commonlib: Move drivers/storage into commonlib/storage

Move drivers/storage into commonlib/storage to enable access by
libpayload and indirectly by payloads.

* Remove SD/MMC specific include files from include/device
* Remove files from drivers/storage
* Add SD/MMC specific include files to commonlib/include
* Add files to commonlib/storage
* Fix header file references
* Add subdir entry in commonlib/Makefile.inc to build the SD/MMC driver
* Add Kconfig source for commonlib/storage
* Rename *DEVICE* to *COMMONLIB*
* Rename *DRIVERS_STORAGE* to *COMMONLIB_STORAGE*

TEST=Build and run on Galileo Gen2

Change-Id: I4339e4378491db9a0da1f2dc34e1906a5ba31ad6
Signed-off-by: Lee Leahy <Leroy.P.Leahy@intel.com>
Reviewed-on: https://review.coreboot.org/19672
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
This commit is contained in:
Lee Leahy
2017-05-08 16:56:03 -07:00
parent f542aca090
commit 48dbc663d7
31 changed files with 88 additions and 86 deletions

View File

@ -0,0 +1,105 @@
##
## This file is part of the coreboot project.
##
## Copyright (C) 2017 Intel Corp.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; version 2 of the License.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
config COMMONLIB_STORAGE
bool
default n
if COMMONLIB_STORAGE
config COMMONLIB_STORAGE_MMC
bool "Enable MultiMediaCard (MMC) and eMMC device support"
default n
config COMMONLIB_STORAGE_SD
bool "Enable Secure Digital (SD) memory card support"
default n
config STORAGE_ERASE
bool "Support SD/MMC erase operations"
default n
help
Select to enable SD/MMC erase oprations
config STORAGE_EARLY_ERASE
bool "Enable erase operations in bootblock and verstage"
default n
depends on STORAGE_ERASE
config STORAGE_WRITE
bool "Support SD/MMC write operations"
default n
help
Select to enable SD/MMC write oprations
config STORAGE_EARLY_WRITE
bool "Enable write operations in bootblock and verstage"
default n
depends on STORAGE_WRITE
config SD_MMC_DEBUG
bool "Debug SD/MMC card/devices operations"
default n
help
Display overview of SD/MMC card/device operations
config SD_MMC_TRACE
bool "Trace SD/MMC card/device operations"
default n
help
Display details of SD/MMC card/device operations
config SDHC_DEBUG
bool "Debug SD/MMC controller settings"
default n
help
Display clock speed and bus width settings
config SDHC_TRACE
bool "Trace SD/MMC controller operations"
default n
help
Display the operations performed by the SD/MMC controller
config SDHCI_CONTROLLER
bool "Support SD host controller"
default n
if SDHCI_CONTROLLER
config SDHCI_ADMA_IN_BOOTBLOCK
bool
default n
help
Determine if bootblock is able to use ADMA2 or ADMA64
config SDHCI_ADMA_IN_ROMSTAGE
bool
default n
help
Determine if romstage is able to use ADMA2 or ADMA64
config SDHCI_ADMA_IN_VERSTAGE
bool
default n
help
Determine if verstage is able to use ADMA2 or ADMA64
config SDHCI_BOUNCE_BUFFER
bool "Use DMA bounce buffer for SD/MMC controller"
default n
endif # SDHCI_CONTROLLER
endif # COMMONLIB_STORAGE

View File

@ -0,0 +1,107 @@
#
# This file is part of the coreboot project.
#
# Copyright (C) 2017 Intel Corporation.
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; version 2 of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
ifeq ($(CONFIG_COMMONLIB_STORAGE),y)
bootblock-y += sd_mmc.c
bootblock-y += storage.c
verstage-y += sd_mmc.c
verstage-y += storage.c
romstage-y += sd_mmc.c
romstage-y += storage.c
postcar-y += sd_mmc.c
postcar-y += storage.c
ramstage-y += sd_mmc.c
ramstage-y += storage.c
# Determine the type of controller being used
ifeq ($(CONFIG_SDHCI_CONTROLLER),y)
bootblock-y += pci_sdhci.c
bootblock-y += sdhci.c
bootblock-$(CONFIG_SDHCI_ADMA_IN_BOOTBLOCK) += sdhci_adma.c
bootblock-y += sdhci_display.c
verstage-y += pci_sdhci.c
verstage-y += sdhci.c
verstage-$(CONFIG_SDHCI_ADMA_IN_VERSTAGE) += sdhci_adma.c
verstage-y += sdhci_display.c
romstage-y += pci_sdhci.c
romstage-y += sdhci.c
romstage-$(CONFIG_SDHCI_ADMA_IN_ROMSTAGE) += sdhci_adma.c
romstage-y += sdhci_display.c
postcar-y += pci_sdhci.c
postcar-y += sdhci.c
postcar-y += sdhci_adma.c
postcar-y += sdhci_display.c
ramstage-y += pci_sdhci.c
ramstage-y += sdhci.c
ramstage-y += sdhci_adma.c
ramstage-y += sdhci_display.c
# Determine if the bounce buffer is necessary
ifeq ($(CONFIG_SDHCI_BOUNCE_BUFFER),y)
bootblock-y += bouncebuf.c
verstage-y += bouncebuf.c
romstage-y += bouncebuf.c
postcar-y += bouncebuf.c
ramstage-y += bouncebuf.c
endif # CONFIG_SDHCI_BOUNCE_BUFFER
endif # CONFIG_SDHCI_CONTROLLER
# Determine if MultiMediaCards or embedded MMC devices are supported
ifeq ($(CONFIG_COMMONLIB_STORAGE_MMC),y)
bootblock-y += mmc.c
verstage-y += mmc.c
romstage-y += mmc.c
postcar-y += mmc.c
ramstage-y += mmc.c
endif # CONFIG_COMMONLIB_STORAGE_MMC
# Determine if Secure Digital cards are supported
ifeq ($(CONFIG_COMMONLIB_STORAGE_SD),y)
bootblock-y += sd.c
verstage-y += sd.c
romstage-y += sd.c
postcar-y += sd.c
ramstage-y += sd.c
endif # CONFIG_COMMONLIB_STORAGE_SD
# Determine if erase operations are supported
ifeq ($(CONFIG_STORAGE_ERASE),y)
bootblock-$(CONFIG_STORAGE_EARLY_ERASE) += storage_erase.c
verstage-$(CONFIG_STORAGE_EARLY_ERASE) += storage_erase.c
romstage-y += storage_erase.c
postcar-y += storage_erase.c
ramstage-y += storage_erase.c
endif # CONFIG_STORAGE_ERASE
# Determine if write operations are supported
ifeq ($(CONFIG_STORAGE_WRITE),y)
bootblock-$(CONFIG_STORAGE_EARLY_WRITE) += storage_write.c
verstage-$(CONFIG_STORAGE_EARLY_WRITE) += storage_write.c
romstage-y += storage_write.c
postcar-y += storage_write.c
ramstage-y += storage_write.c
endif # CONFIG_STORAGE_WRITE
endif # CONFIG_COMMONLIB_STORAGE

View File

@ -0,0 +1,92 @@
/*
* Generic bounce buffer implementation
*
* Copyright (C) 2012 Marek Vasut <marex@denx.de>
* Copyright 2013 Google Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/cache.h>
#include <console/console.h>
#include "bouncebuf.h"
#include <halt.h>
#include "storage.h"
#include <string.h>
#include <commonlib/stdlib.h>
static int addr_aligned(struct bounce_buffer *state)
{
const uint32_t align_mask = ARCH_DMA_MINALIGN - 1;
// Check if start is aligned
if ((uintptr_t)state->user_buffer & align_mask) {
sdhc_debug("Unaligned buffer address %p\n", state->user_buffer);
return 0;
}
// Check if length is aligned
if (state->len != state->len_aligned) {
sdhc_debug("Unaligned buffer length %zd\n", state->len);
return 0;
}
// Aligned
return 1;
}
int bounce_buffer_start(struct bounce_buffer *state, void *data,
size_t len, unsigned int flags)
{
state->user_buffer = data;
state->bounce_buffer = data;
state->len = len;
state->len_aligned = ROUND(len, ARCH_DMA_MINALIGN);
state->flags = flags;
if (!addr_aligned(state)) {
state->bounce_buffer = memalign(ARCH_DMA_MINALIGN,
state->len_aligned);
if (!state->bounce_buffer)
return -1;
if (state->flags & GEN_BB_READ)
memcpy(state->bounce_buffer, state->user_buffer,
state->len);
}
/*
* Flush data to RAM so DMA reads can pick it up,
* and any CPU writebacks don't race with DMA writes
*/
dcache_clean_invalidate_by_mva(state->bounce_buffer,
state->len_aligned);
return 0;
}
int bounce_buffer_stop(struct bounce_buffer *state)
{
if (state->flags & GEN_BB_WRITE) {
// Invalidate cache so that CPU can see any newly DMA'd data
dcache_invalidate_by_mva(state->bounce_buffer,
state->len_aligned);
}
if (state->bounce_buffer == state->user_buffer)
return 0;
if (state->flags & GEN_BB_WRITE)
memcpy(state->user_buffer, state->bounce_buffer, state->len);
free(state->bounce_buffer);
return 0;
}

View File

@ -0,0 +1,96 @@
/*
* Generic bounce buffer implementation
*
* Copyright (C) 2012 Marek Vasut <marex@denx.de>
* Copyright 2013 Google Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __COMMONLIB_STORAGE_BOUNCEBUF_H__
#define __COMMONLIB_STORAGE_BOUNCEBUF_H__
#include <stddef.h>
#include <stdint.h>
#include <stdlib.h>
/*
* GEN_BB_READ -- Data are read from the buffer eg. by DMA hardware.
* The source buffer is copied into the bounce buffer (if unaligned, otherwise
* the source buffer is used directly) upon start() call, then the operation
* requiring the aligned transfer happens, then the bounce buffer is lost upon
* stop() call.
*/
#define GEN_BB_READ (1 << 0)
/*
* GEN_BB_WRITE -- Data are written into the buffer eg. by DMA hardware.
* The source buffer starts in an undefined state upon start() call, then the
* operation requiring the aligned transfer happens, then the bounce buffer is
* copied into the destination buffer (if unaligned, otherwise destination
* buffer is used directly) upon stop() call.
*/
#define GEN_BB_WRITE (1 << 1)
/*
* GEN_BB_RW -- Data are read and written into the buffer eg. by DMA hardware.
* The source buffer is copied into the bounce buffer (if unaligned, otherwise
* the source buffer is used directly) upon start() call, then the operation
* requiring the aligned transfer happens, then the bounce buffer is copied
* into the destination buffer (if unaligned, otherwise destination buffer is
* used directly) upon stop() call.
*/
#define GEN_BB_RW (GEN_BB_READ | GEN_BB_WRITE)
struct bounce_buffer {
/* Copy of data parameter passed to start() */
void *user_buffer;
/*
* DMA-aligned buffer. This field is always set to the value that
* should be used for DMA; either equal to .user_buffer, or to a
* freshly allocated aligned buffer.
*/
void *bounce_buffer;
/* Copy of len parameter passed to start() */
size_t len;
/* DMA-aligned buffer length */
size_t len_aligned;
/* Copy of flags parameter passed to start() */
unsigned int flags;
};
/**
* bounce_buffer_start() -- Start the bounce buffer session
* state: stores state passed between bounce_buffer_{start,stop}
* data: pointer to buffer to be aligned
* len: length of the buffer
* flags: flags describing the transaction, see above.
*/
int bounce_buffer_start(struct bounce_buffer *state, void *data,
size_t len, unsigned int flags);
/**
* bounce_buffer_stop() -- Finish the bounce buffer session
* state: stores state passed between bounce_buffer_{start,stop}
*/
int bounce_buffer_stop(struct bounce_buffer *state);
// TODO(hungte) Eliminate the alignment stuff below and replace them with a
// better and centralized way to handler non-cache/aligned memory.
// Helper macros for alignment.
#define DMA_MINALIGN (64)
#define ROUND(a, b) (((a) + (b) - 1) & ~((b) - 1))
#define ALLOC_CACHE_ALIGN_BUFFER(type, name, size) \
char __##name[ROUND(size * sizeof(type), DMA_MINALIGN) + \
DMA_MINALIGN - 1]; \
type *name = (type *) ALIGN((uintptr_t)__##name, DMA_MINALIGN)
#ifndef ARCH_DMA_MINALIGN
#define ARCH_DMA_MINALIGN (DMA_MINALIGN)
#endif
#endif // __COMMONLIB_STORAGE_BOUNCEBUF_H__

