Compare commits

..

22 Commits

Author SHA1 Message Date
Jeremy Soller
0e7f0928f3 Update blobs 2019-02-28 11:21:17 -07:00
Jeremy Soller
b29e5075e1 Use Mini DisplayPort by default 2019-02-28 11:11:32 -07:00
Jeremy Soller
5ca32c0855 Update blobs 2019-02-27 14:06:05 -07:00
Jeremy Soller
69ac9be039 Add SMM to all configs 2019-02-27 13:51:31 -07:00
Jeremy Soller
e60b69f461 Add smmstore for EFI variables on galp3-c 2019-02-27 13:40:07 -07:00
Arthur Heymans
d5999adedc drivers/smmstore: Fix some issues
This fixes the following:
- Fix smmstore_read_region to actually read stuff
- Make the API ARCH independent (no dependency on size_t)
- clean up the code a little
- Change the loglevel for non error messages to BIOS_DEBUG

Change-Id: I629be25d2a9b65796ae8f7a700b6bdab57b91b22
Signed-off-by: Arthur Heymans <arthur@aheymans.xyz>
2019-02-27 13:26:43 -07:00
Arthur Heymans
6455edb1b5 sb/intel/common/smihandler: Hook up smmstore
TESTED on Asus P5QC

Change-Id: I20b87f3dcb898656ad31478820dd5153e4053cb2
Signed-off-by: Arthur Heymans <arthur@aheymans.xyz>
2019-02-27 13:26:35 -07:00
Jeremy Soller
a80b0ef9a8 Add self flashing script 2019-02-27 13:24:15 -07:00
Jeremy Soller
1842e2a7f4 Quick rebuild script 2019-02-27 13:14:38 -07:00
Jeremy Soller
33ea3e837d Update blobs 2019-02-27 13:08:41 -07:00
Jeremy Soller
1d8832b3ed No longer try to build seabios 2019-02-27 12:57:20 -07:00
Jeremy Soller
5d03264046 UEFI for galp2, galp3, galp3-b 2019-02-27 12:56:14 -07:00
Jeremy Soller
3fab7d1d91 UEFI for darp5 and galp3-c 2019-02-27 12:43:18 -07:00
Jeremy Soller
fc189a3339 Fix UEFI hangs 2019-02-27 12:17:10 -07:00
Jeremy Soller
9e635d2c87 Add grub configuration to make booting different payloads easier 2019-02-26 20:57:03 -07:00
Jeremy Soller
70f3ad9dc5 Update qemu config and blob 2019-02-26 20:19:03 -07:00
Jeremy Soller
1cc43cf180 Update qemu model 2019-02-26 17:33:30 -07:00
Jeremy Soller
d37873beae Update blobs 2019-02-26 12:09:32 -07:00
Jeremy Soller
c3a2c48bf6 soc/intel/cannonlake: Set FSP-S Enable8254ClockGating using clock_gate_8254 devicetree parameter
Tested on system76 galp3-c

Signed-off-by: Jeremy Soller <jeremy@system76.com>
Change-Id: Id346173ac7ae5246de0b38b9dd23be7b72e70f1e
2019-02-26 11:51:19 -07:00
Jeremy Soller
fc7fecf7c8 Revert "soc/intel/cannonlake: Remove DMA support for PTT"
This reverts commit d5018a8f78.
2019-02-26 11:42:26 -07:00
Jeremy Soller
020fb66698 Update blobs 2019-02-26 10:21:56 -07:00
Jeremy Soller
891cc9a939 System76 darp5, galp2, galp3, galp3-b, and galp3-c support 2019-02-26 10:14:03 -07:00
4607 changed files with 49410 additions and 91068 deletions

View File

@@ -7,7 +7,7 @@ AllowShortIfStatementsOnASingleLine: false
IndentCaseLabels: false
SortIncludes: false
ContinuationIndentWidth: 8
ColumnLimit: 96
ColumnLimit: 0
AlwaysBreakBeforeMultilineStrings: true
AllowShortLoopsOnASingleLine: false
AllowShortFunctionsOnASingleLine: false

24
.gitmodules vendored
View File

@@ -1,36 +1,28 @@
[submodule "3rdparty/blobs"]
path = 3rdparty/blobs
url = ../blobs.git
url = https://github.com/coreboot/blobs.git
update = none
ignore = dirty
[submodule "util/nvidia-cbootimage"]
path = util/nvidia/cbootimage
url = ../nvidia-cbootimage.git
url = https://github.com/coreboot/nvidia-cbootimage.git
[submodule "vboot"]
path = 3rdparty/vboot
url = ../vboot.git
url = https://github.com/coreboot/vboot.git
[submodule "arm-trusted-firmware"]
path = 3rdparty/arm-trusted-firmware
url = ../arm-trusted-firmware.git
url = https://github.com/coreboot/arm-trusted-firmware.git
[submodule "3rdparty/chromeec"]
path = 3rdparty/chromeec
url = ../chrome-ec.git
url = https://github.com/coreboot/chrome-ec.git
[submodule "libhwbase"]
path = 3rdparty/libhwbase
url = ../libhwbase.git
url = https://github.com/coreboot/libhwbase.git
[submodule "libgfxinit"]
path = 3rdparty/libgfxinit
url = ../libgfxinit.git
url = https://github.com/coreboot/libgfxinit.git
[submodule "3rdparty/fsp"]
path = 3rdparty/fsp
url = ../fsp.git
update = none
ignore = dirty
[submodule "opensbi"]
path = 3rdparty/opensbi
url = ../opensbi.git
[submodule "intel-microcode"]
path = 3rdparty/intel-microcode
url = ../intel-microcode.git
url = https://github.com/coreboot/fsp.git
update = none
ignore = dirty

2
3rdparty/blobs vendored

2
3rdparty/fsp vendored

1
3rdparty/opensbi vendored

Submodule 3rdparty/opensbi deleted from 804b997ed4

2
3rdparty/vboot vendored

View File

@@ -29,6 +29,7 @@
</li>
<li><a target="_blank" href="SoC/soc.html">SoC</a> support</li>
<li><a target="_blank" href="Board/board.html">Board</a> support</li>
<li><a target="_blank" href="vboot.html">Verified Boot (vboot)</a> support</li>
</ul>

View File

@@ -0,0 +1,402 @@
<!DOCTYPE html>
<html>
<head>
<title>vboot - Verified Boot Support</title>
</head>
<body>
<h1>vboot - Verified Boot Support</h1>
<p>
Google's verified boot support consists of:
</p>
<ul>
<li>A root of trust</li>
<li>Special firmware layout</li>
<li>Firmware verification</li>
<li>Firmware measurements</li>
<li>A firmware update mechanism</li>
<li>Specific build flags</li>
<li>Signing the coreboot image</li>
</ul>
Google's vboot verifies the firmware and places measurements
within the TPM.
<hr>
<h2>Root of Trust</h2>
<p>
When using vboot, the root-of-trust is basically the read-only portion of the
SPI flash. The following items factor into the trust equation:
</p>
<ul>
<li>The GCC compiler must reliably translate the code into machine code
without inserting any additional code (virus, backdoor, etc.)
</li>
<li>The CPU must reliably execute the reset sequence and instructions as
documented by the CPU manufacturer.
</li>
<li>The SPI flash must provide only the code programmed into it to the CPU
without providing any alternative reset vector or code sequence.
</li>
<li>The SPI flash must honor the write-protect input and protect the
specified portion of the SPI flash from all erase and write accesses.
</li>
</ul>
<p>
The firmware is typically protected using the write-protect pin on the SPI
flash part and setting some of the write-protect bits in the status register
during manufacturing. The protected area is platform specific and for x86
platforms is typically 1/4th of the SPI flash
part size. Because this portion of the SPI flash is hardware write protected,
it is not possible to update this portion of the SPI flash in the field,
without altering the system to eliminate the ground connection to the SPI flash
write-protect pin. Without hardware modifications, this portion of the SPI
flash maintains the manufactured state during the system's lifetime.
</p>
<hr>
<h2>Firmware Layout</h2>
<p>
Several sections are added to the firmware layout to support vboot:
</p>
<ul>
<li>Read-only section</li>
<li>Google Binary Blob (GBB) area</li>
<li>Read/write section A</li>
<li>Read/write section B</li>
</ul>
<p>
The following sections describe the various portions of the flash layout.
</p>
<h3>Read-Only Section</h3>
<p>
The read-only section contains a coreboot file system (CBFS) that contains all
of the boot firmware necessary to perform recovery for the system. This
firmware is typically protected using the write-protect pin on the SPI flash
part and setting some of the write-protect bits in the status register during
manufacturing. The protected area is typically 1/4th of the SPI flash part
size and must cover the entire read-only section which consists of:
</p>
<ul>
<li>Vital Product Data (VPD) area</li>
<li>Firmware ID area</li>
<li>Google Binary Blob (GBB) area</li>
<li>coreboot file system containing read-only recovery firmware</li>
</ul>
<h3>Google Binary Blob (GBB) Area</h3>
<p>
The GBB area is part of the read-only section. This area contains a 4096 or
8192 bit public root RSA key that is used to verify the VBLOCK area to obtain
the firmware signing key.
</p>
<h3>Recovery Firmware</h3>
<p>
The recovery firmware is contained within a coreboot file system and consists
of:
</p>
<ul>
<li>reset vector</li>
<li>bootblock</li>
<li>verstage</li>
<li>romstage</li>
<li>postcar</li>
<li>ramstage</li>
<li>payload</li>
<li>flash map file</li>
<li>config file</li>
<li>processor specific files:
<ul>
<li>Microcode</li>
<li>fspm.bin</li>
<li>fsps.bin</li>
</ul>
</li>
</ul>
<p>
The recovery firmware is written during manufacturing and typically contains
code to write the storage device (eMMC device or hard disk). The recovery
image is usually contained on a socketed device such as a USB flash drive or
an SD card. Depending upon the payload firmware doing the recovery, it may
be possible for the user to interact with the system to specify the recovery
image path. Part of the recovery is also to write the A and B areas of the
SPI flash device to boot the system.
</p>
<h3>Read/Write Section</h3>
<p>
The read/write sections contain an area which contains the firmware signing
key and signature and an area containing a coreboot file system with a subset
of the firmware. The firmware files in FW_MAIN_A and FW_MAIN_B are:
</p>
<ul>
<li>romstage</li>
<li>postcar</li>
<li>ramstage</li>
<li>payload</li>
<li>config file</li>
<li>processor specific files:
<ul>
<li>Microcode</li>
<li>fspm.bin</li>
<li>fsps.bin</li>
</ul>
</li>
</ul>
<p>
The firmware subset enables most issues to be fixed in the field with firmware
updates. The firmware files handle memory and most of silicon initialization.
These files also produce the tables which get passed to the operating system.
</p>
<hr>
<h2>Firmware Updates</h2>
<p>
The read/write sections exist in one of three states:
</p>
<ul>
<li>Invalid</li>
<li>Ready to boot</li>
<li>Successfully booted</li>
</ul>
<table border="1">
<tr bgcolor="#ffc0c0">
<td>
Where is this state information written?
<br/>CMOS?
<br/>RW_NVRAM?
<br/>RW_FWID_*
</td>
</tr>
</table>
<p>
Firmware updates are handled by the operating system by writing any read/write
section that is not in the "successfully booted" state. Upon the next reboot,
vboot determines the section to boot. If it finds one in the "ready to boot"
state then it attempts to boot using that section. If the boot fails then
vboot marks the section as invalid and attempts to fall back to a read/write
section in the "successfully booted" state. If vboot is not able to find a
section in the "successfully booted" state then vboot enters recovery mode.
</p>
<p>
Only the operating system is able to transition a section from the "ready to
boot" state to the "successfully booted" state. The transition is typically
done after the operating system has been running for a while indicating
that successful boot was possible and the operating system is stable.
</p>
<p>
Note that as long as the SPI write protection is in place then the system is
always recoverable. If the flash update fails then the system will continue
to boot using the previous read/write area. The same is true if coreboot
passes control to the payload or the operating system and then the boot fails.
In the worst case, the SPI flash gets totally corrupted in which case vboot
fails the signature checks and enters recovery mode. There are no times where
the SPI flash is exposed and the reset vector or part of the recovery firmware
gets corrupted.
</p>
<hr>
<h2>Build Flags</h2>
<p>
The following Kconfig values need to be selected to enable vboot:
</p>
<ul>
<li>COLLECT_TIMESTAMPS</li>
<li>VBOOT</li>
</ul>
<p>
The starting stage needs to be specified by selecting either
VBOOT_STARTS_IN_BOOTBLOCK or VBOOT_STARTS_IN_ROMSTAGE.
</p>
<p>
If vboot starts in bootblock then vboot may be built as a separate stage by
selecting VBOOT_SEPARATE_VERSTAGE. Additionally, if static RAM is too small
to fit both verstage and romstage then selecting VBOOT_RETURN_FROM_VERSTAGE
enables bootblock to reuse the RAM occupied by verstage for romstage.
</p>
<p>
Non-volatile flash is needed for vboot operation. This flash area may be in
CMOS, the EC, or in a read/write area of the SPI flash device. Select one of
the following:
</p>
<ul>
<li>VBOOT_VBNV_CMOS</li>
<li>VBOOT_VBNV_EC</li>
<li>VBOOT_VBNV_FLASH</li>
</ul>
<p>
More non-volatile storage features may be found in src/vboot/Kconfig.
</p>
<p>
A TPM is also required for vboot operation. TPMs are available in
drivers/i2c/tpm and drivers/pc80/tpm.
</p>
<p>
In addition to adding the coreboot files into the read-only region, enabling
vboot causes the build script to add the read/write files into coreboot file
systems in FW_MAIN_A and FW_MAIN_B.
</p>
<hr>
<h2>Signing the coreboot Image</h2>
<p>
The following command script is an example of how to sign the coreboot image file.
This script is used on the Intel Galileo board and creates the GBB area and
inserts it into the coreboot image. It also updates the VBLOCK areas with the
firmware signing key and the signature for the FW_MAIN firmware. More details
are available in 3rdparty/vboot/README.
</p>
<pre><code>#!/bin/sh
#
# The necessary tools were built and installed using the following commands:
#
# pushd 3rdparty/vboot
# make
# sudo make install
# popd
#
# The keys were made using the following command
#
# 3rdparty/vboot/scripts/keygeneration/create_new_keys.sh \
# --4k --4k-root --output $PWD/keys
#
#
# The "magic" numbers below are derived from the GBB section in
# src/mainboard/intel/galileo/vboot.fmd.
#
# GBB Header Size: 0x80
# GBB Offset: 0x611000, 4KiB block number: 1553 (0x611)
# GBB Length: 0x7f000, 4KiB blocks: 127 (0x7f)
# COREBOOT Offset: 0x690000, 4KiB block number: 1680 (0x690)
# COREBOOT Length: 0x170000, 4KiB blocks: 368 (0x170)
#
# 0x7f000 (GBB Length) = 0x80 + 0x100 + 0x1000 + 0x7ce80 + 0x1000
#
# Create the GBB area blob
# Parameters: hwid_size,rootkey_size,bmpfv_size,recoverykey_size
#
gbb_utility -c 0x100,0x1000,0x7ce80,0x1000 gbb.blob
#
# Copy from the start of the flash to the GBB region into the signed flash
# image.
#
# 1553 * 4096 = 0x611 * 0x1000 = 0x611000, size of area before GBB
#
dd conv=fdatasync ibs=4096 obs=4096 count=1553 \
if=build/coreboot.rom of=build/coreboot.signed.rom
#
# Append the empty GBB area to the coreboot.rom image.
#
# 1553 * 4096 = 0x611 * 0x1000 = 0x611000, offset to GBB
#
dd conv=fdatasync obs=4096 obs=4096 seek=1553 if=gbb.blob \
of=build/coreboot.signed.rom
#
# Append the rest of the read-only region into the signed flash image.
#
# 1680 * 4096 = 0x690 * 0x1000 = 0x690000, offset to COREBOOT area
# 368 * 4096 = 0x170 * 0x1000 = 0x170000, length of COREBOOT area
#
dd conv=fdatasync ibs=4096 obs=4096 skip=1680 seek=1680 count=368 \
if=build/coreboot.rom of=build/coreboot.signed.rom
#
# Insert the HWID and public root and recovery RSA keys into the GBB area.
#
gbb_utility \
--set --hwid='Galileo' \
-r $PWD/keys/recovery_key.vbpubk \
-k $PWD/keys/root_key.vbpubk \
build/coreboot.signed.rom
#
# Sign the read/write firmware areas with the private signing key and update
# the VBLOCK_A and VBLOCK_B regions.
#
3rdparty/vboot/scripts/image_signing/sign_firmware.sh \
build/coreboot.signed.rom \
$PWD/keys \
build/coreboot.signed.rom
</code></pre>
<hr>
<h2>Boot Flow</h2>
<p>
The reset vector exist in the read-only area and points to the bootblock entry
point. The only copy of the bootblock exists in the read-only area of the SPI
flash. Verstage may be part of the bootblock or a separate stage. If separate
then the bootblock loads verstage from the read-only area and transfers control
to it.
</p>
<p>
Upon first boot, verstage attempts to verify the read/write section A. It gets
the public root key from the GBB area and uses that to verify the VBLOCK area
in read-write section A. If the VBLOCK area is valid then it extracts the
firmware signing key (1024-8192 bits) and uses that to verify the FW_MAIN_A
area of read/write section A. If the verification is successful then verstage
instructs coreboot to use the coreboot file system in read/write section A for
the contents of the remaining boot firmware (romstage, postcar, ramstage and
the payload).
</p>
<p>
If verification fails for the read/write area and the other read/write area is
not valid vboot falls back to the read-only area to boot into system recovery.
</p>
<hr>
<h2>Chromebook Special Features</h2>
<p>
Google's Chromebooks have some special features:
</p>
<ul>
<li>Developer mode</li>
<li>Write-protect screw</li>
</ul>
<h3>Developer Mode</h3>
<p>
Developer mode allows the user to use coreboot to boot another operating system.
This may be a another (beta) version of Chrome OS, or another flavor of
GNU/Linux. Use of developer mode does not void the system warranty. Upon
entry into developer mode, all locally saved data on the system is lost.
This prevents someone from entering developer mode to subvert the system
security to access files on the local system or cloud.
</p>
<h3>Write Protect Screw</h3>
<p>
Chromebooks have a write-protect screw which provides the ground to the
write-protect pin of the SPI flash. Google specifically did this to allow
the manufacturing line and advanced developers to re-write the entire SPI flash
part. Once the screw is removed, any firmware may be placed on the device.
However, accessing this screw requires opening the case and voids the system
warranty!
</p>
<hr>
<p>Modified: 2 May 2017</p>
</body>
</html>

View File

@@ -16,12 +16,6 @@ This is an (incomplete) list of POST codes emitted by coreboot v4.
0x66 Devices have been enumerated
0x88 Devices have been configured
0x89 Devices have been enabled
0xe0 Boot media (e.g. SPI ROM) is corrupt
0xe1 Resource stored within CBFS is corrupt
0xe2 Vendor binary (e.g. FSP) generated a fatal error
0xe3 RAM could not be initialized
0xe4 Critical hardware component could not initialize
0xe5 Video subsystem failed to initialize
0xf8 Entry into elf boot
0xf3 Jumping to payload

View File

@@ -8,9 +8,8 @@ listed as consumable is subject to change without notice.
## Background and Usage
coreboot passes information to downstream users using coreboot tables. These
table definitions can be found in
`./src/commonlib/include/commonlib/coreboot_tables.h` and
`./payloads/libpayload/include/coreboot_tables.h` respectively within coreboot
table definitions can be found in src/include/boot/coreboot_tables.h and
payloads/libpayload/include/coreboot_tables.h respectively within coreboot
and libpayload. One of the most vital and important pieces of information
found within these tables is the memory map of the system indicating
available and reserved memory.

View File

@@ -15,7 +15,7 @@ Payloads run from the ramstage are started in S mode, and trap delegation
will have been done. These payloads rely on the SBI and can not replace it.
## Stage handoff protocol
On entry to a stage or payload (including SELF payloads),
On entry to a stage or payload,
* all harts are running.
* A0 is the hart ID.
* A1 is the pointer to the Flattened Device Tree (FDT).

View File

@@ -2,8 +2,6 @@
This section contains documentation about coreboot on x86 architecture.
* [x86 PAE support](pae.md)
## State of x86_64 support
At the moment there's no single board that supports x86_64 or to be exact
`ARCH_RAMSTAGE_X86_64` and `ARCH_ROMSTAGE_X86_64`.

View File

@@ -1,15 +0,0 @@
# x86_32 PAE documentation
Due to missing x86_64 support it's required to use PAE enabled x86_32 code.
The corresponding functions can be found in ``src/cpu/x86/pae/``.
## Memory clearing helper functions
To clear all DRAM on request of the
[Security API](../../security/memory_clearing.md), a helper function can be used
called `memset_pae`.
The function has additional requirements in contrast to `memset`, and has more
overhead as it uses virtual memory to access memory above 4GiB.
Memory is cleared in 2MiB chunks, which might take a while.
Make sure to enable caches through MTRRs, otherwise `memset_pae` will be slow!

