kvpfree(c, sizeof(*c)); ++ module_put(THIS_MODULE); ++} ++ ++static void bch2_fs_release(struct kobject *kobj) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); ++ ++ __bch2_fs_free(c); ++} ++ ++void __bch2_fs_stop(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ bch_verbose(c, "shutting down"); ++ ++ set_bit(BCH_FS_STOPPING, &c->flags); ++ ++ cancel_work_sync(&c->journal_seq_blacklist_gc_work); ++ ++ down_write(&c->state_lock); ++ bch2_fs_read_only(c); ++ up_write(&c->state_lock); ++ ++ for_each_member_device(ca, c, i) ++ if (ca->kobj.state_in_sysfs && ++ ca->disk_sb.bdev) ++ sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); ++ ++ if (c->kobj.state_in_sysfs) ++ kobject_del(&c->kobj); ++ ++ bch2_fs_debug_exit(c); ++ bch2_fs_chardev_exit(c); ++ ++ kobject_put(&c->counters_kobj); ++ kobject_put(&c->time_stats); ++ kobject_put(&c->opts_dir); ++ kobject_put(&c->internal); ++ ++ /* btree prefetch might have kicked off reads in the background: */ ++ bch2_btree_flush_all_reads(c); ++ ++ for_each_member_device(ca, c, i) ++ cancel_work_sync(&ca->io_error_work); ++ ++ cancel_work_sync(&c->read_only_work); ++} ++ ++void bch2_fs_free(struct bch_fs *c) ++{ ++ unsigned i; ++ ++ mutex_lock(&bch_fs_list_lock); ++ list_del(&c->list); ++ mutex_unlock(&bch_fs_list_lock); ++ ++ closure_sync(&c->cl); ++ closure_debug_destroy(&c->cl); ++ ++ for (i = 0; i < c->sb.nr_devices; i++) { ++ struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true); ++ ++ if (ca) { ++ bch2_free_super(&ca->disk_sb); ++ bch2_dev_free(ca); ++ } ++ } ++ ++ bch_verbose(c, "shutdown complete"); ++ ++ kobject_put(&c->kobj); ++} ++ ++void bch2_fs_stop(struct bch_fs *c) ++{ ++ __bch2_fs_stop(c); ++ bch2_fs_free(c); ++} ++ ++static int bch2_fs_online(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ int ret = 0; ++ ++ lockdep_assert_held(&bch_fs_list_lock); ++ ++ if (__bch2_uuid_to_fs(c->sb.uuid)) { ++ bch_err(c, "filesystem UUID already open"); ++ return -EINVAL; ++ } ++ ++ ret = bch2_fs_chardev_init(c); ++ if (ret) { ++ bch_err(c, "error creating character device"); ++ return ret; ++ } ++ ++ bch2_fs_debug_init(c); ++ ++ ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?: ++ kobject_add(&c->internal, &c->kobj, "internal") ?: ++ kobject_add(&c->opts_dir, &c->kobj, "options") ?: ++ kobject_add(&c->time_stats, &c->kobj, "time_stats") ?: ++ kobject_add(&c->counters_kobj, &c->kobj, "counters") ?: ++ bch2_opts_create_sysfs_files(&c->opts_dir); ++ if (ret) { ++ bch_err(c, "error creating sysfs objects"); ++ return ret; ++ } ++ ++ down_write(&c->state_lock); ++ ++ for_each_member_device(ca, c, i) { ++ ret = bch2_dev_sysfs_online(c, ca); ++ if (ret) { ++ bch_err(c, "error creating sysfs objects"); ++ percpu_ref_put(&ca->ref); ++ goto err; ++ } ++ } ++ ++ BUG_ON(!list_empty(&c->list)); ++ list_add(&c->list, &bch_fs_list); ++err: ++ up_write(&c->state_lock); ++ return ret; ++} ++ ++static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts) ++{ ++ struct bch_fs *c; ++ struct printbuf name = PRINTBUF; ++ unsigned i, iter_size; ++ int ret = 0; ++ ++ c = kvpmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO); ++ if (!c) { ++ c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc); ++ goto out; ++ } ++ ++ __module_get(THIS_MODULE); ++ ++ closure_init(&c->cl, NULL); ++ ++ c->kobj.kset = bcachefs_kset; ++ kobject_init(&c->kobj, &bch2_fs_ktype); ++ kobject_init(&c->internal, &bch2_fs_internal_ktype); ++ kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype); ++ kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype); ++ kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype); ++ ++ c->minor = -1; ++ c->disk_sb.fs_sb = true; ++ ++ init_rwsem(&c->state_lock); ++ mutex_init(&c->sb_lock); ++ mutex_init(&c->replicas_gc_lock); ++ mutex_init(&c->btree_root_lock); ++ INIT_WORK(&c->read_only_work, bch2_fs_read_only_work); ++ ++ init_rwsem(&c->gc_lock); ++ mutex_init(&c->gc_gens_lock); ++ ++ for (i = 0; i < BCH_TIME_STAT_NR; i++) ++ bch2_time_stats_init(&c->times[i]); ++ ++ bch2_fs_copygc_init(c); ++ bch2_fs_btree_key_cache_init_early(&c->btree_key_cache); ++ bch2_fs_btree_interior_update_init_early(c); ++ bch2_fs_allocator_background_init(c); ++ bch2_fs_allocator_foreground_init(c); ++ bch2_fs_rebalance_init(c); ++ bch2_fs_quota_init(c); ++ bch2_fs_ec_init_early(c); ++ bch2_fs_move_init(c); ++ ++ INIT_LIST_HEAD(&c->list); ++ ++ mutex_init(&c->usage_scratch_lock); ++ ++ mutex_init(&c->bio_bounce_pages_lock); ++ mutex_init(&c->snapshot_table_lock); ++ init_rwsem(&c->snapshot_create_lock); ++ ++ spin_lock_init(&c->btree_write_error_lock); ++ ++ INIT_WORK(&c->journal_seq_blacklist_gc_work, ++ bch2_blacklist_entries_gc); ++ ++ INIT_LIST_HEAD(&c->journal_iters); ++ ++ INIT_LIST_HEAD(&c->fsck_errors); ++ mutex_init(&c->fsck_error_lock); ++ ++ seqcount_init(&c->gc_pos_lock); ++ ++ seqcount_init(&c->usage_lock); ++ ++ sema_init(&c->io_in_flight, 128); ++ ++ INIT_LIST_HEAD(&c->vfs_inodes_list); ++ mutex_init(&c->vfs_inodes_lock); ++ ++ c->copy_gc_enabled = 1; ++ c->rebalance.enabled = 1; ++ c->promote_whole_extents = true; ++ ++ c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write]; ++ c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write]; ++ c->journal.blocked_time = &c->times[BCH_TIME_blocked_journal]; ++ c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq]; ++ ++ bch2_fs_btree_cache_init_early(&c->btree_cache); ++ ++ mutex_init(&c->sectors_available_lock); ++ ++ ret = percpu_init_rwsem(&c->mark_lock); ++ if (ret) ++ goto err; ++ ++ mutex_lock(&c->sb_lock); ++ ret = bch2_sb_to_fs(c, sb); ++ mutex_unlock(&c->sb_lock); ++ ++ if (ret) ++ goto err; ++ ++ pr_uuid(&name, c->sb.user_uuid.b); ++ strscpy(c->name, name.buf, sizeof(c->name)); ++ printbuf_exit(&name); ++ ++ ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0; ++ if (ret) ++ goto err; ++ ++ /* Compat: */ ++ if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && ++ !BCH_SB_JOURNAL_FLUSH_DELAY(sb)) ++ SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000); ++ ++ if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 && ++ !BCH_SB_JOURNAL_RECLAIM_DELAY(sb)) ++ SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100); ++ ++ c->opts = bch2_opts_default; ++ ret = bch2_opts_from_sb(&c->opts, sb); ++ if (ret) ++ goto err; ++ ++ bch2_opts_apply(&c->opts, opts); ++ ++ c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc; ++ if (c->opts.inodes_use_key_cache) ++ c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes; ++ c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops; ++ ++ c->block_bits = ilog2(block_sectors(c)); ++ c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c); ++ ++ if (bch2_fs_init_fault("fs_alloc")) { ++ bch_err(c, "fs_alloc fault injected"); ++ ret = -EFAULT; ++ goto err; ++ } ++ ++ iter_size = sizeof(struct sort_iter) + ++ (btree_blocks(c) + 1) * 2 * ++ sizeof(struct sort_iter_set); ++ ++ c->inode_shard_bits = ilog2(roundup_pow_of_two(num_possible_cpus())); ++ ++ if (!(c->btree_update_wq = alloc_workqueue("bcachefs", ++ WQ_FREEZABLE|WQ_UNBOUND|WQ_MEM_RECLAIM, 512)) || ++ !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io", ++ WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) || ++ !(c->copygc_wq = alloc_workqueue("bcachefs_copygc", ++ WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) || ++ !(c->io_complete_wq = alloc_workqueue("bcachefs_io", ++ WQ_FREEZABLE|WQ_HIGHPRI|WQ_MEM_RECLAIM, 1)) || ++ !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref", ++ WQ_FREEZABLE, 0)) || ++#ifndef BCH_WRITE_REF_DEBUG ++ percpu_ref_init(&c->writes, bch2_writes_disabled, ++ PERCPU_REF_INIT_DEAD, GFP_KERNEL) || ++#endif ++ mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) || ++ bioset_init(&c->btree_bio, 1, ++ max(offsetof(struct btree_read_bio, bio), ++ offsetof(struct btree_write_bio, wbio.bio)), ++ BIOSET_NEED_BVECS) || ++ !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) || ++ !(c->online_reserved = alloc_percpu(u64)) || ++ mempool_init_kvpmalloc_pool(&c->btree_bounce_pool, 1, ++ btree_bytes(c)) || ++ mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048) || ++ !(c->unused_inode_hints = kcalloc(1U << c->inode_shard_bits, ++ sizeof(u64), GFP_KERNEL))) { ++ ret = -BCH_ERR_ENOMEM_fs_other_alloc; ++ goto err; ++ } ++ ++ ret = bch2_fs_counters_init(c) ?: ++ bch2_io_clock_init(&c->io_clock[READ]) ?: ++ bch2_io_clock_init(&c->io_clock[WRITE]) ?: ++ bch2_fs_journal_init(&c->journal) ?: ++ bch2_fs_replicas_init(c) ?: ++ bch2_fs_btree_cache_init(c) ?: ++ bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?: ++ bch2_fs_btree_iter_init(c) ?: ++ bch2_fs_btree_interior_update_init(c) ?: ++ bch2_fs_buckets_waiting_for_journal_init(c) ?: ++ bch2_fs_btree_write_buffer_init(c) ?: ++ bch2_fs_subvolumes_init(c) ?: ++ bch2_fs_io_read_init(c) ?: ++ bch2_fs_io_write_init(c) ?: ++ bch2_fs_nocow_locking_init(c) ?: ++ bch2_fs_encryption_init(c) ?: ++ bch2_fs_compress_init(c) ?: ++ bch2_fs_ec_init(c) ?: ++ bch2_fs_fsio_init(c) ?: ++ bch2_fs_fs_io_buffered_init(c) ?: ++ bch2_fs_fs_io_direct_init(c); ++ if (ret) ++ goto err; ++ ++ for (i = 0; i < c->sb.nr_devices; i++) ++ if (bch2_dev_exists(c->disk_sb.sb, i) && ++ bch2_dev_alloc(c, i)) { ++ ret = -EEXIST; ++ goto err; ++ } ++ ++ bch2_journal_entry_res_resize(&c->journal, ++ &c->btree_root_journal_res, ++ BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX)); ++ bch2_dev_usage_journal_reserve(c); ++ bch2_journal_entry_res_resize(&c->journal, ++ &c->clock_journal_res, ++ (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2); ++ ++ mutex_lock(&bch_fs_list_lock); ++ ret = bch2_fs_online(c); ++ mutex_unlock(&bch_fs_list_lock); ++ ++ if (ret) ++ goto err; ++out: ++ return c; ++err: ++ bch2_fs_free(c); ++ c = ERR_PTR(ret); ++ goto out; ++} ++ ++noinline_for_stack ++static void print_mount_opts(struct bch_fs *c) ++{ ++ enum bch_opt_id i; ++ struct printbuf p = PRINTBUF; ++ bool first = true; ++ ++ prt_str(&p, "mounting version "); ++ bch2_version_to_text(&p, c->sb.version); ++ ++ if (c->opts.read_only) { ++ prt_str(&p, " opts="); ++ first = false; ++ prt_printf(&p, "ro"); ++ } ++ ++ for (i = 0; i < bch2_opts_nr; i++) { ++ const struct bch_option *opt = &bch2_opt_table[i]; ++ u64 v = bch2_opt_get_by_id(&c->opts, i); ++ ++ if (!(opt->flags & OPT_MOUNT)) ++ continue; ++ ++ if (v == bch2_opt_get_by_id(&bch2_opts_default, i)) ++ continue; ++ ++ prt_str(&p, first ? " opts=" : ","); ++ first = false; ++ bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE); ++ } ++ ++ bch_info(c, "%s", p.buf); ++ printbuf_exit(&p); ++} ++ ++int bch2_fs_start(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ time64_t now = ktime_get_real_seconds(); ++ unsigned i; ++ int ret; ++ ++ print_mount_opts(c); ++ ++ down_write(&c->state_lock); ++ ++ BUG_ON(test_bit(BCH_FS_STARTED, &c->flags)); ++ ++ mutex_lock(&c->sb_lock); ++ ++ ret = bch2_members_v2_init(c); ++ if (ret) { ++ mutex_unlock(&c->sb_lock); ++ goto err; ++ } ++ ++ for_each_online_member(ca, c, i) ++ bch2_sb_from_fs(c, ca); ++ ++ for_each_online_member(ca, c, i) ++ bch2_members_v2_get_mut(c->disk_sb.sb, i)->last_mount = cpu_to_le64(now); ++ ++ mutex_unlock(&c->sb_lock); ++ ++ for_each_rw_member(ca, c, i) ++ bch2_dev_allocator_add(c, ca); ++ bch2_recalc_capacity(c); ++ ++ for (i = 0; i < BCH_TRANSACTIONS_NR; i++) { ++ mutex_lock(&c->btree_transaction_stats[i].lock); ++ bch2_time_stats_init(&c->btree_transaction_stats[i].lock_hold_times); ++ mutex_unlock(&c->btree_transaction_stats[i].lock); ++ } ++ ++ ret = BCH_SB_INITIALIZED(c->disk_sb.sb) ++ ? bch2_fs_recovery(c) ++ : bch2_fs_initialize(c); ++ if (ret) ++ goto err; ++ ++ ret = bch2_opts_check_may_set(c); ++ if (ret) ++ goto err; ++ ++ if (bch2_fs_init_fault("fs_start")) { ++ bch_err(c, "fs_start fault injected"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ set_bit(BCH_FS_STARTED, &c->flags); ++ ++ if (c->opts.read_only || c->opts.nochanges) { ++ bch2_fs_read_only(c); ++ } else { ++ ret = !test_bit(BCH_FS_RW, &c->flags) ++ ? bch2_fs_read_write(c) ++ : bch2_fs_read_write_late(c); ++ if (ret) ++ goto err; ++ } ++ ++ ret = 0; ++out: ++ up_write(&c->state_lock); ++ return ret; ++err: ++ bch_err_msg(c, ret, "starting filesystem"); ++ goto out; ++} ++ ++static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c) ++{ ++ struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx); ++ ++ if (le16_to_cpu(sb->block_size) != block_sectors(c)) ++ return -BCH_ERR_mismatched_block_size; ++ ++ if (le16_to_cpu(m.bucket_size) < ++ BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb)) ++ return -BCH_ERR_bucket_size_too_small; ++ ++ return 0; ++} ++ ++static int bch2_dev_in_fs(struct bch_sb *fs, struct bch_sb *sb) ++{ ++ struct bch_sb *newest = ++ le64_to_cpu(fs->seq) > le64_to_cpu(sb->seq) ? fs : sb; ++ ++ if (!uuid_equal(&fs->uuid, &sb->uuid)) ++ return -BCH_ERR_device_not_a_member_of_filesystem; ++ ++ if (!bch2_dev_exists(newest, sb->dev_idx)) ++ return -BCH_ERR_device_has_been_removed; ++ ++ if (fs->block_size != sb->block_size) ++ return -BCH_ERR_mismatched_block_size; ++ ++ return 0; ++} ++ ++/* Device startup/shutdown: */ ++ ++static void bch2_dev_release(struct kobject *kobj) ++{ ++ struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); ++ ++ kfree(ca); ++} ++ ++static void bch2_dev_free(struct bch_dev *ca) ++{ ++ cancel_work_sync(&ca->io_error_work); ++ ++ if (ca->kobj.state_in_sysfs && ++ ca->disk_sb.bdev) ++ sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); ++ ++ if (ca->kobj.state_in_sysfs) ++ kobject_del(&ca->kobj); ++ ++ bch2_free_super(&ca->disk_sb); ++ bch2_dev_journal_exit(ca); ++ ++ free_percpu(ca->io_done); ++ bioset_exit(&ca->replica_set); ++ bch2_dev_buckets_free(ca); ++ free_page((unsigned long) ca->sb_read_scratch); ++ ++ bch2_time_stats_exit(&ca->io_latency[WRITE]); ++ bch2_time_stats_exit(&ca->io_latency[READ]); ++ ++ percpu_ref_exit(&ca->io_ref); ++ percpu_ref_exit(&ca->ref); ++ kobject_put(&ca->kobj); ++} ++ ++static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca) ++{ ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ if (percpu_ref_is_zero(&ca->io_ref)) ++ return; ++ ++ __bch2_dev_read_only(c, ca); ++ ++ reinit_completion(&ca->io_ref_completion); ++ percpu_ref_kill(&ca->io_ref); ++ wait_for_completion(&ca->io_ref_completion); ++ ++ if (ca->kobj.state_in_sysfs) { ++ sysfs_remove_link(bdev_kobj(ca->disk_sb.bdev), "bcachefs"); ++ sysfs_remove_link(&ca->kobj, "block"); ++ } ++ ++ bch2_free_super(&ca->disk_sb); ++ bch2_dev_journal_exit(ca); ++} ++ ++static void bch2_dev_ref_complete(struct percpu_ref *ref) ++{ ++ struct bch_dev *ca = container_of(ref, struct bch_dev, ref); ++ ++ complete(&ca->ref_completion); ++} ++ ++static void bch2_dev_io_ref_complete(struct percpu_ref *ref) ++{ ++ struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref); ++ ++ complete(&ca->io_ref_completion); ++} ++ ++static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca) ++{ ++ int ret; ++ ++ if (!c->kobj.state_in_sysfs) ++ return 0; ++ ++ if (!ca->kobj.state_in_sysfs) { ++ ret = kobject_add(&ca->kobj, &c->kobj, ++ "dev-%u", ca->dev_idx); ++ if (ret) ++ return ret; ++ } ++ ++ if (ca->disk_sb.bdev) { ++ struct kobject *block = bdev_kobj(ca->disk_sb.bdev); ++ ++ ret = sysfs_create_link(block, &ca->kobj, "bcachefs"); ++ if (ret) ++ return ret; ++ ++ ret = sysfs_create_link(&ca->kobj, block, "block"); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c, ++ struct bch_member *member) ++{ ++ struct bch_dev *ca; ++ ++ ca = kzalloc(sizeof(*ca), GFP_KERNEL); ++ if (!ca) ++ return NULL; ++ ++ kobject_init(&ca->kobj, &bch2_dev_ktype); ++ init_completion(&ca->ref_completion); ++ init_completion(&ca->io_ref_completion); ++ ++ init_rwsem(&ca->bucket_lock); ++ ++ INIT_WORK(&ca->io_error_work, bch2_io_error_work); ++ ++ bch2_time_stats_init(&ca->io_latency[READ]); ++ bch2_time_stats_init(&ca->io_latency[WRITE]); ++ ++ ca->mi = bch2_mi_to_cpu(member); ++ ca->uuid = member->uuid; ++ ++ ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE, ++ ca->mi.bucket_size / btree_sectors(c)); ++ ++ if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, ++ 0, GFP_KERNEL) || ++ percpu_ref_init(&ca->io_ref, bch2_dev_io_ref_complete, ++ PERCPU_REF_INIT_DEAD, GFP_KERNEL) || ++ !(ca->sb_read_scratch = (void *) __get_free_page(GFP_KERNEL)) || ++ bch2_dev_buckets_alloc(c, ca) || ++ bioset_init(&ca->replica_set, 4, ++ offsetof(struct bch_write_bio, bio), 0) || ++ !(ca->io_done = alloc_percpu(*ca->io_done))) ++ goto err; ++ ++ return ca; ++err: ++ bch2_dev_free(ca); ++ return NULL; ++} ++ ++static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca, ++ unsigned dev_idx) ++{ ++ ca->dev_idx = dev_idx; ++ __set_bit(ca->dev_idx, ca->self.d); ++ scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx); ++ ++ ca->fs = c; ++ rcu_assign_pointer(c->devs[ca->dev_idx], ca); ++ ++ if (bch2_dev_sysfs_online(c, ca)) ++ pr_warn("error creating sysfs objects"); ++} ++ ++static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx) ++{ ++ struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx); ++ struct bch_dev *ca = NULL; ++ int ret = 0; ++ ++ if (bch2_fs_init_fault("dev_alloc")) ++ goto err; ++ ++ ca = __bch2_dev_alloc(c, &member); ++ if (!ca) ++ goto err; ++ ++ ca->fs = c; ++ ++ bch2_dev_attach(c, ca, dev_idx); ++ return ret; ++err: ++ if (ca) ++ bch2_dev_free(ca); ++ return -BCH_ERR_ENOMEM_dev_alloc; ++} ++ ++static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb) ++{ ++ unsigned ret; ++ ++ if (bch2_dev_is_online(ca)) { ++ bch_err(ca, "already have device online in slot %u", ++ sb->sb->dev_idx); ++ return -BCH_ERR_device_already_online; ++ } ++ ++ if (get_capacity(sb->bdev->bd_disk) < ++ ca->mi.bucket_size * ca->mi.nbuckets) { ++ bch_err(ca, "cannot online: device too small"); ++ return -BCH_ERR_device_size_too_small; ++ } ++ ++ BUG_ON(!percpu_ref_is_zero(&ca->io_ref)); ++ ++ ret = bch2_dev_journal_init(ca, sb->sb); ++ if (ret) ++ return ret; ++ ++ /* Commit: */ ++ ca->disk_sb = *sb; ++ memset(sb, 0, sizeof(*sb)); ++ ++ ca->dev = ca->disk_sb.bdev->bd_dev; ++ ++ percpu_ref_reinit(&ca->io_ref); ++ ++ return 0; ++} ++ ++static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb) ++{ ++ struct bch_dev *ca; ++ int ret; ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ if (le64_to_cpu(sb->sb->seq) > ++ le64_to_cpu(c->disk_sb.sb->seq)) ++ bch2_sb_to_fs(c, sb->sb); ++ ++ BUG_ON(sb->sb->dev_idx >= c->sb.nr_devices || ++ !c->devs[sb->sb->dev_idx]); ++ ++ ca = bch_dev_locked(c, sb->sb->dev_idx); ++ ++ ret = __bch2_dev_attach_bdev(ca, sb); ++ if (ret) ++ return ret; ++ ++ bch2_dev_sysfs_online(c, ca); ++ ++ if (c->sb.nr_devices == 1) ++ snprintf(c->name, sizeof(c->name), "%pg", ca->disk_sb.bdev); ++ snprintf(ca->name, sizeof(ca->name), "%pg", ca->disk_sb.bdev); ++ ++ rebalance_wakeup(c); ++ return 0; ++} ++ ++/* Device management: */ ++ ++/* ++ * Note: this function is also used by the error paths - when a particular ++ * device sees an error, we call it to determine whether we can just set the ++ * device RO, or - if this function returns false - we'll set the whole ++ * filesystem RO: ++ * ++ * XXX: maybe we should be more explicit about whether we're changing state ++ * because we got an error or what have you? ++ */ ++bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca, ++ enum bch_member_state new_state, int flags) ++{ ++ struct bch_devs_mask new_online_devs; ++ struct bch_dev *ca2; ++ int i, nr_rw = 0, required; ++ ++ lockdep_assert_held(&c->state_lock); ++ ++ switch (new_state) { ++ case BCH_MEMBER_STATE_rw: ++ return true; ++ case BCH_MEMBER_STATE_ro: ++ if (ca->mi.state != BCH_MEMBER_STATE_rw) ++ return true; ++ ++ /* do we have enough devices to write to? */ ++ for_each_member_device(ca2, c, i) ++ if (ca2 != ca) ++ nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw; ++ ++ required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED) ++ ? c->opts.metadata_replicas ++ : c->opts.metadata_replicas_required, ++ !(flags & BCH_FORCE_IF_DATA_DEGRADED) ++ ? c->opts.data_replicas ++ : c->opts.data_replicas_required); ++ ++ return nr_rw >= required; ++ case BCH_MEMBER_STATE_failed: ++ case BCH_MEMBER_STATE_spare: ++ if (ca->mi.state != BCH_MEMBER_STATE_rw && ++ ca->mi.state != BCH_MEMBER_STATE_ro) ++ return true; ++ ++ /* do we have enough devices to read from? */ ++ new_online_devs = bch2_online_devs(c); ++ __clear_bit(ca->dev_idx, new_online_devs.d); ++ ++ return bch2_have_enough_devs(c, new_online_devs, flags, false); ++ default: ++ BUG(); ++ } ++} ++ ++static bool bch2_fs_may_start(struct bch_fs *c) ++{ ++ struct bch_dev *ca; ++ unsigned i, flags = 0; ++ ++ if (c->opts.very_degraded) ++ flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST; ++ ++ if (c->opts.degraded) ++ flags |= BCH_FORCE_IF_DEGRADED; ++ ++ if (!c->opts.degraded && ++ !c->opts.very_degraded) { ++ mutex_lock(&c->sb_lock); ++ ++ for (i = 0; i < c->disk_sb.sb->nr_devices; i++) { ++ if (!bch2_dev_exists(c->disk_sb.sb, i)) ++ continue; ++ ++ ca = bch_dev_locked(c, i); ++ ++ if (!bch2_dev_is_online(ca) && ++ (ca->mi.state == BCH_MEMBER_STATE_rw || ++ ca->mi.state == BCH_MEMBER_STATE_ro)) { ++ mutex_unlock(&c->sb_lock); ++ return false; ++ } ++ } ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true); ++} ++ ++static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca) ++{ ++ /* ++ * The allocator thread itself allocates btree nodes, so stop it first: ++ */ ++ bch2_dev_allocator_remove(c, ca); ++ bch2_dev_journal_stop(&c->journal, ca); ++} ++ ++static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca) ++{ ++ lockdep_assert_held(&c->state_lock); ++ ++ BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw); ++ ++ bch2_dev_allocator_add(c, ca); ++ bch2_recalc_capacity(c); ++} ++ ++int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, ++ enum bch_member_state new_state, int flags) ++{ ++ struct bch_member *m; ++ int ret = 0; ++ ++ if (ca->mi.state == new_state) ++ return 0; ++ ++ if (!bch2_dev_state_allowed(c, ca, new_state, flags)) ++ return -BCH_ERR_device_state_not_allowed; ++ ++ if (new_state != BCH_MEMBER_STATE_rw) ++ __bch2_dev_read_only(c, ca); ++ ++ bch_notice(ca, "%s", bch2_member_states[new_state]); ++ ++ mutex_lock(&c->sb_lock); ++ m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); ++ SET_BCH_MEMBER_STATE(m, new_state); ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ if (new_state == BCH_MEMBER_STATE_rw) ++ __bch2_dev_read_write(c, ca); ++ ++ rebalance_wakeup(c); ++ ++ return ret; ++} ++ ++int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca, ++ enum bch_member_state new_state, int flags) ++{ ++ int ret; ++ ++ down_write(&c->state_lock); ++ ret = __bch2_dev_set_state(c, ca, new_state, flags); ++ up_write(&c->state_lock); ++ ++ return ret; ++} ++ ++/* Device add/removal: */ ++ ++static int bch2_dev_remove_alloc(struct bch_fs *c, struct bch_dev *ca) ++{ ++ struct bpos start = POS(ca->dev_idx, 0); ++ struct bpos end = POS(ca->dev_idx, U64_MAX); ++ int ret; ++ ++ /* ++ * We clear the LRU and need_discard btrees first so that we don't race ++ * with bch2_do_invalidates() and bch2_do_discards() ++ */ ++ ret = bch2_btree_delete_range(c, BTREE_ID_lru, start, end, ++ BTREE_TRIGGER_NORUN, NULL) ?: ++ bch2_btree_delete_range(c, BTREE_ID_need_discard, start, end, ++ BTREE_TRIGGER_NORUN, NULL) ?: ++ bch2_btree_delete_range(c, BTREE_ID_freespace, start, end, ++ BTREE_TRIGGER_NORUN, NULL) ?: ++ bch2_btree_delete_range(c, BTREE_ID_backpointers, start, end, ++ BTREE_TRIGGER_NORUN, NULL) ?: ++ bch2_btree_delete_range(c, BTREE_ID_alloc, start, end, ++ BTREE_TRIGGER_NORUN, NULL) ?: ++ bch2_btree_delete_range(c, BTREE_ID_bucket_gens, start, end, ++ BTREE_TRIGGER_NORUN, NULL); ++ if (ret) ++ bch_err_msg(c, ret, "removing dev alloc info"); ++ ++ return ret; ++} ++ ++int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags) ++{ ++ struct bch_member *m; ++ unsigned dev_idx = ca->dev_idx, data; ++ int ret; ++ ++ down_write(&c->state_lock); ++ ++ /* ++ * We consume a reference to ca->ref, regardless of whether we succeed ++ * or fail: ++ */ ++ percpu_ref_put(&ca->ref); ++ ++ if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { ++ bch_err(ca, "Cannot remove without losing data"); ++ ret = -BCH_ERR_device_state_not_allowed; ++ goto err; ++ } ++ ++ __bch2_dev_read_only(c, ca); ++ ++ ret = bch2_dev_data_drop(c, ca->dev_idx, flags); ++ if (ret) { ++ bch_err_msg(ca, ret, "dropping data"); ++ goto err; ++ } ++ ++ ret = bch2_dev_remove_alloc(c, ca); ++ if (ret) { ++ bch_err_msg(ca, ret, "deleting alloc info"); ++ goto err; ++ } ++ ++ ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx); ++ if (ret) { ++ bch_err_msg(ca, ret, "flushing journal"); ++ goto err; ++ } ++ ++ ret = bch2_journal_flush(&c->journal); ++ if (ret) { ++ bch_err(ca, "journal error"); ++ goto err; ++ } ++ ++ ret = bch2_replicas_gc2(c); ++ if (ret) { ++ bch_err_msg(ca, ret, "in replicas_gc2()"); ++ goto err; ++ } ++ ++ data = bch2_dev_has_data(c, ca); ++ if (data) { ++ struct printbuf data_has = PRINTBUF; ++ ++ prt_bitflags(&data_has, bch2_data_types, data); ++ bch_err(ca, "Remove failed, still has data (%s)", data_has.buf); ++ printbuf_exit(&data_has); ++ ret = -EBUSY; ++ goto err; ++ } ++ ++ __bch2_dev_offline(c, ca); ++ ++ mutex_lock(&c->sb_lock); ++ rcu_assign_pointer(c->devs[ca->dev_idx], NULL); ++ mutex_unlock(&c->sb_lock); ++ ++ percpu_ref_kill(&ca->ref); ++ wait_for_completion(&ca->ref_completion); ++ ++ bch2_dev_free(ca); ++ ++ /* ++ * At this point the device object has been removed in-core, but the ++ * on-disk journal might still refer to the device index via sb device ++ * usage entries. Recovery fails if it sees usage information for an ++ * invalid device. Flush journal pins to push the back of the journal ++ * past now invalid device index references before we update the ++ * superblock, but after the device object has been removed so any ++ * further journal writes elide usage info for the device. ++ */ ++ bch2_journal_flush_all_pins(&c->journal); ++ ++ /* ++ * Free this device's slot in the bch_member array - all pointers to ++ * this device must be gone: ++ */ ++ mutex_lock(&c->sb_lock); ++ m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); ++ memset(&m->uuid, 0, sizeof(m->uuid)); ++ ++ bch2_write_super(c); ++ ++ mutex_unlock(&c->sb_lock); ++ up_write(&c->state_lock); ++ ++ bch2_dev_usage_journal_reserve(c); ++ return 0; ++err: ++ if (ca->mi.state == BCH_MEMBER_STATE_rw && ++ !percpu_ref_is_zero(&ca->io_ref)) ++ __bch2_dev_read_write(c, ca); ++ up_write(&c->state_lock); ++ return ret; ++} ++ ++/* Add new device to running filesystem: */ ++int bch2_dev_add(struct bch_fs *c, const char *path) ++{ ++ struct bch_opts opts = bch2_opts_empty(); ++ struct bch_sb_handle sb; ++ struct bch_dev *ca = NULL; ++ struct bch_sb_field_members_v2 *mi; ++ struct bch_member dev_mi; ++ unsigned dev_idx, nr_devices, u64s; ++ struct printbuf errbuf = PRINTBUF; ++ struct printbuf label = PRINTBUF; ++ int ret; ++ ++ ret = bch2_read_super(path, &opts, &sb); ++ if (ret) { ++ bch_err_msg(c, ret, "reading super"); ++ goto err; ++ } ++ ++ dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx); ++ ++ if (BCH_MEMBER_GROUP(&dev_mi)) { ++ bch2_disk_path_to_text(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1); ++ if (label.allocation_failure) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ } ++ ++ ret = bch2_dev_may_add(sb.sb, c); ++ if (ret) { ++ bch_err_fn(c, ret); ++ goto err; ++ } ++ ++ ca = __bch2_dev_alloc(c, &dev_mi); ++ if (!ca) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ bch2_dev_usage_init(ca); ++ ++ ret = __bch2_dev_attach_bdev(ca, &sb); ++ if (ret) ++ goto err; ++ ++ ret = bch2_dev_journal_alloc(ca); ++ if (ret) { ++ bch_err_msg(c, ret, "allocating journal"); ++ goto err; ++ } ++ ++ down_write(&c->state_lock); ++ mutex_lock(&c->sb_lock); ++ ++ ret = bch2_sb_from_fs(c, ca); ++ if (ret) { ++ bch_err_msg(c, ret, "setting up new superblock"); ++ goto err_unlock; ++ } ++ ++ mi = bch2_sb_field_get(ca->disk_sb.sb, members_v2); ++ ++ if (!bch2_sb_field_resize(&ca->disk_sb, members_v2, ++ le32_to_cpu(mi->field.u64s) + ++ sizeof(dev_mi) / sizeof(u64))) { ++ ret = -BCH_ERR_ENOSPC_sb_members; ++ bch_err_msg(c, ret, "setting up new superblock"); ++ goto err_unlock; ++ } ++ ++ if (dynamic_fault("bcachefs:add:no_slot")) ++ goto no_slot; ++ ++ for (dev_idx = 0; dev_idx < BCH_SB_MEMBERS_MAX; dev_idx++) ++ if (!bch2_dev_exists(c->disk_sb.sb, dev_idx)) ++ goto have_slot; ++no_slot: ++ ret = -BCH_ERR_ENOSPC_sb_members; ++ bch_err_msg(c, ret, "setting up new superblock"); ++ goto err_unlock; ++ ++have_slot: ++ nr_devices = max_t(unsigned, dev_idx + 1, c->sb.nr_devices); ++ u64s = DIV_ROUND_UP(sizeof(struct bch_sb_field_members_v2) + ++ le16_to_cpu(mi->member_bytes) * nr_devices, sizeof(u64)); ++ ++ mi = bch2_sb_field_resize(&c->disk_sb, members_v2, u64s); ++ if (!mi) { ++ ret = -BCH_ERR_ENOSPC_sb_members; ++ bch_err_msg(c, ret, "setting up new superblock"); ++ goto err_unlock; ++ } ++ struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx); ++ ++ /* success: */ ++ ++ *m = dev_mi; ++ m->last_mount = cpu_to_le64(ktime_get_real_seconds()); ++ c->disk_sb.sb->nr_devices = nr_devices; ++ ++ ca->disk_sb.sb->dev_idx = dev_idx; ++ bch2_dev_attach(c, ca, dev_idx); ++ ++ if (BCH_MEMBER_GROUP(&dev_mi)) { ++ ret = __bch2_dev_group_set(c, ca, label.buf); ++ if (ret) { ++ bch_err_msg(c, ret, "creating new label"); ++ goto err_unlock; ++ } ++ } ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ bch2_dev_usage_journal_reserve(c); ++ ++ ret = bch2_trans_mark_dev_sb(c, ca); ++ if (ret) { ++ bch_err_msg(c, ret, "marking new superblock"); ++ goto err_late; ++ } ++ ++ ret = bch2_fs_freespace_init(c); ++ if (ret) { ++ bch_err_msg(c, ret, "initializing free space"); ++ goto err_late; ++ } ++ ++ ca->new_fs_bucket_idx = 0; ++ ++ if (ca->mi.state == BCH_MEMBER_STATE_rw) ++ __bch2_dev_read_write(c, ca); ++ ++ up_write(&c->state_lock); ++ return 0; ++ ++err_unlock: ++ mutex_unlock(&c->sb_lock); ++ up_write(&c->state_lock); ++err: ++ if (ca) ++ bch2_dev_free(ca); ++ bch2_free_super(&sb); ++ printbuf_exit(&label); ++ printbuf_exit(&errbuf); ++ return ret; ++err_late: ++ up_write(&c->state_lock); ++ ca = NULL; ++ goto err; ++} ++ ++/* Hot add existing device to running filesystem: */ ++int bch2_dev_online(struct bch_fs *c, const char *path) ++{ ++ struct bch_opts opts = bch2_opts_empty(); ++ struct bch_sb_handle sb = { NULL }; ++ struct bch_dev *ca; ++ unsigned dev_idx; ++ int ret; ++ ++ down_write(&c->state_lock); ++ ++ ret = bch2_read_super(path, &opts, &sb); ++ if (ret) { ++ up_write(&c->state_lock); ++ return ret; ++ } ++ ++ dev_idx = sb.sb->dev_idx; ++ ++ ret = bch2_dev_in_fs(c->disk_sb.sb, sb.sb); ++ if (ret) { ++ bch_err_msg(c, ret, "bringing %s online", path); ++ goto err; ++ } ++ ++ ret = bch2_dev_attach_bdev(c, &sb); ++ if (ret) ++ goto err; ++ ++ ca = bch_dev_locked(c, dev_idx); ++ ++ ret = bch2_trans_mark_dev_sb(c, ca); ++ if (ret) { ++ bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path); ++ goto err; ++ } ++ ++ if (ca->mi.state == BCH_MEMBER_STATE_rw) ++ __bch2_dev_read_write(c, ca); ++ ++ mutex_lock(&c->sb_lock); ++ struct bch_member *m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); ++ ++ m->last_mount = ++ cpu_to_le64(ktime_get_real_seconds()); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ ret = bch2_fs_freespace_init(c); ++ if (ret) ++ bch_err_msg(c, ret, "initializing free space"); ++ ++ up_write(&c->state_lock); ++ return 0; ++err: ++ up_write(&c->state_lock); ++ bch2_free_super(&sb); ++ return ret; ++} ++ ++int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags) ++{ ++ down_write(&c->state_lock); ++ ++ if (!bch2_dev_is_online(ca)) { ++ bch_err(ca, "Already offline"); ++ up_write(&c->state_lock); ++ return 0; ++ } ++ ++ if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) { ++ bch_err(ca, "Cannot offline required disk"); ++ up_write(&c->state_lock); ++ return -BCH_ERR_device_state_not_allowed; ++ } ++ ++ __bch2_dev_offline(c, ca); ++ ++ up_write(&c->state_lock); ++ return 0; ++} ++ ++int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets) ++{ ++ struct bch_member *m; ++ u64 old_nbuckets; ++ int ret = 0; ++ ++ down_write(&c->state_lock); ++ old_nbuckets = ca->mi.nbuckets; ++ ++ if (nbuckets < ca->mi.nbuckets) { ++ bch_err(ca, "Cannot shrink yet"); ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ if (bch2_dev_is_online(ca) && ++ get_capacity(ca->disk_sb.bdev->bd_disk) < ++ ca->mi.bucket_size * nbuckets) { ++ bch_err(ca, "New size larger than device"); ++ ret = -BCH_ERR_device_size_too_small; ++ goto err; ++ } ++ ++ ret = bch2_dev_buckets_resize(c, ca, nbuckets); ++ if (ret) { ++ bch_err_msg(ca, ret, "resizing buckets"); ++ goto err; ++ } ++ ++ ret = bch2_trans_mark_dev_sb(c, ca); ++ if (ret) ++ goto err; ++ ++ mutex_lock(&c->sb_lock); ++ m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); ++ m->nbuckets = cpu_to_le64(nbuckets); ++ ++ bch2_write_super(c); ++ mutex_unlock(&c->sb_lock); ++ ++ if (ca->mi.freespace_initialized) { ++ ret = bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets); ++ if (ret) ++ goto err; ++ ++ /* ++ * XXX: this is all wrong transactionally - we'll be able to do ++ * this correctly after the disk space accounting rewrite ++ */ ++ ca->usage_base->d[BCH_DATA_free].buckets += nbuckets - old_nbuckets; ++ } ++ ++ bch2_recalc_capacity(c); ++err: ++ up_write(&c->state_lock); ++ return ret; ++} ++ ++/* return with ref on ca->ref: */ ++struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name) ++{ ++ struct bch_dev *ca; ++ unsigned i; ++ ++ rcu_read_lock(); ++ for_each_member_device_rcu(ca, c, i, NULL) ++ if (!strcmp(name, ca->name)) ++ goto found; ++ ca = ERR_PTR(-BCH_ERR_ENOENT_dev_not_found); ++found: ++ rcu_read_unlock(); ++ ++ return ca; ++} ++ ++/* Filesystem open: */ ++ ++struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices, ++ struct bch_opts opts) ++{ ++ struct bch_sb_handle *sb = NULL; ++ struct bch_fs *c = NULL; ++ unsigned i, best_sb = 0; ++ struct printbuf errbuf = PRINTBUF; ++ int ret = 0; ++ ++ if (!try_module_get(THIS_MODULE)) ++ return ERR_PTR(-ENODEV); ++ ++ if (!nr_devices) { ++ ret = -EINVAL; ++ goto err; ++ } ++ ++ sb = kcalloc(nr_devices, sizeof(*sb), GFP_KERNEL); ++ if (!sb) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ for (i = 0; i < nr_devices; i++) { ++ ret = bch2_read_super(devices[i], &opts, &sb[i]); ++ if (ret) ++ goto err; ++ ++ } ++ ++ for (i = 1; i < nr_devices; i++) ++ if (le64_to_cpu(sb[i].sb->seq) > ++ le64_to_cpu(sb[best_sb].sb->seq)) ++ best_sb = i; ++ ++ i = 0; ++ while (i < nr_devices) { ++ if (i != best_sb && ++ !bch2_dev_exists(sb[best_sb].sb, sb[i].sb->dev_idx)) { ++ pr_info("%pg has been removed, skipping", sb[i].bdev); ++ bch2_free_super(&sb[i]); ++ array_remove_item(sb, nr_devices, i); ++ continue; ++ } ++ ++ ret = bch2_dev_in_fs(sb[best_sb].sb, sb[i].sb); ++ if (ret) ++ goto err_print; ++ i++; ++ } ++ ++ c = bch2_fs_alloc(sb[best_sb].sb, opts); ++ if (IS_ERR(c)) { ++ ret = PTR_ERR(c); ++ goto err; ++ } ++ ++ down_write(&c->state_lock); ++ for (i = 0; i < nr_devices; i++) { ++ ret = bch2_dev_attach_bdev(c, &sb[i]); ++ if (ret) { ++ up_write(&c->state_lock); ++ goto err; ++ } ++ } ++ up_write(&c->state_lock); ++ ++ if (!bch2_fs_may_start(c)) { ++ ret = -BCH_ERR_insufficient_devices_to_start; ++ goto err_print; ++ } ++ ++ if (!c->opts.nostart) { ++ ret = bch2_fs_start(c); ++ if (ret) ++ goto err; ++ } ++out: ++ kfree(sb); ++ printbuf_exit(&errbuf); ++ module_put(THIS_MODULE); ++ return c; ++err_print: ++ pr_err("bch_fs_open err opening %s: %s", ++ devices[0], bch2_err_str(ret)); ++err: ++ if (!IS_ERR_OR_NULL(c)) ++ bch2_fs_stop(c); ++ if (sb) ++ for (i = 0; i < nr_devices; i++) ++ bch2_free_super(&sb[i]); ++ c = ERR_PTR(ret); ++ goto out; ++} ++ ++/* Global interfaces/init */ ++ ++static void bcachefs_exit(void) ++{ ++ bch2_debug_exit(); ++ bch2_vfs_exit(); ++ bch2_chardev_exit(); ++ bch2_btree_key_cache_exit(); ++ if (bcachefs_kset) ++ kset_unregister(bcachefs_kset); ++} ++ ++static int __init bcachefs_init(void) ++{ ++ bch2_bkey_pack_test(); ++ ++ if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) || ++ bch2_btree_key_cache_init() || ++ bch2_chardev_init() || ++ bch2_vfs_init() || ++ bch2_debug_init()) ++ goto err; ++ ++ return 0; ++err: ++ bcachefs_exit(); ++ return -ENOMEM; ++} ++ ++#define BCH_DEBUG_PARAM(name, description) \ ++ bool bch2_##name; \ ++ module_param_named(name, bch2_##name, bool, 0644); \ ++ MODULE_PARM_DESC(name, description); ++BCH_DEBUG_PARAMS() ++#undef BCH_DEBUG_PARAM ++ ++__maybe_unused ++static unsigned bch2_metadata_version = bcachefs_metadata_version_current; ++module_param_named(version, bch2_metadata_version, uint, 0400); ++ ++module_exit(bcachefs_exit); ++module_init(bcachefs_init); +diff --git a/fs/bcachefs/super.h b/fs/bcachefs/super.h +new file mode 100644 +index 000000000000..bf762df18012 +--- /dev/null ++++ b/fs/bcachefs/super.h +@@ -0,0 +1,52 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SUPER_H ++#define _BCACHEFS_SUPER_H ++ ++#include "extents.h" ++ ++#include "bcachefs_ioctl.h" ++ ++#include ++ ++struct bch_fs *bch2_dev_to_fs(dev_t); ++struct bch_fs *bch2_uuid_to_fs(__uuid_t); ++ ++bool bch2_dev_state_allowed(struct bch_fs *, struct bch_dev *, ++ enum bch_member_state, int); ++int __bch2_dev_set_state(struct bch_fs *, struct bch_dev *, ++ enum bch_member_state, int); ++int bch2_dev_set_state(struct bch_fs *, struct bch_dev *, ++ enum bch_member_state, int); ++ ++int bch2_dev_fail(struct bch_dev *, int); ++int bch2_dev_remove(struct bch_fs *, struct bch_dev *, int); ++int bch2_dev_add(struct bch_fs *, const char *); ++int bch2_dev_online(struct bch_fs *, const char *); ++int bch2_dev_offline(struct bch_fs *, struct bch_dev *, int); ++int bch2_dev_resize(struct bch_fs *, struct bch_dev *, u64); ++struct bch_dev *bch2_dev_lookup(struct bch_fs *, const char *); ++ ++bool bch2_fs_emergency_read_only(struct bch_fs *); ++void bch2_fs_read_only(struct bch_fs *); ++ ++int bch2_fs_read_write(struct bch_fs *); ++int bch2_fs_read_write_early(struct bch_fs *); ++ ++/* ++ * Only for use in the recovery/fsck path: ++ */ ++static inline void bch2_fs_lazy_rw(struct bch_fs *c) ++{ ++ if (!test_bit(BCH_FS_RW, &c->flags) && ++ !test_bit(BCH_FS_WAS_RW, &c->flags)) ++ bch2_fs_read_write_early(c); ++} ++ ++void __bch2_fs_stop(struct bch_fs *); ++void bch2_fs_free(struct bch_fs *); ++void bch2_fs_stop(struct bch_fs *); ++ ++int bch2_fs_start(struct bch_fs *); ++struct bch_fs *bch2_fs_open(char * const *, unsigned, struct bch_opts); ++ ++#endif /* _BCACHEFS_SUPER_H */ +diff --git a/fs/bcachefs/super_types.h b/fs/bcachefs/super_types.h +new file mode 100644 +index 000000000000..78d6138db62d +--- /dev/null ++++ b/fs/bcachefs/super_types.h +@@ -0,0 +1,52 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SUPER_TYPES_H ++#define _BCACHEFS_SUPER_TYPES_H ++ ++struct bch_sb_handle { ++ struct bch_sb *sb; ++ struct block_device *bdev; ++ struct bio *bio; ++ void *holder; ++ size_t buffer_size; ++ blk_mode_t mode; ++ unsigned have_layout:1; ++ unsigned have_bio:1; ++ unsigned fs_sb:1; ++ u64 seq; ++}; ++ ++struct bch_devs_mask { ++ unsigned long d[BITS_TO_LONGS(BCH_SB_MEMBERS_MAX)]; ++}; ++ ++struct bch_devs_list { ++ u8 nr; ++ u8 devs[BCH_BKEY_PTRS_MAX]; ++}; ++ ++struct bch_member_cpu { ++ u64 nbuckets; /* device size */ ++ u16 first_bucket; /* index of first bucket used */ ++ u16 bucket_size; /* sectors */ ++ u16 group; ++ u8 state; ++ u8 discard; ++ u8 data_allowed; ++ u8 durability; ++ u8 freespace_initialized; ++ u8 valid; ++}; ++ ++struct bch_disk_group_cpu { ++ bool deleted; ++ u16 parent; ++ struct bch_devs_mask devs; ++}; ++ ++struct bch_disk_groups_cpu { ++ struct rcu_head rcu; ++ unsigned nr; ++ struct bch_disk_group_cpu entries[] __counted_by(nr); ++}; ++ ++#endif /* _BCACHEFS_SUPER_TYPES_H */ +diff --git a/fs/bcachefs/sysfs.c b/fs/bcachefs/sysfs.c +new file mode 100644 +index 000000000000..eb764b9a4629 +--- /dev/null ++++ b/fs/bcachefs/sysfs.c +@@ -0,0 +1,1031 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * bcache sysfs interfaces ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#ifndef NO_BCACHEFS_SYSFS ++ ++#include "bcachefs.h" ++#include "alloc_background.h" ++#include "alloc_foreground.h" ++#include "sysfs.h" ++#include "btree_cache.h" ++#include "btree_io.h" ++#include "btree_iter.h" ++#include "btree_key_cache.h" ++#include "btree_update.h" ++#include "btree_update_interior.h" ++#include "btree_gc.h" ++#include "buckets.h" ++#include "clock.h" ++#include "disk_groups.h" ++#include "ec.h" ++#include "inode.h" ++#include "journal.h" ++#include "keylist.h" ++#include "move.h" ++#include "movinggc.h" ++#include "nocow_locking.h" ++#include "opts.h" ++#include "rebalance.h" ++#include "replicas.h" ++#include "super-io.h" ++#include "tests.h" ++ ++#include ++#include ++#include ++ ++#include "util.h" ++ ++#define SYSFS_OPS(type) \ ++const struct sysfs_ops type ## _sysfs_ops = { \ ++ .show = type ## _show, \ ++ .store = type ## _store \ ++} ++ ++#define SHOW(fn) \ ++static ssize_t fn ## _to_text(struct printbuf *, \ ++ struct kobject *, struct attribute *); \ ++ \ ++static ssize_t fn ## _show(struct kobject *kobj, struct attribute *attr,\ ++ char *buf) \ ++{ \ ++ struct printbuf out = PRINTBUF; \ ++ ssize_t ret = fn ## _to_text(&out, kobj, attr); \ ++ \ ++ if (out.pos && out.buf[out.pos - 1] != '\n') \ ++ prt_newline(&out); \ ++ \ ++ if (!ret && out.allocation_failure) \ ++ ret = -ENOMEM; \ ++ \ ++ if (!ret) { \ ++ ret = min_t(size_t, out.pos, PAGE_SIZE - 1); \ ++ memcpy(buf, out.buf, ret); \ ++ } \ ++ printbuf_exit(&out); \ ++ return bch2_err_class(ret); \ ++} \ ++ \ ++static ssize_t fn ## _to_text(struct printbuf *out, struct kobject *kobj,\ ++ struct attribute *attr) ++ ++#define STORE(fn) \ ++static ssize_t fn ## _store_inner(struct kobject *, struct attribute *,\ ++ const char *, size_t); \ ++ \ ++static ssize_t fn ## _store(struct kobject *kobj, struct attribute *attr,\ ++ const char *buf, size_t size) \ ++{ \ ++ return bch2_err_class(fn##_store_inner(kobj, attr, buf, size)); \ ++} \ ++ \ ++static ssize_t fn ## _store_inner(struct kobject *kobj, struct attribute *attr,\ ++ const char *buf, size_t size) ++ ++#define __sysfs_attribute(_name, _mode) \ ++ static struct attribute sysfs_##_name = \ ++ { .name = #_name, .mode = _mode } ++ ++#define write_attribute(n) __sysfs_attribute(n, 0200) ++#define read_attribute(n) __sysfs_attribute(n, 0444) ++#define rw_attribute(n) __sysfs_attribute(n, 0644) ++ ++#define sysfs_printf(file, fmt, ...) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ prt_printf(out, fmt "\n", __VA_ARGS__); \ ++} while (0) ++ ++#define sysfs_print(file, var) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ snprint(out, var); \ ++} while (0) ++ ++#define sysfs_hprint(file, val) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ prt_human_readable_s64(out, val); \ ++} while (0) ++ ++#define sysfs_strtoul(file, var) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ return strtoul_safe(buf, var) ?: (ssize_t) size; \ ++} while (0) ++ ++#define sysfs_strtoul_clamp(file, var, min, max) \ ++do { \ ++ if (attr == &sysfs_ ## file) \ ++ return strtoul_safe_clamp(buf, var, min, max) \ ++ ?: (ssize_t) size; \ ++} while (0) ++ ++#define strtoul_or_return(cp) \ ++({ \ ++ unsigned long _v; \ ++ int _r = kstrtoul(cp, 10, &_v); \ ++ if (_r) \ ++ return _r; \ ++ _v; \ ++}) ++ ++write_attribute(trigger_gc); ++write_attribute(trigger_discards); ++write_attribute(trigger_invalidates); ++write_attribute(prune_cache); ++write_attribute(btree_wakeup); ++rw_attribute(btree_gc_periodic); ++rw_attribute(gc_gens_pos); ++ ++read_attribute(uuid); ++read_attribute(minor); ++read_attribute(bucket_size); ++read_attribute(first_bucket); ++read_attribute(nbuckets); ++rw_attribute(durability); ++read_attribute(iodone); ++ ++read_attribute(io_latency_read); ++read_attribute(io_latency_write); ++read_attribute(io_latency_stats_read); ++read_attribute(io_latency_stats_write); ++read_attribute(congested); ++ ++read_attribute(btree_write_stats); ++ ++read_attribute(btree_cache_size); ++read_attribute(compression_stats); ++read_attribute(journal_debug); ++read_attribute(btree_updates); ++read_attribute(btree_cache); ++read_attribute(btree_key_cache); ++read_attribute(stripes_heap); ++read_attribute(open_buckets); ++read_attribute(open_buckets_partial); ++read_attribute(write_points); ++read_attribute(nocow_lock_table); ++ ++#ifdef BCH_WRITE_REF_DEBUG ++read_attribute(write_refs); ++ ++static const char * const bch2_write_refs[] = { ++#define x(n) #n, ++ BCH_WRITE_REFS() ++#undef x ++ NULL ++}; ++ ++static void bch2_write_refs_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ bch2_printbuf_tabstop_push(out, 24); ++ ++ for (unsigned i = 0; i < ARRAY_SIZE(c->writes); i++) { ++ prt_str(out, bch2_write_refs[i]); ++ prt_tab(out); ++ prt_printf(out, "%li", atomic_long_read(&c->writes[i])); ++ prt_newline(out); ++ } ++} ++#endif ++ ++read_attribute(internal_uuid); ++read_attribute(disk_groups); ++ ++read_attribute(has_data); ++read_attribute(alloc_debug); ++ ++#define x(t, n, ...) read_attribute(t); ++BCH_PERSISTENT_COUNTERS() ++#undef x ++ ++rw_attribute(discard); ++rw_attribute(label); ++ ++rw_attribute(copy_gc_enabled); ++read_attribute(copy_gc_wait); ++ ++rw_attribute(rebalance_enabled); ++sysfs_pd_controller_attribute(rebalance); ++read_attribute(rebalance_work); ++rw_attribute(promote_whole_extents); ++ ++read_attribute(new_stripes); ++ ++read_attribute(io_timers_read); ++read_attribute(io_timers_write); ++ ++read_attribute(moving_ctxts); ++ ++#ifdef CONFIG_BCACHEFS_TESTS ++write_attribute(perf_test); ++#endif /* CONFIG_BCACHEFS_TESTS */ ++ ++#define x(_name) \ ++ static struct attribute sysfs_time_stat_##_name = \ ++ { .name = #_name, .mode = 0444 }; ++ BCH_TIME_STATS() ++#undef x ++ ++static struct attribute sysfs_state_rw = { ++ .name = "state", ++ .mode = 0444, ++}; ++ ++static size_t bch2_btree_cache_size(struct bch_fs *c) ++{ ++ size_t ret = 0; ++ struct btree *b; ++ ++ mutex_lock(&c->btree_cache.lock); ++ list_for_each_entry(b, &c->btree_cache.live, list) ++ ret += btree_bytes(c); ++ ++ mutex_unlock(&c->btree_cache.lock); ++ return ret; ++} ++ ++static int bch2_compression_stats_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ enum btree_id id; ++ u64 nr_uncompressed_extents = 0, ++ nr_compressed_extents = 0, ++ nr_incompressible_extents = 0, ++ uncompressed_sectors = 0, ++ incompressible_sectors = 0, ++ compressed_sectors_compressed = 0, ++ compressed_sectors_uncompressed = 0; ++ int ret = 0; ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EPERM; ++ ++ trans = bch2_trans_get(c); ++ ++ for (id = 0; id < BTREE_ID_NR; id++) { ++ if (!btree_type_has_ptrs(id)) ++ continue; ++ ++ for_each_btree_key(trans, iter, id, POS_MIN, ++ BTREE_ITER_ALL_SNAPSHOTS, k, ret) { ++ struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k); ++ const union bch_extent_entry *entry; ++ struct extent_ptr_decoded p; ++ bool compressed = false, uncompressed = false, incompressible = false; ++ ++ bkey_for_each_ptr_decode(k.k, ptrs, p, entry) { ++ switch (p.crc.compression_type) { ++ case BCH_COMPRESSION_TYPE_none: ++ uncompressed = true; ++ uncompressed_sectors += k.k->size; ++ break; ++ case BCH_COMPRESSION_TYPE_incompressible: ++ incompressible = true; ++ incompressible_sectors += k.k->size; ++ break; ++ default: ++ compressed_sectors_compressed += ++ p.crc.compressed_size; ++ compressed_sectors_uncompressed += ++ p.crc.uncompressed_size; ++ compressed = true; ++ break; ++ } ++ } ++ ++ if (incompressible) ++ nr_incompressible_extents++; ++ else if (uncompressed) ++ nr_uncompressed_extents++; ++ else if (compressed) ++ nr_compressed_extents++; ++ } ++ bch2_trans_iter_exit(trans, &iter); ++ } ++ ++ bch2_trans_put(trans); ++ ++ if (ret) ++ return ret; ++ ++ prt_printf(out, "uncompressed:\n"); ++ prt_printf(out, " nr extents: %llu\n", nr_uncompressed_extents); ++ prt_printf(out, " size: "); ++ prt_human_readable_u64(out, uncompressed_sectors << 9); ++ prt_printf(out, "\n"); ++ ++ prt_printf(out, "compressed:\n"); ++ prt_printf(out, " nr extents: %llu\n", nr_compressed_extents); ++ prt_printf(out, " compressed size: "); ++ prt_human_readable_u64(out, compressed_sectors_compressed << 9); ++ prt_printf(out, "\n"); ++ prt_printf(out, " uncompressed size: "); ++ prt_human_readable_u64(out, compressed_sectors_uncompressed << 9); ++ prt_printf(out, "\n"); ++ ++ prt_printf(out, "incompressible:\n"); ++ prt_printf(out, " nr extents: %llu\n", nr_incompressible_extents); ++ prt_printf(out, " size: "); ++ prt_human_readable_u64(out, incompressible_sectors << 9); ++ prt_printf(out, "\n"); ++ return 0; ++} ++ ++static void bch2_gc_gens_pos_to_text(struct printbuf *out, struct bch_fs *c) ++{ ++ prt_printf(out, "%s: ", bch2_btree_ids[c->gc_gens_btree]); ++ bch2_bpos_to_text(out, c->gc_gens_pos); ++ prt_printf(out, "\n"); ++} ++ ++static void bch2_btree_wakeup_all(struct bch_fs *c) ++{ ++ struct btree_trans *trans; ++ ++ seqmutex_lock(&c->btree_trans_lock); ++ list_for_each_entry(trans, &c->btree_trans_list, list) { ++ struct btree_bkey_cached_common *b = READ_ONCE(trans->locking); ++ ++ if (b) ++ six_lock_wakeup_all(&b->lock); ++ ++ } ++ seqmutex_unlock(&c->btree_trans_lock); ++} ++ ++SHOW(bch2_fs) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); ++ ++ sysfs_print(minor, c->minor); ++ sysfs_printf(internal_uuid, "%pU", c->sb.uuid.b); ++ ++ sysfs_hprint(btree_cache_size, bch2_btree_cache_size(c)); ++ ++ if (attr == &sysfs_btree_write_stats) ++ bch2_btree_write_stats_to_text(out, c); ++ ++ sysfs_printf(btree_gc_periodic, "%u", (int) c->btree_gc_periodic); ++ ++ if (attr == &sysfs_gc_gens_pos) ++ bch2_gc_gens_pos_to_text(out, c); ++ ++ sysfs_printf(copy_gc_enabled, "%i", c->copy_gc_enabled); ++ ++ sysfs_printf(rebalance_enabled, "%i", c->rebalance.enabled); ++ sysfs_pd_controller_show(rebalance, &c->rebalance.pd); /* XXX */ ++ ++ if (attr == &sysfs_copy_gc_wait) ++ bch2_copygc_wait_to_text(out, c); ++ ++ if (attr == &sysfs_rebalance_work) ++ bch2_rebalance_work_to_text(out, c); ++ ++ sysfs_print(promote_whole_extents, c->promote_whole_extents); ++ ++ /* Debugging: */ ++ ++ if (attr == &sysfs_journal_debug) ++ bch2_journal_debug_to_text(out, &c->journal); ++ ++ if (attr == &sysfs_btree_updates) ++ bch2_btree_updates_to_text(out, c); ++ ++ if (attr == &sysfs_btree_cache) ++ bch2_btree_cache_to_text(out, c); ++ ++ if (attr == &sysfs_btree_key_cache) ++ bch2_btree_key_cache_to_text(out, &c->btree_key_cache); ++ ++ if (attr == &sysfs_stripes_heap) ++ bch2_stripes_heap_to_text(out, c); ++ ++ if (attr == &sysfs_open_buckets) ++ bch2_open_buckets_to_text(out, c); ++ ++ if (attr == &sysfs_open_buckets_partial) ++ bch2_open_buckets_partial_to_text(out, c); ++ ++ if (attr == &sysfs_write_points) ++ bch2_write_points_to_text(out, c); ++ ++ if (attr == &sysfs_compression_stats) ++ bch2_compression_stats_to_text(out, c); ++ ++ if (attr == &sysfs_new_stripes) ++ bch2_new_stripes_to_text(out, c); ++ ++ if (attr == &sysfs_io_timers_read) ++ bch2_io_timers_to_text(out, &c->io_clock[READ]); ++ ++ if (attr == &sysfs_io_timers_write) ++ bch2_io_timers_to_text(out, &c->io_clock[WRITE]); ++ ++ if (attr == &sysfs_moving_ctxts) ++ bch2_fs_moving_ctxts_to_text(out, c); ++ ++#ifdef BCH_WRITE_REF_DEBUG ++ if (attr == &sysfs_write_refs) ++ bch2_write_refs_to_text(out, c); ++#endif ++ ++ if (attr == &sysfs_nocow_lock_table) ++ bch2_nocow_locks_to_text(out, &c->nocow_locks); ++ ++ if (attr == &sysfs_disk_groups) ++ bch2_disk_groups_to_text(out, c); ++ ++ return 0; ++} ++ ++STORE(bch2_fs) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, kobj); ++ ++ if (attr == &sysfs_btree_gc_periodic) { ++ ssize_t ret = strtoul_safe(buf, c->btree_gc_periodic) ++ ?: (ssize_t) size; ++ ++ wake_up_process(c->gc_thread); ++ return ret; ++ } ++ ++ if (attr == &sysfs_copy_gc_enabled) { ++ ssize_t ret = strtoul_safe(buf, c->copy_gc_enabled) ++ ?: (ssize_t) size; ++ ++ if (c->copygc_thread) ++ wake_up_process(c->copygc_thread); ++ return ret; ++ } ++ ++ if (attr == &sysfs_rebalance_enabled) { ++ ssize_t ret = strtoul_safe(buf, c->rebalance.enabled) ++ ?: (ssize_t) size; ++ ++ rebalance_wakeup(c); ++ return ret; ++ } ++ ++ sysfs_pd_controller_store(rebalance, &c->rebalance.pd); ++ ++ sysfs_strtoul(promote_whole_extents, c->promote_whole_extents); ++ ++ /* Debugging: */ ++ ++ if (!test_bit(BCH_FS_STARTED, &c->flags)) ++ return -EPERM; ++ ++ /* Debugging: */ ++ ++ if (!test_bit(BCH_FS_RW, &c->flags)) ++ return -EROFS; ++ ++ if (attr == &sysfs_prune_cache) { ++ struct shrink_control sc; ++ ++ sc.gfp_mask = GFP_KERNEL; ++ sc.nr_to_scan = strtoul_or_return(buf); ++ c->btree_cache.shrink.scan_objects(&c->btree_cache.shrink, &sc); ++ } ++ ++ if (attr == &sysfs_btree_wakeup) ++ bch2_btree_wakeup_all(c); ++ ++ if (attr == &sysfs_trigger_gc) { ++ /* ++ * Full gc is currently incompatible with btree key cache: ++ */ ++#if 0 ++ down_read(&c->state_lock); ++ bch2_gc(c, false, false); ++ up_read(&c->state_lock); ++#else ++ bch2_gc_gens(c); ++#endif ++ } ++ ++ if (attr == &sysfs_trigger_discards) ++ bch2_do_discards(c); ++ ++ if (attr == &sysfs_trigger_invalidates) ++ bch2_do_invalidates(c); ++ ++#ifdef CONFIG_BCACHEFS_TESTS ++ if (attr == &sysfs_perf_test) { ++ char *tmp = kstrdup(buf, GFP_KERNEL), *p = tmp; ++ char *test = strsep(&p, " \t\n"); ++ char *nr_str = strsep(&p, " \t\n"); ++ char *threads_str = strsep(&p, " \t\n"); ++ unsigned threads; ++ u64 nr; ++ int ret = -EINVAL; ++ ++ if (threads_str && ++ !