545
src/commonlib/storage/mmc.c Normal file
View File

@ -0,0 +1,545 @@
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Copyright 2013 Google Inc. All rights reserved.
* Copyright 2017 Intel Corporation
*
* MultiMediaCard (MMC) and eMMC specific support code
* This code is controller independent
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <commonlib/storage.h>
#include <console/console.h>
#include "sd_mmc.h"
#include "mmc.h"
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
/* We pass in the cmd since otherwise the init seems to fail */
static int mmc_send_op_cond_iter(struct storage_media *media,
struct mmc_command *cmd, int use_arg)
{
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
cmd->cmdidx = MMC_CMD_SEND_OP_COND;
cmd->resp_type = CARD_RSP_R3;
/* Set the controller's operating conditions */
if (use_arg) {
uint32_t mask = media->op_cond_response &
(OCR_VOLTAGE_MASK | OCR_ACCESS_MODE);
cmd->cmdarg = ctrlr->voltages & mask;
/* Always request high capacity if supported by the
* controller
*/
if (ctrlr->caps & DRVR_CAP_HC)
cmd->cmdarg |= OCR_HCS;
}
cmd->flags = 0;
int err = ctrlr->send_cmd(ctrlr, cmd, NULL);
if (err)
return err;
media->op_cond_response = cmd->response[0];
return 0;
}
int mmc_send_op_cond(struct storage_media *media)
{
struct mmc_command cmd;
int max_iters = 2;
/* Ask the card for its operating conditions */
cmd.cmdarg = 0;
for (int i = 0; i < max_iters; i++) {
int err = mmc_send_op_cond_iter(media, &cmd, i != 0);
if (err)
return err;
// OCR_BUSY is active low, this bit set means
// "initialization complete".
if (media->op_cond_response & OCR_BUSY)
return 0;
}
return CARD_IN_PROGRESS;
}
int mmc_complete_op_cond(struct storage_media *media)
{
struct mmc_command cmd;
struct stopwatch sw;
stopwatch_init_msecs_expire(&sw, MMC_INIT_TIMEOUT_US_MS);
while (1) {
// CMD1 queries whether initialization is done.
int err = mmc_send_op_cond_iter(media, &cmd, 1);
if (err)
return err;
// OCR_BUSY means "initialization complete".
if (media->op_cond_response & OCR_BUSY)
break;
// Check if init timeout has expired.
if (stopwatch_expired(&sw))
return CARD_UNUSABLE_ERR;
udelay(100);
}
media->version = MMC_VERSION_UNKNOWN;
media->ocr = cmd.response[0];
media->high_capacity = ((media->ocr & OCR_HCS) == OCR_HCS);
media->rca = 0;
return 0;
}
int mmc_send_ext_csd(struct sd_mmc_ctrlr *ctrlr, unsigned char *ext_csd)
{
struct mmc_command cmd;
struct mmc_data data;
int rv;
/* Get the Card Status Register */
cmd.cmdidx = MMC_CMD_SEND_EXT_CSD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
data.dest = (char *)ext_csd;
data.blocks = 1;
data.blocksize = 512;
data.flags = DATA_FLAG_READ;
rv = ctrlr->send_cmd(ctrlr, &cmd, &data);
if (!rv && IS_ENABLED(CONFIG_SD_MMC_TRACE)) {
int i, size;
size = data.blocks * data.blocksize;
sd_mmc_trace("\t%p ext_csd:", ctrlr);
for (i = 0; i < size; i++) {
if (!(i % 32))
sd_mmc_trace("\n");
sd_mmc_trace(" %2.2x", ext_csd[i]);
}
sd_mmc_trace("\n");
}
return rv;
}
static int mmc_switch(struct storage_media *media, uint8_t index, uint8_t value)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
cmd.cmdidx = MMC_CMD_SWITCH;
cmd.resp_type = CARD_RSP_R1b;
cmd.cmdarg = ((MMC_SWITCH_MODE_WRITE_BYTE << 24) |
(index << 16) | (value << 8));
cmd.flags = 0;
int ret = ctrlr->send_cmd(ctrlr, &cmd, NULL);
/* Waiting for the ready status */
sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
return ret;
}
static void mmc_recalculate_clock(struct storage_media *media)
{
uint32_t clock;
clock = CLOCK_26MHZ;
if (media->caps & DRVR_CAP_HS) {
if ((media->caps & DRVR_CAP_HS200) ||
(media->caps & DRVR_CAP_HS400))
clock = CLOCK_200MHZ;
else if (media->caps & DRVR_CAP_HS52)
clock = CLOCK_52MHZ;
}
SET_CLOCK(media->ctrlr, clock);
}
static int mmc_select_hs(struct storage_media *media)
{
int ret;
/* Switch the MMC device into high speed mode */
ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS);
if (ret) {
sd_mmc_error("Timing switch to high speed failed\n");
return ret;
}
sdhc_debug("SDHCI switched MMC to high speed\n");
/* Increase the controller clock speed */
SET_TIMING(media->ctrlr, BUS_TIMING_MMC_HS);
media->caps |= DRVR_CAP_HS52 | DRVR_CAP_HS;
mmc_recalculate_clock(media);
ret = sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
return ret;
}
static int mmc_send_tunning_seq(struct sd_mmc_ctrlr *ctrlr, char *buffer)
{
struct mmc_command cmd;
struct mmc_data data;
/* Request the device send the tuning sequence to the host */
cmd.cmdidx = MMC_CMD_AUTO_TUNING_SEQUENCE;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = CMD_FLAG_IGNORE_INHIBIT;
data.dest = buffer;
data.blocks = 1;
data.blocksize = (ctrlr->bus_width == 8) ? 128 : 64;
data.flags = DATA_FLAG_READ;
return ctrlr->send_cmd(ctrlr, &cmd, &data);
}
static int mmc_bus_tuning(struct storage_media *media)
{
ALLOC_CACHE_ALIGN_BUFFER(char, buffer, 128);
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int index;
int successful;
/* Request the device send the tuning sequence up to 40 times */
ctrlr->tuning_start(ctrlr, 0);
for (index = 0; index < 40; index++) {
mmc_send_tunning_seq(ctrlr, buffer);
if (ctrlr->is_tuning_complete(ctrlr, &successful)) {
if (successful)
return 0;
break;
}
}
sd_mmc_error("Bus tuning failed!\n");
return -1;
}
static int mmc_select_hs400(struct storage_media *media)
{
uint8_t bus_width;
uint32_t caps;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int ret;
uint32_t timing;
/* Switch the MMC device into high speed mode */
ret = mmc_select_hs(media);
if (ret)
return ret;
/* Switch MMC device to 8-bit DDR with strobe */
bus_width = EXT_CSD_DDR_BUS_WIDTH_8;
caps = DRVR_CAP_HS400 | DRVR_CAP_HS52 | DRVR_CAP_HS;
timing = BUS_TIMING_MMC_HS400;
if ((ctrlr->caps & DRVR_CAP_ENHANCED_STROBE)
&& (media->caps & DRVR_CAP_ENHANCED_STROBE)) {
bus_width |= EXT_CSD_BUS_WIDTH_STROBE;
caps |= DRVR_CAP_ENHANCED_STROBE;
timing = BUS_TIMING_MMC_HS400ES;
}
ret = mmc_switch(media, EXT_CSD_BUS_WIDTH, bus_width);
if (ret) {
sd_mmc_error("Switching bus width for HS400 failed\n");
return ret;
}
sdhc_debug("SDHCI switched MMC to 8-bit DDR\n");
/* Set controller to 8-bit mode */
SET_BUS_WIDTH(ctrlr, 8);
media->caps |= EXT_CSD_BUS_WIDTH_8;
/* Switch MMC device to HS400 */
ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS400);
if (ret) {
sd_mmc_error("Switch to HS400 timing failed\n");
return ret;
}
/* Set controller to 200 MHz and use receive strobe */
SET_TIMING(ctrlr, timing);
media->caps |= caps;
mmc_recalculate_clock(media);
ret = sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
return ret;
}
static int mmc_select_hs200(struct storage_media *media)
{
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int ret;
/* Switch the MMC device to 8-bit SDR */
ret = mmc_switch(media, EXT_CSD_BUS_WIDTH, EXT_CSD_BUS_WIDTH_8);
if (ret) {
sd_mmc_error("Switching bus width for HS200 failed\n");
return ret;
}
/* Set controller to 8-bit mode */
SET_BUS_WIDTH(ctrlr, 8);
media->caps |= EXT_CSD_BUS_WIDTH_8;
/* Switch to HS200 */
ret = mmc_switch(media, EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS200);
if (ret) {
sd_mmc_error("Switch to HS200 failed\n");
return ret;
}
sdhc_debug("SDHCI switched MMC to 8-bit SDR\n");
/* Set controller to 200 MHz */
SET_TIMING(ctrlr, BUS_TIMING_MMC_HS200);
media->caps |= DRVR_CAP_HS200 | DRVR_CAP_HS52 | DRVR_CAP_HS;
mmc_recalculate_clock(media);
/* Tune the receive sampling point for the bus */
if ((!ret) && (ctrlr->caps & DRVR_CAP_HS200_TUNING))
ret = mmc_bus_tuning(media);
return ret;
}
int mmc_change_freq(struct storage_media *media)
{
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int err;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, 512);
media->caps = 0;
/* Only version 4 supports high-speed */
if (media->version < MMC_VERSION_4)
return 0;
err = mmc_send_ext_csd(ctrlr, ext_csd);
if (err)
return err;
if ((ctrlr->caps & DRVR_CAP_HS400) &&
(ext_csd[EXT_CSD_CARD_TYPE] & MMC_HS400))
err = mmc_select_hs400(media);
else if ((ctrlr->caps & DRVR_CAP_HS200) &&
(ext_csd[EXT_CSD_CARD_TYPE] & MMC_HS_200MHZ))
err = mmc_select_hs200(media);
else
err = mmc_select_hs(media);
return err;
}
int mmc_set_bus_width(struct storage_media *media)
{
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int err;
int width;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, EXT_CSD_SIZE);
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, test_csd, EXT_CSD_SIZE);
/* Set the bus width */
err = 0;
for (width = EXT_CSD_BUS_WIDTH_8; width >= 0; width--) {
/* If HS200 is switched, Bus Width has been 8-bit */
if ((media->caps & DRVR_CAP_HS200) ||
(media->caps & DRVR_CAP_HS400))
break;
/* Set the card to use 4 bit*/
err = mmc_switch(media, EXT_CSD_BUS_WIDTH, width);
if (err)
continue;
if (!width) {
SET_BUS_WIDTH(ctrlr, 1);
break;
}
SET_BUS_WIDTH(ctrlr, 4 * width);
err = mmc_send_ext_csd(ctrlr, test_csd);
if (!err &&
(ext_csd[EXT_CSD_PARTITIONING_SUPPORT] ==
test_csd[EXT_CSD_PARTITIONING_SUPPORT]) &&
(ext_csd[EXT_CSD_ERASE_GROUP_DEF] ==
test_csd[EXT_CSD_ERASE_GROUP_DEF]) &&
(ext_csd[EXT_CSD_REV] ==
test_csd[EXT_CSD_REV]) &&
(ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] ==
test_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
memcmp(&ext_csd[EXT_CSD_SEC_CNT],
&test_csd[EXT_CSD_SEC_CNT], 4) == 0) {
media->caps |= width;
break;
}
}
return err;
}
int mmc_update_capacity(struct storage_media *media)
{
uint64_t capacity;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int err;
ALLOC_CACHE_ALIGN_BUFFER(unsigned char, ext_csd, EXT_CSD_SIZE);
uint32_t erase_size;
uint32_t hc_erase_size;
uint64_t hc_wp_size;
int index;
if (media->version < MMC_VERSION_4)
return 0;
/* check ext_csd version and capacity */
err = mmc_send_ext_csd(ctrlr, ext_csd);
if (err)
return err;
if (ext_csd[EXT_CSD_REV] < 2)
return 0;
/* Determine if the device supports enhanced strobe */
media->caps |= ext_csd[EXT_CSD_STROBE_SUPPORT]
? DRVR_CAP_ENHANCED_STROBE : 0;
/* Determine the eMMC device information */
media->partition_config = ext_csd[EXT_CSD_PART_CONF]
& EXT_CSD_PART_ACCESS_MASK;
/* Determine the user partition size
*
* According to the JEDEC Standard, the value of
* ext_csd's capacity is valid if the value is
* more than 2GB
*/
capacity = (ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
ext_csd[EXT_CSD_SEC_CNT + 3] << 24);
capacity *= 512;
if ((capacity >> 20) > 2 * 1024)
media->capacity[MMC_PARTITION_USER] = capacity;
/* Determine the boot parition sizes */
hc_erase_size = ext_csd[224] * 512 * KiB;
capacity = ext_csd[EXT_CSD_BOOT_SIZE_MULT] * 128 * KiB;
media->capacity[MMC_PARTITION_BOOT_1] = capacity;
media->capacity[MMC_PARTITION_BOOT_2] = capacity;
/* Determine the RPMB size */
hc_wp_size = ext_csd[EXT_CSD_HC_WP_GRP_SIZE] * hc_erase_size;
capacity = 128 * KiB * ext_csd[EXT_CSD_RPMB_SIZE_MULT];
media->capacity[MMC_PARTITION_RPMB] = capacity;
/* Determine the general partition sizes */
capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP0 + 2] << 16)
| (ext_csd[EXT_CSD_GP_SIZE_MULT_GP0 + 1] << 8)
| ext_csd[EXT_CSD_GP_SIZE_MULT_GP0];
capacity *= hc_wp_size;
media->capacity[MMC_PARTITION_GP1] = capacity;
capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP1 + 2] << 16)
| (ext_csd[EXT_CSD_GP_SIZE_MULT_GP1 + 1] << 8)
| ext_csd[EXT_CSD_GP_SIZE_MULT_GP1];
capacity *= hc_wp_size;
media->capacity[MMC_PARTITION_GP2] = capacity;
capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP2 + 2] << 16)
| (ext_csd[EXT_CSD_GP_SIZE_MULT_GP2 + 1] << 8)
| ext_csd[EXT_CSD_GP_SIZE_MULT_GP2];
capacity *= hc_wp_size;
media->capacity[MMC_PARTITION_GP3] = capacity;
capacity = (ext_csd[EXT_CSD_GP_SIZE_MULT_GP3 + 2] << 16)
| (ext_csd[EXT_CSD_GP_SIZE_MULT_GP3 + 1] << 8)
| ext_csd[EXT_CSD_GP_SIZE_MULT_GP3];
capacity *= hc_wp_size;
media->capacity[MMC_PARTITION_GP4] = capacity;
/* Determine the erase size */
erase_size = (sd_mmc_extract_uint32_bits(media->csd,
81, 5) + 1) *
(sd_mmc_extract_uint32_bits(media->csd, 86, 5)
+ 1);
for (index = MMC_PARTITION_BOOT_1; index <= MMC_PARTITION_GP4;
index++) {
if (media->capacity[index] != 0) {
/* Enable the partitions */
err = mmc_switch(media, EXT_CSD_ERASE_GROUP_DEF,
EXT_CSD_PARTITION_ENABLE);
if (err) {
sdhc_error("Failed to enable partition access\n");
return err;
}
/* Use HC erase group size */
erase_size = hc_erase_size / media->write_bl_len;
break;
}
}
media->erase_blocks = erase_size;
media->trim_mult = ext_csd[EXT_CSD_TRIM_MULT];
return 0;
}
int mmc_set_partition(struct storage_media *media,
unsigned int partition_number)
{
uint8_t partition_config;
/* Validate the partition number */
if ((partition_number > MMC_PARTITION_GP4)
|| (!media->capacity[partition_number]))
return -1;
/* Update the partition register */
partition_config = media->partition_config;
partition_config &= ~EXT_CSD_PART_ACCESS_MASK;
partition_config |= partition_number;
/* Select the new partition */
int ret = mmc_switch(media, EXT_CSD_PART_CONF, partition_config);
if (!ret)
media->partition_config = partition_config;
return ret;
}
const char *mmc_partition_name(struct storage_media *media,
unsigned int partition_number)
{
static const char * const partition_name[8] = {
"User", /* 0 */
"Boot 1", /* 1 */
"Boot 2", /* 2 */
"RPMB", /* 3 */
"GP 1", /* 4 */
"GP 2", /* 5 */
"GP 3", /* 6 */
"GP 4" /* 7 */
};
if (partition_number >= ARRAY_SIZE(partition_name))
return "";
return partition_name[partition_number];
}

View File

@ -0,0 +1,54 @@
/*
* Copyright 2008,2010 Freescale Semiconductor, Inc
* Andy Fleming
*
* Copyright 2013 Google Inc. All rights reserved.
* Copyright 2017 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __COMMONLIB_STORAGE_MMC_H__
#define __COMMONLIB_STORAGE_MMC_H__
#include <commonlib/sd_mmc_ctrlr.h>
#define MMC_HS_TIMING 0x00000100
#define MMC_HS_52MHZ 0x2
#define MMC_HS_200MHZ 0x10
#define MMC_HS400 0x40
#define SECURE_ERASE 0x80000000
#define MMC_STATUS_MASK (~0x0206BF7F)
#define MMC_STATUS_RDY_FOR_DATA (1 << 8)
#define MMC_STATUS_CURR_STATE (0xf << 9)
#define MMC_STATUS_ERROR (1 << 19)
#define MMC_SWITCH_MODE_CMD_SET 0x00 /* Change the command set */
#define MMC_SWITCH_MODE_SET_BITS 0x01 /* Set bits in EXT_CSD byte
addressed by index which are
1 in value field */
#define MMC_SWITCH_MODE_CLEAR_BITS 0x02 /* Clear bits in EXT_CSD byte
addressed by index, which are
1 in value field */
#define MMC_SWITCH_MODE_WRITE_BYTE 0x03 /* Set target byte to value */
#define R1_ILLEGAL_COMMAND (1 << 22)
#define R1_APP_CMD (1 << 5)
#define MMC_INIT_TIMEOUT_US (1000 * 1000)
#define MMC_INIT_TIMEOUT_US_MS 1000
int storage_block_setup_media(struct storage_media *media,
struct sd_mmc_ctrlr *ctrlr);
#endif /* __COMMONLIB_STORAGE_MMC_H__ */

