coreboot: introduce commonlib

Instead of reaching into src/include and re-writing code
allow for cleaner code sharing within coreboot and its
utilities. The additional thing needed at this point is
for the utilities to provide a printk() declaration within
a <console/console.h> file. That way code which uses printk()
can than be mapped properly to verbosity of utility parameters.

Change-Id: I9e46a279569733336bc0a018aed96bc924c07cdd
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11592
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
This commit is contained in:
Aaron Durbin
2015-09-08 13:34:43 -05:00
parent 4b93a4f47a
commit dc9f5cd546
85 changed files with 619 additions and 582 deletions

View File

@ -19,7 +19,7 @@
#ifndef ASSETS_H
#define ASSETS_H
#include <region.h>
#include <commonlib/region.h>
/* An asset represents data used to boot the system. It can be found within
* CBFS or some other mechanism. While CBFS can be a source of an asset, note

View File

@ -1,389 +1,7 @@
#ifndef COREBOOT_TABLES_H
#define COREBOOT_TABLES_H
#include <stdint.h>
/* The coreboot table information is for conveying information
* from the firmware to the loaded OS image. Primarily this
* is expected to be information that cannot be discovered by
* other means, such as querying the hardware directly.
*
* All of the information should be Position Independent Data.
* That is it should be safe to relocated any of the information
* without it's meaning/correctness changing. For table that
* can reasonably be used on multiple architectures the data
* size should be fixed. This should ease the transition between
* 32 bit and 64 bit architectures etc.
*
* The completeness test for the information in this table is:
* - Can all of the hardware be detected?
* - Are the per motherboard constants available?
* - Is there enough to allow a kernel to run that was written before
* a particular motherboard is constructed? (Assuming the kernel
* has drivers for all of the hardware but it does not have
* assumptions on how the hardware is connected together).
*
* With this test it should be straight forward to determine if a
* table entry is required or not. This should remove much of the
* long term compatibility burden as table entries which are
* irrelevant or have been replaced by better alternatives may be
* dropped. Of course it is polite and expedite to include extra
* table entries and be backwards compatible, but it is not required.
*/
/* Since coreboot is usually compiled 32bit, gcc will align 64bit
* types to 32bit boundaries. If the coreboot table is dumped on a
* 64bit system, a uint64_t would be aligned to 64bit boundaries,
* breaking the table format.
*
* lb_uint64 will keep 64bit coreboot table values aligned to 32bit
* to ensure compatibility. They can be accessed with the two functions
* below: unpack_lb64() and pack_lb64()
*
* See also: util/lbtdump/lbtdump.c
*/
struct lb_uint64 {
uint32_t lo;
uint32_t hi;
};
static inline uint64_t unpack_lb64(struct lb_uint64 value)
{
uint64_t result;
result = value.hi;
result = (result << 32) + value.lo;
return result;
}
static inline struct lb_uint64 pack_lb64(uint64_t value)
{
struct lb_uint64 result;
result.lo = (value >> 0) & 0xffffffff;
result.hi = (value >> 32) & 0xffffffff;
return result;
}
struct lb_header
{
uint8_t signature[4]; /* LBIO */
uint32_t header_bytes;
uint32_t header_checksum;
uint32_t table_bytes;
uint32_t table_checksum;
uint32_t table_entries;
};
/* Every entry in the boot environment list will correspond to a boot
* info record. Encoding both type and size. The type is obviously
* so you can tell what it is. The size allows you to skip that
* boot environment record if you don't know what it is. This allows
* forward compatibility with records not yet defined.
*/
struct lb_record {
uint32_t tag; /* tag ID */
uint32_t size; /* size of record (in bytes) */
};
#define LB_TAG_UNUSED 0x0000
#define LB_TAG_MEMORY 0x0001
struct lb_memory_range {
struct lb_uint64 start;
struct lb_uint64 size;
uint32_t type;
#define LB_MEM_RAM 1 /* Memory anyone can use */
#define LB_MEM_RESERVED 2 /* Don't use this memory region */
#define LB_MEM_ACPI 3 /* ACPI Tables */
#define LB_MEM_NVS 4 /* ACPI NVS Memory */
#define LB_MEM_UNUSABLE 5 /* Unusable address space */
#define LB_MEM_VENDOR_RSVD 6 /* Vendor Reserved */
#define LB_MEM_TABLE 16 /* Ram configuration tables are kept in */
};
struct lb_memory {
uint32_t tag;
uint32_t size;
struct lb_memory_range map[0];
};
#define LB_TAG_HWRPB 0x0002
struct lb_hwrpb {
uint32_t tag;
uint32_t size;
uint64_t hwrpb;
};
#define LB_TAG_MAINBOARD 0x0003
struct lb_mainboard {
uint32_t tag;
uint32_t size;
uint8_t vendor_idx;
uint8_t part_number_idx;
uint8_t strings[0];
};
#define LB_TAG_VERSION 0x0004
#define LB_TAG_EXTRA_VERSION 0x0005
#define LB_TAG_BUILD 0x0006
#define LB_TAG_COMPILE_TIME 0x0007
#define LB_TAG_COMPILE_BY 0x0008
#define LB_TAG_COMPILE_HOST 0x0009
#define LB_TAG_COMPILE_DOMAIN 0x000a
#define LB_TAG_COMPILER 0x000b
#define LB_TAG_LINKER 0x000c
#define LB_TAG_ASSEMBLER 0x000d
struct lb_string {
uint32_t tag;
uint32_t size;
uint8_t string[0];
};
#define LB_TAG_VERSION_TIMESTAMP 0x0026
struct lb_timestamp {
uint32_t tag;
uint32_t size;
uint32_t timestamp;
};
/* 0xe is taken by v3 */
#define LB_TAG_SERIAL 0x000f
struct lb_serial {
uint32_t tag;
uint32_t size;
#define LB_SERIAL_TYPE_IO_MAPPED 1
#define LB_SERIAL_TYPE_MEMORY_MAPPED 2
uint32_t type;
uint32_t baseaddr;
uint32_t baud;
uint32_t regwidth;
};
