AMD Thatcher Board based on trinity
Thatcher features: Family 15 trinity FP2. Hudson. close to Parmer. This board and parmer both need to revert the change http://review.coreboot.org/#/c/1359/, and add thatcher's own chip.h,otherwise the mainboard_enable can not be called. Change-Id: I54e1cfca845fbcea1d3aad5eff08d760d0d215c9 Signed-off-by: Zheng Bao <zheng.bao@amd.com> Signed-off-by: zbao <fishbaozi@gmail.com> Reviewed-on: http://review.coreboot.org/1382 Tested-by: build bot (Jenkins) Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com> Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This commit is contained in:
737
src/mainboard/amd/thatcher/BiosCallOuts.c
Normal file
737
src/mainboard/amd/thatcher/BiosCallOuts.c
Normal file
@ -0,0 +1,737 @@
|
||||
/*
|
||||
* This file is part of the coreboot project.
|
||||
*
|
||||
* Copyright (C) 2012 Advanced Micro Devices, Inc.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; version 2 of the License.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||||
*/
|
||||
|
||||
#include "agesawrapper.h"
|
||||
#include "amdlib.h"
|
||||
#include "dimmSpd.h"
|
||||
#include "BiosCallOuts.h"
|
||||
#include "Ids.h"
|
||||
#include "OptionsIds.h"
|
||||
#include "heapManager.h"
|
||||
#include "FchPlatform.h"
|
||||
|
||||
STATIC CONST BIOS_CALLOUT_STRUCT BiosCallouts[] =
|
||||
{
|
||||
{AGESA_ALLOCATE_BUFFER,
|
||||
BiosAllocateBuffer
|
||||
},
|
||||
|
||||
{AGESA_DEALLOCATE_BUFFER,
|
||||
BiosDeallocateBuffer
|
||||
},
|
||||
|
||||
{AGESA_DO_RESET,
|
||||
BiosReset
|
||||
},
|
||||
|
||||
{AGESA_LOCATE_BUFFER,
|
||||
BiosLocateBuffer
|
||||
},
|
||||
|
||||
{AGESA_READ_SPD,
|
||||
BiosReadSpd
|
||||
},
|
||||
|
||||
{AGESA_READ_SPD_RECOVERY,
|
||||
BiosDefaultRet
|
||||
},
|
||||
|
||||
{AGESA_RUNFUNC_ONAP,
|
||||
BiosRunFuncOnAp
|
||||
},
|
||||
|
||||
{AGESA_GET_IDS_INIT_DATA,
|
||||
BiosGetIdsInitData
|
||||
},
|
||||
|
||||
{AGESA_HOOKBEFORE_DQS_TRAINING,
|
||||
BiosHookBeforeDQSTraining
|
||||
},
|
||||
|
||||
{AGESA_HOOKBEFORE_EXIT_SELF_REF,
|
||||
BiosHookBeforeExitSelfRefresh
|
||||
},
|
||||
|
||||
{AGESA_FCH_OEM_CALLOUT,
|
||||
Fch_Oem_config
|
||||
},
|
||||
};
|
||||
|
||||
AGESA_STATUS GetBiosCallout (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
UINTN i;
|
||||
AGESA_STATUS CalloutStatus;
|
||||
UINTN CallOutCount = sizeof (BiosCallouts) / sizeof (BiosCallouts [0]);
|
||||
|
||||
for (i = 0; i < CallOutCount; i++)
|
||||
{
|
||||
if (BiosCallouts[i].CalloutName == Func)
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if(i >= CallOutCount)
|
||||
{
|
||||
return AGESA_UNSUPPORTED;
|
||||
}
|
||||
|
||||
CalloutStatus = BiosCallouts[i].CalloutPtr (Func, Data, ConfigPtr);
|
||||
|
||||
return CalloutStatus;
|
||||
}
|
||||
|
||||
CONST IDS_NV_ITEM IdsData[] =
|
||||
{
|
||||
/*{
|
||||
AGESA_IDS_NV_MAIN_PLL_CON,
|
||||
0x1
|
||||
},
|
||||
{
|
||||
AGESA_IDS_NV_MAIN_PLL_FID_EN,
|
||||
0x1
|
||||
},
|
||||
{
|
||||
AGESA_IDS_NV_MAIN_PLL_FID,
|
||||
0x8
|
||||
},
|
||||
|
||||
{
|
||||
AGESA_IDS_NV_CUSTOM_NB_PSTATE,
|
||||
},
|
||||
{
|
||||
AGESA_IDS_NV_CUSTOM_NB_P0_DIV_CTRL,
|
||||
},
|
||||
{
|
||||
AGESA_IDS_NV_CUSTOM_NB_P1_DIV_CTRL,
|
||||
},
|
||||
{
|
||||
AGESA_IDS_NV_FORCE_NB_PSTATE,
|
||||
},
|
||||
*/