View File

@@ -22,30 +22,19 @@ Refrain from insulting anyone or the group they belong to. Remember that
people might be sensitive to other things than you are.
Most of our community members are not native English speakers, thus
misunderstandings can (and do) happen. Assume that others are friendly
and may have picked less-than-stellar wording by accident as long as
you possibly can.
misunderstandings can (and do) happen. Always assume that others are
friendly and may have picked less-than-stellar wording by accident.
## Reporting Issues
If you have a grievance due to conduct in this community, we're sorry
that you have had a bad experience, and we want to hear about it so
we can resolve the situation.
Please contact members of our arbitration team (listed below) promptly
and directly, in person (if available) or by email: They will listen
to you and react in a timely fashion.
If you feel uncomfortable, please don't wait it out, ask for help,
so we can work on setting things right.
If you have a grievance due to conduct in this community, we want to hear
about it so we can handle the situation. Please contact our arbitration
team directly: They will listen to you and react in a timely fashion.
For transparency there is no alias or private mailing list address for
you to reach out to, since we want to make sure that you know who will
and who won't read your message.
(and who won't) read your message.
However since people might be on travel or otherwise be unavailable
at times, please reach out to multiple persons at once, especially
when using email.
However since people might be on travel or otherwise be unavailable at
times, consider reaching out to multiple persons.
The team will treat your messages confidential as far as the law permits.
For the purpose of knowing what law applies, the list provides the usual
@@ -84,10 +73,15 @@ immediately.
If a community member engages in unacceptable behavior, the community
organizers may take any action they deem appropriate, up to and including
a temporary ban or permanent expulsion from the community without warning
(and without refund in the case of a paid event).
(and without refund in the case of a paid event). Community organizers
can be part of the arbitration team, or organizers of events and online
communities.
## If You Witness or Are Subject to Unacceptable Behavior
If you are subject to or witness unacceptable behavior, or have any other
concerns, please notify someone from the arbitration team immediately.
Community organizers can be members of the arbitration team, or organizers
of events and online communities.
## Addressing Grievances
@@ -108,7 +102,7 @@ Our arbitration team consists of the following people
* Stefan Reinauer <stefan.reinauer@coreboot.org> (USA)
* Patrick Georgi <patrick@coreboot.org> (Germany)
* Ronald Minnich <rminnich@coreboot.org> (USA)
* Martin Roth <martin@coreboot.org> (USA)
* Marc Jones <mjones@coreboot.org> (USA)
## License and attribution

View File

@@ -29,12 +29,6 @@ Provide packages/installers of our compiler toolchain for Linux distros,
Windows, Mac OS. For Windows, this should also include the environment
(shell, make, ...).
The scripts to generate these packages should be usable on a Linux
host, as that's what we're using for our automated build testing system
that we could extend to provide current packages going forward. This
might include automating some virtualization system (eg. QEMU or CrosVM) for
non-Linux builds or Docker for different Linux distributions.
### Requirements
* coreboot knowledge: Should know how to build coreboot images and where
the compiler comes into play in our build system.
@@ -84,7 +78,6 @@ code doesn't entirely break these architectures
hardware is available.
### Mentors
* Patrick Georgi <patrick@georgi.software>
## Add Kernel Address Sanitizer functionality to coreboot
The Kernel Address Sanitizer (KASAN) is a runtime dynamic memory error detector.
@@ -152,52 +145,3 @@ their bug reports.
### Mentors
* Patrick Georgi <patrick@georgi.software>
## Make coreboot coverity clean
coreboot and several other of our projects are automatically tested
using Synopsys' free "Coverity Scan" service. While some fare pretty
good, like [em100](https://scan.coverity.com/projects/em100) at 0 known
defects, there are still many open issues in other projects, most notably
[coreboot](https://scan.coverity.com/projects/coreboot) itself (which
is also the largest codebase).
Not all of the reports are actual issues, but the project benefits a
lot if the list of unhandled reports is down to 0 because that provides
a baseline when future changes reintroduce new issues: it's easier to
triage and handle a list of 5 issues rather than more than 350.
This project would be going through all reports and handling them
appropriately: Figure out if reports are valid or not and mark them
as such. For valid reports, provide patches to fix the underlying issue.
### Mentors
* Patrick Georgi <patrick@georgi.software>
## Extend Ghidra to support analysis of firmware images
[Ghidra](https://ghidra-sre.org) is a recently released cross-platform
disassembler and decompiler that is extensible through plugins. Make it
useful for firmware related work: Automatically parse formats (eg. by
integrating UEFITool, cbfstool, decompressors), automatically identify
16/32/64bit code on x86/amd64, etc.
## Learn hardware behavior from I/O and memory access logs
[SerialICE](https://www.serialice.com) is a tool to trace the behavior of
executable code like firmware images. One result of that is a long log file
containing the accesses to hardware resources.
It would be useful to have a tool that assists a developer-analyst in deriving
knowledge about hardware from such logs. This likely can't be entirely
automatic, but a tool that finds patterns and can propagate them across the
log (incrementially raising the log from plain I/O accesses to a high-level
description of driver behavior) would be of great use.
This is a research-heavy project.
### Requirements
* Driver knowledge: Somebody working on this should be familiar with
how hardware works (eg. MMIO based register access, index/data port
accesses) and how to read data sheets.
* Machine Learning: ML techniques may be useful to find structure in traces.
### Mentors
* Ron Minnich <rminnich@google.com>

View File

@@ -1,7 +0,0 @@
# Platform indenpendend drivers documentation
The drivers can be found in `src/drivers`. They are intended for onboard
and plugin devices, significantly reducing integration complexity and
they allow to easily reuse existing code accross platforms.
* [IPMI KCS](ipmi_kcs.md)

View File

@@ -1,47 +0,0 @@
# IPMI KCS driver
The driver can be found in `src/drivers/ipmi/`. It works with BMC that provide
a KCS I/O interface as specified in the [IPMI] standard.
The driver detects the IPMI version, reserves the I/O space in coreboot's
resource allocator and writes the required ACPI and SMBIOS tables.
## For developers
To use the driver, select the `IPMI_KCS` Kconfig and add the following PNP
device under the LPC bridge device (in example for the KCS at 0xca2):
```
chip drivers/ipmi
device pnp ca2.0 on end # IPMI KCS
end
```
**Note:** The I/O base address needs to be aligned to 2.
The following registers can be set:
* `have_nv_storage`
* Boolean
* If true `nv_storage_device_address` will be added to SMBIOS type 38.
* `nv_storage_device_address`
* Integer
* The NV storage address as defined in SMBIOS spec for type 38.
* `bmc_i2c_address`
* Integer
* The i2c address of the BMC. zero if not applicable.
* `have_apic`
* Boolean
* If true the `apic_interrupt` will be added to SPMI table.
* `apic_interrupt`
* Integer
* The APIC interrupt used to notify about a change on the KCS.
* `have_gpe`
* Boolean
* If true the `gpe_interrupt` will be added to SPMI table.
* `gpe_interrupt`
* Integer
* The bit in GPE (SCI) used to notify about a change on the KCS.
[IPMI]: https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf

View File

@@ -1,105 +0,0 @@
# coreboot architecture
## Overwiew
![][architecture]
[architecture]: comparision_coreboot_uefi.svg
## Stages
coreboot consists of multiple stages that are compiled as separate binaries and
are inserted into the CBFS with custom compression. The bootblock usually doesn't
have compression while the ramstage and payload are compressed with LZMA.
Each stage loads the next stage a given address (possibly decompressing it).
Some stages are relocatable and can be placed anywhere in DRAM. Those stages are
usually cached in CBMEM for faster loading times on ACPI S3 resume.
Supported stage compressions:
* none
* LZ4
* LZMA
## bootblock
The bootblock is the first stage executed after CPU reset. It is written in
assembly language and its main task is to set up everything for a C-environment:
Common tasks:
* Cache-As-RAM for heap and stack
* Set stack pointer
* Clear memory for BSS
* Decompress and load the next stage
On x86 platforms that includes:
* Microcode updates
* Timer init
* Switching from 16-bit real-mode to 32-bit protected mode
The bootblock loads the romstage or the verstage if verified boot is enabled.
### Cache-As-Ram
The *Cache-As-Ram*, also called Non-Eviction mode, or *CAR* allows to use the
CPU cache like regular SRAM. This is particullary usefull for high level
languages like `C`, which need RAM for heap and stack.
The CAR needs to be activated using vendor specific CPU instructions.
The following stages run when Cache-As-Ram is active:
* bootblock
* romstage
* verstage
* postcar
## verstage
The verstage is where the root-of-trust starts. It's assumed that
it cannot be overwritten in-field (together with the public key) and
it starts at the very beginning of the boot process.
The verstage installs a hook to verify a file before it's loaded from
CBFS or a partition before it's accessed.
The verified boot mechanism allows trusted in-field firmware updates
combined with a fail-safe recovery mode.
## romstage
The romstage initializes the DRAM and prepares everything for device init.
Common tasks:
* Early device init
* DRAM init
## postcar
To leave the CAR setup and run code from regular DRAM the postcar-stage tears
down CAR and loads the ramstage. Compared to other stages it's minimal in size.
## ramstage
The ramstage does the main device init:
* PCI device init
* On-chip device init
* TPM init (if not done by verstage)
* Graphics init (optional)
* CPU init (like set up SMM)
After initialization tables are written to inform the payload or operating system
about the current hardware existance and state. That includes:
* ACPI tables (x86 specific)
* SMBIOS tables (x86 specific)
* coreboot tables
* devicetree updates (ARM specific)
It also does hardware and firmware lockdown:
* Write-protection of boot media
* Lock security related registers
* Lock SMM mode (x86 specific)
## payload
The payload is the software that is run after coreboot is done. It resides in
the CBFS and there's no possibility to choose it at runtime.
For more details have a look at [payloads](../payloads.md).

View File

@@ -1,176 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/PR-SVG-20010719/DTD/svg10.dtd">
<svg width="55cm" height="28cm" viewBox="62 37 1088 559" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g>
<rect style="fill: #ffffff" x="63.296" y="74.0258" width="1085.8" height="520.893"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ffffff" x="63.296" y="74.0258" width="1085.8" height="520.893"/>
</g>
<line style="fill: none; fill-opacity:0; stroke-width: 4; stroke: #000000" x1="242.613" y1="107.463" x2="242.698" y2="492.591"/>
<g>
<line style="fill: none; fill-opacity:0; stroke-width: 4; stroke: #000000" x1="234.964" y1="477.053" x2="1135.15" y2="478.109"/>
<polyline style="fill: none; fill-opacity:0; stroke-width: 4; stroke: #000000" points="1124.61,485.597 1139.62,478.114 1124.63,470.597 "/>
</g>
<text font-size="22.5778" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="482.342" y="58.1574">
<tspan x="482.342" y="58.1574">Platform Initialization Firmware Phases</tspan>
</text>
<text font-size="16.9333" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="98.4514" y="435.714">
<tspan x="98.4514" y="435.714">EDK II - stages</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="1073.49" y="499.998">
<tspan x="1073.49" y="499.998">time</tspan>
</text>
<text font-size="16.9333" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="82.8266" y="330.476">
<tspan x="82.8266" y="330.476">coreboot - stages</tspan>
</text>
<g>
<rect style="fill: #faff94" x="250.501" y="404.247" width="130.432" height="69.1471"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="250.501" y="404.247" width="130.432" height="69.1471"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="315.718" y="434.72">
<tspan x="315.718" y="434.72">Security</tspan>
<tspan x="315.718" y="450.72">(SEC)</tspan>
</text>
</g>
<g>
<rect style="fill: #faff94" x="383.033" y="404.781" width="282.702" height="69"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="383.033" y="404.781" width="282.702" height="69"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="524.384" y="427.181">
<tspan x="524.384" y="427.181">Pre-EFI</tspan>
<tspan x="524.384" y="443.181">Initialization Environment</tspan>
<tspan x="524.384" y="459.181">(PEI)</tspan>
</text>
</g>
<g>
<rect style="fill: #faff94" x="668.027" y="405.317" width="269.244" height="69"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="668.027" y="405.317" width="269.244" height="69"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="802.649" y="427.717">
<tspan x="802.649" y="427.717">Driver Execution</tspan>
<tspan x="802.649" y="443.717">Environment</tspan>
<tspan x="802.649" y="459.717">(DXE)</tspan>
</text>
</g>
<g>
<rect style="fill: #faff94" x="939.541" y="405.727" width="178.75" height="69"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="939.541" y="405.727" width="178.75" height="69"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="1028.92" y="436.127">
<tspan x="1028.92" y="436.127">Boot Device Selection</tspan>
<tspan x="1028.92" y="452.127">(BDS)</tspan>
</text>
</g>
<g>
<rect style="fill: #90c9ff" x="254.747" y="291.309" width="125.314" height="69.1471"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="254.747" y="291.309" width="125.314" height="69.1471"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="317.404" y="329.782">
<tspan x="317.404" y="329.782">bootblock</tspan>
</text>
</g>
<g>
<rect style="fill: #90c9ff" x="476.354" y="290.735" width="89.65" height="69.1471"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="476.354" y="290.735" width="89.65" height="69.1471"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="521.179" y="329.209">
<tspan x="521.179" y="329.209">romstage</tspan>
</text>
</g>
<g>
<rect style="fill: #90c9ff" x="382.317" y="291.011" width="92.1" height="69.1471"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="382.317" y="291.011" width="92.1" height="69.1471"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="428.367" y="321.485">
<tspan x="428.367" y="321.485">verstage</tspan>
<tspan x="428.367" y="337.485">(optional)</tspan>
</text>
</g>
<g>
<rect style="fill: #90c9ff" x="567.853" y="290.99" width="98.5152" height="69.1471"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="567.853" y="290.99" width="98.5152" height="69.1471"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="617.11" y="321.464">
<tspan x="617.11" y="321.464">postcar</tspan>
<tspan x="617.11" y="337.464">(x86 only)</tspan>
</text>
</g>
<g>
<rect style="fill: #90c9ff" x="667.529" y="281.527" width="168.747" height="37"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="667.529" y="281.527" width="168.747" height="37"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="751.903" y="303.927">
<tspan x="751.903" y="303.927">ramstage</tspan>
</text>
</g>
<g>
<rect style="fill: #90c9ff" x="667.84" y="321.487" width="167.519" height="53"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="667.84" y="321.487" width="167.519" height="53"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="751.6" y="343.887">
<tspan x="751.6" y="343.887">SMM</tspan>
<tspan x="751.6" y="359.887">(x86 only)</tspan>
</text>
</g>
<g>
<rect style="fill: #90c9ff" x="941.841" y="283.151" width="171.98" height="69.1471"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="941.841" y="283.151" width="171.98" height="69.1471"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="1027.83" y="321.624">
<tspan x="1027.83" y="321.624">payload</tspan>
</text>
</g>
<g>
<rect style="fill: #d8e5e5" x="253.112" y="209.178" width="82.7" height="27"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="253.112" y="209.178" width="82.7" height="27"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="294.462" y="226.578">
<tspan x="294.462" y="226.578">Assembly</tspan>
</text>
</g>
<g>
<rect style="fill: #00c800" x="318.155" y="129.267" width="283.43" height="27"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="318.155" y="129.267" width="283.43" height="27"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="459.87" y="146.667">
<tspan x="459.87" y="146.667">Cache-As-RAM</tspan>
</text>
</g>
<g>
<rect style="fill: #ff8484" x="506.676" y="159.67" width="599.421" height="27"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="506.676" y="159.67" width="599.421" height="27"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="806.387" y="177.07">
<tspan x="806.387" y="177.07">DRAM</tspan>
</text>
</g>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="175.046" y1="392.926" x2="1113.82" y2="391.893"/>
<text font-size="12.7998" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="387.045" y="241.637">
<tspan x="387.045" y="241.637"></tspan>
</text>
<g>
<rect style="fill: #ffffff" x="337.438" y="209.383" width="618.831" height="27"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="337.438" y="209.383" width="618.831" height="27"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="646.853" y="226.783">
<tspan x="646.853" y="226.783">C</tspan>
</text>
</g>
<g>
<rect style="fill: #f6c7c7" x="667.35" y="238.912" width="170.3" height="27"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="667.35" y="238.912" width="170.3" height="27"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="752.5" y="256.312">
<tspan x="752.5" y="256.312">ADA SPARK (x86 only)</tspan>
</text>
</g>
<text font-size="16.9333" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="84.2481" y="233.28">
<tspan x="84.2481" y="233.28">coreboot</tspan>
<tspan x="84.2481" y="254.446">source languages</tspan>
</text>
<text font-size="16.9333" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="86.5008" y="153.786">
<tspan x="86.5008" y="153.786">code/heap</tspan>
<tspan x="86.5008" y="174.953">memory location </tspan>
</text>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="175.483" y1="273.35" x2="1109.07" y2="273.582"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="176.24" y1="192.463" x2="1109.66" y2="192.132"/>
<g>
<rect style="fill: #90c9ff" x="838.583" y="281.963" width="100.3" height="53"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" x="838.583" y="281.963" width="100.3" height="53"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="888.733" y="304.363">
<tspan x="888.733" y="304.363">BL31</tspan>
<tspan x="888.733" y="320.363">(ARM only)</tspan>
</text>
</g>
<text font-size="12.7998" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="209.772" y="508.772">
<tspan x="209.772" y="508.772">Power on</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="941.939" y="210.26" width="22.4641" height="25.1384"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ffffff" x="941.939" y="210.26" width="22.4641" height="25.1384"/>
</g>
<path style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #000000" d="M 955.029 209.941 C 967.678,210.1 946.349,230.772 955.598,237.021"/>
</svg>

Before

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -1,6 +1,5 @@
# Getting Started
* [coreboot architecture](architecture.md)
* [Build System](build_system.md)
* [Submodules](submodules.md)
* [Kconfig](kconfig.md)

View File

@@ -1132,7 +1132,7 @@ the symbol is only inside of an if/endif block where the if expression evaluates
as false, the symbol STILL gets defined in the config.h file (though not in the
.config file).
Use \#if CONFIG(SYMBOL) to be sure (it returns false for undefined symbols
Use \#if IS_ENABLED(CONFIG_*) to be sure (it returns false for undefined symbols
and defined-to-0 symbols alike).
@@ -1165,6 +1165,8 @@ saved .config file. As always, a 'select' statement overrides any specified
- coreboot has added the glob operator '*' for the 'source' keyword.
- coreboots Kconfig always defines variables except for strings. In other
Kconfig implementations, bools set to false/0/no are not defined.
- IS_ENABLED() is false for undefined variables and 0 variables. In Linux
(where the macro comes from) its true as soon as the variable is defined.
- coreboots version of Kconfig adds the KCONFIG_STRICT environment variable to
error out if there are any issues in the Kconfig files. In the Linux kernel,
Kconfig will generate a warning, but will still output an updated .config or

View File

@@ -100,25 +100,11 @@ If you do only reference the document, but do not include it in any toctree,
you'll see the following warning:
**WARNING: document isn't included in any toctree**
## CSV
You can import CSV files and let sphinx automatically convert them to human
readable tables, using the following reStructuredText snipped:
```eval_rst
.. csv-table::
:header: "Key", "Value"
:file: keyvalues.csv
```
Of course this can only be done from a markdown file that is included in the
TOC tree.
[coreboot]: https://coreboot.org
[Documentation]: https://review.coreboot.org/cgit/coreboot.git/tree/Documentation
[shpinx-autobuild]: https://github.com/GaretJax/sphinx-autobuild
[guide]: http://www.sphinx-doc.org/en/stable/install.html
[Sphinx]: http://www.sphinx-doc.org/en/master/
[Markdown Guide]: https://www.markdownguide.org/
[Gerrit Guidelines]: gerrit_guidelines.md
[Gerrit Guidelines]: https://doc.coreboot.org/gerrit_guidelines.html
[review.coreboot.org]: https://review.coreboot.org

View File

@@ -1,64 +0,0 @@
Display Panel Specifics
=======================
Timing Parameters
-----------------
From the binary file `edid` in the sys filesystem on Linux, the panel can be
identified. The exact path may differ slightly. Here is an example:
```sh
$ strings /sys/devices/pci0000:00/0000:00:02.0/drm/card0/card0-eDP-1/edid
@0 5
LG Display
LP140WF3-SPD1
```
To figure out the timing parameters, refer to the [Intel Programmer's Reference
Manuals](https://01.org/linuxgraphics/documentation/hardware-specification-prms)
and try to find the datasheet of the panel using the information from `edid`.
In the example above, you would search for `LP140WF3-SPD1`. Find a table listing
the power sequence timing parameters, which are usually named T[N] and also
referenced in Intel's respective registers listing. You need the values for
`PP_ON_DELAYS`, `PP_OFF_DELAYS` and `PP_DIVISOR` for your `devicetree.cb`:
```eval_rst
+-----------------------------+---------------------------------------+-----+
| Intel docs | devicetree.cb | eDP |
+-----------------------------+---------------------------------------+-----+
| Power up delay | `gpu_panel_power_up_delay` | T3 |
+-----------------------------+---------------------------------------+-----+
| Power on to backlight on | `gpu_panel_power_backlight_on_delay` | T7 |
+-----------------------------+---------------------------------------+-----+
| Power Down delay | `gpu_panel_power_down_delay` | T10 |
+-----------------------------+---------------------------------------+-----+
| Backlight off to power down | `gpu_panel_power_backlight_off_delay` | T9 |
+-----------------------------+---------------------------------------+-----+
| Power Cycle Delay | `gpu_panel_power_cycle_delay` | T12 |
+-----------------------------+---------------------------------------+-----+
```
Intel GPU Tools and VBT
-----------------------
The Intel GPU tools are in a package called either `intel-gpu-tools` or
`igt-gpu-tools` in most distributions of Linux-based operating systems.
In the coreboot `util/` directory, you can find `intelvbttool`.
From a running system, you can dump the register values directly:
```sh
$ intel_reg dump --all | grep PCH_PP
PCH_PP_STATUS (0x000c7200): 0x80000008
PCH_PP_CONTROL (0x000c7204): 0x00000007
PCH_PP_ON_DELAYS (0x000c7208): 0x07d00001
PCH_PP_OFF_DELAYS (0x000c720c): 0x01f40001
PCH_PP_DIVISOR (0x000c7210): 0x0004af06
```
You can obtain the timing values from a VBT (Video BIOS Table), which you can
dump from a vendor UEFI image:
```sh
$ intel_vbt_decode data.vbt | grep T3
Power Sequence: T3 2000 T7 10 T9 2000 T10 500 T12 5000
T3 optimization: no
```

View File

@@ -48,16 +48,13 @@ follows:
* `lightup_ok`: returns whether the initialization succeeded `1` or
failed `0`. Currently, only the case that no display
could be found counts as failure. A failure at a
later stage (e.g. failure to train a DP) is not
propagated.
could be found counts as failure. A failure at a la-
ter stage (e.g. failure to train a DP) is not propa-
gated.
GMA: Per Board Configuration
----------------------------
In order to set up the display panel, see the
[display panel-specific documentation](/gfx/display-panel.md).
There are a few Kconfig symbols to consider. To indicate that a
board can initialize graphics through *libgfxinit*:

View File

@@ -167,21 +167,20 @@ Contents:
* [Code of Conduct](community/code_of_conduct.md)
* [Community forums](community/forums.md)
* [coreboot at conferences](community/conferences.md)
* [Security](security.md)
* [Payloads](payloads.md)
* [Distributions](distributions.md)
* [Timestamps](timestamp.md)
* [Intel IFD Binary Extraction](Binary_Extraction.md)
* [Dealing with Untrusted Input in SMM](technotes/2017-02-dealing-with-untrusted-input-in-smm.md)
* [ABI data consumption](abi-data-consumption.md)
* [GPIO toggling in ACPI AML](acpi/gpio.md)
* [Native Graphics Initialization with libgfxinit](gfx/libgfxinit.md)
* [Display panel-specific documentation](gfx/display-panel.md)
* [Architecture-specific documentation](arch/index.md)
* [Platform independend drivers documentation](drivers/index.md)
* [Northbridge-specific documentation](northbridge/index.md)
* [System on Chip-specific documentation](soc/index.md)
* [Mainboard-specific documentation](mainboard/index.md)
* [Payload-specific documentation](lib/payloads/index.md)
* [Library-specific documentation](lib/index.md)
* [Security](security/index.md)
* [SuperIO-specific documentation](superio/index.md)
* [Vendorcode-specific documentation](vendorcode/index.md)
* [Utilities](util.md)

View File

@@ -1,5 +1,5 @@
coreboot Lesson 1: Starting from scratch
========================================
coreboot lesson 1 - Starting from scratch
=========================================
From a fresh Ubuntu 16.04 or 18.04 install, here are all the steps required for
a very basic build:

