cbfs/vboot: remove firmware component support

The Chrome OS verified boot path supported multiple CBFS
instances in the boot media as well as stand-alone assets
sitting in each vboot RW slot. Remove the support for the
stand-alone assets and always use CBFS accesses as the
way to retrieve data.

This is implemented by adding a cbfs_locator object which
is queried for locating the current CBFS. Additionally, it
is also signalled prior to when a program is about to be
loaded by coreboot for the subsequent stage/payload. This
provides the same opportunity as previous for vboot to
hook in and perform its logic.

BUG=chromium:445938
BRANCH=None
TEST=Built and ran on glados.
CQ-DEPEND=CL:307121,CL:31691,CL:31690

Change-Id: I6a3a15feb6edd355d6ec252c36b6f7885b383099
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: https://review.coreboot.org/12689
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
This commit is contained in:
Aaron Durbin
2015-12-08 17:00:23 -06:00
parent bf3dbaf86d
commit 6d720f38e0
26 changed files with 206 additions and 335 deletions

View File

@ -28,6 +28,7 @@ config CHROMEOS
select ELOG if SPI_FLASH
select COLLECT_TIMESTAMPS
select VBOOT_VERIFY_FIRMWARE
select MULTIPLE_CBFS_INSTANCES
help
Enable ChromeOS specific features like the GPIO sub table in
the coreboot table. NOTE: Enabling this option on an unsupported

View File

@ -68,57 +68,6 @@ config CHIPSET_PROVIDES_VERSTAGE_MAIN_SYMBOL
help
The chipset code provides their own main() entry point.
# These VBOOT_X_INDEX are the position of X in FW_MAIN_A/B region. The index
# table is created by cros_bundle_firmware at build time based on the positions
# of the blobs listed in fmap.dts and stored at the top of FW_MAIN_A/B region.
# Unfortunately, there is no programmatical link between the blob list and the
# index number here.
config VBOOT_ROMSTAGE_INDEX
hex "Romstage component index"
default 2
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the romstage component in the verified
firmware block.
config VBOOT_RAMSTAGE_INDEX
hex "Ramstage component index"
default 1
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the ramstage component in the verified
firmware block.
config VBOOT_REFCODE_INDEX
hex "Reference code firmware index"
default 1
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the reference code component in the verified
firmware block.
config VBOOT_BOOT_LOADER_INDEX
hex "Bootloader component index"
default 0
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the bootloader component in the verified
firmware block.
config VBOOT_SECURE_OS_INDEX
hex "ARM64 Secure OS index"
default 0x5
depends on VBOOT_VERIFY_FIRMWARE
help
Secure OS software component used on ARM64 machines.
config VBOOT_BL31_INDEX
hex "ARM64 BL31 index"
default 0x4
depends on VBOOT_VERIFY_FIRMWARE
help
This is the index of the BL31 program on ARM64 machines.
config VBOOT_DYNAMIC_WORK_BUFFER
bool "Vboot's work buffer is dynamically allocated."
default y if ARCH_ROMSTAGE_X86_32 && !SEPARATE_VERSTAGE

View File

@ -115,21 +115,27 @@ struct vb2_shared_data *vb2_get_shared_data(void)
return (void *)((uintptr_t)wd + wd->buffer_offset);
}
int vb2_get_selected_region(struct region_device *rdev)
int vb2_get_selected_region(struct region *region)
{
const struct selected_region *reg = vb2_selected_region();
struct region region = {
.offset = reg->offset,
.size = reg->size,
};
return vboot_region_device(&region, rdev);
if (reg == NULL)
return -1;
if (reg->offset == 0 && reg->size == 0)
return -1;
region->offset = reg->offset;
region->size = reg->size;
return 0;
}
void vb2_set_selected_region(struct region_device *rdev)
void vb2_set_selected_region(const struct region *region)
{
struct selected_region *reg = vb2_selected_region();
reg->offset = region_device_offset(rdev);
reg->size = region_device_sz(rdev);
reg->offset = region_offset(region);
reg->size = region_sz(region);
}
int vboot_is_slot_selected(void)