View File

@ -0,0 +1,64 @@
/*
* Copyright 2013 Google Inc.
* Copyright 2017 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <rules.h>
#if ENV_RAMSTAGE
#define __SIMPLE_DEVICE__ 1
#endif
#include <assert.h>
#include <commonlib/sdhci.h>
#include <console/console.h>
#include <device/pci.h>
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
/* Initialize an SDHCI port */
int sdhci_controller_init(struct sdhci_ctrlr *sdhci_ctrlr, void *ioaddr)
{
memset(sdhci_ctrlr, 0, sizeof(*sdhci_ctrlr));
sdhci_ctrlr->ioaddr = ioaddr;
return add_sdhci(sdhci_ctrlr);
}
struct sd_mmc_ctrlr *new_mem_sdhci_controller(void *ioaddr)
{
struct sdhci_ctrlr *sdhci_ctrlr;
sdhci_ctrlr = malloc(sizeof(*sdhci_ctrlr));
if (sdhci_ctrlr == NULL)
return NULL;
if (sdhci_controller_init(sdhci_ctrlr, ioaddr)) {
free(sdhci_ctrlr);
sdhci_ctrlr = NULL;
}
return &sdhci_ctrlr->sd_mmc_ctrlr;
}
struct sd_mmc_ctrlr *new_pci_sdhci_controller(uint32_t dev)
{
uint32_t addr;
addr = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
if (addr == ((uint32_t)~0)) {
sdhc_error("Error: PCI SDHCI not found\n");
return NULL;
}
addr &= ~0xf;
return new_mem_sdhci_controller((void *)addr);
}

302
src/commonlib/storage/sd.c Normal file
View File

@ -0,0 +1,302 @@
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Copyright 2013 Google Inc. All rights reserved.
* Copyright 2017 Intel Corporation
*
* Secure Digital (SD) card specific support code
* This code is controller independent
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <commonlib/sd_mmc_ctrlr.h>
#include <commonlib/storage.h>
#include <delay.h>
#include <endian.h>
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
#include <timer.h>
int sd_send_if_cond(struct storage_media *media)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
cmd.cmdidx = SD_CMD_SEND_IF_COND;
/* Set if controller supports voltages between 2.7 and 3.6 V. */
cmd.cmdarg = ((ctrlr->voltages & 0xff8000) != 0) << 8 | 0xaa;
cmd.resp_type = CARD_RSP_R7;
cmd.flags = 0;
int err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
if ((cmd.response[0] & 0xff) != 0xaa)
return CARD_UNUSABLE_ERR;
media->version = SD_VERSION_2;
return 0;
}
int sd_send_op_cond(struct storage_media *media)
{
int err;
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int tries = SD_MMC_IO_RETRIES;
while (tries--) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_OP_COND;
cmd.resp_type = CARD_RSP_R3;
/*
* Most cards do not answer if some reserved bits
* in the ocr are set. However, Some controller
* can set bit 7 (reserved for low voltages), but
* how to manage low voltages SD card is not yet
* specified.
*/
cmd.cmdarg = (ctrlr->voltages & 0xff8000);
if (media->version == SD_VERSION_2)
cmd.cmdarg |= OCR_HCS;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
// OCR_BUSY means "initialization complete".
if (cmd.response[0] & OCR_BUSY)
break;
udelay(100);
}
if (tries < 0)
return CARD_UNUSABLE_ERR;
if (media->version != SD_VERSION_2)
media->version = SD_VERSION_1_0;
media->ocr = cmd.response[0];
media->high_capacity = ((media->ocr & OCR_HCS) == OCR_HCS);
media->rca = 0;
return 0;
}
static int sd_switch(struct sd_mmc_ctrlr *ctrlr, int mode, int group,
uint8_t value, uint8_t *resp)
{
/* Switch the frequency */
struct mmc_command cmd;
cmd.cmdidx = SD_CMD_SWITCH_FUNC;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = (mode << 31) | (0xffffff & ~(0xf << (group * 4))) |
(value << (group * 4));
cmd.flags = 0;
struct mmc_data data;
data.dest = (char *)resp;
data.blocksize = 64;
data.blocks = 1;
data.flags = DATA_FLAG_READ;
return ctrlr->send_cmd(ctrlr, &cmd, &data);
}
static void sd_recalculate_clock(struct storage_media *media)
{
uint32_t clock = 1;
if (media->caps & DRVR_CAP_HS)
clock = CLOCK_50MHZ;
else
clock = CLOCK_25MHZ;
SET_CLOCK(media->ctrlr, clock);
}
int sd_change_freq(struct storage_media *media)
{
int delay;
int err, timeout;
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
struct mmc_data data;
ALLOC_CACHE_ALIGN_BUFFER(uint32_t, scr, 2);
ALLOC_CACHE_ALIGN_BUFFER(uint32_t, switch_status, 16);
media->caps = 0;
/* Read the SCR to find out if this card supports higher speeds */
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = media->rca << 16;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SEND_SCR;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = 0;
cmd.flags = 0;
timeout = 3;
while (timeout--) {
data.dest = (char *)scr;
data.blocksize = 8;
data.blocks = 1;
data.flags = DATA_FLAG_READ;
err = ctrlr->send_cmd(ctrlr, &cmd, &data);
if (!err)
break;
}
if (err) {
sd_mmc_error("%s returning %d\n", __func__, err);
return err;
}
media->scr[0] = be32toh(scr[0]);
media->scr[1] = be32toh(scr[1]);
switch ((media->scr[0] >> 24) & 0xf) {
case 0:
media->version = SD_VERSION_1_0;
break;
case 1:
media->version = SD_VERSION_1_10;
break;
case 2:
media->version = SD_VERSION_2;
break;
default:
media->version = SD_VERSION_1_0;
break;
}
if (media->scr[0] & SD_DATA_4BIT)
media->caps |= DRVR_CAP_4BIT;
/* Version 1.0 doesn't support switching */
if (media->version == SD_VERSION_1_0)
goto out;
timeout = 4;
while (timeout--) {
err = sd_switch(ctrlr, SD_SWITCH_CHECK, 0, 1,
(uint8_t *)switch_status);
if (err)
return err;
/* The high-speed function is busy. Try again */
if (!(ntohl(switch_status[7]) & SD_HIGHSPEED_BUSY))
break;
}
/* If high-speed isn't supported, we return */
if (!(ntohl(switch_status[3]) & SD_HIGHSPEED_SUPPORTED))
goto out;
/*
* If the controller doesn't support SD_HIGHSPEED, do not switch the
* card to HIGHSPEED mode even if the card support SD_HIGHSPPED.
* This can avoid a further problem when the card runs in different
* mode than the controller.
*/
if (!((ctrlr->caps & DRVR_CAP_HS52) && (ctrlr->caps & DRVR_CAP_HS)))
goto out;
/* Give the card time to recover afer the switch operation. Wait for
* 9 (>= 8) clock cycles receiving the switch status.
*/
delay = (9000000 + ctrlr->bus_hz - 1) / ctrlr->bus_hz;
udelay(delay);
/* Switch to high speed */
err = sd_switch(ctrlr, SD_SWITCH_SWITCH, 0, 1,
(uint8_t *)switch_status);
if (err)
return err;
/* Give the card time to perform the switch operation. Wait for 9
* (>= 8) clock cycles receiving the switch status.
*/
udelay(delay);
if ((ntohl(switch_status[4]) & 0x0f000000) == 0x01000000) {
media->caps |= DRVR_CAP_HS;
SET_TIMING(ctrlr, BUS_TIMING_SD_HS);
}
out:
sd_recalculate_clock(media);
return 0;
}
int sd_set_bus_width(struct storage_media *media)
{
int err;
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
if (media->caps & DRVR_CAP_4BIT) {
cmd.cmdidx = MMC_CMD_APP_CMD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = media->rca << 16;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
cmd.cmdidx = SD_CMD_APP_SET_BUS_WIDTH;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = 2;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
SET_BUS_WIDTH(ctrlr, 4);
}
return 0;
}
int sd_set_partition(struct storage_media *media,
unsigned int partition_number)
{
/* Validate the partition number */
if (partition_number)
return -1;
/* Update the partition number */
media->partition_config = partition_number;
return 0;
}
const char *sd_partition_name(struct storage_media *media,
unsigned int partition_number)
{
return "";
}

View File

@ -0,0 +1,270 @@
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Copyright 2013 Google Inc. All rights reserved.
* Copyright 2017 Intel Corporation
*
* MultiMediaCard (MMC), eMMC and Secure Digital (SD) common initialization
* code which brings the card into the standby state. This code is controller
* independent.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <commonlib/storage.h>
#include <delay.h>
#include <endian.h>
#include "mmc.h"
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
#include <timer.h>
uint64_t sd_mmc_extract_uint32_bits(const uint32_t *array, int start, int count)
{
int i;
uint64_t value = 0;
for (i = 0; i < count; i++, start++) {
value <<= 1;
value |= (array[start / 32] >> (31 - (start % 32))) & 0x1;
}
return value;
}
static uint32_t sd_mmc_calculate_transfer_speed(uint32_t csd0)
{
uint32_t mult, freq;
/* frequency bases, divided by 10 to be nice to platforms without
* floating point */
static const int fbase[] = {
10000,
100000,
1000000,
10000000,
};
/* Multiplier values for TRAN_SPEED. Multiplied by 10 to be nice
* to platforms without floating point. */
static const int multipliers[] = {
0, // reserved
10,
12,
13,
15,
20,
25,
30,
35,
40,
45,
50,
55,
60,
70,
80,
};
/* divide frequency by 10, since the mults are 10x bigger */
freq = fbase[csd0 & 0x7];
mult = multipliers[(csd0 >> 3) & 0xf];
return freq * mult;
}
static int sd_mmc_go_idle(struct storage_media *media)
{
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
// Some cards can't accept idle commands without delay.
if (ctrlr->mdelay_before_cmd0)
mdelay(ctrlr->mdelay_before_cmd0);
struct mmc_command cmd;
cmd.cmdidx = MMC_CMD_GO_IDLE_STATE;
cmd.cmdarg = 0;
cmd.resp_type = CARD_RSP_NONE;
cmd.flags = 0;
int err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
// Some cards need more than half second to respond to next command (ex,
// SEND_OP_COND).
if (ctrlr->mdelay_after_cmd0)
mdelay(ctrlr->mdelay_after_cmd0);
return 0;
}
int sd_mmc_send_status(struct storage_media *media, ssize_t tries)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
cmd.cmdidx = MMC_CMD_SEND_STATUS;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = media->rca << 16;
cmd.flags = 0;
while (tries--) {
int err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
else if (cmd.response[0] & MMC_STATUS_RDY_FOR_DATA)
break;
else if (cmd.response[0] & MMC_STATUS_MASK) {
sd_mmc_error("Status Error: %#8.8x\n", cmd.response[0]);
return CARD_COMM_ERR;
}
udelay(100);
}
sd_mmc_trace("CURR STATE:%d\n",
(cmd.response[0] & MMC_STATUS_CURR_STATE) >> 9);
if (tries < 0) {
sd_mmc_error("Timeout waiting card ready\n");
return CARD_TIMEOUT;
}
return 0;
}
int sd_mmc_set_blocklen(struct sd_mmc_ctrlr *ctrlr, int len)
{
struct mmc_command cmd;
cmd.cmdidx = MMC_CMD_SET_BLOCKLEN;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = len;
cmd.flags = 0;
return ctrlr->send_cmd(ctrlr, &cmd, NULL);
}
int sd_mmc_enter_standby(struct storage_media *media)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int err;
SET_BUS_WIDTH(ctrlr, 1);
SET_CLOCK(ctrlr, 1);
/* Reset the Card */
err = sd_mmc_go_idle(media);
if (err)
return err;
/* Test for SD version 2 */
err = CARD_TIMEOUT;
if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_SD)) {
err = sd_send_if_cond(media);
/* Get SD card operating condition */
if (!err)
err = sd_send_op_cond(media);
}
/* If the command timed out, we check for an MMC card */
if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_MMC) && (err == CARD_TIMEOUT)) {
/* Some cards seem to need this */
sd_mmc_go_idle(media);
err = mmc_send_op_cond(media);
if (err == CARD_IN_PROGRESS)
err = mmc_complete_op_cond(media);
}
if (err) {
sd_mmc_error(
"Card did not respond to voltage select!\n");
return CARD_UNUSABLE_ERR;
}
/* Put the Card in Identify Mode */
cmd.cmdidx = MMC_CMD_ALL_SEND_CID;
cmd.resp_type = CARD_RSP_R2;
cmd.cmdarg = 0;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
memcpy(media->cid, cmd.response, sizeof(media->cid));
/*
* For MMC cards, set the Relative Address.
* For SD cards, get the Relatvie Address.
* This also puts the cards into Standby State
*/
cmd.cmdidx = SD_CMD_SEND_RELATIVE_ADDR;
cmd.cmdarg = media->rca << 16;
cmd.resp_type = CARD_RSP_R6;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
if (IS_SD(media))
media->rca = (cmd.response[0] >> 16) & 0xffff;
/* Get the Card-Specific Data */
cmd.cmdidx = MMC_CMD_SEND_CSD;
cmd.resp_type = CARD_RSP_R2;
cmd.cmdarg = media->rca << 16;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
/* Waiting for the ready status */
sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
if (err)
return err;
memcpy(media->csd, cmd.response, sizeof(media->csd));
if (media->version == MMC_VERSION_UNKNOWN) {
int version = sd_mmc_extract_uint32_bits(media->csd, 2, 4);
switch (version) {
case 0:
media->version = MMC_VERSION_1_2;
break;
case 1:
media->version = MMC_VERSION_1_4;
break;
case 2:
media->version = MMC_VERSION_2_2;
break;
case 3:
media->version = MMC_VERSION_3;
break;
case 4:
media->version = MMC_VERSION_4;
break;
default:
media->version = MMC_VERSION_1_2;
break;
}
}
media->tran_speed = sd_mmc_calculate_transfer_speed(media->csd[0]);
/* Determine the read and write block lengths */
media->read_bl_len = 1 << sd_mmc_extract_uint32_bits(media->csd, 44, 4);
if (IS_SD(media))
media->write_bl_len = media->read_bl_len;
else
media->write_bl_len =
1 << sd_mmc_extract_uint32_bits(media->csd, 102, 4);
sd_mmc_debug("mmc media info: version=%#x, tran_speed=%d\n",
media->version, (int)media->tran_speed);
return 0;
}