(ret = kstrtouint(threads_str, 10, &threads)) && ++ !(ret = bch2_strtoull_h(nr_str, &nr))) ++ ret = bch2_btree_perf_test(c, test, nr, threads); ++ kfree(tmp); ++ ++ if (ret) ++ size = ret; ++ } ++#endif ++ return size; ++} ++SYSFS_OPS(bch2_fs); ++ ++struct attribute *bch2_fs_files[] = { ++ &sysfs_minor, ++ &sysfs_btree_cache_size, ++ &sysfs_btree_write_stats, ++ ++ &sysfs_promote_whole_extents, ++ ++ &sysfs_compression_stats, ++ ++#ifdef CONFIG_BCACHEFS_TESTS ++ &sysfs_perf_test, ++#endif ++ NULL ++}; ++ ++/* counters dir */ ++ ++SHOW(bch2_fs_counters) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, counters_kobj); ++ u64 counter = 0; ++ u64 counter_since_mount = 0; ++ ++ printbuf_tabstop_push(out, 32); ++ ++ #define x(t, ...) \ ++ if (attr == &sysfs_##t) { \ ++ counter = percpu_u64_get(&c->counters[BCH_COUNTER_##t]);\ ++ counter_since_mount = counter - c->counters_on_mount[BCH_COUNTER_##t];\ ++ prt_printf(out, "since mount:"); \ ++ prt_tab(out); \ ++ prt_human_readable_u64(out, counter_since_mount); \ ++ prt_newline(out); \ ++ \ ++ prt_printf(out, "since filesystem creation:"); \ ++ prt_tab(out); \ ++ prt_human_readable_u64(out, counter); \ ++ prt_newline(out); \ ++ } ++ BCH_PERSISTENT_COUNTERS() ++ #undef x ++ return 0; ++} ++ ++STORE(bch2_fs_counters) { ++ return 0; ++} ++ ++SYSFS_OPS(bch2_fs_counters); ++ ++struct attribute *bch2_fs_counters_files[] = { ++#define x(t, ...) \ ++ &sysfs_##t, ++ BCH_PERSISTENT_COUNTERS() ++#undef x ++ NULL ++}; ++/* internal dir - just a wrapper */ ++ ++SHOW(bch2_fs_internal) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, internal); ++ ++ return bch2_fs_to_text(out, &c->kobj, attr); ++} ++ ++STORE(bch2_fs_internal) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, internal); ++ ++ return bch2_fs_store(&c->kobj, attr, buf, size); ++} ++SYSFS_OPS(bch2_fs_internal); ++ ++struct attribute *bch2_fs_internal_files[] = { ++ &sysfs_journal_debug, ++ &sysfs_btree_updates, ++ &sysfs_btree_cache, ++ &sysfs_btree_key_cache, ++ &sysfs_new_stripes, ++ &sysfs_stripes_heap, ++ &sysfs_open_buckets, ++ &sysfs_open_buckets_partial, ++ &sysfs_write_points, ++#ifdef BCH_WRITE_REF_DEBUG ++ &sysfs_write_refs, ++#endif ++ &sysfs_nocow_lock_table, ++ &sysfs_io_timers_read, ++ &sysfs_io_timers_write, ++ ++ &sysfs_trigger_gc, ++ &sysfs_trigger_discards, ++ &sysfs_trigger_invalidates, ++ &sysfs_prune_cache, ++ &sysfs_btree_wakeup, ++ ++ &sysfs_gc_gens_pos, ++ ++ &sysfs_copy_gc_enabled, ++ &sysfs_copy_gc_wait, ++ ++ &sysfs_rebalance_enabled, ++ &sysfs_rebalance_work, ++ sysfs_pd_controller_files(rebalance), ++ ++ &sysfs_moving_ctxts, ++ ++ &sysfs_internal_uuid, ++ ++ &sysfs_disk_groups, ++ NULL ++}; ++ ++/* options */ ++ ++SHOW(bch2_fs_opts_dir) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, opts_dir); ++ const struct bch_option *opt = container_of(attr, struct bch_option, attr); ++ int id = opt - bch2_opt_table; ++ u64 v = bch2_opt_get_by_id(&c->opts, id); ++ ++ bch2_opt_to_text(out, c, c->disk_sb.sb, opt, v, OPT_SHOW_FULL_LIST); ++ prt_char(out, '\n'); ++ ++ return 0; ++} ++ ++STORE(bch2_fs_opts_dir) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, opts_dir); ++ const struct bch_option *opt = container_of(attr, struct bch_option, attr); ++ int ret, id = opt - bch2_opt_table; ++ char *tmp; ++ u64 v; ++ ++ /* ++ * We don't need to take c->writes for correctness, but it eliminates an ++ * unsightly error message in the dmesg log when we're RO: ++ */ ++ if (unlikely(!bch2_write_ref_tryget(c, BCH_WRITE_REF_sysfs))) ++ return -EROFS; ++ ++ tmp = kstrdup(buf, GFP_KERNEL); ++ if (!tmp) { ++ ret = -ENOMEM; ++ goto err; ++ } ++ ++ ret = bch2_opt_parse(c, opt, strim(tmp), &v, NULL); ++ kfree(tmp); ++ ++ if (ret < 0) ++ goto err; ++ ++ ret = bch2_opt_check_may_set(c, id, v); ++ if (ret < 0) ++ goto err; ++ ++ bch2_opt_set_sb(c, opt, v); ++ bch2_opt_set_by_id(&c->opts, id, v); ++ ++ if ((id == Opt_background_target || ++ id == Opt_background_compression) && v) { ++ bch2_rebalance_add_work(c, S64_MAX); ++ rebalance_wakeup(c); ++ } ++ ++ ret = size; ++err: ++ bch2_write_ref_put(c, BCH_WRITE_REF_sysfs); ++ return ret; ++} ++SYSFS_OPS(bch2_fs_opts_dir); ++ ++struct attribute *bch2_fs_opts_dir_files[] = { NULL }; ++ ++int bch2_opts_create_sysfs_files(struct kobject *kobj) ++{ ++ const struct bch_option *i; ++ int ret; ++ ++ for (i = bch2_opt_table; ++ i < bch2_opt_table + bch2_opts_nr; ++ i++) { ++ if (!(i->flags & OPT_FS)) ++ continue; ++ ++ ret = sysfs_create_file(kobj, &i->attr); ++ if (ret) ++ return ret; ++ } ++ ++ return 0; ++} ++ ++/* time stats */ ++ ++SHOW(bch2_fs_time_stats) ++{ ++ struct bch_fs *c = container_of(kobj, struct bch_fs, time_stats); ++ ++#define x(name) \ ++ if (attr == &sysfs_time_stat_##name) \ ++ bch2_time_stats_to_text(out, &c->times[BCH_TIME_##name]); ++ BCH_TIME_STATS() ++#undef x ++ ++ return 0; ++} ++ ++STORE(bch2_fs_time_stats) ++{ ++ return size; ++} ++SYSFS_OPS(bch2_fs_time_stats); ++ ++struct attribute *bch2_fs_time_stats_files[] = { ++#define x(name) \ ++ &sysfs_time_stat_##name, ++ BCH_TIME_STATS() ++#undef x ++ NULL ++}; ++ ++static void dev_alloc_debug_to_text(struct printbuf *out, struct bch_dev *ca) ++{ ++ struct bch_fs *c = ca->fs; ++ struct bch_dev_usage stats = bch2_dev_usage_read(ca); ++ unsigned i, nr[BCH_DATA_NR]; ++ ++ memset(nr, 0, sizeof(nr)); ++ ++ for (i = 0; i < ARRAY_SIZE(c->open_buckets); i++) ++ nr[c->open_buckets[i].data_type]++; ++ ++ printbuf_tabstop_push(out, 8); ++ printbuf_tabstop_push(out, 16); ++ printbuf_tabstop_push(out, 16); ++ printbuf_tabstop_push(out, 16); ++ printbuf_tabstop_push(out, 16); ++ ++ prt_tab(out); ++ prt_str(out, "buckets"); ++ prt_tab_rjust(out); ++ prt_str(out, "sectors"); ++ prt_tab_rjust(out); ++ prt_str(out, "fragmented"); ++ prt_tab_rjust(out); ++ prt_newline(out); ++ ++ for (i = 0; i < BCH_DATA_NR; i++) { ++ prt_str(out, bch2_data_types[i]); ++ prt_tab(out); ++ prt_u64(out, stats.d[i].buckets); ++ prt_tab_rjust(out); ++ prt_u64(out, stats.d[i].sectors); ++ prt_tab_rjust(out); ++ prt_u64(out, stats.d[i].fragmented); ++ prt_tab_rjust(out); ++ prt_newline(out); ++ } ++ ++ prt_str(out, "ec"); ++ prt_tab(out); ++ prt_u64(out, stats.buckets_ec); ++ prt_tab_rjust(out); ++ prt_newline(out); ++ ++ prt_newline(out); ++ ++ prt_printf(out, "reserves:"); ++ prt_newline(out); ++ for (i = 0; i < BCH_WATERMARK_NR; i++) { ++ prt_str(out, bch2_watermarks[i]); ++ prt_tab(out); ++ prt_u64(out, bch2_dev_buckets_reserved(ca, i)); ++ prt_tab_rjust(out); ++ prt_newline(out); ++ } ++ ++ prt_newline(out); ++ ++ printbuf_tabstops_reset(out); ++ printbuf_tabstop_push(out, 24); ++ ++ prt_str(out, "freelist_wait"); ++ prt_tab(out); ++ prt_str(out, c->freelist_wait.list.first ? "waiting" : "empty"); ++ prt_newline(out); ++ ++ prt_str(out, "open buckets allocated"); ++ prt_tab(out); ++ prt_u64(out, OPEN_BUCKETS_COUNT - c->open_buckets_nr_free); ++ prt_newline(out); ++ ++ prt_str(out, "open buckets this dev"); ++ prt_tab(out); ++ prt_u64(out, ca->nr_open_buckets); ++ prt_newline(out); ++ ++ prt_str(out, "open buckets total"); ++ prt_tab(out); ++ prt_u64(out, OPEN_BUCKETS_COUNT); ++ prt_newline(out); ++ ++ prt_str(out, "open_buckets_wait"); ++ prt_tab(out); ++ prt_str(out, c->open_buckets_wait.list.first ? "waiting" : "empty"); ++ prt_newline(out); ++ ++ prt_str(out, "open_buckets_btree"); ++ prt_tab(out); ++ prt_u64(out, nr[BCH_DATA_btree]); ++ prt_newline(out); ++ ++ prt_str(out, "open_buckets_user"); ++ prt_tab(out); ++ prt_u64(out, nr[BCH_DATA_user]); ++ prt_newline(out); ++ ++ prt_str(out, "buckets_to_invalidate"); ++ prt_tab(out); ++ prt_u64(out, should_invalidate_buckets(ca, stats)); ++ prt_newline(out); ++ ++ prt_str(out, "btree reserve cache"); ++ prt_tab(out); ++ prt_u64(out, c->btree_reserve_cache_nr); ++ prt_newline(out); ++} ++ ++static const char * const bch2_rw[] = { ++ "read", ++ "write", ++ NULL ++}; ++ ++static void dev_iodone_to_text(struct printbuf *out, struct bch_dev *ca) ++{ ++ int rw, i; ++ ++ for (rw = 0; rw < 2; rw++) { ++ prt_printf(out, "%s:\n", bch2_rw[rw]); ++ ++ for (i = 1; i < BCH_DATA_NR; i++) ++ prt_printf(out, "%-12s:%12llu\n", ++ bch2_data_types[i], ++ percpu_u64_get(&ca->io_done->sectors[rw][i]) << 9); ++ } ++} ++ ++SHOW(bch2_dev) ++{ ++ struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); ++ struct bch_fs *c = ca->fs; ++ ++ sysfs_printf(uuid, "%pU\n", ca->uuid.b); ++ ++ sysfs_print(bucket_size, bucket_bytes(ca)); ++ sysfs_print(first_bucket, ca->mi.first_bucket); ++ sysfs_print(nbuckets, ca->mi.nbuckets); ++ sysfs_print(durability, ca->mi.durability); ++ sysfs_print(discard, ca->mi.discard); ++ ++ if (attr == &sysfs_label) { ++ if (ca->mi.group) { ++ mutex_lock(&c->sb_lock); ++ bch2_disk_path_to_text(out, c->disk_sb.sb, ++ ca->mi.group - 1); ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ prt_char(out, '\n'); ++ } ++ ++ if (attr == &sysfs_has_data) { ++ prt_bitflags(out, bch2_data_types, bch2_dev_has_data(c, ca)); ++ prt_char(out, '\n'); ++ } ++ ++ if (attr == &sysfs_state_rw) { ++ prt_string_option(out, bch2_member_states, ca->mi.state); ++ prt_char(out, '\n'); ++ } ++ ++ if (attr == &sysfs_iodone) ++ dev_iodone_to_text(out, ca); ++ ++ sysfs_print(io_latency_read, atomic64_read(&ca->cur_latency[READ])); ++ sysfs_print(io_latency_write, atomic64_read(&ca->cur_latency[WRITE])); ++ ++ if (attr == &sysfs_io_latency_stats_read) ++ bch2_time_stats_to_text(out, &ca->io_latency[READ]); ++ ++ if (attr == &sysfs_io_latency_stats_write) ++ bch2_time_stats_to_text(out, &ca->io_latency[WRITE]); ++ ++ sysfs_printf(congested, "%u%%", ++ clamp(atomic_read(&ca->congested), 0, CONGESTED_MAX) ++ * 100 / CONGESTED_MAX); ++ ++ if (attr == &sysfs_alloc_debug) ++ dev_alloc_debug_to_text(out, ca); ++ ++ return 0; ++} ++ ++STORE(bch2_dev) ++{ ++ struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj); ++ struct bch_fs *c = ca->fs; ++ struct bch_member *mi; ++ ++ if (attr == &sysfs_discard) { ++ bool v = strtoul_or_return(buf); ++ ++ mutex_lock(&c->sb_lock); ++ mi = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); ++ ++ if (v != BCH_MEMBER_DISCARD(mi)) { ++ SET_BCH_MEMBER_DISCARD(mi, v); ++ bch2_write_super(c); ++ } ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ if (attr == &sysfs_durability) { ++ u64 v = strtoul_or_return(buf); ++ ++ mutex_lock(&c->sb_lock); ++ mi = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx); ++ ++ if (v + 1 != BCH_MEMBER_DURABILITY(mi)) { ++ SET_BCH_MEMBER_DURABILITY(mi, v + 1); ++ bch2_write_super(c); ++ } ++ mutex_unlock(&c->sb_lock); ++ } ++ ++ if (attr == &sysfs_label) { ++ char *tmp; ++ int ret; ++ ++ tmp = kstrdup(buf, GFP_KERNEL); ++ if (!tmp) ++ return -ENOMEM; ++ ++ ret = bch2_dev_group_set(c, ca, strim(tmp)); ++ kfree(tmp); ++ if (ret) ++ return ret; ++ } ++ ++ return size; ++} ++SYSFS_OPS(bch2_dev); ++ ++struct attribute *bch2_dev_files[] = { ++ &sysfs_uuid, ++ &sysfs_bucket_size, ++ &sysfs_first_bucket, ++ &sysfs_nbuckets, ++ &sysfs_durability, ++ ++ /* settings: */ ++ &sysfs_discard, ++ &sysfs_state_rw, ++ &sysfs_label, ++ ++ &sysfs_has_data, ++ &sysfs_iodone, ++ ++ &sysfs_io_latency_read, ++ &sysfs_io_latency_write, ++ &sysfs_io_latency_stats_read, ++ &sysfs_io_latency_stats_write, ++ &sysfs_congested, ++ ++ /* debug: */ ++ &sysfs_alloc_debug, ++ NULL ++}; ++ ++#endif /* _BCACHEFS_SYSFS_H_ */ +diff --git a/fs/bcachefs/sysfs.h b/fs/bcachefs/sysfs.h +new file mode 100644 +index 000000000000..222cd5062702 +--- /dev/null ++++ b/fs/bcachefs/sysfs.h +@@ -0,0 +1,48 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_SYSFS_H_ ++#define _BCACHEFS_SYSFS_H_ ++ ++#include ++ ++#ifndef NO_BCACHEFS_SYSFS ++ ++struct attribute; ++struct sysfs_ops; ++ ++extern struct attribute *bch2_fs_files[]; ++extern struct attribute *bch2_fs_counters_files[]; ++extern struct attribute *bch2_fs_internal_files[]; ++extern struct attribute *bch2_fs_opts_dir_files[]; ++extern struct attribute *bch2_fs_time_stats_files[]; ++extern struct attribute *bch2_dev_files[]; ++ ++extern const struct sysfs_ops bch2_fs_sysfs_ops; ++extern const struct sysfs_ops bch2_fs_counters_sysfs_ops; ++extern const struct sysfs_ops bch2_fs_internal_sysfs_ops; ++extern const struct sysfs_ops bch2_fs_opts_dir_sysfs_ops; ++extern const struct sysfs_ops bch2_fs_time_stats_sysfs_ops; ++extern const struct sysfs_ops bch2_dev_sysfs_ops; ++ ++int bch2_opts_create_sysfs_files(struct kobject *); ++ ++#else ++ ++static struct attribute *bch2_fs_files[] = {}; ++static struct attribute *bch2_fs_counters_files[] = {}; ++static struct attribute *bch2_fs_internal_files[] = {}; ++static struct attribute *bch2_fs_opts_dir_files[] = {}; ++static struct attribute *bch2_fs_time_stats_files[] = {}; ++static struct attribute *bch2_dev_files[] = {}; ++ ++static const struct sysfs_ops bch2_fs_sysfs_ops; ++static const struct sysfs_ops bch2_fs_counters_sysfs_ops; ++static const struct sysfs_ops bch2_fs_internal_sysfs_ops; ++static const struct sysfs_ops bch2_fs_opts_dir_sysfs_ops; ++static const struct sysfs_ops bch2_fs_time_stats_sysfs_ops; ++static const struct sysfs_ops bch2_dev_sysfs_ops; ++ ++static inline int bch2_opts_create_sysfs_files(struct kobject *kobj) { return 0; } ++ ++#endif /* NO_BCACHEFS_SYSFS */ ++ ++#endif /* _BCACHEFS_SYSFS_H_ */ +diff --git a/fs/bcachefs/tests.c b/fs/bcachefs/tests.c +new file mode 100644 +index 000000000000..2fc9e60c754b +--- /dev/null ++++ b/fs/bcachefs/tests.c +@@ -0,0 +1,919 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#ifdef CONFIG_BCACHEFS_TESTS ++ ++#include "bcachefs.h" ++#include "btree_update.h" ++#include "journal_reclaim.h" ++#include "snapshot.h" ++#include "tests.h" ++ ++#include "linux/kthread.h" ++#include "linux/random.h" ++ ++static void delete_test_keys(struct bch_fs *c) ++{ ++ int ret; ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_extents, ++ SPOS(0, 0, U32_MAX), ++ POS(0, U64_MAX), ++ 0, NULL); ++ BUG_ON(ret); ++ ++ ret = bch2_btree_delete_range(c, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), ++ POS(0, U64_MAX), ++ 0, NULL); ++ BUG_ON(ret); ++} ++ ++/* unit tests */ ++ ++static int test_delete(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_i_cookie k; ++ int ret; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k.p.snapshot = U32_MAX; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_xattrs, k.k.p, ++ BTREE_ITER_INTENT); ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_btree_iter_traverse(&iter) ?: ++ bch2_trans_update(trans, &iter, &k.k_i, 0)); ++ bch_err_msg(c, ret, "update error"); ++ if (ret) ++ goto err; ++ ++ pr_info("deleting once"); ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_btree_iter_traverse(&iter) ?: ++ bch2_btree_delete_at(trans, &iter, 0)); ++ bch_err_msg(c, ret, "delete error (first)"); ++ if (ret) ++ goto err; ++ ++ pr_info("deleting twice"); ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_btree_iter_traverse(&iter) ?: ++ bch2_btree_delete_at(trans, &iter, 0)); ++ bch_err_msg(c, ret, "delete error (second)"); ++ if (ret) ++ goto err; ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int test_delete_written(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_i_cookie k; ++ int ret; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k.p.snapshot = U32_MAX; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_xattrs, k.k.p, ++ BTREE_ITER_INTENT); ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_btree_iter_traverse(&iter) ?: ++ bch2_trans_update(trans, &iter, &k.k_i, 0)); ++ bch_err_msg(c, ret, "update error"); ++ if (ret) ++ goto err; ++ ++ bch2_trans_unlock(trans); ++ bch2_journal_flush_all_pins(&c->journal); ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_btree_iter_traverse(&iter) ?: ++ bch2_btree_delete_at(trans, &iter, 0)); ++ bch_err_msg(c, ret, "delete error"); ++ if (ret) ++ goto err; ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int test_iterate(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter = { NULL }; ++ struct bkey_s_c k; ++ u64 i; ++ int ret = 0; ++ ++ delete_test_keys(c); ++ ++ pr_info("inserting test keys"); ++ ++ for (i = 0; i < nr; i++) { ++ struct bkey_i_cookie ck; ++ ++ bkey_cookie_init(&ck.k_i); ++ ck.k.p.offset = i; ++ ck.k.p.snapshot = U32_MAX; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_xattrs, &ck.k_i, NULL, 0); ++ bch_err_msg(c, ret, "insert error"); ++ if (ret) ++ goto err; ++ } ++ ++ pr_info("iterating forwards"); ++ ++ i = 0; ++ ++ ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), POS(0, U64_MAX), ++ 0, k, ({ ++ BUG_ON(k.k->p.offset != i++); ++ 0; ++ })); ++ bch_err_msg(c, ret, "error iterating forwards"); ++ if (ret) ++ goto err; ++ ++ BUG_ON(i != nr); ++ ++ pr_info("iterating backwards"); ++ ++ ret = for_each_btree_key_reverse(trans, iter, BTREE_ID_xattrs, ++ SPOS(0, U64_MAX, U32_MAX), 0, k, ++ ({ ++ BUG_ON(k.k->p.offset != --i); ++ 0; ++ })); ++ bch_err_msg(c, ret, "error iterating backwards"); ++ if (ret) ++ goto err; ++ ++ BUG_ON(i); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int test_iterate_extents(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter = { NULL }; ++ struct bkey_s_c k; ++ u64 i; ++ int ret = 0; ++ ++ delete_test_keys(c); ++ ++ pr_info("inserting test extents"); ++ ++ for (i = 0; i < nr; i += 8) { ++ struct bkey_i_cookie ck; ++ ++ bkey_cookie_init(&ck.k_i); ++ ck.k.p.offset = i + 8; ++ ck.k.p.snapshot = U32_MAX; ++ ck.k.size = 8; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_extents, &ck.k_i, NULL, 0); ++ bch_err_msg(c, ret, "insert error"); ++ if (ret) ++ goto err; ++ } ++ ++ pr_info("iterating forwards"); ++ ++ i = 0; ++ ++ ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_extents, ++ SPOS(0, 0, U32_MAX), POS(0, U64_MAX), ++ 0, k, ({ ++ BUG_ON(bkey_start_offset(k.k) != i); ++ i = k.k->p.offset; ++ 0; ++ })); ++ bch_err_msg(c, ret, "error iterating forwards"); ++ if (ret) ++ goto err; ++ ++ BUG_ON(i != nr); ++ ++ pr_info("iterating backwards"); ++ ++ ret = for_each_btree_key_reverse(trans, iter, BTREE_ID_extents, ++ SPOS(0, U64_MAX, U32_MAX), 0, k, ++ ({ ++ BUG_ON(k.k->p.offset != i); ++ i = bkey_start_offset(k.k); ++ 0; ++ })); ++ bch_err_msg(c, ret, "error iterating backwards"); ++ if (ret) ++ goto err; ++ ++ BUG_ON(i); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int test_iterate_slots(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter = { NULL }; ++ struct bkey_s_c k; ++ u64 i; ++ int ret = 0; ++ ++ delete_test_keys(c); ++ ++ pr_info("inserting test keys"); ++ ++ for (i = 0; i < nr; i++) { ++ struct bkey_i_cookie ck; ++ ++ bkey_cookie_init(&ck.k_i); ++ ck.k.p.offset = i * 2; ++ ck.k.p.snapshot = U32_MAX; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_xattrs, &ck.k_i, NULL, 0); ++ bch_err_msg(c, ret, "insert error"); ++ if (ret) ++ goto err; ++ } ++ ++ pr_info("iterating forwards"); ++ ++ i = 0; ++ ++ ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), POS(0, U64_MAX), ++ 0, k, ({ ++ BUG_ON(k.k->p.offset != i); ++ i += 2; ++ 0; ++ })); ++ bch_err_msg(c, ret, "error iterating forwards"); ++ if (ret) ++ goto err; ++ ++ BUG_ON(i != nr * 2); ++ ++ pr_info("iterating forwards by slots"); ++ ++ i = 0; ++ ++ ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), POS(0, U64_MAX), ++ BTREE_ITER_SLOTS, k, ({ ++ if (i >= nr * 2) ++ break; ++ ++ BUG_ON(k.k->p.offset != i); ++ BUG_ON(bkey_deleted(k.k) != (i & 1)); ++ ++ i++; ++ 0; ++ })); ++ if (ret < 0) { ++ bch_err_msg(c, ret, "error iterating forwards by slots"); ++ goto err; ++ } ++ ret = 0; ++err: ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int test_iterate_slots_extents(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter = { NULL }; ++ struct bkey_s_c k; ++ u64 i; ++ int ret = 0; ++ ++ delete_test_keys(c); ++ ++ pr_info("inserting test keys"); ++ ++ for (i = 0; i < nr; i += 16) { ++ struct bkey_i_cookie ck; ++ ++ bkey_cookie_init(&ck.k_i); ++ ck.k.p.offset = i + 16; ++ ck.k.p.snapshot = U32_MAX; ++ ck.k.size = 8; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_extents, &ck.k_i, NULL, 0); ++ bch_err_msg(c, ret, "insert error"); ++ if (ret) ++ goto err; ++ } ++ ++ pr_info("iterating forwards"); ++ ++ i = 0; ++ ++ ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_extents, ++ SPOS(0, 0, U32_MAX), POS(0, U64_MAX), ++ 0, k, ({ ++ BUG_ON(bkey_start_offset(k.k) != i + 8); ++ BUG_ON(k.k->size != 8); ++ i += 16; ++ 0; ++ })); ++ bch_err_msg(c, ret, "error iterating forwards"); ++ if (ret) ++ goto err; ++ ++ BUG_ON(i != nr); ++ ++ pr_info("iterating forwards by slots"); ++ ++ i = 0; ++ ++ ret = for_each_btree_key2_upto(trans, iter, BTREE_ID_extents, ++ SPOS(0, 0, U32_MAX), POS(0, U64_MAX), ++ BTREE_ITER_SLOTS, k, ({ ++ if (i == nr) ++ break; ++ BUG_ON(bkey_deleted(k.k) != !(i % 16)); ++ ++ BUG_ON(bkey_start_offset(k.k) != i); ++ BUG_ON(k.k->size != 8); ++ i = k.k->p.offset; ++ 0; ++ })); ++ bch_err_msg(c, ret, "error iterating forwards by slots"); ++ if (ret) ++ goto err; ++ ret = 0; ++err: ++ bch2_trans_put(trans); ++ return 0; ++} ++ ++/* ++ * XXX: we really want to make sure we've got a btree with depth > 0 for these ++ * tests ++ */ ++static int test_peek_end(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), 0); ++ ++ lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_upto(&iter, POS(0, U64_MAX)))); ++ BUG_ON(k.k); ++ ++ lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_upto(&iter, POS(0, U64_MAX)))); ++ BUG_ON(k.k); ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return 0; ++} ++ ++static int test_peek_end_extents(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_extents, ++ SPOS(0, 0, U32_MAX), 0); ++ ++ lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_upto(&iter, POS(0, U64_MAX)))); ++ BUG_ON(k.k); ++ ++ lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_upto(&iter, POS(0, U64_MAX)))); ++ BUG_ON(k.k); ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return 0; ++} ++ ++/* extent unit tests */ ++ ++static u64 test_version; ++ ++static int insert_test_extent(struct bch_fs *c, ++ u64 start, u64 end) ++{ ++ struct bkey_i_cookie k; ++ int ret; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k_i.k.p.offset = end; ++ k.k_i.k.p.snapshot = U32_MAX; ++ k.k_i.k.size = end - start; ++ k.k_i.k.version.lo = test_version++; ++ ++ ret = bch2_btree_insert(c, BTREE_ID_extents, &k.k_i, NULL, 0); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int __test_extent_overwrite(struct bch_fs *c, ++ u64 e1_start, u64 e1_end, ++ u64 e2_start, u64 e2_end) ++{ ++ int ret; ++ ++ ret = insert_test_extent(c, e1_start, e1_end) ?: ++ insert_test_extent(c, e2_start, e2_end); ++ ++ delete_test_keys(c); ++ return ret; ++} ++ ++static int test_extent_overwrite_front(struct bch_fs *c, u64 nr) ++{ ++ return __test_extent_overwrite(c, 0, 64, 0, 32) ?: ++ __test_extent_overwrite(c, 8, 64, 0, 32); ++} ++ ++static int test_extent_overwrite_back(struct bch_fs *c, u64 nr) ++{ ++ return __test_extent_overwrite(c, 0, 64, 32, 64) ?: ++ __test_extent_overwrite(c, 0, 64, 32, 72); ++} ++ ++static int test_extent_overwrite_middle(struct bch_fs *c, u64 nr) ++{ ++ return __test_extent_overwrite(c, 0, 64, 32, 40); ++} ++ ++static int test_extent_overwrite_all(struct bch_fs *c, u64 nr) ++{ ++ return __test_extent_overwrite(c, 32, 64, 0, 64) ?: ++ __test_extent_overwrite(c, 32, 64, 0, 128) ?: ++ __test_extent_overwrite(c, 32, 64, 32, 64) ?: ++ __test_extent_overwrite(c, 32, 64, 32, 128); ++} ++ ++static int insert_test_overlapping_extent(struct bch_fs *c, u64 inum, u64 start, u32 len, u32 snapid) ++{ ++ struct bkey_i_cookie k; ++ int ret; ++ ++ bkey_cookie_init(&k.k_i); ++ k.k_i.k.p.inode = inum; ++ k.k_i.k.p.offset = start + len; ++ k.k_i.k.p.snapshot = snapid; ++ k.k_i.k.size = len; ++ ++ ret = bch2_trans_do(c, NULL, NULL, 0, ++ bch2_btree_insert_nonextent(trans, BTREE_ID_extents, &k.k_i, ++ BTREE_UPDATE_INTERNAL_SNAPSHOT_NODE)); ++ bch_err_fn(c, ret); ++ return ret; ++} ++ ++static int test_extent_create_overlapping(struct bch_fs *c, u64 inum) ++{ ++ return insert_test_overlapping_extent(c, inum, 0, 16, U32_MAX - 2) ?: /* overwrite entire */ ++ insert_test_overlapping_extent(c, inum, 2, 8, U32_MAX - 2) ?: ++ insert_test_overlapping_extent(c, inum, 4, 4, U32_MAX) ?: ++ insert_test_overlapping_extent(c, inum, 32, 8, U32_MAX - 2) ?: /* overwrite front/back */ ++ insert_test_overlapping_extent(c, inum, 36, 8, U32_MAX) ?: ++ insert_test_overlapping_extent(c, inum, 60, 8, U32_MAX - 2) ?: ++ insert_test_overlapping_extent(c, inum, 64, 8, U32_MAX); ++} ++ ++/* snapshot unit tests */ ++ ++/* Test skipping over keys in unrelated snapshots: */ ++static int test_snapshot_filter(struct bch_fs *c, u32 snapid_lo, u32 snapid_hi) ++{ ++ struct btree_trans *trans; ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_i_cookie cookie; ++ int ret; ++ ++ bkey_cookie_init(&cookie.k_i); ++ cookie.k.p.snapshot = snapid_hi; ++ ret = bch2_btree_insert(c, BTREE_ID_xattrs, &cookie.k_i, NULL, 0); ++ if (ret) ++ return ret; ++ ++ trans = bch2_trans_get(c); ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_xattrs, ++ SPOS(0, 0, snapid_lo), 0); ++ lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek_upto(&iter, POS(0, U64_MAX)))); ++ ++ BUG_ON(k.k->p.snapshot != U32_MAX); ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int test_snapshots(struct bch_fs *c, u64 nr) ++{ ++ struct bkey_i_cookie cookie; ++ u32 snapids[2]; ++ u32 snapid_subvols[2] = { 1, 1 }; ++ int ret; ++ ++ bkey_cookie_init(&cookie.k_i); ++ cookie.k.p.snapshot = U32_MAX; ++ ret = bch2_btree_insert(c, BTREE_ID_xattrs, &cookie.k_i, NULL, 0); ++ if (ret) ++ return ret; ++ ++ ret = bch2_trans_do(c, NULL, NULL, 0, ++ bch2_snapshot_node_create(trans, U32_MAX, ++ snapids, ++ snapid_subvols, ++ 2)); ++ if (ret) ++ return ret; ++ ++ if (snapids[0] > snapids[1]) ++ swap(snapids[0], snapids[1]); ++ ++ ret = test_snapshot_filter(c, snapids[0], snapids[1]); ++ bch_err_msg(c, ret, "from test_snapshot_filter"); ++ return ret; ++} ++ ++/* perf tests */ ++ ++static u64 test_rand(void) ++{ ++ u64 v; ++ ++ get_random_bytes(&v, sizeof(v)); ++ return v; ++} ++ ++static int rand_insert(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct bkey_i_cookie k; ++ int ret = 0; ++ u64 i; ++ ++ for (i = 0; i < nr; i++) { ++ bkey_cookie_init(&k.k_i); ++ k.k.p.offset = test_rand(); ++ k.k.p.snapshot = U32_MAX; ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k.k_i, 0)); ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int rand_insert_multi(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct bkey_i_cookie k[8]; ++ int ret = 0; ++ unsigned j; ++ u64 i; ++ ++ for (i = 0; i < nr; i += ARRAY_SIZE(k)) { ++ for (j = 0; j < ARRAY_SIZE(k); j++) { ++ bkey_cookie_init(&k[j].k_i); ++ k[j].k.p.offset = test_rand(); ++ k[j].k.p.snapshot = U32_MAX; ++ } ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k[0].k_i, 0) ?: ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k[1].k_i, 0) ?: ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k[2].k_i, 0) ?: ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k[3].k_i, 0) ?: ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k[4].k_i, 0) ?: ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k[5].k_i, 0) ?: ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k[6].k_i, 0) ?: ++ bch2_btree_insert_trans(trans, BTREE_ID_xattrs, &k[7].k_i, 0)); ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int rand_lookup(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ u64 i; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), 0); ++ ++ for (i = 0; i < nr; i++) { ++ bch2_btree_iter_set_pos(&iter, SPOS(0, test_rand(), U32_MAX)); ++ ++ lockrestart_do(trans, bkey_err(k = bch2_btree_iter_peek(&iter))); ++ ret = bkey_err(k); ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int rand_mixed_trans(struct btree_trans *trans, ++ struct btree_iter *iter, ++ struct bkey_i_cookie *cookie, ++ u64 i, u64 pos) ++{ ++ struct bkey_s_c k; ++ int ret; ++ ++ bch2_btree_iter_set_pos(iter, SPOS(0, pos, U32_MAX)); ++ ++ k = bch2_btree_iter_peek(iter); ++ ret = bkey_err(k); ++ bch_err_msg(trans->c, ret, "lookup error"); ++ if (ret) ++ return ret; ++ ++ if (!