mainboard/emulation/qemu-sbsa: Add qemu-sbsa board

Add coreboot support for qemu's sbsa-ref (Server Base System
Architecture) machine (-m sbsa-ref).

The qemu-sbsa coreboot port runs on EL2 and is the payload of the
EL3 firmware (Arm Trusted Firmware).

Note that, coreboot expects a pointer to the FDT in x0. Make sure
to configure TF-A to handoff the FDT pointer.

Example qemu commandline:

  qemu-system-aarch64 -nographic -m 2048 -M sbsa-ref \
                      -pflash <path/to/TFA.fd> \
                      -pflash <path/to/coreboot.rom>

The Documentation can be found here:
Documentation/mainboard/emulation/qemu-sbsa.md

Change-Id: Iacc9aaf065e0d153336cbef9a9b5b46a9eb24a53
Signed-off-by: David Milosevic <David.Milosevic@9elements.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/79086
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Lean Sheng Tan <sheng.tan@9elements.com>
This commit is contained in:
David Milosevic
2023-11-16 05:11:18 +01:00
committed by Lean Sheng Tan
parent 91cda2af74
commit ad83eb1ee6
20 changed files with 853 additions and 0 deletions

View File

@@ -0,0 +1,42 @@
# QEMU SBSA emulator
This page describes how to build and run ```coreboot``` for QEMU's sbsa-ref machine.
The qemu-sbsa ```coreboot``` image acts as BL-3.3 for Arm Trusted Firmware (```TF-A```) and
mainly takes care of setting up SMBIOS and ACPI tables, hence, in order to boot,
you also need to supply a ```TF-A``` image.
## Building TF-A
You can build ```TF-A``` from source by fetching
```
https://github.com/ARM-software/arm-trusted-firmware
```
and building the qemu-sbsa platform
```
PLAT=qemu_sbsa
```
Upon entry, ```coreboot``` expects a FDT pointer in x0, so make sure to compile ```TF-A``` with
```
ARM_LINUX_KERNEL_AS_BL33=1
```
This will force ```TF-A``` to pass a pointer to the FDT in x0.
## Building coreboot
Simply select the qemu-sbsa board and, optionally, configure a payload. We recommend
the ```leanefi``` payload. ```leanefi``` will setup a minimal set of UEFI services, just enough
to boot into a linux kernel.
## Running coreboot in QEMU
Once you have obtained ```TF-A``` and ```coreboot``` images, launch qemu via
```bash
qemu-system-aarch64 -nographic -m 1024 -M sbsa-ref -pflash <path/to/TFA.fd> \
-pflash <path/to/coreboot.rom>
```
## LBBR bootflow
arm and 9elements worked together in order to create a LBBR compliant bootflow
consisting of ```TF-A```, ```coreboot```, ```leanefi``` and ```LinuxBoot```. A proof of concept
can be found here https://gitlab.arm.com/systemready/firmware-build/linuxboot/lbbr-coreboot-poc

View File

@@ -90,6 +90,7 @@ The boards in this section are not real mainboards, but emulators.
Spike RISC-V emulator <emulation/spike-riscv.md>
QEMU RISC-V emulator <emulation/qemu-riscv.md>
QEMU AArch64 emulator <emulation/qemu-aarch64.md>
QEMU SBSA emulator <emulation/qemu-sbsa.md>
QEMU x86 Q35 <emulation/qemu-q35.md>
QEMU x86 PC <emulation/qemu-i440fx.md>
QEMU POWER9 <emulation/qemu-power9.md>

View File

@@ -3,6 +3,7 @@
# ugly to put it in here, but unavoidable
config SEPARATE_ROMSTAGE
default n if BOARD_EMULATION_QEMU_RISCV
default n if BOARD_EMULATION_QEMU_SBSA
if VENDOR_EMULATION