View File

@ -0,0 +1,99 @@
/*
* Copyright 2017 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __COMMONLIB_STORAGE_SD_MMC_H__
#define __COMMONLIB_STORAGE_SD_MMC_H__
#include <commonlib/sd_mmc_ctrlr.h>
#include <commonlib/storage.h>
#include <stddef.h>
#define SD_MMC_IO_RETRIES 1000
#define IS_SD(x) (x->version & SD_VERSION_SD)
#define SET_BUS_WIDTH(ctrlr, width) \
do { \
ctrlr->bus_width = width; \
ctrlr->set_ios(ctrlr); \
} while (0)
#define SET_CLOCK(ctrlr, clock_hz) \
do { \
ctrlr->request_hz = clock_hz; \
ctrlr->set_ios(ctrlr); \
} while (0)
#define SET_TIMING(ctrlr, timing_value) \
do { \
ctrlr->timing = timing_value; \
ctrlr->set_ios(ctrlr); \
} while (0)
/* Common support routines */
int sd_mmc_enter_standby(struct storage_media *media);
uint64_t sd_mmc_extract_uint32_bits(const uint32_t *array, int start,
int count);
int sd_mmc_send_status(struct storage_media *media, ssize_t tries);
int sd_mmc_set_blocklen(struct sd_mmc_ctrlr *ctrlr, int len);
/* MMC support routines */
int mmc_change_freq(struct storage_media *media);
int mmc_complete_op_cond(struct storage_media *media);
const char *mmc_partition_name(struct storage_media *media,
unsigned int partition_number);
int mmc_send_ext_csd(struct sd_mmc_ctrlr *ctrlr, unsigned char *ext_csd);
int mmc_send_op_cond(struct storage_media *media);
int mmc_set_bus_width(struct storage_media *media);
int mmc_set_partition(struct storage_media *media,
unsigned int partition_number);
int mmc_update_capacity(struct storage_media *media);
/* SD card support routines */
int sd_change_freq(struct storage_media *media);
const char *sd_partition_name(struct storage_media *media,
unsigned int partition_number);
int sd_send_if_cond(struct storage_media *media);
int sd_send_op_cond(struct storage_media *media);
int sd_set_bus_width(struct storage_media *media);
int sd_set_partition(struct storage_media *media,
unsigned int partition_number);
/* Controller debug functions */
#define sdhc_debug(format...) \
do { \
if (IS_ENABLED(CONFIG_SDHC_DEBUG)) \
printk(BIOS_DEBUG, format); \
} while (0)
#define sdhc_trace(format...) \
do { \
if (IS_ENABLED(CONFIG_SDHC_TRACE)) \
printk(BIOS_DEBUG, format); \
} while (0)
#define sdhc_error(format...) printk(BIOS_ERR, "ERROR: " format)
/* Card/device debug functions */
#define sd_mmc_debug(format...) \
do { \
if (IS_ENABLED(CONFIG_SD_MMC_DEBUG)) \
printk(BIOS_DEBUG, format); \
} while (0)
#define sd_mmc_trace(format...) \
do { \
if (IS_ENABLED(CONFIG_SD_MMC_TRACE)) \
printk(BIOS_DEBUG, format); \
} while (0)
#define sd_mmc_error(format...) printk(BIOS_ERR, "ERROR: " format)
#endif /* __COMMONLIB_STORAGE_SD_MMC_H__ */