(i & 3) && k.k) { ++ bkey_cookie_init(&cookie->k_i); ++ cookie->k.p = iter->pos; ++ ret = bch2_trans_update(trans, iter, &cookie->k_i, 0); ++ } ++ ++ return ret; ++} ++ ++static int rand_mixed(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_i_cookie cookie; ++ int ret = 0; ++ u64 i, rand; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), 0); ++ ++ for (i = 0; i < nr; i++) { ++ rand = test_rand(); ++ ret = commit_do(trans, NULL, NULL, 0, ++ rand_mixed_trans(trans, &iter, &cookie, i, rand)); ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_iter_exit(trans, &iter); ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int __do_delete(struct btree_trans *trans, struct bpos pos) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ int ret = 0; ++ ++ bch2_trans_iter_init(trans, &iter, BTREE_ID_xattrs, pos, ++ BTREE_ITER_INTENT); ++ k = bch2_btree_iter_peek(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err; ++ ++ if (!k.k) ++ goto err; ++ ++ ret = bch2_btree_delete_at(trans, &iter, 0); ++err: ++ bch2_trans_iter_exit(trans, &iter); ++ return ret; ++} ++ ++static int rand_delete(struct bch_fs *c, u64 nr) ++{ ++ struct btree_trans *trans = bch2_trans_get(c); ++ int ret = 0; ++ u64 i; ++ ++ for (i = 0; i < nr; i++) { ++ struct bpos pos = SPOS(0, test_rand(), U32_MAX); ++ ++ ret = commit_do(trans, NULL, NULL, 0, ++ __do_delete(trans, pos)); ++ if (ret) ++ break; ++ } ++ ++ bch2_trans_put(trans); ++ return ret; ++} ++ ++static int seq_insert(struct bch_fs *c, u64 nr) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct bkey_i_cookie insert; ++ ++ bkey_cookie_init(&insert.k_i); ++ ++ return bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), ++ BTREE_ITER_SLOTS|BTREE_ITER_INTENT, k, ++ NULL, NULL, 0, ({ ++ if (iter.pos.offset >= nr) ++ break; ++ insert.k.p = iter.pos; ++ bch2_trans_update(trans, &iter, &insert.k_i, 0); ++ }))); ++} ++ ++static int seq_lookup(struct bch_fs *c, u64 nr) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ ++ return bch2_trans_run(c, ++ for_each_btree_key2_upto(trans, iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), POS(0, U64_MAX), ++ 0, k, ++ 0)); ++} ++ ++static int seq_overwrite(struct bch_fs *c, u64 nr) ++{ ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ ++ return bch2_trans_run(c, ++ for_each_btree_key_commit(trans, iter, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), ++ BTREE_ITER_INTENT, k, ++ NULL, NULL, 0, ({ ++ struct bkey_i_cookie u; ++ ++ bkey_reassemble(&u.k_i, k); ++ bch2_trans_update(trans, &iter, &u.k_i, 0); ++ }))); ++} ++ ++static int seq_delete(struct bch_fs *c, u64 nr) ++{ ++ return bch2_btree_delete_range(c, BTREE_ID_xattrs, ++ SPOS(0, 0, U32_MAX), ++ POS(0, U64_MAX), ++ 0, NULL); ++} ++ ++typedef int (*perf_test_fn)(struct bch_fs *, u64); ++ ++struct test_job { ++ struct bch_fs *c; ++ u64 nr; ++ unsigned nr_threads; ++ perf_test_fn fn; ++ ++ atomic_t ready; ++ wait_queue_head_t ready_wait; ++ ++ atomic_t done; ++ struct completion done_completion; ++ ++ u64 start; ++ u64 finish; ++ int ret; ++}; ++ ++static int btree_perf_test_thread(void *data) ++{ ++ struct test_job *j = data; ++ int ret; ++ ++ if (atomic_dec_and_test(&j->ready)) { ++ wake_up(&j->ready_wait); ++ j->start = sched_clock(); ++ } else { ++ wait_event(j->ready_wait, !atomic_read(&j->ready)); ++ } ++ ++ ret = j->fn(j->c, div64_u64(j->nr, j->nr_threads)); ++ if (ret) { ++ bch_err(j->c, "%ps: error %s", j->fn, bch2_err_str(ret)); ++ j->ret = ret; ++ } ++ ++ if (atomic_dec_and_test(&j->done)) { ++ j->finish = sched_clock(); ++ complete(&j->done_completion); ++ } ++ ++ return 0; ++} ++ ++int bch2_btree_perf_test(struct bch_fs *c, const char *testname, ++ u64 nr, unsigned nr_threads) ++{ ++ struct test_job j = { .c = c, .nr = nr, .nr_threads = nr_threads }; ++ char name_buf[20]; ++ struct printbuf nr_buf = PRINTBUF; ++ struct printbuf per_sec_buf = PRINTBUF; ++ unsigned i; ++ u64 time; ++ ++ atomic_set(&j.ready, nr_threads); ++ init_waitqueue_head(&j.ready_wait); ++ ++ atomic_set(&j.done, nr_threads); ++ init_completion(&j.done_completion); ++ ++#define perf_test(_test) \ ++ if (!strcmp(testname, #_test)) j.fn = _test ++ ++ perf_test(rand_insert); ++ perf_test(rand_insert_multi); ++ perf_test(rand_lookup); ++ perf_test(rand_mixed); ++ perf_test(rand_delete); ++ ++ perf_test(seq_insert); ++ perf_test(seq_lookup); ++ perf_test(seq_overwrite); ++ perf_test(seq_delete); ++ ++ /* a unit test, not a perf test: */ ++ perf_test(test_delete); ++ perf_test(test_delete_written); ++ perf_test(test_iterate); ++ perf_test(test_iterate_extents); ++ perf_test(test_iterate_slots); ++ perf_test(test_iterate_slots_extents); ++ perf_test(test_peek_end); ++ perf_test(test_peek_end_extents); ++ ++ perf_test(test_extent_overwrite_front); ++ perf_test(test_extent_overwrite_back); ++ perf_test(test_extent_overwrite_middle); ++ perf_test(test_extent_overwrite_all); ++ perf_test(test_extent_create_overlapping); ++ ++ perf_test(test_snapshots); ++ ++ if (!j.fn) { ++ pr_err("unknown test %s", testname); ++ return -EINVAL; ++ } ++ ++ //pr_info("running test %s:", testname); ++ ++ if (nr_threads == 1) ++ btree_perf_test_thread(&j); ++ else ++ for (i = 0; i < nr_threads; i++) ++ kthread_run(btree_perf_test_thread, &j, ++ "bcachefs perf test[%u]", i); ++ ++ while (wait_for_completion_interruptible(&j.done_completion)) ++ ; ++ ++ time = j.finish - j.start; ++ ++ scnprintf(name_buf, sizeof(name_buf), "%s:", testname); ++ prt_human_readable_u64(&nr_buf, nr); ++ prt_human_readable_u64(&per_sec_buf, div64_u64(nr * NSEC_PER_SEC, time)); ++ printk(KERN_INFO "%-12s %s with %u threads in %5llu sec, %5llu nsec per iter, %5s per sec\n", ++ name_buf, nr_buf.buf, nr_threads, ++ div_u64(time, NSEC_PER_SEC), ++ div_u64(time * nr_threads, nr), ++ per_sec_buf.buf); ++ printbuf_exit(&per_sec_buf); ++ printbuf_exit(&nr_buf); ++ return j.ret; ++} ++ ++#endif /* CONFIG_BCACHEFS_TESTS */ +diff --git a/fs/bcachefs/tests.h b/fs/bcachefs/tests.h +new file mode 100644 +index 000000000000..c73b18aea7e0 +--- /dev/null ++++ b/fs/bcachefs/tests.h +@@ -0,0 +1,15 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_TEST_H ++#define _BCACHEFS_TEST_H ++ ++struct bch_fs; ++ ++#ifdef CONFIG_BCACHEFS_TESTS ++ ++int bch2_btree_perf_test(struct bch_fs *, const char *, u64, unsigned); ++ ++#else ++ ++#endif /* CONFIG_BCACHEFS_TESTS */ ++ ++#endif /* _BCACHEFS_TEST_H */ +diff --git a/fs/bcachefs/trace.c b/fs/bcachefs/trace.c +new file mode 100644 +index 000000000000..33efa6005c6f +--- /dev/null ++++ b/fs/bcachefs/trace.c +@@ -0,0 +1,16 @@ ++// SPDX-License-Identifier: GPL-2.0 ++#include "bcachefs.h" ++#include "alloc_types.h" ++#include "buckets.h" ++#include "btree_cache.h" ++#include "btree_iter.h" ++#include "btree_locking.h" ++#include "btree_update_interior.h" ++#include "keylist.h" ++#include "opts.h" ++#include "six.h" ++ ++#include ++ ++#define CREATE_TRACE_POINTS ++#include "trace.h" +diff --git a/fs/bcachefs/trace.h b/fs/bcachefs/trace.h +new file mode 100644 +index 000000000000..19264492151b +--- /dev/null ++++ b/fs/bcachefs/trace.h +@@ -0,0 +1,1284 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#undef TRACE_SYSTEM ++#define TRACE_SYSTEM bcachefs ++ ++#if !defined(_TRACE_BCACHEFS_H) || defined(TRACE_HEADER_MULTI_READ) ++#define _TRACE_BCACHEFS_H ++ ++#include ++ ++#define TRACE_BPOS_entries(name) \ ++ __field(u64, name##_inode ) \ ++ __field(u64, name##_offset ) \ ++ __field(u32, name##_snapshot ) ++ ++#define TRACE_BPOS_assign(dst, src) \ ++ __entry->dst##_inode = (src).inode; \ ++ __entry->dst##_offset = (src).offset; \ ++ __entry->dst##_snapshot = (src).snapshot ++ ++DECLARE_EVENT_CLASS(bpos, ++ TP_PROTO(const struct bpos *p), ++ TP_ARGS(p), ++ ++ TP_STRUCT__entry( ++ TRACE_BPOS_entries(p) ++ ), ++ ++ TP_fast_assign( ++ TRACE_BPOS_assign(p, *p); ++ ), ++ ++ TP_printk("%llu:%llu:%u", __entry->p_inode, __entry->p_offset, __entry->p_snapshot) ++); ++ ++DECLARE_EVENT_CLASS(bkey, ++ TP_PROTO(struct bch_fs *c, const char *k), ++ TP_ARGS(c, k), ++ ++ TP_STRUCT__entry( ++ __string(k, k ) ++ ), ++ ++ TP_fast_assign( ++ __assign_str(k, k); ++ ), ++ ++ TP_printk("%s", __get_str(k)) ++); ++ ++DECLARE_EVENT_CLASS(btree_node, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u8, level ) ++ __field(u8, btree_id ) ++ TRACE_BPOS_entries(pos) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->level = b->c.level; ++ __entry->btree_id = b->c.btree_id; ++ TRACE_BPOS_assign(pos, b->key.k.p); ++ ), ++ ++ TP_printk("%d,%d %u %s %llu:%llu:%u", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->level, ++ bch2_btree_ids[__entry->btree_id], ++ __entry->pos_inode, __entry->pos_offset, __entry->pos_snapshot) ++); ++ ++DECLARE_EVENT_CLASS(bch_fs, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ ), ++ ++ TP_printk("%d,%d", MAJOR(__entry->dev), MINOR(__entry->dev)) ++); ++ ++DECLARE_EVENT_CLASS(bio, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(sector_t, sector ) ++ __field(unsigned int, nr_sector ) ++ __array(char, rwbs, 6 ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = bio->bi_bdev ? bio_dev(bio) : 0; ++ __entry->sector = bio->bi_iter.bi_sector; ++ __entry->nr_sector = bio->bi_iter.bi_size >> 9; ++ blk_fill_rwbs(__entry->rwbs, bio->bi_opf); ++ ), ++ ++ TP_printk("%d,%d %s %llu + %u", ++ MAJOR(__entry->dev), MINOR(__entry->dev), __entry->rwbs, ++ (unsigned long long)__entry->sector, __entry->nr_sector) ++); ++ ++/* super-io.c: */ ++TRACE_EVENT(write_super, ++ TP_PROTO(struct bch_fs *c, unsigned long ip), ++ TP_ARGS(c, ip), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(unsigned long, ip ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->ip = ip; ++ ), ++ ++ TP_printk("%d,%d for %pS", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ (void *) __entry->ip) ++); ++ ++/* io.c: */ ++ ++DEFINE_EVENT(bio, read_promote, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++TRACE_EVENT(read_nopromote, ++ TP_PROTO(struct bch_fs *c, int ret), ++ TP_ARGS(c, ret), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __array(char, ret, 32 ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ strscpy(__entry->ret, bch2_err_str(ret), sizeof(__entry->ret)); ++ ), ++ ++ TP_printk("%d,%d ret %s", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->ret) ++); ++ ++DEFINE_EVENT(bio, read_bounce, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++DEFINE_EVENT(bio, read_split, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++DEFINE_EVENT(bio, read_retry, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++DEFINE_EVENT(bio, read_reuse_race, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++/* Journal */ ++ ++DEFINE_EVENT(bch_fs, journal_full, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, journal_entry_full, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bio, journal_write, ++ TP_PROTO(struct bio *bio), ++ TP_ARGS(bio) ++); ++ ++TRACE_EVENT(journal_reclaim_start, ++ TP_PROTO(struct bch_fs *c, bool direct, bool kicked, ++ u64 min_nr, u64 min_key_cache, ++ u64 prereserved, u64 prereserved_total, ++ u64 btree_cache_dirty, u64 btree_cache_total, ++ u64 btree_key_cache_dirty, u64 btree_key_cache_total), ++ TP_ARGS(c, direct, kicked, min_nr, min_key_cache, prereserved, prereserved_total, ++ btree_cache_dirty, btree_cache_total, ++ btree_key_cache_dirty, btree_key_cache_total), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(bool, direct ) ++ __field(bool, kicked ) ++ __field(u64, min_nr ) ++ __field(u64, min_key_cache ) ++ __field(u64, prereserved ) ++ __field(u64, prereserved_total ) ++ __field(u64, btree_cache_dirty ) ++ __field(u64, btree_cache_total ) ++ __field(u64, btree_key_cache_dirty ) ++ __field(u64, btree_key_cache_total ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->direct = direct; ++ __entry->kicked = kicked; ++ __entry->min_nr = min_nr; ++ __entry->min_key_cache = min_key_cache; ++ __entry->prereserved = prereserved; ++ __entry->prereserved_total = prereserved_total; ++ __entry->btree_cache_dirty = btree_cache_dirty; ++ __entry->btree_cache_total = btree_cache_total; ++ __entry->btree_key_cache_dirty = btree_key_cache_dirty; ++ __entry->btree_key_cache_total = btree_key_cache_total; ++ ), ++ ++ TP_printk("%d,%d direct %u kicked %u min %llu key cache %llu prereserved %llu/%llu btree cache %llu/%llu key cache %llu/%llu", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->direct, ++ __entry->kicked, ++ __entry->min_nr, ++ __entry->min_key_cache, ++ __entry->prereserved, ++ __entry->prereserved_total, ++ __entry->btree_cache_dirty, ++ __entry->btree_cache_total, ++ __entry->btree_key_cache_dirty, ++ __entry->btree_key_cache_total) ++); ++ ++TRACE_EVENT(journal_reclaim_finish, ++ TP_PROTO(struct bch_fs *c, u64 nr_flushed), ++ TP_ARGS(c, nr_flushed), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u64, nr_flushed ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->nr_flushed = nr_flushed; ++ ), ++ ++ TP_printk("%d,%d flushed %llu", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->nr_flushed) ++); ++ ++/* bset.c: */ ++ ++DEFINE_EVENT(bpos, bkey_pack_pos_fail, ++ TP_PROTO(const struct bpos *p), ++ TP_ARGS(p) ++); ++ ++/* Btree cache: */ ++ ++TRACE_EVENT(btree_cache_scan, ++ TP_PROTO(long nr_to_scan, long can_free, long ret), ++ TP_ARGS(nr_to_scan, can_free, ret), ++ ++ TP_STRUCT__entry( ++ __field(long, nr_to_scan ) ++ __field(long, can_free ) ++ __field(long, ret ) ++ ), ++ ++ TP_fast_assign( ++ __entry->nr_to_scan = nr_to_scan; ++ __entry->can_free = can_free; ++ __entry->ret = ret; ++ ), ++ ++ TP_printk("scanned for %li nodes, can free %li, ret %li", ++ __entry->nr_to_scan, __entry->can_free, __entry->ret) ++); ++ ++DEFINE_EVENT(btree_node, btree_cache_reap, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(bch_fs, btree_cache_cannibalize_lock_fail, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, btree_cache_cannibalize_lock, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, btree_cache_cannibalize, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, btree_cache_cannibalize_unlock, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++/* Btree */ ++ ++DEFINE_EVENT(btree_node, btree_node_read, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++TRACE_EVENT(btree_node_write, ++ TP_PROTO(struct btree *b, unsigned bytes, unsigned sectors), ++ TP_ARGS(b, bytes, sectors), ++ ++ TP_STRUCT__entry( ++ __field(enum btree_node_type, type) ++ __field(unsigned, bytes ) ++ __field(unsigned, sectors ) ++ ), ++ ++ TP_fast_assign( ++ __entry->type = btree_node_type(b); ++ __entry->bytes = bytes; ++ __entry->sectors = sectors; ++ ), ++ ++ TP_printk("bkey type %u bytes %u sectors %u", ++ __entry->type , __entry->bytes, __entry->sectors) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_alloc, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_free, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++TRACE_EVENT(btree_reserve_get_fail, ++ TP_PROTO(const char *trans_fn, ++ unsigned long caller_ip, ++ size_t required, ++ int ret), ++ TP_ARGS(trans_fn, caller_ip, required, ret), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(size_t, required ) ++ __array(char, ret, 32 ) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans_fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ __entry->required = required; ++ strscpy(__entry->ret, bch2_err_str(ret), sizeof(__entry->ret)); ++ ), ++ ++ TP_printk("%s %pS required %zu ret %s", ++ __entry->trans_fn, ++ (void *) __entry->caller_ip, ++ __entry->required, ++ __entry->ret) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_compact, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_merge, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_split, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_rewrite, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++DEFINE_EVENT(btree_node, btree_node_set_root, ++ TP_PROTO(struct bch_fs *c, struct btree *b), ++ TP_ARGS(c, b) ++); ++ ++TRACE_EVENT(btree_path_relock_fail, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path, ++ unsigned level), ++ TP_ARGS(trans, caller_ip, path, level), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(u8, btree_id ) ++ __field(u8, level ) ++ TRACE_BPOS_entries(pos) ++ __array(char, node, 24 ) ++ __field(u8, self_read_count ) ++ __field(u8, self_intent_count) ++ __field(u8, read_count ) ++ __field(u8, intent_count ) ++ __field(u32, iter_lock_seq ) ++ __field(u32, node_lock_seq ) ++ ), ++ ++ TP_fast_assign( ++ struct btree *b = btree_path_node(path, level); ++ struct six_lock_count c; ++ ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ __entry->btree_id = path->btree_id; ++ __entry->level = path->level; ++ TRACE_BPOS_assign(pos, path->pos); ++ ++ c = bch2_btree_node_lock_counts(trans, NULL, &path->l[level].b->c, level), ++ __entry->self_read_count = c.n[SIX_LOCK_read]; ++ __entry->self_intent_count = c.n[SIX_LOCK_intent]; ++ ++ if (IS_ERR(b)) { ++ strscpy(__entry->node, bch2_err_str(PTR_ERR(b)), sizeof(__entry->node)); ++ } else { ++ c = six_lock_counts(&path->l[level].b->c.lock); ++ __entry->read_count = c.n[SIX_LOCK_read]; ++ __entry->intent_count = c.n[SIX_LOCK_intent]; ++ scnprintf(__entry->node, sizeof(__entry->node), "%px", b); ++ } ++ __entry->iter_lock_seq = path->l[level].lock_seq; ++ __entry->node_lock_seq = is_btree_node(path, level) ++ ? six_lock_seq(&path->l[level].b->c.lock) ++ : 0; ++ ), ++ ++ TP_printk("%s %pS btree %s pos %llu:%llu:%u level %u node %s held %u:%u lock count %u:%u iter seq %u lock seq %u", ++ __entry->trans_fn, ++ (void *) __entry->caller_ip, ++ bch2_btree_ids[__entry->btree_id], ++ __entry->pos_inode, ++ __entry->pos_offset, ++ __entry->pos_snapshot, ++ __entry->level, ++ __entry->node, ++ __entry->self_read_count, ++ __entry->self_intent_count, ++ __entry->read_count, ++ __entry->intent_count, ++ __entry->iter_lock_seq, ++ __entry->node_lock_seq) ++); ++ ++TRACE_EVENT(btree_path_upgrade_fail, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path, ++ unsigned level), ++ TP_ARGS(trans, caller_ip, path, level), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(u8, btree_id ) ++ __field(u8, level ) ++ TRACE_BPOS_entries(pos) ++ __field(u8, locked ) ++ __field(u8, self_read_count ) ++ __field(u8, self_intent_count) ++ __field(u8, read_count ) ++ __field(u8, intent_count ) ++ __field(u32, iter_lock_seq ) ++ __field(u32, node_lock_seq ) ++ ), ++ ++ TP_fast_assign( ++ struct six_lock_count c; ++ ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ __entry->btree_id = path->btree_id; ++ __entry->level = level; ++ TRACE_BPOS_assign(pos, path->pos); ++ __entry->locked = btree_node_locked(path, level); ++ ++ c = bch2_btree_node_lock_counts(trans, NULL, &path->l[level].b->c, level), ++ __entry->self_read_count = c.n[SIX_LOCK_read]; ++ __entry->self_intent_count = c.n[SIX_LOCK_intent]; ++ c = six_lock_counts(&path->l[level].b->c.lock); ++ __entry->read_count = c.n[SIX_LOCK_read]; ++ __entry->intent_count = c.n[SIX_LOCK_intent]; ++ __entry->iter_lock_seq = path->l[level].lock_seq; ++ __entry->node_lock_seq = is_btree_node(path, level) ++ ? six_lock_seq(&path->l[level].b->c.lock) ++ : 0; ++ ), ++ ++ TP_printk("%s %pS btree %s pos %llu:%llu:%u level %u locked %u held %u:%u lock count %u:%u iter seq %u lock seq %u", ++ __entry->trans_fn, ++ (void *) __entry->caller_ip, ++ bch2_btree_ids[__entry->btree_id], ++ __entry->pos_inode, ++ __entry->pos_offset, ++ __entry->pos_snapshot, ++ __entry->level, ++ __entry->locked, ++ __entry->self_read_count, ++ __entry->self_intent_count, ++ __entry->read_count, ++ __entry->intent_count, ++ __entry->iter_lock_seq, ++ __entry->node_lock_seq) ++); ++ ++/* Garbage collection */ ++ ++DEFINE_EVENT(bch_fs, gc_gens_start, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++DEFINE_EVENT(bch_fs, gc_gens_end, ++ TP_PROTO(struct bch_fs *c), ++ TP_ARGS(c) ++); ++ ++/* Allocator */ ++ ++DECLARE_EVENT_CLASS(bucket_alloc, ++ TP_PROTO(struct bch_dev *ca, const char *alloc_reserve, ++ u64 bucket, ++ u64 free, ++ u64 avail, ++ u64 copygc_wait_amount, ++ s64 copygc_waiting_for, ++ struct bucket_alloc_state *s, ++ bool nonblocking, ++ const char *err), ++ TP_ARGS(ca, alloc_reserve, bucket, free, avail, ++ copygc_wait_amount, copygc_waiting_for, ++ s, nonblocking, err), ++ ++ TP_STRUCT__entry( ++ __field(u8, dev ) ++ __array(char, reserve, 16 ) ++ __field(u64, bucket ) ++ __field(u64, free ) ++ __field(u64, avail ) ++ __field(u64, copygc_wait_amount ) ++ __field(s64, copygc_waiting_for ) ++ __field(u64, seen ) ++ __field(u64, open ) ++ __field(u64, need_journal_commit ) ++ __field(u64, nouse ) ++ __field(bool, nonblocking ) ++ __field(u64, nocow ) ++ __array(char, err, 32 ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = ca->dev_idx; ++ strscpy(__entry->reserve, alloc_reserve, sizeof(__entry->reserve)); ++ __entry->bucket = bucket; ++ __entry->free = free; ++ __entry->avail = avail; ++ __entry->copygc_wait_amount = copygc_wait_amount; ++ __entry->copygc_waiting_for = copygc_waiting_for; ++ __entry->seen = s->buckets_seen; ++ __entry->open = s->skipped_open; ++ __entry->need_journal_commit = s->skipped_need_journal_commit; ++ __entry->nouse = s->skipped_nouse; ++ __entry->nonblocking = nonblocking; ++ __entry->nocow = s->skipped_nocow; ++ strscpy(__entry->err, err, sizeof(__entry->err)); ++ ), ++ ++ TP_printk("reserve %s bucket %u:%llu free %llu avail %llu copygc_wait %llu/%lli seen %llu open %llu need_journal_commit %llu nouse %llu nocow %llu nonblocking %u err %s", ++ __entry->reserve, ++ __entry->dev, ++ __entry->bucket, ++ __entry->free, ++ __entry->avail, ++ __entry->copygc_wait_amount, ++ __entry->copygc_waiting_for, ++ __entry->seen, ++ __entry->open, ++ __entry->need_journal_commit, ++ __entry->nouse, ++ __entry->nocow, ++ __entry->nonblocking, ++ __entry->err) ++); ++ ++DEFINE_EVENT(bucket_alloc, bucket_alloc, ++ TP_PROTO(struct bch_dev *ca, const char *alloc_reserve, ++ u64 bucket, ++ u64 free, ++ u64 avail, ++ u64 copygc_wait_amount, ++ s64 copygc_waiting_for, ++ struct bucket_alloc_state *s, ++ bool nonblocking, ++ const char *err), ++ TP_ARGS(ca, alloc_reserve, bucket, free, avail, ++ copygc_wait_amount, copygc_waiting_for, ++ s, nonblocking, err) ++); ++ ++DEFINE_EVENT(bucket_alloc, bucket_alloc_fail, ++ TP_PROTO(struct bch_dev *ca, const char *alloc_reserve, ++ u64 bucket, ++ u64 free, ++ u64 avail, ++ u64 copygc_wait_amount, ++ s64 copygc_waiting_for, ++ struct bucket_alloc_state *s, ++ bool nonblocking, ++ const char *err), ++ TP_ARGS(ca, alloc_reserve, bucket, free, avail, ++ copygc_wait_amount, copygc_waiting_for, ++ s, nonblocking, err) ++); ++ ++TRACE_EVENT(discard_buckets, ++ TP_PROTO(struct bch_fs *c, u64 seen, u64 open, ++ u64 need_journal_commit, u64 discarded, const char *err), ++ TP_ARGS(c, seen, open, need_journal_commit, discarded, err), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u64, seen ) ++ __field(u64, open ) ++ __field(u64, need_journal_commit ) ++ __field(u64, discarded ) ++ __array(char, err, 16 ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->seen = seen; ++ __entry->open = open; ++ __entry->need_journal_commit = need_journal_commit; ++ __entry->discarded = discarded; ++ strscpy(__entry->err, err, sizeof(__entry->err)); ++ ), ++ ++ TP_printk("%d%d seen %llu open %llu need_journal_commit %llu discarded %llu err %s", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->seen, ++ __entry->open, ++ __entry->need_journal_commit, ++ __entry->discarded, ++ __entry->err) ++); ++ ++TRACE_EVENT(bucket_invalidate, ++ TP_PROTO(struct bch_fs *c, unsigned dev, u64 bucket, u32 sectors), ++ TP_ARGS(c, dev, bucket, sectors), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u32, dev_idx ) ++ __field(u32, sectors ) ++ __field(u64, bucket ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->dev_idx = dev; ++ __entry->sectors = sectors; ++ __entry->bucket = bucket; ++ ), ++ ++ TP_printk("%d:%d invalidated %u:%llu cached sectors %u", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->dev_idx, __entry->bucket, ++ __entry->sectors) ++); ++ ++/* Moving IO */ ++ ++TRACE_EVENT(bucket_evacuate, ++ TP_PROTO(struct bch_fs *c, struct bpos *bucket), ++ TP_ARGS(c, bucket), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u32, dev_idx ) ++ __field(u64, bucket ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->dev_idx = bucket->inode; ++ __entry->bucket = bucket->offset; ++ ), ++ ++ TP_printk("%d:%d %u:%llu", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->dev_idx, __entry->bucket) ++); ++ ++DEFINE_EVENT(bkey, move_extent, ++ TP_PROTO(struct bch_fs *c, const char *k), ++ TP_ARGS(c, k) ++); ++ ++DEFINE_EVENT(bkey, move_extent_read, ++ TP_PROTO(struct bch_fs *c, const char *k), ++ TP_ARGS(c, k) ++); ++ ++DEFINE_EVENT(bkey, move_extent_write, ++ TP_PROTO(struct bch_fs *c, const char *k), ++ TP_ARGS(c, k) ++); ++ ++DEFINE_EVENT(bkey, move_extent_finish, ++ TP_PROTO(struct bch_fs *c, const char *k), ++ TP_ARGS(c, k) ++); ++ ++TRACE_EVENT(move_extent_fail, ++ TP_PROTO(struct bch_fs *c, const char *msg), ++ TP_ARGS(c, msg), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __string(msg, msg ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __assign_str(msg, msg); ++ ), ++ ++ TP_printk("%d:%d %s", MAJOR(__entry->dev), MINOR(__entry->dev), __get_str(msg)) ++); ++ ++DEFINE_EVENT(bkey, move_extent_alloc_mem_fail, ++ TP_PROTO(struct bch_fs *c, const char *k), ++ TP_ARGS(c, k) ++); ++ ++TRACE_EVENT(move_data, ++ TP_PROTO(struct bch_fs *c, u64 sectors_moved, ++ u64 keys_moved), ++ TP_ARGS(c, sectors_moved, keys_moved), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u64, sectors_moved ) ++ __field(u64, keys_moved ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->sectors_moved = sectors_moved; ++ __entry->keys_moved = keys_moved; ++ ), ++ ++ TP_printk("%d,%d sectors_moved %llu keys_moved %llu", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->sectors_moved, __entry->keys_moved) ++); ++ ++TRACE_EVENT(evacuate_bucket, ++ TP_PROTO(struct bch_fs *c, struct bpos *bucket, ++ unsigned sectors, unsigned bucket_size, ++ u64 fragmentation, int ret), ++ TP_ARGS(c, bucket, sectors, bucket_size, fragmentation, ret), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u64, member ) ++ __field(u64, bucket ) ++ __field(u32, sectors ) ++ __field(u32, bucket_size ) ++ __field(u64, fragmentation ) ++ __field(int, ret ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->member = bucket->inode; ++ __entry->bucket = bucket->offset; ++ __entry->sectors = sectors; ++ __entry->bucket_size = bucket_size; ++ __entry->fragmentation = fragmentation; ++ __entry->ret = ret; ++ ), ++ ++ TP_printk("%d,%d %llu:%llu sectors %u/%u fragmentation %llu ret %i", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->member, __entry->bucket, ++ __entry->sectors, __entry->bucket_size, ++ __entry->fragmentation, __entry->ret) ++); ++ ++TRACE_EVENT(copygc, ++ TP_PROTO(struct bch_fs *c, ++ u64 sectors_moved, u64 sectors_not_moved, ++ u64 buckets_moved, u64 buckets_not_moved), ++ TP_ARGS(c, ++ sectors_moved, sectors_not_moved, ++ buckets_moved, buckets_not_moved), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u64, sectors_moved ) ++ __field(u64, sectors_not_moved ) ++ __field(u64, buckets_moved ) ++ __field(u64, buckets_not_moved ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->sectors_moved = sectors_moved; ++ __entry->sectors_not_moved = sectors_not_moved; ++ __entry->buckets_moved = buckets_moved; ++ __entry->buckets_not_moved = buckets_moved; ++ ), ++ ++ TP_printk("%d,%d sectors moved %llu remain %llu buckets moved %llu remain %llu", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->sectors_moved, __entry->sectors_not_moved, ++ __entry->buckets_moved, __entry->buckets_not_moved) ++); ++ ++TRACE_EVENT(copygc_wait, ++ TP_PROTO(struct bch_fs *c, ++ u64 wait_amount, u64 until), ++ TP_ARGS(c, wait_amount, until), ++ ++ TP_STRUCT__entry( ++ __field(dev_t, dev ) ++ __field(u64, wait_amount ) ++ __field(u64, until ) ++ ), ++ ++ TP_fast_assign( ++ __entry->dev = c->dev; ++ __entry->wait_amount = wait_amount; ++ __entry->until = until; ++ ), ++ ++ TP_printk("%d,%u waiting for %llu sectors until %llu", ++ MAJOR(__entry->dev), MINOR(__entry->dev), ++ __entry->wait_amount, __entry->until) ++); ++ ++/* btree transactions: */ ++ ++DECLARE_EVENT_CLASS(transaction_event, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ ), ++ ++ TP_printk("%s %pS", __entry->trans_fn, (void *) __entry->caller_ip) ++); ++ ++DEFINE_EVENT(transaction_event, transaction_commit, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++DEFINE_EVENT(transaction_event, trans_restart_injected, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++TRACE_EVENT(trans_restart_split_race, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree *b), ++ TP_ARGS(trans, caller_ip, b), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(u8, level ) ++ __field(u16, written ) ++ __field(u16, blocks ) ++ __field(u16, u64s_remaining ) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ __entry->level = b->c.level; ++ __entry->written = b->written; ++ __entry->blocks = btree_blocks(trans->c); ++ __entry->u64s_remaining = bch_btree_keys_u64s_remaining(trans->c, b); ++ ), ++ ++ TP_printk("%s %pS l=%u written %u/%u u64s remaining %u", ++ __entry->trans_fn, (void *) __entry->caller_ip, ++ __entry->level, ++ __entry->written, __entry->blocks, ++ __entry->u64s_remaining) ++); ++ ++DEFINE_EVENT(transaction_event, trans_blocked_journal_reclaim, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++TRACE_EVENT(trans_restart_journal_preres_get, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ unsigned flags), ++ TP_ARGS(trans, caller_ip, flags), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(unsigned, flags ) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ __entry->flags = flags; ++ ), ++ ++ TP_printk("%s %pS %x", __entry->trans_fn, ++ (void *) __entry->caller_ip, ++ __entry->flags) ++); ++ ++DEFINE_EVENT(transaction_event, trans_restart_fault_inject, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++DEFINE_EVENT(transaction_event, trans_traverse_all, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++DEFINE_EVENT(transaction_event, trans_restart_key_cache_raced, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++DEFINE_EVENT(transaction_event, trans_restart_too_many_iters, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++DECLARE_EVENT_CLASS(transaction_restart_iter, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(u8, btree_id ) ++ TRACE_BPOS_entries(pos) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ __entry->btree_id = path->btree_id; ++ TRACE_BPOS_assign(pos, path->pos) ++ ), ++ ++ TP_printk("%s %pS btree %s pos %llu:%llu:%u", ++ __entry->trans_fn, ++ (void *) __entry->caller_ip, ++ bch2_btree_ids[__entry->btree_id], ++ __entry->pos_inode, ++ __entry->pos_offset, ++ __entry->pos_snapshot) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_btree_node_reused, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_btree_node_split, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++TRACE_EVENT(trans_restart_upgrade, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path, ++ unsigned old_locks_want, ++ unsigned new_locks_want), ++ TP_ARGS(trans, caller_ip, path, old_locks_want, new_locks_want), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(u8, btree_id ) ++ __field(u8, old_locks_want ) ++ __field(u8, new_locks_want ) ++ TRACE_BPOS_entries(pos) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ __entry->btree_id = path->btree_id; ++ __entry->old_locks_want = old_locks_want; ++ __entry->new_locks_want = new_locks_want; ++ TRACE_BPOS_assign(pos, path->pos) ++ ), ++ ++ TP_printk("%s %pS btree %s pos %llu:%llu:%u locks_want %u -> %u", ++ __entry->trans_fn, ++ (void *) __entry->caller_ip, ++ bch2_btree_ids[__entry->btree_id], ++ __entry->pos_inode, ++ __entry->pos_offset, ++ __entry->pos_snapshot, ++ __entry->old_locks_want, ++ __entry->new_locks_want) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_relock, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_relock_next_node, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_relock_parent_for_fill, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_relock_after_fill, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_event, trans_restart_key_cache_upgrade, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_relock_key_cache_fill, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_relock_path, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_relock_path_intent, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_traverse, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_restart_iter, trans_restart_memory_allocation_failure, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path), ++ TP_ARGS(trans, caller_ip, path) ++); ++ ++DEFINE_EVENT(transaction_event, trans_restart_would_deadlock, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++DEFINE_EVENT(transaction_event, trans_restart_would_deadlock_recursion_limit, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++TRACE_EVENT(trans_restart_would_deadlock_write, ++ TP_PROTO(struct btree_trans *trans), ++ TP_ARGS(trans), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ ), ++ ++ TP_printk("%s", __entry->trans_fn) ++); ++ ++TRACE_EVENT(trans_restart_mem_realloced, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ unsigned long bytes), ++ TP_ARGS(trans, caller_ip, bytes), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(unsigned long, bytes ) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ __entry->bytes = bytes; ++ ), ++ ++ TP_printk("%s %pS bytes %lu", ++ __entry->trans_fn, ++ (void *) __entry->caller_ip, ++ __entry->bytes) ++); ++ ++TRACE_EVENT(trans_restart_key_cache_key_realloced, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip, ++ struct btree_path *path, ++ unsigned old_u64s, ++ unsigned new_u64s), ++ TP_ARGS(trans, caller_ip, path, old_u64s, new_u64s), ++ ++ TP_STRUCT__entry( ++ __array(char, trans_fn, 32 ) ++ __field(unsigned long, caller_ip ) ++ __field(enum btree_id, btree_id ) ++ TRACE_BPOS_entries(pos) ++ __field(u32, old_u64s ) ++ __field(u32, new_u64s ) ++ ), ++ ++ TP_fast_assign( ++ strscpy(__entry->trans_fn, trans->fn, sizeof(__entry->trans_fn)); ++ __entry->caller_ip = caller_ip; ++ ++ __entry->btree_id = path->btree_id; ++ TRACE_BPOS_assign(pos, path->pos); ++ __entry->old_u64s = old_u64s; ++ __entry->new_u64s = new_u64s; ++ ), ++ ++ TP_printk("%s %pS btree %s pos %llu:%llu:%u old_u64s %u new_u64s %u", ++ __entry->trans_fn, ++ (void *) __entry->caller_ip, ++ bch2_btree_ids[__entry->btree_id], ++ __entry->pos_inode, ++ __entry->pos_offset, ++ __entry->pos_snapshot, ++ __entry->old_u64s, ++ __entry->new_u64s) ++); ++ ++DEFINE_EVENT(transaction_event, trans_restart_write_buffer_flush, ++ TP_PROTO(struct btree_trans *trans, ++ unsigned long caller_ip), ++ TP_ARGS(trans, caller_ip) ++); ++ ++TRACE_EVENT(write_buffer_flush, ++ TP_PROTO(struct btree_trans *trans, size_t nr, size_t skipped, size_t fast, size_t size), ++ TP_ARGS(trans, nr, skipped, fast, size), ++ ++ TP_STRUCT__entry( ++ __field(size_t, nr ) ++ __field(size_t, skipped ) ++ __field(size_t, fast ) ++ __field(size_t, size ) ++ ), ++ ++ TP_fast_assign( ++ __entry->nr = nr; ++ __entry->skipped = skipped; ++ __entry->fast = fast; ++ __entry->size = size; ++ ), ++ ++ TP_printk("%zu/%zu skipped %zu fast %zu", ++ __entry->nr, __entry->size, __entry->skipped, __entry->fast) ++); ++ ++TRACE_EVENT(write_buffer_flush_slowpath, ++ TP_PROTO(struct btree_trans *trans, size_t nr, size_t size), ++ TP_ARGS(trans, nr, size), ++ ++ TP_STRUCT__entry( ++ __field(size_t, nr ) ++ __field(size_t, size ) ++ ), ++ ++ TP_fast_assign( ++ __entry->nr = nr; ++ __entry->size = size; ++ ), ++ ++ TP_printk("%zu/%zu", __entry->nr, __entry->size) ++); ++ ++#endif /* _TRACE_BCACHEFS_H */ ++ ++/* This part must be outside protection */ ++#undef TRACE_INCLUDE_PATH ++#define TRACE_INCLUDE_PATH ../../fs/bcachefs ++ ++#undef TRACE_INCLUDE_FILE ++#define TRACE_INCLUDE_FILE trace ++ ++#include +diff --git a/fs/bcachefs/two_state_shared_lock.c b/fs/bcachefs/two_state_shared_lock.c +new file mode 100644 +index 000000000000..9764c2e6a910 +--- /dev/null ++++ b/fs/bcachefs/two_state_shared_lock.c +@@ -0,0 +1,8 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "two_state_shared_lock.h" ++ ++void __bch2_two_state_lock(two_state_lock_t *lock, int s) ++{ ++ __wait_event(lock->wait, bch2_two_state_trylock(lock, s)); ++} +diff --git a/fs/bcachefs/two_state_shared_lock.h b/fs/bcachefs/two_state_shared_lock.h +new file mode 100644 +index 000000000000..905801772002 +--- /dev/null ++++ b/fs/bcachefs/two_state_shared_lock.h +@@ -0,0 +1,59 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_TWO_STATE_LOCK_H ++#define _BCACHEFS_TWO_STATE_LOCK_H ++ ++#include ++#include ++#include ++ ++#include "util.h" ++ ++/* ++ * Two-state lock - can be taken for add or block - both states are shared, ++ * like read side of rwsem, but conflict with other state: ++ */ ++typedef struct { ++ atomic_long_t v; ++ wait_queue_head_t wait; ++} two_state_lock_t; ++ ++static inline void two_state_lock_init(two_state_lock_t *lock) ++{ ++ atomic_long_set(&lock->v, 0); ++ init_waitqueue_head(&lock->wait); ++} ++ ++static inline void bch2_two_state_unlock(two_state_lock_t *lock, int s) ++{ ++ long i = s ? 1 : -1; ++ ++ EBUG_ON(atomic_long_read(&lock->v) == 0); ++ ++ if (atomic_long_sub_return_release(i, &lock->v) == 0) ++ wake_up_all(&lock->wait); ++} ++ ++static inline bool bch2_two_state_trylock(two_state_lock_t *lock, int s) ++{ ++ long i = s ? 1 : -1; ++ long v = atomic_long_read(&lock->v), old; ++ ++ do { ++ old = v; ++ ++ if (i > 0 ? v < 0 : v > 0) ++ return false; ++ } while ((v = atomic_long_cmpxchg_acquire(&lock->v, ++ old, old + i)) != old); ++ return true; ++} ++ ++void __bch2_two_state_lock(two_state_lock_t *, int); ++ ++static inline void bch2_two_state_lock(two_state_lock_t *lock, int s) ++{ ++ if (!bch2_two_state_trylock(lock, s)) ++ __bch2_two_state_lock(lock, s); ++} ++ ++#endif /* _BCACHEFS_TWO_STATE_LOCK_H */ +diff --git a/fs/bcachefs/util.c b/fs/bcachefs/util.c +new file mode 100644 +index 000000000000..08bac0ba8d0b +--- /dev/null ++++ b/fs/bcachefs/util.c +@@ -0,0 +1,1141 @@ ++// SPDX-License-Identifier: GPL-2.0 ++/* ++ * random utiility code, for bcache but in theory not specific to bcache ++ * ++ * Copyright 2010, 2011 Kent Overstreet ++ * Copyright 2012 Google, Inc. ++ */ ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "eytzinger.h" ++#include "mean_and_variance.h" ++#include "util.h" ++ ++static const char si_units[] = "?kMGTPEZY"; ++ ++/* string_get_size units: */ ++static const char *const units_2[] = { ++ "B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB" ++}; ++static const char *const units_10[] = { ++ "B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB" ++}; ++ ++static int parse_u64(const char *cp, u64 *res) ++{ ++ const char *start = cp; ++ u64 v = 0; ++ ++ if (!isdigit(*cp)) ++ return -EINVAL; ++ ++ do { ++ if (v > U64_MAX / 10) ++ return -ERANGE; ++ v *= 10; ++ if (v > U64_MAX - (*cp - '0')) ++ return -ERANGE; ++ v += *cp - '0'; ++ cp++; ++ } while (isdigit(*cp)); ++ ++ *res = v; ++ return cp - start; ++} ++ ++static int bch2_pow(u64 n, u64 p, u64 *res) ++{ ++ *res = 1; ++ ++ while (p--) { ++ if (*res > div_u64(U64_MAX, n)) ++ return -ERANGE; ++ *res *= n; ++ } ++ return 0; ++} ++ ++static int parse_unit_suffix(const char *cp, u64 *res) ++{ ++ const char *start = cp; ++ u64 base = 1024; ++ unsigned u; ++ int ret; ++ ++ if (*cp == ' ') ++ cp++; ++ ++ for (u = 1; u < strlen(si_units); u++) ++ if (*cp == si_units[u]) { ++ cp++; ++ goto got_unit; ++ } ++ ++ for (u = 0; u < ARRAY_SIZE(units_2); u++) ++ if (!strncmp(cp, units_2[u], strlen(units_2[u]))) { ++ cp += strlen(units_2[u]); ++ goto got_unit; ++ } ++ ++ for (u = 0; u < ARRAY_SIZE(units_10); u++) ++ if (!strncmp(cp, units_10[u], strlen(units_10[u]))) { ++ cp += strlen(units_10[u]); ++ base = 1000; ++ goto got_unit; ++ } ++ ++ *res = 1; ++ return 0; ++got_unit: ++ ret = bch2_pow(base, u, res); ++ if (ret) ++ return ret; ++ ++ return cp - start; ++} ++ ++#define parse_or_ret(cp, _f) \ ++do { \ ++ int _ret = _f; \ ++ if (_ret < 0) \ ++ return _ret; \ ++ cp += _ret; \ ++} while (0) ++ ++static int __bch2_strtou64_h(const char *cp, u64 *res) ++{ ++ const char *start = cp; ++ u64 v = 0, b, f_n = 0, f_d = 1; ++ int ret; ++ ++ parse_or_ret(cp, parse_u64(cp, &v)); ++ ++ if (*cp == '.') { ++ cp++; ++ ret = parse_u64(cp, &f_n); ++ if (ret < 0) ++ return ret; ++ cp += ret; ++ ++ ret = bch2_pow(10, ret, &f_d); ++ if (ret) ++ return ret; ++ } ++ ++ parse_or_ret(cp, parse_unit_suffix(cp, &b)); ++ ++ if (v > div_u64(U64_MAX, b)) ++ return -ERANGE; ++ v *= b; ++ ++ if (f_n > div_u64(U64_MAX, b)) ++ return -ERANGE; ++ ++ f_n = div_u64(f_n * b, f_d); ++ if (v + f_n < v) ++ return -ERANGE; ++ v += f_n; ++ ++ *res = v; ++ return cp - start; ++} ++ ++static int __bch2_strtoh(const char *cp, u64 *res, ++ u64 t_max, bool t_signed) ++{ ++ bool positive = *cp != '-'; ++ u64 v = 0; ++ ++ if (*cp == '+' || *cp == '-') ++ cp++; ++ ++ parse_or_ret(cp, __bch2_strtou64_h(cp, &v)); ++ ++ if (*cp == '\n') ++ cp++; ++ if (*cp) ++ return -EINVAL; ++ ++ if (positive) { ++ if (v > t_max) ++ return -ERANGE; ++ } else { ++ if (v && !t_signed) ++ return -ERANGE; ++ ++ if (v > t_max + 1) ++ return -ERANGE; ++ v = -v; ++ } ++ ++ *res = v; ++ return 0; ++} ++ ++#define STRTO_H(name, type) \ ++int bch2_ ## name ## _h(const char *cp, type *res) \ ++{ \ ++ u64 v = 0; \ ++ int ret = __bch2_strtoh(cp, &v, ANYSINT_MAX(type), \ ++ ANYSINT_MAX(type) != ((type) ~0ULL)); \ ++ *res = v; \ ++ return ret; \ ++} ++ ++STRTO_H(strtoint, int) ++STRTO_H(strtouint, unsigned int) ++STRTO_H(strtoll, long long) ++STRTO_H(strtoull, unsigned long long) ++STRTO_H(strtou64, u64) ++ ++u64 bch2_read_flag_list(char *opt, const char * const list[]) ++{ ++ u64 ret = 0; ++ char *p, *s, *d = kstrdup(opt, GFP_KERNEL); ++ ++ if (!d) ++ return -ENOMEM; ++ ++ s = strim(d); ++ ++ while ((p = strsep(&s, ","))) { ++ int flag = match_string(list, -1, p); ++ ++ if (flag < 0) { ++ ret = -1; ++ break; ++ } ++ ++ ret |= 1 << flag; ++ } ++ ++ kfree(d); ++ ++ return ret; ++} ++ ++bool bch2_is_zero(const void *_p, size_t n) ++{ ++ const char *p = _p; ++ size_t i; ++ ++ for (i = 0; i < n; i++) ++ if (p[i]) ++ return false; ++ return true; ++} ++ ++void bch2_prt_u64_binary(struct printbuf *out, u64 v, unsigned nr_bits) ++{ ++ while (nr_bits) ++ prt_char(out, '0' + ((v >> --nr_bits) & 1)); ++} ++ ++void bch2_print_string_as_lines(const char *prefix, const char *lines) ++{ ++ const char *p; ++ ++ if (!lines) { ++ printk("%s (null)\n", prefix); ++ return; ++ } ++ ++ console_lock(); ++ while (1) { ++ p = strchrnul(lines, '\n'); ++ printk("%s%.*s\n", prefix, (int) (p - lines), lines); ++ if (!*p) ++ break; ++ lines = p + 1; ++ } ++ console_unlock(); ++} ++ ++int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *task) ++{ ++#ifdef CONFIG_STACKTRACE ++ unsigned nr_entries = 0; ++ int ret = 0; ++ ++ stack->nr = 0; ++ ret = darray_make_room(stack, 32); ++ if (ret) ++ return ret; ++ ++ if (!down_read_trylock(&task->signal->exec_update_lock)) ++ return -1; ++ ++ do { ++ nr_entries = stack_trace_save_tsk(task, stack->data, stack->size, 0); ++ } while (nr_entries == stack->size && ++ !(ret = darray_make_room(stack, stack->size * 2))); ++ ++ stack->nr = nr_entries; ++ up_read(&task->signal->exec_update_lock); ++ ++ return ret; ++#else ++ return 0; ++#endif ++} ++ ++void bch2_prt_backtrace(struct printbuf *out, bch_stacktrace *stack) ++{ ++ unsigned long *i; ++ ++ darray_for_each(*stack, i) { ++ prt_printf(out, "[<0>] %pB", (void *) *i); ++ prt_newline(out); ++ } ++} ++ ++int bch2_prt_task_backtrace(struct printbuf *out, struct task_struct *task) ++{ ++ bch_stacktrace stack = { 0 }; ++ int ret = bch2_save_backtrace(&stack, task); ++ ++ bch2_prt_backtrace(out, &stack); ++ darray_exit(&stack); ++ return ret; ++} ++ ++/* time stats: */ ++ ++#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT ++static void bch2_quantiles_update(struct bch2_quantiles *q, u64 v) ++{ ++ unsigned i = 0; ++ ++ while (i < ARRAY_SIZE(q->entries)) { ++ struct bch2_quantile_entry *e = q->entries + i; ++ ++ if (unlikely(!e->step)) { ++ e->m = v; ++ e->step = max_t(unsigned, v / 2, 1024); ++ } else if (e->m > v) { ++ e->m = e->m >= e->step ++ ? e->m - e->step ++ : 0; ++ } else if (e->m < v) { ++ e->m = e->m + e->step > e->m ++ ? e->m + e->step ++ : U32_MAX; ++ } ++ ++ if ((e->m > v ? e->m - v : v - e->m) < e->step) ++ e->step = max_t(unsigned, e->step / 2, 1); ++ ++ if (v >= e->m) ++ break; ++ ++ i = eytzinger0_child(i, v > e->m); ++ } ++} ++ ++static inline void bch2_time_stats_update_one(struct bch2_time_stats *stats, ++ u64 start, u64 end) ++{ ++ u64 duration, freq; ++ ++ if (time_after64(end, start)) { ++ duration = end - start; ++ mean_and_variance_update(&stats->duration_stats, duration); ++ mean_and_variance_weighted_update(&stats->duration_stats_weighted, duration); ++ stats->max_duration = max(stats->max_duration, duration); ++ stats->min_duration = min(stats->min_duration, duration); ++ bch2_quantiles_update(&stats->quantiles, duration); ++ } ++ ++ if (time_after64(end, stats->last_event)) { ++ freq = end - stats->last_event; ++ mean_and_variance_update(&stats->freq_stats, freq); ++ mean_and_variance_weighted_update(&stats->freq_stats_weighted, freq); ++ stats->max_freq = max(stats->max_freq, freq); ++ stats->min_freq = min(stats->min_freq, freq); ++ stats->last_event = end; ++ } ++} ++ ++static noinline void bch2_time_stats_clear_buffer(struct bch2_time_stats *stats, ++ struct bch2_time_stat_buffer *b) ++{ ++ struct bch2_time_stat_buffer_entry *i; ++ unsigned long flags; ++ ++ spin_lock_irqsave(&stats->lock, flags); ++ for (i = b->entries; ++ i < b->entries + ARRAY_SIZE(b->entries); ++ i++) ++ bch2_time_stats_update_one(stats, i->start, i->end); ++ spin_unlock_irqrestore(&stats->lock, flags); ++ ++ b->nr = 0; ++} ++ ++void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) ++{ ++ unsigned long flags; ++ ++ WARN_RATELIMIT(!stats->min_duration || !stats->min_freq, ++ "time_stats: min_duration = %llu, min_freq = %llu", ++ stats->min_duration, stats->min_freq); ++ ++ if (!stats->buffer) { ++ spin_lock_irqsave(&stats->lock, flags); ++ bch2_time_stats_update_one(stats, start, end); ++ ++ if (mean_and_variance_weighted_get_mean(stats->freq_stats_weighted) < 32 && ++ stats->duration_stats.n > 1024) ++ stats->buffer = ++ alloc_percpu_gfp(struct bch2_time_stat_buffer, ++ GFP_ATOMIC); ++ spin_unlock_irqrestore(&stats->lock, flags); ++ } else { ++ struct bch2_time_stat_buffer *b; ++ ++ preempt_disable(); ++ b = this_cpu_ptr(stats->buffer); ++ ++ BUG_ON(b->nr >= ARRAY_SIZE(b->entries)); ++ b->entries[b->nr++] = (struct bch2_time_stat_buffer_entry) { ++ .start = start, ++ .end = end ++ }; ++ ++ if (unlikely(b->nr == ARRAY_SIZE(b->entries))) ++ bch2_time_stats_clear_buffer(stats, b); ++ preempt_enable(); ++ } ++} ++#endif ++ ++static const struct time_unit { ++ const char *name; ++ u64 nsecs; ++} time_units[] = { ++ { "ns", 1 }, ++ { "us", NSEC_PER_USEC }, ++ { "ms", NSEC_PER_MSEC }, ++ { "s", NSEC_PER_SEC }, ++ { "m", (u64) NSEC_PER_SEC * 60}, ++ { "h", (u64) NSEC_PER_SEC * 3600}, ++ { "eon", U64_MAX }, ++}; ++ ++static const struct time_unit *pick_time_units(u64 ns) ++{ ++ const struct time_unit *u; ++ ++ for (u = time_units; ++ u + 1 < time_units + ARRAY_SIZE(time_units) && ++ ns >= u[1].nsecs << 1; ++ u++) ++ ; ++ ++ return u; ++} ++ ++void bch2_pr_time_units(struct printbuf *out, u64 ns) ++{ ++ const struct time_unit *u = pick_time_units(ns); ++ ++ prt_printf(out, "%llu %s", div_u64(ns, u->nsecs), u->name); ++} ++ ++static void bch2_pr_time_units_aligned(struct printbuf *out, u64 ns) ++{ ++ const struct time_unit *u = pick_time_units(ns); ++ ++ prt_printf(out, "%llu ", div64_u64(ns, u->nsecs)); ++ prt_tab_rjust(out); ++ prt_printf(out, "%s", u->name); ++} ++ ++#define TABSTOP_SIZE 12 ++ ++static inline void pr_name_and_units(struct printbuf *out, const char *name, u64 ns) ++{ ++ prt_str(out, name); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, ns); ++ prt_newline(out); ++} ++ ++void bch2_time_stats_to_text(struct printbuf *out, struct bch2_time_stats *stats) ++{ ++ const struct time_unit *u; ++ s64 f_mean = 0, d_mean = 0; ++ u64 q, last_q = 0, f_stddev = 0, d_stddev = 0; ++ int i; ++ /* ++ * avoid divide by zero ++ */ ++ if (stats->freq_stats.n) { ++ f_mean = mean_and_variance_get_mean(stats->freq_stats); ++ f_stddev = mean_and_variance_get_stddev(stats->freq_stats); ++ d_mean = mean_and_variance_get_mean(stats->duration_stats); ++ d_stddev = mean_and_variance_get_stddev(stats->duration_stats); ++ } ++ ++ printbuf_tabstop_push(out, out->indent + TABSTOP_SIZE); ++ prt_printf(out, "count:"); ++ prt_tab(out); ++ prt_printf(out, "%llu ", ++ stats->duration_stats.n); ++ printbuf_tabstop_pop(out); ++ prt_newline(out); ++ ++ printbuf_tabstops_reset(out); ++ ++ printbuf_tabstop_push(out, out->indent + 20); ++ printbuf_tabstop_push(out, TABSTOP_SIZE + 2); ++ printbuf_tabstop_push(out, 0); ++ printbuf_tabstop_push(out, TABSTOP_SIZE + 2); ++ ++ prt_tab(out); ++ prt_printf(out, "since mount"); ++ prt_tab_rjust(out); ++ prt_tab(out); ++ prt_printf(out, "recent"); ++ prt_tab_rjust(out); ++ prt_newline(out); ++ ++ printbuf_tabstops_reset(out); ++ printbuf_tabstop_push(out, out->indent + 20); ++ printbuf_tabstop_push(out, TABSTOP_SIZE); ++ printbuf_tabstop_push(out, 2); ++ printbuf_tabstop_push(out, TABSTOP_SIZE); ++ ++ prt_printf(out, "duration of events"); ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ ++ pr_name_and_units(out, "min:", stats->min_duration); ++ pr_name_and_units(out, "max:", stats->max_duration); ++ ++ prt_printf(out, "mean:"); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, d_mean); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->duration_stats_weighted)); ++ prt_newline(out); ++ ++ prt_printf(out, "stddev:"); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, d_stddev); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->duration_stats_weighted)); ++ ++ printbuf_indent_sub(out, 2); ++ prt_newline(out); ++ ++ prt_printf(out, "time between events"); ++ prt_newline(out); ++ printbuf_indent_add(out, 2); ++ ++ pr_name_and_units(out, "min:", stats->min_freq); ++ pr_name_and_units(out, "max:", stats->max_freq); ++ ++ prt_printf(out, "mean:"); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, f_mean); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_mean(stats->freq_stats_weighted)); ++ prt_newline(out); ++ ++ prt_printf(out, "stddev:"); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, f_stddev); ++ prt_tab(out); ++ bch2_pr_time_units_aligned(out, mean_and_variance_weighted_get_stddev(stats->freq_stats_weighted)); ++ ++ printbuf_indent_sub(out, 2); ++ prt_newline(out); ++ ++ printbuf_tabstops_reset(out); ++ ++ i = eytzinger0_first(NR_QUANTILES); ++ u = pick_time_units(stats->quantiles.entries[i].m); ++ ++ prt_printf(out, "quantiles (%s):\t", u->name); ++ eytzinger0_for_each(i, NR_QUANTILES) { ++ bool is_last = eytzinger0_next(i, NR_QUANTILES) == -1; ++ ++ q = max(stats->quantiles.entries[i].m, last_q); ++ prt_printf(out, "%llu ", ++ div_u64(q, u->nsecs)); ++ if (is_last) ++ prt_newline(out); ++ last_q = q; ++ } ++} ++ ++void bch2_time_stats_exit(struct bch2_time_stats *stats) ++{ ++ free_percpu(stats->buffer); ++} ++ ++void bch2_time_stats_init(struct bch2_time_stats *stats) ++{ ++ memset(stats, 0, sizeof(*stats)); ++ stats->duration_stats_weighted.weight = 8; ++ stats->freq_stats_weighted.weight = 8; ++ stats->min_duration = U64_MAX; ++ stats->min_freq = U64_MAX; ++ spin_lock_init(&stats->lock); ++} ++ ++/* ratelimit: */ ++ ++/** ++ * bch2_ratelimit_delay() - return how long to delay until the next time to do ++ * some work ++ * @d: the struct bch_ratelimit to update ++ * Returns: the amount of time to delay by, in jiffies ++ */ ++u64 bch2_ratelimit_delay(struct bch_ratelimit *d) ++{ ++ u64 now = local_clock(); ++ ++ return time_after64(d->next, now) ++ ? nsecs_to_jiffies(d->next - now) ++ : 0; ++} ++ ++/** ++ * bch2_ratelimit_increment() - increment @d by the amount of work done ++ * @d: the struct bch_ratelimit to update ++ * @done: the amount of work done, in arbitrary units ++ */ ++void bch2_ratelimit_increment(struct bch_ratelimit *d, u64 done) ++{ ++ u64 now = local_clock(); ++ ++ d->next += div_u64(done * NSEC_PER_SEC, d->rate); ++ ++ if (time_before64(now + NSEC_PER_SEC, d->next)) ++ d->next = now + NSEC_PER_SEC; ++ ++ if (time_after64(now - NSEC_PER_SEC * 2, d->next)) ++ d->next = now - NSEC_PER_SEC * 2; ++} ++ ++/* pd controller: */ ++ ++/* ++ * Updates pd_controller. Attempts to scale inputed values to units per second. ++ * @target: desired value ++ * @actual: current value ++ * ++ * @sign: 1 or -1; 1 if increasing the rate makes actual go up, -1 if increasing ++ * it makes actual go down. ++ */ ++void bch2_pd_controller_update(struct bch_pd_controller *pd, ++ s64 target, s64 actual, int sign) ++{ ++ s64 proportional, derivative, change; ++ ++ unsigned long seconds_since_update = (jiffies - pd->last_update) / HZ; ++ ++ if (seconds_since_update == 0) ++ return; ++ ++ pd->last_update = jiffies; ++ ++ proportional = actual - target; ++ proportional *= seconds_since_update; ++ proportional = div_s64(proportional, pd->p_term_inverse); ++ ++ derivative = actual - pd->last_actual; ++ derivative = div_s64(derivative, seconds_since_update); ++ derivative = ewma_add(pd->smoothed_derivative, derivative, ++ (pd->d_term / seconds_since_update) ?: 1); ++ derivative = derivative * pd->d_term; ++ derivative = div_s64(derivative, pd->p_term_inverse); ++ ++ change = proportional + derivative; ++ ++ /* Don't increase rate if not keeping up */ ++ if (change > 0 && ++ pd->backpressure && ++ time_after64(local_clock(), ++ pd->rate.next + NSEC_PER_MSEC)) ++ change = 0; ++ ++ change *= (sign * -1); ++ ++ pd->rate.rate = clamp_t(s64, (s64) pd->rate.rate + change, ++ 1, UINT_MAX); ++ ++ pd->last_actual = actual; ++ pd->last_derivative = derivative; ++ pd->last_proportional = proportional; ++ pd->last_change = change; ++ pd->last_target = target; ++} ++ ++void bch2_pd_controller_init(struct bch_pd_controller *pd) ++{ ++ pd->rate.rate = 1024; ++ pd->last_update = jiffies; ++ pd->p_term_inverse = 6000; ++ pd->d_term = 30; ++ pd->d_smooth = pd->d_term; ++ pd->backpressure = 1; ++} ++ ++void bch2_pd_controller_debug_to_text(struct printbuf *out, struct bch_pd_controller *pd) ++{ ++ if (!out->nr_tabstops) ++ printbuf_tabstop_push(out, 20); ++ ++ prt_printf(out, "rate:"); ++ prt_tab(out); ++ prt_human_readable_s64(out, pd->rate.rate); ++ prt_newline(out); ++ ++ prt_printf(out, "target:"); ++ prt_tab(out); ++ prt_human_readable_u64(out, pd->last_target); ++ prt_newline(out); ++ ++ prt_printf(out, "actual:"); ++ prt_tab(out); ++ prt_human_readable_u64(out, pd->last_actual); ++ prt_newline(out); ++ ++ prt_printf(out, "proportional:"); ++ prt_tab(out); ++ prt_human_readable_s64(out, pd->last_proportional); ++ prt_newline(out); ++ ++ prt_printf(out, "derivative:"); ++ prt_tab(out); ++ prt_human_readable_s64(out, pd->last_derivative); ++ prt_newline(out); ++ ++ prt_printf(out, "change:"); ++ prt_tab(out); ++ prt_human_readable_s64(out, pd->last_change); ++ prt_newline(out); ++ ++ prt_printf(out, "next io:"); ++ prt_tab(out); ++ prt_printf(out, "%llims", div64_s64(pd->rate.next - local_clock(), NSEC_PER_MSEC)); ++ prt_newline(out); ++} ++ ++/* misc: */ ++ ++void bch2_bio_map(struct bio *bio, void *base, size_t size) ++{ ++ while (size) { ++ struct page *page = is_vmalloc_addr(base) ++ ? vmalloc_to_page(base) ++ : virt_to_page(base); ++ unsigned offset = offset_in_page(base); ++ unsigned len = min_t(size_t, PAGE_SIZE - offset, size); ++ ++ BUG_ON(!bio_add_page(bio, page, len, offset)); ++ size -= len; ++ base += len; ++ } ++} ++ ++int bch2_bio_alloc_pages(struct bio *bio, size_t size, gfp_t gfp_mask) ++{ ++ while (size) { ++ struct page *page = alloc_pages(gfp_mask, 0); ++ unsigned len = min_t(size_t, PAGE_SIZE, size); ++ ++ if (!page) ++ return -ENOMEM; ++ ++ if (unlikely(!bio_add_page(bio, page, len, 0))) { ++ __free_page(page); ++ break; ++ } ++ ++ size -= len; ++ } ++ ++ return 0; ++} ++ ++size_t bch2_rand_range(size_t max) ++{ ++ size_t rand; ++ ++ if (!max) ++ return 0; ++ ++ do { ++ rand = get_random_long(); ++ rand &= roundup_pow_of_two(max) - 1; ++ } while (rand >= max); ++ ++ return rand; ++} ++ ++void memcpy_to_bio(struct bio *dst, struct bvec_iter dst_iter, const void *src) ++{ ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ ++ __bio_for_each_segment(bv, dst, iter, dst_iter) { ++ void *dstp = kmap_local_page(bv.bv_page); ++ ++ memcpy(dstp + bv.bv_offset, src, bv.bv_len); ++ kunmap_local(dstp); ++ ++ src += bv.bv_len; ++ } ++} ++ ++void memcpy_from_bio(void *dst, struct bio *src, struct bvec_iter src_iter) ++{ ++ struct bio_vec bv; ++ struct bvec_iter iter; ++ ++ __bio_for_each_segment(bv, src, iter, src_iter) { ++ void *srcp = kmap_local_page(bv.bv_page); ++ ++ memcpy(dst, srcp + bv.bv_offset, bv.bv_len); ++ kunmap_local(srcp); ++ ++ dst += bv.bv_len; ++ } ++} ++ ++static int alignment_ok(const void *base, size_t align) ++{ ++ return IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) || ++ ((unsigned long)base & (align - 1)) == 0; ++} ++ ++static void u32_swap(void *a, void *b, size_t size) ++{ ++ u32 t = *(u32 *)a; ++ *(u32 *)a = *(u32 *)b; ++ *(u32 *)b = t; ++} ++ ++static void u64_swap(void *a, void *b, size_t size) ++{ ++ u64 t = *(u64 *)a; ++ *(u64 *)a = *(u64 *)b; ++ *(u64 *)b = t; ++} ++ ++static void generic_swap(void *a, void *b, size_t size) ++{ ++ char t; ++ ++ do { ++ t = *(char *)a; ++ *(char *)a++ = *(char *)b; ++ *(char *)b++ = t; ++ } while (--size > 0); ++} ++ ++static inline int do_cmp(void *base, size_t n, size_t size, ++ int (*cmp_func)(const void *, const void *, size_t), ++ size_t l, size_t r) ++{ ++ return cmp_func(base + inorder_to_eytzinger0(l, n) * size, ++ base + inorder_to_eytzinger0(r, n) * size, ++ size); ++} ++ ++static inline void do_swap(void *base, size_t n, size_t size, ++ void (*swap_func)(void *, void *, size_t), ++ size_t l, size_t r) ++{ ++ swap_func(base + inorder_to_eytzinger0(l, n) * size, ++ base + inorder_to_eytzinger0(r, n) * size, ++ size); ++} ++ ++void eytzinger0_sort(void *base, size_t n, size_t size, ++ int (*cmp_func)(const void *, const void *, size_t), ++ void (*swap_func)(void *, void *, size_t)) ++{ ++ int i, c, r; ++ ++ if (!swap_func) { ++ if (size == 4 && alignment_ok(base, 4)) ++ swap_func = u32_swap; ++ else if (size == 8 && alignment_ok(base, 8)) ++ swap_func = u64_swap; ++ else ++ swap_func = generic_swap; ++ } ++ ++ /* heapify */ ++ for (i = n / 2 - 1; i >= 0; --i) { ++ for (r = i; r * 2 + 1 < n; r = c) { ++ c = r * 2 + 1; ++ ++ if (c + 1 < n && ++ do_cmp(base, n, size, cmp_func, c, c + 1) < 0) ++ c++; ++ ++ if (do_cmp(base, n, size, cmp_func, r, c) >= 0) ++ break; ++ ++ do_swap(base, n, size, swap_func, r, c); ++ } ++ } ++ ++ /* sort */ ++ for (i = n - 1; i > 0; --i) { ++ do_swap(base, n, size, swap_func, 0, i); ++ ++ for (r = 0; r * 2 + 1 < i; r = c) { ++ c = r * 2 + 1; ++ ++ if (c + 1 < i && ++ do_cmp(base, n, size, cmp_func, c, c + 1) < 0) ++ c++; ++ ++ if (do_cmp(base, n, size, cmp_func, r, c) >= 0) ++ break; ++ ++ do_swap(base, n, size, swap_func, r, c); ++ } ++ } ++} ++ ++void sort_cmp_size(void *base, size_t num, size_t size, ++ int (*cmp_func)(const void *, const void *, size_t), ++ void (*swap_func)(void *, void *, size_t size)) ++{ ++ /* pre-scale counters for performance */ ++ int i = (num/2 - 1) * size, n = num * size, c, r; ++ ++ if (!swap_func) { ++ if (size == 4 && alignment_ok(base, 4)) ++ swap_func = u32_swap; ++ else if (size == 8 && alignment_ok(base, 8)) ++ swap_func = u64_swap; ++ else ++ swap_func = generic_swap; ++ } ++ ++ /* heapify */ ++ for ( ; i >= 0; i -= size) { ++ for (r = i; r * 2 + size < n; r = c) { ++ c = r * 2 + size; ++ if (c < n - size && ++ cmp_func(base + c, base + c + size, size) < 0) ++ c += size; ++ if (cmp_func(base + r, base + c, size) >= 0) ++ break; ++ swap_func(base + r, base + c, size); ++ } ++ } ++ ++ /* sort */ ++ for (i = n - size; i > 0; i -= size) { ++ swap_func(base, base + i, size); ++ for (r = 0; r * 2 + size < i; r = c) { ++ c = r * 2 + size; ++ if (c < i - size && ++ cmp_func(base + c, base + c + size, size) < 0) ++ c += size; ++ if (cmp_func(base + r, base + c, size) >= 0) ++ break; ++ swap_func(base + r, base + c, size); ++ } ++ } ++} ++ ++static void mempool_free_vp(void *element, void *pool_data) ++{ ++ size_t size = (size_t) pool_data; ++ ++ vpfree(element, size); ++} ++ ++static void *mempool_alloc_vp(gfp_t gfp_mask, void *pool_data) ++{ ++ size_t size = (size_t) pool_data; ++ ++ return vpmalloc(size, gfp_mask); ++} ++ ++int mempool_init_kvpmalloc_pool(mempool_t *pool, int min_nr, size_t size) ++{ ++ return size < PAGE_SIZE ++ ? mempool_init_kmalloc_pool(pool, min_nr, size) ++ : mempool_init(pool, min_nr, mempool_alloc_vp, ++ mempool_free_vp, (void *) size); ++} ++ ++#if 0 ++void eytzinger1_test(void) ++{ ++ unsigned inorder, eytz, size; ++ ++ pr_info("1 based eytzinger test:"); ++ ++ for (size = 2; ++ size < 65536; ++ size++) { ++ unsigned extra = eytzinger1_extra(size); ++ ++ if (!(size % 4096)) ++ pr_info("tree size %u", size); ++ ++ BUG_ON(eytzinger1_prev(0, size) != eytzinger1_last(size)); ++ BUG_ON(eytzinger1_next(0, size) != eytzinger1_first(size)); ++ ++ BUG_ON(eytzinger1_prev(eytzinger1_first(size), size) != 0); ++ BUG_ON(eytzinger1_next(eytzinger1_last(size), size) != 0); ++ ++ inorder = 1; ++ eytzinger1_for_each(eytz, size) { ++ BUG_ON(__inorder_to_eytzinger1(inorder, size, extra) != eytz); ++ BUG_ON(__eytzinger1_to_inorder(eytz, size, extra) != inorder); ++ BUG_ON(eytz != eytzinger1_last(size) && ++ eytzinger1_prev(eytzinger1_next(eytz, size), size) != eytz); ++ ++ inorder++; ++ } ++ } ++} ++ ++void eytzinger0_test(void) ++{ ++ ++ unsigned inorder, eytz, size; ++ ++ pr_info("0 based eytzinger test:"); ++ ++ for (size = 1; ++ size < 65536; ++ size++) { ++ unsigned extra = eytzinger0_extra(size); ++ ++ if (!(size % 4096)) ++ pr_info("tree size %u", size); ++ ++ BUG_ON(eytzinger0_prev(-1, size) != eytzinger0_last(size)); ++ BUG_ON(eytzinger0_next(-1, size) != eytzinger0_first(size)); ++ ++ BUG_ON(eytzinger0_prev(eytzinger0_first(size), size) != -1); ++ BUG_ON(eytzinger0_next(eytzinger0_last(size), size) != -1); ++ ++ inorder = 0; ++ eytzinger0_for_each(eytz, size) { ++ BUG_ON(__inorder_to_eytzinger0(inorder, size, extra) != eytz); ++ BUG_ON(__eytzinger0_to_inorder(eytz, size, extra) != inorder); ++ BUG_ON(eytz != eytzinger0_last(size) && ++ eytzinger0_prev(eytzinger0_next(eytz, size), size) != eytz); ++ ++ inorder++; ++ } ++ } ++} ++ ++static inline int cmp_u16(const void *_l, const void *_r, size_t size) ++{ ++ const u16 *l = _l, *r = _r; ++ ++ return (*l > *r) - (*r - *l); ++} ++ ++static void eytzinger0_find_test_val(u16 *test_array, unsigned nr, u16 search) ++{ ++ int i, c1 = -1, c2 = -1; ++ ssize_t r; ++ ++ r = eytzinger0_find_le(test_array, nr, ++ sizeof(test_array[0]), ++ cmp_u16, &search); ++ if (r >= 0) ++ c1 = test_array[r]; ++ ++ for (i = 0; i < nr; i++) ++ if (test_array[i] <= search && test_array[i] > c2) ++ c2 = test_array[i]; ++ ++ if (c1 != c2) { ++ eytzinger0_for_each(i, nr) ++ pr_info("[%3u] = %12u", i, test_array[i]); ++ pr_info("find_le(%2u) -> [%2zi] = %2i should be %2i", ++ i, r, c1, c2); ++ } ++} ++ ++void eytzinger0_find_test(void) ++{ ++ unsigned i, nr, allocated = 1 << 12; ++ u16 *test_array = kmalloc_array(allocated, sizeof(test_array[0]), GFP_KERNEL); ++ ++ for (nr = 1; nr < allocated; nr++) { ++ pr_info("testing %u elems", nr); ++ ++ get_random_bytes(test_array, nr * sizeof(test_array[0])); ++ eytzinger0_sort(test_array, nr, sizeof(test_array[0]), cmp_u16, NULL); ++ ++ /* verify array is sorted correctly: */ ++ eytzinger0_for_each(i, nr) ++ BUG_ON(i != eytzinger0_last(nr) && ++ test_array[i] > test_array[eytzinger0_next(i, nr)]); ++ ++ for (i = 0; i < U16_MAX; i += 1 << 12) ++ eytzinger0_find_test_val(test_array, nr, i); ++ ++ for (i = 0; i < nr; i++) { ++ eytzinger0_find_test_val(test_array, nr, test_array[i] - 1); ++ eytzinger0_find_test_val(test_array, nr, test_array[i]); ++ eytzinger0_find_test_val(test_array, nr, test_array[i] + 1); ++ } ++ } ++ ++ kfree(test_array); ++} ++#endif ++ ++/* ++ * Accumulate percpu counters onto one cpu's copy - only valid when access ++ * against any percpu counter is guarded against ++ */ ++u64 *bch2_acc_percpu_u64s(u64 __percpu *p, unsigned nr) ++{ ++ u64 *ret; ++ int cpu; ++ ++ /* access to pcpu vars has to be blocked by other locking */ ++ preempt_disable(); ++ ret = this_cpu_ptr(p); ++ preempt_enable(); ++ ++ for_each_possible_cpu(cpu) { ++ u64 *i = per_cpu_ptr(p, cpu); ++ ++ if (i != ret) { ++ acc_u64s(ret, i, nr); ++ memset(i, 0, nr * sizeof(u64)); ++ } ++ } ++ ++ return ret; ++} +diff --git a/fs/bcachefs/util.h b/fs/bcachefs/util.h +new file mode 100644 +index 000000000000..849a37ae497c +--- /dev/null ++++ b/fs/bcachefs/util.h +@@ -0,0 +1,852 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_UTIL_H ++#define _BCACHEFS_UTIL_H ++ ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++#include ++ ++#include "mean_and_variance.h" ++ ++#include "darray.h" ++ ++struct closure; ++ ++#ifdef CONFIG_BCACHEFS_DEBUG ++#define EBUG_ON(cond) BUG_ON(cond) ++#else ++#define EBUG_ON(cond) ++#endif ++ ++#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ ++#define CPU_BIG_ENDIAN 0 ++#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ ++#define CPU_BIG_ENDIAN 1 ++#endif ++ ++/* type hackery */ ++ ++#define type_is_exact(_val, _type) \ ++ __builtin_types_compatible_p(typeof(_val), _type) ++ ++#define type_is(_val, _type) \ ++ (__builtin_types_compatible_p(typeof(_val), _type) || \ ++ __builtin_types_compatible_p(typeof(_val), const _type)) ++ ++/* Userspace doesn't align allocations as nicely as the kernel allocators: */ ++static inline size_t buf_pages(void *p, size_t len) ++{ ++ return DIV_ROUND_UP(len + ++ ((unsigned long) p & (PAGE_SIZE - 1)), ++ PAGE_SIZE); ++} ++ ++static inline void vpfree(void *p, size_t size) ++{ ++ if (is_vmalloc_addr(p)) ++ vfree(p); ++ else ++ free_pages((unsigned long) p, get_order(size)); ++} ++ ++static inline void *vpmalloc(size_t size, gfp_t gfp_mask) ++{ ++ return (void *) __get_free_pages(gfp_mask|__GFP_NOWARN, ++ get_order(size)) ?: ++ __vmalloc(size, gfp_mask); ++} ++ ++static inline void kvpfree(void *p, size_t size) ++{ ++ if (size < PAGE_SIZE) ++ kfree(p); ++ else ++ vpfree(p, size); ++} ++ ++static inline void *kvpmalloc(size_t size, gfp_t gfp_mask) ++{ ++ return size < PAGE_SIZE ++ ? kmalloc(size, gfp_mask) ++ : vpmalloc(size, gfp_mask); ++} ++ ++int mempool_init_kvpmalloc_pool(mempool_t *, int, size_t); ++ ++#define HEAP(type) \ ++struct { \ ++ size_t size, used; \ ++ type *data; \ ++} ++ ++#define DECLARE_HEAP(type, name) HEAP(type) name ++ ++#define init_heap(heap, _size, gfp) \ ++({ \ ++ (heap)->used = 0; \ ++ (heap)->size = (_size); \ ++ (heap)->data = kvpmalloc((heap)->size * sizeof((heap)->data[0]),\ ++ (gfp)); \ ++}) ++ ++#define free_heap(heap) \ ++do { \ ++ kvpfree((heap)->data, (heap)->size * sizeof((heap)->data[0])); \ ++ (heap)->data = NULL; \ ++} while (0) ++ ++#define heap_set_backpointer(h, i, _fn) \ ++do { \ ++ void (*fn)(typeof(h), size_t) = _fn; \ ++ if (fn) \ ++ fn(h, i); \ ++} while (0) ++ ++#define heap_swap(h, i, j, set_backpointer) \ ++do { \ ++ swap((h)->data[i], (h)->data[j]); \ ++ heap_set_backpointer(h, i, set_backpointer); \ ++ heap_set_backpointer(h, j, set_backpointer); \ ++} while (0) ++ ++#define heap_peek(h) \ ++({ \ ++ EBUG_ON(!(h)->used); \ ++ (h)->data[0]; \ ++}) ++ ++#define heap_full(h) ((h)->used == (h)->size) ++ ++#define heap_sift_down(h, i, cmp, set_backpointer) \ ++do { \ ++ size_t _c, _j = i; \ ++ \ ++ for (; _j * 2 + 1 < (h)->used; _j = _c) { \ ++ _c = _j * 2 + 1; \ ++ if (_c + 1 < (h)->used && \ ++ cmp(h, (h)->data[_c], (h)->data[_c + 1]) >= 0) \ ++ _c++; \ ++ \ ++ if (cmp(h, (h)->data[_c], (h)->data[_j]) >= 0) \ ++ break; \ ++ heap_swap(h, _c, _j, set_backpointer); \ ++ } \ ++} while (0) ++ ++#define heap_sift_up(h, i, cmp, set_backpointer) \ ++do { \ ++ while (i) { \ ++ size_t p = (i - 1) / 2; \ ++ if (cmp(h, (h)->data[i], (h)->data[p]) >= 0) \ ++ break; \ ++ heap_swap(h, i, p, set_backpointer); \ ++ i = p; \ ++ } \ ++} while (0) ++ ++#define __heap_add(h, d, cmp, set_backpointer) \ ++({ \ ++ size_t _i = (h)->used++; \ ++ (h)->data[_i] = d; \ ++ heap_set_backpointer(h, _i, set_backpointer); \ ++ \ ++ heap_sift_up(h, _i, cmp, set_backpointer); \ ++ _i; \ ++}) ++ ++#define heap_add(h, d, cmp, set_backpointer) \ ++({ \ ++ bool _r = !heap_full(h); \ ++ if (_r) \ ++ __heap_add(h, d, cmp, set_backpointer); \ ++ _r; \ ++}) ++ ++#define heap_add_or_replace(h, new, cmp, set_backpointer) \ ++do { \ ++ if (!heap_add(h, new, cmp, set_backpointer) && \ ++ cmp(h, new, heap_peek(h)) >= 0) { \ ++ (h)->data[0] = new; \ ++ heap_set_backpointer(h, 0, set_backpointer); \ ++ heap_sift_down(h, 0, cmp, set_backpointer); \ ++ } \ ++} while (0) ++ ++#define heap_del(h, i, cmp, set_backpointer) \ ++do { \ ++ size_t _i = (i); \ ++ \ ++ BUG_ON(_i >= (h)->used); \ ++ (h)->used--; \ ++ if ((_i) < (h)->used) { \ ++ heap_swap(h, _i, (h)->used, set_backpointer); \ ++ heap_sift_up(h, _i, cmp, set_backpointer); \ ++ heap_sift_down(h, _i, cmp, set_backpointer); \ ++ } \ ++} while (0) ++ ++#define heap_pop(h, d, cmp, set_backpointer) \ ++({ \ ++ bool _r = (h)->used; \ ++ if (_r) { \ ++ (d) = (h)->data[0]; \ ++ heap_del(h, 0, cmp, set_backpointer); \ ++ } \ ++ _r; \ ++}) ++ ++#define heap_resort(heap, cmp, set_backpointer) \ ++do { \ ++ ssize_t _i; \ ++ for (_i = (ssize_t) (heap)->used / 2 - 1; _i >= 0; --_i) \ ++ heap_sift_down(heap, _i, cmp, set_backpointer); \ ++} while (0) ++ ++#define ANYSINT_MAX(t) \ ++ ((((t) 1 << (sizeof(t) * 8 - 2)) - (t) 1) * (t) 2 + (t) 1) ++ ++#include "printbuf.h" ++ ++#define prt_vprintf(_out, ...) bch2_prt_vprintf(_out, __VA_ARGS__) ++#define prt_printf(_out, ...) bch2_prt_printf(_out, __VA_ARGS__) ++#define printbuf_str(_buf) bch2_printbuf_str(_buf) ++#define printbuf_exit(_buf) bch2_printbuf_exit(_buf) ++ ++#define printbuf_tabstops_reset(_buf) bch2_printbuf_tabstops_reset(_buf) ++#define printbuf_tabstop_pop(_buf) bch2_printbuf_tabstop_pop(_buf) ++#define printbuf_tabstop_push(_buf, _n) bch2_printbuf_tabstop_push(_buf, _n) ++ ++#define printbuf_indent_add(_out, _n) bch2_printbuf_indent_add(_out, _n) ++#define printbuf_indent_sub(_out, _n) bch2_printbuf_indent_sub(_out, _n) ++ ++#define prt_newline(_out) bch2_prt_newline(_out) ++#define prt_tab(_out) bch2_prt_tab(_out) ++#define prt_tab_rjust(_out) bch2_prt_tab_rjust(_out) ++ ++#define prt_bytes_indented(...) bch2_prt_bytes_indented(__VA_ARGS__) ++#define prt_u64(_out, _v) prt_printf(_out, "%llu", (u64) (_v)) ++#define prt_human_readable_u64(...) bch2_prt_human_readable_u64(__VA_ARGS__) ++#define prt_human_readable_s64(...) bch2_prt_human_readable_s64(__VA_ARGS__) ++#define prt_units_u64(...) bch2_prt_units_u64(__VA_ARGS__) ++#define prt_units_s64(...) bch2_prt_units_s64(__VA_ARGS__) ++#define prt_string_option(...) bch2_prt_string_option(__VA_ARGS__) ++#define prt_bitflags(...) bch2_prt_bitflags(__VA_ARGS__) ++ ++void bch2_pr_time_units(struct printbuf *, u64); ++ ++#ifdef __KERNEL__ ++static inline void pr_time(struct printbuf *out, u64 time) ++{ ++ prt_printf(out, "%llu", time); ++} ++#else ++#include ++static inline void pr_time(struct printbuf *out, u64 _time) ++{ ++ char time_str[64]; ++ time_t time = _time; ++ struct tm *tm = localtime(&time); ++ size_t err = strftime(time_str, sizeof(time_str), "%c", tm); ++ if (!err) ++ prt_printf(out, "(formatting error)"); ++ else ++ prt_printf(out, "%s", time_str); ++} ++#endif ++ ++#ifdef __KERNEL__ ++static inline void uuid_unparse_lower(u8 *uuid, char *out) ++{ ++ sprintf(out, "%pUb", uuid); ++} ++#else ++#include ++#endif ++ ++static inline void pr_uuid(struct printbuf *out, u8 *uuid) ++{ ++ char uuid_str[40]; ++ ++ uuid_unparse_lower(uuid, uuid_str); ++ prt_printf(out, "%s", uuid_str); ++} ++ ++int bch2_strtoint_h(const char *, int *); ++int bch2_strtouint_h(const char *, unsigned int *); ++int bch2_strtoll_h(const char *, long long *); ++int bch2_strtoull_h(const char *, unsigned long long *); ++int bch2_strtou64_h(const char *, u64 *); ++ ++static inline int bch2_strtol_h(const char *cp, long *res) ++{ ++#if BITS_PER_LONG == 32 ++ return bch2_strtoint_h(cp, (int *) res); ++#else ++ return bch2_strtoll_h(cp, (long long *) res); ++#endif ++} ++ ++static inline int bch2_strtoul_h(const char *cp, long *res) ++{ ++#if BITS_PER_LONG == 32 ++ return bch2_strtouint_h(cp, (unsigned int *) res); ++#else ++ return bch2_strtoull_h(cp, (unsigned long long *) res); ++#endif ++} ++ ++#define strtoi_h(cp, res) \ ++ ( type_is(*res, int) ? bch2_strtoint_h(cp, (void *) res)\ ++ : type_is(*res, long) ? bch2_strtol_h(cp, (void *) res)\ ++ : type_is(*res, long long) ? bch2_strtoll_h(cp, (void *) res)\ ++ : type_is(*res, unsigned) ? bch2_strtouint_h(cp, (void *) res)\ ++ : type_is(*res, unsigned long) ? bch2_strtoul_h(cp, (void *) res)\ ++ : type_is(*res, unsigned long long) ? bch2_strtoull_h(cp, (void *) res)\ ++ : -EINVAL) ++ ++#define strtoul_safe(cp, var) \ ++({ \ ++ unsigned long _v; \ ++ int _r = kstrtoul(cp, 10, &_v); \ ++ if (!_r) \ ++ var = _v; \ ++ _r; \ ++}) ++ ++#define strtoul_safe_clamp(cp, var, min, max) \ ++({ \ ++ unsigned long _v; \ ++ int _r = kstrtoul(cp, 10, &_v); \ ++ if (!_r) \ ++ var = clamp_t(typeof(var), _v, min, max); \ ++ _r; \ ++}) ++ ++#define strtoul_safe_restrict(cp, var, min, max) \ ++({ \ ++ unsigned long _v; \ ++ int _r = kstrtoul(cp, 10, &_v); \ ++ if (!_r && _v >= min && _v <= max) \ ++ var = _v; \ ++ else \ ++ _r = -EINVAL; \ ++ _r; \ ++}) ++ ++#define snprint(out, var) \ ++ prt_printf(out, \ ++ type_is(var, int) ? "%i\n" \ ++ : type_is(var, unsigned) ? "%u\n" \ ++ : type_is(var, long) ? "%li\n" \ ++ : type_is(var, unsigned long) ? "%lu\n" \ ++ : type_is(var, s64) ? "%lli\n" \ ++ : type_is(var, u64) ? "%llu\n" \ ++ : type_is(var, char *) ? "%s\n" \ ++ : "%i\n", var) ++ ++bool bch2_is_zero(const void *, size_t); ++ ++u64 bch2_read_flag_list(char *, const char * const[]); ++ ++void bch2_prt_u64_binary(struct printbuf *, u64, unsigned); ++ ++void bch2_print_string_as_lines(const char *prefix, const char *lines); ++ ++typedef DARRAY(unsigned long) bch_stacktrace; ++int bch2_save_backtrace(bch_stacktrace *stack, struct task_struct *); ++void bch2_prt_backtrace(struct printbuf *, bch_stacktrace *); ++int bch2_prt_task_backtrace(struct printbuf *, struct task_struct *); ++ ++#define NR_QUANTILES 15 ++#define QUANTILE_IDX(i) inorder_to_eytzinger0(i, NR_QUANTILES) ++#define QUANTILE_FIRST eytzinger0_first(NR_QUANTILES) ++#define QUANTILE_LAST eytzinger0_last(NR_QUANTILES) ++ ++struct bch2_quantiles { ++ struct bch2_quantile_entry { ++ u64 m; ++ u64 step; ++ } entries[NR_QUANTILES]; ++}; ++ ++struct bch2_time_stat_buffer { ++ unsigned nr; ++ struct bch2_time_stat_buffer_entry { ++ u64 start; ++ u64 end; ++ } entries[32]; ++}; ++ ++struct bch2_time_stats { ++ spinlock_t lock; ++ /* all fields are in nanoseconds */ ++ u64 max_duration; ++ u64 min_duration; ++ u64 max_freq; ++ u64 min_freq; ++ u64 last_event; ++ struct bch2_quantiles quantiles; ++ ++ struct mean_and_variance duration_stats; ++ struct mean_and_variance_weighted duration_stats_weighted; ++ struct mean_and_variance freq_stats; ++ struct mean_and_variance_weighted freq_stats_weighted; ++ struct bch2_time_stat_buffer __percpu *buffer; ++}; ++ ++#ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT ++void __bch2_time_stats_update(struct bch2_time_stats *stats, u64, u64); ++#else ++static inline void __bch2_time_stats_update(struct bch2_time_stats *stats, u64 start, u64 end) {} ++#endif ++ ++static inline void bch2_time_stats_update(struct bch2_time_stats *stats, u64 start) ++{ ++ __bch2_time_stats_update(stats, start, local_clock()); ++} ++ ++void bch2_time_stats_to_text(struct printbuf *, struct bch2_time_stats *); ++ ++void bch2_time_stats_exit(struct bch2_time_stats *); ++void bch2_time_stats_init(struct bch2_time_stats *); ++ ++#define ewma_add(ewma, val, weight) \ ++({ \ ++ typeof(ewma) _ewma = (ewma); \ ++ typeof(weight) _weight = (weight); \ ++ \ ++ (((_ewma << _weight) - _ewma) + (val)) >> _weight; \ ++}) ++ ++struct bch_ratelimit { ++ /* Next time we want to do some work, in nanoseconds */ ++ u64 next; ++ ++ /* ++ * Rate at which we want to do work, in units per nanosecond ++ * The units here correspond to the units passed to ++ * bch2_ratelimit_increment() ++ */ ++ unsigned rate; ++}; ++ ++static inline void bch2_ratelimit_reset(struct bch_ratelimit *d) ++{ ++ d->next = local_clock(); ++} ++ ++u64 bch2_ratelimit_delay(struct bch_ratelimit *); ++void bch2_ratelimit_increment(struct bch_ratelimit *, u64); ++ ++struct bch_pd_controller { ++ struct bch_ratelimit rate; ++ unsigned long last_update; ++ ++ s64 last_actual; ++ s64 smoothed_derivative; ++ ++ unsigned p_term_inverse; ++ unsigned d_smooth; ++ unsigned d_term; ++ ++ /* for exporting to sysfs (no effect on behavior) */ ++ s64 last_derivative; ++ s64 last_proportional; ++ s64 last_change; ++ s64 last_target; ++ ++ /* ++ * If true, the rate will not increase if bch2_ratelimit_delay() ++ * is not being called often enough. ++ */ ++ bool backpressure; ++}; ++ ++void bch2_pd_controller_update(struct bch_pd_controller *, s64, s64, int); ++void bch2_pd_controller_init(struct bch_pd_controller *); ++void bch2_pd_controller_debug_to_text(struct printbuf *, struct bch_pd_controller *); ++ ++#define sysfs_pd_controller_attribute(name) \ ++ rw_attribute(name##_rate); \ ++ rw_attribute(name##_rate_bytes); \ ++ rw_attribute(name##_rate_d_term); \ ++ rw_attribute(name##_rate_p_term_inverse); \ ++ read_attribute(name##_rate_debug) ++ ++#define sysfs_pd_controller_files(name) \ ++ &sysfs_##name##_rate, \ ++ &sysfs_##name##_rate_bytes, \ ++ &sysfs_##name##_rate_d_term, \ ++ &sysfs_##name##_rate_p_term_inverse, \ ++ &sysfs_##name##_rate_debug ++ ++#define sysfs_pd_controller_show(name, var) \ ++do { \ ++ sysfs_hprint(name##_rate, (var)->rate.rate); \ ++ sysfs_print(name##_rate_bytes, (var)->rate.rate); \ ++ sysfs_print(name##_rate_d_term, (var)->d_term); \ ++ sysfs_print(name##_rate_p_term_inverse, (var)->p_term_inverse); \ ++ \ ++ if (attr == &sysfs_##name##_rate_debug) \ ++ bch2_pd_controller_debug_to_text(out, var); \ ++} while (0) ++ ++#define sysfs_pd_controller_store(name, var) \ ++do { \ ++ sysfs_strtoul_clamp(name##_rate, \ ++ (var)->rate.rate, 1, UINT_MAX); \ ++ sysfs_strtoul_clamp(name##_rate_bytes, \ ++ (var)->rate.rate, 1, UINT_MAX); \ ++ sysfs_strtoul(name##_rate_d_term, (var)->d_term); \ ++ sysfs_strtoul_clamp(name##_rate_p_term_inverse, \ ++ (var)->p_term_inverse, 1, INT_MAX); \ ++} while (0) ++ ++#define container_of_or_null(ptr, type, member) \ ++({ \ ++ typeof(ptr) _ptr = ptr; \ ++ _ptr ? container_of(_ptr, type, member) : NULL; \ ++}) ++ ++/* Does linear interpolation between powers of two */ ++static inline unsigned fract_exp_two(unsigned x, unsigned fract_bits) ++{ ++ unsigned fract = x & ~(~0 << fract_bits); ++ ++ x >>= fract_bits; ++ x = 1 << x; ++ x += (x * fract) >> fract_bits; ++ ++ return x; ++} ++ ++void bch2_bio_map(struct bio *bio, void *base, size_t); ++int bch2_bio_alloc_pages(struct bio *, size_t, gfp_t); ++ ++static inline sector_t bdev_sectors(struct block_device *bdev) ++{ ++ return bdev->bd_inode->i_size >> 9; ++} ++ ++#define closure_bio_submit(bio, cl) \ ++do { \ ++ closure_get(cl); \ ++ submit_bio(bio); \ ++} while (0) ++ ++#define kthread_wait(cond) \ ++({ \ ++ int _ret = 0; \ ++ \ ++ while (1) { \ ++ set_current_state(TASK_INTERRUPTIBLE); \ ++ if (kthread_should_stop()) { \ ++ _ret = -1; \ ++ break; \ ++ } \ ++ \ ++ if (cond) \ ++ break; \ ++ \ ++ schedule(); \ ++ } \ ++ set_current_state(TASK_RUNNING); \ ++ _ret; \ ++}) ++ ++#define kthread_wait_freezable(cond) \ ++({ \ ++ int _ret = 0; \ ++ while (1) { \ ++ set_current_state(TASK_INTERRUPTIBLE); \ ++ if (kthread_should_stop()) { \ ++ _ret = -1; \ ++ break; \ ++ } \ ++ \ ++ if (cond) \ ++ break; \ ++ \ ++ schedule(); \ ++ try_to_freeze(); \ ++ } \ ++ set_current_state(TASK_RUNNING); \ ++ _ret; \ ++}) ++ ++size_t bch2_rand_range(size_t); ++ ++void memcpy_to_bio(struct bio *, struct bvec_iter, const void *); ++void memcpy_from_bio(void *, struct bio *, struct bvec_iter); ++ ++static inline void memcpy_u64s_small(void *dst, const void *src, ++ unsigned u64s) ++{ ++ u64 *d = dst; ++ const u64 *s = src; ++ ++ while (u64s--) ++ *d++ = *s++; ++} ++ ++static inline void __memcpy_u64s(void *dst, const void *src, ++ unsigned u64s) ++{ ++#ifdef CONFIG_X86_64 ++ long d0, d1, d2; ++ ++ asm volatile("rep ; movsq" ++ : "=&c" (d0), "=&D" (d1), "=&S" (d2) ++ : "0" (u64s), "1" (dst), "2" (src) ++ : "memory"); ++#else ++ u64 *d = dst; ++ const u64 *s = src; ++ ++ while (u64s--) ++ *d++ = *s++; ++#endif ++} ++ ++static inline void memcpy_u64s(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(!