View File

@@ -5,10 +5,10 @@
If you already have an account, skip to Part 2.
Otherwise, go to <https://review.coreboot.org> in your preferred web browser.
Select **Sign in** in the upper right corner.
Select **Register** in the upper right corner.
Select the appropriate sign-in. For example, if you have a Google account,
select **Google OAuth2** (gerrit-oauth-provider plugin). **Note:** Your
select **Google OAuth2** (gerrit-oauth-provider plugin)".**Note:** Your
username for the account will be the username of the account you used to
sign-in with. (ex. your Google username).
@@ -17,7 +17,7 @@ sign-in with. (ex. your Google username).
If you prefer to use an HTTP password instead, skip to Part 2b.
For the most up-to-date instructions on how to set up SSH keys with Gerrit go to
<https://gerrit-documentation.storage.googleapis.com/Documentation/2.14.2/user-upload.html#configure_ssh>
<https://gerrit-documentation.storage.googleapis.com/Documentation/2.14.2/user-upload.html#configure_ssh)>
and follow the instructions there. Then, skip to Part 3.
Additionally, that section of the Web site provides explanation on starting
@@ -35,13 +35,13 @@ doing so could overwrite an existing key.
In the upper right corner, select your name and click on **Settings**.
Select **SSH Public Keys** on the left-hand side.
In a terminal, run `ssh-keygen` and confirm the default path `.ssh/id_rsa`.
In a terminal, run "ssh-keygen" and confirm the default path ".ssh/id_rsa".
Make a passphrase -- remember this phrase. It will be needed whenever you use
this RSA Public Key. **Note:** You might want to use a short password, or
forego the password altogether as you will be using it very often.
Open `id_rsa.pub`, copy all contents and paste into the textbox under
Open "id_rsa.pub", copy all contents and paste into the textbox under
"Add SSH Public Key" in the https://review.coreboot.org webpage.
## Part 2b: Setting up an HTTP Password
@@ -51,7 +51,7 @@ after you select your name and click on **Settings** on the left-hand side, rath
than selecting **SSH Public Keys**, select **HTTP Password**.
Click **Generate Password**. This should fill the "Password" box with a password. Copy
the password, and add the following to your `$HOME/.netrc` file:
the password, and add the following to your $HOME/.netrc file:
machine review.coreboot.org login YourUserNameHere password YourPasswordHere
@@ -61,19 +61,15 @@ just generated.
## Part 3: Clone coreboot and configure it for submitting patches
On Gerrit, click on the **Browse** tab in the upper left corner and select
**Repositories**. From the listing, select the "coreboot" repo. You may have
**Repositories**. From the listing, select the "coreboot" repo. You may have
to click the next page arrow at the bottom a few times to find it.
If you are using SSH keys, select **ssh** from the tabs under "Project
coreboot" and run the "clone with commit-msg hook" command that's provided.
This should prompt you for your id_rsa passphrase, if you previously set one.
**Note:** if the **ssh** option is not showing, check that you have a username
set. Click the profile picture at the top right and select **User Settings**,
then set your username in the **Profile** section.
If you are using HTTP, instead, select **http** from the tabs under "Project coreboot"
and run the command that appears.
and run the command that appears
Now is a good time to configure your global git identity, if you haven't
already.
@@ -91,13 +87,13 @@ and other configurations.
An easy first commit to make is fixing existing checkpatch errors and warnings
in the source files. To see errors that are already present, build the files in
the repository by running `make lint` in the coreboot directory. Alternatively,
if you want to run `make lint` on a specific directory, run:
the repository by running 'make lint' in the coreboot directory. Alternatively,
if you want to run 'make lint' on a specific directory, run:
for file in $(git ls-files | grep <filepath>); do \
for file in $(git ls-files | grep src/amd/quadcore); do \
util/lint/checkpatch.pl --file $file --terse; done
where `filepath` is the filepath of the directory (ex. `src/cpu/amd/car`).
where <filepath> is the filepath of the directory (ex. src/cpu/amd/car).
Any changes made to files under the src directory are made locally,
and can be submitted for review.
@@ -120,7 +116,7 @@ To commit the change, run
git commit -s
**Note:** The -s adds a signed-off-by line by the committer. Your commit should be
signed off with your name and email (i.e. **Your Name** **\<Your Email\>**, based on
signed off with your name and email (i.e. **Your Name** **<Your Email>**, based on
what you set with git config earlier).
Running git commit first checks for any errors and warnings using lint. If
@@ -134,73 +130,63 @@ The first line of your commit message is your commit summary. This is a brief
one-line description of what you changed in the files using the template
below:
<filepath>: Short description
For example,
cpu/amd/pi/00630F01: Fix checkpatch warnings and errors
<filepath>: Short description
*ex. cpu/amd/pi/00630F01: Fix checkpatch warnings and errors*
**Note:** It is good practice to use present tense in your descriptions
and do not punctuate your summary.
Then hit Enter. The next paragraph should be a more in-depth explanation of the
changes you've made to the files. Again, it is good practice to use present
tense. Ex.
Fix space prohibited between function name and open parenthesis,
line over 80 characters, unnecessary braces for single statement blocks,
space required before open brace errors and warnings.
tense.
*ex. Fix space prohibited between function name and open parenthesis,
line over 80 characters, unnecessary braces for single statement blocks,
space required before open brace errors and warnings.*
When you have finished writing your commit message, save and exit the text
editor. You have finished committing your change. If, after submitting your
commit, you wish to make changes to it, running `git commit --amend` allows
commit, you wish to make changes to it, running "git commit --amend" allows
you to take back your commit and amend it.
When you are done with your commit, run `git push` to push your commit to
When you are done with your commit, run 'git push' to push your commit to
coreboot.org. **Note:** To submit as a draft, use
`git push origin HEAD:refs/drafts/master`. Submitting as a draft means that
'git push origin HEAD:refs/drafts/master' Submitting as a draft means that
your commit will be on coreboot.org, but is only visible to those you add
as reviewers.
This has been a quick primer on how to submit a change to Gerrit for review
using git. You may wish to review the [Gerrit code review workflow
using git. You may wish to review the [Gerrit code review workflow
documentation](https://gerrit-review.googlesource.com/Documentation/intro-user.html#code-review),
especially if you plan to work on multiple changes at the same time.
## Part 4b: Using git cola to stage and submit a commit
If git cola is not installed on your machine, see
<https://git-cola.github.io/downloads.html> for download instructions.
https://git-cola.github.io/downloads.html for download instructions.
After making some edits to src files, rather than run `git add`, run
`git cola` from the command line. You should see all of the files
After making some edits to src files, rather than run "git add," run
'git cola' from the command line. You should see all of the files
edited under "Modified".
In the textbox labeled "Commit summary" provide a brief one-line
description of what you changed in the files according to the template
below:
<filepath>: Short description
For example,
cpu/amd/pi/00630F01: Fix checkpatch warnings and errors
<filepath>: Short description
*ex. cpu/amd/pi/00630F01: Fix checkpatch warnings and errors*
**Note:** It is good practice to use present tense in your descriptions
and do not punctuate your short description.
In the larger text box labeled 'Extended description...' provide a more
in-depth explanation of the changes you've made to the files. Again, it
is good practice to use present tense. Ex.
Fix space prohibited between function name and open parenthesis,
line over 80 characters, unnecessary braces for single statement blocks,
space required before open brace errors and warnings.
is good practice to use present tense.
*ex. Fix space prohibited between function name and open parenthesis,
line over 80 characters, unnecessary braces for single statement blocks,
space required before open brace errors and warnings.*
Then press Enter two times to move the cursor to below your description.
To the left of the text boxes, there is an icon with an downward arrow.
Press the arrow and select "Sign Off." Make sure that you are signing off
with your name and email (i.e. **Your Name** **\<Your Email\>**, based on what
with your name and email (i.e. **Your Name** **<Your Email>**, based on what
you set with git config earlier).
Now, review each of your changes and mark either individual changes or
@@ -226,30 +212,30 @@ Note: Be sure to add any other changes that haven't already been
explained in the extended description.
When ready, select 'Commit' again. Once all errors have been satisfied
and the commit succeeds, move to the command line and run `git push`.
**Note:** To submit as a draft, use `git push origin HEAD:refs/drafts/master`.
and the commit succeeds, move to the command line and run 'git push'.
**Note:** To submit as a draft, use 'git push origin HEAD:refs/drafts/master'
Submitting as a draft means that your commit will be on coreboot.org, but is
only visible to those you add as reviewers.
## Part 5: Getting your commit reviewed
Your commits can now be seen on review.coreboot.org if you select "Your"
and click on "Changes" and can be reviewed by others. Your code will
Your commits can now be seen on review.coreboot.org if you select Your
and click on Changes and can be reviewed by others. Your code will
first be reviewed by build bot (Jenkins), which will either give you a warning
or verify a successful build; if so, your commit will receive a +1. Other
users may also give your commit +1. For a commit to be merged, it needs
to receive a +2. **Note:** A +1 and a +1 does not make a +2. Only certain users
users may also give your commit +1. For a commit to be merged, it needs
to receive a +2.**Note:** A +1 and a +1 does not make a +2. Only certain users
can give a +2.
## Part 6 (optional): bash-git-prompt
To help make it easier to understand the state of the git repository
without running `git status` or `git log`, there is a way to make the
without running 'git status' or 'git log', there is a way to make the
command line show the status of the repository at every point. This
is through bash-git-prompt.
Instructions for installing this are found at:
<https://github.com/magicmonty/bash-git-prompt>.
https://github.com/magicmonty/bash-git-prompt
**Note:** Feel free to search for different versions of git prompt,
as this one is specific to bash.
@@ -262,7 +248,7 @@ Run the following two commands in the command line:
**Note:** cd will change your directory to your home directory, so the
git clone command will be run there.
Finally, open the `~/.bashrc` file and append the following two lines:
Finally, open the ~/.bashrc file and append the following two lines:
GIT_PROMPT_ONLY_IN_REPO=1
source ~/.bash-git-prompt/gitprompt.sh
@@ -272,7 +258,7 @@ its state.
There also are additional configurations that you can change depending on your
preferences. If you wish to do so, look at the "All configs for .bashrc" section
on <https://github.com/magicmonty/bash-git-prompt>. Listed in that section are
on https://github.com/magicmonty/bash-git-prompt. Listed in that section are
various lines that you can copy, uncomment and add to your .bashrc file to
change the configurations. Example configurations include avoid fetching remote
status, and supporting versions of Git older than 1.7.10.
@@ -285,7 +271,7 @@ Suppose you would like to update a commit that has already been pushed to the
remote repository. If the commit you wish to update is the most recent
commit you have made, after making your desired changes, stage the files
(either using git add or in git cola), and amend the commit. To do so,
if you are using the command line, run `git commit --amend`. If you are
if you are using the command line, run "git commit --amend." If you are
using git cola, click on the gear icon located on the upper left side under
**Commit** and select **Amend Last Commit** in the drop down menu. Then, stage
the files you have changed, commit the changes, and run git push to push the

View File

@@ -1,153 +0,0 @@
# Flashmap and Flashmap Descriptor in coreboot
## Flashmap
[Flashmap](https://code.google.com/p/flashmap) (FMAP) is a binary format to
describe partitions in a flash chip. It was added to coreboot to support the
requirements of Chromium OS firmware but then was also used in other scenarios
where precise placement of data in flash was necessary, or for data that is
written to at runtime, as CBFS is considered too fragile for such situations.
The Flashmap implementation inside coreboot is the de facto standard today.
Flashmap partitions the image into clearly delimited sections and some of those
sections may be CBFSes that can hold arbitrary-length files (at least one, the
default CBFS, called `COREBOOT`). General guidance is that everything with
strict layout requirements (e.g. must be aligned to erase blocks or
something else) should have its own Flashmap section, and everything else should
normally go into CBFS.
The Flashmap itself starts with a header `struct fmap` and followed by a list of
section descriptions in `strcut fmap_area`.
### Header
The header `struct fmap` has following fields:
* `signature`: 8 characters as `"__FMAP__"`.
* `ver_major`: one byte for major version (currently only 1).
* `ver_minor`: one byte for minor version (current value is 1).
* `base`: 64 bit integer for the address of the firmware binary.
* `size`: 32 bit integer for the size of firmware binary in bytes.
* `name`: 32 characters for the name of the firmware binary.
* `nareas`: 16 bit integer for the number of area definitions (i.e., how many
sections are in this firmware image) following the header.
### Area Definition
The section is defined by `struct fmap_area` with following fields:
* `offset`: 32 bit integer for where the area starts (relative to `base` in
header).
* `size`: 32 bit integer for the size of area in bytes.
* `name`: 32 characters for a descriptive name of this area. Should be unique to
all sections inside same Flashmap.
* `flags`: 16 bit integer for attributes of this area (see below).
### Area Flags
Currently the defined values for `flags` in `struct fmap_area` are:
* `FMAP_AREA_PRESERVE`: suggesting the section should be preserved when
updating firmware, usually for product data like serial number, MAC address,
or calibration and cache data.
* `FMAP_AREA_STATIC`: Not really used today.
* `FMAP_AREA_COMPRESSED`: Not really used today.
* `FMAP_AREA_RO`: Not really used today.
### FMAP section
The whole Flashmap (`struct fmap` and list of `struct fmap_area`) should be
stored in a standalone section named as `FMAP` (which should be also described
by the Flashmap itself in `struct fmap_area`). There's no restriction for where
it should be located (or how large), but usually we need to do a linear or
binary search on whole firmware binary image to find Flashmap so a properly
aligned address would be better.
### COREBOOT section
coreboot firmware images (`coreboot.rom`) should have at least one Flashmap
section that is reserved for CBFS. Usually it is named as `COREBOOT`.
## Flashmap Descriptor
Since coreboot is starting to use a "partition" of Flashmap to describe the
flash chip layout (both at runtime and when flashing a new image onto a
chip), the project needs a reasonably expressive plain text format for
representing such sections in the source tree.
Flashmap Descriptor (FMD) is a [language and
compiler](https://chromium-review.googlesource.com/#/c/255031) inside coreboot
utility folder that can be used to generate final firmware images (i.e.
`coreboot.rom`) formatted by Flashmap.
The FMD implementation is in coreboot `utils/cbfstool` folder. Here's an
informal language description:
```
# <line comment>
<image name>[@<memory-mapped address>] <image size> {
<section name>[(flags)][@<offset from start of image>] [<section size>] [{
<subsection name>[@<offset from start of parent section>] [<subsection size>] [{
# Sections can be nested as deeply as desired
<subsubsection name>[(flags)][@...] [...] [{...}]
}]
[<subsection name>[(flags)][@...] [...] [{...}]]
# There can be many subsections at each level of nesting: they will be inserted
# sequentially, and although gaps are allowed, any provided offsets are always
# relative to the closest parent node's and must be strictly increasing with neither
# overlapping nor degenerate-size sections.
}]
}
```
Note that the above example contains a few symbols that are actually meta
syntax, and therefore have neither meaning nor place in a real file. The `<.*>`s
indicate placeholders for parameters:
* The names are strings, which are provided as single-word (no white space)
groups of syntactically unimportant symbols (i.e. every thing except `@`, `{`,
and `}`): they are not surrounded by quotes or any other form of delimiter.
* The other fields are non-negative integers, which may be given as decimal or
hexadecimal; in either case, a `K`, `M`, or `G` may be appended (without
intermediate white space) as a multiplier.
* Comments consist of anything one manages to enter, provided it doesn't start a
new line.
The `[.*]`s indicate that a portion of the file could be omitted altogether:
* Just because something is noted as optional doesn't mean it is in every case:
the answer might actually depend on which other information is---or
isn't---provided.
* The "flag" specifies the attribute or type for given section. The most
important supported flag is "CBFS", which indicates the section will contain
a CBFS structure.
* In particular, it is only legal to place a (CBFS) flag on a leaf section; that
is, choosing to add child sections excludes the possibility of putting a CBFS
in their parent. Such flags are only used to decide where CBFS empty file
headers should be created, and do not result in the storage of any additional
metadata in the resulting FMAP section.
Additionally, it's important to note these properties of the overall file and
its values:
* Other than within would-be strings and numbers, white space is ignored. It
goes without saying that such power comes with responsibility, which is why
this sentence is here.
* Although the `section name` must be globally unique, one of them may (but is
not required to) match the image name.
* It is a syntax error to supply a number (besides 0) that begins with the
character `0`, as there is no intention of adding octals to the mix.
* The image's memory address should be present on (and only on) layouts for
memory-mapped chips.
* Although it may be evident from above, all `section` offsets are relative only
to the immediate parent. There is no way to include an absolute offset (i.e.
from the beginning of flash), which means that it is "safe" to reorder the
sections within a particular level of nesting, as long as the change doesn't
cause their positions and sizes to necessitate overlap or zero sizes.
* A `section` with omitted offset is assumed to start at as low a position as
possible (with no consideration of alignment) and one with omitted size is
assumed to fill the remaining space until the next sibling or before the end
of its parent.
* It's fine to omit any `section`'s offset, size, or both, provided its position
and size are still unambiguous in the context of its *sibling* sections and
its parent's *size*. In particular, knowledge of one .*section 's children or
the `section`s' common parent's siblings will not be used for this purpose.
* Although `section`s are not required to have children, the flash chip as a
whole must have at least one.
* Though the braces after `section`s may be omitted for those that have no
children, if they are present, they must contain at least one child.
To see the formal description of the language, please refer to the Lex and Yacc
files: `fmd_scanner.l` and `fmd_scanner.y`.

View File

@@ -1,9 +0,0 @@
# Library-specific documentation
This section contains documentation about coreboot internal technical
information and libraries.
## Structure and layout
- [Flashmap and Flashmap Descriptor](flashmap.md)
- [ABI data consumption](abi-data-consumption.md)
- [Timestamps](timestamp.md)

View File

@@ -1,136 +0,0 @@
# ASRock H110M-DVS
This page describes how to run coreboot on the [ASRock H110M-DVS].
## Required proprietary blobs
Mainboard is based on Intel Skylake/Kaby Lake processor and H110 Chipset.
Intel company provides [Firmware Support Package (2.0)](../../soc/intel/fsp/index.md)
(intel FSP 2.0) to initialize this generation silicon. Please see this
[document](../../soc/intel/code_development_model/code_development_model.md).
FSP Information:
```eval_rst
+-----------------------------+-------------------+-------------------+
| FSP Project Name | Directory | Specification |
+-----------------------------+-------------------+-------------------+
| 7th Generation Intel® Core™ | KabylakeFspBinPkg | 2.0 |
| processors and chipsets | | |
| (formerly Kaby Lake) | | |
+-----------------------------+-------------------+-------------------+
```
## Building coreboot
The following steps set the default parameters for this board to build a
fully working image:
```bash
make distclean
touch .config
./util/scripts/config --enable VENDOR_ASROCK
./util/scripts/config --enable BOARD_ASROCK_H110M_DVS
./util/scripts/config --enable CONFIG_ADD_FSP_BINARIES
./util/scripts/config --enable CONFIG_FSP_USE_REPO
./util/scripts/config --set-str REALTEK_8168_MACADDRESS "xx:xx:xx:xx:xx:xx"
make olddefconfig
```
However, it is strongly advised to use `make menuconfig` afterwards
(or instead), so that you can see all of the settings.
Use the following command to disable the serial console if debugging
output is not required:
```bash
./util/scripts/config --disable CONSOLE_SERIAL
```
However, a more flexible method is to change the console log level from
within an OS using `util/nvramtool`, or with the `nvramcui` payload.
Now, run `make` to build the coreboot image.
## Flashing coreboot
### Internal programming
The main SPI flash can be accessed using [flashrom]. By default, only
the BIOS region of the flash is writable. If you wish to change any
other region, such as the Management Engine or firmware descriptor, then
an external programmer is required (unless you find a clever way around
the flash protection). More information about this [here](../../flash_tutorial/index.md).
### External programming
The flash chip is a 8 MiB socketed DIP-8 chip. Specifically, it's a
Macronix MX25L6473E, whose datasheet can be found [here][MX25L6473E].
The chip is located to the bottom right-hand side of the board. For
a precise location, refer to section 1.3 (Motherboard Layout) of the
[H110M-DVS manual], where the chip is labelled "64Mb BIOS". Take note of
the chip's orientation, remove it from its socket, and flash it with
an external programmer. For reference, the notch in the chip should be
facing towards the bottom of the board.
## Known issues
- The VGA port doesn't work. Discrete graphic card is used as primary
device for display output (if CONFIG_ONBOARD_VGA_IS_PRIMARY is not
set). Dynamic switching between iGPU and PEG is not yet supported.
- SuperIO GPIO pin is used to reset Realtek chip. However, since the
Logical Device 7 (GPIO6, GPIO7, GPIO8) is not initialized, the network
chip is in a reset state all the time.
## Untested
- parallel port
- PS/2 keyboard
- PS/2 mouse
- EHCI debug
- TPM
- infrared module
- chassis intrusion header
- chassis speaker header
## Working
- integrated graphics init with libgfxinit (see [Known issues](#known-issues))
- PCIe x1
- PEG x16 Gen3
- SATA
- USB
- serial port
- onboard audio
- using `me_cleaner`
- using `flashrom`
## TODO
- NCT6791D GPIOs
- onboard network (see [Known issues](#known-issues))
- S3 suspend/resume
- Wake-on-LAN
- hardware monitor
## Technology
```eval_rst
+------------------+--------------------------------------------------+
| CPU | Intel Skylake/Kaby Lake (LGA1151) |
+------------------+--------------------------------------------------+
| PCH | Intel Sunrise Point H110 |
+------------------+--------------------------------------------------+
| Super I/O | Nuvoton NCT6791D |
+------------------+--------------------------------------------------+
| EC | None |
+------------------+--------------------------------------------------+
| Coprocessor | Intel Management Engine |
+------------------+--------------------------------------------------+
```
[ASRock H110M-DVS]: https://www.asrock.com/mb/Intel/H110M-DVS%20R2.0/
[MX25L6473E]: http://www.macronix.com/Lists/Datasheet/Attachments/7380/MX25L6473E,%203V,%2064Mb,%20v1.4.pdf
[flashrom]: https://flashrom.org/Flashrom
[H110M-DVS manual]: http://asrock.pc.cdn.bitgravity.com/Manual/H110M-DVS%20R2.0.pdf

View File

@@ -1,198 +0,0 @@
# ASUS F2A85-M
This page describes how to run coreboot on the [ASUS F2A85-M].
## Variants
- ASUS F2A85-M - Working
- ASUS F2A85-M LE - Working
- ASUS F2A85-M PRO - Working
- ASUS F2A85-M2 - Working
- ASUS F2A85-M/CSM - Unsure if WIP.
## Technology
Both "Trinity" and "Richland" desktop processing units are working,
the CPU architecture in these CPUs/APUs is [Piledriver],
and their GPU is [TeraScale 3] (VLIW4-based).
```eval_rst
+------------------+--------------------------------------------------+
| F2A85-M | |
+------------------+--------------------------------------------------+
| DDR voltage IC | Nuvoton NCT3933U (AUX SMBUS 0x15) |
+------------------+--------------------------------------------------+
| Network | Realtek RTL8111F |
+------------------+--------------------------------------------------+
| Northbridge | Integrated into CPU with IMC and GPU (APUs only) |
+------------------+--------------------------------------------------+
| Southbridge | Hudson-D4 |
+------------------+--------------------------------------------------+
| Sound IC | Realtek ALC887 |
+------------------+--------------------------------------------------+
| Super I/O | ITE 8603E |
+------------------+--------------------------------------------------+
| VRM controller | DIGI VRM ASP1106 (Rebranded RT8894A - SMBUS 0x20)|
+------------------+--------------------------------------------------+
```
```eval_rst
+------------------+--------------------------------------------------+
| F2A85-M LE | |
+------------------+--------------------------------------------------+
| DDR voltage IC | Nuvoton NCT3933U (AUX SMBUS 0x15 - unconfirmed) |
+------------------+--------------------------------------------------+
| Network | Realtek RTL8111F |
+------------------+--------------------------------------------------+
| Northbridge | Integrated into CPU with IMC and GPU(APUs only) |
+------------------+--------------------------------------------------+
| Southbridge | Hudson-D4 |
+------------------+--------------------------------------------------+
| Sound IC | Realtek ALC887 |
+------------------+--------------------------------------------------+
| Super I/O | ITE 8623E |
+------------------+--------------------------------------------------+
| VRM controller | DIGI VRM ASP1106 (Rebranded RT8894A - SMBUS 0x20)|
+------------------+--------------------------------------------------+
```
```eval_rst
+------------------+--------------------------------------------------+
| F2A85-M PRO | |
+------------------+--------------------------------------------------+
| DDR voltage IC | Nuvoton NCT3933U (?) |
+------------------+--------------------------------------------------+
| Network | Realtek RTL8111F - Not working |
+------------------+--------------------------------------------------+
| Northbridge | Integrated into CPU with IMC and GPU(APUs only) |
+------------------+--------------------------------------------------+
| Southbridge | Hudson-D4 |
+------------------+--------------------------------------------------+
| Sound IC | Realtek ALC887 |
+------------------+--------------------------------------------------+
| Super I/O | Nuvoton NCT6779D |
+------------------+--------------------------------------------------+
| VRM controller | DIGI VRM ASP1107 |
+------------------+--------------------------------------------------+
```
## Flashing coreboot
```eval_rst
+---------------------+------------+
| Type | Value |
+=====================+============+
| Socketed flash | yes |
+---------------------+------------+
| Model | W25Q64F |
+---------------------+------------+
| Size | 8 MiB |
+---------------------+------------+
| Package | DIP-8 |
+---------------------+------------+
| Write protection | no |
+---------------------+------------+
| Dual BIOS feature | no |
+---------------------+------------+
| Internal flashing | yes |
+---------------------+------------+
```
### Internal programming
The main SPI flash can be accessed using [flashrom].
UEFI builds that allow flash chip access:
> v5016 is untested, but expected to work as well
> v5018
> v5103
> v5104
> v5107
> v5202
> v6002
> v6004
> v6102
> v6402
> v6404 (requires downgrading to v6402 to flash coreboot)
> v6501 (requires downgrading to v6402 to flash coreboot)
> v6502 (requires downgrading to v6402 to flash coreboot)
Build v6502, v6501 and v6404 do not allow access to the flash chip.
Fortunately it is possible to downgrade build v6502, v6501, v6404 to v6402, with EZFlash.
Downgrading is done by downloading build v6402 from ASUS' F2A85-M download page
and copying it to (the root directory of) a FAT32 formatted USB flash drive.
Enter the EFI setup, switch to advanced mode if necessary,
open the 'Tool' tab and select "ASUS EZ Flash 2 Utility".
## Integrated graphics
### Option 1: Retrieve the VGA optionrom from the vendor EFI binary by running:
# dd if=/dev/mem of=vgabios.bin bs=1k count=64 skip=768
### Option 2: Extract from the vendor binary
Download the BIOS from the Support section at [ASUS F2A85-M].
Using MMTool Aptio (versions 4.5.0 and 5.0.0):
- Load image, click on 'Extract tab'
- Select the 'export path' and 'link present' options
- Choose option ROM '1002,9900' and click on 'Extract'
This version is usable for all the GPUs.
> 1002,9901 Trinity (Radeon HD 7660D)
> 1002,9904 Trinity (Radeon HD 7560D)
> 1002,990c Richland (Radeon HD 8670D)
> 1002,990e Richland (Radeon HD 8570D)
> 1002,9991 Trinity (Radeon HD 7540D)
> 1002,9993 Trinity (Radeon HD 7480D)
> 1002,9996 Richland (Radeon HD 8470D)
> 1002,9998 Richland (Radeon HD 8370D)
> 1002,999d Richland (Radeon HD 8550D)
## Known issues
- buggy USB 3.0 controller (works fine as 2.0 port)
- reboot, poweroff, S3 suspend/resume (broken since 4.8.1)
## Known issues (untested because of non-working ACPI sleep)
- blink in suspend mode (GP43, program LDN7 F8=23 and blink with F9=2 for 1s blinks)
- fix immediate resume after suspend (perhaps PCIe STS needs to be cleared)
- fix resume with USB3.0 used (perhaps there is a bug in resume.c)
## Untested
- audio over HDMI
- IOMMU
- PS/2 mouse
## TODOs
- manage to use one ATOMBIOS for all the integrated GPUs
## Working
- ACPI
- CPU frequency scaling
- flashrom under coreboot
- Gigabit Ethernet
- Hardware monitor
- Integrated graphics
- KVM
- Onboard audio
- PCIe
- PS/2 keyboard
- SATA
- Serial port
- SuperIO based fan control
- USB (XHCI is buggy)
## Extra resources
- [Board manual]
- Flash chip datasheet [W25Q64FV]
[ASUS F2A85-M]: https://www.asus.com/Motherboards/F2A85M/
[Board manual]: https://dlcdnets.asus.com/pub/ASUS/mb/SocketFM2/F2A85-M/E8005_F2A85-M.pdf
[flashrom]: https://flashrom.org/Flashrom
[Piledriver]: https://en.wikipedia.org/wiki/Piledriver_%28microarchitecture%29#APU_lines
[TeraScale 3]: https://en.wikipedia.org/wiki/TeraScale_%28microarchitecture%29#TeraScale_3
[W25Q64FV]: https://www.winbond.com/resource-files/w25q64fv%20revs%2007182017.pdf

Binary file not shown.