View File

@@ -0,0 +1,55 @@
# SPDX-License-Identifier: GPL-2.0-or-later
if BOARD_EMULATION_QEMU_SBSA
config BOARD_SPECIFIC_OPTIONS
def_bool y
select ARCH_BOOTBLOCK_ARMV8_64
select ARCH_VERSTAGE_ARMV8_64
select ARCH_ROMSTAGE_ARMV8_64
select ARCH_RAMSTAGE_ARMV8_64
select ARM64_USE_ARCH_TIMER
select BOARD_ROMSIZE_KB_32768
select BOOTBLOCK_CUSTOM
select BOOT_DEVICE_NOT_SPI_FLASH
select DRIVERS_UART_PL011
select FLATTENED_DEVICE_TREE
select HAVE_LINEAR_FRAMEBUFFER
select MAINBOARD_FORCE_NATIVE_VGA_INIT
select MAINBOARD_HAS_NATIVE_VGA_INIT
select MISSING_BOARD_RESET
select PCI
select HAVE_ACPI_TABLES
select ACPI_GTDT
select ACPI_COMMON_MADT_GICC_V3
select GENERATE_SMBIOS_TABLES
config ARM64_CURRENT_EL
default 2
config ECAM_MMCONF_BASE_ADDRESS
default 0xf0000000
config ECAM_MMCONF_BUS_NUMBER
default 256
config FMDFILE
default "src/mainboard/emulation/qemu-sbsa/flash.fmd"
config MAINBOARD_DIR
default "emulation/qemu-sbsa"
config MAINBOARD_PART_NUMBER
default "QEMU sbsa"
config MAX_CPUS
default 128
config MAINBOARD_VENDOR
default "QEMU"
config DRAM_SIZE_MB
int
default 8388608 # The maximum dram size is 8192GiB.
endif # BOARD_EMULATION_QEMU_SBSA

View File

@@ -0,0 +1,4 @@
# SPDX-License-Identifier: GPL-2.0-or-later
config BOARD_EMULATION_QEMU_SBSA
bool "QEMU sbsa"

View File

@@ -0,0 +1,23 @@
# SPDX-License-Identifier: GPL-2.0-or-later
bootblock-y += bootblock.c
romstage-y += cbmem.c
bootblock-y += media.c
romstage-y += media.c
ramstage-y += media.c
bootblock-y += mmio.c
romstage-y += mmio.c
ramstage-y += mmio.c
ramstage-y += acpi.c
bootblock-y += bootblock_custom.S
CPPFLAGS_common += -mcmodel=large -I$(src)/mainboard/$(MAINBOARDDIR)/include
build_complete::
@printf "Truncating coreboot.rom to 256M\n"
truncate -s 256M $(obj)/coreboot.rom

View File

@@ -0,0 +1,60 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#include <acpi/acpi.h>
#include <mainboard/addressmap.h>
void acpi_fill_fadt(acpi_fadt_t *fadt)
{
fadt->ARM_boot_arch |= ACPI_FADT_ARM_PSCI_COMPLIANT;
}
unsigned long acpi_fill_madt(unsigned long current)
{
return current;
}
uintptr_t platform_get_gicd_base(void)
{
return SBSA_GIC_DIST;
}
uintptr_t platform_get_gicr_base(void)
{
return SBSA_GIC_REDIST;
}
#define SEC_EL1_TIMER_GISV 0x1d
#define NONSEC_EL1_TIMER_GSIV 0x1e
#define VIRTUAL_TIMER_GSIV 0x1b
#define NONSEC_EL2_TIMER_GSIV 0x1a
#define SBSA_TIMER_FLAGS (ACPI_GTDT_INTERRUPT_POLARITY | ACPI_GTDT_ALWAYS_ON)
void acpi_soc_fill_gtdt(acpi_gtdt_t *gtdt)
{
/* This value is optional if the system implements EL3 (Security
Extensions). If not provided, this field must be 0xFFFFFFFFFFFFFFFF. */
gtdt->counter_block_address = UINT64_MAX;
gtdt->secure_el1_interrupt = SEC_EL1_TIMER_GISV;
gtdt->secure_el1_flags = SBSA_TIMER_FLAGS;
gtdt->non_secure_el1_interrupt = NONSEC_EL1_TIMER_GSIV;
gtdt->non_secure_el1_flags = SBSA_TIMER_FLAGS;
gtdt->virtual_timer_interrupt = VIRTUAL_TIMER_GSIV;
gtdt->virtual_timer_flags = SBSA_TIMER_FLAGS;
gtdt->non_secure_el2_interrupt = NONSEC_EL2_TIMER_GSIV;
gtdt->non_secure_el2_flags = SBSA_TIMER_FLAGS;
/* This value is optional if the system implements EL3
(Security Extensions). If not provided, this field must be
0xFFFFFFFFFFFFFFF. */
gtdt->counter_read_block_address = UINT64_MAX;
}
#define WD_TIMER_GSIV 0x30
unsigned long acpi_soc_gtdt_add_timers(uint32_t *count, unsigned long current)
{
(*count)++;
return acpi_gtdt_add_watchdog(current, SBSA_GWDT_REFRESH, SBSA_GWDT_CONTROL,
WD_TIMER_GSIV, 0);
}