#define LB_TAG_CONSOLE 0x0010
struct lb_console {
uint32_t tag;
uint32_t size;
uint16_t type;
};
#define LB_TAG_CONSOLE_SERIAL8250 0
#define LB_TAG_CONSOLE_VGA 1 // OBSOLETE
#define LB_TAG_CONSOLE_BTEXT 2 // OBSOLETE
#define LB_TAG_CONSOLE_LOGBUF 3 // OBSOLETE
#define LB_TAG_CONSOLE_SROM 4 // OBSOLETE
#define LB_TAG_CONSOLE_EHCI 5
#define LB_TAG_CONSOLE_SERIAL8250MEM 6
#define LB_TAG_FORWARD 0x0011
struct lb_forward {
uint32_t tag;
uint32_t size;
uint64_t forward;
};
#define LB_TAG_FRAMEBUFFER 0x0012
struct lb_framebuffer {
uint32_t tag;
uint32_t size;
uint64_t physical_address;
uint32_t x_resolution;
uint32_t y_resolution;
uint32_t bytes_per_line;
uint8_t bits_per_pixel;
uint8_t red_mask_pos;
uint8_t red_mask_size;
uint8_t green_mask_pos;
uint8_t green_mask_size;
uint8_t blue_mask_pos;
uint8_t blue_mask_size;
uint8_t reserved_mask_pos;
uint8_t reserved_mask_size;
};
#define LB_TAG_GPIO 0x0013
struct lb_gpio {
uint32_t port;
uint32_t polarity;
#define ACTIVE_LOW 0
#define ACTIVE_HIGH 1
uint32_t value;
#define GPIO_MAX_NAME_LENGTH 16
uint8_t name[GPIO_MAX_NAME_LENGTH];
};
struct lb_gpios {
uint32_t tag;
uint32_t size;
uint32_t count;
struct lb_gpio gpios[0];
};
#define LB_TAG_VDAT 0x0015
#define LB_TAG_VBNV 0x0019
#define LB_TAB_VBOOT_HANDOFF 0x0020
#define LB_TAB_DMA 0x0022
#define LB_TAG_RAM_OOPS 0x0023
#define LB_TAG_MTC 0x002b
struct lb_range {
uint32_t tag;
uint32_t size;
uint64_t range_start;
uint32_t range_size;
};
void lb_ramoops(struct lb_header *header);
#define LB_TAG_TIMESTAMPS 0x0016
#define LB_TAG_CBMEM_CONSOLE 0x0017
#define LB_TAG_MRC_CACHE 0x0018
#define LB_TAG_ACPI_GNVS 0x0024
#define LB_TAG_WIFI_CALIBRATION 0x0027
struct lb_cbmem_ref {
uint32_t tag;
uint32_t size;
uint64_t cbmem_addr;
};
#define LB_TAG_X86_ROM_MTRR 0x0021
struct lb_x86_rom_mtrr {
uint32_t tag;
uint32_t size;
/* The variable range MTRR index covering the ROM. */
uint32_t index;
};
#define LB_TAG_BOARD_ID 0x0025
struct lb_board_id {
uint32_t tag;
uint32_t size;
/* Board ID as retrieved from the board revision GPIOs. */
uint32_t board_id;
};
#define LB_TAG_MAC_ADDRS 0x0026
struct mac_address {
uint8_t mac_addr[6];
uint8_t pad[2]; /* Pad it to 8 bytes to keep it simple. */
};
struct lb_macs {
uint32_t tag;
uint32_t size;
uint32_t count;
struct mac_address mac_addrs[0];
};
#define LB_TAG_RAM_CODE 0x0028
struct lb_ram_code {
uint32_t tag;
uint32_t size;
uint32_t ram_code;
};
#define LB_TAG_SPI_FLASH 0x0029
struct lb_spi_flash {
uint32_t tag;
uint32_t size;
uint32_t flash_size;
uint32_t sector_size;
uint32_t erase_cmd;
};
#define LB_TAG_BOOT_MEDIA_PARAMS 0x0030
struct lb_boot_media_params {
uint32_t tag;
uint32_t size;
/* offsets are relative to start of boot media */
uint64_t fmap_offset;
uint64_t cbfs_offset;
uint64_t cbfs_size;
uint64_t boot_media_size;
};
#define LB_TAG_SERIALNO 0x002a
#define MAX_SERIALNO_LENGTH 32
/* The following structures are for the cmos definitions table */
#define LB_TAG_CMOS_OPTION_TABLE 200
/* cmos header record */
struct cmos_option_table {
uint32_t tag; /* CMOS definitions table type */
uint32_t size; /* size of the entire table */
uint32_t header_length; /* length of header */
};
/* cmos entry record
This record is variable length. The name field may be
shorter than CMOS_MAX_NAME_LENGTH. The entry may start
anywhere in the byte, but can not span bytes unless it
starts at the beginning of the byte and the length is
fills complete bytes.
*/
#define LB_TAG_OPTION 201
struct cmos_entries {
uint32_t tag; /* entry type */
uint32_t size; /* length of this record */
uint32_t bit; /* starting bit from start of image */
uint32_t length; /* length of field in bits */
uint32_t config; /* e=enumeration, h=hex, r=reserved */
uint32_t config_id; /* a number linking to an enumeration record */
#define CMOS_MAX_NAME_LENGTH 32
uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name of entry in ascii,
variable length int aligned */
};
/* cmos enumerations record
This record is variable length. The text field may be
shorter than CMOS_MAX_TEXT_LENGTH.
*/
#define LB_TAG_OPTION_ENUM 202
struct cmos_enums {
uint32_t tag; /* enumeration type */
uint32_t size; /* length of this record */
uint32_t config_id; /* a number identifying the config id */
uint32_t value; /* the value associated with the text */
#define CMOS_MAX_TEXT_LENGTH 32
uint8_t text[CMOS_MAX_TEXT_LENGTH]; /* enum description in ascii,
variable length int aligned */
};
/* cmos defaults record
This record contains default settings for the cmos ram.
*/
#define LB_TAG_OPTION_DEFAULTS 203
struct cmos_defaults {
uint32_t tag; /* default type */
uint32_t size; /* length of this record */
uint32_t name_length; /* length of the following name field */
uint8_t name[CMOS_MAX_NAME_LENGTH]; /* name identifying the default */
#define CMOS_IMAGE_BUFFER_SIZE 256
uint8_t default_set[CMOS_IMAGE_BUFFER_SIZE]; /* default settings */
};
#define LB_TAG_OPTION_CHECKSUM 204
struct cmos_checksum {
uint32_t tag;
uint32_t size;
/* In practice everything is byte aligned, but things are measured
* in bits to be consistent.
*/
uint32_t range_start; /* First bit that is checksummed (byte aligned) */
uint32_t range_end; /* Last bit that is checksummed (byte aligned) */
uint32_t location; /* First bit of the checksum (byte aligned) */
uint32_t type; /* Checksum algorithm that is used */
#define CHECKSUM_NONE 0
#define CHECKSUM_PCBIOS 1
};
#include <commonlib/coreboot_tables.h>
/* function prototypes for building the coreboot table */
unsigned long write_coreboot_table(