|
||||
{
|
||||
0xFFFF,
|
||||
0xFFFF
|
||||
}
|
||||
};
|
||||
|
||||
#define NUM_IDS_ENTRIES (sizeof (IdsData) / sizeof (IDS_NV_ITEM))
|
||||
|
||||
AGESA_STATUS BiosGetIdsInitData (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
UINTN i;
|
||||
IDS_NV_ITEM *IdsPtr;
|
||||
|
||||
IdsPtr = ((IDS_CALLOUT_STRUCT *) ConfigPtr)->IdsNvPtr;
|
||||
|
||||
if (Data == IDS_CALLOUT_INIT) {
|
||||
for (i = 0; i < NUM_IDS_ENTRIES; i++) {
|
||||
IdsPtr[i].IdsNvValue = IdsData[i].IdsNvValue;
|
||||
IdsPtr[i].IdsNvId = IdsData[i].IdsNvId;
|
||||
}
|
||||
}
|
||||
return AGESA_SUCCESS;
|
||||
}
|
||||
|
||||
AGESA_STATUS BiosAllocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
UINT32 AvailableHeapSize;
|
||||
UINT8 *BiosHeapBaseAddr;
|
||||
UINT32 CurrNodeOffset;
|
||||
UINT32 PrevNodeOffset;
|
||||
UINT32 FreedNodeOffset;
|
||||
UINT32 BestFitNodeOffset;
|
||||
UINT32 BestFitPrevNodeOffset;
|
||||
UINT32 NextFreeOffset;
|
||||
BIOS_BUFFER_NODE *CurrNodePtr;
|
||||
BIOS_BUFFER_NODE *FreedNodePtr;
|
||||
BIOS_BUFFER_NODE *BestFitNodePtr;
|
||||
BIOS_BUFFER_NODE *BestFitPrevNodePtr;
|
||||
BIOS_BUFFER_NODE *NextFreePtr;
|
||||
BIOS_HEAP_MANAGER *BiosHeapBasePtr;
|
||||
AGESA_BUFFER_PARAMS *AllocParams;
|
||||
|
||||
AllocParams = ((AGESA_BUFFER_PARAMS *) ConfigPtr);
|
||||
AllocParams->BufferPointer = NULL;
|
||||
|
||||
AvailableHeapSize = BIOS_HEAP_SIZE - sizeof (BIOS_HEAP_MANAGER);
|
||||
BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader));
|
||||
BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr;
|
||||
|
||||
if (BiosHeapBasePtr->StartOfAllocatedNodes == 0) {
|
||||
/* First allocation */
|
||||
CurrNodeOffset = sizeof (BIOS_HEAP_MANAGER);
|
||||
CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);
|
||||
CurrNodePtr->BufferHandle = AllocParams->BufferHandle;
|
||||
CurrNodePtr->BufferSize = AllocParams->BufferLength;
|
||||
CurrNodePtr->NextNodeOffset = 0;
|
||||
AllocParams->BufferPointer = (UINT8 *) CurrNodePtr + sizeof (BIOS_BUFFER_NODE);
|
||||
|
||||
/* Update the remaining free space */
|
||||
FreedNodeOffset = CurrNodeOffset + CurrNodePtr->BufferSize + sizeof (BIOS_BUFFER_NODE);
|
||||
FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);
|
||||
FreedNodePtr->BufferSize = AvailableHeapSize - sizeof (BIOS_BUFFER_NODE) - CurrNodePtr->BufferSize;
|
||||
FreedNodePtr->NextNodeOffset = 0;
|
||||
|
||||
/* Update the offsets for Allocated and Freed nodes */
|
||||
BiosHeapBasePtr->StartOfAllocatedNodes = CurrNodeOffset;
|
||||
BiosHeapBasePtr->StartOfFreedNodes = FreedNodeOffset;
|
||||
} else {
|
||||
/* Find out whether BufferHandle has been allocated on the heap. */
|
||||
/* If it has, return AGESA_BOUNDS_CHK */
|
||||
CurrNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
|
||||
CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);
|
||||
|
||||
while (CurrNodeOffset != 0) {
|
||||
CurrNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + CurrNodeOffset);
|
||||
if (CurrNodePtr->BufferHandle == AllocParams->BufferHandle) {
|
||||
return AGESA_BOUNDS_CHK;
|
||||
}
|
||||
CurrNodeOffset = CurrNodePtr->NextNodeOffset;
|
||||
/* If BufferHandle has not been allocated on the heap, CurrNodePtr here points
|
||||
to the end of the allocated nodes list.