(dst >= src + u64s * sizeof(u64) || ++ dst + u64s * sizeof(u64) <= src)); ++ ++ __memcpy_u64s(dst, src, u64s); ++} ++ ++static inline void __memmove_u64s_down(void *dst, const void *src, ++ unsigned u64s) ++{ ++ __memcpy_u64s(dst, src, u64s); ++} ++ ++static inline void memmove_u64s_down(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(dst > src); ++ ++ __memmove_u64s_down(dst, src, u64s); ++} ++ ++static inline void __memmove_u64s_down_small(void *dst, const void *src, ++ unsigned u64s) ++{ ++ memcpy_u64s_small(dst, src, u64s); ++} ++ ++static inline void memmove_u64s_down_small(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(dst > src); ++ ++ __memmove_u64s_down_small(dst, src, u64s); ++} ++ ++static inline void __memmove_u64s_up_small(void *_dst, const void *_src, ++ unsigned u64s) ++{ ++ u64 *dst = (u64 *) _dst + u64s; ++ u64 *src = (u64 *) _src + u64s; ++ ++ while (u64s--) ++ *--dst = *--src; ++} ++ ++static inline void memmove_u64s_up_small(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(dst < src); ++ ++ __memmove_u64s_up_small(dst, src, u64s); ++} ++ ++static inline void __memmove_u64s_up(void *_dst, const void *_src, ++ unsigned u64s) ++{ ++ u64 *dst = (u64 *) _dst + u64s - 1; ++ u64 *src = (u64 *) _src + u64s - 1; ++ ++#ifdef CONFIG_X86_64 ++ long d0, d1, d2; ++ ++ asm volatile("std ;\n" ++ "rep ; movsq\n" ++ "cld ;\n" ++ : "=&c" (d0), "=&D" (d1), "=&S" (d2) ++ : "0" (u64s), "1" (dst), "2" (src) ++ : "memory"); ++#else ++ while (u64s--) ++ *dst-- = *src--; ++#endif ++} ++ ++static inline void memmove_u64s_up(void *dst, const void *src, ++ unsigned u64s) ++{ ++ EBUG_ON(dst < src); ++ ++ __memmove_u64s_up(dst, src, u64s); ++} ++ ++static inline void memmove_u64s(void *dst, const void *src, ++ unsigned u64s) ++{ ++ if (dst < src) ++ __memmove_u64s_down(dst, src, u64s); ++ else ++ __memmove_u64s_up(dst, src, u64s); ++} ++ ++/* Set the last few bytes up to a u64 boundary given an offset into a buffer. */ ++static inline void memset_u64s_tail(void *s, int c, unsigned bytes) ++{ ++ unsigned rem = round_up(bytes, sizeof(u64)) - bytes; ++ ++ memset(s + bytes, c, rem); ++} ++ ++void sort_cmp_size(void *base, size_t num, size_t size, ++ int (*cmp_func)(const void *, const void *, size_t), ++ void (*swap_func)(void *, void *, size_t)); ++ ++/* just the memmove, doesn't update @_nr */ ++#define __array_insert_item(_array, _nr, _pos) \ ++ memmove(&(_array)[(_pos) + 1], \ ++ &(_array)[(_pos)], \ ++ sizeof((_array)[0]) * ((_nr) - (_pos))) ++ ++#define array_insert_item(_array, _nr, _pos, _new_item) \ ++do { \ ++ __array_insert_item(_array, _nr, _pos); \ ++ (_nr)++; \ ++ (_array)[(_pos)] = (_new_item); \ ++} while (0) ++ ++#define array_remove_items(_array, _nr, _pos, _nr_to_remove) \ ++do { \ ++ (_nr) -= (_nr_to_remove); \ ++ memmove(&(_array)[(_pos)], \ ++ &(_array)[(_pos) + (_nr_to_remove)], \ ++ sizeof((_array)[0]) * ((_nr) - (_pos))); \ ++} while (0) ++ ++#define array_remove_item(_array, _nr, _pos) \ ++ array_remove_items(_array, _nr, _pos, 1) ++ ++static inline void __move_gap(void *array, size_t element_size, ++ size_t nr, size_t size, ++ size_t old_gap, size_t new_gap) ++{ ++ size_t gap_end = old_gap + size - nr; ++ ++ if (new_gap < old_gap) { ++ size_t move = old_gap - new_gap; ++ ++ memmove(array + element_size * (gap_end - move), ++ array + element_size * (old_gap - move), ++ element_size * move); ++ } else if (new_gap > old_gap) { ++ size_t move = new_gap - old_gap; ++ ++ memmove(array + element_size * old_gap, ++ array + element_size * gap_end, ++ element_size * move); ++ } ++} ++ ++/* Move the gap in a gap buffer: */ ++#define move_gap(_array, _nr, _size, _old_gap, _new_gap) \ ++ __move_gap(_array, sizeof(_array[0]), _nr, _size, _old_gap, _new_gap) ++ ++#define bubble_sort(_base, _nr, _cmp) \ ++do { \ ++ ssize_t _i, _last; \ ++ bool _swapped = true; \ ++ \ ++ for (_last= (ssize_t) (_nr) - 1; _last > 0 && _swapped; --_last) {\ ++ _swapped = false; \ ++ for (_i = 0; _i < _last; _i++) \ ++ if (_cmp((_base)[_i], (_base)[_i + 1]) > 0) { \ ++ swap((_base)[_i], (_base)[_i + 1]); \ ++ _swapped = true; \ ++ } \ ++ } \ ++} while (0) ++ ++static inline u64 percpu_u64_get(u64 __percpu *src) ++{ ++ u64 ret = 0; ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ ret += *per_cpu_ptr(src, cpu); ++ return ret; ++} ++ ++static inline void percpu_u64_set(u64 __percpu *dst, u64 src) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ *per_cpu_ptr(dst, cpu) = 0; ++ this_cpu_write(*dst, src); ++} ++ ++static inline void acc_u64s(u64 *acc, const u64 *src, unsigned nr) ++{ ++ unsigned i; ++ ++ for (i = 0; i < nr; i++) ++ acc[i] += src[i]; ++} ++ ++static inline void acc_u64s_percpu(u64 *acc, const u64 __percpu *src, ++ unsigned nr) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ acc_u64s(acc, per_cpu_ptr(src, cpu), nr); ++} ++ ++static inline void percpu_memset(void __percpu *p, int c, size_t bytes) ++{ ++ int cpu; ++ ++ for_each_possible_cpu(cpu) ++ memset(per_cpu_ptr(p, cpu), c, bytes); ++} ++ ++u64 *bch2_acc_percpu_u64s(u64 __percpu *, unsigned); ++ ++#define cmp_int(l, r) ((l > r) - (l < r)) ++ ++static inline int u8_cmp(u8 l, u8 r) ++{ ++ return cmp_int(l, r); ++} ++ ++static inline int cmp_le32(__le32 l, __le32 r) ++{ ++ return cmp_int(le32_to_cpu(l), le32_to_cpu(r)); ++} ++ ++#include ++ ++#endif /* _BCACHEFS_UTIL_H */ +diff --git a/fs/bcachefs/varint.c b/fs/bcachefs/varint.c +new file mode 100644 +index 000000000000..cb4f33ed9ab3 +--- /dev/null ++++ b/fs/bcachefs/varint.c +@@ -0,0 +1,129 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include ++#include ++#include ++#include ++ ++#ifdef CONFIG_VALGRIND ++#include ++#endif ++ ++#include "varint.h" ++ ++/** ++ * bch2_varint_encode - encode a variable length integer ++ * @out: destination to encode to ++ * @v: unsigned integer to encode ++ * Returns: size in bytes of the encoded integer - at most 9 bytes ++ */ ++int bch2_varint_encode(u8 *out, u64 v) ++{ ++ unsigned bits = fls64(v|1); ++ unsigned bytes = DIV_ROUND_UP(bits, 7); ++ __le64 v_le; ++ ++ if (likely(bytes < 9)) { ++ v <<= bytes; ++ v |= ~(~0 << (bytes - 1)); ++ v_le = cpu_to_le64(v); ++ memcpy(out, &v_le, bytes); ++ } else { ++ *out++ = 255; ++ bytes = 9; ++ put_unaligned_le64(v, out); ++ } ++ ++ return bytes; ++} ++ ++/** ++ * bch2_varint_decode - encode a variable length integer ++ * @in: varint to decode ++ * @end: end of buffer to decode from ++ * @out: on success, decoded integer ++ * Returns: size in bytes of the decoded integer - or -1 on failure (would ++ * have read past the end of the buffer) ++ */ ++int bch2_varint_decode(const u8 *in, const u8 *end, u64 *out) ++{ ++ unsigned bytes = likely(in < end) ++ ? ffz(*in & 255) + 1 ++ : 1; ++ u64 v; ++ ++ if (unlikely(in + bytes > end)) ++ return -1; ++ ++ if (likely(bytes < 9)) { ++ __le64 v_le = 0; ++ ++ memcpy(&v_le, in, bytes); ++ v = le64_to_cpu(v_le); ++ v >>= bytes; ++ } else { ++ v = get_unaligned_le64(++in); ++ } ++ ++ *out = v; ++ return bytes; ++} ++ ++/** ++ * bch2_varint_encode_fast - fast version of bch2_varint_encode ++ * @out: destination to encode to ++ * @v: unsigned integer to encode ++ * Returns: size in bytes of the encoded integer - at most 9 bytes ++ * ++ * This version assumes it's always safe to write 8 bytes to @out, even if the ++ * encoded integer would be smaller. ++ */ ++int bch2_varint_encode_fast(u8 *out, u64 v) ++{ ++ unsigned bits = fls64(v|1); ++ unsigned bytes = DIV_ROUND_UP(bits, 7); ++ ++ if (likely(bytes < 9)) { ++ v <<= bytes; ++ v |= ~(~0 << (bytes - 1)); ++ } else { ++ *out++ = 255; ++ bytes = 9; ++ } ++ ++ put_unaligned_le64(v, out); ++ return bytes; ++} ++ ++/** ++ * bch2_varint_decode_fast - fast version of bch2_varint_decode ++ * @in: varint to decode ++ * @end: end of buffer to decode from ++ * @out: on success, decoded integer ++ * Returns: size in bytes of the decoded integer - or -1 on failure (would ++ * have read past the end of the buffer) ++ * ++ * This version assumes that it is safe to read at most 8 bytes past the end of ++ * @end (we still return an error if the varint extends past @end). ++ */ ++int bch2_varint_decode_fast(const u8 *in, const u8 *end, u64 *out) ++{ ++#ifdef CONFIG_VALGRIND ++ VALGRIND_MAKE_MEM_DEFINED(in, 8); ++#endif ++ u64 v = get_unaligned_le64(in); ++ unsigned bytes = ffz(*in) + 1; ++ ++ if (unlikely(in + bytes > end)) ++ return -1; ++ ++ if (likely(bytes < 9)) { ++ v >>= bytes; ++ v &= ~(~0ULL << (7 * bytes)); ++ } else { ++ v = get_unaligned_le64(++in); ++ } ++ ++ *out = v; ++ return bytes; ++} +diff --git a/fs/bcachefs/varint.h b/fs/bcachefs/varint.h +new file mode 100644 +index 000000000000..92a182fb3d7a +--- /dev/null ++++ b/fs/bcachefs/varint.h +@@ -0,0 +1,11 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_VARINT_H ++#define _BCACHEFS_VARINT_H ++ ++int bch2_varint_encode(u8 *, u64); ++int bch2_varint_decode(const u8 *, const u8 *, u64 *); ++ ++int bch2_varint_encode_fast(u8 *, u64); ++int bch2_varint_decode_fast(const u8 *, const u8 *, u64 *); ++ ++#endif /* _BCACHEFS_VARINT_H */ +diff --git a/fs/bcachefs/vstructs.h b/fs/bcachefs/vstructs.h +new file mode 100644 +index 000000000000..a6561b4b36a6 +--- /dev/null ++++ b/fs/bcachefs/vstructs.h +@@ -0,0 +1,63 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _VSTRUCTS_H ++#define _VSTRUCTS_H ++ ++#include "util.h" ++ ++/* ++ * NOTE: we can't differentiate between __le64 and u64 with type_is - this ++ * assumes u64 is little endian: ++ */ ++#define __vstruct_u64s(_s) \ ++({ \ ++ ( type_is((_s)->u64s, u64) ? le64_to_cpu((__force __le64) (_s)->u64s) \ ++ : type_is((_s)->u64s, u32) ? le32_to_cpu((__force __le32) (_s)->u64s) \ ++ : type_is((_s)->u64s, u16) ? le16_to_cpu((__force __le16) (_s)->u64s) \ ++ : ((__force u8) ((_s)->u64s))); \ ++}) ++ ++#define __vstruct_bytes(_type, _u64s) \ ++({ \ ++ BUILD_BUG_ON(offsetof(_type, _data) % sizeof(u64)); \ ++ \ ++ (size_t) (offsetof(_type, _data) + (_u64s) * sizeof(u64)); \ ++}) ++ ++#define vstruct_bytes(_s) \ ++ __vstruct_bytes(typeof(*(_s)), __vstruct_u64s(_s)) ++ ++#define __vstruct_blocks(_type, _sector_block_bits, _u64s) \ ++ (round_up(__vstruct_bytes(_type, _u64s), \ ++ 512 << (_sector_block_bits)) >> (9 + (_sector_block_bits))) ++ ++#define vstruct_blocks(_s, _sector_block_bits) \ ++ __vstruct_blocks(typeof(*(_s)), _sector_block_bits, __vstruct_u64s(_s)) ++ ++#define vstruct_blocks_plus(_s, _sector_block_bits, _u64s) \ ++ __vstruct_blocks(typeof(*(_s)), _sector_block_bits, \ ++ __vstruct_u64s(_s) + (_u64s)) ++ ++#define vstruct_sectors(_s, _sector_block_bits) \ ++ (round_up(vstruct_bytes(_s), 512 << (_sector_block_bits)) >> 9) ++ ++#define vstruct_next(_s) \ ++ ((typeof(_s)) ((u64 *) (_s)->_data + __vstruct_u64s(_s))) ++#define vstruct_last(_s) \ ++ ((typeof(&(_s)->start[0])) ((u64 *) (_s)->_data + __vstruct_u64s(_s))) ++#define vstruct_end(_s) \ ++ ((void *) ((u64 *) (_s)->_data + __vstruct_u64s(_s))) ++ ++#define vstruct_for_each(_s, _i) \ ++ for (_i = (_s)->start; \ ++ _i < vstruct_last(_s); \ ++ _i = vstruct_next(_i)) ++ ++#define vstruct_for_each_safe(_s, _i, _t) \ ++ for (_i = (_s)->start; \ ++ _i < vstruct_last(_s) && (_t = vstruct_next(_i), true); \ ++ _i = _t) ++ ++#define vstruct_idx(_s, _idx) \ ++ ((typeof(&(_s)->start[0])) ((_s)->_data + (_idx))) ++ ++#endif /* _VSTRUCTS_H */ +diff --git a/fs/bcachefs/xattr.c b/fs/bcachefs/xattr.c +new file mode 100644 +index 000000000000..b069b1a62e25 +--- /dev/null ++++ b/fs/bcachefs/xattr.c +@@ -0,0 +1,651 @@ ++// SPDX-License-Identifier: GPL-2.0 ++ ++#include "bcachefs.h" ++#include "acl.h" ++#include "bkey_methods.h" ++#include "btree_update.h" ++#include "extents.h" ++#include "fs.h" ++#include "rebalance.h" ++#include "str_hash.h" ++#include "xattr.h" ++ ++#include ++#include ++#include ++ ++static const struct xattr_handler *bch2_xattr_type_to_handler(unsigned); ++ ++static u64 bch2_xattr_hash(const struct bch_hash_info *info, ++ const struct xattr_search_key *key) ++{ ++ struct bch_str_hash_ctx ctx; ++ ++ bch2_str_hash_init(&ctx, info); ++ bch2_str_hash_update(&ctx, info, &key->type, sizeof(key->type)); ++ bch2_str_hash_update(&ctx, info, key->name.name, key->name.len); ++ ++ return bch2_str_hash_end(&ctx, info); ++} ++ ++static u64 xattr_hash_key(const struct bch_hash_info *info, const void *key) ++{ ++ return bch2_xattr_hash(info, key); ++} ++ ++static u64 xattr_hash_bkey(const struct bch_hash_info *info, struct bkey_s_c k) ++{ ++ struct bkey_s_c_xattr x = bkey_s_c_to_xattr(k); ++ ++ return bch2_xattr_hash(info, ++ &X_SEARCH(x.v->x_type, x.v->x_name, x.v->x_name_len)); ++} ++ ++static bool xattr_cmp_key(struct bkey_s_c _l, const void *_r) ++{ ++ struct bkey_s_c_xattr l = bkey_s_c_to_xattr(_l); ++ const struct xattr_search_key *r = _r; ++ ++ return l.v->x_type != r->type || ++ l.v->x_name_len != r->name.len || ++ memcmp(l.v->x_name, r->name.name, r->name.len); ++} ++ ++static bool xattr_cmp_bkey(struct bkey_s_c _l, struct bkey_s_c _r) ++{ ++ struct bkey_s_c_xattr l = bkey_s_c_to_xattr(_l); ++ struct bkey_s_c_xattr r = bkey_s_c_to_xattr(_r); ++ ++ return l.v->x_type != r.v->x_type || ++ l.v->x_name_len != r.v->x_name_len || ++ memcmp(l.v->x_name, r.v->x_name, r.v->x_name_len); ++} ++ ++const struct bch_hash_desc bch2_xattr_hash_desc = { ++ .btree_id = BTREE_ID_xattrs, ++ .key_type = KEY_TYPE_xattr, ++ .hash_key = xattr_hash_key, ++ .hash_bkey = xattr_hash_bkey, ++ .cmp_key = xattr_cmp_key, ++ .cmp_bkey = xattr_cmp_bkey, ++}; ++ ++int bch2_xattr_invalid(const struct bch_fs *c, struct bkey_s_c k, ++ enum bkey_invalid_flags flags, ++ struct printbuf *err) ++{ ++ const struct xattr_handler *handler; ++ struct bkey_s_c_xattr xattr = bkey_s_c_to_xattr(k); ++ ++ if (bkey_val_u64s(k.k) < ++ xattr_val_u64s(xattr.v->x_name_len, ++ le16_to_cpu(xattr.v->x_val_len))) { ++ prt_printf(err, "value too small (%zu < %u)", ++ bkey_val_u64s(k.k), ++ xattr_val_u64s(xattr.v->x_name_len, ++ le16_to_cpu(xattr.v->x_val_len))); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ /* XXX why +4 ? */ ++ if (bkey_val_u64s(k.k) > ++ xattr_val_u64s(xattr.v->x_name_len, ++ le16_to_cpu(xattr.v->x_val_len) + 4)) { ++ prt_printf(err, "value too big (%zu > %u)", ++ bkey_val_u64s(k.k), ++ xattr_val_u64s(xattr.v->x_name_len, ++ le16_to_cpu(xattr.v->x_val_len) + 4)); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ handler = bch2_xattr_type_to_handler(xattr.v->x_type); ++ if (!handler) { ++ prt_printf(err, "invalid type (%u)", xattr.v->x_type); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ if (memchr(xattr.v->x_name, '\0', xattr.v->x_name_len)) { ++ prt_printf(err, "xattr name has invalid characters"); ++ return -BCH_ERR_invalid_bkey; ++ } ++ ++ return 0; ++} ++ ++void bch2_xattr_to_text(struct printbuf *out, struct bch_fs *c, ++ struct bkey_s_c k) ++{ ++ const struct xattr_handler *handler; ++ struct bkey_s_c_xattr xattr = bkey_s_c_to_xattr(k); ++ ++ handler = bch2_xattr_type_to_handler(xattr.v->x_type); ++ if (handler && handler->prefix) ++ prt_printf(out, "%s", handler->prefix); ++ else if (handler) ++ prt_printf(out, "(type %u)", xattr.v->x_type); ++ else ++ prt_printf(out, "(unknown type %u)", xattr.v->x_type); ++ ++ prt_printf(out, "%.*s:%.*s", ++ xattr.v->x_name_len, ++ xattr.v->x_name, ++ le16_to_cpu(xattr.v->x_val_len), ++ (char *) xattr_val(xattr.v)); ++ ++ if (xattr.v->x_type == KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS || ++ xattr.v->x_type == KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT) { ++ prt_char(out, ' '); ++ bch2_acl_to_text(out, xattr_val(xattr.v), ++ le16_to_cpu(xattr.v->x_val_len)); ++ } ++} ++ ++static int bch2_xattr_get_trans(struct btree_trans *trans, struct bch_inode_info *inode, ++ const char *name, void *buffer, size_t size, int type) ++{ ++ struct bch_hash_info hash = bch2_hash_info_init(trans->c, &inode->ei_inode); ++ struct xattr_search_key search = X_SEARCH(type, name, strlen(name)); ++ struct btree_iter iter; ++ struct bkey_s_c_xattr xattr; ++ struct bkey_s_c k; ++ int ret; ++ ++ ret = bch2_hash_lookup(trans, &iter, bch2_xattr_hash_desc, &hash, ++ inode_inum(inode), &search, 0); ++ if (ret) ++ goto err1; ++ ++ k = bch2_btree_iter_peek_slot(&iter); ++ ret = bkey_err(k); ++ if (ret) ++ goto err2; ++ ++ xattr = bkey_s_c_to_xattr(k); ++ ret = le16_to_cpu(xattr.v->x_val_len); ++ if (buffer) { ++ if (ret > size) ++ ret = -ERANGE; ++ else ++ memcpy(buffer, xattr_val(xattr.v), ret); ++ } ++err2: ++ bch2_trans_iter_exit(trans, &iter); ++err1: ++ return ret < 0 && bch2_err_matches(ret, ENOENT) ? -ENODATA : ret; ++} ++ ++int bch2_xattr_set(struct btree_trans *trans, subvol_inum inum, ++ struct bch_inode_unpacked *inode_u, ++ const struct bch_hash_info *hash_info, ++ const char *name, const void *value, size_t size, ++ int type, int flags) ++{ ++ struct bch_fs *c = trans->c; ++ struct btree_iter inode_iter = { NULL }; ++ int ret; ++ ++ ret = bch2_inode_peek(trans, &inode_iter, inode_u, inum, BTREE_ITER_INTENT); ++ if (ret) ++ return ret; ++ ++ inode_u->bi_ctime = bch2_current_time(c); ++ ++ ret = bch2_inode_write(trans, &inode_iter, inode_u); ++ bch2_trans_iter_exit(trans, &inode_iter); ++ ++ if (ret) ++ return ret; ++ ++ if (value) { ++ struct bkey_i_xattr *xattr; ++ unsigned namelen = strlen(name); ++ unsigned u64s = BKEY_U64s + ++ xattr_val_u64s(namelen, size); ++ ++ if (u64s > U8_MAX) ++ return -ERANGE; ++ ++ xattr = bch2_trans_kmalloc(trans, u64s * sizeof(u64)); ++ if (IS_ERR(xattr)) ++ return PTR_ERR(xattr); ++ ++ bkey_xattr_init(&xattr->k_i); ++ xattr->k.u64s = u64s; ++ xattr->v.x_type = type; ++ xattr->v.x_name_len = namelen; ++ xattr->v.x_val_len = cpu_to_le16(size); ++ memcpy(xattr->v.x_name, name, namelen); ++ memcpy(xattr_val(&xattr->v), value, size); ++ ++ ret = bch2_hash_set(trans, bch2_xattr_hash_desc, hash_info, ++ inum, &xattr->k_i, ++ (flags & XATTR_CREATE ? BCH_HASH_SET_MUST_CREATE : 0)| ++ (flags & XATTR_REPLACE ? BCH_HASH_SET_MUST_REPLACE : 0)); ++ } else { ++ struct xattr_search_key search = ++ X_SEARCH(type, name, strlen(name)); ++ ++ ret = bch2_hash_delete(trans, bch2_xattr_hash_desc, ++ hash_info, inum, &search); ++ } ++ ++ if (bch2_err_matches(ret, ENOENT)) ++ ret = flags & XATTR_REPLACE ? -ENODATA : 0; ++ ++ return ret; ++} ++ ++struct xattr_buf { ++ char *buf; ++ size_t len; ++ size_t used; ++}; ++ ++static int __bch2_xattr_emit(const char *prefix, ++ const char *name, size_t name_len, ++ struct xattr_buf *buf) ++{ ++ const size_t prefix_len = strlen(prefix); ++ const size_t total_len = prefix_len + name_len + 1; ++ ++ if (buf->buf) { ++ if (buf->used + total_len > buf->len) ++ return -ERANGE; ++ ++ memcpy(buf->buf + buf->used, prefix, prefix_len); ++ memcpy(buf->buf + buf->used + prefix_len, ++ name, name_len); ++ buf->buf[buf->used + prefix_len + name_len] = '\0'; ++ } ++ ++ buf->used += total_len; ++ return 0; ++} ++ ++static int bch2_xattr_emit(struct dentry *dentry, ++ const struct bch_xattr *xattr, ++ struct xattr_buf *buf) ++{ ++ const struct xattr_handler *handler = ++ bch2_xattr_type_to_handler(xattr->x_type); ++ ++ return handler && (!handler->list || handler->list(dentry)) ++ ? __bch2_xattr_emit(handler->prefix ?: handler->name, ++ xattr->x_name, xattr->x_name_len, buf) ++ : 0; ++} ++ ++static int bch2_xattr_list_bcachefs(struct bch_fs *c, ++ struct bch_inode_unpacked *inode, ++ struct xattr_buf *buf, ++ bool all) ++{ ++ const char *prefix = all ? "bcachefs_effective." : "bcachefs."; ++ unsigned id; ++ int ret = 0; ++ u64 v; ++ ++ for (id = 0; id < Inode_opt_nr; id++) { ++ v = bch2_inode_opt_get(inode, id); ++ if (!v) ++ continue; ++ ++ if (!all && ++ !(inode->bi_fields_set & (1 << id))) ++ continue; ++ ++ ret = __bch2_xattr_emit(prefix, bch2_inode_opts[id], ++ strlen(bch2_inode_opts[id]), buf); ++ if (ret) ++ break; ++ } ++ ++ return ret; ++} ++ ++ssize_t bch2_xattr_list(struct dentry *dentry, char *buffer, size_t buffer_size) ++{ ++ struct bch_fs *c = dentry->d_sb->s_fs_info; ++ struct bch_inode_info *inode = to_bch_ei(dentry->d_inode); ++ struct btree_trans *trans = bch2_trans_get(c); ++ struct btree_iter iter; ++ struct bkey_s_c k; ++ struct xattr_buf buf = { .buf = buffer, .len = buffer_size }; ++ u64 offset = 0, inum = inode->ei_inode.bi_inum; ++ u32 snapshot; ++ int ret; ++retry: ++ bch2_trans_begin(trans); ++ iter = (struct btree_iter) { NULL }; ++ ++ ret = bch2_subvolume_get_snapshot(trans, inode->ei_subvol, &snapshot); ++ if (ret) ++ goto err; ++ ++ for_each_btree_key_upto_norestart(trans, iter, BTREE_ID_xattrs, ++ SPOS(inum, offset, snapshot), ++ POS(inum, U64_MAX), 0, k, ret) { ++ if (k.k->type != KEY_TYPE_xattr) ++ continue; ++ ++ ret = bch2_xattr_emit(dentry, bkey_s_c_to_xattr(k).v, &buf); ++ if (ret) ++ break; ++ } ++ ++ offset = iter.pos.offset; ++ bch2_trans_iter_exit(trans, &iter); ++err: ++ if (bch2_err_matches(ret, BCH_ERR_transaction_restart)) ++ goto retry; ++ ++ bch2_trans_put(trans); ++ ++ if (ret) ++ goto out; ++ ++ ret = bch2_xattr_list_bcachefs(c, &inode->ei_inode, &buf, false); ++ if (ret) ++ goto out; ++ ++ ret = bch2_xattr_list_bcachefs(c, &inode->ei_inode, &buf, true); ++ if (ret) ++ goto out; ++ ++ return buf.used; ++out: ++ return bch2_err_class(ret); ++} ++ ++static int bch2_xattr_get_handler(const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, void *buffer, size_t size) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ int ret = bch2_trans_do(c, NULL, NULL, 0, ++ bch2_xattr_get_trans(trans, inode, name, buffer, size, handler->flags)); ++ ++ return bch2_err_class(ret); ++} ++ ++static int bch2_xattr_set_handler(const struct xattr_handler *handler, ++ struct mnt_idmap *idmap, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, const void *value, ++ size_t size, int flags) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_hash_info hash = bch2_hash_info_init(c, &inode->ei_inode); ++ struct bch_inode_unpacked inode_u; ++ int ret; ++ ++ ret = bch2_trans_run(c, ++ commit_do(trans, NULL, NULL, 0, ++ bch2_xattr_set(trans, inode_inum(inode), &inode_u, ++ &hash, name, value, size, ++ handler->flags, flags)) ?: ++ (bch2_inode_update_after_write(trans, inode, &inode_u, ATTR_CTIME), 0)); ++ ++ return bch2_err_class(ret); ++} ++ ++static const struct xattr_handler bch_xattr_user_handler = { ++ .prefix = XATTR_USER_PREFIX, ++ .get = bch2_xattr_get_handler, ++ .set = bch2_xattr_set_handler, ++ .flags = KEY_TYPE_XATTR_INDEX_USER, ++}; ++ ++static bool bch2_xattr_trusted_list(struct dentry *dentry) ++{ ++ return capable(CAP_SYS_ADMIN); ++} ++ ++static const struct xattr_handler bch_xattr_trusted_handler = { ++ .prefix = XATTR_TRUSTED_PREFIX, ++ .list = bch2_xattr_trusted_list, ++ .get = bch2_xattr_get_handler, ++ .set = bch2_xattr_set_handler, ++ .flags = KEY_TYPE_XATTR_INDEX_TRUSTED, ++}; ++ ++static const struct xattr_handler bch_xattr_security_handler = { ++ .prefix = XATTR_SECURITY_PREFIX, ++ .get = bch2_xattr_get_handler, ++ .set = bch2_xattr_set_handler, ++ .flags = KEY_TYPE_XATTR_INDEX_SECURITY, ++}; ++ ++#ifndef NO_BCACHEFS_FS ++ ++static int opt_to_inode_opt(int id) ++{ ++ switch (id) { ++#define x(name, ...) \ ++ case Opt_##name: return Inode_opt_##name; ++ BCH_INODE_OPTS() ++#undef x ++ default: ++ return -1; ++ } ++} ++ ++static int __bch2_xattr_bcachefs_get(const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, void *buffer, size_t size, ++ bool all) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ struct bch_opts opts = ++ bch2_inode_opts_to_opts(&inode->ei_inode); ++ const struct bch_option *opt; ++ int id, inode_opt_id; ++ struct printbuf out = PRINTBUF; ++ int ret; ++ u64 v; ++ ++ id = bch2_opt_lookup(name); ++ if (id < 0 || !bch2_opt_is_inode_opt(id)) ++ return -EINVAL; ++ ++ inode_opt_id = opt_to_inode_opt(id); ++ if (inode_opt_id < 0) ++ return -EINVAL; ++ ++ opt = bch2_opt_table + id; ++ ++ if (!bch2_opt_defined_by_id(&opts, id)) ++ return -ENODATA; ++ ++ if (!all && ++ !