View File

@ -0,0 +1,813 @@
/*
* Copyright 2011, Marvell Semiconductor Inc.
* Lei Wen <leiwen@marvell.com>
*
* Copyright 2017 Intel Corporation
*
* Secure Digital (SD) Host Controller interface specific code
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include "bouncebuf.h"
#include <console/console.h>
#include <commonlib/sd_mmc_ctrlr.h>
#include <commonlib/sdhci.h>
#include <commonlib/storage.h>
#include <delay.h>
#include <endian.h>
#include <halt.h>
#include "sdhci.h"
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
#include <timer.h>
#include <commonlib/stdlib.h>
#define DMA_AVAILABLE ((CONFIG_SDHCI_ADMA_IN_BOOTBLOCK && ENV_BOOTBLOCK) \
|| (CONFIG_SDHCI_ADMA_IN_VERSTAGE && ENV_VERSTAGE) \
|| (CONFIG_SDHCI_ADMA_IN_ROMSTAGE && ENV_ROMSTAGE) \
|| ENV_POSTCAR || ENV_RAMSTAGE)
__attribute__((weak)) void *dma_malloc(size_t length_in_bytes)
{
return malloc(length_in_bytes);
}
void sdhci_reset(struct sdhci_ctrlr *sdhci_ctrlr, u8 mask)
{
struct stopwatch sw;
/* Wait max 100 ms */
stopwatch_init_msecs_expire(&sw, 100);
sdhci_writeb(sdhci_ctrlr, mask, SDHCI_SOFTWARE_RESET);
while (sdhci_readb(sdhci_ctrlr, SDHCI_SOFTWARE_RESET) & mask) {
if (stopwatch_expired(&sw)) {
sdhc_error("Reset 0x%x never completed.\n", (int)mask);
return;
}
udelay(1000);
}
}
void sdhci_cmd_done(struct sdhci_ctrlr *sdhci_ctrlr, struct mmc_command *cmd)
{
int i;
if (cmd->resp_type & CARD_RSP_136) {
/* CRC is stripped so we need to do some shifting. */
for (i = 0; i < 4; i++) {
cmd->response[i] = sdhci_readl(sdhci_ctrlr,
SDHCI_RESPONSE + (3-i)*4) << 8;
if (i != 3)
cmd->response[i] |= sdhci_readb(sdhci_ctrlr,
SDHCI_RESPONSE + (3-i)*4-1);
}
sdhc_log_response(4, &cmd->response[0]);
sdhc_trace("Response: 0x%08x.%08x.%08x.%08x\n",
cmd->response[3], cmd->response[2], cmd->response[1],
cmd->response[0]);
} else {
cmd->response[0] = sdhci_readl(sdhci_ctrlr, SDHCI_RESPONSE);
sdhc_log_response(1, &cmd->response[0]);
sdhc_trace("Response: 0x%08x\n", cmd->response[0]);
}
}
static int sdhci_transfer_data(struct sdhci_ctrlr *sdhci_ctrlr,
struct mmc_data *data, unsigned int start_addr)
{
uint32_t block_count;
uint32_t *buffer;
uint32_t *buffer_end;
uint32_t ps;
uint32_t ps_mask;
uint32_t stat;
struct stopwatch sw;
block_count = 0;
buffer = (uint32_t *)data->dest;
ps_mask = (data->flags & DATA_FLAG_READ)
? SDHCI_DATA_AVAILABLE : SDHCI_SPACE_AVAILABLE;
stopwatch_init_msecs_expire(&sw, 100);
do {
/* Stop transfers if there is an error */
stat = sdhci_readl(sdhci_ctrlr, SDHCI_INT_STATUS);
sdhci_writel(sdhci_ctrlr, stat, SDHCI_INT_STATUS);
if (stat & SDHCI_INT_ERROR) {
sdhc_error("Error detected in status(0x%X)!\n", stat);
return -1;
}
/* Determine if the buffer is ready to move data */
ps = sdhci_readl(sdhci_ctrlr, SDHCI_PRESENT_STATE);
if (!(ps & ps_mask)) {
if (stopwatch_expired(&sw)) {
sdhc_error("Transfer data timeout\n");
return -1;
}
udelay(1);
continue;
}
/* Transfer a block of data */
buffer_end = &buffer[data->blocksize >> 2];
if (data->flags == DATA_FLAG_READ)
while (buffer_end > buffer)
*buffer++ = sdhci_readl(sdhci_ctrlr,
SDHCI_BUFFER);
else
while (buffer_end > buffer)
sdhci_writel(sdhci_ctrlr, *buffer++,
SDHCI_BUFFER);
if (++block_count >= data->blocks)
break;
} while (!(stat & SDHCI_INT_DATA_END));
return 0;
}
static int sdhci_send_command_bounced(struct sd_mmc_ctrlr *ctrlr,
struct mmc_command *cmd, struct mmc_data *data,
struct bounce_buffer *bbstate)
{
struct sdhci_ctrlr *sdhci_ctrlr = (struct sdhci_ctrlr *)ctrlr;
u16 mode = 0;
unsigned int stat = 0;
int ret = 0;
u32 mask, flags;
unsigned int timeout, start_addr = 0;
struct stopwatch sw;
/* Wait max 1 s */
timeout = 1000;
sdhci_writel(sdhci_ctrlr, SDHCI_INT_ALL_MASK, SDHCI_INT_STATUS);
mask = SDHCI_CMD_INHIBIT | SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (cmd->flags & CMD_FLAG_IGNORE_INHIBIT)
mask &= ~SDHCI_DATA_INHIBIT;
while (sdhci_readl(sdhci_ctrlr, SDHCI_PRESENT_STATE) & mask) {
if (timeout == 0) {
sdhc_trace("Cmd: %2d, Arg: 0x%08x, not sent\n",
cmd->cmdidx, cmd->cmdarg);
sdhc_error("Controller never released inhibit bit(s), "
"present state %#8.8x.\n",
sdhci_readl(sdhci_ctrlr, SDHCI_PRESENT_STATE));
return CARD_COMM_ERR;
}
timeout--;
udelay(1000);
}
mask = SDHCI_INT_RESPONSE;
if (!(cmd->resp_type & CARD_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->resp_type & CARD_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->resp_type & CARD_RSP_BUSY) {
flags = SDHCI_CMD_RESP_SHORT_BUSY;
mask |= SDHCI_INT_DATA_END;
} else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->resp_type & CARD_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->resp_type & CARD_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
if (data)
flags |= SDHCI_CMD_DATA;
/* Set Transfer mode regarding to data flag */
if (data) {
sdhci_writew(sdhci_ctrlr,
SDHCI_MAKE_BLKSZ(SDHCI_DEFAULT_BOUNDARY_ARG,
data->blocksize), SDHCI_BLOCK_SIZE);
if (data->flags == DATA_FLAG_READ)
mode |= SDHCI_TRNS_READ;
if (data->blocks > 1)
mode |= SDHCI_TRNS_BLK_CNT_EN |
SDHCI_TRNS_MULTI | SDHCI_TRNS_ACMD12;
sdhci_writew(sdhci_ctrlr, data->blocks, SDHCI_BLOCK_COUNT);
if (DMA_AVAILABLE && (ctrlr->caps & DRVR_CAP_AUTO_CMD12)
&& (cmd->cmdidx != MMC_CMD_AUTO_TUNING_SEQUENCE)) {
if (sdhci_setup_adma(sdhci_ctrlr, data))
return -1;
mode |= SDHCI_TRNS_DMA;
}
sdhci_writew(sdhci_ctrlr, mode, SDHCI_TRANSFER_MODE);
}
sdhc_trace("Cmd: %2d, Arg: 0x%08x\n", cmd->cmdidx, cmd->cmdarg);
sdhci_writel(sdhci_ctrlr, cmd->cmdarg, SDHCI_ARGUMENT);
sdhci_writew(sdhci_ctrlr, SDHCI_MAKE_CMD(cmd->cmdidx, flags),
SDHCI_COMMAND);
sdhc_log_command_issued();
if (DMA_AVAILABLE && (mode & SDHCI_TRNS_DMA))
return sdhci_complete_adma(sdhci_ctrlr, cmd);
stopwatch_init_msecs_expire(&sw, 2550);
do {
stat = sdhci_readl(sdhci_ctrlr, SDHCI_INT_STATUS);
if (stat & SDHCI_INT_ERROR) {
sdhc_trace("Error - IntStatus: 0x%08x\n", stat);
break;
}
if (stat & SDHCI_INT_DATA_AVAIL) {
sdhci_writel(sdhci_ctrlr, stat, SDHCI_INT_STATUS);
return 0;
}
/* Apply max timeout for R1b-type CMD defined in eMMC ext_csd
except for erase ones */
if (stopwatch_expired(&sw)) {
if (ctrlr->caps & DRVR_CAP_BROKEN_R1B)
return 0;
sdhc_error(
"Timeout for status update! IntStatus: 0x%08x\n",
stat);
return CARD_TIMEOUT;
}
} while ((stat & mask) != mask);
if ((stat & (SDHCI_INT_ERROR | mask)) == mask) {
if (cmd->cmdidx)
sdhci_cmd_done(sdhci_ctrlr, cmd);
sdhci_writel(sdhci_ctrlr, mask, SDHCI_INT_STATUS);
} else
ret = -1;
if (!ret && data)
ret = sdhci_transfer_data(sdhci_ctrlr, data, start_addr);
if (ctrlr->udelay_wait_after_cmd)
udelay(ctrlr->udelay_wait_after_cmd);
stat = sdhci_readl(sdhci_ctrlr, SDHCI_INT_STATUS);
sdhci_writel(sdhci_ctrlr, SDHCI_INT_ALL_MASK, SDHCI_INT_STATUS);
if (!ret)
return 0;
sdhci_reset(sdhci_ctrlr, SDHCI_RESET_CMD);
sdhci_reset(sdhci_ctrlr, SDHCI_RESET_DATA);
if (stat & SDHCI_INT_TIMEOUT) {
sdhc_error("CMD%d timeout, IntStatus: 0x%08x\n", cmd->cmdidx,
stat);
return CARD_TIMEOUT;
}
sdhc_error("CMD%d failed, IntStatus: 0x%08x\n", cmd->cmdidx, stat);
return CARD_COMM_ERR;
}
__attribute__((weak)) void sdhc_log_command(struct mmc_command *cmd)
{
}
__attribute__((weak)) void sdhc_log_command_issued(void)
{
}
__attribute__((weak)) void sdhc_log_response(uint32_t entries,
uint32_t *response)
{
}
__attribute__((weak)) void sdhc_log_ret(int ret)
{
}
static void sdhci_led_control(struct sd_mmc_ctrlr *ctrlr, int on)
{
uint8_t host_ctrl;
struct sdhci_ctrlr *sdhci_ctrlr = (struct sdhci_ctrlr *)ctrlr;
host_ctrl = sdhci_readb(sdhci_ctrlr, SDHCI_HOST_CONTROL);
host_ctrl &= ~SDHCI_CTRL_LED;
if (on)
host_ctrl |= SDHCI_CTRL_LED;
sdhci_writeb(sdhci_ctrlr, host_ctrl, SDHCI_HOST_CONTROL);
}
static int sdhci_send_command(struct sd_mmc_ctrlr *ctrlr,
struct mmc_command *cmd, struct mmc_data *data)
{
void *buf;
unsigned int bbflags;
size_t len;
struct bounce_buffer *bbstate = NULL;
struct bounce_buffer bbstate_val;
int ret;
sdhc_log_command(cmd);
if (IS_ENABLED(CONFIG_SDHCI_BOUNCE_BUFFER) && data) {
if (data->flags & DATA_FLAG_READ) {
buf = data->dest;
bbflags = GEN_BB_WRITE;
} else {
buf = (void *)data->src;
bbflags = GEN_BB_READ;
}
len = data->blocks * data->blocksize;
/*
* on some platform(like rk3399 etc) need to worry about
* cache coherency, so check the buffer, if not dma
* coherent, use bounce_buffer to do DMA management.
*/
if (!dma_coherent(buf)) {
bbstate = &bbstate_val;
if (bounce_buffer_start(bbstate, buf, len, bbflags)) {
sdhc_error(
"ERROR: Failed to get bounce buffer.\n");
return -1;
}
}
}
sdhci_led_control(ctrlr, 1);
ret = sdhci_send_command_bounced(ctrlr, cmd, data, bbstate);
sdhci_led_control(ctrlr, 0);
sdhc_log_ret(ret);
if (IS_ENABLED(CONFIG_SDHCI_BOUNCE_BUFFER) && bbstate)
bounce_buffer_stop(bbstate);
return ret;
}
static int sdhci_set_clock(struct sdhci_ctrlr *sdhci_ctrlr, unsigned int clock)
{
struct sd_mmc_ctrlr *ctrlr = &sdhci_ctrlr->sd_mmc_ctrlr;
unsigned int actual, div, clk, timeout;
/* Turn off the clock if requested */
actual = clock;
if (actual == 0) {
sdhci_writew(sdhci_ctrlr, 0, SDHCI_CLOCK_CONTROL);
sdhc_debug("SDHCI bus clock: Off\n");
return 0;
}
/* Compute the divisor for the new clock frequency */
actual = MIN(actual, ctrlr->f_max);
actual = MAX(actual, ctrlr->f_min);
if (ctrlr->clock_base <= actual)
div = 0;
else {
/* Version 3.00 divisors must be a multiple of 2. */
if ((ctrlr->version & SDHCI_SPEC_VER_MASK)
>= SDHCI_SPEC_300) {
div = MIN(((ctrlr->clock_base + actual - 1)
/ actual), SDHCI_MAX_DIV_SPEC_300);
actual = ctrlr->clock_base / div;
div += 1;
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((ctrlr->clock_base / div) <= actual)
break;
}
actual = ctrlr->clock_base / div;
}
div >>= 1;
}
/* Set the new clock frequency */
if (actual != ctrlr->bus_hz) {
/* Turn off the clock */
sdhci_writew(sdhci_ctrlr, 0, SDHCI_CLOCK_CONTROL);
/* Set the new clock frequency */
clk = (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(sdhci_ctrlr, clk, SDHCI_CLOCK_CONTROL);
/* Display the requested clock frequency */
sdhc_debug("SDHCI bus clock: %d.%03d MHz\n",
actual / 1000000,
(actual / 1000) % 1000);
/* Wait max 20 ms */
timeout = 20;
while (!((clk = sdhci_readw(sdhci_ctrlr, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
sdhc_error(
"Internal clock never stabilised.\n");
return -1;
}
timeout--;
udelay(1000);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(sdhci_ctrlr, clk, SDHCI_CLOCK_CONTROL);
ctrlr->bus_hz = actual;
}
return 0;
}
/* Find leftmost set bit in a 32 bit integer */
static int fls(u32 x)
{
int r = 32;
if (!x)
return 0;
if (!(x & 0xffff0000u)) {
x <<= 16;
r -= 16;
}
if (!(x & 0xff000000u)) {
x <<= 8;
r -= 8;
}
if (!(x & 0xf0000000u)) {
x <<= 4;
r -= 4;
}
if (!(x & 0xc0000000u)) {
x <<= 2;
r -= 2;
}
if (!(x & 0x80000000u)) {
x <<= 1;
r -= 1;
}
return r;
}
static void sdhci_set_power(struct sdhci_ctrlr *sdhci_ctrlr,
unsigned short power)
{
struct sd_mmc_ctrlr *ctrlr = &sdhci_ctrlr->sd_mmc_ctrlr;
u8 pwr = 0;
u8 pwr_ctrl;
const char *voltage;
if (power != (unsigned short)-1) {
switch (1 << power) {
case MMC_VDD_165_195:
voltage = "1.8";
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
voltage = "3.0";
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
voltage = "3.3";
pwr = SDHCI_POWER_330;
break;
}
}
/* Determine the power state */
pwr_ctrl = sdhci_readb(sdhci_ctrlr, SDHCI_POWER_CONTROL);
if (pwr == 0) {
if (pwr_ctrl & SDHCI_POWER_ON)
sdhc_debug("SDHCI voltage: Off\n");
sdhci_writeb(sdhci_ctrlr, 0, SDHCI_POWER_CONTROL);
return;
}
/* Determine if the power has changed */
if (pwr_ctrl != (pwr | SDHCI_POWER_ON)) {
sdhc_debug("SDHCI voltage: %s Volts\n", voltage);
/* Select the voltage */
if (ctrlr->caps & DRVR_CAP_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(sdhci_ctrlr, pwr, SDHCI_POWER_CONTROL);
/* Apply power to the SD/MMC device */
pwr |= SDHCI_POWER_ON;
sdhci_writeb(sdhci_ctrlr, pwr, SDHCI_POWER_CONTROL);
}
}
const u16 speed_driver_voltage[] = {
0, /* 0: BUS_TIMING_LEGACY */
0, /* 1: BUS_TIMING_MMC_HS */
0, /* 2: BUS_TIMING_SD_HS */
SDHCI_CTRL_UHS_SDR12 | SDHCI_CTRL_VDD_180, /* 3: BUS_TIMING_UHS_SDR12 */
SDHCI_CTRL_UHS_SDR25 | SDHCI_CTRL_VDD_180, /* 4: BUS_TIMING_UHS_SDR25 */
SDHCI_CTRL_UHS_SDR50 | SDHCI_CTRL_VDD_180, /* 5: BUS_TIMING_UHS_SDR50 */
/* 6: BUS_TIMING_UHS_SDR104 */
SDHCI_CTRL_UHS_SDR104 | SDHCI_CTRL_DRV_TYPE_A | SDHCI_CTRL_VDD_180,
SDHCI_CTRL_UHS_DDR50 | SDHCI_CTRL_VDD_180, /* 7: BUS_TIMING_UHS_DDR50 */
SDHCI_CTRL_UHS_DDR50 | SDHCI_CTRL_VDD_180, /* 8: BUS_TIMING_MMC_DDR52 */
/* 9: BUS_TIMING_MMC_HS200 */
SDHCI_CTRL_UHS_SDR104 | SDHCI_CTRL_DRV_TYPE_A | SDHCI_CTRL_VDD_180,
/* 10: BUS_TIMING_MMC_HS400 */
SDHCI_CTRL_HS400 | SDHCI_CTRL_DRV_TYPE_A | SDHCI_CTRL_VDD_180,
/* 11: BUS_TIMING_MMC_HS400ES */
SDHCI_CTRL_HS400 | SDHCI_CTRL_DRV_TYPE_A | SDHCI_CTRL_VDD_180
};
static void sdhci_set_uhs_signaling(struct sdhci_ctrlr *sdhci_ctrlr,
uint32_t timing)
{
u16 ctrl_2;
/* Select bus speed mode, driver and VDD 1.8 volt support */
ctrl_2 = sdhci_readw(sdhci_ctrlr, SDHCI_HOST_CONTROL2);
ctrl_2 &= ~(SDHCI_CTRL_UHS_MASK | SDHCI_CTRL_DRV_TYPE_MASK
| SDHCI_CTRL_VDD_180);
if (timing < ARRAY_SIZE(speed_driver_voltage))
ctrl_2 |= speed_driver_voltage[timing];
sdhci_writew(sdhci_ctrlr, ctrl_2, SDHCI_HOST_CONTROL2);
}
static void sdhci_set_ios(struct sd_mmc_ctrlr *ctrlr)
{
struct sdhci_ctrlr *sdhci_ctrlr = (struct sdhci_ctrlr *)ctrlr;
u32 ctrl;
u32 previous_ctrl;
u32 bus_width;
int version;
/* Set the clock frequency */
if (ctrlr->bus_hz != ctrlr->request_hz)
sdhci_set_clock(sdhci_ctrlr, ctrlr->request_hz);
/* Switch to 1.8 volt for HS200 */
if (ctrlr->caps & DRVR_CAP_1V8_VDD)
if (ctrlr->bus_hz == CLOCK_200MHZ)
sdhci_set_power(sdhci_ctrlr, MMC_VDD_165_195_SHIFT);
/* Determine the new bus width */
bus_width = 1;
ctrl = sdhci_readb(sdhci_ctrlr, SDHCI_HOST_CONTROL);
previous_ctrl = ctrl;
ctrl &= ~SDHCI_CTRL_4BITBUS;
version = ctrlr->version & SDHCI_SPEC_VER_MASK;
if (version >= SDHCI_SPEC_300)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if ((ctrlr->bus_width == 8) && (version >= SDHCI_SPEC_300)) {
ctrl |= SDHCI_CTRL_8BITBUS;
bus_width = 8;
} else if (ctrlr->bus_width == 4) {
ctrl |= SDHCI_CTRL_4BITBUS;
bus_width = 4;
}
if (!(ctrlr->timing == BUS_TIMING_LEGACY) &&
!(ctrlr->caps & DRVR_CAP_NO_HISPD_BIT))
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
sdhci_set_uhs_signaling(sdhci_ctrlr, ctrlr->timing);
if (DMA_AVAILABLE) {
if (ctrlr->caps & DRVR_CAP_AUTO_CMD12) {
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if (ctrlr->caps & DRVR_CAP_DMA_64BIT)
ctrl |= SDHCI_CTRL_ADMA64;
else
ctrl |= SDHCI_CTRL_ADMA32;
}
}
/* Set the new bus width */
if (IS_ENABLED(CONFIG_SDHC_DEBUG)
&& ((ctrl ^ previous_ctrl) & (SDHCI_CTRL_4BITBUS
| ((version >= SDHCI_SPEC_300) ? SDHCI_CTRL_8BITBUS : 0))))
sdhc_debug("SDHCI bus width: %d bit%s\n", bus_width,
(bus_width != 1) ? "s" : "");
sdhci_writeb(sdhci_ctrlr, ctrl, SDHCI_HOST_CONTROL);
}
static void sdhci_tuning_start(struct sd_mmc_ctrlr *ctrlr, int retune)
{
uint16_t host_ctrl2;
struct sdhci_ctrlr *sdhci_ctrlr = (struct sdhci_ctrlr *)ctrlr;
/* Start the bus tuning */
host_ctrl2 = sdhci_readw(sdhci_ctrlr, SDHCI_HOST_CONTROL2);
host_ctrl2 &= ~SDHCI_CTRL_TUNED_CLK;
host_ctrl2 |= (retune ? SDHCI_CTRL_TUNED_CLK : 0)
| SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(sdhci_ctrlr, host_ctrl2, SDHCI_HOST_CONTROL2);
}
static int sdhci_is_tuning_complete(struct sd_mmc_ctrlr *ctrlr, int *successful)
{
uint16_t host_ctrl2;
struct sdhci_ctrlr *sdhci_ctrlr = (struct sdhci_ctrlr *)ctrlr;
/* Determine if the bus tuning has completed */
host_ctrl2 = sdhci_readw(sdhci_ctrlr, SDHCI_HOST_CONTROL2);
*successful = ((host_ctrl2 & SDHCI_CTRL_TUNED_CLK) != 0);
return ((host_ctrl2 & SDHCI_CTRL_EXEC_TUNING) == 0);
}
/* Prepare SDHCI controller to be initialized */
static int sdhci_pre_init(struct sdhci_ctrlr *sdhci_ctrlr)
{
struct sd_mmc_ctrlr *ctrlr = &sdhci_ctrlr->sd_mmc_ctrlr;
unsigned int caps, caps_1;
/* Get controller version and capabilities */
ctrlr->version = sdhci_readw(sdhci_ctrlr, SDHCI_HOST_VERSION) & 0xff;
caps = sdhci_readl(sdhci_ctrlr, SDHCI_CAPABILITIES);
caps_1 = sdhci_readl(sdhci_ctrlr, SDHCI_CAPABILITIES_1);
/* Determine the supported voltages */
if (caps & SDHCI_CAN_VDD_330)
ctrlr->voltages |= MMC_VDD_32_33 | MMC_VDD_33_34;
if (caps & SDHCI_CAN_VDD_300)
ctrlr->voltages |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & SDHCI_CAN_VDD_180)
ctrlr->voltages |= MMC_VDD_165_195;
/* Get the controller's base clock frequency */
if ((ctrlr->version & SDHCI_SPEC_VER_MASK) >= SDHCI_SPEC_300)
ctrlr->clock_base = (caps & SDHCI_CLOCK_V3_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
else
ctrlr->clock_base = (caps & SDHCI_CLOCK_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
ctrlr->clock_base *= 1000000;
ctrlr->f_max = ctrlr->clock_base;
/* Determine the controller's clock frequency range */
ctrlr->f_min = 0;
if ((ctrlr->version & SDHCI_SPEC_VER_MASK) >= SDHCI_SPEC_300)
ctrlr->f_min =
ctrlr->clock_base / SDHCI_MAX_DIV_SPEC_300;
else
ctrlr->f_min =
ctrlr->clock_base / SDHCI_MAX_DIV_SPEC_200;
/* Determine the controller's modes of operation */
ctrlr->caps |= DRVR_CAP_HS52 | DRVR_CAP_HS;
if (ctrlr->clock_base >= CLOCK_200MHZ) {
ctrlr->caps |= DRVR_CAP_HS200 | DRVR_CAP_HS200_TUNING;
if (caps_1 & SDHCI_SUPPORT_HS400)
ctrlr->caps |= DRVR_CAP_HS400
| DRVR_CAP_ENHANCED_STROBE;
}
/* Determine the bus widths the controller supports */
ctrlr->caps |= DRVR_CAP_4BIT;
if (caps & SDHCI_CAN_DO_8BIT)
ctrlr->caps |= DRVR_CAP_8BIT;
/* Determine the controller's DMA support */
if (caps & SDHCI_CAN_DO_ADMA2)
ctrlr->caps |= DRVR_CAP_AUTO_CMD12;
if (DMA_AVAILABLE && (caps & SDHCI_CAN_64BIT))
ctrlr->caps |= DRVR_CAP_DMA_64BIT;
/* Specify the modes that the driver stack supports */
ctrlr->caps |= DRVR_CAP_HC;
/* Let the SOC adjust the configuration to handle controller quirks */
soc_sd_mmc_controller_quirks(&sdhci_ctrlr->sd_mmc_ctrlr);
if (ctrlr->clock_base == 0) {
sdhc_error("Hardware doesn't specify base clock frequency\n");
return -1;
}
if (!ctrlr->f_max)
ctrlr->f_max = ctrlr->clock_base;
/* Display the results */
sdhc_trace("0x%08x: ctrlr->caps\n", ctrlr->caps);
sdhc_trace("%d.%03d MHz: ctrlr->clock_base\n",
ctrlr->clock_base / 1000000,
(ctrlr->clock_base / 1000) % 1000);
sdhc_trace("%d.%03d MHz: ctrlr->f_max\n",
ctrlr->f_max / 1000000,
(ctrlr->f_max / 1000) % 1000);
sdhc_trace("%d.%03d MHz: ctrlr->f_min\n",
ctrlr->f_min / 1000000,
(ctrlr->f_min / 1000) % 1000);
sdhc_trace("0x%08x: ctrlr->voltages\n", ctrlr->voltages);
sdhci_reset(sdhci_ctrlr, SDHCI_RESET_ALL);
return 0;
}
__attribute__((weak)) void soc_sd_mmc_controller_quirks(struct sd_mmc_ctrlr
*ctrlr)
{
}
static int sdhci_init(struct sdhci_ctrlr *sdhci_ctrlr)
{
struct sd_mmc_ctrlr *ctrlr = &sdhci_ctrlr->sd_mmc_ctrlr;
int rv;
/* Only initialize the controller upon reset or card insertion */
if (ctrlr->initialized)
return 0;
sdhc_debug("SDHCI Controller Base Address: 0x%p\n",
sdhci_ctrlr->ioaddr);
rv = sdhci_pre_init(sdhci_ctrlr);
if (rv)
return rv; /* The error has been already reported */
sdhci_set_power(sdhci_ctrlr, fls(ctrlr->voltages) - 1);
if (ctrlr->caps & DRVR_CAP_NO_CD) {
unsigned int status;
sdhci_writel(sdhci_ctrlr, SDHCI_CTRL_CD_TEST_INS
| SDHCI_CTRL_CD_TEST, SDHCI_HOST_CONTROL);
status = sdhci_readl(sdhci_ctrlr, SDHCI_PRESENT_STATE);
while ((!(status & SDHCI_CARD_PRESENT)) ||
(!(status & SDHCI_CARD_STATE_STABLE)) ||
(!(status & SDHCI_CARD_DETECT_PIN_LEVEL)))
status = sdhci_readl(sdhci_ctrlr, SDHCI_PRESENT_STATE);
}
/* Enable only interrupts served by the SD controller */
sdhci_writel(sdhci_ctrlr, SDHCI_INT_DATA_MASK | SDHCI_INT_CMD_MASK,
SDHCI_INT_ENABLE);
/* Mask all sdhci interrupt sources */
sdhci_writel(sdhci_ctrlr, 0x0, SDHCI_SIGNAL_ENABLE);
/* Set timeout to maximum, shouldn't happen if everything's right. */
sdhci_writeb(sdhci_ctrlr, 0xe, SDHCI_TIMEOUT_CONTROL);
mdelay(10);
ctrlr->initialized = 1;
return 0;
}
static int sdhci_update(struct sdhci_ctrlr *sdhci_ctrlr)
{
struct sd_mmc_ctrlr *ctrlr = &sdhci_ctrlr->sd_mmc_ctrlr;
if (ctrlr->caps & DRVR_CAP_REMOVABLE) {
int present = (sdhci_readl(sdhci_ctrlr, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT) != 0;
if (!present) {
/* A card was present indicate the controller needs
* initialization on the next call.
*/
ctrlr->initialized = 0;
return 0;
}
}
/* A card is present, get it ready. */
if (sdhci_init(sdhci_ctrlr))
return -1;
return 0;
}
void sdhci_update_pointers(struct sdhci_ctrlr *sdhci_ctrlr)
{
struct sd_mmc_ctrlr *ctrlr = &sdhci_ctrlr->sd_mmc_ctrlr;
/* Update the routine pointers */
ctrlr->send_cmd = &sdhci_send_command;
ctrlr->set_ios = &sdhci_set_ios;
ctrlr->tuning_start = &sdhci_tuning_start;
ctrlr->is_tuning_complete = &sdhci_is_tuning_complete;
}
int add_sdhci(struct sdhci_ctrlr *sdhci_ctrlr)
{
struct sd_mmc_ctrlr *ctrlr = &sdhci_ctrlr->sd_mmc_ctrlr;
sdhci_update_pointers(sdhci_ctrlr);
/* TODO(vbendeb): check if SDHCI spec allows to retrieve this value. */
ctrlr->b_max = 65535;
/* Initialize the SDHC controller */
return sdhci_update(sdhci_ctrlr);
}

