libpayload: Add simple 32.32 fixed-point math API
struct fraction is slooooooooooow. This patch adds a simple 64-bit (32-bits integral, 32-bits fractional) fixed-point math API that is *much* faster (observed roughly 5x speed-up) when doing intensive graphics operations. It is optimized for speed over accuracy so some operations may lose a bit more precision than expected, but overall it's still plenty of bits for most use cases. Also includes support for basic trigonometric functions with a small lookup table. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: Id0f9c23980e36ce0ac0b7c5cd0bc66153bca1fd0 Reviewed-on: https://review.coreboot.org/c/coreboot/+/42993 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Yu-Ping Wu <yupingso@google.com> Reviewed-by: Hung-Te Lin <hungte@chromium.org>
This commit is contained in:
234
payloads/libpayload/include/fpmath.h
Normal file
234
payloads/libpayload/include/fpmath.h
Normal file
@ -0,0 +1,234 @@
|
||||
/*
|
||||
*
|
||||
* Copyright (C) 2020 Google, Inc.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. The name of the author may not be used to endorse or promote products
|
||||
* derived from this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
/*
|
||||
* This file implements operations for a simple 32.32 fixed-point math type.
|
||||
* This is intended for speed-critical stuff (e.g. graphics) so there are
|
||||
* intentionally no overflow checks or assertions, and operations are written
|
||||
* to prefer speed over precision (e.g. multiplying by 1 may lose precision).
|
||||
* For best results, only use for applications where 16.16 would fit.
|
||||
*/
|
||||
|
||||
typedef struct { /* wrap in struct to prevent direct access */
|
||||
int64_t v;
|
||||
} fpmath_t;
|
||||
|
||||
#define FPMATH_SHIFT 32 /* define where to place the decimal point */
|
||||
|
||||
/* Turn an integer into an fpmath_t. */
|
||||
static inline fpmath_t fp(int32_t a)
|
||||
{
|
||||
return (fpmath_t){ .v = (int64_t)a << FPMATH_SHIFT };
|
||||
}
|
||||
|
||||
/* Create an fpmath_t from a fraction. (numerator / denominator) */
|
||||
static inline fpmath_t fpfrac(int32_t numerator, int32_t denominator)
|
||||
{
|
||||
return (fpmath_t){ .v = ((int64_t)numerator << FPMATH_SHIFT) / denominator };
|
||||
}
|
||||
|
||||
/* Turn an fpmath_t back into an integer, rounding towards -INF. */
|
||||
static inline int32_t fpfloor(fpmath_t a)
|
||||
{
|
||||
return a.v >> FPMATH_SHIFT;
|
||||
}
|
||||
|
||||
/* Turn an fpmath_t back into an integer, rounding towards nearest. */
|
||||
static inline int32_t fpround(fpmath_t a)
|
||||
{
|
||||
return (a.v + ((int64_t)1 << (FPMATH_SHIFT - 1))) >> FPMATH_SHIFT;
|
||||
}
|
||||
|
||||
/* Turn an fpmath_t back into an integer, rounding towards +INF. */
|
||||
static inline int32_t fpceil(fpmath_t a)
|
||||
{
|
||||
return (a.v + ((int64_t)1 << FPMATH_SHIFT) - 1) >> FPMATH_SHIFT;
|
||||
}
|
||||
|
||||
/* Add two fpmath_t. (a + b) */
|
||||
static inline fpmath_t fpadd(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = a.v + b.v };
|
||||
}
|
||||
|
||||
/* Add an fpmath_t and an integer. (a + b) */
|
||||
static inline fpmath_t fpaddi(fpmath_t a, int32_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = a.v + ((int64_t)b << FPMATH_SHIFT) };
|
||||
}
|
||||
|
||||
/* Subtract one fpmath_t from another. (a + b) */
|
||||
static inline fpmath_t fpsub(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = a.v - b.v };
|
||||
}
|
||||
|
||||
/* Subtract an integer from an fpmath_t. (a - b) */
|
||||
static inline fpmath_t fpsubi(fpmath_t a, int32_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = a.v - ((int64_t)b << FPMATH_SHIFT) };
|
||||
}
|
||||
|
||||
/* Subtract an fpmath_t from an integer. (a - b) */
|
||||
static inline fpmath_t fpisub(int32_t a, fpmath_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = ((int64_t)a << FPMATH_SHIFT) - b.v };
|
||||
}
|
||||
|
||||
/* Multiply two fpmath_t. (a * b)
|
||||
Looses 16 bits fractional precision on each. */
|
||||
static inline fpmath_t fpmul(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = (a.v >> (FPMATH_SHIFT/2)) * (b.v >> (FPMATH_SHIFT/2)) };
|
||||
}
|
||||
|
||||
/* Multiply an fpmath_t and an integer. (a * b) */
|
||||
static inline fpmath_t fpmuli(fpmath_t a, int32_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = a.v * b };