|
||||
*/
|
||||
|
||||
}
|
||||
/* Find the node that best fits the requested buffer size */
|
||||
FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes;
|
||||
PrevNodeOffset = FreedNodeOffset;
|
||||
BestFitNodeOffset = 0;
|
||||
BestFitPrevNodeOffset = 0;
|
||||
while (FreedNodeOffset != 0) {
|
||||
FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);
|
||||
if (FreedNodePtr->BufferSize >= (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) {
|
||||
if (BestFitNodeOffset == 0) {
|
||||
/* First node that fits the requested buffer size */
|
||||
BestFitNodeOffset = FreedNodeOffset;
|
||||
BestFitPrevNodeOffset = PrevNodeOffset;
|
||||
} else {
|
||||
/* Find out whether current node is a better fit than the previous nodes */
|
||||
BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset);
|
||||
if (BestFitNodePtr->BufferSize > FreedNodePtr->BufferSize) {
|
||||
BestFitNodeOffset = FreedNodeOffset;
|
||||
BestFitPrevNodeOffset = PrevNodeOffset;
|
||||
}
|
||||
}
|
||||
}
|
||||
PrevNodeOffset = FreedNodeOffset;
|
||||
FreedNodeOffset = FreedNodePtr->NextNodeOffset;
|
||||
} /* end of while loop */
|
||||
|
||||
if (BestFitNodeOffset == 0) {
|
||||
/* If we could not find a node that fits the requested buffer */
|
||||
/* size, return AGESA_BOUNDS_CHK */
|
||||
return AGESA_BOUNDS_CHK;
|
||||
} else {
|
||||
BestFitNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitNodeOffset);
|
||||
BestFitPrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + BestFitPrevNodeOffset);
|
||||
|
||||
/* If BestFitNode is larger than the requested buffer, fragment the node further */
|
||||
if (BestFitNodePtr->BufferSize > (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE))) {
|
||||
NextFreeOffset = BestFitNodeOffset + AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE);
|
||||
|
||||
NextFreePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextFreeOffset);
|
||||
NextFreePtr->BufferSize = BestFitNodePtr->BufferSize - (AllocParams->BufferLength + sizeof (BIOS_BUFFER_NODE));
|
||||
NextFreePtr->NextNodeOffset = BestFitNodePtr->NextNodeOffset;
|
||||
} else {
|
||||
/* Otherwise, next free node is NextNodeOffset of BestFitNode */
|
||||
NextFreeOffset = BestFitNodePtr->NextNodeOffset;
|
||||
}
|
||||
|
||||
/* If BestFitNode is the first buffer in the list, then update
|
||||
StartOfFreedNodes to reflect the new free node
|
||||
*/
|
||||
if (BestFitNodeOffset == BiosHeapBasePtr->StartOfFreedNodes) {
|
||||
BiosHeapBasePtr->StartOfFreedNodes = NextFreeOffset;
|
||||
} else {
|
||||
BestFitPrevNodePtr->NextNodeOffset = NextFreeOffset;
|
||||
}
|
||||
|
||||
/* Add BestFitNode to the list of Allocated nodes */
|
||||
CurrNodePtr->NextNodeOffset = BestFitNodeOffset;
|
||||
BestFitNodePtr->BufferSize = AllocParams->BufferLength;
|
||||
BestFitNodePtr->BufferHandle = AllocParams->BufferHandle;
|
||||
BestFitNodePtr->NextNodeOffset = 0;
|
||||
|
||||
/* Remove BestFitNode from list of Freed nodes */
|
||||
AllocParams->BufferPointer = (UINT8 *) BestFitNodePtr + sizeof (BIOS_BUFFER_NODE);
|
||||
}
|
||||
}
|
||||
|
||||
return AGESA_SUCCESS;
|
||||
}
|
||||
|
||||
AGESA_STATUS BiosDeallocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
|
||||
UINT8 *BiosHeapBaseAddr;
|
||||
UINT32 AllocNodeOffset;
|
||||
UINT32 PrevNodeOffset;
|
||||
UINT32 NextNodeOffset;
|
||||
UINT32 FreedNodeOffset;
|
||||
UINT32 EndNodeOffset;
|
||||
BIOS_BUFFER_NODE *AllocNodePtr;
|
||||
BIOS_BUFFER_NODE *PrevNodePtr;
|
||||
BIOS_BUFFER_NODE *FreedNodePtr;
|
||||
BIOS_BUFFER_NODE *NextNodePtr;
|
||||
BIOS_HEAP_MANAGER *BiosHeapBasePtr;
|
||||
AGESA_BUFFER_PARAMS *AllocParams;
|
||||
|
||||
BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader));
|
||||
BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr;
|
||||
|
||||
AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr;
|
||||
|
||||
/* Find target node to deallocate in list of allocated nodes.