View File

@ -22,16 +22,13 @@ struct vb2_context;
struct vb2_shared_data;
void vboot_fill_handoff(void);
void *vboot_load_stage(int stage_index,
struct region *fw_main,
struct vboot_components *fw_info);
void vb2_init_work_context(struct vb2_context *ctx);
struct vb2_shared_data *vb2_get_shared_data(void);
/* Returns 0 on success. < 0 on failure. */
int vb2_get_selected_region(struct region_device *rdev);
void vb2_set_selected_region(struct region_device *rdev);
int vb2_get_selected_region(struct region *region);
void vb2_set_selected_region(const struct region *region);
int vboot_is_slot_selected(void);
int vboot_is_readonly_path(void);

View File

@ -120,12 +120,8 @@ static void fill_vboot_handoff(struct vboot_handoff *vboot_handoff,
void vboot_fill_handoff(void)
{
int i;
struct vboot_handoff *vh;
struct vb2_shared_data *sd;
struct region_device fw_main;
struct vboot_components *fw_info;
size_t metadata_sz;
sd = vb2_get_shared_data();
sd->workbuf_hash_offset = 0;
@ -142,33 +138,6 @@ void vboot_fill_handoff(void)
/* needed until we finish transtion to vboot2 for kernel verification */
fill_vboot_handoff(vh, sd);
/* Nothing left to do in readonly path. */
if (vboot_is_readonly_path())
return;
if (IS_ENABLED(CONFIG_MULTIPLE_CBFS_INSTANCES))
return;
if (vb2_get_selected_region(&fw_main))
die("No component metadata.\n");
metadata_sz = sizeof(*fw_info);
metadata_sz += MAX_PARSED_FW_COMPONENTS * sizeof(fw_info->entries[0]);
fw_info = rdev_mmap(&fw_main, 0, metadata_sz);
if (fw_info == NULL)
die("failed to locate firmware components\n");
/* these offset & size are used to load a rw boot loader */
for (i = 0; i < fw_info->num_components; i++) {
vh->components[i].address = region_device_offset(&fw_main);
vh->components[i].address += fw_info->entries[i].offset;
vh->components[i].size = fw_info->entries[i].size;
}
rdev_munmap(&fw_main, fw_info);
}
/*