View File

@ -0,0 +1,281 @@
/*
* Copyright 2011, Marvell Semiconductor Inc.
* Lei Wen <leiwen@marvell.com>
*
* Copyright 2017 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __COMMONLIB_STORAGE_SDHCI_H__
#define __COMMONLIB_STORAGE_SDHCI_H__
#include <arch/io.h>
#include <commonlib/sd_mmc_ctrlr.h>
/*
* Controller registers
*/
#define SDHCI_DMA_ADDRESS 0x00
#define SDHCI_BLOCK_SIZE 0x04
#define SDHCI_MAKE_BLKSZ(dma, blksz) (((dma & 0x7) << 12) | (blksz & 0xFFF))
#define SDHCI_BLOCK_COUNT 0x06
#define SDHCI_ARGUMENT 0x08
#define SDHCI_TRANSFER_MODE 0x0C
#define SDHCI_TRNS_DMA 0x01
#define SDHCI_TRNS_BLK_CNT_EN 0x02
#define SDHCI_TRNS_ACMD12 0x04
#define SDHCI_TRNS_READ 0x10
#define SDHCI_TRNS_MULTI 0x20
#define SDHCI_COMMAND 0x0E
#define SDHCI_CMD_RESP_MASK 0x03
#define SDHCI_CMD_CRC 0x08
#define SDHCI_CMD_INDEX 0x10
#define SDHCI_CMD_DATA 0x20
#define SDHCI_CMD_ABORTCMD 0xC0
#define SDHCI_CMD_RESP_NONE 0x00
#define SDHCI_CMD_RESP_LONG 0x01
#define SDHCI_CMD_RESP_SHORT 0x02
#define SDHCI_CMD_RESP_SHORT_BUSY 0x03
#define SDHCI_MAKE_CMD(c, f) (((c & 0xff) << 8) | (f & 0xff))
#define SDHCI_GET_CMD(c) ((c>>8) & 0x3f)
#define SDHCI_RESPONSE 0x10
#define SDHCI_BUFFER 0x20
#define SDHCI_PRESENT_STATE 0x24
#define SDHCI_CMD_INHIBIT 0x00000001
#define SDHCI_DATA_INHIBIT 0x00000002
#define SDHCI_DOING_WRITE 0x00000100
#define SDHCI_DOING_READ 0x00000200
#define SDHCI_SPACE_AVAILABLE 0x00000400
#define SDHCI_DATA_AVAILABLE 0x00000800
#define SDHCI_CARD_PRESENT 0x00010000
#define SDHCI_CARD_STATE_STABLE 0x00020000
#define SDHCI_CARD_DETECT_PIN_LEVEL 0x00040000
#define SDHCI_WRITE_PROTECT 0x00080000
#define SDHCI_HOST_CONTROL 0x28
#define SDHCI_CTRL_LED 0x01
#define SDHCI_CTRL_4BITBUS 0x02
#define SDHCI_CTRL_HISPD 0x04
#define SDHCI_CTRL_DMA_MASK 0x18
#define SDHCI_CTRL_SDMA 0x00
#define SDHCI_CTRL_ADMA1 0x08
#define SDHCI_CTRL_ADMA32 0x10
#define SDHCI_CTRL_ADMA64 0x18
#define SDHCI_CTRL_8BITBUS 0x20
#define SDHCI_CTRL_CD_TEST_INS 0x40
#define SDHCI_CTRL_CD_TEST 0x80
#define SDHCI_POWER_CONTROL 0x29
#define SDHCI_POWER_ON 0x01
#define SDHCI_POWER_180 0x0A
#define SDHCI_POWER_300 0x0C
#define SDHCI_POWER_330 0x0E
#define SDHCI_BLOCK_GAP_CONTROL 0x2A
#define SDHCI_WAKE_UP_CONTROL 0x2B
#define SDHCI_WAKE_ON_INT 0x01
#define SDHCI_WAKE_ON_INSERT 0x02
#define SDHCI_WAKE_ON_REMOVE 0x04
#define SDHCI_CLOCK_CONTROL 0x2C
#define SDHCI_DIVIDER_SHIFT 8
#define SDHCI_DIVIDER_HI_SHIFT 6
#define SDHCI_DIV_MASK 0xFF
#define SDHCI_DIV_MASK_LEN 8
#define SDHCI_DIV_HI_MASK 0x300
#define SDHCI_CLOCK_CARD_EN 0x0004
#define SDHCI_CLOCK_INT_STABLE 0x0002
#define SDHCI_CLOCK_INT_EN 0x0001
#define SDHCI_TIMEOUT_CONTROL 0x2E
#define SDHCI_SOFTWARE_RESET 0x2F
#define SDHCI_RESET_ALL 0x01
#define SDHCI_RESET_CMD 0x02
#define SDHCI_RESET_DATA 0x04
#define SDHCI_INT_STATUS 0x30
#define SDHCI_INT_ENABLE 0x34
#define SDHCI_SIGNAL_ENABLE 0x38
#define SDHCI_INT_RESPONSE 0x00000001
#define SDHCI_INT_DATA_END 0x00000002
#define SDHCI_INT_DMA_END 0x00000008
#define SDHCI_INT_SPACE_AVAIL 0x00000010
#define SDHCI_INT_DATA_AVAIL 0x00000020
#define SDHCI_INT_CARD_INSERT 0x00000040
#define SDHCI_INT_CARD_REMOVE 0x00000080
#define SDHCI_INT_CARD_INT 0x00000100
#define SDHCI_INT_ERROR 0x00008000
#define SDHCI_INT_TIMEOUT 0x00010000
#define SDHCI_INT_CRC 0x00020000
#define SDHCI_INT_END_BIT 0x00040000
#define SDHCI_INT_INDEX 0x00080000
#define SDHCI_INT_DATA_TIMEOUT 0x00100000
#define SDHCI_INT_DATA_CRC 0x00200000
#define SDHCI_INT_DATA_END_BIT 0x00400000
#define SDHCI_INT_BUS_POWER 0x00800000
#define SDHCI_INT_ACMD12ERR 0x01000000
#define SDHCI_INT_ADMA_ERROR 0x02000000
#define SDHCI_INT_NORMAL_MASK 0x00007FFF
#define SDHCI_INT_ERROR_MASK 0xFFFF8000
#define SDHCI_INT_CMD_MASK (SDHCI_INT_RESPONSE | SDHCI_INT_TIMEOUT \
| SDHCI_INT_CRC | SDHCI_INT_END_BIT \
| SDHCI_INT_INDEX)
#define SDHCI_INT_DATA_MASK (SDHCI_INT_DATA_END | SDHCI_INT_DMA_END \
| SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL \
| SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_DATA_CRC \
| SDHCI_INT_DATA_END_BIT | SDHCI_INT_ADMA_ERROR)
#define SDHCI_INT_ALL_MASK ((unsigned int)-1)
#define SDHCI_ACMD12_ERR 0x3C
#define SDHCI_HOST_CONTROL2 0x3E
#define SDHCI_CTRL_UHS_MASK 0x0007
#define SDHCI_CTRL_UHS_SDR12 0x0000
#define SDHCI_CTRL_UHS_SDR25 0x0001
#define SDHCI_CTRL_UHS_SDR50 0x0002
#define SDHCI_CTRL_UHS_SDR104 0x0003
#define SDHCI_CTRL_UHS_DDR50 0x0004
#define SDHCI_CTRL_HS400 0x0005 /* reserved value in SDIO spec */
#define SDHCI_CTRL_VDD_180 0x0008
#define SDHCI_CTRL_DRV_TYPE_MASK 0x0030
#define SDHCI_CTRL_DRV_TYPE_B 0x0000
#define SDHCI_CTRL_DRV_TYPE_A 0x0010
#define SDHCI_CTRL_DRV_TYPE_C 0x0020
#define SDHCI_CTRL_DRV_TYPE_D 0x0030
#define SDHCI_CTRL_EXEC_TUNING 0x0040
#define SDHCI_CTRL_TUNED_CLK 0x0080
#define SDHCI_CTRL_PRESET_VAL_ENABLE 0x8000
#define SDHCI_CAPABILITIES 0x40
#define SDHCI_TIMEOUT_CLK_MASK 0x0000003F
#define SDHCI_TIMEOUT_CLK_SHIFT 0
#define SDHCI_TIMEOUT_CLK_UNIT 0x00000080
#define SDHCI_CLOCK_BASE_MASK 0x00003F00
#define SDHCI_CLOCK_V3_BASE_MASK 0x0000FF00
#define SDHCI_CLOCK_BASE_SHIFT 8
#define SDHCI_MAX_BLOCK_MASK 0x00030000
#define SDHCI_MAX_BLOCK_SHIFT 16
#define SDHCI_CAN_DO_8BIT 0x00040000
#define SDHCI_CAN_DO_ADMA2 0x00080000
#define SDHCI_CAN_DO_ADMA1 0x00100000
#define SDHCI_CAN_DO_HISPD 0x00200000
#define SDHCI_CAN_DO_SDMA 0x00400000
#define SDHCI_CAN_VDD_330 0x01000000
#define SDHCI_CAN_VDD_300 0x02000000
#define SDHCI_CAN_VDD_180 0x04000000
#define SDHCI_CAN_64BIT 0x10000000
#define SDHCI_CAPABILITIES_1 0x44
#define SDHCI_SUPPORT_HS400 0x80000000
#define SDHCI_MAX_CURRENT 0x48
/* 4C-4F reserved for more max current */
#define SDHCI_SET_ACMD12_ERROR 0x50
#define SDHCI_SET_INT_ERROR 0x52
#define SDHCI_ADMA_ERROR 0x54
/* 55-57 reserved */
#define SDHCI_ADMA_ADDRESS 0x58
/* 60-FB reserved */
#define SDHCI_SLOT_INT_STATUS 0xFC
#define SDHCI_HOST_VERSION 0xFE
#define SDHCI_VENDOR_VER_MASK 0xFF00
#define SDHCI_VENDOR_VER_SHIFT 8
#define SDHCI_SPEC_VER_MASK 0x00FF
#define SDHCI_SPEC_VER_SHIFT 0
#define SDHCI_SPEC_100 0
#define SDHCI_SPEC_200 1
#define SDHCI_SPEC_300 2
/*
* End of controller registers.
*/
#define SDHCI_MAX_DIV_SPEC_200 256
#define SDHCI_MAX_DIV_SPEC_300 2046
/*
* Controller SDMA buffer boundary. Valid values from 4K to 512K in powers of 2.
*/
#define SDHCI_DEFAULT_BOUNDARY_SIZE (512 * 1024)
#define SDHCI_DEFAULT_BOUNDARY_ARG (7)
#define SDHCI_MAX_PER_DESCRIPTOR 0x10000
/* ADMA descriptor attributes */
#define SDHCI_ADMA_VALID (1 << 0)
#define SDHCI_ADMA_END (1 << 1)
#define SDHCI_ADMA_INT (1 << 2)
#define SDHCI_ACT_NOP (0 << 4)
#define SDHCI_ACT_TRAN (2 << 4)
#define SDHCI_ACT_LINK (3 << 4)
static inline void sdhci_writel(struct sdhci_ctrlr *sdhci_ctrlr, u32 val,
int reg)
{
write32(sdhci_ctrlr->ioaddr + reg, val);
}
static inline void sdhci_writew(struct sdhci_ctrlr *sdhci_ctrlr, u16 val,
int reg)
{
write16(sdhci_ctrlr->ioaddr + reg, val);
}
static inline void sdhci_writeb(struct sdhci_ctrlr *sdhci_ctrlr, u8 val,
int reg)
{
write8(sdhci_ctrlr->ioaddr + reg, val);
}
static inline u32 sdhci_readl(struct sdhci_ctrlr *sdhci_ctrlr, int reg)
{
return read32(sdhci_ctrlr->ioaddr + reg);
}
static inline u16 sdhci_readw(struct sdhci_ctrlr *sdhci_ctrlr, int reg)
{
return read16(sdhci_ctrlr->ioaddr + reg);
}
static inline u8 sdhci_readb(struct sdhci_ctrlr *sdhci_ctrlr, int reg)
{
return read8(sdhci_ctrlr->ioaddr + reg);
}
void sdhci_reset(struct sdhci_ctrlr *sdhci_ctrlr, u8 mask);
void sdhci_cmd_done(struct sdhci_ctrlr *sdhci_ctrlr, struct mmc_command *cmd);
int sdhci_setup_adma(struct sdhci_ctrlr *sdhci_ctrlr, struct mmc_data *data);
int sdhci_complete_adma(struct sdhci_ctrlr *sdhci_ctrlr,
struct mmc_command *cmd);
#endif /* __COMMONLIB_STORAGE_SDHCI_H__ */