View File

@ -20,7 +20,7 @@
#ifndef _BOOT_DEVICE_H_
#define _BOOT_DEVICE_H_
#include <region.h>
#include <commonlib/region.h>
/* Return the region_device for the read-only boot device. */
const struct region_device *boot_device_ro(void);

View File

@ -20,9 +20,9 @@
#ifndef _CBFS_H_
#define _CBFS_H_
#include <cbfs_serialized.h>
#include <commonlib/cbfs_serialized.h>
#include <commonlib/region.h>
#include <program_loading.h>
#include <region.h>
/*
* CBFS operations consist of the following concepts:

View File

@ -1,190 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008 Jordan Crouse <jordan@cosmicpenguin.net>
* Copyright (C) 2012 Google, Inc.
* Copyright (C) 2013 The Chromium OS Authors. All rights reserved.
*
* This file is dual-licensed. You can choose between:
* - The GNU GPL, version 2, as published by the Free Software Foundation
* - The revised BSD license (without advertising clause)
*
* ---------------------------------------------------------------------------
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
* ---------------------------------------------------------------------------
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ---------------------------------------------------------------------------
*/
#ifndef _CBFS_SERIALIZED_H_
#define _CBFS_SERIALIZED_H_
#include <stdint.h>
/** These are standard values for the known compression
algorithms that coreboot knows about for stages and
payloads. Of course, other CBFS users can use whatever
values they want, as long as they understand them. */
#define CBFS_COMPRESS_NONE 0
#define CBFS_COMPRESS_LZMA 1
/** These are standard component types for well known
components (i.e - those that coreboot needs to consume.
Users are welcome to use any other value for their
components */
#define CBFS_TYPE_STAGE 0x10
#define CBFS_TYPE_PAYLOAD 0x20
#define CBFS_TYPE_OPTIONROM 0x30
#define CBFS_TYPE_BOOTSPLASH 0x40
#define CBFS_TYPE_RAW 0x50
#define CBFS_TYPE_VSA 0x51
#define CBFS_TYPE_MBI 0x52
#define CBFS_TYPE_MICROCODE 0x53
#define CBFS_TYPE_FSP 0x60
#define CBFS_TYPE_MRC 0x61
#define CBFS_COMPONENT_CMOS_DEFAULT 0xaa
#define CBFS_TYPE_SPD 0xab
#define CBFS_TYPE_MRC_CACHE 0xac
#define CBFS_COMPONENT_CMOS_LAYOUT 0x01aa
#define CBFS_HEADER_MAGIC 0x4F524243
#define CBFS_HEADER_VERSION1 0x31313131
#define CBFS_HEADER_VERSION2 0x31313132
#define CBFS_HEADER_VERSION CBFS_HEADER_VERSION2
/* this is the master cbfs header - it must be located somewhere available
* to bootblock (to load romstage). The last 4 bytes in the image contain its
* relative offset from the end of the image (as a 32-bit signed integer). */
struct cbfs_header {
uint32_t magic;
uint32_t version;
uint32_t romsize;
uint32_t bootblocksize;
uint32_t align; /* fixed to 64 bytes */
uint32_t offset;
uint32_t architecture;
uint32_t pad[1];
} __attribute__((packed));
/* this used to be flexible, but wasn't ever set to something different. */
#define CBFS_ALIGNMENT 64
/* "Unknown" refers to CBFS headers version 1,
* before the architecture was defined (i.e., x86 only).
*/
#define CBFS_ARCHITECTURE_UNKNOWN 0xFFFFFFFF
#define CBFS_ARCHITECTURE_X86 0x00000001
#define CBFS_ARCHITECTURE_ARM 0x00000010
/** This is a component header - every entry in the CBFS
will have this header.
This is how the component is arranged in the ROM:
-------------- <- 0
component header
-------------- <- sizeof(struct component)
component name
-------------- <- offset
data
...
-------------- <- offset + len
*/
#define CBFS_FILE_MAGIC "LARCHIVE"
struct cbfs_file {
char magic[8];
uint32_t len;
uint32_t type;
uint32_t checksum;
uint32_t offset;
} __attribute__((packed));
/*
* ROMCC does not understand uint64_t, so we hide future definitions as they are
* unlikely to be ever needed from ROMCC
*/
#ifndef __ROMCC__
/*** Component sub-headers ***/
/* Following are component sub-headers for the "standard"
component types */
/** This is the sub-header for stage components. Stages are
loaded by coreboot during the normal boot process */
struct cbfs_stage {
uint32_t compression; /** Compression type */
uint64_t entry; /** entry point */
uint64_t load; /** Where to load in memory */
uint32_t len; /** length of data to load */
uint32_t memlen; /** total length of object in memory */
} __attribute__((packed));
/** this is the sub-header for payload components. Payloads
are loaded by coreboot at the end of the boot process */
struct cbfs_payload_segment {
uint32_t type;
uint32_t compression;
uint32_t offset;
uint64_t load_addr;
uint32_t len;
uint32_t mem_len;
} __attribute__((packed));
struct cbfs_payload {
struct cbfs_payload_segment segments;
};
#define PAYLOAD_SEGMENT_CODE 0x45444F43
#define PAYLOAD_SEGMENT_DATA 0x41544144
#define PAYLOAD_SEGMENT_BSS 0x20535342
#define PAYLOAD_SEGMENT_PARAMS 0x41524150
#define PAYLOAD_SEGMENT_ENTRY 0x52544E45
struct cbfs_optionrom {
uint32_t compression;
uint32_t len;
} __attribute__((packed));
#endif /* __ROMCC__ */
#endif /* _CBFS_SERIALIZED_H_ */