View File

@ -13,7 +13,7 @@
* GNU General Public License for more details.
*/
#include <assets.h>
#include <arch/early_variables.h>
#include <cbfs.h>
#include <cbmem.h>
#include <console/console.h>
@ -59,7 +59,34 @@ static int verstage_should_load(void)
return 0;
}
static int vboot_active(struct asset *asset)
static int vboot_executed CAR_GLOBAL;
static int vboot_logic_executed(void)
{
/* If this stage is supposed to run the vboot logic ensure it has been
* executed. */
if (verification_should_run() && car_get_var(vboot_executed))
return 1;
/* If this stage is supposed to load verstage and verstage is returning
* back to the calling stage check that it has been executed. */
if (verstage_should_load() && IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
if (car_get_var(vboot_executed))
return 1;
/* Handle all other stages post vboot execution. */
if (!ENV_BOOTBLOCK) {
if (IS_ENABLED(CONFIG_VBOOT_STARTS_IN_BOOTBLOCK))
return 1;
if (IS_ENABLED(CONFIG_VBOOT_STARTS_IN_ROMSTAGE) &&
!ENV_ROMSTAGE)
return 1;
}
return 0;
}
static void vboot_prepare(void)
{
int run_verification;
@ -67,6 +94,7 @@ static int vboot_active(struct asset *asset)
if (run_verification) {
verstage_main();
car_set_var(vboot_executed, 1);
} else if (verstage_should_load()) {
struct cbfsf file;
struct prog verstage =
@ -91,7 +119,9 @@ static int vboot_active(struct asset *asset)
* runtime, but this provides a hint to the compiler for dead
* code elimination below. */
if (!IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
return 0;
return;
car_set_var(vboot_executed, 1);
}
/*
@ -106,103 +136,27 @@ static int vboot_active(struct asset *asset)
vb2_store_selected_region();
vboot_fill_handoff();
}
return vboot_is_slot_selected();
}
static int vboot_locate_by_components(const struct region_device *fw_main,
struct asset *asset)
static int vboot_locate(struct cbfs_props *props)
{
struct vboot_components *fw_info;
size_t metadata_sz;
size_t offset;
size_t size;
struct region_device *fw = asset_rdev(asset);
int fw_index = 0;
struct region selected_region;
if (asset_type(asset) == ASSET_ROMSTAGE)
fw_index = CONFIG_VBOOT_ROMSTAGE_INDEX;
else if (asset_type(asset) == ASSET_RAMSTAGE)
fw_index = CONFIG_VBOOT_RAMSTAGE_INDEX;
else if (asset_type(asset) == ASSET_PAYLOAD)
fw_index = CONFIG_VBOOT_BOOT_LOADER_INDEX;
else if (asset_type(asset) == ASSET_REFCODE)
fw_index = CONFIG_VBOOT_REFCODE_INDEX;
else if (asset_type(asset) == ASSET_BL31)
fw_index = CONFIG_VBOOT_BL31_INDEX;
else
die("Invalid program type for vboot.");
metadata_sz = sizeof(*fw_info);
metadata_sz += MAX_PARSED_FW_COMPONENTS * sizeof(fw_info->entries[0]);
fw_info = rdev_mmap(fw_main, 0, metadata_sz);
if (fw_info == NULL) {
printk(BIOS_INFO, "No component metadata.\n");
/* Don't honor vboot results until the vboot logic has run. */
if (!vboot_logic_executed())
return -1;
}
if (fw_index >= fw_info->num_components) {
printk(BIOS_INFO, "invalid index: %d\n", fw_index);
rdev_munmap(fw_main, fw_info);
if (vb2_get_selected_region(&selected_region))
return -1;
}
offset = fw_info->entries[fw_index].offset;
size = fw_info->entries[fw_index].size;
rdev_munmap(fw_main, fw_info);
if (rdev_chain(fw, fw_main, offset, size)) {
printk(BIOS_INFO, "invalid offset or size\n");
return -1;
}
props->offset = region_offset(&selected_region);
props->size = region_sz(&selected_region);
return 0;
}
static int vboot_locate_by_multi_cbfs(const struct region_device *fw_main,
struct asset *asset)
{
struct cbfsf file;
if (cbfs_locate(&file, fw_main, asset_name(asset), NULL))
return -1;
cbfs_file_data(asset_rdev(asset), &file);
return 0;
}
static int vboot_asset_locate(const struct region_device *fw_main,
struct asset *asset)
{
if (IS_ENABLED(CONFIG_MULTIPLE_CBFS_INSTANCES))
return vboot_locate_by_multi_cbfs(fw_main, asset);
else
return vboot_locate_by_components(fw_main, asset);
}
/* This function is only called when vboot_active() returns 1. That
* means we are taking vboot paths. */
static int vboot_locate(struct asset *asset)
{
struct region_device fw_main;
/* Code size optimization. We'd never actually get called under the
* followin cirumstances because verstage was loaded and ran -- never
* returning. */
if (verstage_should_load() && !IS_ENABLED(CONFIG_RETURN_FROM_VERSTAGE))
return 0;
if (vb2_get_selected_region(&fw_main))
die("failed to reference selected region\n");
return vboot_asset_locate(&fw_main, asset);
}
const struct asset_provider vboot_provider = {
const struct cbfs_locator vboot_locator = {
.name = "VBOOT",
.is_active = vboot_active,
.prepare = vboot_prepare,
.locate = vboot_locate,
};

View File

@ -323,6 +323,6 @@ void verstage_main(void)
}
printk(BIOS_INFO, "Slot %c is selected\n", is_slot_a(&ctx) ? 'A' : 'B');
vb2_set_selected_region(&fw_main);
vb2_set_selected_region(region_device_region(&fw_main));
timestamp_add_now(TS_END_VBOOT);
}

View File

@ -21,30 +21,14 @@
#include "chromeos.h"
#include "vboot_common.h"
/*
* The vboot handoff structure keeps track of a maximum number of firmware
* components in the verfieid RW area of flash. This is not a restriction on
* the number of components packed in a firmware block. It's only the maximum
* number of parsed firmware components (address and size) included in the
* handoff structure.
*/
#define MAX_PARSED_FW_COMPONENTS 6
struct firmware_component {
uint32_t address;
uint32_t size;
} __attribute__((packed));
/*
* The vboot_handoff structure contains the data to be consumed by downstream
* firmware after firmware selection has been completed. Namely it provides
* vboot shared data as well as the flags from VbInit. As noted above a finite
* number of components are parsed from the verfieid firmare region.
* vboot shared data as well as the flags from VbInit.
*/
struct vboot_handoff {
VbInitParams init_params;
uint32_t selected_firmware;
struct firmware_component components[MAX_PARSED_FW_COMPONENTS];
char shared_data[VB_SHARED_DATA_MIN_SIZE];
} __attribute__((packed));