#!/usr/bin/env python import copy import datetime import multiprocessing import os import shutil import matplotlib.patches import matplotlib.pyplot as plt import numpy as np import open3d as o3 import progressbar import scipy.interpolate import scipy.special import cluster import mapping import ndshow import particlefilter import poles import pynclt import util import sys # plt.rcParams['text.latex.preamble']=[r'\usepackage{lmodern}'] # params = {'text.usetex': True, # 'font.size': 16, # 'font.family': 'lmodern', # 'text.latex.unicode': True} # TODO: UPDATE THIS! localization_name_start = 'localization_3_6_7_2020-04' mapextent = np.array([30.0, 30.0, 5.0]) mapsize = np.full(3, 0.2) mapshape = np.array(mapextent / mapsize, dtype=np.int) mapinterval = 1.5 mapdistance = 1.5 remapdistance = 10.0 n_mapdetections = 3 n_locdetections = 2 n_localmaps = 3 poles.minscore = 0.6 poles.minheight = 1.0 poles.freelength = 0.5 poles.polesides = range(1, 7+1) T_mc_r = pynclt.T_w_o T_r_mc = util.invert_ht(T_mc_r) T_m_mc = np.identity(4) T_m_mc[:3, 3] = np.hstack([0.5 * mapextent[:2], 0.5]) T_mc_m = util.invert_ht(T_m_mc) T_m_r = T_m_mc.dot(T_mc_r) T_r_m = util.invert_ht(T_m_r) def get_globalmapname(): return 'globalmap_{:.0f}_{:.0f}_{:.0f}'.format( n_mapdetections, 10 * poles.minscore, poles.polesides[-1]) def get_locfileprefix(): return 'localization_{:.0f}_{:.0f}_{:.0f}'.format( n_mapdetections, 10 * poles.minscore, poles.polesides[-1]) def get_localmapfile(): return 'localmaps_{:.0f}_{:.0f}.npz'.format( 10 * poles.minscore, poles.polesides[-1]) def get_evalfile(): return 'evaluation_{:.0f}_{:.0f}.npz'.format( 10 * poles.minscore, poles.polesides[-1]) def get_map_indices(session): distance = np.hstack([0.0, np.cumsum(np.linalg.norm( np.diff(session.T_w_r_gt_velo[:, :3, 3], axis=0), axis=1))]) istart = [] imid = [] iend = [] i = 0 j = 0 k = 0 for id, d in enumerate(distance): if d >= i * mapinterval: istart.append(id) i += 1 if d >= j * mapinterval + 0.5 * mapdistance: imid.append(id) j += 1 if d > k * mapinterval + mapdistance: iend.append(id) k += 1 return istart[:len(iend)], imid[:len(iend)], iend def save_global_map(): globalmappos = np.empty([0, 2]) mapfactors = np.full(len(pynclt.sessions), np.nan) poleparams = np.empty([0, 6]) for isession, s in enumerate(pynclt.sessions): print(s) session = pynclt.session(s) istart, imid, iend = get_map_indices(session) localmappos = session.T_w_r_gt_velo[imid, :2, 3] if globalmappos.size == 0: imaps = range(localmappos.shape[0]) else: imaps = [] for imap in range(localmappos.shape[0]): distance = np.linalg.norm( localmappos[imap] - globalmappos, axis=1).min() if distance > remapdistance: imaps.append(imap) globalmappos = np.vstack([globalmappos, localmappos[imaps]]) mapfactors[isession] = np.true_divide(len(imaps), len(imid)) with progressbar.ProgressBar(max_value=len(imaps)) as bar: for iimap, imap in enumerate(imaps): scans = [] for iscan in range(istart[imap], iend[imap]): xyz, _ = session.get_velo(iscan) scan = o3.PointCloud() scan.points = o3.Vector3dVector(xyz) scans.append(scan) T_w_mc = np.identity(4) T_w_mc[:3, 3] = session.T_w_r_gt_velo[imid[imap], :3, 3] T_w_m = T_w_mc.dot(T_mc_m) T_m_w = util.invert_ht(T_w_m) T_m_r = np.matmul( T_m_w, session.T_w_r_gt_velo[istart[imap]:iend[imap]]) occupancymap = mapping.occupancymap( scans, T_m_r, mapshape, mapsize) localpoleparams = poles.detect_poles(occupancymap, mapsize) localpoleparams[:, :2] += T_w_m[:2, 3] poleparams = np.vstack([poleparams, localpoleparams]) bar.update(iimap) xy = poleparams[:, :2] a = poleparams[:, [4]] boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a]) clustermeans = np.empty([0, 5]) scores = [] for ci in cluster.cluster_boxes(boxes): ci = list(ci) if len(ci) < n_mapdetections: continue clustermeans = np.vstack([clustermeans, np.average( poleparams[ci, :-1], axis=0, weights=poleparams[ci, -1])]) scores.append(np.mean(poleparams[ci, -1])) clustermeans = np.hstack([clustermeans, np.array(scores).reshape([-1, 1])]) globalmapfile = os.path.join(pynclt.resultdir, get_globalmapname() + '.npz') np.savez(globalmapfile, polemeans=clustermeans, mapfactors=mapfactors, mappos=globalmappos) plot_global_map(globalmapfile) def plot_global_map(globalmapfile): data = np.load(globalmapfile) x, y = data['polemeans'][:, :2].T plt.clf() # plt.rcParams.update(params) plt.scatter(x, y, s=1, c='b', marker='.') plt.xlabel('x [m]') plt.ylabel('y [m]') plt.savefig(globalmapfile[:-4] + '.svg') # plt.savefig(globalmapfile[:-4] + '.pgf') print(data['mapfactors']) def save_local_maps(sessionname, visualize=False): print(sessionname) session = pynclt.session(sessionname) util.makedirs(session.dir) istart, imid, iend = get_map_indices(session) maps = [] with progressbar.ProgressBar(max_value=len(iend)) as bar: for i in range(len(iend)): scans = [] for idx, val in enumerate(range(istart[i], iend[i])): xyz, _ = session.get_velo(val) scan = o3.PointCloud() scan.points = o3.Vector3dVector(xyz) scans.append(scan) T_w_mc = util.project_xy( session.T_w_r_odo_velo[imid[i]].dot(T_r_mc)) T_w_m = T_w_mc.dot(T_mc_m) T_m_w = util.invert_ht(T_w_m) T_w_r = session.T_w_r_odo_velo[istart[i]:iend[i]] T_m_r = np.matmul(T_m_w, T_w_r) occupancymap = mapping.occupancymap(scans, T_m_r, mapshape, mapsize) poleparams = poles.detect_poles(occupancymap, mapsize) if visualize: cloud = o3.PointCloud() for T, scan in zip(T_w_r, scans): s = copy.copy(scan) s.transform(T) cloud.points.extend(s.points) mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0]) mapboundsvis.transform(T_w_m) polevis = [] for j in range(poleparams.shape[0]): x, y, zs, ze, a = poleparams[j, :5] pole = util.create_wire_box( [a, a, ze - zs], color=[1.0, 1.0, 0.0]) T_m_p = np.identity(4) T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs] pole.transform(T_w_m.dot(T_m_p)) polevis.append(pole) o3.draw_geometries(polevis + [cloud, mapboundsvis]) map = {'poleparams': poleparams, 'T_w_m': T_w_m, 'istart': istart[i], 'imid': imid[i], 'iend': iend[i]} maps.append(map) bar.update(i) np.savez(os.path.join(session.dir, get_localmapfile()), maps=maps) def view_local_maps(sessionname): sessiondir = os.path.join(pynclt.resultdir, sessionname) session = pynclt.session(sessionname) maps = np.load(os.path.join(sessiondir, get_localmapfile()))['maps'] for i, map in enumerate(maps): print('Map #{}'.format(i)) mapboundsvis = util.create_wire_box(mapextent, [0.0, 0.0, 1.0]) mapboundsvis.transform(map['T_w_m']) polevis = [] for poleparams in map['poleparams']: x, y, zs, ze, a = poleparams[:5] pole = util.create_wire_box( [a, a, ze - zs], color=[1.0, 1.0, 0.0]) T_m_p = np.identity(4) T_m_p[:3, 3] = [x - 0.5 * a, y - 0.5 * a, zs] pole.transform(map['T_w_m'].dot(T_m_p)) polevis.append(pole) accucloud = o3.PointCloud() for j in