View File

@ -21,7 +21,7 @@
#ifndef _CBMEM_H_
#define _CBMEM_H_
#include <cbmem_id.h>
#include <commonlib/cbmem_id.h>
#include <rules.h>
#if IS_ENABLED(CONFIG_HAVE_ACPI_RESUME) && \

View File

@ -1,113 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2009 coresystems GmbH
* Copyright (C) 2013 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#ifndef _CBMEM_ID_H_
#define _CBMEM_ID_H_
#define CBMEM_ID_ACPI 0x41435049
#define CBMEM_ID_ACPI_GNVS 0x474e5653
#define CBMEM_ID_ACPI_GNVS_PTR 0x474e5650
#define CBMEM_ID_AGESA_RUNTIME 0x41474553
#define CBMEM_ID_AMDMCT_MEMINFO 0x494D454E
#define CBMEM_ID_CAR_GLOBALS 0xcac4e6a3
#define CBMEM_ID_CBTABLE 0x43425442
#define CBMEM_ID_CONSOLE 0x434f4e53
#define CBMEM_ID_COVERAGE 0x47434f56
#define CBMEM_ID_EHCI_DEBUG 0xe4c1deb9
#define CBMEM_ID_ELOG 0x454c4f47
#define CBMEM_ID_FREESPACE 0x46524545
#define CBMEM_ID_FSP_RESERVED_MEMORY 0x46535052
#define CBMEM_ID_FSP_RUNTIME 0x52505346
#define CBMEM_ID_GDT 0x4c474454
#define CBMEM_ID_HOB_POINTER 0x484f4221
#define CBMEM_ID_IGD_OPREGION 0x4f444749
#define CBMEM_ID_IMD_ROOT 0xff4017ff
#define CBMEM_ID_IMD_SMALL 0x53a11439
#define CBMEM_ID_MEMINFO 0x494D454D
#define CBMEM_ID_MPTABLE 0x534d5054
#define CBMEM_ID_MRCDATA 0x4d524344
#define CBMEM_ID_MTC 0xcb31d31c
#define CBMEM_ID_NONE 0x00000000
#define CBMEM_ID_PIRQ 0x49525154
#define CBMEM_ID_POWER_STATE 0x50535454
#define CBMEM_ID_RAM_OOPS 0x05430095
#define CBMEM_ID_RAMSTAGE 0x9a357a9e
#define CBMEM_ID_RAMSTAGE_CACHE 0x9a3ca54e
#define CBMEM_ID_REFCODE 0x04efc0de
#define CBMEM_ID_REFCODE_CACHE 0x4efc0de5
#define CBMEM_ID_RESUME 0x5245534d
#define CBMEM_ID_RESUME_SCRATCH 0x52455343
#define CBMEM_ID_ROMSTAGE_INFO 0x47545352
#define CBMEM_ID_ROMSTAGE_RAM_STACK 0x90357ac4
#define CBMEM_ID_ROOT 0xff4007ff
#define CBMEM_ID_SMBIOS 0x534d4254
#define CBMEM_ID_SMM_SAVE_SPACE 0x07e9acee
#define CBMEM_ID_SPINTABLE 0x59175917
#define CBMEM_ID_STAGEx_META 0x57a9e000
#define CBMEM_ID_STAGEx_CACHE 0x57a9e100
#define CBMEM_ID_TCPA_LOG 0x54435041
#define CBMEM_ID_TIMESTAMP 0x54494d45
#define CBMEM_ID_VBOOT_HANDOFF 0x780074f0
#define CBMEM_ID_VBOOT_WORKBUF 0x78007343
#define CBMEM_ID_WIFI_CALIBRATION 0x57494649