Before

Width:  |  Height:  |  Size: 68 KiB

View File

@@ -1,103 +0,0 @@
# ASUS P8H61-M Pro
This page describes how to run coreboot on the [ASUS P8H61-M Pro].
## Flashing coreboot
```eval_rst
+---------------------+------------+
| Type | Value |
+=====================+============+
| Socketed flash | yes |
+---------------------+------------+
| Model | W25Q32BV |
+---------------------+------------+
| Size | 4 MiB |
+---------------------+------------+
| Package | DIP-8 |
+---------------------+------------+
| Write protection | no |
+---------------------+------------+
| Dual BIOS feature | no |
+---------------------+------------+
| Internal flashing | yes |
+---------------------+------------+
```
The flash IC is located right next to one of the SATA ports:
![](p8h61-m_pro.jpg)
### Internal programming
The main SPI flash can be accessed using [flashrom]. By default, only
the BIOS region of the flash is writable. If you wish to change any
other region (Management Engine or flash descriptor), then an external
programmer is required.
The following command may be used to flash coreboot:
```
$ sudo flashrom --noverify-all --ifd -i bios -p internal -w coreboot.rom
```
The use of `--noverify-all` is required since the Management Engine
region is not readable even by the host.
## Known issues
- There is no automatic, OS-independent fan control. This is because
the super I/O hardware monitor can only obtain valid CPU temperature
readings from the PECI agent, whose complete initialisation is not
publicly documented. The `coretemp` driver can still be used for
accurate CPU temperature readings.
- me_cleaner breaks LPC bus and attached components!
- PS/2 mouse doesn't work
## Untested
- parallel port
- EHCI debug
- S/PDIF audio
## Working
- PS/2 keyboard
- PCIe graphics
- USB
- Gigabit Ethernet
- Integrated graphics
- SATA
- Serial port
- hardware monitor (see [Known issues](#known-issues) for caveats)
- front panel audio
- Native raminit (2 x 2GB, DDR3-1333)
- Native graphics init (libgfxinit)
- Wake-on-LAN
- TPM on TPM-header
## Technology
```eval_rst
+------------------+--------------------------------------------------+
| Northbridge | :doc:`../../northbridge/intel/sandybridge/index` |
+------------------+--------------------------------------------------+
| Southbridge | bd82x6x |
+------------------+--------------------------------------------------+
| CPU | model_206ax |
+------------------+--------------------------------------------------+
| Super I/O | Nuvoton NCT6776 |
+------------------+--------------------------------------------------+
| EC | None |
+------------------+--------------------------------------------------+
| Coprocessor | Intel Management Engine |
+------------------+--------------------------------------------------+
```
## Extra resources
- [Flash chip datasheet][W25Q32BV]
[ASUS P8H61-M Pro]: https://www.asus.com/Motherboards/P8H61M_Pro/
[W25Q32BV]: https://www.winbond.com/resource-files/w25q32bv_revi_100413_wo_automotive.pdf
[flashrom]: https://flashrom.org/Flashrom

Binary file not shown.

Before

Width:  |  Height:  |  Size: 96 KiB

View File

@@ -1,168 +0,0 @@
# ASUS P8Z77-M Pro
This page describes how to run coreboot on the [ASUS P8Z77-M Pro]
## Flashing coreboot
```eval_rst
+---------------------+----------------+
| Type | Value |
+=====================+================+
| Socketed flash | yes |
+---------------------+----------------+
| Model | W25Q64FVA1Q |
+---------------------+----------------+
| Size | 8 MiB |
+---------------------+----------------+
| Package | DIP-8 |
+---------------------+----------------+
| Write protection | yes |
+---------------------+----------------+
| Dual BIOS feature | no |
+---------------------+----------------+
| Internal flashing | yes |
+---------------------+----------------+
```
The flash IC is located right next to one of the SATA ports:
![](p8z77-m_pro.jpg)
### Internal programming
The main SPI flash cannot be written because Asus disables BIOSWE and
enables BLE/SMM_BWP flags in BIOS_CNTL for their latest bioses.
An external programmer is required. You must flash standalone,
flashing in-circuit doesn't work. The flash chip is socketed, so it's
easy to remove and reflash.
## Working
- PS/2 keyboard with SeaBIOS & Tianocore (in Mint 18.3/19.1)
- Rear/front headphones connector audio & mic
- S3 Suspend to RAM (tested with OS installed in a HDD/SSD and also with a
Mint 18.3/19.1 LiveUSB pendrive connected to USB3/USB2), but please
see [Known issues]
- USB2 on rear (tested mouse/keyboard plugged there. Also, booting with
a Mint 18./19.1 LiveUSB works ok)
- USB3 (Z77's and Asmedia's works, but please see [Known issues])
- Gigabit Ethernet (RTL8111F)
- SATA3, SATA2 and eSATA (tested on all ports, hot-swap and TCG OPAL working)
(Blue SATA2) (Blue SATA2) (White SATA3) (Red eSATA SATA3 rear)
port 3 port 5 port 1 port 8
port 4 port 6 port 2 port 7
- NVME SSD boot on PCIe-x16/x8/4x slot using Tianocore
(tested with M.2-to-PCIe adapter and a M.2 Samsung EVO 970 SSD)
- CPU Temp sensors (tested PSensor on linux + HWINFO64 on Win10)
- TPM on TPM-header (tested tpm-tools with Asus TPM 1.2 Infineon SLB9635TT12)
- Native raminit and also MRC.bin(systemagent-r6.bin) memory initialization
(please see [Native raminit compatibility] and [MRC memory compatibility])
- Integrated graphics with both libgfxinit and the Intel Video BIOS OpROM
(VGA/DVI-D/HDMI tested and working)
- 1x PCIe GPU in PCIe-16x/8x/4x slots (tested using Zotac GeForce GTX
750Ti and FirePro W5100 under Mint 18.3/19.1)
## Known issues
- The rear's USB3s on bottom (closest to the PCB) have problems booting or
being used before the OS loads. For better compatibility, please use
the Z77's ones above the Ethernet connector or the Asmedia's top one
- After S3 suspend, some USB3 connectors on rear seem not to work
- At the moment, the power led does not blink when entering S3 state
- Currently, we have not setup the SuperIO's Hardware Monitor (HWM),
so only the CPU sensors are reported
- If you use the MRC.bin, the NVRAM variable gfx_uma_size may be ignored
as IGP's UMA could be reconfigured by the blob
- Using TianoCore + a PCIe GPU under Windows crashes with an
ACPI_BIOS_ERROR fatal code, not sure why. Using just the IGP
works perfectly
- Under Windows 10, if you experiment problems with PS/2 devices, change
HKLM\SYSTEM\CurrentControlSet\Services\i8042prt->Start from '3' to '1'
## Untested
- EHCI debugging
- S/PDIF audio
- Wake-on-LAN
- Serial port
## Not working
- PS/2 keyboard in Win10 using Tianocore (please see [Known issues])
- PS/2 mouse using Tianocore
- PCIe graphics card on Windows and Tianocore (throws critical ACPI_BIOS_ERROR)
## Native raminit compatibility
- GSkill F3-2133C10D-16GAB(XMP,1.60v) 2x8GB kit works at 1333Mhz instead
of XMP 2133Mhz
- Team Xtreem TXD38G2133HC9NDC01(XMP,1.50v) 2x4GB kit works at 1600Mhz
instead of XMP 2133Mhz
- Kingston KVR1066D3N7K2/4G(JEDEC,1.50v) 2x4GB kit works at 1066Mhz
but the board only detects half its RAM, because those DIMMs have
Double Sided(DS) chips and seems only Single Sided(SS) ones are
fully detected
- GSkill F3-10666CL9T2-24GBRL(JEDEC,1.50v) 6x4GB kit (4 DIMMs used)
works perfectly at full speed (1333Mhz)
## MRC memory compatibility
- GSkill F3-2133C10D-16GAB(XMP,1.60v) 2x8GB kit works at 1333Mhz
instead of XMP 2133Mhz
- Team Xtreem TXD38G2133HC9NDC01(XMP,1.50v) 2x4GB kit works at
1600Mhz instead of XMP 2133Mhz
- Kingston KVR1066D3N7K2/4G(JEDEC,1.50v) 2x4GB kit works at 1066Mhz
but the board only detects half its RAM, as those DIMMs have
Double Sided(DS) chips and seems only Single Sided(SS) ones are
fully detected
- GSkill F3-10666CL9T2-24GBRL(JEDEC,1.50v) 6x4GB kit (4 DIMMs used)
works perfectly at full speed (1333Mhz)
## Technology
```eval_rst
+------------------+--------------------------------------------------+
| Northbridge | :doc:`../../northbridge/intel/sandybridge/index` |
+------------------+--------------------------------------------------+
| Southbridge | bd82x6x |
+------------------+--------------------------------------------------+
| CPU | model_206ax |
+------------------+--------------------------------------------------+
| Super I/O | Nuvoton NCT6779D |
+------------------+--------------------------------------------------+
| EC | None |
+------------------+--------------------------------------------------+
| Coprocessor | Intel Management Engine |
+------------------+--------------------------------------------------+
```
## Extra resources
- [Flash chip datasheet][W25Q64FVA1Q]
[ASUS P8Z88-M Pro]: https://www.asus.com/Motherboards/P8Z77M_PRO/
[W25Q64FVA1Q]: https://www.winbond.com/resource-files/w25q64fv%20revs%2007182017.pdf
[flashrom]: https://flashrom.org/Flashrom

View File

@@ -1,83 +0,0 @@
# Facebook FBG-1701
This page describes how to run coreboot on the Facebook FBG1701.
FBG1701 are assembled with different onboard memory modules:
Rev 1.0 Onboard Samsung K4B8G1646D-MYKO memory
Rev 1.1 and 1.2 Onboard Micron MT41K512M16HA-125A memory
Use make menuconfig to configure `onboard memory manufacturer` in Mainboard
menu.
## Required blobs
This board currently requires:
fsp blob 3rdparty/fsp/BraswellFspBinPkg/FspBin/BSWFSP.fd
Microcode Intel Braswell cpuid 1046C4 version 410
(Used pre-build binary retrieved from Intel site)
## Flashing coreboot
### Internal programming
The main SPI flash can be accessed using [flashrom].
### External programming
The system has an internal flash chip which is a 8 MiB soldered SOIC-8 chip.
This chip is located to the top middle side of the board. It's located
between SoC and Q7 connector. Use clip (or solder wires) to program
the chip.
Specifically, it's a Winbond W25Q64FW (1.8V), whose datasheet can be found
[here][W25Q64FW].
The system has an external flash chip which is a 8 MiB soldered SOIC-8 chip.
This chip is located in the middle of carrier board close to the flex cable
connection.
Specifically, it's a Winbond W25Q64FV (3.3V), whose datasheet can be found
[here][W25Q64FV].
## Known issues
- None
## Untested
- hardware monitor
- SDIO
- Full Embedded Controller support
## Working
- USB
- Gigabit Ethernet
- integrated graphics
- flashrom
- external graphics
- PCIe
- eMMC
- SATA
- serial port
- SMBus
- HDA
- initialization with FSP MR2
- SeaBIOS payload
- Embedded Linux (Ubuntu 4.15+)
## Technology
```eval_rst
+------------------+--------------------------------------------------+
| SoC | Intel Atom Processor N3710 |
+------------------+--------------------------------------------------+
| CPU | Intel Braswell (N3710) |
+------------------+--------------------------------------------------+
| Super I/O, EC | ITE8256 |
+------------------+--------------------------------------------------+
| Coprocessor | Intel Management Engine |
+------------------+--------------------------------------------------+
```
[W25Q64FW]: https://www.winbond.com/resource-files/w25q64fw%20revn%2005182017%20sfdp.pdf
[W25Q64FV]: https://www.winbond.com/resource-files/w25q64fv%20revs%2007182017.pdf
[flashrom]: https://flashrom.org/Flashrom

View File

@@ -1,82 +0,0 @@
# HP EliteBook 8760w
This page describes how to run coreboot on the [HP EliteBook 8760w].
## Flashing coreboot
```eval_rst
+---------------------+------------+
| Type | Value |
+=====================+============+
| Socketed flash | no |
+---------------------+------------+
| Model | W25Q64.V |
+---------------------+------------+
| Size | 8 MiB |
+---------------------+------------+
| Package | SOIC-8 |
+---------------------+------------+
| Write protection | no |
+---------------------+------------+
| Dual BIOS feature | no |
+---------------------+------------+
| In circuit flashing | yes |
+---------------------+------------+
| Internal flashing | yes |
+---------------------+------------+
```
## Required proprietary blobs
- Intel Firmware Descriptor, ME and GbE firmware
- EC: please read [EliteBook Series](elitebook_series)
## Flashing instructions
HP EliteBook 8760w has an 8MB SOIC-8 flash chip on the bottom of the
mainboard. You just need to remove the service cover, and use an SOIC-8
clip to read and flash the chip.
![8760w_chip_location](8760w_flash.jpg)
## Untested
- dock: serial port, parallel port, ...
- TPM
- S3 suspend/resume
- Gigabit Ethernet
## Working
- i7-2630QM, 0+4G+8G+0
- i7-3720QM, 8G+8G+8G+8G
- Arch Linux boot from SeaBIOS payload
- EHCI debug: the port is at the right side, next to the charging port
- SATA
- eSATA
- USB2 and USB3
- keyboard, touchpad, trackpad
- WLAN
- WWAN
- EC ACPI
- Using `me_cleaner`
## Technology
```eval_rst
+------------------+--------------------------------------------------+
| Northbridge | :doc:`../../northbridge/intel/sandybridge/index` |
+------------------+--------------------------------------------------+
| Southbridge | bd82x6x |
+------------------+--------------------------------------------------+
| CPU | model_206ax |
+------------------+--------------------------------------------------+
| Super I/O | SMSC LPC47n217 |
+------------------+--------------------------------------------------+
| EC | SMSC KBC1126 |
+------------------+--------------------------------------------------+
| Coprocessor | Intel Management Engine |
+------------------+--------------------------------------------------+
```
[HP EliteBook 8760w]: https://support.hp.com/us-en/product/hp-elitebook-8760w-mobile-workstation/5071180

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

View File

@@ -1,111 +0,0 @@
# HP EliteBook series
This document is about HP EliteBook series laptops up to Ivy Bridge era
which use SMSC KBC1126 as embedded controller.
## EC
SMSC KBC1098/KBC1126 has been used in HP EliteBooks for many generations.
They use similar EC firmware that will load other code and data from the
SPI flash chip, so we need to put some firmware blobs to the coreboot image.
The following document takes EliteBook 2760p as an example.
First, you need to extract the blobs needed by EC firmware using util/kbc1126.
You can extract them from your backup firmware image, or firmware update
provided by HP with [unar] as follows:
```bash
wget https://ftp.hp.com/pub/softpaq/sp79501-80000/sp79710.exe
unar sp79710.exe
${COREBOOT_DIR}/util/kbc1126/kbc1126_ec_dump sp79710/Rompaq/68SOU.BIN
mv 68SOU.BIN.fw1 ${COREBOOT_DIR}/2760p-fw1.bin
mv 68SOU.BIN.fw2 ${COREBOOT_DIR}/2760p-fw2.bin
```
When you config coreboot, select:
```text
Chipset --->
[*] Add firmware images for KBC1126 EC
(2760p-fw1.bin) KBC1126 firmware #1 path and filename
(2760p-fw2.bin) KBC1126 filename #2 path and filename
```
## Super I/O
EliteBook 8000 series laptops have SMSC LPC47n217 Super I/O to provide
a serial port and a parallel port, you can debug the laptop via this
serial port.
## porting
To port coreboot to an HP EliteBook laptop, you need to do the following:
- select Kconfig option `EC_HP_KBC1126`
- select Kconfig option `SUPERIO_SMSC_LPC47N217` if there is LPC47n217 Super I/O
- initialize EC and Super I/O in romstage
- add EC and Super I/O support to devicetree.cb
To get the related values for EC in devicetree.cb, you need to extract the EFI
module EcThermalInit from the vendor UEFI firmware with [UEFITool]. Usually,
`ec_data_port`, `ec_cmd_port` and `ec_ctrl_reg` has the following values:
- For xx60 series: 0x60, 0x64, 0xca
- For xx70 series: 0x62, 0x66, 0x81
You can use [radare2] and the following [r2pipe] Python script to find
these values from the EcThermalInit EFI module:
```python
#!/usr/bin/env python
# install radare2 and use `pip3 install --user r2pipe` to install r2pipe
import r2pipe
import sys
if len(sys.argv) < 2:
fn = "ecthermalinit.efi"
else:
fn = sys.argv[1]
r2 = r2pipe.open(fn)
r2.cmd("aa")
entryf = r2.cmdj("pdfj")
for insn in entryf["ops"]:
if "lea r8" in insn["opcode"]:
_callback = insn["ptr"]
break
r2.cmd("af @ {}".format(_callback))
callbackf_insns = r2.cmdj("pdfj @ {}".format(_callback))["ops"]
def find_port(addr):
ops = r2.cmdj("pdfj @ {}".format(addr))["ops"]
for insn in ops:
if "lea r8d" in insn["opcode"]:
return insn["ptr"]
ctrl_reg_found = False
for i in range(0, len(callbackf_insns)):
if not ctrl_reg_found and "mov cl" in callbackf_insns[i]["opcode"]:
ctrl_reg_found = True
ctrl_reg = callbackf_insns[i]["ptr"]
print("ec_ctrl_reg = 0x%02x" % ctrl_reg)
cmd_port = find_port(callbackf_insns[i+1]["jump"])
data_port = find_port(callbackf_insns[i+3]["jump"])
print("ec_cmd_port = 0x%02x\nec_data_port = 0x%02x" % (cmd_port, data_port))
if "mov bl" in callbackf_insns[i]["opcode"]:
ctrl_value = callbackf_insns[i]["ptr"]
print("ec_fan_ctrl_value = 0x%02x" % ctrl_value)
```
[unar]: https://theunarchiver.com/command-line
[UEFITool]: https://github.com/LongSoft/UEFITool
[radare2]: https://radare.org/
[r2pipe]: https://github.com/radare/radare2-r2pipe

View File

@@ -1,70 +0,0 @@
# HP Z220 SFF Workstation
This page describes how to run coreboot on the [HP Z220 SFF Workstation] desktop
from [HP].
## TODO
The following things are still missing from this coreboot port:
- Extended HWM reporting
- Advanced LED control
- Advanced power configuration in S3
## Flashing coreboot
```eval_rst
+---------------------+-------------+
| Type | Value |
+=====================+=============+
| Socketed flash | no |
+---------------------+-------------+
| Model | N25Q128..3E |
+---------------------+-------------+
| Size | 16 MiB |
+---------------------+-------------+
| In circuit flashing | yes |
+---------------------+-------------+
| Package | SOIC-16 |
+---------------------+-------------+
| Write protection | No |
+---------------------+-------------+
| Dual BIOS feature | No |
+---------------------+-------------+
| Internal flashing | yes |
+---------------------+-------------+
```
### Internal programming
The SPI flash can be accessed using [flashrom].
### External programming
External programming with an SPI adapter and [flashrom] does work, but it powers the
whole southbridge complex. You need to supply enough current through the programming adapter.
If you want to use a SOIC pomona test clip, you have to cut the 2nd DRAM DIMM holder,
as otherwise there's not enough space near the flash.
## Technology
```eval_rst
+------------------+--------------------------------------------------+
| Northbridge | :doc:`../../northbridge/intel/sandybridge/index` |
+------------------+--------------------------------------------------+
| Southbridge | bd82x6x |
+------------------+--------------------------------------------------+
| CPU | model_206ax |
+------------------+--------------------------------------------------+
| SuperIO | :doc:`../../superio/nuvoton/npcd378` |
+------------------+--------------------------------------------------+
| EC | |
+------------------+--------------------------------------------------+
| Coprocessor | Intel ME |
+------------------+--------------------------------------------------+
```
[HP Z220 SFF Workstation]: https://support.hp.com/za-en/document/c03386950
[HP]: https://www.hp.com/
[flashrom]: https://flashrom.org/Flashrom

View File

@@ -4,15 +4,11 @@ This section contains documentation about coreboot on specific mainboards.
## ASUS
- [F2A85-M](asus/f2a85-m.md)
- [P8H61-M LX](asus/p8h61-m_lx.md)
- [P8H61-M Pro](asus/p8h61-m_pro.md)
- [P8Z77-M Pro](asus/p8z77-m_pro.md)
## ASRock
- [H81M-HDS](asrock/h81m-hds.md)
- [H110M-DVS](asrock/h110m-dvs.md)
## Cavium
@@ -31,10 +27,6 @@ The boards in this section are not real mainboards, but emulators.
- [IceLake RVP](intel/icelake_rvp.md)
- [KBLRVP11](intel/kblrvp11.md)
## Facebook
- [FBG-1701](facebook/fbg1701.md)
## Foxconn
- [D41S](foxconn/d41s.md)
@@ -50,29 +42,17 @@ The boards in this section are not real mainboards, but emulators.
## Open Cellular
- [Elgon](opencellular/elgon.md)
- [Rotundu](opencellular/rotundu.md)
## HP
- [Compaq 8200 Elite SFF](hp/compaq_8200_sff.md)
- [Z220 Workstation SFF](hp/z220_sff.md)
### EliteBook series
- [EliteBook common](hp/elitebook_series.md)
- [EliteBook 8760w](hp/8760w.md)
## Lenovo
- [Mainboard codenames](lenovo/codenames.md)
- [Hardware Maintenance Manual of ThinkPads](lenovo/thinkpad_hmm.md)
- [T4xx common](lenovo/t4xx_series.md)
- [X2xx common](lenovo/x2xx_series.md)
## Portwell
- [PQ7-M107](portwell/pq7-m107.md)
### Sandy Bridge series
- [T420](lenovo/t420.md)
@@ -87,22 +67,6 @@ The boards in this section are not real mainboards, but emulators.
- [T430 / T530 / X230 / W530 common](lenovo/xx30_series.md)
- [T431s](lenovo/t431s.md)
## MSI
- [MS-7707](msi/ms7707/ms7707.md)
## PC Engines
- [APU2](pcengines/apu2.md)
## Roda
- [RK9 Flash Header](roda/rk9/flash_header.md)
## PC Engines
- [APU1](pcengines/apu1.md)
## SiFive
- [SiFive HiFive Unleashed](sifive/hifive-unleashed.md)
@@ -110,7 +74,3 @@ The boards in this section are not real mainboards, but emulators.
## Supermicro
- [X10SLM+-F](supermicro/x10slm-f.md)
## UP
- [Squared](up/squared/index.md)

View File

@@ -1,7 +0,0 @@
# Lenovo mainboard codenames
```eval_rst
.. csv-table::
:header: "Marketing name", "Development codename"
:file: codenames.csv
```

Binary file not shown.