range(map['istart'], map['iend']): points, intensities = session.get_velo(j) cloud = o3.PointCloud() cloud.points = o3.Vector3dVector(points) cloud.colors = o3.Vector3dVector( util.intensity2color(intensities / 255.0)) cloud.transform(session.T_w_r_odo_velo[j]) accucloud.points.extend(cloud.points) accucloud.colors.extend(cloud.colors) o3.draw_geometries([accucloud, mapboundsvis] + polevis) def evaluate_matches(): mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz')) polemap = mapdata['polemeans'][:, :2] kdtree = scipy.spatial.cKDTree(polemap[:, :2], leafsize=10) maxdist = 0.5 n_matches = np.zeros(len(pynclt.sessions)) n_all = np.zeros(len(pynclt.sessions)) for i, sessionname in enumerate(pynclt.sessions): sessiondir = os.path.join(pynclt.resultdir, sessionname) session = pynclt.session(sessionname) maps = np.load(os.path.join(sessiondir, get_localmapfile()))['maps'] for map in maps: n = map['poleparams'].shape[0] n_all[i] += n polepos_m = np.hstack( [map['poleparams'][:, :2], np.zeros([n, 1]), np.ones([n, 1])]).T T_w_m = session.T_w_r_gt_velo[map['imid']].dot(T_r_m) polepos_w = T_w_m.dot(polepos_m) plt.scatter(polemap[:, 0], polemap[:, 1], color='k') plt.scatter(polepos_w[0,:], polepos_w[1,:], color='r') plt.show() dist, _ = kdtree.query( polepos_w[:2].T, k=1, distance_upper_bound=maxdist) n_matches[i] += np.sum(np.isfinite(dist)) print('{}: {}'.format( sessionname, np.true_divide(n_matches[i], n_all[i]))) def localize(sessionname, visualize=False): print(sessionname) mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz')) polemap = mapdata['polemeans'][:, :2] polevar = 1.50 session = pynclt.session(sessionname) locdata = np.load(os.path.join(session.dir, get_localmapfile()), allow_pickle=True)['maps'] polepos_m = [] polepos_w = [] for i in range(len(locdata)): n = locdata[i]['poleparams'].shape[0] pad = np.hstack([np.zeros([n, 1]), np.ones([n, 1])]) polepos_m.append(np.hstack([locdata[i]['poleparams'][:, :2], pad]).T) polepos_w.append(locdata[i]['T_w_m'].dot(polepos_m[i])) istart = 0 # igps = np.searchsorted(session.t_gps, session.t_relodo[istart]) + [-4, 1] # igps = np.clip(igps, 0, session.gps.shape[0] - 1) # T_w_r_start = pynclt.T_w_o # T_w_r_start[:2, 3] = np.mean(session.gps[igps], axis=0) T_w_r_start = util.project_xy( session.get_T_w_r_gt(session.t_relodo[istart]).dot(T_r_mc)).dot(T_mc_r) filter = particlefilter.particlefilter(5000, T_w_r_start, 2.5, np.radians(5.0), polemap, polevar, T_w_o=T_mc_r) filter.estimatetype = 'best' filter.minneff = 0.5 if visualize: plt.ion() figure = plt.figure() nplots = 1 mapaxes = figure.add_subplot(nplots, 1, 1) mapaxes.set_aspect('equal') mapaxes.scatter(polemap[:, 0], polemap[:, 1], s=5, c='b', marker='s') x_gt, y_gt = session.T_w_r_gt[::20, :2, 3].T mapaxes.plot(x_gt, y_gt, 'g') particles = mapaxes.scatter([], [], s=1, c='r') arrow = mapaxes.arrow(0.0, 0.0, 1.0, 0.0, length_includes_head=True, head_width=0.7, head_length=1.0, color='k') arrowdata = np.hstack( [arrow.get_xy(), np.zeros([8, 1]), np.ones([8, 1])]).T locpoles = mapaxes.scatter([], [], s=30, c='k', marker='x') viewoffset = 25.0 # weightaxes = figure.add_subplot(nplots, 1, 2) # gridsize = 50 # offset = 5.0 # visfilter = particlefilter.particlefilter(gridsize**2, # np.identity(4), 0.0, 0.0, polemap, # polevar, T_w_o=pynclt.T_w_o) # gridcoord = np.linspace(-offset, offset, gridsize) # x, y = np.meshgrid(gridcoord, gridcoord) # dxy = np.hstack([x.reshape([-1, 1]), y.reshape([-1, 1])]) # weightimage = weightaxes.matshow(np.zeros([gridsize, gridsize]), # extent=(-offset, offset, -offset, offset)) # histaxes = figure.add_subplot(nplots, 1, 3) imap = 0 while imap < locdata.shape[0] - 1 and \ session.t_velo[locdata[imap]['iend']] < session.t_relodo[istart]: imap += 1 T_w_r_est = np.full([session.t_relodo.size, 4, 4], np.nan) with progressbar.ProgressBar(max_value=session.t_relodo.size) as bar: for i in range(istart, session.t_relodo.size): relodocov = np.empty([3, 3]) relodocov[:2, :2] = session.relodocov[i, :2, :2] relodocov[:, 2] = session.relodocov[i, [0, 1, 5], 5] relodocov[2, :] = session.relodocov[i, 5, [0, 1, 5]] filter.update_motion(session.relodo[i], relodocov * 2.0**2) T_w_r_est[i] = filter.estimate_pose() t_now = session.t_relodo[i] if imap < locdata.shape[0]: t_end = session.t_velo[locdata[imap]['iend']] if t_now >= t_end: imaps = range(imap, np.clip(imap-n_localmaps, -1, None), -1) xy = np.hstack([polepos_w[j][:2] for j in imaps]).T a = np.vstack([ld['poleparams'][:, [4]] \ for ld in locdata[imaps]]) boxes = np.hstack([xy - 0.5 * a, xy + 0.5 * a]) ipoles = set(range(polepos_w[imap].shape[1])) iactive = set() for ci in cluster.cluster_boxes(boxes): if len(ci) >= n_locdetections: iactive |= set(ipoles) & ci iactive = list(iactive) # print('{}.'.format( # len(iactive) - polepos_w[imap].shape[1])) if iactive: t_mid = session.t_velo[locdata[imap]['imid']] T_w_r_mid = util.project_xy(session.get_T_w_r_odo( t_mid).dot(T_r_mc)).dot(T_mc_r) T_w_r_now = util.project_xy(session.get_T_w_r_odo( t_now).dot(T_r_mc)).dot(T_mc_r) T_r_now_r_mid = util.invert_ht(T_w_r_now).dot(T_w_r_mid) polepos_r_now = T_r_now_r_mid.dot(T_r_m).dot( polepos_m[imap][:, iactive]) filter.update_measurement(polepos_r_now[:2].T) T_w_r_est[i] = filter.estimate_pose() if visualize: polepos_w_est = T_w_r_est[i].dot(polepos_r_now) locpoles.set_offsets(polepos_w_est[:2].T) # T_w_r_gt_now = session.get_T_w_r_gt(t_now) # T_w_r_gt_now = np.tile( # T_w_r_gt_now, [gridsize**2, 1, 1]) # T_w_r_gt_now[:, :2, 3] += dxy # visfilter.particles = T_w_r_gt_now # visfilter.weights[:] = 1.0 / visfilter.count # visfilter.update_measurement( # polepos_r_now[:2].T, resample=False) # weightimage.set_array(np.flipud( # visfilter.weights.reshape( # [gridsize, gridsize]))) # weightimage.autoscale() imap += 1 if visualize: particles.set_offsets(filter.particles[:, :2, 3]) arrow.set_xy(T_w_r_est[i].dot(arrowdata)[:2].T) x, y = T_w_r_est[i, :2, 3] mapaxes.set_xlim(left=x - viewoffset, right=x + viewoffset) mapaxes.set_ylim(bottom=y - viewoffset, top=y + viewoffset) # histaxes.cla() # histaxes.hist(filter.weights, # bins=50, range=(0.0, np.max(filter.weights))) figure.canvas.draw_idle() figure.canvas.flush_events() bar.update(i) filename = os.path.join(session.dir, get_locfileprefix() \ + datetime.datetime.now().strftime('_%Y-%m-%d_%H-%M-%S.npz')) np.savez(filename, T_w_r_est=T_w_r_est) def plot_trajectories(): trajectorydir = os.path.join( pynclt.resultdir, 'trajectories_est_{:.0f}_{:.0f}_{:.0f}'.format( n_mapdetections, 10 * poles.minscore, poles.polesides[-1])) # pgfdir = os.path.join(trajectorydir, 'pgf') util.makedirs(trajectorydir) # util.makedirs(pgfdir) mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz')) polemap = mapdata['polemeans'] # plt.rcParams.update(params) for sessionname in pynclt.sessions: try: session = pynclt.session(sessionname) files = [file for file \ in os.listdir(os.path.join(pynclt.resultdir, sessionname)) \ if file.startswith(localization_name_start)] # if file.startswith(get_locfileprefix())] for file in files: T_w_r_est = np.load(os.path.join( pynclt.resultdir, sessionname, file))['T_w_r_est'] plt.clf() plt.scatter(polemap[:, 0], polemap[:, 1], s=1, c='b', marker='.') plt.plot(session.T_w_r_gt[::20, 0, 3], session.T_w_r_gt[::20, 1, 3], color=(0.5, 0.5, 0.5)) plt.plot(T_w_r_est[::20, 0, 3], T_w_r_est[::20, 1, 3], 'r') plt.xlabel('x [m]') plt.ylabel('y [m]') plt.gcf().subplots_adjust( bottom=0.13, top=0.98, left=0.145, right=0.98) filename = sessionname + file[18:-4] plt.savefig(os.path.join(trajectorydir, filename + '.svg')) # plt.savefig(os.path.join(pgfdir, filename + '.pgf')) except: pass def evaluate(): stats = [] for sessionname in pynclt.sessions: files = [file for file \ in os.listdir(os.path.join(pynclt.resultdir, sessionname)) \ if file.startswith(localization_name_start)] # if file.startswith(get_locfileprefix())] files.sort() session = pynclt.session(sessionname) cumdist = np.hstack([0.0, np.cumsum(np.linalg.norm(np.diff( session.T_w_r_gt[:, :3, 3], axis=0), axis=1))]) t_eval = scipy.interpolate.interp1d( cumdist, session.t_gt)(np.arange(0.0, cumdist[-1], 1.0)) T_w_r_gt = np.stack([util.project_xy( session.get_T_w_r_gt(t).dot(T_r_mc)).dot(T_mc_r) \ for t in t_eval]) T_gt_est = [] for file in files: T_w_r_est = np.load(os.path.join( pynclt.resultdir, sessionname, file))['T_w_r_est'] T_w_r_est_interp = np.empty([len(t_eval), 4, 4]) iodo = 1 for ieval in range(len(t_eval)): while session.t_relodo[iodo] < t_eval[ieval]: iodo += 1 T_w_r_est_interp[ieval] = util.interpolate_ht( T_w_r_est[iodo-1:iodo+1], session.t_relodo[iodo-1:iodo+1], t_eval[ieval]) T_gt_est.append( np.matmul(util.invert_ht(T_w_r_gt), T_w_r_est_interp)) T_gt_est = np.stack(T_gt_est) lonerror = np.mean(np.mean(np.abs(T_gt_est[..., 0, 3]), axis=-1)) laterror = np.mean(np.mean(np.abs(T_gt_est[..., 1, 3]), axis=-1)) poserrors = np.linalg.norm(T_gt_est[..., :2, 3], axis=-1) poserror = np.mean(np.mean(poserrors, axis=-1)) posrmse = np.mean(np.sqrt(np.mean(poserrors**2, axis=-1))) angerrors = np.degrees(np.abs( np.array([util.ht2xyp(T)[:, 2] for T in T_gt_est]))) angerror = np.mean(np.mean(angerrors, axis=-1)) angrmse = np.mean(np.sqrt(np.mean(angerrors**2, axis=-1))) stats.append({'session': sessionname, 'lonerror': lonerror, 'laterror': laterror, 'poserror': poserror, 'posrmse': posrmse, 'angerror': angerror, 'angrmse': angrmse, 'T_gt_est': T_gt_est}) np.savez(os.path.join(pynclt.resultdir, get_evalfile()), stats=stats) mapdata = np.load(os.path.join(pynclt.resultdir, get_globalmapname() + '.npz')) print('session \t f\te_pos \trmse_pos \te_ang \te_rmse') row = '{session} \t{f} \t{poserror} \t{posrmse} \t{angerror} \t{angrmse}' for i, stat in enumerate(stats): print(row.format( session=stat['session'], f=mapdata['mapfactors'][i] * 100.0, poserror=stat['poserror'], posrmse=stat['posrmse'], angerror=stat['angerror'], angrmse=stat['angrmse'])) if __name__ == '__main__': poles.minscore = 0.6 poles.polesides = range(1, 7+1) save_global_map() # TODO: Change this to the session you want to find trajectory for session = '2012-01-15' save_local_maps(session) # Set visualization to False localize(session, False) plot_trajectories() evaluate()