#define CBMEM_ID_TO_NAME_TABLE \
{ CBMEM_ID_ACPI, "ACPI " }, \
{ CBMEM_ID_ACPI_GNVS, "ACPI GNVS " }, \
{ CBMEM_ID_ACPI_GNVS_PTR, "GNVS PTR " }, \
{ CBMEM_ID_AGESA_RUNTIME, "AGESA RSVD " }, \
{ CBMEM_ID_AMDMCT_MEMINFO, "AMDMEM INFO" }, \
{ CBMEM_ID_CAR_GLOBALS, "CAR GLOBALS" }, \
{ CBMEM_ID_CBTABLE, "COREBOOT " }, \
{ CBMEM_ID_CONSOLE, "CONSOLE " }, \
{ CBMEM_ID_COVERAGE, "COVERAGE " }, \
{ CBMEM_ID_EHCI_DEBUG, "USBDEBUG " }, \
{ CBMEM_ID_ELOG, "ELOG " }, \
{ CBMEM_ID_FREESPACE, "FREE SPACE " }, \
{ CBMEM_ID_FSP_RESERVED_MEMORY, "FSP MEMORY " }, \
{ CBMEM_ID_FSP_RUNTIME, "FSP RUNTIME" }, \
{ CBMEM_ID_GDT, "GDT " }, \
{ CBMEM_ID_IMD_ROOT, "IMD ROOT " }, \
{ CBMEM_ID_IMD_SMALL, "IMD SMALL " }, \
{ CBMEM_ID_MEMINFO, "MEM INFO " }, \
{ CBMEM_ID_MPTABLE, "SMP TABLE " }, \
{ CBMEM_ID_MRCDATA, "MRC DATA " }, \
{ CBMEM_ID_MTC, "MTC " }, \
{ CBMEM_ID_PIRQ, "IRQ TABLE " }, \
{ CBMEM_ID_POWER_STATE, "POWER STATE" }, \
{ CBMEM_ID_RAM_OOPS, "RAMOOPS " }, \
{ CBMEM_ID_RAMSTAGE_CACHE, "RAMSTAGE $ " }, \
{ CBMEM_ID_RAMSTAGE, "RAMSTAGE " }, \
{ CBMEM_ID_REFCODE_CACHE, "REFCODE $ " }, \
{ CBMEM_ID_REFCODE, "REFCODE " }, \
{ CBMEM_ID_RESUME, "ACPI RESUME" }, \
{ CBMEM_ID_RESUME_SCRATCH, "ACPISCRATCH" }, \
{ CBMEM_ID_ROMSTAGE_INFO, "ROMSTAGE " }, \
{ CBMEM_ID_ROMSTAGE_RAM_STACK, "ROMSTG STCK" }, \
{ CBMEM_ID_ROOT, "CBMEM ROOT " }, \
{ CBMEM_ID_SMBIOS, "SMBIOS " }, \
{ CBMEM_ID_SMM_SAVE_SPACE, "SMM BACKUP " }, \
{ CBMEM_ID_SPINTABLE, "SPIN TABLE " }, \
{ CBMEM_ID_TCPA_LOG, "TCPA LOG " }, \
{ CBMEM_ID_TIMESTAMP, "TIME STAMP " }, \
{ CBMEM_ID_VBOOT_HANDOFF, "VBOOT " }, \
{ CBMEM_ID_VBOOT_WORKBUF, "VBOOT WORK " }, \
{ CBMEM_ID_WIFI_CALIBRATION, "WIFI CLBR " },
#endif /* _CBMEM_ID_H_ */

View File

@ -23,7 +23,7 @@
#include <stdint.h>
#include <rules.h>
#include <console/post_codes.h>
#include <console/loglevel.h>
#include <commonlib/loglevel.h>
#ifndef __ROMCC__
struct console_driver {

View File

@ -24,7 +24,7 @@
#include <console/console.h>
#include <console/streams.h>
#include <console/loglevel.h>
#include <commonlib/loglevel.h>
/* While in romstage, console loglevel is built-time constant.
* With ROMCC we inline this test with help from preprocessor.