|
||||
Return AGESA_BOUNDS_CHK if the BufferHandle is not found
|
||||
*/
|
||||
AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
|
||||
AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
|
||||
PrevNodeOffset = AllocNodeOffset;
|
||||
|
||||
while (AllocNodePtr->BufferHandle != AllocParams->BufferHandle) {
|
||||
if (AllocNodePtr->NextNodeOffset == 0) {
|
||||
return AGESA_BOUNDS_CHK;
|
||||
}
|
||||
PrevNodeOffset = AllocNodeOffset;
|
||||
AllocNodeOffset = AllocNodePtr->NextNodeOffset;
|
||||
AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
|
||||
}
|
||||
|
||||
/* Remove target node from list of allocated nodes */
|
||||
PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset);
|
||||
PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset;
|
||||
|
||||
/* Zero out the buffer, and clear the BufferHandle */
|
||||
LibAmdMemFill ((UINT8 *)AllocNodePtr + sizeof (BIOS_BUFFER_NODE), 0, AllocNodePtr->BufferSize, &(AllocParams->StdHeader));
|
||||
AllocNodePtr->BufferHandle = 0;
|
||||
AllocNodePtr->BufferSize += sizeof (BIOS_BUFFER_NODE);
|
||||
|
||||
/* Add deallocated node in order to the list of freed nodes */
|
||||
FreedNodeOffset = BiosHeapBasePtr->StartOfFreedNodes;
|
||||
FreedNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + FreedNodeOffset);
|
||||
|
||||
EndNodeOffset = AllocNodeOffset + AllocNodePtr->BufferSize;
|
||||
|
||||
if (AllocNodeOffset < FreedNodeOffset) {
|
||||
/* Add to the start of the freed list */
|
||||
if (EndNodeOffset == FreedNodeOffset) {
|
||||
/* If the freed node is adjacent to the first node in the list, concatenate both nodes */
|
||||
AllocNodePtr->BufferSize += FreedNodePtr->BufferSize;
|
||||
AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset;
|
||||
|
||||
/* Clear the BufferSize and NextNodeOffset of the previous first node */
|
||||
FreedNodePtr->BufferSize = 0;
|
||||
FreedNodePtr->NextNodeOffset = 0;
|
||||
|
||||
} else {
|
||||
/* Otherwise, add freed node to the start of the list
|
||||
Update NextNodeOffset and BufferSize to include the
|
||||
size of BIOS_BUFFER_NODE
|
||||
*/
|
||||
AllocNodePtr->NextNodeOffset = FreedNodeOffset;
|
||||
}
|
||||
/* Update StartOfFreedNodes to the new first node */
|
||||
BiosHeapBasePtr->StartOfFreedNodes = AllocNodeOffset;
|
||||
} else {
|
||||
/* Traverse list of freed nodes to find where the deallocated node
|
||||
should be place
|
||||
*/
|
||||
NextNodeOffset = FreedNodeOffset;
|
||||
NextNodePtr = FreedNodePtr;
|
||||
while (AllocNodeOffset > NextNodeOffset) {
|
||||
PrevNodeOffset = NextNodeOffset;
|
||||
if (NextNodePtr->NextNodeOffset == 0) {
|
||||
break;
|
||||
}
|
||||
NextNodeOffset = NextNodePtr->NextNodeOffset;
|
||||
NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset);
|
||||
}
|
||||
|
||||
/* If deallocated node is adjacent to the next node,
|
||||
concatenate both nodes
|
||||
*/
|
||||
if (NextNodeOffset == EndNodeOffset) {
|
||||
NextNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + NextNodeOffset);
|
||||
AllocNodePtr->BufferSize += NextNodePtr->BufferSize;
