soc/intel/tigerlake: Reorganize memory initialization support

This change reorganizes memory initialization code for LPDDR4x on
TGL to allow sharing of code when adding support for other memory
types. In follow-up changes, support for DDR4 will be added.

1. It adds configuration for memory topology which is currently only
MEMORY_DOWN, however DDR4 requires more topologies to be
supported.
2. spd_info structure is organized to allow mixed topologies as well.
3. DQ/DQS maps are organized to reflect hardware configuration.

TEST=Verified that volteer still boots and memory initialization is
successful.

Signed-off-by: Furquan Shaikh <furquan@google.com>
Change-Id: Ib625f2ab30a6e1362a310d9abb3f2051f85c3013
Reviewed-on: https://review.coreboot.org/c/coreboot/+/39865
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: EricR Lai <ericr_lai@compal.corp-partner.google.com>
This commit is contained in:
Furquan Shaikh
2020-03-26 15:36:19 -07:00
parent 3c57819005
commit 5b1f335ef8
10 changed files with 473 additions and 244 deletions

View File

@@ -12,6 +12,10 @@
#include <spd_bin.h>
#include <string.h>
/* If memory is half-populated, then upper half of the channels need to be left empty. */
#define LPDDR4X_CHANNEL_UNPOPULATED(ch, half_populated) \
((half_populated) && ((ch) >= (LPDDR4X_CHANNELS / 2)))
enum dimm_enable_options {
ENABLE_BOTH_DIMMS = 0,
DISABLE_DIMM0 = 1,
@@ -19,145 +23,268 @@ enum dimm_enable_options {
DISABLE_BOTH_DIMMS = 3
};
#define MEM_INIT_CH_DQ_DQS_MAP(_mem_cfg, _b_cfg, _ch) \
do { \
memcpy(&_mem_cfg->DqMapCpu2DramCh ## _ch, \
&_b_cfg->dq_map[_ch], \
sizeof(_b_cfg->dq_map[_ch])); \
memcpy(&_mem_cfg->DqsMapCpu2DramCh ## _ch, \
&_b_cfg->dqs_map[_ch], \
sizeof(_b_cfg->dqs_map[_ch])); \
} while (0)
static uint8_t get_dimm_cfg(uintptr_t dimm0, uintptr_t dimm1)
{
if (dimm0 && dimm1)
return ENABLE_BOTH_DIMMS;
if (!dimm0 && !dimm1)
return DISABLE_BOTH_DIMMS;
if (!dimm1)
return DISABLE_DIMM1;
if (!dimm0)
die("Disabling of only dimm0 is not supported!\n");
return DISABLE_BOTH_DIMMS;
}
static void spd_read_from_cbfs(const struct spd_info *spd,
uintptr_t *spd_data_ptr, size_t *spd_data_len)
static void init_spd_upds(FSP_M_CONFIG *mem_cfg, int channel, uintptr_t spd_dimm0,
uintptr_t spd_dimm1)
{
mem_cfg->Reserved9[channel] = get_dimm_cfg(spd_dimm0, spd_dimm1);
switch (channel) {
case 0:
mem_cfg->MemorySpdPtr00 = spd_dimm0;
mem_cfg->MemorySpdPtr01 = spd_dimm1;
break;
case 1:
mem_cfg->MemorySpdPtr02 = spd_dimm0;
mem_cfg->MemorySpdPtr03 = spd_dimm1;
break;
case 2:
mem_cfg->MemorySpdPtr04 = spd_dimm0;
mem_cfg->MemorySpdPtr05 = spd_dimm1;
break;
case 3:
mem_cfg->MemorySpdPtr06 = spd_dimm0;
mem_cfg->MemorySpdPtr07 = spd_dimm1;
break;
case 4:
mem_cfg->MemorySpdPtr08 = spd_dimm0;
mem_cfg->MemorySpdPtr09 = spd_dimm1;
break;
case 5:
mem_cfg->MemorySpdPtr10 = spd_dimm0;
mem_cfg->MemorySpdPtr11 = spd_dimm1;
break;
case 6:
mem_cfg->MemorySpdPtr12 = spd_dimm0;
mem_cfg->MemorySpdPtr13 = spd_dimm1;
break;
case 7:
mem_cfg->MemorySpdPtr14 = spd_dimm0;
mem_cfg->MemorySpdPtr15 = spd_dimm1;
break;
default:
die("Invalid channel: %d\n", channel);
}
}
static inline void init_spd_upds_empty(FSP_M_CONFIG *mem_cfg, int channel)
{
init_spd_upds(mem_cfg, channel, 0, 0);
}
static inline void init_spd_upds_dimm0(FSP_M_CONFIG *mem_cfg, int channel, uintptr_t spd_dimm0)
{
init_spd_upds(mem_cfg, channel, spd_dimm0, 0);
}
static void init_dq_upds(FSP_M_CONFIG *mem_cfg, int byte_pair, const uint8_t *dq_byte0,
const uint8_t *dq_byte1)
{
uint8_t *dq_upd;
switch (byte_pair) {
case 0:
dq_upd = mem_cfg->DqMapCpu2DramCh0;
break;
case 1:
dq_upd = mem_cfg->DqMapCpu2DramCh1;
break;
case 2:
dq_upd = mem_cfg->DqMapCpu2DramCh2;
break;
case 3:
dq_upd = mem_cfg->DqMapCpu2DramCh3;
break;
case 4:
dq_upd = mem_cfg->DqMapCpu2DramCh4;
break;
case 5:
dq_upd = mem_cfg->DqMapCpu2DramCh5;
break;
case 6:
dq_upd = mem_cfg->DqMapCpu2DramCh6;
break;
case 7:
dq_upd = mem_cfg->DqMapCpu2DramCh7;
break;
default:
die("Invalid byte_pair: %d\n", byte_pair);
}
if (dq_byte0 && dq_byte1) {
memcpy(dq_upd, dq_byte0, BITS_PER_BYTE);
memcpy(dq_upd + BITS_PER_BYTE, dq_byte1, BITS_PER_BYTE);
} else {
memset(dq_upd, 0, BITS_PER_BYTE * 2);
}
}
static inline void init_dq_upds_empty(FSP_M_CONFIG *mem_cfg, int byte_pair)
{
init_dq_upds(mem_cfg, byte_pair, NULL, NULL);
}
static void init_dqs_upds(FSP_M_CONFIG *mem_cfg, int byte_pair, uint8_t dqs_byte0,
uint8_t dqs_byte1)
{
uint8_t *dqs_upd;
switch (byte_pair) {
case 0:
dqs_upd = mem_cfg->DqsMapCpu2DramCh0;
break;
case 1:
dqs_upd = mem_cfg->DqsMapCpu2DramCh1;
break;
case 2:
dqs_upd = mem_cfg->DqsMapCpu2DramCh2;
break;
case 3:
dqs_upd = mem_cfg->DqsMapCpu2DramCh3;
break;
case 4:
dqs_upd = mem_cfg->DqsMapCpu2DramCh4;
break;
case 5:
dqs_upd = mem_cfg->DqsMapCpu2DramCh5;
break;
case 6:
dqs_upd = mem_cfg->DqsMapCpu2DramCh6;
break;
case 7:
dqs_upd = mem_cfg->DqsMapCpu2DramCh7;
break;
default:
die("Invalid byte_pair: %d\n", byte_pair);
}
dqs_upd[0] = dqs_byte0;
dqs_upd[1] = dqs_byte1;
}
static inline void init_dqs_upds_empty(FSP_M_CONFIG *mem_cfg, int byte_pair)
{
init_dqs_upds(mem_cfg, byte_pair, 0, 0);
}
static void read_spd_from_cbfs(uint8_t index, uintptr_t *data, size_t *len)
{
struct region_device spd_rdev;
size_t spd_index = spd->spd_spec.spd_index;
printk(BIOS_DEBUG, "SPD INDEX = %lu\n", spd_index);
if (get_spd_cbfs_rdev(&spd_rdev, spd_index) < 0)
printk(BIOS_DEBUG, "SPD INDEX = %u\n", index);
if (get_spd_cbfs_rdev(&spd_rdev, index) < 0)
die("spd.bin not found or incorrect index\n");
*spd_data_len = region_device_sz(&spd_rdev);
/* Memory leak is ok since we have memory mapped boot media */
assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED));
*spd_data_ptr = (uintptr_t)rdev_mmap_full(&spd_rdev);
*len = region_device_sz(&spd_rdev);
*data = (uintptr_t)rdev_mmap_full(&spd_rdev);
}
static void get_spd_data(const struct spd_info *spd,
uintptr_t *spd_data_ptr, size_t *spd_data_len)
static void read_md_spd(const struct spd_info *info, uintptr_t *data, size_t *len)
{
if (spd->read_type == READ_SPD_MEMPTR) {
*spd_data_ptr = spd->spd_spec.spd_data_ptr_info.spd_data_ptr;
*spd_data_len = spd->spd_spec.spd_data_ptr_info.spd_data_len;
return;
if (info->md_spd_loc == SPD_MEMPTR) {
*data = info->data_ptr;
*len = info->data_len;
} else if (info->md_spd_loc == SPD_CBFS) {
read_spd_from_cbfs(info->cbfs_index, data, len);
} else {
die("Not a valid location(%d) for Memory-down SPD!\n", info->md_spd_loc);
}
if (spd->read_type == READ_SPD_CBFS) {
spd_read_from_cbfs(spd, spd_data_ptr, spd_data_len);
return;
}
die("no valid way to read SPD info");
print_spd_info((unsigned char *)data);
}
static void meminit_dq_dqs_map(FSP_M_CONFIG *mem_cfg,
const struct mb_lpddr4x_cfg *board_cfg,
bool half_populated)
{
MEM_INIT_CH_DQ_DQS_MAP(mem_cfg, board_cfg, 0);
MEM_INIT_CH_DQ_DQS_MAP(mem_cfg, board_cfg, 1);
MEM_INIT_CH_DQ_DQS_MAP(mem_cfg, board_cfg, 2);
MEM_INIT_CH_DQ_DQS_MAP(mem_cfg, board_cfg, 3);
if (half_populated)
return;
MEM_INIT_CH_DQ_DQS_MAP(mem_cfg, board_cfg, 4);
MEM_INIT_CH_DQ_DQS_MAP(mem_cfg, board_cfg, 5);
MEM_INIT_CH_DQ_DQS_MAP(mem_cfg, board_cfg, 6);
MEM_INIT_CH_DQ_DQS_MAP(mem_cfg, board_cfg, 7);
}
static void meminit_channels_dimm0(FSP_M_CONFIG *mem_cfg,
const struct mb_lpddr4x_cfg *board_cfg,
uintptr_t spd_data_ptr,
bool half_populated)
{
uint8_t dimm_cfg = DISABLE_DIMM1; /* Use only DIMM0 */
/* Channel 0 */
mem_cfg->Reserved9[0] = dimm_cfg;
mem_cfg->MemorySpdPtr00 = spd_data_ptr;
mem_cfg->MemorySpdPtr01 = 0;
/* Channel 1 */
mem_cfg->Reserved9[1] = dimm_cfg;
mem_cfg->MemorySpdPtr02 = spd_data_ptr;
mem_cfg->MemorySpdPtr03 = 0;
/* Channel 2 */
mem_cfg->Reserved9[2] = dimm_cfg;
mem_cfg->MemorySpdPtr04 = spd_data_ptr;
mem_cfg->MemorySpdPtr05 = 0;
/* Channel 3 */
mem_cfg->Reserved9[3] = dimm_cfg;
mem_cfg->MemorySpdPtr06 = spd_data_ptr;
mem_cfg->MemorySpdPtr07 = 0;
if (half_populated) {
printk(BIOS_INFO, "%s: DRAM half-populated\n", __func__);
dimm_cfg = DISABLE_BOTH_DIMMS;
spd_data_ptr = 0;
}
/* Channel 4 */
mem_cfg->Reserved9[4] = dimm_cfg;
mem_cfg->MemorySpdPtr08 = spd_data_ptr;
mem_cfg->MemorySpdPtr09 = 0;
/* Channel 5 */
mem_cfg->Reserved9[5] = dimm_cfg;
mem_cfg->MemorySpdPtr10 = spd_data_ptr;
mem_cfg->MemorySpdPtr11 = 0;
/* Channel 6 */
mem_cfg->Reserved9[6] = dimm_cfg;
mem_cfg->MemorySpdPtr12 = spd_data_ptr;
mem_cfg->MemorySpdPtr13 = 0;
/* Channel 7 */
mem_cfg->Reserved9[7] = dimm_cfg;
mem_cfg->MemorySpdPtr14 = spd_data_ptr;
mem_cfg->MemorySpdPtr15 = 0;