View File

@@ -0,0 +1,3 @@
Board name: QEMU sbsa
Category: emulation
Board URL: https://wiki.qemu.org/Main_Page

View File

@@ -0,0 +1,22 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#include <arch/mmu.h>
#include <bootblock_common.h>
#include <symbols.h>
void bootblock_mainboard_init(void)
{
mmu_init();
/* Everything below DRAM is device memory */
mmu_config_range((void *)0, (uintptr_t)_dram, MA_DEV | MA_RW);
/* Set a dummy value for DRAM. ramstage should update the mapping. */
mmu_config_range(_dram, ((size_t) CONFIG_DRAM_SIZE_MB) * MiB, MA_MEM | MA_RW);
mmu_config_range(_ttb, REGION_SIZE(ttb), MA_MEM | MA_S | MA_RW);
mmu_config_range(_bootblock, REGION_SIZE(bootblock), MA_MEM | MA_S | MA_RW);
mmu_config_range(_ramstage, REGION_SIZE(ramstage), MA_MEM | MA_S | MA_RW);
mmu_config_range((void *)CONFIG_ECAM_MMCONF_BASE_ADDRESS, CONFIG_ECAM_MMCONF_LENGTH,
MA_DEV | MA_RW);
mmu_enable();
}

View File

@@ -0,0 +1,55 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Early initialization code for sbsa-ref machine
*/
#include <arch/asm.h>
ENTRY(_start)
/* TF-A arg which contains a pointer to fdt */
ldr x1, =_fdt_pointer
str x0, [x1]
/* Setup CPU. */
/* bl arm64_init_cpu */
/* ==== stack init from arm64_init_cpu ==== */
msr SPSel, #0 /* use SP_EL0 */
ldr x2, =0xdeadbeefdeadbeef
ldr x0, =_stack
ldr x1, =_estack
1:
stp x2, x2, [x0], #16
cmp x0, x1
bne 1b
sub sp, x0, #16
/* ==== END ==== */
/* Get code positions. */
ldr x1, =_flash
ldr x0, =_bootblock
/* Calculate bootblock size. */
ldr x2, =_ebootblock
sub x2, x2, x0
/* Call memcpy in arch/arm64/memcpy.S */
bl memcpy
dmb sy
/* Calculate relocation offset between bootblock in flash and in DRAM. */
ldr x0, =_flash
ldr x1, =_bootblock
sub x1, x1, x0
/* Jump to main() in DRAM. */
adr x0, main
add x0, x0, x1
blr x0
ENDPROC(_start)

View File

@@ -0,0 +1,20 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <cbmem.h>
#include <symbols.h>
#include <device_tree.h>
#include <console/console.h>
DECLARE_REGION(fdt_pointer)
uintptr_t cbmem_top_chipset(void)
{
const uint64_t top = fdt_get_memory_top((void *) *((uintptr_t *)_fdt_pointer));
if (top == 0) {
/* corrupted FDT? */
die("Could not find top of memory in FDT!");
}
printk(BIOS_DEBUG, "%s: 0x%llx\n", __func__, top);
return (uintptr_t)top;
}

View File

@@ -0,0 +1,13 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
#ifndef MAINBOARD_EMULATION_QEMU_SBSA_CHIP_H
#define MAINBOARD_EMULATION_QEMU_SBSA_CHIP_H
#include <types.h>
struct mainboard_emulation_qemu_sbsa_config {
uint32_t vgic_maintenance_interrupt;
uint32_t performance_interrupt_gsiv;
};
#endif

View File

@@ -0,0 +1,12 @@
# SPDX-License-Identifier: GPL-2.0-or-later
chip mainboard/emulation/qemu-sbsa
register "vgic_maintenance_interrupt" = "0x19"
register "performance_interrupt_gsiv" = "0x17"
device cpu_cluster 0 on ops qemu_aarch64_cpu_ops end
device domain 0 on ops qemu_aarch64_pci_domain_ops
device pci 00.0 on end
end
end