View File

@ -1,178 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2015 Nicholas Sielicki <sielicki@nicky.io>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#ifndef LOGLEVEL_H
#define LOGLEVEL_H
/**
* @file loglevel.h
*
* \brief Definitions of the log levels to be used in printk calls.
*
* Safe for inclusion in assembly.
*
*/
/**
* \brief BIOS_EMERG - Emergency / Fatal
*
* Log level for when the system is entirely unusable. To be used when execution
* is halting as a result of the failure. No further instructions should run.
*
* Example - End of all debug output / death notice.
*
* @{
*/
#define BIOS_EMERG 0
/** @} */
/**
* \brief BIOS_ALERT - Dying / Unrecoverable
*
* Log level for when the system is certainly in the process of dying.
* To be used when execution will eventually halt as a result of the
* failure, but the system can still output valuable debugging
* information.
*
* Example - Ram initialization fails, dumping relevant POST codes and
* information
*
* @{
*/
#define BIOS_ALERT 1
/** @} */
/**
* \brief BIOS_CRIT - Recovery unlikely
*
* Log level for when the system has experienced a dire issue in essential
* components. To be used when boot will probably be unsuccessful as a
* result of the failure, but recovery/retry can be attempted.
*
* Example - MSR failures, SMM/SMI failures.
* or
*
* @{
*/
#define BIOS_CRIT 2
/** @} */
/**
* \brief BIOS_ERR - System in incomplete state.
*
* Log level for when the system has experienced an issue that may not preclude
* a successful boot. To be used when coreboot execution may still succeed,
* but the error places some non-essential portion of the machine in a broken
* state that will be noticed downstream.
*
* Example - Payload could still load, but will be missing access to integral
* components such as drives.
*
* @{
*/
#define BIOS_ERR 3
/** @} */
/**
* \brief BIOS_WARNING - Bad configuration
*
* Log level for when the system has noticed an issue that most likely will
* not preclude a successful boot. To be used when something is wrong, and
* would likely be noticed by an end user.
*
* Example - Bad ME firmware, bad microcode, mis-clocked CPU
*
* @{
*/
#define BIOS_WARNING 4
/** @} */
/**
* \brief BIOS_NOTICE - Unexpected but relatively insignificant
*
* Log level for when the system has noticed an issue that is an edge case,
* but is handled and is recoverable. To be used when an end-user would likely
* not notice.
*
* Example - Hardware was misconfigured, but is promptly fixed.
*
* @{
*/
#define BIOS_NOTICE 5
/** @} */
/**
* \brief BIOS_INFO - Expected events.
*
* Log level for when the system has experienced some typical event.
* Messages should be superficial in nature.
*
* Example - Success messages. Status messages.
*
* @{
*/
#define BIOS_INFO 6
/** @} */
/**
* \brief BIOS_DEBUG - Verbose output
*
* Log level for details of a method. Messages may be dense,
* but should not be excessive. Messages should be detailed enough
* that this level provides sufficient details to diagnose a problem,
* but not necessarily enough to fix it.
*
* Example - Printing of important variables.
*
* @{
*/
#define BIOS_DEBUG 7
/** @} */
/**
* \brief BIOS_SPEW - Excessively verbose output
*
* Log level for intricacies of a method. Messages might contain raw
* data and will produce large logs. Developers should try to make sure
* that this level is not useful to anyone besides developers.
*
* Example - Data dumps.
*
* @{
*/
#define BIOS_SPEW 8
/** @} */
/**
* \brief BIOS_NEVER - Muted log level.
*
* Roughly equal to commenting out a printk statement. Because a user
* should not set their log level higher than 8, these statements
* are never printed.
*
* Example - A developer might locally define MY_LOGLEVEL to BIOS_SPEW,
* and later replace it with BIOS_NEVER as to mute their debug output.
*
* @{
*/
#define BIOS_NEVER 9
/** @} */
#endif /* LOGLEVEL_H */

View File

@ -20,8 +20,8 @@
#ifndef _FMAP_H_
#define _FMAP_H_
#include <region.h>
#include <fmap_serialized.h>
#include <commonlib/region.h>
#include <commonlib/fmap_serialized.h>
/* Locate the fmap directory. Return 0 on success, < 0 on error. */
int find_fmap_directory(struct region_device *fmrd);

View File

@ -1,73 +0,0 @@
/*
* Copyright 2010, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*/
#ifndef FLASHMAP_SERIALIZED_H__
#define FLASHMAP_SERIALIZED_H__
#include <stdint.h>
#define FMAP_SIGNATURE "__FMAP__"
#define FMAP_VER_MAJOR 1 /* this header's FMAP minor version */
#define FMAP_VER_MINOR 1 /* this header's FMAP minor version */
#define FMAP_STRLEN 32 /* maximum length for strings, */
/* including null-terminator */
enum fmap_flags {
FMAP_AREA_STATIC = 1 << 0,
FMAP_AREA_COMPRESSED = 1 << 1,
FMAP_AREA_RO = 1 << 2,
};
/* Mapping of volatile and static regions in firmware binary */
struct fmap_area {
uint32_t offset; /* offset relative to base */
uint32_t size; /* size in bytes */
uint8_t name[FMAP_STRLEN]; /* descriptive name */
uint16_t flags; /* flags for this area */
} __attribute__((packed));
struct fmap {
uint8_t signature[8]; /* "__FMAP__" (0x5F5F464D41505F5F) */
uint8_t ver_major; /* major version */
uint8_t ver_minor; /* minor version */
uint64_t base; /* address of the firmware binary */
uint32_t size; /* size of firmware binary in bytes */
uint8_t name[FMAP_STRLEN]; /* name of this firmware binary */
uint16_t nareas; /* number of areas described by
fmap_areas[] below */
struct fmap_area areas[];
} __attribute__((packed));
#endif /* FLASHMAP_SERIALIZED_H__ */

View File

@ -1,73 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2015 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#ifndef _MEM_POOL_H_
#define _MEM_POOL_H_
#include <stddef.h>
#include <stdint.h>
/*
* The memory pool allows one to allocate memory from a fixed size buffer
* that also allows freeing semantics for reuse. However, the current
* limitation is that the most recent allocation is the only one that
* can be freed. If one tries to free any allocation that isn't the
* most recently allocated it will result in a leak within the memory pool.
*
* The memory returned by allocations are at least 8 byte aligned. Note
* that this requires the backing buffer to start on at least an 8 byte
* alignment.
*/
struct mem_pool {
uint8_t *buf;
size_t size;
uint8_t *last_alloc;
size_t free_offset;
};
#define MEM_POOL_INIT(buf_, size_) \
{ \
.buf = (buf_), \
.size = (size_), \
.last_alloc = NULL, \
.free_offset = 0, \
}
static inline void mem_pool_reset(struct mem_pool *mp)
{
mp->last_alloc = NULL;
mp->free_offset = 0;
}
/* Initialize a memory pool. */
static inline void mem_pool_init(struct mem_pool *mp, void *buf, size_t sz)
{
mp->buf = buf;
mp->size = sz;
mem_pool_reset(mp);
}
/* Allocate requested size from the memory pool. NULL returned on error. */
void *mem_pool_alloc(struct mem_pool *mp, size_t sz);
/* Free allocation from memory pool. */
void mem_pool_free(struct mem_pool *mp, void *alloc);
#endif /* _MEM_POOL_H_ */