View File

@ -0,0 +1,194 @@
/*
* Copyright 2011, Marvell Semiconductor Inc.
* Lei Wen <leiwen@marvell.com>
*
* Copyright 2017 Intel Corporation
*
* Secure Digital (SD) Host Controller interface DMA support code
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <commonlib/sdhci.h>
#include <commonlib/storage.h>
#include <delay.h>
#include <endian.h>
#include "sdhci.h"
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
#include <timer.h>
static void sdhci_alloc_adma_descs(struct sdhci_ctrlr *sdhci_ctrlr,
u32 need_descriptors)
{
if (sdhci_ctrlr->adma_descs) {
if (sdhci_ctrlr->adma_desc_count < need_descriptors) {
/* Previously allocated array is too small */
free(sdhci_ctrlr->adma_descs);
sdhci_ctrlr->adma_desc_count = 0;
sdhci_ctrlr->adma_descs = NULL;
}
}
/* use dma_malloc() to make sure we get the coherent/uncached memory */
if (!sdhci_ctrlr->adma_descs) {
sdhci_ctrlr->adma_descs = malloc(need_descriptors
* sizeof(*sdhci_ctrlr->adma_descs));
if (sdhci_ctrlr->adma_descs == NULL)
die("fail to malloc adma_descs\n");
sdhci_ctrlr->adma_desc_count = need_descriptors;
}
memset(sdhci_ctrlr->adma_descs, 0, sizeof(*sdhci_ctrlr->adma_descs)
* need_descriptors);
}
static void sdhci_alloc_adma64_descs(struct sdhci_ctrlr *sdhci_ctrlr,
u32 need_descriptors)
{
if (sdhci_ctrlr->adma64_descs) {
if (sdhci_ctrlr->adma_desc_count < need_descriptors) {
/* Previously allocated array is too small */
free(sdhci_ctrlr->adma64_descs);
sdhci_ctrlr->adma_desc_count = 0;
sdhci_ctrlr->adma64_descs = NULL;
}
}
/* use dma_malloc() to make sure we get the coherent/uncached memory */
if (!sdhci_ctrlr->adma64_descs) {
sdhci_ctrlr->adma64_descs = malloc(need_descriptors
* sizeof(*sdhci_ctrlr->adma64_descs));
if (sdhci_ctrlr->adma64_descs == NULL)
die("fail to malloc adma64_descs\n");
sdhci_ctrlr->adma_desc_count = need_descriptors;
}
memset(sdhci_ctrlr->adma64_descs, 0, sizeof(*sdhci_ctrlr->adma64_descs)
* need_descriptors);
}
int sdhci_setup_adma(struct sdhci_ctrlr *sdhci_ctrlr, struct mmc_data *data)
{
int i, togo, need_descriptors;
int dma64;
char *buffer_data;
u16 attributes;
togo = data->blocks * data->blocksize;
if (!togo) {
sdhc_error("%s: MmcData corrupted: %d blocks of %d bytes\n",
__func__, data->blocks, data->blocksize);
return -1;
}
need_descriptors = 1 + togo / SDHCI_MAX_PER_DESCRIPTOR;
dma64 = sdhci_ctrlr->sd_mmc_ctrlr.caps & DRVR_CAP_DMA_64BIT;
if (dma64)
sdhci_alloc_adma64_descs(sdhci_ctrlr, need_descriptors);
else
sdhci_alloc_adma_descs(sdhci_ctrlr, need_descriptors);
buffer_data = data->dest;
/* Now set up the descriptor chain. */
for (i = 0; togo; i++) {
unsigned int desc_length;
if (togo < SDHCI_MAX_PER_DESCRIPTOR)
desc_length = togo;
else
desc_length = SDHCI_MAX_PER_DESCRIPTOR;
togo -= desc_length;
attributes = SDHCI_ADMA_VALID | SDHCI_ACT_TRAN;
if (togo == 0)
attributes |= SDHCI_ADMA_END;
if (dma64) {
sdhci_ctrlr->adma64_descs[i].addr =
(uintptr_t)buffer_data;
sdhci_ctrlr->adma64_descs[i].addr_hi = 0;
sdhci_ctrlr->adma64_descs[i].length = desc_length;
sdhci_ctrlr->adma64_descs[i].attributes = attributes;
} else {
sdhci_ctrlr->adma_descs[i].addr =
(uintptr_t)buffer_data;
sdhci_ctrlr->adma_descs[i].length = desc_length;
sdhci_ctrlr->adma_descs[i].attributes = attributes;
}
buffer_data += desc_length;
}
if (dma64)
sdhci_writel(sdhci_ctrlr, (uintptr_t) sdhci_ctrlr->adma64_descs,
SDHCI_ADMA_ADDRESS);
else
sdhci_writel(sdhci_ctrlr, (uintptr_t) sdhci_ctrlr->adma_descs,
SDHCI_ADMA_ADDRESS);
return 0;
}
int sdhci_complete_adma(struct sdhci_ctrlr *sdhci_ctrlr,
struct mmc_command *cmd)
{
int retry;
u32 stat = 0, mask;
mask = SDHCI_INT_RESPONSE | SDHCI_INT_ERROR;
retry = 10000; /* Command should be done in way less than 10 ms. */
while (--retry) {
stat = sdhci_readl(sdhci_ctrlr, SDHCI_INT_STATUS);
if (stat & mask)
break;
udelay(1);
}
sdhci_writel(sdhci_ctrlr, SDHCI_INT_RESPONSE, SDHCI_INT_STATUS);
if (retry && !(stat & SDHCI_INT_ERROR)) {
/* Command OK, let's wait for data transfer completion. */
mask = SDHCI_INT_DATA_END |
SDHCI_INT_ERROR | SDHCI_INT_ADMA_ERROR;
/* Transfer should take 10 seconds tops. */
retry = 10 * 1000 * 1000;
while (--retry) {
stat = sdhci_readl(sdhci_ctrlr, SDHCI_INT_STATUS);
if (stat & mask)
break;
udelay(1);
}
sdhci_writel(sdhci_ctrlr, stat, SDHCI_INT_STATUS);
if (retry && !(stat & SDHCI_INT_ERROR)) {
sdhci_cmd_done(sdhci_ctrlr, cmd);
return 0;
}
}
sdhc_error("%s: transfer error, stat %#x, adma error %#x, retry %d\n",
__func__, stat, sdhci_readl(sdhci_ctrlr, SDHCI_ADMA_ERROR),
retry);
sdhci_reset(sdhci_ctrlr, SDHCI_RESET_CMD);
sdhci_reset(sdhci_ctrlr, SDHCI_RESET_DATA);
if (stat & SDHCI_INT_TIMEOUT)
return CARD_TIMEOUT;
return CARD_COMM_ERR;
}

View File

@ -0,0 +1,113 @@
/*
* Copyright 2011, Marvell Semiconductor Inc.
* Lei Wen <leiwen@marvell.com>
*
* Copyright 2017 Intel Corporation
*
* Secure Digital (SD) Host Controller interface specific code
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <commonlib/sd_mmc_ctrlr.h>
#include <commonlib/sdhci.h>
#include <commonlib/storage.h>
#include <console/console.h>
#include "sdhci.h"
#include "sd_mmc.h"
#include "storage.h"
static void sdhci_display_bus_width(struct sdhci_ctrlr *sdhci_ctrlr)
{
if (IS_ENABLED(CONFIG_SDHC_DEBUG)) {
int bits;
uint8_t host_ctrl;
uint16_t host2;
const char *rate;
uint16_t timing;
/* Display the bus width */
host_ctrl = sdhci_readb(sdhci_ctrlr, SDHCI_HOST_CONTROL);
host2 = sdhci_readw(sdhci_ctrlr, SDHCI_HOST_CONTROL2);
timing = host2 & SDHCI_CTRL_UHS_MASK;
bits = 1;
if (host_ctrl & SDHCI_CTRL_8BITBUS)
bits = 8;
else if (host_ctrl & SDHCI_CTRL_4BITBUS)
bits = 4;
rate = "SDR";
if ((timing == SDHCI_CTRL_UHS_DDR50)
|| (timing == SDHCI_CTRL_HS400))
rate = "DDR";
sdhc_debug("SDHCI bus width: %d bit%s %s\n", bits,
(bits != 1) ? "s" : "", rate);
}
}
static void sdhci_display_clock(struct sdhci_ctrlr *sdhci_ctrlr)
{
if (IS_ENABLED(CONFIG_SDHC_DEBUG)) {
uint16_t clk_ctrl;
uint32_t clock;
uint32_t divisor;
/* Display the clock */
clk_ctrl = sdhci_readw(sdhci_ctrlr, SDHCI_CLOCK_CONTROL);
sdhc_debug("SDHCI bus clock: ");
if (clk_ctrl & SDHCI_CLOCK_CARD_EN) {
divisor = (clk_ctrl >> SDHCI_DIVIDER_SHIFT)
& SDHCI_DIV_MASK;
divisor |= ((clk_ctrl >> SDHCI_DIVIDER_SHIFT)
<< SDHCI_DIV_MASK_LEN) & SDHCI_DIV_HI_MASK;
divisor <<= 1;
clock = sdhci_ctrlr->sd_mmc_ctrlr.clock_base;
if (divisor)
clock /= divisor;
sdhc_debug("%d.%03d MHz\n", clock / 1000000,
(clock / 1000) % 1000);
} else
sdhc_debug("Off\n");
}
}
static void sdhci_display_voltage(struct sdhci_ctrlr *sdhci_ctrlr)
{
if (IS_ENABLED(CONFIG_SDHC_DEBUG)) {
u8 pwr_ctrl;
const char *voltage;
const char *voltage_table[8] = {
"Unknown", /* 0 */
"Unknown", /* 1 */
"Unknown", /* 2 */
"Unknown", /* 3 */
"Unknown", /* 4 */
"1.8", /* 5 */
"3.0", /* 6 */
"3.3", /* 7 */
};
pwr_ctrl = sdhci_readb(sdhci_ctrlr, SDHCI_POWER_CONTROL);
if (pwr_ctrl & SDHCI_POWER_ON) {
voltage = voltage_table[(pwr_ctrl & SDHCI_POWER_330)
>> 1];
sdhc_debug("SDHCI voltage: %s Volts\n", voltage);
} else
sdhc_debug("SDHCI voltage: Off\n");
}
}
void sdhci_display_setup(struct sdhci_ctrlr *sdhci_ctrlr)
{
/* Display the controller setup */
sdhci_display_voltage(sdhci_ctrlr);
sdhci_display_clock(sdhci_ctrlr);
sdhci_display_bus_width(sdhci_ctrlr);
}