Before

Width:  |  Height:  |  Size: 235 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 147 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 38 KiB

View File

@@ -1,34 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<svg width="10cm" height="8cm" version="1.1" viewBox="265 -156 186 159" xmlns="http://www.w3.org/2000/svg" xmlns:cc="http://creativecommons.org/ns#" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
<metadata>
<rdf:RDF>
<cc:Work rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type rdf:resource="http://purl.org/dc/dcmitype/StillImage"/>
<dc:title/>
</cc:Work>
</rdf:RDF>
</metadata>
<rect x="308" y="-152" width="49.1" height="30.5" fill="#fff"/>
<rect x="308" y="-152" width="49.1" height="30.5" fill="none" stroke="#000" stroke-width="2"/>
<text x="332.45999" y="-134.83099" fill="#000000" font-family="sans-serif" font-size="6.77px" text-anchor="middle"><tspan x="332.45999" y="-134.83099">IFD</tspan></text>
<rect x="308" y="-60.7" width="49.1" height="59.8" fill="#fff"/>
<text x="332.46002" y="-30.227913" fill="#000000" font-family="sans-serif" font-size="6.77px" text-anchor="middle"><tspan x="332.46002" y="-30.227913">BIOS</tspan></text>
<rect x="308" y="-60.7" width="49.1" height="59.8" fill="none" stroke="#000" stroke-width="2"/>
<rect x="308" y="-91.6" width="49.1" height="30.9" fill="#fff"/>
<rect x="308" y="-91.6" width="49.1" height="30.9" fill="none" stroke="#000" stroke-width="2"/>
<text x="332.45999" y="-74.099892" fill="#000000" font-family="sans-serif" font-size="6.77px" text-anchor="middle"><tspan x="332.45999" y="-74.099892">ME</tspan></text>
<rect x="308" y="-122" width="49.1" height="30.5" fill="#fff"/>
<rect x="308" y="-122" width="49.1" height="30.5" fill="none" stroke="#000" stroke-width="2"/>
<text x="332.45999" y="-104.3643" fill="#000000" font-family="sans-serif" font-size="6.77px" text-anchor="middle"><tspan x="332.45999" y="-104.3643">GBE</tspan></text>
<g font-family="sans-serif" font-size="6.77px">
<text x="265.96799" y="-149.20799"><tspan x="265.96799" y="-149.20799">0x000000</tspan></text>
<text x="266.362" y="-120.102"><tspan x="266.362" y="-120.102">0x001000</tspan></text>
<text x="266.16199" y="-88.897202"><tspan x="266.16199" y="-88.897202">0x003000</tspan></text>
<text x="266.14401" y="-59.324112"><tspan x="266.14401" y="-59.324112">0x200000</tspan></text>
<text x="266.32599" y="-1.1522589"><tspan x="266.32599" y="-1.1522589">0x400000</tspan></text>
</g>
<path d="m381-151c21 0-1.5 77.5 19.8 78.5" fill="none" stroke="#000"/>
<path d="m381-0.763c13.9 0 5.64-72 19.5-72" fill="none" stroke="#000"/>
<text x="406.12701" y="-68.513" fill="#000000" font-family="sans-serif" font-size="10.2px"><tspan x="406.12701" y="-68.513">Flash</tspan></text>
</svg>

Before

Width:  |  Height:  |  Size: 2.6 KiB

View File

@@ -1,112 +0,0 @@
# MSI MS-7707 V1.1
* MSI MS-7707 V1.1 (Medion OEM Akoya P4385D MSN10014555)
* SandyBridge Intel P67 (BD82x6x)
* Winbond 25Q32BV (4MB)
* Fintek F71808A SuperIO
* Intel 82579V Gigabit
* NEC uPD720200 USB 3.0 Host Controller
* IME 7.0.4.1197
## Flash chip (Winbond 25Q32BV)
```eval_rst
+---------------------+--------------------+
| Type | Value |
+=====================+====================+
| Size | 4 MiB |
+---------------------+--------------------+
| BIOS range | 2 MiB |
+---------------------+--------------------+
| Write protection | Yes (via jumper) |
+---------------------+--------------------+
| Header | Yes (JSPI1) |
+---------------------+--------------------+
| Package | SOIC-8 |
+---------------------+--------------------+
| In circuit flashing | Yes |
+---------------------+--------------------+
| Internal flashing | Yes |
+---------------------+--------------------+
| Socketed flash | No |
+---------------------+--------------------+
| Dual BIOS feature | No |
+---------------------+--------------------+
| ME removable | Yes |
+---------------------+--------------------+
```
## Installation instructions
* The standard method is to only flash the 2MiB BIOS region. In that case it's
not needed to extract blobs from vendor firmware and internal flashing is
sufficient.
* To flash the whole chip (e.g. to disable ME) blobs are needed to build
coreboot. Blobs can be extracted with util/ifdtool from 4MiB full dump image
(see below). Its recommended to include the VGA BIOS as well (4MiB write only).
Kconfig is prepared already if it gets enabled (path and 8086,0102).
```
coreboot/3rdparty/blobs/mainboard/msi/ms7707
├── descriptor.bin
├── gbe.bin
├── me.bin
└── vgabios.bin
```
* Never write a full 4MiB image if blobs are not included. The generated
coreboot.rom file is always 4MiB but the 2MiB flash command below will only
flash the last 2MiB (BIOS) block.
* The J1-Jumper sets the 'Flash Descriptor Override Strap-Pin' and enables
full 4MiB access for internal flasher (read and write).
* **Write BIOS-range** (2MiB) with J1-Jumper=off (as on picture/default
position):
```
flashrom -p internal:ich_spi_force=yes --noverify-all --ifd -i bios -w coreboot.rom
```
* **Read full dump** (4MiB) with J1-jumper=on:
```
flashrom -p internal -r original.rom
```
* **Write full dump** (4MiB) with J1-Jumper=on:
```
flashrom -p internal -w coreboot.rom
```
* After successful flashing turn main power off, wait some seconds to drain
the capacitors, pull the battery and set the JBAT (clrcmos) jumper for some
seconds. Setting the jumper alone is not enough (the Fintek is VBAT backed).
Put all back in place and restart the board. It might need 1-2 AC power cycles
to reinitialize (running at full fan speed - don't panic).
* External flashing has been tested with RPi2 without main power connected.
3.3V provided by RPi2. Read more about flashing methods [here](https://doc.coreboot.org/flash_tutorial/index.html).
* In case of going back to proprietary BIOS create/save cmos settings as early
as possible (do not leave BIOS on first start without saving settings).
The BIOS might corrupt nvram (not cmos!) and leave the system in a dead state
that needs an external flasher to revive. If stuck, reset the Fintek (see
above) and restart the system several times and/or try setting J1 to
temporarily disable ME.
![](J1-flash-protect.jpg)
* The JSPI1 header (5×2 2.0mm pitch pin header) for external flashing is
directly connected to the flash chip. Additional 3.3V to /HOLD and /WP is not
needed (internally re-routed already).
![](JSPI1-Winbond-W25Q32BVSIG.jpg)
![](JSPI1-connected.jpg)
![](JSPI1.png)
## Flash layout
* The 4MiB flashrom is divided into 4 sections:
![][flashlayout]
## Links
- [BIOS ROM]
- [Fintek F71808A datasheet]
- [Winbond 25Q32BV datasheet]
[BIOS ROM]: https://www.medion.com/de/servicebackend/_lightbox/treiber_details.php?did=9744
[Winbond 25Q32BV datasheet]: https://www.winbond.com/resource-files/w25q32bv_revi_100413_wo_automotive.pdf
[Fintek F71808A datasheet]: https://www.alldatasheet.com/datasheet-pdf/pdf/459069/FINTEK/F71808A.html
[flashlayout]: flashlayout.svg

View File

@@ -1,76 +0,0 @@
# Rutundu
This page describes how to run coreboot on the [Rotundu] compute board
from [OpenCellular].
## TODO
* Configure UART
* EC interface
## Flashing coreboot
```eval_rst
+---------------------+------------+
| Type | Value |
+=====================+============+
| Socketed flash | no |
+---------------------+------------+
| Model | W25Q128 |
+---------------------+------------+
| Size | 16 MiB |
+---------------------+------------+
| In circuit flashing | yes |
+---------------------+------------+
| Package | SOIC-8 |
+---------------------+------------+
| Write protection | No |
+---------------------+------------+
| Dual BIOS feature | No |
+---------------------+------------+
| Internal flashing | yes |
+---------------------+------------+
```
### Internal programming
The SPI flash can be accessed using [flashrom].
### External programming
The GBCv1 board does have a pinheader to flash the SOIC-8 in circuit.
Directly connecting a Pomona test-clip on the flash is also possible.
**Closeup view of SOIC-8 flash IC**
![][rotundu_flash]
[rotundu_flash]: rotundu_flash.jpg
**SPI header**
![][rotundu_header2]
[rotundu_header2]: rotundu_header2.jpg
**SPI header pinout**
Dediprog compatible pinout.
![][rotundu_j16]
[rotundu_j16]: rotundu_j16.png
## Technology
```eval_rst
+------------------+--------------------------------------------------+
| SoC | Intel Baytrail |
+------------------+--------------------------------------------------+
| Coprocessor | Intel ME |
+------------------+--------------------------------------------------+
```
[Rotundu]: https://github.com/Telecominfraproject/OpenCellular
[OpenCellular]: https://code.fb.com/connectivity/introducing-opencellular-an-open-source-wireless-access-platform/
[flashrom]: https://flashrom.org/Flashrom

Binary file not shown.

Before

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 20 KiB

View File

@@ -1,97 +0,0 @@
# PC Engines APU1
This page describes how to run coreboot on PC Engines APU1 platform.
## Technology
```eval_rst
+------------+--------------------------------------------------------+
| CPU | AMD G series T40E APU |
+------------+--------------------------------------------------------+
| CPU core | 1 GHz dual core (Bobcat core) with 64 bit support |
| | 32K data + 32K instruction + 512KB L2 cache per core |
+------------+--------------------------------------------------------+
| DRAM | 2 or 4 GB DDR3-1066 DRAM |
+------------+--------------------------------------------------------+
| Boot | From SD card, USB, mSATA, SATA |
+------------+--------------------------------------------------------+
| Power | 6 to 12W of 12V power |
+------------+--------------------------------------------------------+
| Firmware | coreboot with support for iPXE and USB boot |
+------------+--------------------------------------------------------+
```
## Flashing coreboot
```eval_rst
+---------------------+--------------------------+
| Type | Value |
+=====================+==========================+
| Socketed flash | no |
+---------------------+--------------------------+
| Model | MX25L1606E |
+---------------------+--------------------------+
| Size | 2 MiB |
+---------------------+--------------------------+
| Package | SOP-8 |
+---------------------+--------------------------+
| Write protection | jumper on WP# pin |
+---------------------+--------------------------+
| Dual BIOS feature | no |
+---------------------+--------------------------+
| Internal flashing | yes |
+---------------------+--------------------------+
```
### Internal programming
The SPI flash can be accessed using [flashrom]. It is important to execute
command with a `-c <chipname>` argument:
flashrom -p internal -c "MX25L1606E" -w coreboot.rom
### External programming
**IMPORTANT**: When programming SPI flash, first you need to enter apu1 in S5
(Soft-off) power state. S5 state can be forced by shorting power button pin on
J2 header.
The external access to flash chip is available through standard SOP-8 clip or
SOP-8 header next to the flash chip on the board. Notice that not all boards
have a header soldered down originally. Hence, there could be an empty slot with
8 eyelets, so you can solder down a header on your own. The SPI flash chip and
SPI header are marked in the picture below. Also there is SPI header pin layout
included. Notice, that signatures at the schematic can be ambiguous:
- J12 SPIDI = U35 SO = MISO
- J12 SPIDO = U35 SI = MOSI
There is no restrictions as to the programmer device. It is only recommended to
flash firmware without supplying power. External programming can be performed,
for example using OrangePi and Armbian. You can exploit linux_spi driver which
provide communication with SPI devices. Example command to program SPI flash
with OrangePi using linux_spi:
flashrom -w coreboot.rom -p linux_spi:dev=/dev/spidev1.0,spispeed=16000 -c
"MX25L1606E"
**apu1 platform with marked in SPI header and SPI flash chip**
![][apu1c1_flash]
**SPI header pin layout**
![][spi_header]
### Schematics
PC Engines APU platform schematics are available for free on PC Engines official
site. Depending on the configuration:
[apu1c](https://www.pcengines.ch/schema/apu1c.pdf) and
[apu1d](https://www.pcengines.ch/schema/apu1d.pdf).
[apu1c1_flash]: apu1c1.jpg
[spi_header]: apu1_spi.jpg
[flashrom]: https://flashrom.org/Flashrom

Binary file not shown.

Before

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

View File

@@ -1,116 +0,0 @@
# PC Engines APU2
This page describes how to run coreboot on PC Engines APU2 platform.
## Technology
```eval_rst
+------------+---------------------------------------------------------------+
| CPU | AMD G series GX-412TC |
+------------+---------------------------------------------------------------+
| CPU core | 1 GHz quad Puma core with 64 bit support |
| | 32K data + 32K instruction cache per core, shared 2MB L2 cache|
+------------+---------------------------------------------------------------+
| DRAM | 2 or 4 GB DDR3-1333 DRAM |
+------------+---------------------------------------------------------------+
| Boot | From SD card, USB, mSATA SSD, SATA |
+------------+---------------------------------------------------------------+
| Power | 6 to 12W of 12V power |
+------------+---------------------------------------------------------------+
| Firmware | coreboot with support for iPXE and USB boot |
+------------+---------------------------------------------------------------+
```
## Required proprietary blobs
To build working coreboot image some blobs are needed.
```eval_rst
+-----------------+---------------------------------+---------------------+
| Binary file | Apply | Required / Optional |
+=================+=================================+=====================+
| amdfw.rom* | AMD Platform Security Processor | Required |
+-----------------+---------------------------------+---------------------+
| AGESA.bin | AGESA Platform Initialization | Required |
+-----------------+---------------------------------+---------------------+
| xhci.bin | AMD XHCI controller | Optional |
+-----------------+---------------------------------+---------------------+
```
(\*) - package containing all required blobs for PSP. Directory, in which all
blobs are listed and available is: *3rdparty/southbridge/amd/avalon/PSP*
## Flashing coreboot
```eval_rst
+---------------------+--------------------------+
| Type | Value |
+=====================+==========================+
| Socketed flash | no |
+---------------------+--------------------------+
| Model | W25Q64 |
+---------------------+--------------------------+
| Size | 8 MiB |
+---------------------+--------------------------+
| Package | SOIC-8 |
+---------------------+--------------------------+
| Write protection | jumper on WP# pin* |
+---------------------+--------------------------+
| Dual BIOS feature | no |
+---------------------+--------------------------+
| Internal flashing | yes |
+---------------------+--------------------------+
```
(\*) - It is used in normal SPI mode, but can be dangerous when using Quad SPI
Flash. Then, pull-down resistors should be considered rather than jumper.
### Internal programming
The SPI flash can be accessed using [flashrom].
flashrom -p internal -w coreboot.rom
### External programming
**IMPORTANT**: When programming SPI flash, first you need to enter apu2 in S5
(Soft-off) power state. S5 state can be forced by shorting power button pin on
J2 header.
The external access to flash chip is available through standard SOP-8 clip or
SOP-8 header next to the flash chip on the board. Notice that not all boards
have a header soldered down originally. Hence, there could be an empty slot with
8 eyelets, so you can solder down a header on your own. The SPI flash chip and
SPI header are marked in the picture below. Also there is SPI header and SPI
flash pin layout included. Depend on using header or clip there are important
rules:
- using header J6 - don't connect 1,7,8 pins
- using clip U23 - don't connect 3,7,8 pins
Also signatures at the schematic can be ambiguous:
- J6 SPIDI = U23 SO = MISO
- J6 SPIDO = U23 SI = MOSI
There is no restrictions as to the programmer device. It is only recommended to
flash firmware without supplying power. External programming can be performed,
for example using OrangePi and Armbian. You can exploit linux_spi driver which
provides communication with SPI devices. Example command to program SPI flash
with OrangePi using linux_spi:
flashrom -f -w coreboot.rom -p linux_spi:dev=/dev/spidev1.0,spispeed=16000
**apu2 platform with marked in SPI header and SPI flash chip**
![][apu2_flash]
**SPI header pin layout**
![][spi_header]
## Schematics
PC Engines APU2 [platform schematics](https://pcengines.ch/schema/apu2d.pdf)
are available for free on PC Engines official site. Both configurations
(2GB/4GB) have the same PCB and schematic.
[apu2_flash]: apu2.jpg
[spi_header]: apu2_spi.jpg
[flashrom]: https://flashrom.org/Flashrom

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -1,79 +0,0 @@
# Portwell PQ7-M107
This page describes how to run coreboot on the [Portwell PQ7-M107].
PQ7-M107 are assembled with different onboard memory modules:
Rev 1.0 Onboard Samsung K4B8G1646D-MYKO memory
Rev 1.1 and 1.2 Onboard Micron MT41K512M16HA-125A memory
Use 'make menuconfig' to configure `onboard memory manufacture` in Mainboard
menu.
## Required blobs
This board currently requires:
fsp blob 3rdparty/fsp/BraswellFspBinPkg/FspBin/BSWFSP.fd
Microcode Intel Braswell cpuid 1046C4 version 410
(Used pre-built binary retrieved from Intel site)
## Flashing coreboot
### Internal programming
The main SPI flash can be accessed using [flashrom].
### External programming
The system has an internal flash chip which is a 8 MiB soldered SOIC-8 chip.
This chip is located on the top middle side of the board. It's located
between SoC and Q7 connector. Use clip (or solder wires) to program
the chip.
Specifically, it's a Winbond W25Q64FW (1.8V), whose datasheet can be found
[here][W25Q64FW].
## Known issues
- The PQ7 module contains Q7 connector only. Depending on the carrier
serial/video/pcie ports might be available.
## Untested
- hardware monitor
- SDIO
- Full Embedded Controller support
## Working (using carrier)
- USB
- Gigabit Ethernet
- integrated graphics
- flashrom
- external graphics
- PCIe
- eMMC
- SATA
- serial port
- SMbus
- HDA (codec on carrier)
- initialization with FSP MR2
- SeaBIOS payload (version rel-1.11.0-44-g7961917)
- Embedded Linux (Ubuntu 4.15+)
## Technology
```eval_rst
+------------------+--------------------------------------------------+
| SoC | Intel Atom Processor N3710 |
+------------------+--------------------------------------------------+
| CPU | Intel Braswell (N3710) |
+------------------+--------------------------------------------------+
| Super I/O, EC | ITE8256 |
+------------------+--------------------------------------------------+
| Coprocessor | Intel Management Engine |
+------------------+--------------------------------------------------+
```
[Portwell PQ7-M107]: http://portwell.com/products/detail.php?CUSTCHAR1=PQ7-M107
[W25Q64FW]: https://www.winbond.com/resource-files/w25q64fw%20revn%2005182017%20sfdp.pdf
[flashrom]: https://flashrom.org/Flashrom
[Board manual]: www.portwell.com/pdf/embedded/PQ7-M107.pdf

View File

@@ -1,23 +0,0 @@
Roda RK9 Flash Header
=====================
There is a 5x2 pin, 1.27mm pitch header *J1* south of the BIOS flash. It
follows the pinout of the Dediprog adaptor board:
+------+
| 1 2 | 1: HOLD 2 2: CS 2
| 3 4 | 3: CS 1 4: VCC
| 5 6 | 5: MISO 6: HOLD 1
| 7 8 | 7: 8: CLK
| 9 10 | 9: GND 10: MOSI
+------+
Pins 3 to 10 directly map to the regular SPI flash pinout.
There is also a *JP17* around. Ideally, it should be closed during
programming (isolates the SPI bus from the southbridge):
+---+
| 1 | 1: SF100-I/O3
| 2 | 2: GND
+---+

View File

@@ -12,13 +12,15 @@ For general setup instructions, please refer to the [Getting Started Guide].
The following things are still missing from this coreboot port:
- Support running romstage from flash (fix stack) to support boot mode 1
- CBMEM support
- FU540 clock configuration
- FU540 RAM init
- Placing the ramstage in DRAM
- Starting the U54 cores
- FU540 PIN configuration and GPIO access macros
- Provide serial number to payload (e.g. in device tree)
- Implement instruction emulation
- Support for booting Linux on RISC-V
- Add support to run OpenSBI payload in m-mode
- SMP support in trap handler
## Configuration

Binary file not shown.

Before

Width:  |  Height:  |  Size: 48 KiB

View File

@@ -1,126 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/PR-SVG-20010719/DTD/svg10.dtd">
<svg width="14cm" height="10cm" viewBox="399 -216 262 199" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<text font-size="12.8" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:700" x="460" y="-20">
<tspan x="460" y="-20">40 pin GPIO header</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="520" y="-175.575">
<tspan x="520" y="-175.575">GND</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="560" y="-203.575">
<tspan x="560" y="-203.575">UART1</tspan>
<tspan x="560" y="-187.575">TX</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="600" y="-183.575">
<tspan x="600" y="-183.575">UART1</tspan>
<tspan x="600" y="-167.575">RX</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="400" y="-140" width="260" height="100"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="400" y="-140" width="260" height="100"/>
</g>
<g>
<rect style="fill: #ffffff" x="420" y="-120" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="420" y="-120" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="420" y="-80" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="420" y="-80" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="500" y="-120" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="500" y="-120" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="500" y="-80" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="500" y="-80" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="460" y="-120" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="460" y="-120" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="460" y="-80" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="460" y="-80" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="540" y="-120" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="540" y="-120" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="540" y="-80" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="540" y="-80" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="580" y="-120" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="580" y="-120" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="580" y="-80" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="580" y="-80" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="620" y="-120" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="620" y="-120" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="620" y="-80" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="620" y="-80" width="20" height="20"/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="420,-40 420,-49 "/>
<polygon style="fill: #000000" points="425,-49 420,-59 415,-49 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="425,-49 420,-59 415,-49 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="430" y="-65.575">
<tspan x="430" y="-65.575">1</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="470" y="-105.575">
<tspan x="470" y="-105.575">4</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="430" y="-105.575">
<tspan x="430" y="-105.575">2</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="470" y="-65.575">
<tspan x="470" y="-65.575">3</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="510" y="-65.575">
<tspan x="510" y="-65.575">5</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="550" y="-65.575">
<tspan x="550" y="-65.575">7</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="550" y="-105.575">
<tspan x="550" y="-105.575">8</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="510" y="-105.575">
<tspan x="510" y="-105.575">6</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="590" y="-65.575">
<tspan x="590" y="-65.575">9</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="630" y="-65.575">
<tspan x="630" y="-65.575">11</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="630" y="-105.575">
<tspan x="630" y="-105.575">12</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="590" y="-105.575">
<tspan x="590" y="-105.575">10</tspan>
</text>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="520,-160 520,-131 "/>
<polygon style="fill: #000000" points="515,-131 520,-121 525,-131 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="515,-131 520,-121 525,-131 "/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="560,-180 560,-131 "/>
<polygon style="fill: #000000" points="555,-131 560,-121 565,-131 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="555,-131 560,-121 565,-131 "/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="600,-160 600,-131 "/>
<polygon style="fill: #000000" points="595,-131 600,-121 605,-131 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="595,-131 600,-121 605,-131 "/>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 7.4 KiB

View File

@@ -1,112 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/PR-SVG-20010719/DTD/svg10.dtd">
<svg width="22cm" height="9cm" viewBox="416 112 425 163" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g>
<rect style="fill: #ffffff" x="420" y="140" width="420" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="420" y="140" width="420" height="60"/>
</g>
<g>
<rect style="fill: #00ff00" x="440" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="440" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="480" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="480" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="520" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="520" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="560" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="560" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="600" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="600" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="640" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="640" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="680" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="680" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="720" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="720" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="760" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="760" y="160" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="800" y="160" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="800" y="160" width="20" height="20"/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="820,140 820,149 "/>
<polygon style="fill: #000000" points="815,149 820,159 825,149 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="815,149 820,159 825,149 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="810" y="174.425">
<tspan x="810" y="174.425">1</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="770" y="174.425">
<tspan x="770" y="174.425">2</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="650" y="174.425">
<tspan x="650" y="174.425">5</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="690" y="174.425">
<tspan x="690" y="174.425">4</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="730" y="174.425">
<tspan x="730" y="174.425">3</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="610" y="174.425">
<tspan x="610" y="174.425">6</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="490" y="174.425">
<tspan x="490" y="174.425">9</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="530" y="174.425">
<tspan x="530" y="174.425">8</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="570" y="174.425">
<tspan x="570" y="174.425">7</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="450" y="174.425">
<tspan x="450" y="174.425">10</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="520" y="264.425">
<tspan x="520" y="264.425">GND</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="480" y="236.425">
<tspan x="480" y="236.425">UART0</tspan>
<tspan x="480" y="252.425">RX</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="440" y="256.425">
<tspan x="440" y="256.425">UART0</tspan>
<tspan x="440" y="272.425">TX</tspan>
</text>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="440,240 440,191 "/>
<polygon style="fill: #000000" points="445,191 440,181 435,191 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="445,191 440,181 435,191 "/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="480,220 480,191 "/>
<polygon style="fill: #000000" points="485,191 480,181 475,191 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="485,191 480,181 475,191 "/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="520,240 520,191 "/>
<polygon style="fill: #000000" points="525,191 520,181 515,191 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="525,191 520,181 515,191 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="640" y="124.425">
<tspan x="640" y="124.425">10 pin UART0/USB2 header (CN16)</tspan>
</text>
</svg>