View File

@@ -0,0 +1,271 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#define LINK_DEVICE(Uid, LinkName, Irq) \
Device (LinkName) { \
Name (_HID, EISAID("PNP0C0F")) \
Name (_UID, Uid) \
Name (_CRS, ResourceTemplate() { \
Interrupt (ResourceProducer, Level, ActiveHigh, Exclusive) { Irq } \
}) \
}
#define USB_PORT(PortName, Adr) \
Device (PortName) { \
Name (_ADR, Adr) \
Name (_UPC, Package() { \
0xFF, \
0x00, \
0x00000000, \
0x00000000 \
}) \
Name (_PLD, Package() { \
Buffer(0x10) { \
0x81, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, \
0x31, 0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 \
} \
}) \
}
#define PRT_ENTRY(Address, Pin, Link) \
Package (4) { \
Address, Pin, Link, Zero \
}
#define PRT_ENTRY_GROUP(Address, Link0, Link1, Link2, Link3) \
PRT_ENTRY (Address, 0, Link0), \
PRT_ENTRY (Address, 1, Link1), \
PRT_ENTRY (Address, 2, Link2), \
PRT_ENTRY (Address, 3, Link3)
#include <acpi/acpi.h>
#include <mainboard/addressmap.h>
DefinitionBlock(
"dsdt.aml",
"DSDT",
ACPI_DSDT_REV_2,
OEM_ID,
ACPI_TABLE_CREATOR,
0x20230621
)
{
#include <acpi/dsdt_top.asl>
Scope (_SB) {
// UART PL011
Device (COM0) {
Name (_HID, "ARMH0011")
Name (_UID, Zero)
Name (_CRS, ResourceTemplate () {
Memory32Fixed (ReadWrite, SBSA_UART_BASE, 0x00001000)
Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive) { 33 }
})
}
// AHCI Host Controller
Device (AHC0) {
Name (_HID, "LNRO001E")
Name (_CLS, Package (3) {
0x01,
0x06,
0x01,
})
Name (_CCA, 1)
Name (_CRS, ResourceTemplate() {
Memory32Fixed (ReadWrite, SBSA_AHCI_BASE, 0x00010000)
Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive) { 42 }
})
}
// USB EHCI Host Controller
Device (USB0) {
Name (_HID, "LNRO0D20")
Name (_CID, "PNP0D20")
Method (_CRS, 0x0, Serialized) {
Name (RBUF, ResourceTemplate() {
Memory32Fixed (ReadWrite, SBSA_EHCI_BASE, 0x00010000)
Interrupt (ResourceConsumer, Level, ActiveHigh, Exclusive) { 43 }
})
Return (RBUF)
}
// Root Hub
Device (RHUB) {
Name (_ADR, 0x00000000) // Address of Root Hub should be 0 as per ACPI 5.0 spec
// Ports connected to Root Hub
Device (HUB1) {
Name (_ADR, 0x00000001)
Name (_UPC, Package() {
0x00, // Port is NOT connectable
0xFF, // Don't care
0x00000000, // Reserved 0 must be zero
0x00000000 // Reserved 1 must be zero
})
USB_PORT (PRT1, 0x00000001) // USB0_RHUB_HUB1_PRT1
USB_PORT (PRT2, 0x00000002) // USB0_RHUB_HUB1_PRT2
USB_PORT (PRT3, 0x00000003) // USB0_RHUB_HUB1_PRT3
USB_PORT (PRT4, 0x00000004) // USB0_RHUB_HUB1_PRT4
} // USB0_RHUB_HUB1
} // USB0_RHUB
} // USB0
Device (PCI0)
{
Name (_HID, EISAID ("PNP0A08")) // PCI Express Root Bridge
Name (_CID, EISAID ("PNP0A03")) // Compatible PCI Root Bridge
Name (_SEG, Zero) // PCI Segment Group number
Name (_BBN, Zero) // PCI Base Bus Number
Name (_UID, "PCI0")
Name (_CCA, One) // Initially mark the PCI coherent (for JunoR1)
Method (_CBA, 0, NotSerialized) {
return (SBSA_PCIE_ECAM_BASE)
}
LINK_DEVICE (0, GSI0, 0x23)
LINK_DEVICE (1, GSI1, 0x24)
LINK_DEVICE (2, GSI2, 0x25)
LINK_DEVICE (3, GSI3, 0x26)
Name (_PRT, Package () {
// _PRT: PCI Routing Table
PRT_ENTRY_GROUP (0x0000FFFF, GSI0, GSI1, GSI2, GSI3),
PRT_ENTRY_GROUP (0x0001FFFF, GSI1, GSI2, GSI3, GSI0),
PRT_ENTRY_GROUP (0x0002FFFF, GSI2, GSI3, GSI0, GSI1),
PRT_ENTRY_GROUP (0x0003FFFF, GSI3, GSI0, GSI1, GSI2),
PRT_ENTRY_GROUP (0x0004FFFF, GSI0, GSI1, GSI2, GSI3),
PRT_ENTRY_GROUP (0x0005FFFF, GSI1, GSI2, GSI3, GSI0),
PRT_ENTRY_GROUP (0x0006FFFF, GSI2, GSI3, GSI0, GSI1),
PRT_ENTRY_GROUP (0x0007FFFF, GSI3, GSI0, GSI1, GSI2),
PRT_ENTRY_GROUP (0x0008FFFF, GSI0, GSI1, GSI2, GSI3),