|
||||
}
|
||||
|
||||
/* Divide an fpmath_t by another. (a / b)
|
||||
Truncates integral part of a to 16 bits! Careful with this one! */
|
||||
static inline fpmath_t fpdiv(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = (a.v << (FPMATH_SHIFT/2)) / (b.v >> (FPMATH_SHIFT/2)) };
|
||||
}
|
||||
|
||||
/* Divide an fpmath_t by an integer. (a / b) */
|
||||
static inline fpmath_t fpdivi(fpmath_t a, int32_t b)
|
||||
{
|
||||
return (fpmath_t){ .v = a.v / b };
|
||||
}
|
||||
|
||||
/* Calculate absolute value of an fpmath_t. (ABS(a)) */
|
||||
static inline fpmath_t fpabs(fpmath_t a)
|
||||
{
|
||||
return (fpmath_t){ .v = (a.v < 0 ? -a.v : a.v) };
|
||||
}
|
||||
|
||||
/* Return true iff two fpmath_t are exactly equal. (a == b)
|
||||
Like with floats, you probably don't want to use this most of the time. */
|
||||
static inline int fpequals(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
return a.v == b.v;
|
||||
}
|
||||
|
||||
/* Return true iff one fpmath_t is less than another. (a < b) */
|
||||
static inline int fpless(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
return a.v < b.v;
|
||||
}
|
||||
|
||||
/* Return true iff one fpmath_t is more than another. (a > b) */
|
||||
static inline int fpmore(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
return a.v > b.v;
|
||||
}
|
||||
|
||||
/* Return the smaller of two fpmath_t. (MIN(a, b)) */
|
||||
static inline fpmath_t fpmin(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
if (a.v < b.v)
|
||||
return a;
|
||||
else
|
||||
return b;
|
||||
}
|
||||
|
||||
/* Return the larger of two fpmath_t. (MAX(a, b)) */
|
||||
static inline fpmath_t fpmax(fpmath_t a, fpmath_t b)
|
||||
{
|
||||
if (a.v > b.v)
|
||||
return a;
|
||||
else
|
||||
return b;
|
||||
}
|
||||
|
||||
/* Return the constant PI as an fpmath_t. */
|
||||
static inline fpmath_t fppi(void)
|
||||
{
|
||||
/* Rounded (uint64_t)(M_PI * (1UL << 60)) to nine hex digits. */
|
||||
return (fpmath_t){ .v = 0x3243f6a89 };
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the "one-based" sine of an fpmath_t, meaning the input is interpreted as if the range
|
||||
* 0.0-1.0 corresponded to 0.0-PI/2 for radians. This is mostly here as the base primitives for
|
||||
* the other trig stuff, but it may be useful to use directly if your input value already needs
|
||||
* to be multiplied by some factor of PI and you want to save the instructions (and precision)
|
||||
* for multiplying it in just so that the trig functions can divide it right out again.
|
||||
*/
|
||||
fpmath_t fpsin1(fpmath_t x);
|
||||
|
||||
/* Returns the "one-based" cosine of an fpmath_t (analogous definition to fpsin1()). */
|
||||
static inline fpmath_t fpcos1(fpmath_t x)
|
||||
{
|
||||
return fpsin1(fpaddi(x, 1));
|
||||
}
|
||||
|
||||
/* Returns the sine of an fpmath_t interpreted as radians. */
|
||||
static inline fpmath_t fpsinr(fpmath_t radians)
|
||||
{
|
||||
return fpsin1(fpdiv(radians, fpdivi(fppi(), 2)));
|
||||
}
|
||||
|
||||
/* Returns the sine of an fpmath_t interpreted as degrees. */
|
||||
static inline fpmath_t fpsind(fpmath_t degrees)
|
||||
{
|
||||
return fpsin1(fpdivi(degrees, 90));
|
||||
}
|
||||
|
||||
/* Returns the cosine of an fpmath_t interpreted as radians. */
|
||||
static inline fpmath_t fpcosr(fpmath_t radians)
|
||||
{
|
||||
return fpcos1(fpdiv(radians, fpdivi(fppi(), 2)));
|
||||
}
|
||||
|
||||
/* Returns the cosine of an fpmath_t interpreted as degrees. */
|
||||
static inline fpmath_t fpcosd(fpmath_t degrees)
|
||||
{
|
||||
return fpcos1(fpdivi(degrees, 90));
|
||||
}
|
||||
|
||||
/* Returns the tangent of an fpmath_t interpreted as radians.
|
||||
No guard rails, don't call this at the poles or you'll divide by 0! */
|
||||
static inline fpmath_t fptanr(fpmath_t radians)
|
||||
{
|
||||
fpmath_t one_based = fpdiv(radians, fpdivi(fppi(), 2));
|
||||
return fpdiv(fpsin1(one_based), fpcos1(one_based));
|
||||
}
|
||||
|
||||
/* Returns the tangent of an fpmath_t interpreted as degrees.
|
||||
No guard rails, don't call this at the poles or you'll divide by 0! */
|
||||
static inline fpmath_t fptand(fpmath_t degrees)
|
||||
{
|
||||
fpmath_t one_based = fpdivi(degrees, 90);
|
||||
return fpdiv(fpsin1(one_based), fpcos1(one_based));
|
||||
}
|
Reference in New Issue
Block a user