Before

Width:  |  Height:  |  Size: 6.6 KiB

View File

@@ -1,165 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/PR-SVG-20010719/DTD/svg10.dtd">
<svg width="14cm" height="12cm" viewBox="294 -68 267 236" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g>
<rect style="fill: #ffffff" x="300" y="0" width="260" height="99"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="300" y="0" width="260" height="99"/>
</g>
<g>
<rect style="fill: #00ff00" x="320" y="20" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="320" y="20" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="360" y="20" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="360" y="20" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="400" y="20" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="400" y="20" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="440" y="20" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="440" y="20" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="480" y="20" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="480" y="20" width="20" height="20"/>
</g>
<g>
<rect style="fill: #ffffff" x="520" y="20" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="520" y="20" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="320" y="60" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="320" y="60" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="360" y="60" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="360" y="60" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="400" y="60" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="400" y="60" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="440" y="60" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="440" y="60" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="480" y="60" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="480" y="60" width="20" height="20"/>
</g>
<g>
<rect style="fill: #00ff00" x="520" y="60" width="20" height="20"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="520" y="60" width="20" height="20"/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="540,0 540,9 "/>
<polygon style="fill: #000000" points="535,9 540,19 545,9 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="535,9 540,19 545,9 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="370" y="34.425">
<tspan x="370" y="34.425">9</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="450" y="34.425">
<tspan x="450" y="34.425">5</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="410" y="34.425">
<tspan x="410" y="34.425">7</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="410" y="74.425">
<tspan x="410" y="74.425">8</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="530" y="34.425">
<tspan x="530" y="34.425">1</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="490" y="74.425">
<tspan x="490" y="74.425">4</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="490" y="34.425">
<tspan x="490" y="34.425">3</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="530" y="74.425">
<tspan x="530" y="74.425">2</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="450" y="74.425">
<tspan x="450" y="74.425">6</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="330" y="34.425">
<tspan x="330" y="34.425">11</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="330" y="74.425">
<tspan x="330" y="74.425">12</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="370" y="74.425">
<tspan x="370" y="74.425">10</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:700" x="420" y="-20">
<tspan x="420" y="-20">SPI header (CN22)</tspan>
</text>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="520,140 520,91 "/>
<polygon style="fill: #000000" points="525,91 520,81 515,91 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="525,91 520,81 515,91 "/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="360,140 360,91 "/>
<polygon style="fill: #000000" points="365,91 360,81 355,91 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="365,91 360,81 355,91 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="360" y="164.425">
<tspan x="360" y="164.425">GND</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="520" y="164.425">
<tspan x="520" y="164.425">GND</tspan>
</text>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="400,120 400,91 "/>
<polygon style="fill: #000000" points="405,91 400,81 395,91 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="405,91 400,81 395,91 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="400" y="144.425">
<tspan x="400" y="144.425">MISO</tspan>
</text>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="480,120 480,91 "/>
<polygon style="fill: #000000" points="485,91 480,81 475,91 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="485,91 480,81 475,91 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="480" y="136.425">
<tspan x="480" y="136.425">VCC</tspan>
<tspan x="480" y="152.425">1.8V</tspan>
</text>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="320" y="144.425">
<tspan x="320" y="144.425">#HOLD</tspan>
</text>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="320,120 320,91 "/>
<polygon style="fill: #000000" points="325,91 320,81 315,91 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="325,91 320,81 315,91 "/>
</g>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="400,-40 400,9 "/>
<polygon style="fill: #000000" points="395,9 400,19 405,9 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="395,9 400,19 405,9 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="400" y="-55.575">
<tspan x="400" y="-55.575">CLK</tspan>
</text>
<g>
<polyline style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="320,-20 320,9 "/>
<polygon style="fill: #000000" points="315,9 320,19 325,9 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="315,9 320,19 325,9 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="320" y="-35.575">
<tspan x="320" y="-35.575">MOSI</tspan>
</text>
<g>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x1="440" y1="140" x2="440" y2="91"/>
<polygon style="fill: #000000" points="445,91 440,81 435,91 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="445,91 440,81 435,91 "/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="440" y="164.238">
<tspan x="440" y="164.238">#CS</tspan>
</text>
</svg>

Before

Width:  |  Height:  |  Size: 9.6 KiB

View File

@@ -1,169 +0,0 @@
# Squared
## Overview
### Top
![][overview_top]
### Bottom
![][overview_bottom]
* **Legend**
* [BLUE][header_cn16_link]: UART0 / USB connector
* [GREEN][header_gpio_link]: UART1 / GPIO header
* [RED][header_cn22_link]: SPI header
* YELLOW: Indicates pin 1
## Mainboard components
### Platform
```eval_rst
+------------------+----------------------------------+
| CPU | Intel Atom, Celeron, Pentium |
+------------------+----------------------------------+
| PCH | Intel Apollo Lake |
+------------------+----------------------------------+
| EC / Super IO | N/A |
+------------------+----------------------------------+
| Coprocessor | Intel TXE 3.0 |
+------------------+----------------------------------+
```
### Flash chip
```eval_rst
+---------------------+------------+
| Type | Value |
+=====================+============+
| Socketed flash | no |
+---------------------+------------+
| Vendor | Winbond |
+---------------------+------------+
| Model | W25Q128FW |
+---------------------+------------+
| Voltage | 1.8V |
+---------------------+------------+
| Size | 16 MiB |
+---------------------+------------+
| Package | SOIC-8 |
+---------------------+------------+
| Write protection | No |
+---------------------+------------+
| Internal flashing | No |
+---------------------+------------+
| In curcuit flashing | Yes |
+---------------------+------------+
```
### Debugging
#### UART0 (CN16)
This connector is located on the **bottom** side (see [here][overview_bottom_link]).
![][header_cn16]
#### UART1 (GPIO header)
The GPIO header is located on the **bottom** side (see [here][overview_bottom_link]).
![][header_gpio]
## Building and flashing coreboot
### Using the SPI header
The SPI header is located on the **bottom** side (see [here][overview_bottom_link]).
![][header_cn22]
### Preperations
In order to build coreboot, it's neccessary to extract some files from the vendor firmware. Make sure that you have a fully working dump.
```bash
[upsquared]$ ls
firmware_vendor.rom
```
```bash
[upsquared]$ mkdir extracted && cd extracted
[extracted]$ ifdtool -x ../firmware_vendor.rom
File ../firmware_vendor.rom is 16777216 bytes
Peculiar firmware descriptor, assuming Ibex Peak compatibility.
Flash Region 0 (Flash Descriptor): 00000000 - 00000fff
Flash Region 1 (BIOS): 00001000 - 00efefff
Flash Region 2 (Intel ME): 07fff000 - 00000fff (unused)
Flash Region 3 (GbE): 07fff000 - 00000fff (unused)
Flash Region 4 (Platform Data): 07fff000 - 00000fff (unused)
Flash Region 5 (Reserved): 00eff000 - 00ffefff
Flash Region 6 (Reserved): 07fff000 - 00000fff (unused)
Flash Region 7 (Reserved): 07fff000 - 00000fff (unused)
Flash Region 8 (EC): 07fff000 - 00000fff (unused)
```
```bash
flashregion_0_flashdescriptor.bin
flashregion_1_bios.bin
flashregion_5_reserved.bin
```
### Clean up
```bash
[coreboot]$ make distclean
```
### Configuring
```bash
[coreboot]$ touch .config
[coreboot]$ ./util/scripts/config --enable VENDOR_UP
[coreboot]$ ./util/scripts/config --enable BOARD_UP_SQUARED
[coreboot]$ ./util/scripts/config --enable NEED_IFWI
[coreboot]$ ./util/scripts/config --enable HAVE_IFD_BIN
[coreboot]$ ./util/scripts/config --set-str IFWI_FILE_NAME "<flashregion_1_bios.bin>"
[coreboot]$ ./util/scripts/config --set-str IFD_BIN_PATH "<flashregion_0_flashdescriptor.bin>"
[coreboot]$ make olddefconfig
```
### Building
```bash
[coreboot]$ make
```
Now you should have a working and ready to use coreboot build at `build/coreboot.rom`.
### Flashing
```bash
[coreboot]$ flashrom -p <your_programmer> -w build/coreboot.rom
```
## Board status
### Working
- bootblock, romstage, ramstage
- Serial console UART0, UART1
- SPI flash console
- iGPU init with libgfxinit
- LAN1, LAN2
- USB2, USB3
- HDMI, DisplayPort
- eMMC
- flashing with flashrom externally
### Work in progress
- Documentation
- ACPI
### Not working / Known issues
- Generally SeaBIOS works, but it can't find the CBFS region and therefore it can't load seavgabios. This is because of changes at the Apollolake platform.
### Untested
- GPIO pin header
- 60 pin EXHAT
- Camera interface
- MIPI-CSI2 2-lane (2MP)
- MIPI-CSI2 4-lane (8MP)
- SATA3
- USB3 OTG
- embedded DisplayPort
- M.2 slot
- mini PCIe
- flashing with flashrom internally using Linux
[header_cn16]: header_cn16_10pin_uart0.svg
[header_cn16_link]: #uart0-cn16
[header_cn22]: header_cn22_12pin_spi.svg
[header_cn22_link]: #using-the-spi-header
[header_gpio]: header_40pin_gpio_uart1.svg
[header_gpio_link]: #uart1-gpio-header
[overview_top]: top.jpg
[overview_bottom]: bottom.jpg
[overview_bottom_link]: #bottom

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

View File

@@ -27,83 +27,6 @@ Now, place `mrc.bin` in the root of the coreboot directory.
Alternatively, place `mrc.bin` anywhere you want, and set `MRC_FILE` to
its location when building coreboot.
## SPD Addresses
When porting a board from vendor firmware, the SPD addresses can be obtained
through `i2c-tools`, which can be found in many GNU/Linux distributions. A more
[detailed description](https://hannuhartikainen.fi/blog/hacking-ddr3-spd/) of
the procedure and beyond can be found in
[Hannu Hartikainen's blog](https://hannuhartikainen.fi).
First load the kernel modules:
```bash
modprobe i2c-dev
modprobe eeprom
```
Find the SMBus and the addresses of the DIMM's EEPROMs (example output):
```bash
$ decode-dimms | grep Decoding
Decoding EEPROM: /sys/bus/i2c/drivers/eeprom/7-0050
Decoding EEPROM: /sys/bus/i2c/drivers/eeprom/7-0052
```
Alternatively, look at the sys filesystem:
```bash
$ ls -l /sys/bus/i2c/drivers/eeprom/
total 0
lrwxrwxrwx 1 root root 0 Apr 4 01:46 6-0050 -> ../../../../devices/pci0000:00/0000:00:02.0/drm/card0/card0-eDP-1/i2c-6/6-0050/
lrwxrwxrwx 1 root root 0 Apr 4 01:46 7-0050 -> ../../../../devices/pci0000:00/0000:00:1f.3/i2c-7/7-0050/
lrwxrwxrwx 1 root root 0 Apr 4 01:46 7-0052 -> ../../../../devices/pci0000:00/0000:00:1f.3/i2c-7/7-0052/
--w------- 1 root root 4096 Apr 4 01:47 bind
lrwxrwxrwx 1 root root 0 Apr 4 01:47 module -> ../../../../module/eeprom/
--w------- 1 root root 4096 Apr 4 01:46 uevent
--w------- 1 root root 4096 Apr 4 01:47 unbind
```
The correct I2C bus is 7 in this case, and the EEPROMs are at `0x50` and `0x52`.
Note that the above values are actually hex values.
You can check the correctness of the SMBus and the addresses of the EEPROMs via
`i2cdetect`:
```bash
$ i2cdetect -l
i2c-3 unknown i915 gmbus dpc N/A
i2c-1 unknown i915 gmbus vga N/A
i2c-6 unknown DPDDC-A N/A
i2c-4 unknown i915 gmbus dpb N/A
i2c-2 unknown i915 gmbus panel N/A
i2c-0 unknown i915 gmbus ssc N/A
i2c-7 unknown SMBus I801 adapter at f040 N/A
i2c-5 unknown i915 gmbus dpd N/A
```
Probing the SMBus:
```bash
$ i2cdetect -r 7
WARNING! This program can confuse your I2C bus, cause data loss and worse!
I will probe file /dev/i2c-7 using receive byte commands.
I will probe address range 0x03-0x77.
Continue? [Y/n]
0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: 30 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- 44 -- -- -- -- -- -- -- -- -- -- --
50: UU -- UU -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --
```
The SPD addresses need to be left-shifted by 1 for `mrc.bin`, i.e., multiplied
by 2. For example, if the addresses read through `i2c-tools` when booted from
vendor firmware are `0x50` and `0x52`, the correct values would be `0xa0` and
`0xa4`. This is because the I2C addresses are 7 bits long.
## ECC DRAM
When `mrc.bin` has finished executing, ECC is active on the channels

View File

@@ -6,4 +6,3 @@ This section contains documentation about coreboot on specific Intel "Sandy Brid
- [Native Ram Initialization](nri.md)
- [RAM initialization feature matrix](nri_features.md)
- [ME Cleaner](me_cleaner.md)

View File

@@ -1,20 +0,0 @@
# ME Cleaner
It's possible to 'clean' the ME partition within the flash medium as part
of the build process. While cleaning as much code as possible is removed
from the ME firmware partition. In this state the ME errors out and doesn't
operate any more.
**Using a 'cleaned' ME partition may lead to issues and its use should be
carefully evaulated.**
## Observations with 'cleaned' ME
* Instable LPC bus
* SuperIO is malfunctioning
* TPM is malfunctioning
* Random system shutdowns on high bus activity
## Filing bug reports
Always test with unmodified IFD and ME section before reporting bugs to the
coreboot project.

View File

@@ -0,0 +1,5 @@
# Security
## Google VBoot2 Measured boot extension
- [Measured Boot](vboot/measured_boot.md)

View File

@@ -1,15 +0,0 @@
# Security
This section describes documentation about the security architecture of coreboot.
## Vendor
- [Verified Boot](vboot/index.md)
- [Measured Boot](vboot/measured_boot.md)
- [Memory clearing](memory_clearing.md)
## Intel TXT
- [Intel TXT in general](intel/txt.md)
- [Intel TXT Initial Boot Block](intel/txt_ibb.md)
- [Intel Authenticated Code Modules](intel/acm.md)

View File

@@ -1,57 +0,0 @@
# Intel Authenticated Code Modules
The Authenticated Code Modules (ACMs) are Intel digitally signed modules
that contain code to be run before the traditional x86 CPU reset vector.
The ACMs can be invoked at runtime through the GETSEC instruction, too.
A platform that wants to use Intel TXT must use two ACMs:
1. BIOS ACM
* The BIOS ACM must be present in the boot flash.
* The BIOS ACM must be referenced by the [FIT].
2. SINIT ACM
* The SINIT ACM isn't referenced by the [FIT].
* The SINIT ACM should be provided by the boot firmware, but bootloaders
like [TBOOT] are able to load them from the filesystem as well.
## Retrieving ACMs
The ACMs can be downloaded on Intel's website:
[Intel Trusted Execution Technology](https://software.intel.com/en-us/articles/intel-trusted-execution-technology)
If you want to extract the BLOB from vendor firmware you can search for the
string ``LCP_POLICY_DATA`` or ``TXT``.
## Header
Every ACM has a fixed size header:
```c
/*
* ACM Header v0.0 without dynamic part
* Chapter A.1
* Intel TXT Software Development Guide (Document: 315168-015)
*/
struct acm_header_v0 {
uint16_t module_type;
uint16_t module_sub_type;
uint32_t header_len;
uint16_t header_version[2];
uint16_t chipset_id;
uint16_t flags;
uint32_t module_vendor;
uint32_t date;
uint32_t size;
uint16_t txt_svn;
uint16_t se_svn;
uint32_t code_control;
uint32_t error_entry_point;
uint32_t gdt_limit;
uint32_t gdt_ptr;
uint32_t seg_sel;
uint32_t entry_point;
uint8_t reserved2[63];
} __packed;
```
[FIT]: ../../soc/intel/fit.md
[TBOOT]: https://sourceforge.net/p/tboot/wiki/Home/

View File

@@ -1,153 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/PR-SVG-20010719/DTD/svg10.dtd">
<svg width="16cm" height="36cm" viewBox="522 318 306 714" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g>
<rect style="fill: #ffffff" x="523.768" y="829.25" width="296.25" height="201.75"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ffffff" x="523.768" y="829.25" width="296.25" height="201.75"/>
</g>
<g>
<rect style="fill: #ffffff" x="689.334" y="321.666" width="72.375" height="269.168"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="689.334" y="321.666" width="72.375" height="269.168"/>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="725.522" y="460.15">
<tspan x="725.522" y="460.15"></tspan>
</text>
</g>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="686.166" y1="352" x2="781.166" y2="352"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="685.8" y1="334.434" x2="780.8" y2="334.434"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="682.8" y1="410.934" x2="777.8" y2="410.934"/>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" d="M 684.5,342.584 A 30.4704,30.4704 0 0 0 676.673,403.011"/>
<polygon style="fill: #0000ff" points="679.632,403.321 675.608,405.273 676.632,403.285 675.656,401.273 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" points="679.632,403.321 675.608,405.273 676.632,403.285 675.656,401.273 "/>
</g>
<g>
<rect style="fill: #ffffff" x="694.75" y="367" width="60.2083" height="10.5"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x="694.75" y="367" width="60.2083" height="10.5"/>
</g>
<text font-size="5.64444" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="653" y="323.334">
<tspan x="653" y="323.334">4 GiB </tspan>
</text>
<text font-size="7.90222" style="fill: #0000ff;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="707.958" y="348.25">
<tspan x="707.958" y="348.25">FIT Ptr</tspan>
</text>
<text font-size="7.90222" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="692.934" y="330.55">
<tspan x="692.934" y="330.55">IA32 reset vec</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="694.684" y="415.25" width="60.2083" height="41.5333"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" x="694.684" y="415.25" width="60.2083" height="41.5333"/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" d="M 654.458,327 A 65.5176,65.5176 0 0 0 675.175,449.031"/>
<polygon style="fill: #ff0000" points="678.138,449.469 673.953,451.045 675.154,449.159 674.366,447.066 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" points="678.138,449.469 673.953,451.045 675.154,449.159 674.366,447.066 "/>
</g>
<g>
<rect style="fill: #ffffff" x="694.934" y="462.5" width="60.2083" height="28.7474"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" x="694.934" y="462.5" width="60.2083" height="28.7474"/>
</g>
<g>
<rect style="fill: #ffffff" x="695.434" y="518.45" width="60.2083" height="12.134"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #00ff00" x="695.434" y="518.45" width="60.2083" height="12.134"/>
</g>
<text font-size="6.77333" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="708.208" y="479.25">
<tspan x="708.208" y="479.25">BIOS ACM</tspan>
</text>
<text font-size="6.77333" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="707.184" y="432.25">
<tspan x="707.184" y="432.25">BOOTBLOCK</tspan>
<tspan x="707.184" y="440.717">CODE</tspan>
</text>
<text font-size="6.77333" style="fill: #00ff00;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="714.934" y="527">
<tspan x="714.934" y="527">uCode</tspan>
</text>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" x1="655.186" y1="327.12" x2="687.728" y2="326.952"/>
<g>
<rect style="fill: #ffffff" x="694.684" y="377.45" width="60.2083" height="10.5"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x="694.684" y="377.45" width="60.2083" height="10.5"/>
</g>
<g>
<rect style="fill: #ffffff" x="694.75" y="387.95" width="60.2083" height="10.5"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x="694.75" y="387.95" width="60.2083" height="10.5"/>
</g>
<g>
<rect style="fill: #ffffff" x="694.684" y="398.4" width="60.2083" height="10.5"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x="694.684" y="398.4" width="60.2083" height="10.5"/>
</g>
<g>
<rect style="fill: #ffffff" x="691.018" y="588.75" width="68.5" height="4.25"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ffffff" x="691.018" y="588.75" width="68.5" height="4.25"/>
</g>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x1="689.334" y1="590.834" x2="689.018" y2="509.25"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="683.092" y1="493.9" x2="778.092" y2="493.9"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="682.592" y1="459.4" x2="777.592" y2="459.4"/>
<g>
<rect style="fill: #ffffff" x="695.776" y="533.91" width="60.2083" height="12.134"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #00ff00" x="695.776" y="533.91" width="60.2083" height="12.134"/>
</g>
<text font-size="6.77333" style="fill: #00ff00;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="714.026" y="542.21">
<tspan x="714.026" y="542.21">uCode</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="695.276" y="497.072" width="60.2083" height="15.675"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" x="695.276" y="497.072" width="60.2083" height="15.675"/>
</g>
<text font-size="6.77333" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="715.276" y="546.122">
<tspan x="715.276" y="546.122"></tspan>
</text>
<g>
<rect style="fill: #ffffff" x="695.776" y="551.072" width="60.2083" height="15.3485"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" x="695.776" y="551.072" width="60.2083" height="15.3485"/>
</g>
<text font-size="6.77333" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="705.1" y="506.148">
<tspan x="705.1" y="506.148">verstage</tspan>
</text>
<text font-size="6.77333" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="719.35" y="561.32">
<tspan x="719.35" y="561.32">FSP</tspan>
</text>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="682.1" y1="515.408" x2="777.1" y2="515.408"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="682.85" y1="548.738" x2="777.85" y2="548.738"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="789.75" y1="322.584" x2="789.75" y2="458.408"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="789.5" y1="457.908" x2="783" y2="457.908"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="789.6" y1="322.508" x2="783.1" y2="322.508"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="789.75" y1="493.226" x2="790.1" y2="513.834"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="789.85" y1="513.334" x2="783.35" y2="513.334"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="790.2" y1="493.934" x2="783.7" y2="493.934"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="789.65" y1="549.094" x2="790" y2="569.7"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="789.75" y1="569.2" x2="783.25" y2="569.2"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" x1="790.1" y1="549.8" x2="783.6" y2="549.8"/>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke-dasharray: 2; stroke: #ff8484" d="M 753.708,392.75 A 49.3538,49.3538 0 0 0 783.042,393.053"/>
<polygon style="fill: #ffffff" points="784.252,395.824 787.724,391.442 782.136,391.293 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" points="784.252,395.824 787.724,391.442 782.136,391.293 "/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke-dasharray: 2; stroke: #ff8484" d="M 796.338,500.253 A 63.4678,63.4678 0 0 0 754.892,382.7"/>
<polygon style="fill: #ffffff" points="795.536,498.321 791.972,502.627 797.555,502.895 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" points="795.536,498.321 791.972,502.627 797.555,502.895 "/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke-dasharray: 2; stroke: #ff8484" d="M 795.51,554.953 A 86.6963,86.6963 0 0 0 754.892,403.65"/>
<polygon style="fill: #ffffff" points="794.249,553.15 791.641,558.095 797.162,557.214 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ff8484" points="794.249,553.15 791.641,558.095 797.162,557.214 "/>
</g>
<text font-size="12.8" style="fill: #ff8484;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="792.75" y="458.584">
<tspan x="792.75" y="458.584">IBB</tspan>
</text>
<text font-size="12.8" style="fill: #ff8484;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="792" y="516.808">
<tspan x="792" y="516.808">IBB</tspan>
</text>
<text font-size="12.8" style="fill: #ff8484;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="791.75" y="571.384">
<tspan x="791.75" y="571.384">IBB</tspan>
</text>
<text font-size="6.77333" style="fill: #0000ff;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="713.25" y="394.834">
<tspan x="713.25" y="394.834">type 7</tspan>
</text>
<text font-size="6.77333" style="fill: #0000ff;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="713" y="384.958">
<tspan x="713" y="384.958">type 7</tspan>
</text>
<text font-size="6.77333" style="fill: #0000ff;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="713.25" y="405.458">
<tspan x="713.25" y="405.458">type 7</tspan>
</text>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 689.334 590.834 C 714.206,590.834 736.628,598.912 761.5,598.912"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x1="761.71" y1="590.834" x2="761.5" y2="599.412"/>
</svg>