(inode->ei_inode.bi_fields_set & (1 << inode_opt_id))) ++ return -ENODATA; ++ ++ v = bch2_opt_get_by_id(&opts, id); ++ bch2_opt_to_text(&out, c, c->disk_sb.sb, opt, v, 0); ++ ++ ret = out.pos; ++ ++ if (out.allocation_failure) { ++ ret = -ENOMEM; ++ } else if (buffer) { ++ if (out.pos > size) ++ ret = -ERANGE; ++ else ++ memcpy(buffer, out.buf, out.pos); ++ } ++ ++ printbuf_exit(&out); ++ return ret; ++} ++ ++static int bch2_xattr_bcachefs_get(const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, void *buffer, size_t size) ++{ ++ return __bch2_xattr_bcachefs_get(handler, dentry, vinode, ++ name, buffer, size, false); ++} ++ ++struct inode_opt_set { ++ int id; ++ u64 v; ++ bool defined; ++}; ++ ++static int inode_opt_set_fn(struct btree_trans *trans, ++ struct bch_inode_info *inode, ++ struct bch_inode_unpacked *bi, ++ void *p) ++{ ++ struct inode_opt_set *s = p; ++ ++ if (s->defined) ++ bi->bi_fields_set |= 1U << s->id; ++ else ++ bi->bi_fields_set &= ~(1U << s->id); ++ ++ bch2_inode_opt_set(bi, s->id, s->v); ++ ++ return 0; ++} ++ ++static int bch2_xattr_bcachefs_set(const struct xattr_handler *handler, ++ struct mnt_idmap *idmap, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, const void *value, ++ size_t size, int flags) ++{ ++ struct bch_inode_info *inode = to_bch_ei(vinode); ++ struct bch_fs *c = inode->v.i_sb->s_fs_info; ++ const struct bch_option *opt; ++ char *buf; ++ struct inode_opt_set s; ++ int opt_id, inode_opt_id, ret; ++ ++ opt_id = bch2_opt_lookup(name); ++ if (opt_id < 0) ++ return -EINVAL; ++ ++ opt = bch2_opt_table + opt_id; ++ ++ inode_opt_id = opt_to_inode_opt(opt_id); ++ if (inode_opt_id < 0) ++ return -EINVAL; ++ ++ s.id = inode_opt_id; ++ ++ if (value) { ++ u64 v = 0; ++ ++ buf = kmalloc(size + 1, GFP_KERNEL); ++ if (!buf) ++ return -ENOMEM; ++ memcpy(buf, value, size); ++ buf[size] = '\0'; ++ ++ ret = bch2_opt_parse(c, opt, buf, &v, NULL); ++ kfree(buf); ++ ++ if (ret < 0) ++ return ret; ++ ++ ret = bch2_opt_check_may_set(c, opt_id, v); ++ if (ret < 0) ++ return ret; ++ ++ s.v = v + 1; ++ s.defined = true; ++ } else { ++ if (!IS_ROOT(dentry)) { ++ struct bch_inode_info *dir = ++ to_bch_ei(d_inode(dentry->d_parent)); ++ ++ s.v = bch2_inode_opt_get(&dir->ei_inode, inode_opt_id); ++ } else { ++ s.v = 0; ++ } ++ ++ s.defined = false; ++ } ++ ++ mutex_lock(&inode->ei_update_lock); ++ if (inode_opt_id == Inode_opt_project) { ++ /* ++ * inode fields accessible via the xattr interface are stored ++ * with a +1 bias, so that 0 means unset: ++ */ ++ ret = bch2_set_projid(c, inode, s.v ? s.v - 1 : 0); ++ if (ret) ++ goto err; ++ } ++ ++ ret = bch2_write_inode(c, inode, inode_opt_set_fn, &s, 0); ++err: ++ mutex_unlock(&inode->ei_update_lock); ++ ++ if (value && ++ (opt_id == Opt_background_compression || ++ opt_id == Opt_background_target)) ++ bch2_rebalance_add_work(c, inode->v.i_blocks); ++ ++ return bch2_err_class(ret); ++} ++ ++static const struct xattr_handler bch_xattr_bcachefs_handler = { ++ .prefix = "bcachefs.", ++ .get = bch2_xattr_bcachefs_get, ++ .set = bch2_xattr_bcachefs_set, ++}; ++ ++static int bch2_xattr_bcachefs_get_effective( ++ const struct xattr_handler *handler, ++ struct dentry *dentry, struct inode *vinode, ++ const char *name, void *buffer, size_t size) ++{ ++ return __bch2_xattr_bcachefs_get(handler, dentry, vinode, ++ name, buffer, size, true); ++} ++ ++static const struct xattr_handler bch_xattr_bcachefs_effective_handler = { ++ .prefix = "bcachefs_effective.", ++ .get = bch2_xattr_bcachefs_get_effective, ++ .set = bch2_xattr_bcachefs_set, ++}; ++ ++#endif /* NO_BCACHEFS_FS */ ++ ++const struct xattr_handler *bch2_xattr_handlers[] = { ++ &bch_xattr_user_handler, ++#ifdef CONFIG_BCACHEFS_POSIX_ACL ++ &nop_posix_acl_access, ++ &nop_posix_acl_default, ++#endif ++ &bch_xattr_trusted_handler, ++ &bch_xattr_security_handler, ++#ifndef NO_BCACHEFS_FS ++ &bch_xattr_bcachefs_handler, ++ &bch_xattr_bcachefs_effective_handler, ++#endif ++ NULL ++}; ++ ++static const struct xattr_handler *bch_xattr_handler_map[] = { ++ [KEY_TYPE_XATTR_INDEX_USER] = &bch_xattr_user_handler, ++ [KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS] = ++ &nop_posix_acl_access, ++ [KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT] = ++ &nop_posix_acl_default, ++ [KEY_TYPE_XATTR_INDEX_TRUSTED] = &bch_xattr_trusted_handler, ++ [KEY_TYPE_XATTR_INDEX_SECURITY] = &bch_xattr_security_handler, ++}; ++ ++static const struct xattr_handler *bch2_xattr_type_to_handler(unsigned type) ++{ ++ return type < ARRAY_SIZE(bch_xattr_handler_map) ++ ? bch_xattr_handler_map[type] ++ : NULL; ++} +diff --git a/fs/bcachefs/xattr.h b/fs/bcachefs/xattr.h +new file mode 100644 +index 000000000000..f5a52e3a6016 +--- /dev/null ++++ b/fs/bcachefs/xattr.h +@@ -0,0 +1,50 @@ ++/* SPDX-License-Identifier: GPL-2.0 */ ++#ifndef _BCACHEFS_XATTR_H ++#define _BCACHEFS_XATTR_H ++ ++#include "str_hash.h" ++ ++extern const struct bch_hash_desc bch2_xattr_hash_desc; ++ ++int bch2_xattr_invalid(const struct bch_fs *, struct bkey_s_c, ++ enum bkey_invalid_flags, struct printbuf *); ++void bch2_xattr_to_text(struct printbuf *, struct bch_fs *, struct bkey_s_c); ++ ++#define bch2_bkey_ops_xattr ((struct bkey_ops) { \ ++ .key_invalid = bch2_xattr_invalid, \ ++ .val_to_text = bch2_xattr_to_text, \ ++ .min_val_size = 8, \ ++}) ++ ++static inline unsigned xattr_val_u64s(unsigned name_len, unsigned val_len) ++{ ++ return DIV_ROUND_UP(offsetof(struct bch_xattr, x_name) + ++ name_len + val_len, sizeof(u64)); ++} ++ ++#define xattr_val(_xattr) \ ++ ((void *) (_xattr)->x_name + (_xattr)->x_name_len) ++ ++struct xattr_search_key { ++ u8 type; ++ struct qstr name; ++}; ++ ++#define X_SEARCH(_type, _name, _len) ((struct xattr_search_key) \ ++ { .type = _type, .name = QSTR_INIT(_name, _len) }) ++ ++struct dentry; ++struct xattr_handler; ++struct bch_hash_info; ++struct bch_inode_info; ++ ++/* Exported for cmd_migrate.c in tools: */ ++int bch2_xattr_set(struct btree_trans *, subvol_inum, ++ struct bch_inode_unpacked *, const struct bch_hash_info *, ++ const char *, const void *, size_t, int, int); ++ ++ssize_t bch2_xattr_list(struct dentry *, char *, size_t); ++ ++extern const struct xattr_handler *bch2_xattr_handlers[]; ++ ++#endif /* _BCACHEFS_XATTR_H */ +diff --git a/fs/dcache.c b/fs/dcache.c +index 25ac74d30bff..796e23761ba0 100644 +--- a/fs/dcache.c ++++ b/fs/dcache.c +@@ -3246,11 +3246,10 @@ void d_genocide(struct dentry *parent) + d_walk(parent, parent, d_genocide_kill); + } + +-void d_tmpfile(struct file *file, struct inode *inode) ++void d_mark_tmpfile(struct file *file, struct inode *inode) + { + struct dentry *dentry = file->f_path.dentry; + +- inode_dec_link_count(inode); + BUG_ON(dentry->d_name.name != dentry->d_iname || + !hlist_unhashed(&dentry->d_u.d_alias) || + !d_unlinked(dentry)); +@@ -3260,6 +3259,15 @@ void d_tmpfile(struct file *file, struct inode *inode) + (unsigned long long)inode->i_ino); + spin_unlock(&dentry->d_lock); + spin_unlock(&dentry->d_parent->d_lock); ++} ++EXPORT_SYMBOL(d_mark_tmpfile); ++ ++void d_tmpfile(struct file *file, struct inode *inode) ++{ ++ struct dentry *dentry = file->f_path.dentry; ++ ++ inode_dec_link_count(inode); ++ d_mark_tmpfile(file, inode); + d_instantiate(dentry, inode); + } + EXPORT_SYMBOL(d_tmpfile); +diff --git a/drivers/md/bcache/closure.h b/include/linux/closure.h +similarity index 93% +rename from drivers/md/bcache/closure.h +rename to include/linux/closure.h +index c88cdc4ae4ec..722a586bb224 100644 +--- a/drivers/md/bcache/closure.h ++++ b/include/linux/closure.h +@@ -155,7 +155,7 @@ struct closure { + + atomic_t remaining; + +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG ++#ifdef CONFIG_DEBUG_CLOSURES + #define CLOSURE_MAGIC_DEAD 0xc054dead + #define CLOSURE_MAGIC_ALIVE 0xc054a11e + +@@ -172,6 +172,11 @@ void __closure_wake_up(struct closure_waitlist *list); + bool closure_wait(struct closure_waitlist *list, struct closure *cl); + void __closure_sync(struct closure *cl); + ++static inline unsigned closure_nr_remaining(struct closure *cl) ++{ ++ return atomic_read(&cl->remaining) & CLOSURE_REMAINING_MASK; ++} ++ + /** + * closure_sync - sleep until a closure a closure has nothing left to wait on + * +@@ -180,19 +185,17 @@ void __closure_sync(struct closure *cl); + */ + static inline void closure_sync(struct closure *cl) + { +- if ((atomic_read(&cl->remaining) & CLOSURE_REMAINING_MASK) != 1) ++ if (closure_nr_remaining(cl) != 1) + __closure_sync(cl); + } + +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG ++#ifdef CONFIG_DEBUG_CLOSURES + +-void closure_debug_init(void); + void closure_debug_create(struct closure *cl); + void closure_debug_destroy(struct closure *cl); + + #else + +-static inline void closure_debug_init(void) {} + static inline void closure_debug_create(struct closure *cl) {} + static inline void closure_debug_destroy(struct closure *cl) {} + +@@ -200,21 +203,21 @@ static inline void closure_debug_destroy(struct closure *cl) {} + + static inline void closure_set_ip(struct closure *cl) + { +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG ++#ifdef CONFIG_DEBUG_CLOSURES + cl->ip = _THIS_IP_; + #endif + } + + static inline void closure_set_ret_ip(struct closure *cl) + { +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG ++#ifdef CONFIG_DEBUG_CLOSURES + cl->ip = _RET_IP_; + #endif + } + + static inline void closure_set_waiting(struct closure *cl, unsigned long f) + { +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG ++#ifdef CONFIG_DEBUG_CLOSURES + cl->waiting_on = f; + #endif + } +@@ -243,6 +246,7 @@ static inline void closure_queue(struct closure *cl) + */ + BUILD_BUG_ON(offsetof(struct closure, fn) + != offsetof(struct work_struct, func)); ++ + if (wq) { + INIT_WORK(&cl->work, cl->work.func); + BUG_ON(!queue_work(wq, &cl->work)); +@@ -255,7 +259,7 @@ static inline void closure_queue(struct closure *cl) + */ + static inline void closure_get(struct closure *cl) + { +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG ++#ifdef CONFIG_DEBUG_CLOSURES + BUG_ON((atomic_inc_return(&cl->remaining) & + CLOSURE_REMAINING_MASK) <= 1); + #else +@@ -271,7 +275,7 @@ static inline void closure_get(struct closure *cl) + */ + static inline void closure_init(struct closure *cl, struct closure *parent) + { +- memset(cl, 0, sizeof(struct closure)); ++ cl->fn = NULL; + cl->parent = parent; + if (parent) + closure_get(parent); +@@ -375,4 +379,26 @@ static inline void closure_call(struct closure *cl, closure_fn fn, + continue_at_nobarrier(cl, fn, wq); + } + ++#define __closure_wait_event(waitlist, _cond) \ ++do { \ ++ struct closure cl; \ ++ \ ++ closure_init_stack(&cl); \ ++ \ ++ while (1) { \ ++ closure_wait(waitlist, &cl); \ ++ if (_cond) \ ++ break; \ ++ closure_sync(&cl); \ ++ } \ ++ closure_wake_up(waitlist); \ ++ closure_sync(&cl); \ ++} while (0) ++ ++#define closure_wait_event(waitlist, _cond) \ ++do { \ ++ if (!(_cond)) \ ++ __closure_wait_event(waitlist, _cond); \ ++} while (0) ++ + #endif /* _LINUX_CLOSURE_H */ +diff --git a/include/linux/dcache.h b/include/linux/dcache.h +index 6b351e009f59..3da2f0545d5d 100644 +--- a/include/linux/dcache.h ++++ b/include/linux/dcache.h +@@ -251,6 +251,7 @@ extern struct dentry * d_make_root(struct inode *); + /* - the ramfs-type tree */ + extern void d_genocide(struct dentry *); + ++extern void d_mark_tmpfile(struct file *, struct inode *); + extern void d_tmpfile(struct file *, struct inode *); + + extern struct dentry *d_find_alias(struct inode *); +diff --git a/include/linux/exportfs.h b/include/linux/exportfs.h +index 11fbd0ee1370..f75e0914d40d 100644 +--- a/include/linux/exportfs.h ++++ b/include/linux/exportfs.h +@@ -104,6 +104,12 @@ enum fid_type { + */ + FILEID_LUSTRE = 0x97, + ++ /* ++ * 64 bit inode number, 32 bit subvolume, 32 bit generation number: ++ */ ++ FILEID_BCACHEFS_WITHOUT_PARENT = 0xb1, ++ FILEID_BCACHEFS_WITH_PARENT = 0xb2, ++ + /* + * 64 bit unique kernfs id + */ +diff --git a/include/linux/generic-radix-tree.h b/include/linux/generic-radix-tree.h +index 107613f7d792..847413164738 100644 +--- a/include/linux/generic-radix-tree.h ++++ b/include/linux/generic-radix-tree.h +@@ -38,6 +38,7 @@ + + #include + #include ++#include + #include + #include + #include +@@ -116,6 +117,11 @@ static inline size_t __idx_to_offset(size_t idx, size_t obj_size) + + #define __genradix_cast(_radix) (typeof((_radix)->type[0]) *) + #define __genradix_obj_size(_radix) sizeof((_radix)->type[0]) ++#define __genradix_objs_per_page(_radix) \ ++ (PAGE_SIZE / sizeof((_radix)->type[0])) ++#define __genradix_page_remainder(_radix) \ ++ (PAGE_SIZE % sizeof((_radix)->type[0])) ++ + #define __genradix_idx_to_offset(_radix, _idx) \ + __idx_to_offset(_idx, __genradix_obj_size(_radix)) + +@@ -179,11 +185,35 @@ void *__genradix_iter_peek(struct genradix_iter *, struct __genradix *, size_t); + #define genradix_iter_peek(_iter, _radix) \ + (__genradix_cast(_radix) \ + __genradix_iter_peek(_iter, &(_radix)->tree, \ +- PAGE_SIZE / __genradix_obj_size(_radix))) ++ __genradix_objs_per_page(_radix))) ++ ++void *__genradix_iter_peek_prev(struct genradix_iter *, struct __genradix *, ++ size_t, size_t); ++ ++/** ++ * genradix_iter_peek_prev - get first entry at or below iterator's current ++ * position ++ * @_iter: a genradix_iter ++ * @_radix: genradix being iterated over ++ * ++ * If no more entries exist at or below @_iter's current position, returns NULL ++ */ ++#define genradix_iter_peek_prev(_iter, _radix) \ ++ (__genradix_cast(_radix) \ ++ __genradix_iter_peek_prev(_iter, &(_radix)->tree, \ ++ __genradix_objs_per_page(_radix), \ ++ __genradix_obj_size(_radix) + \ ++ __genradix_page_remainder(_radix))) + + static inline void __genradix_iter_advance(struct genradix_iter *iter, + size_t obj_size) + { ++ if (iter->offset + obj_size < iter->offset) { ++ iter->offset = SIZE_MAX; ++ iter->pos = SIZE_MAX; ++ return; ++ } ++ + iter->offset += obj_size; + + if (!is_power_of_2(obj_size) && +@@ -196,6 +226,25 @@ static inline void __genradix_iter_advance(struct genradix_iter *iter, + #define genradix_iter_advance(_iter, _radix) \ + __genradix_iter_advance(_iter, __genradix_obj_size(_radix)) + ++static inline void __genradix_iter_rewind(struct genradix_iter *iter, ++ size_t obj_size) ++{ ++ if (iter->offset == 0 || ++ iter->offset == SIZE_MAX) { ++ iter->offset = SIZE_MAX; ++ return; ++ } ++ ++ if ((iter->offset & (PAGE_SIZE - 1)) == 0) ++ iter->offset -= PAGE_SIZE % obj_size; ++ ++ iter->offset -= obj_size; ++ iter->pos--; ++} ++ ++#define genradix_iter_rewind(_iter, _radix) \ ++ __genradix_iter_rewind(_iter, __genradix_obj_size(_radix)) ++ + #define genradix_for_each_from(_radix, _iter, _p, _start) \ + for (_iter = genradix_iter_init(_radix, _start); \ + (_p = genradix_iter_peek(&_iter, _radix)) != NULL; \ +@@ -213,6 +262,23 @@ static inline void __genradix_iter_advance(struct genradix_iter *iter, + #define genradix_for_each(_radix, _iter, _p) \ + genradix_for_each_from(_radix, _iter, _p, 0) + ++#define genradix_last_pos(_radix) \ ++ (SIZE_MAX / PAGE_SIZE * __genradix_objs_per_page(_radix) - 1) ++ ++/** ++ * genradix_for_each_reverse - iterate over entry in a genradix, reverse order ++ * @_radix: genradix to iterate over ++ * @_iter: a genradix_iter to track current position ++ * @_p: pointer to genradix entry type ++ * ++ * On every iteration, @_p will point to the current entry, and @_iter.pos ++ * will be the current entry's index. ++ */ ++#define genradix_for_each_reverse(_radix, _iter, _p) \ ++ for (_iter = genradix_iter_init(_radix, genradix_last_pos(_radix));\ ++ (_p = genradix_iter_peek_prev(&_iter, _radix)) != NULL;\ ++ genradix_iter_rewind(&_iter, _radix)) ++ + int __genradix_prealloc(struct __genradix *, size_t, gfp_t); + + /** +diff --git a/include/linux/sched.h b/include/linux/sched.h +index 77f01ac385f7..d5951e99706a 100644 +--- a/include/linux/sched.h ++++ b/include/linux/sched.h +@@ -875,6 +875,7 @@ struct task_struct { + + struct mm_struct *mm; + struct mm_struct *active_mm; ++ struct address_space *faults_disabled_mapping; + + int exit_state; + int exit_code; +diff --git a/include/linux/string_helpers.h b/include/linux/string_helpers.h +index 9d1f5bb74dd5..58fb1f90eda5 100644 +--- a/include/linux/string_helpers.h ++++ b/include/linux/string_helpers.h +@@ -24,8 +24,8 @@ enum string_size_units { + STRING_UNITS_2, /* use binary powers of 2^10 */ + }; + +-void string_get_size(u64 size, u64 blk_size, enum string_size_units units, +- char *buf, int len); ++int string_get_size(u64 size, u64 blk_size, enum string_size_units units, ++ char *buf, int len); + + int parse_int_array_user(const char __user *from, size_t count, int **array); + +diff --git a/init/init_task.c b/init/init_task.c +index ff6c4b9bfe6b..f703116e0523 100644 +--- a/init/init_task.c ++++ b/init/init_task.c +@@ -85,6 +85,7 @@ struct task_struct init_task + .nr_cpus_allowed= NR_CPUS, + .mm = NULL, + .active_mm = &init_mm, ++ .faults_disabled_mapping = NULL, + .restart_block = { + .fn = do_no_restart_syscall, + }, +diff --git a/kernel/locking/mutex.c b/kernel/locking/mutex.c +index d973fe6041bf..2deeeca3e71b 100644 +--- a/kernel/locking/mutex.c ++++ b/kernel/locking/mutex.c +@@ -1126,6 +1126,9 @@ EXPORT_SYMBOL(ww_mutex_lock_interruptible); + #endif /* !CONFIG_DEBUG_LOCK_ALLOC */ + #endif /* !CONFIG_PREEMPT_RT */ + ++EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin); ++EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end); ++ + /** + * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 + * @cnt: the atomic which we are to dec +diff --git a/kernel/stacktrace.c b/kernel/stacktrace.c +index 9ed5ce989415..4f65824879ab 100644 +--- a/kernel/stacktrace.c ++++ b/kernel/stacktrace.c +@@ -151,6 +151,7 @@ unsigned int stack_trace_save_tsk(struct task_struct *tsk, unsigned long *store, + put_task_stack(tsk); + return c.len; + } ++EXPORT_SYMBOL_GPL(stack_trace_save_tsk); + + /** + * stack_trace_save_regs - Save a stack trace based on pt_regs into a storage array +@@ -301,6 +302,7 @@ unsigned int stack_trace_save_tsk(struct task_struct *task, + save_stack_trace_tsk(task, &trace); + return trace.nr_entries; + } ++EXPORT_SYMBOL_GPL(stack_trace_save_tsk); + + /** + * stack_trace_save_regs - Save a stack trace based on pt_regs into a storage array +diff --git a/lib/Kconfig b/lib/Kconfig +index c686f4adc124..263aa6ae8d7c 100644 +--- a/lib/Kconfig ++++ b/lib/Kconfig +@@ -506,6 +506,9 @@ config ASSOCIATIVE_ARRAY + + for more information. + ++config CLOSURES ++ bool ++ + config HAS_IOMEM + bool + depends on !NO_IOMEM +diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug +index fa307f93fa2e..ce3a4abf40f8 100644 +--- a/lib/Kconfig.debug ++++ b/lib/Kconfig.debug +@@ -1720,6 +1720,15 @@ config DEBUG_NOTIFIERS + This is a relatively cheap check but if you care about maximum + performance, say N. + ++config DEBUG_CLOSURES ++ bool "Debug closures (bcache async widgits)" ++ depends on CLOSURES ++ select DEBUG_FS ++ help ++ Keeps all active closures in a linked list and provides a debugfs ++ interface to list them, which makes it possible to see asynchronous ++ operations that get stuck. ++ + config DEBUG_MAPLE_TREE + bool "Debug maple trees" + depends on DEBUG_KERNEL +diff --git a/lib/Makefile b/lib/Makefile +index 740109b6e2c8..57d394575919 100644 +--- a/lib/Makefile ++++ b/lib/Makefile +@@ -255,6 +255,8 @@ obj-$(CONFIG_ATOMIC64_SELFTEST) += atomic64_test.o + + obj-$(CONFIG_CPU_RMAP) += cpu_rmap.o + ++obj-$(CONFIG_CLOSURES) += closure.o ++ + obj-$(CONFIG_DQL) += dynamic_queue_limits.o + + obj-$(CONFIG_GLOB) += glob.o +diff --git a/drivers/md/bcache/closure.c b/lib/closure.c +similarity index 88% +rename from drivers/md/bcache/closure.c +rename to lib/closure.c +index d8d9394a6beb..0855e698ced1 100644 +--- a/drivers/md/bcache/closure.c ++++ b/lib/closure.c +@@ -6,13 +6,13 @@ + * Copyright 2012 Google, Inc. + */ + ++#include + #include +-#include ++#include ++#include + #include + #include + +-#include "closure.h" +- + static inline void closure_put_after_sub(struct closure *cl, int flags) + { + int r = flags & CLOSURE_REMAINING_MASK; +@@ -45,6 +45,7 @@ void closure_sub(struct closure *cl, int v) + { + closure_put_after_sub(cl, atomic_sub_return(v, &cl->remaining)); + } ++EXPORT_SYMBOL(closure_sub); + + /* + * closure_put - decrement a closure's refcount +@@ -53,6 +54,7 @@ void closure_put(struct closure *cl) + { + closure_put_after_sub(cl, atomic_dec_return(&cl->remaining)); + } ++EXPORT_SYMBOL(closure_put); + + /* + * closure_wake_up - wake up all closures on a wait list, without memory barrier +@@ -74,6 +76,7 @@ void __closure_wake_up(struct closure_waitlist *wait_list) + closure_sub(cl, CLOSURE_WAITING + 1); + } + } ++EXPORT_SYMBOL(__closure_wake_up); + + /** + * closure_wait - add a closure to a waitlist +@@ -93,6 +96,7 @@ bool closure_wait(struct closure_waitlist *waitlist, struct closure *cl) + + return true; + } ++EXPORT_SYMBOL(closure_wait); + + struct closure_syncer { + struct task_struct *task; +@@ -127,8 +131,9 @@ void __sched __closure_sync(struct closure *cl) + + __set_current_state(TASK_RUNNING); + } ++EXPORT_SYMBOL(__closure_sync); + +-#ifdef CONFIG_BCACHE_CLOSURES_DEBUG ++#ifdef CONFIG_DEBUG_CLOSURES + + static LIST_HEAD(closure_list); + static DEFINE_SPINLOCK(closure_list_lock); +@@ -144,6 +149,7 @@ void closure_debug_create(struct closure *cl) + list_add(&cl->all, &closure_list); + spin_unlock_irqrestore(&closure_list_lock, flags); + } ++EXPORT_SYMBOL(closure_debug_create); + + void closure_debug_destroy(struct closure *cl) + { +@@ -156,8 +162,7 @@ void closure_debug_destroy(struct closure *cl) + list_del(&cl->all); + spin_unlock_irqrestore(&closure_list_lock, flags); + } +- +-static struct dentry *closure_debug; ++EXPORT_SYMBOL(closure_debug_destroy); + + static int debug_show(struct seq_file *f, void *data) + { +@@ -181,7 +186,7 @@ static int debug_show(struct seq_file *f, void *data) + seq_printf(f, " W %pS\n", + (void *) cl->waiting_on); + +- seq_printf(f, "\n"); ++ seq_puts(f, "\n"); + } + + spin_unlock_irq(&closure_list_lock); +@@ -190,18 +195,11 @@ static int debug_show(struct seq_file *f, void *data) + + DEFINE_SHOW_ATTRIBUTE(debug); + +-void __init closure_debug_init(void) ++static int __init closure_debug_init(void) + { +- if (!IS_ERR_OR_NULL(bcache_debug)) +- /* +- * it is unnecessary to check return value of +- * debugfs_create_file(), we should not care +- * about this. +- */ +- closure_debug = debugfs_create_file( +- "closures", 0400, bcache_debug, NULL, &debug_fops); ++ debugfs_create_file("closures", 0400, NULL, NULL, &debug_fops); ++ return 0; + } +-#endif ++late_initcall(closure_debug_init) + +-MODULE_AUTHOR("Kent Overstreet "); +-MODULE_LICENSE("GPL"); ++#endif +diff --git a/lib/errname.c b/lib/errname.c +index 67739b174a8c..dd1b998552cd 100644 +--- a/lib/errname.c ++++ b/lib/errname.c +@@ -228,3 +228,4 @@ const char *errname(int err) + + return err > 0 ? name + 1 : name; + } ++EXPORT_SYMBOL(errname); +diff --git a/lib/generic-radix-tree.c b/lib/generic-radix-tree.c +index f25eb111c051..41f1bcdc4488 100644 +--- a/lib/generic-radix-tree.c ++++ b/lib/generic-radix-tree.c +@@ -1,4 +1,5 @@ + ++#include + #include + #include + #include +@@ -166,6 +167,10 @@ void *__genradix_iter_peek(struct genradix_iter *iter, + struct genradix_root *r; + struct genradix_node *n; + unsigned level, i; ++ ++ if (iter->offset == SIZE_MAX) ++ return NULL; ++ + restart: + r = READ_ONCE(radix->root); + if (!r) +@@ -184,10 +189,17 @@ void *__genradix_iter_peek(struct genradix_iter *iter, + (GENRADIX_ARY - 1); + + while (!n->children[i]) { ++ size_t objs_per_ptr = genradix_depth_size(level); ++ ++ if (iter->offset + objs_per_ptr < iter->offset) { ++ iter->offset = SIZE_MAX; ++ iter->pos = SIZE_MAX; ++ return NULL; ++ } ++ + i++; +- iter->offset = round_down(iter->offset + +- genradix_depth_size(level), +- genradix_depth_size(level)); ++ iter->offset = round_down(iter->offset + objs_per_ptr, ++ objs_per_ptr); + iter->pos = (iter->offset >> PAGE_SHIFT) * + objs_per_page; + if (i == GENRADIX_ARY) +@@ -201,6 +213,64 @@ void *__genradix_iter_peek(struct genradix_iter *iter, + } + EXPORT_SYMBOL(__genradix_iter_peek); + ++void *__genradix_iter_peek_prev(struct genradix_iter *iter, ++ struct __genradix *radix, ++ size_t objs_per_page, ++ size_t obj_size_plus_page_remainder) ++{ ++ struct genradix_root *r; ++ struct genradix_node *n; ++ unsigned level, i; ++ ++ if (iter->offset == SIZE_MAX) ++ return NULL; ++ ++restart: ++ r = READ_ONCE(radix->root); ++ if (!r) ++ return NULL; ++ ++ n = genradix_root_to_node(r); ++ level = genradix_root_to_depth(r); ++ ++ if (ilog2(iter->offset) >= genradix_depth_shift(level)) { ++ iter->offset = genradix_depth_size(level); ++ iter->pos = (iter->offset >> PAGE_SHIFT) * objs_per_page; ++ ++ iter->offset -= obj_size_plus_page_remainder; ++ iter->pos--; ++ } ++ ++ while (level) { ++ level--; ++ ++ i = (iter->offset >> genradix_depth_shift(level)) & ++ (GENRADIX_ARY - 1); ++ ++ while (!n->children[i]) { ++ size_t objs_per_ptr = genradix_depth_size(level); ++ ++ iter->offset = round_down(iter->offset, objs_per_ptr); ++ iter->pos = (iter->offset >> PAGE_SHIFT) * objs_per_page; ++ ++ if (!iter->offset) ++ return NULL; ++ ++ iter->offset -= obj_size_plus_page_remainder; ++ iter->pos--; ++ ++ if (!i) ++ goto restart; ++ --i; ++ } ++ ++ n = n->children[i]; ++ } ++ ++ return &n->data[iter->offset & (PAGE_SIZE - 1)]; ++} ++EXPORT_SYMBOL(__genradix_iter_peek_prev); ++ + static void genradix_free_recurse(struct genradix_node *n, unsigned level) + { + if (level) { +diff --git a/lib/string_helpers.c b/lib/string_helpers.c +index 9982344cca34..7713f73e66b0 100644 +--- a/lib/string_helpers.c ++++ b/lib/string_helpers.c +@@ -31,9 +31,11 @@ + * giving the size in the required units. @buf should have room for + * at least 9 bytes and will always be zero terminated. + * ++ * Return value: number of characters of output that would have been written ++ * (which may be greater than len, if output was truncated). + */ +-void string_get_size(u64 size, u64 blk_size, const enum string_size_units units, +- char *buf, int len) ++int string_get_size(u64 size, u64 blk_size, const enum string_size_units units, ++ char *buf, int len) + { + static const char *const units_10[] = { + "B", "kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB" +@@ -126,8 +128,8 @@ void string_get_size(u64 size, u64 blk_size, const enum string_size_units units, + else + unit = units_str[units][i]; + +- snprintf(buf, len, "%u%s %s", (u32)size, +- tmp, unit); ++ return snprintf(buf, len, "%u%s %s", (u32)size, ++ tmp, unit); + } + EXPORT_SYMBOL(string_get_size); + +diff --git a/tools/objtool/noreturns.h b/tools/objtool/noreturns.h +index e45c7cb1d5bc..e92f67383dde 100644 +--- a/tools/objtool/noreturns.h ++++ b/tools/objtool/noreturns.h +@@ -14,6 +14,8 @@ NORETURN(__stack_chk_fail) + NORETURN(__ubsan_handle_builtin_unreachable) + NORETURN(arch_call_rest_init) + NORETURN(arch_cpu_idle_dead) ++NORETURN(bch2_trans_in_restart_error) ++NORETURN(bch2_trans_restart_error) + NORETURN(cpu_bringup_and_idle) + NORETURN(cpu_startup_entry) + NORETURN(do_exit) +-- +2.42.0 +