|
||||
AllocNodePtr->NextNodeOffset = NextNodePtr->NextNodeOffset;
|
||||
|
||||
NextNodePtr->BufferSize = 0;
|
||||
NextNodePtr->NextNodeOffset = 0;
|
||||
} else {
|
||||
/*AllocNodePtr->NextNodeOffset = FreedNodePtr->NextNodeOffset; */
|
||||
AllocNodePtr->NextNodeOffset = NextNodeOffset;
|
||||
}
|
||||
/* If deallocated node is adjacent to the previous node,
|
||||
concatenate both nodes
|
||||
*/
|
||||
PrevNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + PrevNodeOffset);
|
||||
EndNodeOffset = PrevNodeOffset + PrevNodePtr->BufferSize;
|
||||
if (AllocNodeOffset == EndNodeOffset) {
|
||||
PrevNodePtr->NextNodeOffset = AllocNodePtr->NextNodeOffset;
|
||||
PrevNodePtr->BufferSize += AllocNodePtr->BufferSize;
|
||||
|
||||
AllocNodePtr->BufferSize = 0;
|
||||
AllocNodePtr->NextNodeOffset = 0;
|
||||
} else {
|
||||
PrevNodePtr->NextNodeOffset = AllocNodeOffset;
|
||||
}
|
||||
}
|
||||
return AGESA_SUCCESS;
|
||||
}
|
||||
|
||||
AGESA_STATUS BiosLocateBuffer (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
UINT32 AllocNodeOffset;
|
||||
UINT8 *BiosHeapBaseAddr;
|
||||
BIOS_BUFFER_NODE *AllocNodePtr;
|
||||
BIOS_HEAP_MANAGER *BiosHeapBasePtr;
|
||||
AGESA_BUFFER_PARAMS *AllocParams;
|
||||
|
||||
AllocParams = (AGESA_BUFFER_PARAMS *) ConfigPtr;
|
||||
|
||||
BiosHeapBaseAddr = (UINT8 *) GetHeapBase(&(AllocParams->StdHeader));
|
||||
BiosHeapBasePtr = (BIOS_HEAP_MANAGER *) BiosHeapBaseAddr;
|
||||
|
||||
AllocNodeOffset = BiosHeapBasePtr->StartOfAllocatedNodes;
|
||||
AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
|
||||
|
||||
while (AllocParams->BufferHandle != AllocNodePtr->BufferHandle) {
|
||||
if (AllocNodePtr->NextNodeOffset == 0) {
|
||||
AllocParams->BufferPointer = NULL;
|
||||
AllocParams->BufferLength = 0;
|
||||
return AGESA_BOUNDS_CHK;
|
||||
} else {
|
||||
AllocNodeOffset = AllocNodePtr->NextNodeOffset;
|
||||
AllocNodePtr = (BIOS_BUFFER_NODE *) (BiosHeapBaseAddr + AllocNodeOffset);
|
||||
}
|
||||
}
|
||||
|
||||
AllocParams->BufferPointer = (UINT8 *) ((UINT8 *) AllocNodePtr + sizeof (BIOS_BUFFER_NODE));
|
||||
AllocParams->BufferLength = AllocNodePtr->BufferSize;
|
||||
|
||||
return AGESA_SUCCESS;
|
||||
|
||||
}
|
||||
|
||||
AGESA_STATUS BiosRunFuncOnAp (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
AGESA_STATUS Status;
|
||||
|
||||
Status = agesawrapper_amdlaterunaptask (Func, Data, ConfigPtr);
|
||||
return Status;
|
||||
}
|
||||
|
||||
AGESA_STATUS BiosReset (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
AGESA_STATUS Status;
|
||||
UINT8 Value;
|
||||
UINTN ResetType;
|
||||
AMD_CONFIG_PARAMS *StdHeader;
|
||||
|
||||
ResetType = Data;
|
||||
StdHeader = ConfigPtr;
|
||||
|
||||
//
|
||||
// Perform the RESET based upon the ResetType. In case of
|
||||
// WARM_RESET_WHENVER and COLD_RESET_WHENEVER, the request will go to
|
||||
// AmdResetManager. During the critical condition, where reset is required
|
||||
// immediately, the reset will be invoked directly by writing 0x04 to port
|
||||
// 0xCF9 (Reset Port).