Before

Width:  |  Height:  |  Size: 12 KiB

View File

@@ -1,117 +0,0 @@
# Intel Trusted Execution Technology
Intel TXT allows
1. Attestation of the authenticity of a platform and its operating system.
2. Assuring that an authentic operating system starts in a
trusted environment, which can then be considered trusted.
3. Providing of a trusted operating system with additional
security capabilities not available to an unproven one.
Intel TXT requirements:
1. Intel TXT requires a **TPM** to measure parts of the firmware before it's
run on the BSP.
2. Intel TXT requires signed **Authenticated Code Modules** ([ACM]s), provided
by Intel.
3. Intel TXT requires **CPU and Chipset** support (supported since
Intel Core 2 Duo/ICH9).
## Authenticated Code Modules
The ACMs are Intel digitally signed modules that contain code to be run
before the traditional x86 CPU reset vector.
More details can be found here: [Intel ACM].
## Modified bootflow with Intel TXT
With Intel TXT the first instruction executed on the BSP isn't the
*reset vector*, but the [Intel ACM].
It initializes the TPM and measures parts of the firmware, the IBB.
### Marking the Initial Boot Block
Individual files in the CBFS can be marked as IBB.
More details can be found in the [Intel TXT IBB] chapter.
### Measurements
The IBBs (Initial Boot Blocks) are measured into TPM's PCR0 by the BIOS [ACM]
before the CPU reset vector is executed. To indentify the regions that need
to be measured, the [FIT] contains one ore multiple *Type 7* entries, that
point to the IBBs.
### Authentication
After the IBBs have been measured, the ACM decides if the boot firmware is
trusted. There exists two validation modes:
1. HASH Autopromotion
* Uses a known good HASH stored in TPM NVRAM
* Doesn't allow to boot a fallback IBB
2. Signed BIOS policy
* Uses a signed policy stored in flash containing multiple HASHes
* The public key HASH of BIOS policy is burned into TPM by manufacturer
* Can be updated by firmware
* Allows to boot a fallback IBB
At the moment only *Autopromotion mode* is implemented and tested well.
In the next step the ACM terminates and the regular x86 CPU reset vector
is being executed on the BSP.
### Protecting Secrets in Memory
Intel TXT sets the `Secrets in Memory` bit, whenever the launch of the SINIT
ACM was successful.
The bit is reset when leaving the *MLE* by a regular shutdown or by removing
the CMOS battery.
When `Secrets in Memory` bit is set and the IBB isn't trusted, the memory
controller won't be unlocked, resulting in a platform that cannot access DRAM.
When `Secrets in Memory` bit is set and the IBB is trusted, the memory
controller will be unlocked, and it's the responsibility of the firmware to
[clear all DRAM] and wipe any secrets of the MLE.
The platform will be reset after all DRAM has been wiped and will boot
with the `Secrets in Memory` bit cleared.
### Configuring protected regions for SINIT ACM
The memory regions used by the SINIT ACM need to be prepared and protected
against DMA attacks.
The SINIT ACM as well as the SINIT handoff data are placed in memory.
### Locking TXT register
As last step the TXT registers are locked.
Whenever the SINIT ACM is invoked, it verifies that the hardware is in the
correct state. If it's not the SINIT ACM will reset the platform.
## For developers
### Configuring Intel TXT in Kconfig
Enable ``TEE_INTEL_TXT`` and set the following:
``TEE_INTEL_TXT_BIOSACM_FILE`` to the path of the BIOS ACM provided by Intel
``TEE_INTEL_TXT_SINITACM_FILE`` to the path of the SINIT ACM provided by Intel
### Print TXT status as early as possible
Add platform code to print the TXT status as early as possible, as the register
is cleared on cold reset.
## References
More information can be found here:
* [Intel TXT Software Development Guide]
* [Intel TXT enabling]
* [FIT]
* [Intel TXT Lab Handout]
[Intel TXT IBB]: txt_ibb.md
[FIT]: ../../soc/intel/fit.md
[Intel ACM]: acm.md
[ACM]: acm.md
[FIT table]: ../../soc/intel/fit.md
[clear all DRAM]: ../memory_clearing.md
[Intel TXT Lab Handout]: https://downloadmirror.intel.com/18931/eng/Intel%20TXT%20LAB%20Handout.pdf
[Intel TXT Software Development Guide]: https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
[Intel TXT enabling]: https://www.intel.com/content/dam/www/public/us/en/documents/guides/txt-enabling-guide.pdf

View File

@@ -1,39 +0,0 @@
# Intel TXT Initial Boot Block
The Initial Boot Block (IBB) consists out of one or more files in the CBFS.
## Constraints
The IBB must follow the following constrains:
* One IBB must contain the reset vector as well as the [FIT table].
* The IBB should be as small as possible.
* The IBBs must not overlap each other.
* The IBB might overlap with microcode.
* The IBB must not overlap the BIOS ACM.
* The IBB size must be a multiple of 16.
* Either one of the following:
* The IBB must be able to train the main system memory and clear all secrets.
* If the IBB cannot train the main system memory it must verify the code
that can train the main system memory and is able to clear all secrets.
## Identification
To add the IBBs to the [FIT], all CBFS files are added using the `cbfstool`
with the `--ibb` flag set.
The flags sets the CBFS file attribute tag to LE `' IBB'`.
The make system in turn adds all those files to the [FIT] as type 7.
## Intel TXT measurements
Each IBB is measured and extended into PCR0 by [Intel TXT], before the CPU
reset vector is executed.
The IBBs are measured in the order they are listed in the [FIT].
## FIT schematic
![][fit_ibb]
[fit_ibb]: fit_ibb.svg
[FIT]: ../../soc/intel/fit.md
[Intel TXT]: txt.md

View File

@@ -1,48 +0,0 @@
# Memory clearing
The main memory on computer platforms in high security environments contains
sensible data. On unexpected reboot the data might persist and could be
read by a malicious application in the bootflow or userspace.
In order to prevent leaking information from pre-reset, the boot firmware can
clear the main system memory on boot, wiping all information.
A common API indicates if the main memory has to be cleared. That could be
on user request or by a Trusted Execution Environment indicating that secrets
are in memory.
As every platform has different bring-up mechanisms and memory-layouts, every
The device must indicate support for memory clearing as part of the boot
process.
## Requirements
1. The platform must clear all platform memory (DRAM) if requested
2. Code that is placed in DRAM might be skipped (as workaround)
3. Stack that is placed in DRAM might be skipped (as workaround)
4. All DRAM is cleared with zeros
## Implementation
A platform that supports memory clearing selects Kconfig
``PLATFORM_HAS_DRAM_CLEAR`` and calls
```C
bool security_clear_dram_request(void);
```
to detect if memory should be cleared.
The memory is cleared in ramstage as part of `DEV_INIT` stage. It's possible to
clear it earlier on some platforms, but on x86 MTRRs needs to be programmed
first, which happens in `DEV_INIT`.
Without MTRRs (and caches enabled) clearing memory takes multiple seconds.
## Exceptions
As some platforms place code and stack in DRAM (FSP1.0), the regions can be
skipped.
## Architecture specific implementations
* [x86 PAE](../arch/x86/pae.md)

View File

@@ -1,324 +0,0 @@
# vboot - Verified Boot Support
Google's verified boot support consists of:
* A root of trust
* Special firmware layout
* Firmware verification
* Firmware measurements
* A firmware update mechanism
* Specific build flags
* Signing the coreboot image
Google's vboot verifies the firmware and places measurements within the TPM.
***
## Root of Trust
When using vboot, the root-of-trust is basically the read-only portion of the
SPI flash. The following items factor into the trust equation:
* The GCC compiler must reliably translate the code into machine code
without inserting any additional code (virus, backdoor, etc.)
* The CPU must reliably execute the reset sequence and instructions as
documented by the CPU manufacturer.
* The SPI flash must provide only the code programmed into it to the CPU
without providing any alternative reset vector or code sequence.
* The SPI flash must honor the write-protect input and protect the specified
portion of the SPI flash from all erase and write accesses.
The firmware is typically protected using the write-protect pin on the SPI
flash part and setting some of the write-protect bits in the status register
during manufacturing. The protected area is platform specific and for x86
platforms is typically 1/4th of the SPI flash part size.
Because this portion of the SPI flash is hardware write protected, it is not
possible to update this portion of the SPI flash in the field, without altering
the system to eliminate the ground connection to the SPI flash write-protect pin.
Without hardware modifications, this portion of the SPI flash maintains the
manufactured state during the system's lifetime.
***
## Firmware Layout
Several sections are added to the firmware layout to support vboot:
* Read-only section
* Google Binary Blob (GBB) area
* Read/write section A
* Read/write section B
The following sections describe the various portions of the flash layout.
### Read-Only Section
The read-only section contains a coreboot file system (CBFS) that contains all
of the boot firmware necessary to perform recovery for the system. This firmware
is typically protected using the write-protect pin on the SPI flash part and
setting some of the write-protect bits in the status register during
manufacturing.
The protected area is typically 1/4th of the SPI flash part size and must cover
the entire read-only section which consists of:
* Vital Product Data (VPD) area
* Firmware ID area
* Google Binary Blob (GBB) area
* coreboot file system containing read-only recovery firmware
### Google Binary Blob (GBB) Area
The GBB area is part of the read-only section. This area contains a 4096 or 8192
bit public root RSA key that is used to verify the *VBLOCK* area to obtain the
firmware signing key.
### Recovery Firmware
The recovery firmware is contained within a coreboot file system and consists of:
* reset vector
* bootblock
* verstage
* romstage
* postcar
* ramstage
* payload
* flash map file
* config file
* processor specific files:
* Microcode
* fspm.bin
* fsps.bin
The recovery firmware is written during manufacturing and typically contains
code to write the storage device (eMMC device or hard disk). The recovery image
is usually contained on a socketed device such as a USB flash drive or an
SD card. Depending upon the payload firmware doing the recovery, it may be
possible for the user to interact with the system to specify the recovery
image path. Part of the recovery is also to write the A and B areas of the SPI
flash device to boot the system.
### Read/Write Section
The read/write sections contain an area which contains the firmware signing
key and signature and an area containing a coreboot file system with a subset
of the firmware. The firmware files in *FW_MAIN_A* and *FW_MAIN_B* are:
* romstage
* postcar
* ramstage
* payload
* config file
* processor specific files:
* Microcode
* fspm.bin
* fsps.bin
The firmware subset enables most issues to be fixed in the field with firmware
updates. The firmware files handle memory and most of silicon initialization.
These files also produce the tables which get passed to the operating system.
***
## Firmware Updates
The read/write sections exist in one of three states:
* Invalid
* Ready to boot
* Successfully booted
Firmware updates are handled by the operating system by writing any read/write
section that is not in the "successfully booted" state. Upon the next reboot,
vboot determines the section to boot. If it finds one in the "ready to boot"
state then it attempts to boot using that section. If the boot fails then
vboot marks the section as invalid and attempts to fall back to a read/write
section in the "successfully booted" state. If vboot is not able to find a
section in the "successfully booted" state then vboot enters recovery mode.
Only the operating system is able to transition a section from the
"ready to boot" state to the "successfully booted" state.
The transition is typically done after the operating system has been running
for a while indicating that successful boot was possible and the operating
system is stable.
Note that as long as the SPI write protection is in place then the system
is always recoverable. If the flash update fails then the system will continue
to boot using the previous read/write area. The same is true if coreboot passes
control to the payload or the operating system and then the boot fails. In the
worst case, the SPI flash gets totally corrupted in which case vboot fails the
signature checks and enters recovery mode. There are no times where the SPI
flash is exposed and the reset vector or part of the recovery firmware gets
corrupted.
***
## Build Flags
The following *Kconfig* values need to be selected to enable vboot:
* COLLECT_TIMESTAMPS
* VBOOT
The starting stage needs to be specified by selecting either
VBOOT_STARTS_IN_BOOTBLOCK or VBOOT_STARTS_IN_ROMSTAGE.
If vboot starts in bootblock then vboot may be built as a separate stage by
selecting `VBOOT_SEPARATE_VERSTAGE`. Additionally, if static RAM is too small
to fit both verstage and romstage then selecting `VBOOT_RETURN_FROM_VERSTAGE`
enables bootblock to reuse the RAM occupied by verstage for romstage.
Non-volatile flash is needed for vboot operation. This flash area may be in
CMOS, the EC, or in a read/write area of the SPI flash device.
Select one of the following:
* `VBOOT_VBNV_CMOS`
* `VBOOT_VBNV_EC`
* `VBOOT_VBNV_FLASH`
More non-volatile storage features may be found in `security/vboot/Kconfig`.
A TPM is also required for vboot operation.
TPMs are available in `drivers/i2c/tpm` and `drivers/pc80/tpm`.
In addition to adding the coreboot files into the read-only region,
enabling vboot causes the build script to add the read/write files into
coreboot file systems in *FW_MAIN_A* and *FW_MAIN_B*.
***
## Signing the coreboot Image
The following command script is an example of how to sign the coreboot image
file. This script is used on the Intel Galileo board and creates the *GBB* area
and inserts it into the coreboot image. It also updates the *VBLOCK* areas with
the firmware signing key and the signature for the *FW_MAIN* firmware.
More details are available in `3rdparty/vboot/README`.
```bash
#!/bin/sh
#
# The necessary tools were built and installed using the following commands:
#
# pushd 3rdparty/vboot
# make
# sudo make install
# popd
#
# The keys were made using the following command
#
# 3rdparty/vboot/scripts/keygeneration/create_new_keys.sh \
# --4k --4k-root --output $PWD/keys
#
#
# The "magic" numbers below are derived from the GBB section in
# src/mainboard/intel/galileo/vboot.fmd.
#
# GBB Header Size: 0x80
# GBB Offset: 0x611000, 4KiB block number: 1553 (0x611)
# GBB Length: 0x7f000, 4KiB blocks: 127 (0x7f)
# COREBOOT Offset: 0x690000, 4KiB block number: 1680 (0x690)
# COREBOOT Length: 0x170000, 4KiB blocks: 368 (0x170)
#
# 0x7f000 (GBB Length) = 0x80 + 0x100 + 0x1000 + 0x7ce80 + 0x1000
#
# Create the GBB area blob
# Parameters: hwid_size,rootkey_size,bmpfv_size,recoverykey_size
#
gbb_utility -c 0x100,0x1000,0x7ce80,0x1000 gbb.blob
#
# Copy from the start of the flash to the GBB region into the signed flash
# image.
#
# 1553 * 4096 = 0x611 * 0x1000 = 0x611000, size of area before GBB
#
dd conv=fdatasync ibs=4096 obs=4096 count=1553 \
if=build/coreboot.rom of=build/coreboot.signed.rom
#
# Append the empty GBB area to the coreboot.rom image.
#
# 1553 * 4096 = 0x611 * 0x1000 = 0x611000, offset to GBB
#
dd conv=fdatasync obs=4096 obs=4096 seek=1553 if=gbb.blob \
of=build/coreboot.signed.rom
#
# Append the rest of the read-only region into the signed flash image.
#
# 1680 * 4096 = 0x690 * 0x1000 = 0x690000, offset to COREBOOT area
# 368 * 4096 = 0x170 * 0x1000 = 0x170000, length of COREBOOT area
#
dd conv=fdatasync ibs=4096 obs=4096 skip=1680 seek=1680 count=368 \
if=build/coreboot.rom of=build/coreboot.signed.rom
#
# Insert the HWID and public root and recovery RSA keys into the GBB area.
#
gbb_utility \
--set --hwid='Galileo' \
-r $PWD/keys/recovery_key.vbpubk \
-k $PWD/keys/root_key.vbpubk \
build/coreboot.signed.rom
#
# Sign the read/write firmware areas with the private signing key and update
# the VBLOCK_A and VBLOCK_B regions.
#
3rdparty/vboot/scripts/image_signing/sign_firmware.sh \
build/coreboot.signed.rom \
$PWD/keys \
build/coreboot.signed.rom
```
***
## Boot Flow
The reset vector exist in the read-only area and points to the bootblock
entry point. The only copy of the bootblock exists in the read-only area
of the SPI flash. Verstage may be part of the bootblock or a separate stage.
If separate then the bootblock loads verstage from the read-only area and
transfers control to it.
Upon first boot, verstage attempts to verify the read/write section A.
It gets the public root key from the GBB area and uses that to verify the
*VBLOCK* area in read-write section A. If the *VBLOCK* area is valid then it
extracts the firmware signing key (1024-8192 bits) and uses that to verify
the *FW_MAIN_A* area of read/write section A. If the verification is successful
then verstage instructs coreboot to use the coreboot file system in read/write
section A for the contents of the remaining boot firmware (romstage, postcar,
ramstage and the payload).
If verification fails for the read/write area and the other read/write area is
not valid vboot falls back to the read-only area to boot into system recovery.
***
## Chromebook Special Features
Google's Chromebooks have some special features:
* Developer mode
* Write-protect screw
### Developer Mode
Developer mode allows the user to use coreboot to boot another operating system.
This may be a another (beta) version of Chrome OS, or another flavor of
GNU/Linux. Use of developer mode does not void the system warranty. Upon entry
into developer mode, all locally saved data on the system is lost.
This prevents someone from entering developer mode to subvert the system
security to access files on the local system or cloud.
### Write Protect Screw
Chromebooks have a write-protect screw which provides the ground to the
write-protect pin of the SPI flash.
Google specifically did this to allow the manufacturing line and advanced
developers to re-write the entire SPI flash part. Once the screw is removed,
any firmware may be placed on the device.
However, accessing this screw requires opening the case and voids the
system warranty!

View File

@@ -1,8 +1,6 @@
# Measured Boot
coreboot measured boot is implemented as Google Verified Boot extension. This
means in order to use it, vboot needs to be available for your platform. The
goal of this implementation is to implement an easy to understand and
transparent measured boot mechanism.
means in order to use it, vboot needs to be available for your platform.
## IBB/CRTM
The "Initial Boot Block" or "Core Root of Trust for Measurement" is the first
@@ -23,85 +21,10 @@ measured boot extension because of platform constraints.
The "Static Root of Trust for Measurement" is the easiest way doing measurements
by measuring code before it is loaded.
### Measurements
SRTM mode measurements are done starting with the IBB as root of trust.
Only CBFS contents are measured at the moment.
#### CBFS files (stages, blobs)
* CBFS data is measured as raw data before decompression happens.
* CBFS header is excluded from measurements.
* Measurements are stored in PCR 2.
#### Runtime Data
* CBFS data which changes by external input dynamically. Never stays the same.
* It is identified by VBOOT_MEASURED_BOOT_RUNTIME_DATA kconfig option and
measured into a different PCR 3 in order to avoid PCR pre-calculation issues.
![][srtm]
[srtm]: srtm.png
### TCPA eventlog
coreboot makes use of its own TCPA log implementation. Normally the eventlog
specification can be found via the TCG homepage:
[UEFI Specification](https://trustedcomputinggroup.org/resource/tcg-efi-platform-specification/)
[BIOS Specification](https://www.trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientImplementation_1-21_1_00.pdf)
Both of them are not representing firmware measurements in a generalized way.
Therefore we have to implement our own solution.
We decided to provide an easy to understand TCPA log which can be read out
from the operating system and firmware itself.
#### Table Format
The first column describes the PCR index used for measurement.
The second column is the hash of the raw data. The third column contains
the hash algorithm used in the operation. The last column provides
information about what is measured. First the namespace from where the data
came from, CBFS or FMAP, then the name used to look up the data
(region or file name).
#### Example:
```bash
PCR-2 e8f2b57c9ec5ea06d1bbd3240a753974d4c3e7c8cd305c20a8ea26eed906dc89 SHA256 [FMAP: COREBOOT CBFS: bootblock]
PCR-2 309a5fcb231d3a39127de2521792f332f9a69e05675ec52535d2dcded756dc19 SHA256 [FMAP: COREBOOT CBFS: fallback/verstage]
PCR-2 0fbba07a833d4dcfc7024eaf313661a0ba8f80a05c6d29b8801c612e10e60dee SHA256 [FMAP: RO_VPD]
PCR-2 431681113ed44cbf6f68a12c6e5687e901052f1d728a4777b2ad36e559962047 SHA256 [FMAP: GBB]
PCR-2 f47a8ec3e9aff2318d896942282ad4fe37d6391c82914f54a5da8a37de1300c6 SHA256 [FMAP: SI_DESC]
PCR-3 237f6f567f8597dbdff0a00690d34d21616af0dbe434b9a2d432b136c012765f SHA256 [FMAP: SI_ME]
PCR-2 7d2c7ac4888bfd75cd5f56e8d61f69595121183afc81556c876732fd3782c62f SHA256 [FMAP: SI_GBE]
PCR-0 62571891215b4efc1ceab744ce59dd0b66ea6f73 SHA1 [GBB flags]
PCR-1 a66c8c2cda246d332d0c2025b6266e1e23c89410051002f46bfad1c9265f43d0 SHA256 [GBB HWID]
PCR-2 ceca357524caf8fc73f5fa130f05a75293031962af884e18990d281eb259f5ff SHA256 [FMAP: FW_MAIN_B CBFS: fallback/romstage]
PCR-2 548a097604e0a975de76f98b04c7f0b0ddec03883dd69179e47a784704a1c571 SHA256 [FMAP: FW_MAIN_B CBFS: fspm.bin]
PCR-2 1e86b27008818244c221df2436b0113bd20a86ec6ec9d8259defe87f45d2f604 SHA256 [FMAP: FW_MAIN_B CBFS: spd2.bin]
PCR-2 05d78005fcfc9edd4ca5625f11b1f49991d17bdb7cee33b72e722bc785db55ae SHA256 [FMAP: FW_MAIN_B CBFS: fallback/postcar]
PCR-2 c13e95829af12a584046f1a6f3e1f6e4af691209324cfeeec573633399384141 SHA256 [FMAP: FW_MAIN_B CBFS: fallback/ramstage]
PCR-2 a6ec2761b597abd252dba2a7237140ef4a5a8e0d47cad8afb65fa16314413401 SHA256 [FMAP: FW_MAIN_B CBFS: cpu_microcode_blob.bin]
PCR-2 c81ffa40df0b6cd6cfde4f476d452a1f6f2217bc96a3b98a4fa4a037ee7039cf SHA256 [FMAP: FW_MAIN_B CBFS: fsps.bin]
PCR-2 4e95f57bbf3c6627eb1c72be9c48df3aaa8e6da4f5f63d85e554cf6803505609 SHA256 [FMAP: FW_MAIN_B CBFS: vbt.bin]
PCR-3 b7663f611ecf8637a59d72f623ae92a456c30377d4175e96021c85362f0323c8 SHA256 [FMAP: RW_NVRAM]
PCR-2 178561f046e2adbc621b12b47d65be82756128e2a1fe5116b53ef3637da700e8 SHA256 [FMAP: FW_MAIN_B CBFS: fallback/dsdt.aml]
PCR-2 091706f5fce3eb123dd9b96c15a9dcc459a694f5e5a86e7bf6064b819a8575c7 SHA256 [FMAP: FW_MAIN_B CBFS: fallback/payload]
```
#### Dump TCPA eventlog in the OS:
```bash
cbmem -L
```
#### Get CBFS file and print the hash
```bash
cbfstool coreboot.rom extract -r COREBOOT -n fallback/romstage -U -f /dev/stdout | sha256sum
```
#### Get FMAP partition and print the hash
```bash
cbfstool coreboot.rom read -n SI_ME -f /dev/stdout | sha256sum
```
## DRTM Mode
The "Dynamic Root of Trust for Measurement" is realised by platform features
like Intel TXT or Boot Guard. The features provide a way of loading a signed
@@ -119,21 +42,17 @@ PCR-7 are left empty.
### PCR-0
_Hash:_ SHA1
_Description:_ Google VBoot GBB flags.
### PCR-1
_Hash:_ SHA1/SHA256
_Description:_ Google VBoot GBB HWID.
### PCR-2
_Hash:_ SHA1/SHA256
_Description:_ Core Root of Trust for Measurement which includes all stages,
data and blobs.
### PCR-3
_Hash:_ SHA1/SHA256
_Description:_ Runtime data like hwinfo.hex or MRC cache.