View File

@ -1,157 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2015 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#ifndef _REGION_H_
#define _REGION_H_
#include <stdint.h>
#include <stddef.h>
#include <mem_pool.h>
/*
* Region support.
*
* Regions are intended to abstract away the access mechanisms for blocks of
* data. This could be SPI, eMMC, or a memory region as the backing store.
* They are accessed through a region_device. Subregions can be made by
* chaining together multiple region_devices.
*/
struct region_device;
/*
* Returns NULL on error otherwise a buffer is returned with the conents of
* the requested data at offset of size.
*/
void *rdev_mmap(const struct region_device *rd, size_t offset, size_t size);
/* Unmap a previously mapped area. Returns 0 on success, < 0 on error. */
int rdev_munmap(const struct region_device *rd, void *mapping);
/*
* Returns < 0 on error otherwise returns size of data read at provided
* offset filling in the buffer passed.
*/
ssize_t rdev_readat(const struct region_device *rd, void *b, size_t offset,
size_t size);
/****************************************
* Implementation of a region device *
****************************************/
/*
* Create a child region of the parent provided the sub-region is within
* the parent's region. Returns < 0 on error otherwise 0 on success. Note
* that the child device only calls through the parent's operations.
*/
int rdev_chain(struct region_device *child, const struct region_device *parent,
size_t offset, size_t size);
/* A region_device operations. */
struct region_device_ops {
void *(*mmap)(const struct region_device *, size_t, size_t);
int (*munmap)(const struct region_device *, void *);
ssize_t (*readat)(const struct region_device *, void *, size_t, size_t);
};
struct region {
size_t offset;
size_t size;
};
struct region_device {
const struct region_device *root;
const struct region_device_ops *ops;
struct region region;
};
#define REGION_DEV_INIT(ops_, offset_, size_) \
{ \
.root = NULL, \
.ops = (ops_), \
.region = { \
.offset = (offset_), \
.size = (size_), \
}, \
}
static inline size_t region_offset(const struct region *r)
{
return r->offset;
}
static inline size_t region_sz(const struct region *r)
{
return r->size;
}
static inline size_t region_device_sz(const struct region_device *rdev)
{
return region_sz(&rdev->region);
}
static inline size_t region_device_offset(const struct region_device *rdev)
{
return region_offset(&rdev->region);
}
/* Memory map entire region device. Same semantics as rdev_mmap() above. */
static inline void *rdev_mmap_full(const struct region_device *rd)
{
return rdev_mmap(rd, 0, region_device_sz(rd));
}
struct mem_region_device {
char *base;
struct region_device rdev;
};
/* Iniitalize at runtime a mem_region_device. This would be used when
* the base and size are dynamic or can't be known during linking. */
void mem_region_device_init(struct mem_region_device *mdev, void *base,
size_t size);
extern const struct region_device_ops mem_rdev_ops;
/* Statically initialize mem_region_device. */
#define MEM_REGION_DEV_INIT(base_, size_) \
{ \
.base = (void *)(base_), \
.rdev = REGION_DEV_INIT(&mem_rdev_ops, 0, (size_)), \
}
struct mmap_helper_region_device {
struct mem_pool pool;
struct region_device rdev;
};
#define MMAP_HELPER_REGION_INIT(ops_, offset_, size_) \
{ \
.rdev = REGION_DEV_INIT((ops_), (offset_), (size_)), \
}
void mmap_helper_device_init(struct mmap_helper_region_device *mdev,
void *cache, size_t cache_size);
void *mmap_helper_rdev_mmap(const struct region_device *, size_t, size_t);
int mmap_helper_rdev_munmap(const struct region_device *, void *);
#endif /* _REGION_H_ */

View File

@ -1,63 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Google Inc
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#ifndef RMODULE_DEFS_H
#define RMODULE_DEFS_H
#include <stdint.h>
#include <stddef.h>
#define RMODULE_MAGIC 0xf8fe
#define RMODULE_VERSION_1 1
/* All fields with '_offset' in the name are byte offsets into the flat blob.
* The linker and the linker script takes are of assigning the values. */
struct rmodule_header {
uint16_t magic;
uint8_t version;
uint8_t type;
/* The payload represents the program's loadable code and data. */
uint32_t payload_begin_offset;
uint32_t payload_end_offset;
/* Begin and of relocation information about the program module. */
uint32_t relocations_begin_offset;
uint32_t relocations_end_offset;
/* The starting address of the linked program. This address is vital
* for determining relocation offsets as the relocation info and other
* symbols (bss, entry point) need this value as a basis to calculate
* the offsets.
*/
uint32_t module_link_start_address;
/* The module_program_size is the size of memory used while running
* the program. The program is assumed to consume a contiguous amount
* of memory. */
uint32_t module_program_size;
/* This is program's execution entry point. */
uint32_t module_entry_point;
/* Optional parameter structure that can be used to pass data into
* the module. */
uint32_t parameters_begin;
uint32_t parameters_end;
/* BSS section information so the loader can clear the bss. */
uint32_t bss_begin;
uint32_t bss_end;
/* Add some room for growth. */
uint32_t padding[4];
} __attribute__ ((packed));
#endif /* RMODULE_DEFS_H */