PRT_ENTRY_GROUP (0x0009FFFF, GSI1, GSI2, GSI3, GSI0),
PRT_ENTRY_GROUP (0x000AFFFF, GSI2, GSI3, GSI0, GSI1),
PRT_ENTRY_GROUP (0x000BFFFF, GSI3, GSI0, GSI1, GSI2),
PRT_ENTRY_GROUP (0x000CFFFF, GSI0, GSI1, GSI2, GSI3),
PRT_ENTRY_GROUP (0x000DFFFF, GSI1, GSI2, GSI3, GSI0),
PRT_ENTRY_GROUP (0x000EFFFF, GSI2, GSI3, GSI0, GSI1),
PRT_ENTRY_GROUP (0x000FFFFF, GSI3, GSI0, GSI1, GSI2),
PRT_ENTRY_GROUP (0x0010FFFF, GSI0, GSI1, GSI2, GSI3),
PRT_ENTRY_GROUP (0x0011FFFF, GSI1, GSI2, GSI3, GSI0),
PRT_ENTRY_GROUP (0x0012FFFF, GSI2, GSI3, GSI0, GSI1),
PRT_ENTRY_GROUP (0x0013FFFF, GSI3, GSI0, GSI1, GSI2),
PRT_ENTRY_GROUP (0x0014FFFF, GSI0, GSI1, GSI2, GSI3),
PRT_ENTRY_GROUP (0x0015FFFF, GSI1, GSI2, GSI3, GSI0),
PRT_ENTRY_GROUP (0x0016FFFF, GSI2, GSI3, GSI0, GSI1),
PRT_ENTRY_GROUP (0x0017FFFF, GSI3, GSI0, GSI1, GSI2),
PRT_ENTRY_GROUP (0x0018FFFF, GSI0, GSI1, GSI2, GSI3),
PRT_ENTRY_GROUP (0x0019FFFF, GSI1, GSI2, GSI3, GSI0),
PRT_ENTRY_GROUP (0x001AFFFF, GSI2, GSI3, GSI0, GSI1),
PRT_ENTRY_GROUP (0x001BFFFF, GSI3, GSI0, GSI1, GSI2),
PRT_ENTRY_GROUP (0x001CFFFF, GSI0, GSI1, GSI2, GSI3),
PRT_ENTRY_GROUP (0x001DFFFF, GSI1, GSI2, GSI3, GSI0),
PRT_ENTRY_GROUP (0x001EFFFF, GSI2, GSI3, GSI0, GSI1),
PRT_ENTRY_GROUP (0x001FFFFF, GSI3, GSI0, GSI1, GSI2),
})
// Root complex resources
Method (_CRS, 0, Serialized) {
Name (RBUF, ResourceTemplate () {
WordBusNumber ( // Bus numbers assigned to this root
ResourceProducer,
MinFixed, MaxFixed, PosDecode,
0, // AddressGranularity
0, // AddressMinimum - Minimum Bus Number
255, // AddressMaximum - Maximum Bus Number
0, // AddressTranslation - Set to 0
256 // RangeLength - Number of Busses
)
DWordMemory ( // 32-bit BAR Windows
ResourceProducer, PosDecode,
MinFixed, MaxFixed,
Cacheable, ReadWrite,
0x00000000, // Granularity
SBSA_PCIE_MMIO_BASE, // Min Base Address
SBSA_PCIE_MMIO_LIMIT, // Max Base Address
0, // Translate
SBSA_PCIE_MMIO_SIZE // Length
)
QWordMemory ( // 64-bit BAR Windows
ResourceProducer, PosDecode,
MinFixed, MaxFixed,
Cacheable, ReadWrite,
0x00000000, // Granularity
SBSA_PCIE_MMIO_HIGH_BASE, // Min Base Address
SBSA_PCIE_MMIO_HIGH_LIMIT, // Max Base Address
0, // Translate
SBSA_PCIE_MMIO_HIGH_SIZE // Length
)
DWordIo ( // IO window
ResourceProducer,
MinFixed,
MaxFixed,
PosDecode,
EntireRange,
0x00000000, // Granularity
0, // Min Base Address
0xffff, // Max Base Address
SBSA_PCIE_PIO_BASE, // Translate
0x10000, // Length
,,,TypeTranslation
)
}) // Name(RBUF)
Return (RBUF)
} // Method(_CRS)
// OS Control Handoff
Name (SUPP, Zero) // PCI _OSC Support Field value
Name (CTRL, Zero) // PCI _OSC Control Field value
/*
* See [1] 6.2.10, [2] 4.5
*/
Method (_OSC,4) {
// Check for proper UUID
If (Arg0 == ToUUID("33DB4D5B-1FF7-401C-9657-7441C03DD766")) {
// Create DWord-adressable fields from the Capabilities Buffer
CreateDWordField (Arg3,0,CDW1)
CreateDWordField (Arg3,4,CDW2)
CreateDWordField (Arg3,8,CDW3)
// Save Capabilities DWord2 & 3
SUPP = CDW2
CTRL = CDW3
// Only allow native hot plug control if OS supports:
// * ASPM
// * Clock PM
// * MSI/MSI-X
If ((SUPP & 0x16) != 0x16) {
CTRL &= 0x1E // Mask bit 0 (and undefined bits)
}
// Always allow native PME, AER (no dependencies)
// Never allow SHPC (no SHPC controller in this system)
CTRL &= 0x1D
If (Arg1 != One) { // Unknown revision
CDW1 |= 0x08
}
If (CDW3 != CTRL) { // Capabilities bits were masked
CDW1 |= 0x10
}
// Update DWORD3 in the buffer
CDW3 = CTRL
Return (Arg3)
} Else {
CDW1 |= 4 // Unrecognized UUID
Return (Arg3)
}
} // End _OSC
}
} // Scope (_SB)
}