|
||||
//
|
||||
switch (ResetType) {
|
||||
case WARM_RESET_WHENEVER:
|
||||
case COLD_RESET_WHENEVER:
|
||||
break;
|
||||
|
||||
case WARM_RESET_IMMEDIATELY:
|
||||
case COLD_RESET_IMMEDIATELY:
|
||||
Value = 0x06;
|
||||
LibAmdIoWrite (AccessWidth8, 0xCf9, &Value, StdHeader);
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
||||
Status = 0;
|
||||
return Status;
|
||||
}
|
||||
|
||||
AGESA_STATUS BiosReadSpd (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
AGESA_STATUS Status;
|
||||
Status = AmdMemoryReadSPD (Func, Data, ConfigPtr);
|
||||
|
||||
return Status;
|
||||
}
|
||||
|
||||
AGESA_STATUS BiosDefaultRet (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
return AGESA_UNSUPPORTED;
|
||||
}
|
||||
|
||||
/* Call the host environment interface to provide a user hook opportunity. */
|
||||
AGESA_STATUS BiosHookBeforeDQSTraining (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
return AGESA_SUCCESS;
|
||||
}
|
||||
|
||||
/* Call the host environment interface to provide a user hook opportunity. */
|
||||
AGESA_STATUS BiosHookBeforeExitSelfRefresh (UINT32 Func, UINT32 Data, VOID *ConfigPtr)
|
||||
{
|
||||
return AGESA_SUCCESS;
|
||||
}
|
||||
|
||||
/**
|
||||
* AMD Thatcher Platform ALC272 Verb Table
|
||||
*/
|
||||
const CODEC_ENTRY Thatcher_Alc272_VerbTbl[] = {
|
||||
{0x11, 0x411111F0},
|
||||
{0x12, 0x411111F0},
|
||||
{0x13, 0x411111F0},
|
||||
{0x14, 0x411111F0},
|
||||
{0x15, 0x411111F0},
|
||||
{0x16, 0x411111F0},
|
||||
{0x17, 0x411111F0},
|
||||
{0x18, 0x01a19840},
|
||||
{0x19, 0x411111F0},
|
||||
{0x1a, 0x01813030},
|
||||
{0x1b, 0x411111F0},
|
||||
{0x1d, 0x40130605},
|
||||
{0x1e, 0x01441120},
|
||||
{0x21, 0x01211010},
|
||||
{0xff, 0xffffffff}
|
||||
};
|
||||
|
||||
const CODEC_TBL_LIST ThatcherCodecTableList[] =
|
||||
{
|
||||
{0x10ec0272, (CODEC_ENTRY*)&Thatcher_Alc272_VerbTbl[0]},
|
||||
{(UINT32)0x0FFFFFFFF, (CODEC_ENTRY*)0x0FFFFFFFFUL}
|
||||
};
|
||||
|
||||
#define FAN_INPUT_INTERNAL_DIODE 0
|
||||
#define FAN_INPUT_TEMP0 1
|
||||
#define FAN_INPUT_TEMP1 2
|
||||
#define FAN_INPUT_TEMP2 3
|
||||
#define FAN_INPUT_TEMP3 4
|
||||
#define FAN_INPUT_TEMP0_FILTER 5
|
||||
#define FAN_INPUT_ZERO 6
|
||||
#define FAN_INPUT_DISABLED 7
|
||||
|
||||
#define FAN_AUTOMODE (1 << 0)
|
||||
#define FAN_LINEARMODE (1 << 1)
|
||||
#define FAN_STEPMODE ~(1 << 1)
|
||||
#define FAN_POLARITY_HIGH (1 << 2)
|
||||
#define FAN_POLARITY_LOW ~(1 << 2)
|
||||
|
||||
/* Normally, 4-wire fan runs at 25KHz and 3-wire fan runs at 100Hz */
|
||||
#define FREQ_28KHZ 0x0
|
||||
#define FREQ_25KHZ 0x1
|
||||
#define FREQ_23KHZ 0x2
|
||||
#define FREQ_21KHZ 0x3
|
||||
#define FREQ_29KHZ 0x4
|
||||
#define FREQ_18KHZ 0x5
|
||||
#define FREQ_100HZ 0xF7
|
||||
#define FREQ_87HZ 0xF8
|
||||
#define FREQ_58HZ 0xF9
|
||||
#define FREQ_44HZ 0xFA
|
||||
#define FREQ_35HZ 0xFB
|
||||
#define FREQ_29HZ 0xFC
|
||||
#define FREQ_22HZ 0xFD
|
||||
#define FREQ_14HZ 0xFE
|
||||
#define FREQ_11HZ 0xFF
|
||||
|
||||
/* Parmer Hardware Monitor Fan Control
|
||||
* Hardware limitation:
|
||||
* HWM failed to read the input temperture vi I2C,
|
||||
* if other software switch the I2C switch by mistake or intention.