View File

@ -22,7 +22,7 @@
#include <stdint.h>
#include <stddef.h>
#include <string.h>
#include <rmodule-defs.h>
#include <commonlib/rmodule-defs.h>
enum {
RMODULE_TYPE_SMM,

View File

@ -1,6 +1,8 @@
#ifndef STDDEF_H
#define STDDEF_H
#include <commonlib/helpers.h>
typedef long ptrdiff_t;
#ifndef __SIZE_TYPE__
#define __SIZE_TYPE__ unsigned long
@ -19,38 +21,6 @@ typedef unsigned int wint_t;
#define NULL ((void *)0)
/* Standard units. */
#define KiB (1<<10)
#define MiB (1<<20)
#define GiB (1<<30)
/* Could we ever run into this one? I hope we get this much memory! */
#define TiB (1<<40)
#define KHz (1000)
#define MHz (1000 * KHz)
#define GHz (1000 * MHz)
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
#if !defined(__clang__)
#define check_member(structure, member, offset) _Static_assert( \
offsetof(struct structure, member) == offset, \
"`struct " #structure "` offset for `" #member "` is not " #offset )
#else
#define check_member(structure, member, offset)
#endif
/**
* container_of - cast a member of a structure out to the containing structure
* @param ptr: the pointer to the member.
* @param type: the type of the container struct this is embedded in.
* @param member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
#ifdef __PRE_RAM__
#define ROMSTAGE_CONST const
#else

View File

@ -3,20 +3,6 @@
#include <stddef.h>
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
#define ALIGN(x,a) __ALIGN_MASK(x,(typeof(x))(a)-1UL)
#define __ALIGN_MASK(x,mask) (((x)+(mask))&~(mask))
#define ALIGN_UP(x,a) ALIGN((x),(a))
#define ALIGN_DOWN(x,a) ((x) & ~((typeof(x))(a)-1UL))
#define IS_ALIGNED(x,a) (((x) & ((typeof(x))(a)-1UL)) == 0)
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
#define ABS(a) (((a) < 0) ? (-(a)) : (a))
#define CEIL_DIV(a, b) (((a) + (b) - 1) / (b))
#define IS_POWER_OF_2(x) (((x) & ((x) - 1)) == 0)
#define min(a,b) MIN((a),(b))
#define max(a,b) MAX((a),(b))

View File

@ -20,74 +20,7 @@
#ifndef __TIMESTAMP_H__
#define __TIMESTAMP_H__
#include <stdint.h>
struct timestamp_entry {
uint32_t entry_id;
uint64_t entry_stamp;
} __attribute__((packed));
struct timestamp_table {
uint64_t base_time;
uint16_t max_entries;
uint16_t tick_freq_mhz;
uint32_t num_entries;
struct timestamp_entry entries[0]; /* Variable number of entries */
} __attribute__((packed));
enum timestamp_id {
TS_START_ROMSTAGE = 1,
TS_BEFORE_INITRAM = 2,
TS_AFTER_INITRAM = 3,
TS_END_ROMSTAGE = 4,
TS_START_VBOOT = 5,
TS_END_VBOOT = 6,
TS_START_COPYRAM = 8,
TS_END_COPYRAM = 9,
TS_START_RAMSTAGE = 10,
TS_START_BOOTBLOCK = 11,
TS_END_BOOTBLOCK = 12,
TS_START_COPYROM = 13,
TS_END_COPYROM = 14,
TS_START_ULZMA = 15,
TS_END_ULZMA = 16,
TS_DEVICE_ENUMERATE = 30,
TS_DEVICE_CONFIGURE = 40,
TS_DEVICE_ENABLE = 50,
TS_DEVICE_INITIALIZE = 60,
TS_DEVICE_DONE = 70,
TS_CBMEM_POST = 75,
TS_WRITE_TABLES = 80,
TS_LOAD_PAYLOAD = 90,
TS_ACPI_WAKE_JUMP = 98,
TS_SELFBOOT_JUMP = 99,
/* 500+ reserved for vendorcode extensions (500-600: google/chromeos) */
TS_START_COPYVER = 501,
TS_END_COPYVER = 502,
TS_START_TPMINIT = 503,
TS_END_TPMINIT = 504,
TS_START_VERIFY_SLOT = 505,
TS_END_VERIFY_SLOT = 506,
TS_START_HASH_BODY = 507,
TS_DONE_LOADING = 508,
TS_DONE_HASHING = 509,
TS_END_HASH_BODY = 510,
/* 950+ reserved for vendorcode extensions (950-999: intel/fsp) */
TS_FSP_MEMORY_INIT_START = 950,
TS_FSP_MEMORY_INIT_END = 951,
TS_FSP_TEMP_RAM_EXIT_START = 952,
TS_FSP_TEMP_RAM_EXIT_END = 953,
TS_FSP_SILICON_INIT_START = 954,
TS_FSP_SILICON_INIT_END = 955,
TS_FSP_BEFORE_ENUMERATE = 956,
TS_FSP_AFTER_ENUMERATE = 957,
TS_FSP_BEFORE_FINALIZE = 958,
TS_FSP_AFTER_FINALIZE = 959,
/* 1000+ reserved for payloads (1000-1200: ChromeOS depthcharge) */
};
#include <commonlib/timestamp_serialized.h>
#if CONFIG_COLLECT_TIMESTAMPS && (CONFIG_EARLY_CBMEM_INIT || !defined(__PRE_RAM__))
/*