View File

@ -0,0 +1,358 @@
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Copyright 2013 Google Inc. All rights reserved.
* Copyright 2017 Intel Corporation
*
* MultiMediaCard (MMC), eMMC and Secure Digital (SD) common code which
* transitions the card from the standby state to the transfer state. The
* common code supports read operations, erase and write operations are in
* a separate modules. This code is controller independent.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <commonlib/storage.h>
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
#define DECIMAL_CAPACITY_MULTIPLIER 1000ULL
#define HEX_CAPACITY_MULTIPLIER 1024ULL
struct capacity {
const char * const units;
uint64_t bytes;
};
static void display_capacity(struct storage_media *media, int partition_number)
{
uint64_t capacity;
uint64_t decimal_divisor;
const char *decimal_units;
uint64_t hex_divisor;
const char *hex_units;
int index;
const char *name;
const char *separator;
const struct capacity decimal_list[] = {
{"TB", DECIMAL_CAPACITY_MULTIPLIER * DECIMAL_CAPACITY_MULTIPLIER
* DECIMAL_CAPACITY_MULTIPLIER
* DECIMAL_CAPACITY_MULTIPLIER},
{"GB", DECIMAL_CAPACITY_MULTIPLIER * DECIMAL_CAPACITY_MULTIPLIER
* DECIMAL_CAPACITY_MULTIPLIER},
{"MB", DECIMAL_CAPACITY_MULTIPLIER
* DECIMAL_CAPACITY_MULTIPLIER},
{"KB", DECIMAL_CAPACITY_MULTIPLIER},
{"B", 1}
};
const struct capacity hex_list[] = {
{"TiB", HEX_CAPACITY_MULTIPLIER * HEX_CAPACITY_MULTIPLIER
* HEX_CAPACITY_MULTIPLIER * HEX_CAPACITY_MULTIPLIER},
{"GiB", HEX_CAPACITY_MULTIPLIER * HEX_CAPACITY_MULTIPLIER
* HEX_CAPACITY_MULTIPLIER},
{"MiB", HEX_CAPACITY_MULTIPLIER * HEX_CAPACITY_MULTIPLIER},
{"KiB", HEX_CAPACITY_MULTIPLIER},
{"B", 1}
};
/* Get the partition name */
capacity = media->capacity[partition_number];
name = storage_partition_name(media, partition_number);
separator = "";
if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_MMC) && !IS_SD(media))
separator = ": ";
/* Determine the decimal divisor for the capacity */
for (index = 0; index < ARRAY_SIZE(decimal_list) - 1; index++) {
if (capacity >= decimal_list[index].bytes)
break;
}
decimal_divisor = decimal_list[index].bytes;
decimal_units = decimal_list[index].units;
/* Determine the hex divisor for the capacity */
for (index = 0; index < ARRAY_SIZE(hex_list) - 1; index++) {
if (capacity >= hex_list[index].bytes)
break;
}
hex_divisor = hex_list[index].bytes;
hex_units = hex_list[index].units;
/* Display the capacity */
sdhc_debug("%3lld.%03lld %sytes (%3lld.%03lld %sytes)%s%s\n",
capacity / decimal_divisor,
(capacity / (decimal_divisor / 1000)) % 1000,
decimal_units,
capacity / hex_divisor,
((capacity / (hex_divisor / 1024)) * 1000 / 1024) % 1000,
hex_units,
separator,
name);
}
void storage_display_setup(struct storage_media *media)
{
int partition_number;
/* Display the device info */
sd_mmc_debug("Man %06x Snr %u ",
media->cid[0] >> 24,
(((media->cid[2] & 0xffff) << 16) |
((media->cid[3] >> 16) & 0xffff)));
sd_mmc_debug("Product %c%c%c%c", media->cid[0] & 0xff,
(media->cid[1] >> 24), (media->cid[1] >> 16) & 0xff,
(media->cid[1] >> 8) & 0xff);
if (!IS_SD(media)) /* eMMC product string is longer */
sd_mmc_debug("%c%c", media->cid[1] & 0xff,
(media->cid[2] >> 24) & 0xff);
sd_mmc_debug(" Revision %d.%d\n", (media->cid[2] >> 20) & 0xf,
(media->cid[2] >> 16) & 0xf);
/* Display the erase block size */
sdhc_debug("Erase block size: 0x%08x\n", media->erase_blocks
* media->write_bl_len);
/* Display the partition capacities */
if (IS_ENABLED(CONFIG_SDHC_DEBUG)) {
for (partition_number = 0; partition_number
< ARRAY_SIZE(media->capacity); partition_number++) {
if (!media->capacity[partition_number])
continue;
display_capacity(media, partition_number);
}
}
}
int storage_startup(struct storage_media *media)
{
int err;
uint64_t capacity;
uint64_t cmult, csize;
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
/* Determine the storage capacity */
if (media->high_capacity) {
cmult = 8;
csize = sd_mmc_extract_uint32_bits(media->csd, 58, 22);
} else {
csize = sd_mmc_extract_uint32_bits(media->csd, 54, 12);
cmult = sd_mmc_extract_uint32_bits(media->csd, 78, 3);
}
capacity = (csize + 1) << (cmult + 2);
capacity *= media->read_bl_len;
media->capacity[0] = capacity;
/* Limit the block size to 512 bytes */
if (media->read_bl_len > 512)
media->read_bl_len = 512;
if (media->write_bl_len > 512)
media->write_bl_len = 512;
/* Get the erase size in blocks */
media->erase_blocks =
(sd_mmc_extract_uint32_bits(media->csd, 47, 3) + 1)
* (sd_mmc_extract_uint32_bits(media->csd, 42, 5) + 1);
/* Select the card, and put it into Transfer Mode */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = media->rca << 16;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
/* Increase the bus frequency */
if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_SD) && IS_SD(media))
err = sd_change_freq(media);
else if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_MMC)) {
err = mmc_change_freq(media);
if (!err)
mmc_update_capacity(media);
}
if (err)
return err;
/* Restrict card's capabilities by what the controller can do */
media->caps &= ctrlr->caps;
/* Increase the bus width if possible */
if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_SD) && IS_SD(media))
err = sd_set_bus_width(media);
else if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_MMC))
err = mmc_set_bus_width(media);
if (err)
return err;
/* Display the card setup */
storage_display_setup(media);
return 0;
}
int storage_setup_media(struct storage_media *media, struct sd_mmc_ctrlr *ctrlr)
{
int err;
memset(media, 0, sizeof(*media));
media->ctrlr = ctrlr;
err = sd_mmc_enter_standby(media);
if (err)
return err;
return storage_startup(media);
}
static int storage_read(struct storage_media *media, void *dest, uint32_t start,
uint32_t block_count)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
cmd.resp_type = CARD_RSP_R1;
cmd.flags = 0;
if (block_count > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (media->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * media->read_bl_len;
struct mmc_data data;
data.dest = dest;
data.blocks = block_count;
data.blocksize = media->read_bl_len;
data.flags = DATA_FLAG_READ;
if (ctrlr->send_cmd(ctrlr, &cmd, &data))
return 0;
if ((block_count > 1) && !(ctrlr->caps
& DRVR_CAP_AUTO_CMD12)) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = CARD_RSP_R1b;
cmd.flags = CMD_FLAG_IGNORE_INHIBIT;
if (ctrlr->send_cmd(ctrlr, &cmd, NULL)) {
sd_mmc_error("Failed to send stop cmd\n");
return 0;
}
/* Waiting for the ready status */
sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
}
return block_count;
}
/////////////////////////////////////////////////////////////////////////////
// BlockDevice utilities and callbacks
int storage_block_setup(struct storage_media *media, uint64_t start,
uint64_t count, int is_read)
{
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int partition_number;
if (count == 0)
return 0;
uint32_t bl_len = is_read ? media->read_bl_len :
media->write_bl_len;
/* Validate the block range */
partition_number = media->partition_config & EXT_CSD_PART_ACCESS_MASK;
if (((start * bl_len) > media->capacity[partition_number])
|| (((start + count) * bl_len) >
media->capacity[partition_number])) {
sd_mmc_error("Block range exceeds device capacity\n");
return 0;
}
/*
* CMD16 only applies to single data rate mode, and block
* length for double data rate is always 512 bytes.
*/
if ((ctrlr->timing == BUS_TIMING_UHS_DDR50) ||
(ctrlr->timing == BUS_TIMING_MMC_DDR52) ||
(ctrlr->timing == BUS_TIMING_MMC_HS400) ||
(ctrlr->timing == BUS_TIMING_MMC_HS400ES))
return 1;
if (sd_mmc_set_blocklen(ctrlr, bl_len))
return 0;
return 1;
}
uint64_t storage_block_read(struct storage_media *media, uint64_t start,
uint64_t count, void *buffer)
{
uint8_t *dest = (uint8_t *)buffer;
if (storage_block_setup(media, start, count, 1) == 0)
return 0;
uint64_t todo = count;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
do {
uint32_t cur = (uint32_t)MIN(todo, ctrlr->b_max);
if (storage_read(media, dest, start, cur) != cur)
return 0;
todo -= cur;
sd_mmc_trace("%s: Got %d blocks, more %d (total %d) to go.\n",
__func__, (int)cur, (int)todo, (int)count);
start += cur;
dest += cur * media->read_bl_len;
} while (todo > 0);
return count;
}
int storage_set_partition(struct storage_media *media,
unsigned int partition_number)
{
int err;
/* Select the partition */
err = -1;
if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_SD) && IS_SD(media))
err = sd_set_partition(media, partition_number);
else if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_MMC))
err = mmc_set_partition(media, partition_number);
if (err)
sd_mmc_error("Invalid partition number!\n");
return err;
}
const char *storage_partition_name(struct storage_media *media,
unsigned int partition_number)
{
const char *name;
/* Get the partition name */
name = NULL;
if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_SD) && IS_SD(media))
name = sd_partition_name(media, partition_number);
else if (IS_ENABLED(CONFIG_COMMONLIB_STORAGE_MMC))
name = mmc_partition_name(media, partition_number);
return name;
}
unsigned int storage_get_current_partition(struct storage_media *media)
{
return media->partition_config & EXT_CSD_PART_ACCESS_MASK;
}

View File

@ -0,0 +1,37 @@
/*
* Copyright 2017 Intel Corporation
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __COMMONLIB_STORAGE_STORAGE_H__
#define __COMMONLIB_STORAGE_STORAGE_H__
#include <stdint.h>
#include <commonlib/storage.h>
#define DMA_MINALIGN (64)
#define ROUND(a, b) (((a) + (b) - 1) & ~((b) - 1))
#define ALLOC_CACHE_ALIGN_BUFFER(type, name, size) \
char __##name[ROUND(size * sizeof(type), DMA_MINALIGN) + \
DMA_MINALIGN - 1]; \
type *name = (type *) ALIGN((uintptr_t)__##name, DMA_MINALIGN)
/* NOOPs mirroring ARM's cache API, since x86 devices usually cache snoop */
#define dcache_invalidate_by_mva(addr, len)
#define dcache_clean_invalidate_by_mva(addr, len)
/* Storage support routines */
int storage_startup(struct storage_media *media);
int storage_block_setup(struct storage_media *media, uint64_t start,
uint64_t count, int is_read);
#endif /* __COMMONLIB_STORAGE_STORAGE_H__ */

View File

@ -0,0 +1,95 @@
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Copyright 2013 Google Inc. All rights reserved.
* Copyright 2017 Intel Corporation
*
* MultiMediaCard (MMC), eMMC and Secure Digital (SD) erase support code.
* This code is controller independent.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include "sd_mmc.h"
#include "storage.h"
uint64_t storage_block_erase(struct storage_media *media, uint64_t start,
uint64_t count)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
if (storage_block_setup(media, start, count, 0) == 0)
return 0;
cmd.cmdidx = MMC_CMD_ERASE_GROUP_START;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = start;
cmd.flags = 0;
if (ctrlr->send_cmd(ctrlr, &cmd, NULL))
return 0;
cmd.cmdidx = MMC_CMD_ERASE_GROUP_END;
cmd.cmdarg = start + count - 1;
cmd.resp_type = CARD_RSP_R1;
cmd.flags = 0;
if (ctrlr->send_cmd(ctrlr, &cmd, NULL))
return 0;
cmd.cmdidx = MMC_CMD_ERASE;
cmd.cmdarg = MMC_TRIM_ARG; /* just unmap blocks */
cmd.resp_type = CARD_RSP_R1;
cmd.flags = 0;
if (ctrlr->send_cmd(ctrlr, &cmd, NULL))
return 0;
size_t erase_blocks;
/*
* Timeout for TRIM operation on one erase group is defined as:
* TRIM timeout = 300ms x TRIM_MULT
*
* This timeout is expressed in units of 100us to sd_mmc_send_status.
*
* Hence, timeout_per_erase_block = TRIM timeout * 1000us/100us;
*/
size_t timeout_per_erase_block = (media->trim_mult * 300) * 10;
int err = 0;
erase_blocks = ALIGN_UP(count, media->erase_blocks)
/ media->erase_blocks;
while (erase_blocks) {
/*
* To avoid overflow of timeout value, loop in calls to
* sd_mmc_send_status for erase_blocks number of times.
*/
err = sd_mmc_send_status(media, timeout_per_erase_block);
/* Send status successful, erase action complete. */
if (err == 0)
break;
erase_blocks--;
}
/* Total timeout done. Still status not successful. */
if (err) {
sd_mmc_error("TRIM operation not successful within timeout.\n");
return 0;
}
return count;
}

View File

@ -0,0 +1,154 @@
/*
* Copyright 2008, Freescale Semiconductor, Inc
* Andy Fleming
*
* Copyright 2013 Google Inc. All rights reserved.
* Copyright 2017 Intel Corporation
*
* MultiMediaCard (MMC), eMMC and Secure Digital (SD) write support code.
* This code is controller independent.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <console/console.h>
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
static uint32_t storage_write(struct storage_media *media, uint32_t start,
uint64_t block_count, const void *src)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
cmd.resp_type = CARD_RSP_R1;
cmd.flags = 0;
if (block_count > 1)
cmd.cmdidx = MMC_CMD_WRITE_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_WRITE_SINGLE_BLOCK;
if (media->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * media->write_bl_len;
struct mmc_data data;
data.src = src;
data.blocks = block_count;
data.blocksize = media->write_bl_len;
data.flags = DATA_FLAG_WRITE;
if (ctrlr->send_cmd(ctrlr, &cmd, &data)) {
sd_mmc_error("Write failed\n");
return 0;
}
/* SPI multiblock writes terminate using a special
* token, not a STOP_TRANSMISSION request.
*/
if ((block_count > 1) && !(ctrlr->caps
& DRVR_CAP_AUTO_CMD12)) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = CARD_RSP_R1b;
cmd.flags = CMD_FLAG_IGNORE_INHIBIT;
if (ctrlr->send_cmd(ctrlr, &cmd, NULL)) {
sd_mmc_error("Failed to send stop cmd\n");
return 0;
}
/* Waiting for the ready status */
sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
}
return block_count;
}
uint64_t storage_block_write(struct storage_media *media, uint64_t start,
uint64_t count, const void *buffer)
{
const uint8_t *src = (const uint8_t *)buffer;
if (storage_block_setup(media, start, count, 0) == 0)
return 0;
uint64_t todo = count;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
do {
uint64_t cur = MIN(todo, ctrlr->b_max);
if (storage_write(media, start, cur, src) != cur)
return 0;
todo -= cur;
start += cur;
src += cur * media->write_bl_len;
} while (todo > 0);
return count;
}
uint64_t storage_block_fill_write(struct storage_media *media, uint64_t start,
uint64_t count, uint32_t fill_pattern)
{
if (storage_block_setup(media, start, count, 0) == 0)
return 0;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
uint64_t block_size = media->write_bl_len;
/*
* We allocate max 4 MiB buffer on heap and set it to fill_pattern and
* perform mmc_write operation using this 4MiB buffer until requested
* size on disk is written by the fill byte.
*
* 4MiB was chosen after repeating several experiments with the max
* buffer size to be used. Using 1 lba i.e. block_size buffer results in
* very large fill_write time. On the other hand, choosing 4MiB, 8MiB or
* even 128 Mib resulted in similar write times. With 2MiB, the
* fill_write time increased by several seconds. So, 4MiB was chosen as
* the default max buffer size.
*/
uint64_t heap_lba = (4 * MiB) / block_size;
/*
* Actual allocated buffer size is minimum of three entities:
* 1) 4MiB equivalent in lba
* 2) count: Number of lbas to overwrite
* 3) ctrlr->b_max: Max lbas that the block device allows write
* operation on at a time.
*/
uint64_t buffer_lba = MIN(MIN(heap_lba, count), ctrlr->b_max);
uint64_t buffer_bytes = buffer_lba * block_size;
uint64_t buffer_words = buffer_bytes / sizeof(uint32_t);
uint32_t *buffer = malloc(buffer_bytes);
uint32_t *ptr = buffer;
for ( ; buffer_words ; buffer_words--)
*ptr++ = fill_pattern;
uint64_t todo = count;
int ret = 0;
do {
uint64_t curr_lba = MIN(buffer_lba, todo);
if (storage_write(media, start, curr_lba, buffer) != curr_lba)
goto cleanup;
todo -= curr_lba;
start += curr_lba;
} while (todo > 0);
ret = count;
cleanup:
free(buffer);
return ret;
}