View File

@@ -0,0 +1,23 @@
#
# custom fmap which takes the additional TF-A region into account
#
# +-------------+ <-- 0x0
# | TF-A |
# +-------------+ <-- BIOS_BASE
# | bootblock |
# +-------------+ <-- BIOS_BASE + 128K
# | FMAP |
# +-------------+ <-- BIOS_BASE + 128K + FMAP_SIZE
# | CBFS |
# +-------------+ <-- ROM_SIZE
#
FLASH@0x10000000 CONFIG_ROM_SIZE {
BIOS {
BOOTBLOCK 128K
FMAP 0x200
COREBOOT(CBFS)
}
}

View File

@@ -0,0 +1,32 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Base addresses for QEMU sbsa-ref machine
* [hw/arm/sbsa-ref.c, c6f3cbca32bde9ee94d9949aa63e8a7ef2d7bc5b]
*/
#define SBSA_FLASH_BASE 0x00000000
#define SBSA_FLASH_SIZE 0x20000000
#define SBSA_GIC_DIST 0x40060000
#define SBSA_GIC_REDIST 0x40080000
#define SBSA_GWDT_REFRESH 0x50010000
#define SBSA_GWDT_CONTROL 0x50011000
#define SBSA_UART_BASE 0x60000000
#define SBSA_RTC_BASE 0x60010000
#define SBSA_GPIO_BASE 0x60020000
#define SBSA_SECURE_UART_BASE 0x60030000
#define SBSA_SMMU_BASE 0x60050000
#define SBSA_AHCI_BASE 0x60100000
#define SBSA_EHCI_BASE 0x60110000
#define SBSA_SECMEM_BASE 0x20000000
#define SBSA_SECMEM_SIZE 0x20000000
#define SBSA_PCIE_MMIO_BASE 0x80000000
#define SBSA_PCIE_MMIO_LIMIT 0xefffffff
#define SBSA_PCIE_MMIO_SIZE 0x70000000
#define SBSA_PCIE_PIO_BASE 0x7fff0000
#define SBSA_PCIE_ECAM_BASE 0xf0000000
#define SBSA_PCIE_ECAM_LIMIT 0xffffffff
#define SBSA_PCIE_ECAM_SIZE 0x10000000
#define SBSA_PCIE_MMIO_HIGH_BASE 0x100000000
#define SBSA_PCIE_MMIO_HIGH_LIMIT 0xffffffffff
#define SBSA_PCIE_MMIO_HIGH_SIZE 0xff00000000

