acpi: split resume check and actual resume code

It's helpful to provide a distinct state that affirmatively
describes that OS resume will occur. The previous code included
the check and the actual resuming in one function. Because of this
grouping one had to annotate the innards of the ACPI resume
path to perform specific actions before OS resume. By providing
a distinct state in the boot state machine the necessary actions
can be scheduled accordingly without modifying the ACPI code.

Change-Id: I8b00aacaf820cbfbb21cb851c422a143371878bd
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/3134
Tested-by: build bot (Jenkins)
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This commit is contained in:
Aaron Durbin 2013-04-24 22:33:08 -05:00 committed by Ronald G. Minnich
parent a4feddf897
commit 0a6c20a2a3
4 changed files with 43 additions and 32 deletions

View File

@ -622,13 +622,8 @@ void acpi_write_hest(acpi_hest_t *hest)
}
#if CONFIG_HAVE_ACPI_RESUME
void suspend_resume(void)
void acpi_resume(void *wake_vec)
{
void *wake_vec;
/* If we happen to be resuming find wakeup vector and jump to OS. */
wake_vec = acpi_find_wakeup_vector();
if (wake_vec) {
#if CONFIG_HAVE_SMI_HANDLER
u32 *gnvs_address = cbmem_find(CBMEM_ID_ACPI_GNVS_PTR);
@ -652,7 +647,6 @@ void suspend_resume(void)
post_code(POST_OS_RESUME);
acpi_jump_to_wakeup(wake_vec);
}
}
/* This is to be filled by SB code - startup value what was found. */

View File

@ -558,7 +558,7 @@ void acpi_save_gnvs(u32 gnvs_address);
/* 0 = S0, 1 = S1 ...*/
extern u8 acpi_slp_type;
void suspend_resume(void);
void acpi_resume(void *wake_vec);
void __attribute__((weak)) mainboard_suspend_resume(void);
void *acpi_find_wakeup_vector(void);
void *acpi_get_wakeup_rsdp(void);

View File

@ -96,6 +96,7 @@ typedef enum {
BS_DEV_ENABLE,
BS_DEV_INIT,
BS_POST_DEVICE,
BS_OS_RESUME_CHECK,
BS_OS_RESUME,
BS_WRITE_TABLES,
BS_PAYLOAD_LOAD,

View File

@ -54,6 +54,7 @@ static boot_state_t bs_dev_resources(void *arg);
static boot_state_t bs_dev_eanble(void *arg);
static boot_state_t bs_dev_init(void *arg);
static boot_state_t bs_post_device(void *arg);
static boot_state_t bs_os_resume_check(void *arg);
static boot_state_t bs_os_resume(void *arg);
static boot_state_t bs_write_tables(void *arg);
static boot_state_t bs_payload_load(void *arg);
@ -88,6 +89,7 @@ static struct boot_state boot_states[] = {
BS_INIT_ENTRY(BS_DEV_ENABLE, bs_dev_eanble),
BS_INIT_ENTRY(BS_DEV_INIT, bs_dev_init),
BS_INIT_ENTRY(BS_POST_DEVICE, bs_post_device),
BS_INIT_ENTRY(BS_OS_RESUME_CHECK, bs_os_resume_check),
BS_INIT_ENTRY(BS_OS_RESUME, bs_os_resume),
BS_INIT_ENTRY(BS_WRITE_TABLES, bs_write_tables),
BS_INIT_ENTRY(BS_PAYLOAD_LOAD, bs_payload_load),
@ -157,21 +159,35 @@ static boot_state_t bs_post_device(void *arg)
timestamp_sync();
return BS_OS_RESUME;
return BS_OS_RESUME_CHECK;
}
static boot_state_t bs_os_resume(void *arg)
static boot_state_t bs_os_resume_check(void *arg)
{
#if CONFIG_HAVE_ACPI_RESUME
suspend_resume();
void *wake_vector;
wake_vector = acpi_find_wakeup_vector();
if (wake_vector != NULL) {
boot_states[BS_OS_RESUME].arg = wake_vector;
return BS_OS_RESUME;
}
post_code(0x8a);
#endif
timestamp_add_now(TS_CBMEM_POST);
return BS_WRITE_TABLES;
}
static boot_state_t bs_os_resume(void *wake_vector)
{
#if CONFIG_HAVE_ACPI_RESUME
acpi_resume(wake_vector);
#endif
return BS_WRITE_TABLES;
}
static boot_state_t bs_write_tables(void *arg)
{
if (cbmem_post_handling)