meminit_dq_dqs_map(mem_cfg, board_cfg, half_populated);
}
/* Initialize onboard memory configurations for lpddr4x */
void meminit_lpddr4x_dimm0(FSP_M_CONFIG *mem_cfg,
const struct mb_lpddr4x_cfg *board_cfg,
const struct spd_info *spd,
bool half_populated)
void meminit_lpddr4x(FSP_M_CONFIG *mem_cfg, const struct lpddr4x_cfg *board_cfg,
const struct spd_info *info, bool half_populated)
{
size_t spd_data_len;
uintptr_t spd_data_ptr;
size_t spd_len;
uintptr_t spd_data;
int i;
get_spd_data(spd, &spd_data_ptr, &spd_data_len);
print_spd_info((unsigned char *)spd_data_ptr);
if (info->topology != MEMORY_DOWN)
die("LPDDR4x only support memory-down topology.\n");
mem_cfg->MemorySpdDataLen = spd_data_len;
meminit_channels_dimm0(mem_cfg, board_cfg, spd_data_ptr,
half_populated);
/* LPDDR4 does not allow interleaved memory */
/* LPDDR4x does not allow interleaved memory */
mem_cfg->DqPinsInterleaved = 0;
mem_cfg->ECT = board_cfg->ect;
mem_cfg->MrcSafeConfig = 0x1;
read_md_spd(info, &spd_data, &spd_len);
mem_cfg->MemorySpdDataLen = spd_len;
for (i = 0; i < LPDDR4X_CHANNELS; i++) {
if (LPDDR4X_CHANNEL_UNPOPULATED(i, half_populated))
init_spd_upds_empty(mem_cfg, i);
else
init_spd_upds_dimm0(mem_cfg, i, spd_data);
}
/*
* LPDDR4x memory interface has 2 DQs per channel. Each DQ consists of 8 bits (1
* byte). However, FSP UPDs for DQ Map expect a DQ pair (i.e. mapping for 2 bytes) in
* each UPD.
*
* Thus, init_dq_upds() needs to be called for dq pair of each channel.
* DqMapCpu2DramCh0 --> dq_map[CHAN=0][0-1]
* DqMapCpu2DramCh1 --> dq_map[CHAN=1][0-1]
* DqMapCpu2DramCh2 --> dq_map[CHAN=2][0-1]
* DqMapCpu2DramCh3 --> dq_map[CHAN=3][0-1]
* DqMapCpu2DramCh4 --> dq_map[CHAN=4][0-1]
* DqMapCpu2DramCh5 --> dq_map[CHAN=5][0-1]
* DqMapCpu2DramCh6 --> dq_map[CHAN=6][0-1]
* DqMapCpu2DramCh7 --> dq_map[CHAN=7][0-1]
*/
for (i = 0; i < LPDDR4X_CHANNELS; i++) {
if (LPDDR4X_CHANNEL_UNPOPULATED(i, half_populated))
init_dq_upds_empty(mem_cfg, i);
else
init_dq_upds(mem_cfg, i, board_cfg->dq_map[i][0],
board_cfg->dq_map[i][1]);
}
/*
* LPDDR4x memory interface has 2 DQS pairs per channel. FSP UPDs for DQS Map expect a
* pair in each UPD.
*
* Thus, init_dqs_upds() needs to be called for dqs pair of each channel.
* DqsMapCpu2DramCh0 --> dqs_map[CHAN=0][0-1]
* DqsMapCpu2DramCh1 --> dqs_map[CHAN=1][0-1]
* DqsMapCpu2DramCh2 --> dqs_map[CHAN=2][0-1]
* DqsMapCpu2DramCh3 --> dqs_map[CHAN=3][0-1]
* DqsMapCpu2DramCh4 --> dqs_map[CHAN=4][0-1]
* DqsMapCpu2DramCh5 --> dqs_map[CHAN=5][0-1]
* DqsMapCpu2DramCh6 --> dqs_map[CHAN=6][0-1]
* DqsMapCpu2DramCh7 --> dqs_map[CHAN=7][0-1]
*/
for (i = 0; i < LPDDR4X_CHANNELS; i++) {
if (LPDDR4X_CHANNEL_UNPOPULATED(i, half_populated))
init_dqs_upds_empty(mem_cfg, i);
else
init_dqs_upds(mem_cfg, i, board_cfg->dqs_map[i][0],
board_cfg->dqs_map[i][1]);
}
}