View File

@@ -0,0 +1,170 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include "chip.h"
#include <acpi/acpigen.h>
#include <arch/mmu.h>
#include <bootmem.h>
#include <cbfs.h>
#include <device/device.h>
#include <device_tree.h>
#include <bootmem.h>
#include <arch/mmu.h>
#include <mainboard/addressmap.h>
#include <stdint.h>
#include <symbols.h>
static size_t ram_size(void)
{
return (size_t)cbmem_top() - (uintptr_t)_dram;
}
static void mainboard_init(void *chip_info)
{
mmu_config_range(_dram, ram_size(), MA_MEM | MA_RW);
}
void smbios_cpu_get_core_counts(u16 *core_count, u16 *thread_count)
{
*core_count = 0;
struct device *dev = NULL;
while ((dev = dev_find_path(dev, DEVICE_PATH_GICC_V3)))
*core_count += 1;
*thread_count = 1;
}
static void qemu_aarch64_init(struct device *dev)
{
struct memory_info *mem_info;
mem_info = cbmem_add(CBMEM_ID_MEMINFO, sizeof(*mem_info));
if (mem_info == NULL)
return;
memset(mem_info, 0, sizeof(*mem_info));
mem_info->ecc_type = MEMORY_ARRAY_ECC_UNKNOWN;
mem_info->max_capacity_mib = 0x800000; // Fixed at 8 TiB for qemu-sbsa
mem_info->number_of_devices = mem_info->dimm_cnt = 1;
mem_info->dimm[0].dimm_size = ram_size() / MiB;
mem_info->dimm[0].ddr_type = MEMORY_TYPE_DRAM;
mem_info->dimm[0].ddr_frequency = 0;
mem_info->dimm[0].channel_num = mem_info->dimm[0].dimm_num = 0;
mem_info->dimm[0].bank_locator = 0;
mem_info->dimm[0].bus_width = 0x03; // 64-bit, no parity
mem_info->dimm[0].vdd_voltage = 0;
mem_info->dimm[0].max_speed_mts = mem_info->dimm[0].configured_speed_mts = 0;
}
static unsigned long mb_write_acpi_tables(const struct device *dev, unsigned long current,
acpi_rsdp_t *rsdp)
{
printk(BIOS_DEBUG, "ACPI: * DBG2\n");
return acpi_pl011_write_dbg2_uart(rsdp, current, SBSA_UART_BASE, "\\_SB.COM0");
}
static void mainboard_enable(struct device *dev)
{
dev->ops->init = qemu_aarch64_init;
dev->ops->write_acpi_tables = mb_write_acpi_tables;
}
struct chip_operations mainboard_ops = {
.enable_dev = mainboard_enable,
.init = mainboard_init,
};
struct chip_operations mainboard_emulation_qemu_sbsa_ops = { };
static void qemu_aarch64_domain_read_resources(struct device *dev)
{
struct resource *res;
int index = 0;
/* Initialize the system-wide I/O space constraints. */
res = new_resource(dev, index++);
res->limit = 0xffffUL;
res->flags = IORESOURCE_IO | IORESOURCE_ASSIGNED;
/* Initialize the system-wide memory resources constraints. */
res = new_resource(dev, index++);
res->base = SBSA_PCIE_MMIO_BASE;
res->limit = SBSA_PCIE_MMIO_LIMIT;
res->flags = IORESOURCE_MEM | IORESOURCE_ASSIGNED;
res = new_resource(dev, index++);
res->base = SBSA_PCIE_MMIO_HIGH_BASE;
res->limit = SBSA_PCIE_MMIO_HIGH_LIMIT;
res->flags = IORESOURCE_MEM | IORESOURCE_ASSIGNED;
mmio_range(dev, index++, SBSA_PCIE_ECAM_BASE, SBSA_PCIE_ECAM_SIZE);
ram_range(dev, index++, (uintptr_t)_dram, ram_size());
mmio_range(dev, index++, SBSA_FLASH_BASE, SBSA_FLASH_SIZE);
reserved_ram_range(dev, index++, SBSA_SECMEM_BASE, SBSA_SECMEM_SIZE);
}
struct device_operations qemu_aarch64_pci_domain_ops = {
.read_resources = qemu_aarch64_domain_read_resources,
.set_resources = pci_domain_set_resources,
.scan_bus = pci_host_bridge_scan_bus,
};
static void qemu_sbsa_fill_cpu_ssdt(const struct device *dev)
{
acpigen_write_processor_device(dev->path.gicc_v3.mpidr);
acpigen_write_processor_device_end();
}
struct device_operations qemu_sbsa_cpu_ops = {
.acpi_fill_ssdt = qemu_sbsa_fill_cpu_ssdt,
};
DECLARE_REGION(fdt_pointer)
static void qemu_aarch64_scan_bus(struct device *dev)
{
struct bus *bus = alloc_bus(dev);
uintptr_t fdt_blob = *(uintptr_t *)_fdt_pointer;
struct device_tree *tree;
struct device_tree_node *node;
char path[14];
u16 fdt_cpu_count = 0;
struct mainboard_emulation_qemu_sbsa_config *config = dev->chip_info;
tree = fdt_unflatten((void *)fdt_blob);
if (tree == NULL)
return;
snprintf(path, sizeof(path), "/cpus/cpu@%d", fdt_cpu_count);
while ((node = dt_find_node_by_path(tree, path, NULL, NULL, 0)) != NULL) {
struct device_tree_property *prop;
int64_t mpidr = -1;
list_for_each(prop, node->properties, list_node) {
if (!strcmp("reg", prop->prop.name)) {
mpidr = be64toh(*(uint64_t *)prop->prop.data);
break;
}
}
if (mpidr >= 0) {
struct device_path devpath = { .type = DEVICE_PATH_GICC_V3,
.gicc_v3 = { .mpidr = mpidr,
.vgic_mi = config->vgic_maintenance_interrupt,
.pi_gsiv = config->performance_interrupt_gsiv, },
};
struct device *cpu = alloc_dev(bus, &devpath);
assert(cpu);
cpu->ops = &qemu_sbsa_cpu_ops;
}
snprintf(path, sizeof(path), "/cpus/cpu@%d", ++fdt_cpu_count);
}
}
struct device_operations qemu_aarch64_cpu_ops = {
.scan_bus = qemu_aarch64_scan_bus,
};