|
||||
* We recommend to using IMC to control Fans, instead of HWM.
|
||||
*/
|
||||
static void oem_fan_control(FCH_DATA_BLOCK *FchParams)
|
||||
{
|
||||
FCH_HWM_FAN_CTR oem_factl[5] = {
|
||||
/*temperatuer input, fan mode, frequency, low_duty, med_duty, multiplier, lowtemp, medtemp, hightemp, LinearRange, LinearHoldCount */
|
||||
/* Parmer FanOUT0 Fan header J32 */
|
||||
{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0},
|
||||
/* Parmer FanOUT1 Fan header J31*/
|
||||
{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0},
|
||||
{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0},
|
||||
{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0},
|
||||
{FAN_INPUT_INTERNAL_DIODE, (FAN_STEPMODE | FAN_POLARITY_HIGH), FREQ_100HZ, 40, 60, 0, 40, 65, 85, 0, 0},
|
||||
};
|
||||
LibAmdMemCopy ((VOID *)(FchParams->Hwm.HwmFanControl), &oem_factl, (sizeof (FCH_HWM_FAN_CTR) * 5), FchParams->StdHeader);
|
||||
|
||||
/* Enable IMC fan control. the recommand way */
|
||||
#if defined CONFIG_HUDSON_IMC_FWM && (CONFIG_HUDSON_IMC_FWM == 1)
|
||||
/* HwMonitorEnable = TRUE && HwmFchtsiAutoOpll ==FALSE to call FchECfancontrolservice */
|
||||
FchParams->Hwm.HwMonitorEnable = TRUE;
|
||||
FchParams->Hwm.HwmFchtsiAutoPoll = FALSE;/* 0 disable, 1 enable TSI Auto Polling */
|
||||
|
||||
FchParams->Imc.ImcEnable = TRUE;
|
||||
FchParams->Hwm.HwmControl = 1; /* 1 IMC, 0 HWM */
|
||||
FchParams->Imc.ImcEnableOverWrite = 1; /* 2 disable IMC , 1 enable IMC, 0 following hw strap setting */
|
||||
|
||||
LibAmdMemFill(&(FchParams->Imc.EcStruct), 0, sizeof(FCH_EC), FchParams->StdHeader);
|
||||
|
||||
/* Thermal Zone Parameter */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg0 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg1 = 0x00; /* Zone */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg2 = 0x35; //BIT0 | BIT2 | BIT5;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg3 = 0x0E;//6 | BIT3;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg4 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg5 = 0x54;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg6 = 0x98; /* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg7 = 2;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg8 = 1; /* PWM steping rate in unit of PWM level percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone0MsgReg9 = 0;
|
||||
|
||||
/* IMC Fan Policy temperature thresholds */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg0 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg1 = 0x00; /* Zone */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg2 = 105;///80; /*AC0 threshold in Celsius */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg3 = 60; /*AC1 threshold in Celsius */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg4 = 0; /*AC2 threshold in Celsius */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg5 = 0; /*AC3 threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg6 = 0; /*AC4 threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg7 = 0; /*AC5 threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg8 = 0; /*AC6 threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgReg9 = 0; /*AC7 lowest threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgRegA = 105; /*critical threshold* in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone0MsgRegB = 0x00;
|
||||
|
||||
/* IMC Fan Policy PWM Settings */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg0 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg1 = 0x00; /* Zone */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg2 = 100; /* AL0 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg3 = 0; /* AL1 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg4 = 0; /* AL2 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg5 = 0x00; /* AL3 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg6 = 0x00; /* AL4 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg7 = 0x00; /* AL5 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg8 = 0x00; /* AL6 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone0MsgReg9 = 0x00; /* AL7 percentage */
|
||||
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg0 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg1 = 0x01; /* Zone */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg2 = 0x55;//BIT0 | BIT2 | BIT5;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg3 = 0x17;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg4 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg5 = 0x54;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg6 = 0x90; /* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg7 = 0;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg8 = 1; /* PWM steping rate in unit of PWM level percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone1MsgReg9 = 0;
|
||||
