coreboot: introduce notion of bootmem for memory map at boot
The write_coreboot_table() in coreboot_table.c was already using struct memrange for managing and building up the entries that eventually go into the lb_memory table. Abstract that concept out to a bootmem memory map. The bootmem concept can then be used as a basis for loading payloads, for example. Change-Id: I7edbbca6bbd0568f658fde39ca93b126cab88367 Signed-off-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/5302 Tested-by: build bot (Jenkins) Reviewed-by: Edward O'Callaghan <eocallaghan@alterapraxis.com> Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
This commit is contained in:
committed by
Aaron Durbin
parent
c7db28c580
commit
4904802efc
@ -29,7 +29,7 @@
|
||||
#include <stdlib.h>
|
||||
#include <cbfs.h>
|
||||
#include <cbmem.h>
|
||||
#include <memrange.h>
|
||||
#include <bootmem.h>
|
||||
#if CONFIG_CHROMEOS
|
||||
#if CONFIG_GENERATE_ACPI_TABLES
|
||||
#include <arch/acpi.h>
|
||||
@ -366,78 +366,11 @@ struct lb_memory *get_lb_mem(void)
|
||||
return mem_ranges;
|
||||
}
|
||||
|
||||
/* This structure keeps track of the coreboot table memory ranges. */
|
||||
static struct memranges lb_ranges;
|
||||
|
||||
static struct lb_memory *build_lb_mem(struct lb_header *head)
|
||||
{
|
||||
struct lb_memory *mem;
|
||||
|
||||
/* Record where the lb memory ranges will live */
|
||||
mem = lb_memory(head);
|
||||
mem_ranges = mem;
|
||||
|
||||
/* Fill the memory map out. The order of operations is important in
|
||||
* that each overlapping range will take over the next. Therefore,
|
||||
* add cacheable resources as RAM then add the reserved resources. */
|
||||
memranges_init(&lb_ranges, IORESOURCE_CACHEABLE,
|
||||
IORESOURCE_CACHEABLE, LB_MEM_RAM);
|
||||
memranges_add_resources(&lb_ranges, IORESOURCE_RESERVE,
|
||||
IORESOURCE_RESERVE, LB_MEM_RESERVED);
|
||||
|
||||
return mem;
|
||||
}
|
||||
|
||||
static void commit_lb_memory(struct lb_memory *mem)
|
||||
{
|
||||
struct range_entry *r;
|
||||
struct lb_memory_range *lb_r;
|
||||
int i;
|
||||
|
||||
lb_r = &mem->map[0];
|
||||
i = 0;
|
||||
|
||||
memranges_each_entry(r, &lb_ranges) {
|
||||
const char *entry_type;
|
||||
|
||||
switch (range_entry_tag(r)) {
|
||||
case LB_MEM_RAM: entry_type="RAM"; break;
|
||||
case LB_MEM_RESERVED: entry_type="RESERVED"; break;
|
||||
case LB_MEM_ACPI: entry_type="ACPI"; break;
|
||||
case LB_MEM_NVS: entry_type="NVS"; break;
|
||||
case LB_MEM_UNUSABLE: entry_type="UNUSABLE"; break;
|
||||
case LB_MEM_VENDOR_RSVD: entry_type="VENDOR RESERVED"; break;
|
||||
case LB_MEM_TABLE: entry_type="CONFIGURATION TABLES"; break;
|
||||
default: entry_type="UNKNOWN!"; break;
|
||||
}
|
||||
|
||||
printk(BIOS_DEBUG, "%2d. %016llx-%016llx: %s\n",
|
||||
i, range_entry_base(r), range_entry_end(r)-1,
|
||||
entry_type);
|
||||
|
||||
lb_r->start = pack_lb64(range_entry_base(r));
|
||||
lb_r->size = pack_lb64(range_entry_size(r));
|
||||
lb_r->type = range_entry_tag(r);
|
||||
|
||||
i++;
|
||||
lb_r++;
|
||||
mem->size += sizeof(struct lb_memory_range);
|
||||
}
|
||||
}
|
||||
|
||||
void lb_add_memory_range(struct lb_memory *mem,
|
||||
uint32_t type, uint64_t start, uint64_t size)
|
||||
{
|
||||
memranges_insert(&lb_ranges, start, size, type);
|
||||
}
|
||||
|
||||
|
||||
unsigned long write_coreboot_table(
|
||||
unsigned long low_table_start, unsigned long low_table_end,
|
||||
unsigned long rom_table_start, unsigned long rom_table_end)
|
||||
{
|
||||
struct lb_header *head;
|
||||
struct lb_memory *mem;
|
||||
|
||||
if (low_table_start || low_table_end) {
|
||||
printk(BIOS_DEBUG, "Writing table forward entry at 0x%08lx\n",
|
||||
@ -476,30 +409,29 @@ unsigned long write_coreboot_table(
|
||||
}
|
||||
#endif
|
||||
|
||||
/* The Linux kernel assumes this region is reserved */
|
||||
/* Record where RAM is located */
|
||||
mem = build_lb_mem(head);
|
||||
/* Initialize the memory map at boot time. */
|
||||
bootmem_init();
|
||||
|
||||
if (low_table_start || low_table_end) {
|
||||
uint64_t size = low_table_end - low_table_start;
|
||||
/* Record the mptable and the the lb_table.
|
||||
* (This will be adjusted later) */
|
||||
lb_add_memory_range(mem, LB_MEM_TABLE,
|
||||
low_table_start, low_table_end - low_table_start);
|
||||
bootmem_add_range(low_table_start, size, LB_MEM_TABLE);
|
||||
}
|
||||
|
||||
/* Record the pirq table, acpi tables, and maybe the mptable. However,
|
||||
* these only need to be added when the rom_table is sitting below
|
||||
* 1MiB. If it isn't that means high tables are being written.
|
||||
* The code below handles high tables correctly. */
|
||||
if (rom_table_end <= (1 << 20))
|
||||
lb_add_memory_range(mem, LB_MEM_TABLE,
|
||||
rom_table_start, rom_table_end - rom_table_start);
|
||||
|
||||
cbmem_add_lb_mem(mem);
|
||||
if (rom_table_end <= (1 << 20)) {
|
||||
uint64_t size = rom_table_end - rom_table_start;
|
||||
bootmem_add_range(rom_table_start, size, LB_MEM_TABLE);
|
||||
}
|
||||
|
||||
/* No other memory areas can be added after the memory table has been
|
||||
* committed as the entries won't show up in the serialize mem table. */
|
||||
commit_lb_memory(mem);
|
||||
mem_ranges = lb_memory(head);
|
||||
bootmem_write_memory_table(mem_ranges);
|
||||
|
||||
/* Record our motherboard */
|
||||
lb_mainboard(head);
|
||||
|
Reference in New Issue
Block a user