View File

@@ -0,0 +1,12 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <boot_device.h>
/* Maps directly to NOR flash up to ROM size. */
static const struct mem_region_device boot_dev =
MEM_REGION_DEV_RO_INIT((void *)0x10000000, CONFIG_ROM_SIZE);
const struct region_device *boot_device_ro(void)
{
return &boot_dev.rdev;
}

View File

@@ -0,0 +1,25 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <memlayout.h>
#include <arch/header.ld>
/*
* Memory map for QEMU sbsa-ref machine since
* [hw/arm/sbsa-ref.c, c6f3cbca32bde9ee94d9949aa63e8a7ef2d7bc5b]
*/
SECTIONS
{
REGION(flash, 0x10000000, CONFIG_ROM_SIZE, 8)
DRAM_START(0x10000000000)
BOOTBLOCK(0x10020010000, 64K)
STACK(0x10020020000, 54K)
CBFS_MCACHE(0x1002002D800, 8K)
FMAP_CACHE(0x1002002F800, 2K)
TIMESTAMP(0x10020030000, 1K)
TTB(0x10020070000, 128K)
RAMSTAGE(0x100200b0000, 16M)
REGION(fdt_pointer, 0x100210b0000, ARCH_POINTER_ALIGN_SIZE, ARCH_POINTER_ALIGN_SIZE)
POSTRAM_CBFS_CACHE(0x10021200000, 1M)
}

View File

@@ -0,0 +1,9 @@
/* SPDX-License-Identifier: GPL-2.0-or-later */
#include <console/uart.h>
#include <mainboard/addressmap.h>
uintptr_t uart_platform_base(unsigned int idx)
{
return SBSA_UART_BASE;
}