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg0 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg1 = 0x01; /* zone */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg2 = 60; /*AC0 threshold in Celsius */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg3 = 40; /*AC1 threshold in Celsius */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg4 = 0; /*AC2 threshold in Celsius */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg5 = 0; /*AC3 threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg6 = 0; /*AC4 threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg7 = 0; /*AC5 threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg8 = 0; /*AC6 threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgReg9 = 0; /*AC7 lowest threshold in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgRegA = 80; /*critical threshold* in Celsius, 0xFF is not define */
|
||||
FchParams->Imc.EcStruct.MsgFun83Zone1MsgRegB = 0x00;
|
||||
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg0 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg1 = 0x01; /*Zone */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg2 = 100; /* AL0 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg3 = 0; /* AL1 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg4 = 0; /* AL2 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg5 = 0x00; /* AL3 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg6 = 0x00; /* AL4 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg7 = 0x00; /* AL5 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg8 = 0x00; /* AL6 percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun85Zone1MsgReg9 = 0x00; /* AL7 percentage */
|
||||
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg0 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg1 = 0x2; /* Zone */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg2 = 0x0;//BIT0 | BIT2 | BIT5;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg3 = 0x0;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg4 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg5 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg6 = 0x98; /* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg7 = 2;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg8 = 5; /* PWM steping rate in unit of PWM level percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone2MsgReg9 = 0;
|
||||
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg0 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg1 = 0x3; /* Zone */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg2 = 0x0;//BIT0 | BIT2 | BIT5;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg3 = 0x0;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg4 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg5 = 0x00;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg6 = 0x0; /* SMBUS Address for SMBUS based temperature sensor such as SB-TSI and ADM1032 */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg7 = 0;
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg8 = 0; /* PWM steping rate in unit of PWM level percentage */
|
||||
FchParams->Imc.EcStruct.MsgFun81Zone3MsgReg9 = 0;
|
||||
|
||||
/* IMC Function */
|
||||
FchParams->Imc.EcStruct.IMCFUNSupportBitMap = 0x333;//BIT0 | BIT4 |BIT8;
|
||||
|
||||
/* NOTE:
|
||||
* FchInitLateHwm will overwrite the EcStruct with EcDefaultMassege,
|
||||
* AGESA put EcDefaultMassege as global data in ROM, so we can't overwride it.
|
||||
* so we remove it from AGESA code. Please Seee FchInitLateHwm.
|
||||
*/
|
||||
|
||||
#else /* HWM fan control, the way not recommand */
|
||||
FchParams->Imc.ImcEnable = FALSE;
|
||||
FchParams->Hwm.HwMonitorEnable = TRUE;
|
||||
FchParams->Hwm.HwmFchtsiAutoPoll = TRUE;/* 1 enable, 0 disable TSI Auto Polling */
|
||||
|
||||
#endif /* CONFIG_HUDSON_IMC_FWM */
|
||||
}
|
||||
|
||||
/**
|
||||
* Fch Oem setting callback
|
||||
*
|
||||
* Configure platform specific Hudson device,
|
||||
* such Azalia, SATA, GEC, IMC etc.
|
||||
*/
|
||||
AGESA_STATUS Fch_Oem_config(UINT32 Func, UINT32 FchData, VOID *ConfigPtr)
|
||||
{
|
||||
FCH_RESET_DATA_BLOCK *FchParams = (FCH_RESET_DATA_BLOCK *)FchData;
|
||||
|
||||
if (FchParams->StdHeader->Func == AMD_INIT_RESET) {
|
||||
//FCH_RESET_DATA_BLOCK *FchParams_reset = (FCH_RESET_DATA_BLOCK *) FchData;
|
||||
printk(BIOS_DEBUG, "Fch OEM config in INIT RESET ");
|
||||
//FchParams_reset->EcChannel0 = TRUE; /* logical devicd 3 */
|
||||
} else if (FchParams->StdHeader->Func == AMD_INIT_ENV) {
|
||||
FCH_DATA_BLOCK *FchParams_env = (FCH_DATA_BLOCK *)FchData;
|
||||
printk(BIOS_DEBUG, "Fch OEM config in INIT ENV ");
|
||||
|
||||
/* Azalia Controller OEM Codec Table Pointer */
|
||||
FchParams_env->Azalia.AzaliaOemCodecTablePtr = (CODEC_TBL_LIST *)(&ThatcherCodecTableList[0]);
|
||||
/* Azalia Controller Front Panel OEM Table Pointer */
|
||||
|
||||
/* Fan Control */
|
||||
oem_fan_control(FchParams_env);
|
||||
|
||||
/* XHCI configuration */
|
||||
FchParams_env->Usb.Xhci0Enable = FALSE;
|
||||
FchParams_env->Usb.Xhci1Enable = FALSE;
|
||||
}
|
||||
printk(BIOS_DEBUG, "Done\n");
|
||||
|
||||
return AGESA_SUCCESS;
|
||||
}
|
Reference in New Issue
Block a user