View File

@@ -1,224 +0,0 @@
# AMD Family 17h in coreboot
## Abstract
Beginning with Family 17h products (a.k.a. “Zen” cores), AMD
changed their paradigm for initializing the system and this requires
major modifications to the execution flow of coreboot. This file
discusses the new boot flow, and challenges, and the tradeoffs of the
initial port into coreboot.
## Introduction
Family 17h products are x86-based designs. This documentation assumes
familiarity with x86, its reset state and its early initialization
requirements.
To the extent necessary, the role of the Platform Security Processor
(a.k.a. PSP) in system initialization is addressed here. AMD has
historically required an NDA for access to the PSP
specification<sup>1</sup>. coreboot relies on util/amdfwtool to build
the structures and add various other firmware to the final image. The
Family 17h PSP design guide adds a new BIOS Directory Table, similar to
the PSP Directory Table.
Support in coreboot for modern AMD products is based on AMDs
reference code: AMD Generic Encapsulated Software Architecture
(AGESA<sup>TM</sup>). AGESA contains the technology for enabling DRAM,
configuring proprietary core logic, assistance with generating ACPI
tables, and other features.
AGESA for products earlier than Family 17h is known as v5 or
Arch2008<sup>2</sup>. Also note that coreboot currently contains both
open source AGESA and closed source implementations (binaryPI) compiled
from AGESA.
The first AMD Family 17h device ported to coreboot is codenamed
“Picasso”<sup>3</sup>, and will be added to soc/amd/picasso.
## Additional Definitions
* PSP, Platform Security Processor: Onboard ARM processor that runs
alongside the main x86 processor; may be viewed as analogous to the
Intel<sup>R</sup> Management Engine
* FCH, Fusion Control Hub, the logical southbridge within the SOC
* ABL - AGESA Bootloader - Processor initialization code that runs on
the PSP
* PSP Directory Table - A structured list of pointers to PSP firmware
and other controller binaries
* BIOS Directory Table - A structured list of pointers to BIOS
related firmware images
* Embedded Firmware Structure - Signature and pointers used by the
PSP to locate the PSP Directory Table and BIOS Directory Table; these
items are generated during coreboot build and are located in the SPI ROM
* Verstage - The code to verify the firmware contained in the
writable section of the SPI ROM
* APCB - AMD PSP Customization Block - A binary containing PSP and
system configuration preferences (analogous to v5 BUILDOPT_ options),
and generated by APCBTool to be added to coreboot/utils later
* APOB - AGESA PSP Output Buffer - A buffer in main memory for
storing AGESA BootLoader output. There are no plans for this to be
parsed by coreboot
## Problem Statements
AMD has ported early AGESA features to the PSP, which now discovers,
enables and trains DRAM. Unlike any other x86 device in coreboot, a
Picasso system has DRAM online prior to the first instruction fetch.
Cache-as-RAM (CAR) is no longer a supportable feature in AMD hardware.
Early code expecting CAR behavior <span
style="text-decoration:underline;">must</span> account for writes
escaping the L2 cache and going to DRAM.
Without any practical need for CAR, or DRAM initialization, coreboot
should arguably skip bootblock and romstage, and possibly use ramstage
as the BIOS image. This approach presents a number of challenges:
* At the entry of ramstage, x86 processors are in flat protected
mode. Picassos initial state is nearly identical to any other x86
at reset, except its CS shadow registers base and limit put its
execution within DRAM, not at 0xfffffff0. Picasso requires initial
programming and entry into protected mode prior to ramstage.
* coreboot expects cbmem initialization during romstage.
AGESA supporting Picasso is now at v9. Unlike Arch2008, which defines
granular entry points for easy inclusion to a legacy BIOS, v9 is
rewritten for compilation into a UEFI. The source follows UEFI
standards, i.e. assumes the presence of UEFI phases, implements
dependency expressions, much functionality is rewritten as libraries,
etc. It would, in no way, fit into the v5 model used in coreboot.
* For the foreseeable future, AGESA source will distributed only
under NDA.
## Basic Pre-x86 Boot Flow
The following steps occur prior to x86 processor operation.
* System power on
* PSP executes immutable on-chip boot ROM
* PSP locates the Embedded Firmware Table and PSP Directory Table in
the SPI ROM
* PSP verifies and executes the PSP off-chip bootloader
* ChromeOS systems:
* Off-chip bootloader attempts to locate verstage via the RO BIOS
Directory Table
* If verstage is not found, booting continues with ABLs below
* Verstage initializes, setting up GPIOs, UART if needed,
communication path to the EC, and the SPI controller for direct access
to the flash device.
* Verstage verifies the RW sections (as is typically performed by
the main processor)
* Verstage locates the Embedded Firmware Directory within the
verified FMAP section and passes a pointer to the PSP bootloader. If
the verification fails, it passes a pointer to the RO header to the
bootloader.
* PSP parses the PSP Directory Table to find the ABLs and executes
them
* An ABL parses the APCB for system configuration preferences
* An ABL initializes system main memory, locates the compressed BIOS
image in the SPI ROM, and decompresses it into DRAM
* An ABL writes the APOB to DRAM for consumption by the x86-based
AGESA
* PSP releases the x86 processor from reset. The x86 core fetches
and executes instructions from the reset vector
## Picasso Reset Vector and First Instructions
As mentioned above, prior to releasing the x86 main core from reset,
the PSP decompresses a BIOS image into DRAM. The PSP uses a specific
BIOS Directory Table entry type to determine the source address (in
flash), the destination address (in DRAM), and the destination size.
The decompressed image is at the top of the destination region. The
PSP then
Calculates the x86 reset vector as
reset_vector = dest_addr + dest_size - 0x10
Sets x86 CS descriptor shadow register to
base = dest_addr + dest_size - 0x10000
limit = 0xffff
Like all x86 devices, the main core is allowed to begin executing
instructions with
CS:IP = 0xf000:0xfff0
For example, assume the BIOS Directory Table indicates
destination = 0x9b00000
size = 0x300000
… then the BIOS image is placed at the topmost position the region
0x9b00000-0x9dfffff and
reset_vector = 0x9dffff0
CS_shdw_base = 0x9df0000
CS:IP = 0xf000:0xfff0
Although the x86 behaves as though it began executing at 0xfffffff0
i.e. 0xf000:0xfff0, the initial GDT load must use the physical address
of the table and not the typical CS-centric address. And, the first
jump to protected mode must jump to the physical address in DRAM. Any
code that is position-dependent must be linked to run at the final
destination.
## Initial coreboot Implementation
Supporting Picasso doesnt fit well with many of the coreboot
assumptions. Initial porting shall attempt to fit within existing
coreboot paradigms and make minimal changes to common code.
### CAR and bootblock
The coreboot bootblock contains features Picasso doesnt require or
cant use, and is assumed to execute in an unusable location.
Picassos requirement for bootblock in coreboot will be eliminated.
### Hybrid romstage
Picassos x86 reset state doesnt meet the coreboot expectations
for jumping directly to ramstage. The primary feature of romstage is
also not needed, however there are other important features that are
typically in romstage that Picasso does need.
The romstage architecture is designed around the presence of CAR.
Several features implement ROMSTAGE_CBMEM_INIT_HOOK, expecting to move
data from CAR to cbmem. The hybrid romstage consumes DRAM for the
purpose of implementing the expected CAR storage. This region as well
as the DRAM where romstage is decompressed must be reserved and
unavailable to the OS.
The initial Picasso port implements a hybrid romstage that contains the
first instruction fetched at the reset vector. It minimally configures
flat protected mode, initializes cbmem, then loads the next stage.
Future work will consider breaking the dependencies mentioned above
and/or potentially loading ramstage directly from the PSP.
## AGESA v9 on Picasso
Due to the current inability to publish AGESA source, a pre-built
binary solution remains a requirement. The rewrite from v5 to v9 for
direct inclusion into UEFI source makes modifying it for conforming to
the existing v5 interface impractical.
Given the UEFI nature of modern AGESA, and the existing open source
work from Intel, Picasso shall support AGESA via an FSP-like prebuilt
image. The Intel Firmware Support Package<sup>4</sup> combines
reference code with EDK II source to create a modular image with
discoverable entry points. coreboot source already contains knowledge
of FSP, how to parse it, integrate it, and how to communicate with it.
## Footnotes
1. “AMD Platform Security Processor BIOS Architecture Design Guide
for AMD Family 17h Processors” (PID #55758) and “AMD Platform
Security Processor BIOS Architecture Design Guide” (PID #54267) for
earlier products
2. [https://www.amd.com/system/files/TechDocs/44065_Arch2008.pdf](https://www.amd.com/system/files/TechDocs/44065_Arch2008.pdf)
3. [https://en.wikichip.org/wiki/amd/cores/picasso](https://en.wikichip.org/wiki/amd/cores/picasso)
4. [https://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview.html](https://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview.html)

View File

@@ -1,8 +0,0 @@
# AMD SOC-specific documentation
This section contains documentation about coreboot on specific AMD SOCs.
## Technology
- [Family 17h](family17h.md)

View File

@@ -4,6 +4,5 @@ This section contains documentation about coreboot on specific SOCs.
## Vendor
- [AMD](amd/index.md)
- [Cavium](cavium/index.md)
- [Intel](intel/index.md)

View File

@@ -1,122 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/PR-SVG-20010719/DTD/svg10.dtd">
<svg width="38cm" height="18cm" viewBox="118 98 744 344" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g>
<rect style="fill: #ffffff" x="620" y="100" width="180" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="620" y="100" width="180" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="710" y="134.425">
<tspan x="710" y="134.425">DEVICE_EXTENSION</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="300" y="100" width="320" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="300" y="100" width="320" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="460" y="134.425">
<tspan x="460" y="134.425">BIOS</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="240" y="100" width="60" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="240" y="100" width="60" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="270" y="134.425">
<tspan x="270" y="134.425">IFD</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="200" y="240" width="80" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="200" y="240" width="80" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="240" y="274.425">
<tspan x="240" y="274.425">IFWI</tspan>
</text>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 200 240 C 200,160 460,220 460,169.736"/>
<polygon style="fill: #000000" points="460,162.236 465,172.236 460,169.736 455,172.236 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="460,162.236 465,172.236 460,169.736 455,172.236 "/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 700 240 C 700,160 460,220 460,169.736"/>
<polygon style="fill: #000000" points="460,162.236 465,172.236 460,169.736 455,172.236 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="460,162.236 465,172.236 460,169.736 455,172.236 "/>
</g>
<g>
<rect style="fill: #ffffff" x="800" y="100" width="60" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="800" y="100" width="60" height="60"/>
</g>
<g>
<rect style="fill: #ffffff" x="320" y="380" width="60" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="320" y="380" width="60" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="350" y="414.425">
<tspan x="350" y="414.425">FMAP</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="440" y="380" width="100" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="440" y="380" width="100" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="490" y="414.425">
<tspan x="490" y="414.425">CONSOLE</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="540" y="380" width="160" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="540" y="380" width="160" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="620" y="414.425">
<tspan x="620" y="414.425">COREBOOT(CBFS)</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="700" y="380" width="140" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="700" y="380" width="140" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="770" y="414.425">
<tspan x="770" y="414.425">BIOS_UNUSABLE</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="380" y="380" width="60" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="380" y="380" width="60" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="410" y="414.425">
<tspan x="410" y="414.425">MRC</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="280" y="240" width="420" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="280" y="240" width="420" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="490" y="274.425">
<tspan x="490" y="274.425">OBB</tspan>
</text>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 320 380 C 320,300 490,360 490,311"/>
<polygon style="fill: #000000" points="495,311 490,301 485,311 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="495,311 490,301 485,311 "/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 840 380 C 840,300 490,360 490,311"/>
<polygon style="fill: #000000" points="495,311 490,301 485,311 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="495,311 490,301 485,311 "/>
</g>
<g>
<rect style="fill: #ffffff" x="120" y="380" width="60" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="120" y="380" width="60" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="150" y="414.425">
<tspan x="150" y="414.425">TXE</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="180" y="380" width="120" height="60"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 3; stroke: #000000" x="180" y="380" width="120" height="60"/>
</g>
<text font-size="12.8" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:700" x="240" y="414.425">
<tspan x="240" y="414.425">BOOTBLOCK</tspan>
</text>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 300 380 C 300,320 240,360 240,311"/>
<polygon style="fill: #000000" points="245,311 240,301 235,311 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="245,311 240,301 235,311 "/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 120 380 C 120,320 240,360 240,311"/>
<polygon style="fill: #000000" points="245,311 240,301 235,311 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" points="245,311 240,301 235,311 "/>
</g>
</svg>

Before

Width:  |  Height:  |  Size: 7.3 KiB

View File

@@ -1,17 +0,0 @@
# Apollolake
## SPI flash layout
![][apl_flash_layout]
With Apollolake Intel invented another flash layout for x86 firmware called IFWI (Intel FirmWare Image).
Usually on x86 platforms the bootblock is stored at the end of the bios region
and the Intel ME / TXE has its own IFD region. On Apollolake both have been
moved into the IFWI region, which is a subregion of "BIOS", since it allows to
store multiple firmware components.
The IFWI region can be manipulated by `ifwitool`.
[apl_flash_layout]: flash_layout.svg

Binary file not shown.

View File

@@ -1,60 +0,0 @@
# Intel Firmware Interface Table
The FIT allows to run code before the actual IA32 reset vector is executed
by the CPU. The FIT resides in the BIOS region (usually near the reset vector)
and is pointed to by the FIT pointer residing at `0xFFFFFFC0`.
## Table layout
The table consists of blocks each 16 bytes in size.
The first is called *FIT header* the other are called *FIT entry*.
![FIT in x86 memory map][fit]
[fit]: fit.svg
## Fit types
Each entry has a *type* that give the other bits in the entry a different
meaning. The following types are known:
```eval_rst
+-----------+------------------------------------------------------------------+
| no. | Description |
+===========+==================================================================+
| 0x0 | HEADER. |
+-----------+------------------------------------------------------------------+
| 0x1 | MICROCODE. |
+-----------+------------------------------------------------------------------+
| 0x2 | STARTUP_ACM. |
+-----------+------------------------------------------------------------------+
| 0x7 | BIOS_STARTUP_MODULE. |
+-----------+------------------------------------------------------------------+
| 0x8 | TPM_POLICY. |
+-----------+------------------------------------------------------------------+
| 0x9 | BIOS_POLICY. |
+-----------+------------------------------------------------------------------+
| 0xa | TXT_POLICY. |
+-----------+------------------------------------------------------------------+
| 0xb | KEY_MANIFEST. |
+-----------+------------------------------------------------------------------+
| 0xc | BOOT_POLICY_MANIFEST. |
+-----------+------------------------------------------------------------------+
| 0x10 | CSE_SECURE_BOOT. |
+-----------+------------------------------------------------------------------+
| 0x2d | TXTSX_POLICY. |
+-----------+------------------------------------------------------------------+
| 0x2f | JMP_DEBUG_POLICY. |
+-----------+------------------------------------------------------------------+
| 0x7f | SKIP. |
+-----------+------------------------------------------------------------------+
```
## Usage in coreboot
The most common usage of FIT is to use *Type1* to update microcode before
execution of the IA32 reset vector happens.
## References
* [Intel TXT LAB handout](https://downloadmirror.intel.com/18931/eng/Intel%20TXT%20LAB%20Handout.pdf)
* [FIT bios specification](https://www.intel.com/content/dam/www/public/us/en/documents/guides/fit-bios-specification.pdf)

View File

@@ -1,132 +0,0 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN" "http://www.w3.org/TR/2001/PR-SVG-20010719/DTD/svg10.dtd">
<svg width="15cm" height="11cm" viewBox="520 311 299 204" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink">
<g>
<rect style="fill: #ffffff" x="521.518" y="312.25" width="296.25" height="201.75"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ffffff" x="521.518" y="312.25" width="296.25" height="201.75"/>
</g>
<g>
<rect style="fill: #ffffff" x="689.333" y="321.667" width="72.375" height="173.833"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x="689.333" y="321.667" width="72.375" height="173.833"/>
<text font-size="12.7998" style="fill: #000000;text-anchor:middle;font-family:sans-serif;font-style:normal;font-weight:normal" x="725.521" y="412.483">
<tspan x="725.521" y="412.483"></tspan>
</text>
</g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 603.917 320.833 C 593.071,320.833 601.631,407 590.785,407"/>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 601.667 493.833 C 590.821,493.833 600.131,407.75 589.285,407.75"/>
<text font-size="12.7998" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="520.833" y="412">
<tspan x="520.833" y="412">bootblock</tspan>
</text>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="686.167" y1="352" x2="781.167" y2="352"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="685.8" y1="334.433" x2="780.8" y2="334.433"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="682.8" y1="410.933" x2="777.8" y2="410.933"/>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" d="M 652.833,345.667 A 30.938,30.938 0 0 0 647.806,407.306"/>
<polygon style="fill: #0000ff" points="650.775,407.521 646.813,409.595 647.775,407.577 646.738,405.596 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" points="650.775,407.521 646.813,409.595 647.775,407.577 646.738,405.596 "/>
</g>
<g>
<rect style="fill: #ffffff" x="694.75" y="367" width="60.2083" height="10.5"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x="694.75" y="367" width="60.2083" height="10.5"/>
</g>
<text font-size="5.64436" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="653" y="323.333">
<tspan x="653" y="323.333">4 GiB </tspan>
</text>
<text font-size="5.64436" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="651.967" y="336.017">
<tspan x="651.967" y="336.017">4 GiB - 10h </tspan>
</text>
<text font-size="5.64436" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="653.633" y="410.183">
<tspan x="653.633" y="410.183">4 GiB - x </tspan>
</text>
<text font-size="5.64436" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="650.967" y="353.183">
<tspan x="650.967" y="353.183">4 GiB - 40 h </tspan>
</text>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x1="652.458" y1="346" x2="685" y2="345.833"/>
<text font-size="7.90222" style="fill: #0000ff;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="707.958" y="348.25">
<tspan x="707.958" y="348.25">FIT Ptr</tspan>
</text>
<text font-size="7.90222" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="692.933" y="330.55">
<tspan x="692.933" y="330.55">IA32 reset vec</tspan>
</text>
<g>
<rect style="fill: #ffffff" x="693.183" y="449.25" width="60.2083" height="41.5333"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" x="693.183" y="449.25" width="60.2083" height="41.5333"/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" d="M 655.208,326.75 A 61.4124,61.4124 0 0 0 645.824,444.152"/>
<polygon style="fill: #ff0000" points="648.64,445.169 644.228,445.895 645.775,444.281 645.412,442.075 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" points="648.64,445.169 644.228,445.895 645.775,444.281 645.412,442.075 "/>
</g>
<text font-size="5.64436" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="653.683" y="449.95">
<tspan x="653.683" y="449.95">4 GiB - z </tspan>
</text>
<g>
<rect style="fill: #ffffff" x="693.683" y="432" width="60.2083" height="12"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" x="693.683" y="432" width="60.2083" height="12"/>
</g>
<g>
<rect style="fill: #ffffff" x="693.933" y="416.2" width="60.2083" height="12"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #00ff00" x="693.933" y="416.2" width="60.2083" height="12"/>
</g>
<text font-size="5.64436" style="fill: #000000;text-anchor:start;font-family:sans-serif;font-style:normal;font-weight:normal" x="653.183" y="432.2">
<tspan x="653.183" y="432.2">4 GiB - y </tspan>
</text>
<text font-size="6.77333" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="717.208" y="440">
<tspan x="717.208" y="440">ACM</tspan>
</text>
<text font-size="6.77333" style="fill: #ff0000;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="706.433" y="467">
<tspan x="706.433" y="467">BOOTBLOCK</tspan>
<tspan x="706.433" y="475.467">CODE</tspan>
</text>
<text font-size="6.77333" style="fill: #00ff00;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="714.183" y="424.25">
<tspan x="714.183" y="424.25">uCode</tspan>
</text>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #ff0000" x1="655.186" y1="327.119" x2="687.728" y2="326.953"/>
<g>
<rect style="fill: #ffffff" x="694.683" y="377.45" width="60.2083" height="10.5"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x="694.683" y="377.45" width="60.2083" height="10.5"/>
</g>
<g>
<rect style="fill: #ffffff" x="694.75" y="387.95" width="60.2083" height="10.5"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x="694.75" y="387.95" width="60.2083" height="10.5"/>
</g>
<g>
<rect style="fill: #ffffff" x="694.683" y="398.4" width="60.2083" height="10.5"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #0000ff" x="694.683" y="398.4" width="60.2083" height="10.5"/>
</g>
<text font-size="5.64444" style="fill: #0000ff;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="706.433" y="406.25">
<tspan x="706.433" y="406.25">FIT header</tspan>
</text>
<text font-size="5.64444" style="fill: #0000ff;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="703.933" y="394.95">
<tspan x="703.933" y="394.95">Type1 entry</tspan>
</text>
<text font-size="5.64444" style="fill: #0000ff;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="703.933" y="384.7">
<tspan x="703.933" y="384.7">Type2 entry</tspan>
</text>
<text font-size="5.64444" style="fill: #0000ff;text-anchor:start;font-family:monospace;font-style:normal;font-weight:normal" x="703.683" y="373.95">
<tspan x="703.683" y="373.95">Type7 entry</tspan>
</text>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #90c9ff" d="M 769.4,417.215 A 13.2412,13.2412 0 0 0 763.208,391.5"/>
<polygon style="fill: #90c9ff" points="766.576,417.768 770.608,415.832 769.576,417.816 770.544,419.831 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #90c9ff" points="766.576,417.768 770.608,415.832 769.576,417.816 770.544,419.831 "/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #90c9ff" d="M 770.292,433.842 A 27.5949,27.5949 0 0 0 763.458,381.5"/>
<polygon style="fill: #90c9ff" points="767.533,434.943 770.831,431.923 770.418,434.12 771.929,435.769 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #90c9ff" points="767.533,434.943 770.831,431.923 770.418,434.12 771.929,435.769 "/>
</g>
<g>
<path style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #90c9ff" d="M 772.011,446.947 A 41.791,41.791 0 0 0 763.458,372.5"/>
<polygon style="fill: #90c9ff" points="769.453,448.489 772.095,444.881 772.12,447.117 773.924,448.438 "/>
<polygon style="fill: none; fill-opacity:0; stroke-width: 1; stroke: #90c9ff" points="769.453,448.489 772.095,444.881 772.12,447.117 773.924,448.438 "/>
</g>
<g>
<rect style="fill: #ffffff" x="691.268" y="493.5" width="68.5" height="4.25"/>
<rect style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #ffffff" x="691.268" y="493.5" width="68.5" height="4.25"/>
</g>
<path style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" d="M 689.768 510.25 C 714.502,510.25 736.534,494.5 761.268,494.5"/>
<line style="fill: none; fill-opacity:0; stroke-width: 2; stroke: #000000" x1="689.333" y1="495.5" x2="689.018" y2="509.25"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="683.343" y1="430.9" x2="778.343" y2="430.9"/>
<line style="fill: none; fill-opacity:0; stroke-width: 1; stroke-dasharray: 4; stroke: #000000" x1="682.843" y1="447.4" x2="777.843" y2="447.4"/>
</svg>

Before

Width:  |  Height:  |  Size: 9.7 KiB

View File

@@ -1,60 +0,0 @@
# Intel Firmware Support Package (FSP)-specific documentation
This section contains documentation about Intel-FSP in public domain.
## Bugs
As Intel doesn't even list known bugs, they are collected here until
those are fixed. If possible a workaround is described here as well.
### BroadwellDEFsp
* IA32_FEATURE_CONTROL MSR is locked in FSP-M
* Release MR2
* Writing the MSR is required in ramstage for Intel TXT
* Workaround: none
* Issue on public tracker: [Issue 10]
* FSP-S asserts if the thermal PCI device 00:1f.6 is disabled
* Release MR2
* FSP expects the PCI device to be enabled
* FSP expects BARs to be properly assigned
* Workaround: Don't disable this PCI device
* Issue on public tracker: [Issue 13]
### KabylakeFsp
* MfgId and ModulePartNum in the DIMM_INFO struct are empty
* Release 3.7.1
* Those values are typically consumed by SMBIOS type 17
* Workaround: none
* Issue on public tracker: [Issue 22]
### BraswellFsp
* Internal UART can't be disabled using PcdEnableHsuart*
* Release MR2
* Workaround: Disable internal UART manually after calling FSP
* Issue on public tracker: [Issue 10]
## Open Source Intel FSP specification
* [About Intel FSP](https://firmware.intel.com/learn/fsp/about-intel-fsp)
* [FSP Specification 1.0](https://www.intel.in/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec.pdf)
* [FSP Specification 1.1](https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec-v1-1.pdf)
* [FSP Specification 2.0](https://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec-v2.pdf)
## Additional Features in FSP 2.1 specification
- [PPI](ppi/ppi.md)
## Official bugtracker
- [IntelFSP/FSP](https://github.com/IntelFsp/FSP/issues)
[Issue 10]: https://github.com/IntelFsp/FSP/issues/10
[Issue 13]: https://github.com/IntelFsp/FSP/issues/13
[Issue 15]: https://github.com/IntelFsp/FSP/issues/15
[Issue 22]: https://github.com/IntelFsp/FSP/issues/22

View File

@@ -1,14 +0,0 @@
# PEIM to PEIM Interface (PPI)
This section is intended to document the purpose of creating PPI service
inside coreboot space to perform some specific operation related to CPU,
chipset using Intel FSP. This feature is added into FSP specification 2.1
where FSP should be able to locate PPI, published by boot firmware and
able to execute the same in FSP's context.
* [What is PPI](https://www.intel.com/content/dam/www/public/us/en/documents/reference-guides/efi-pei-cis-v09.pdf)
## List of PPI service
### Publish MP Service PPI from boot firmware (coreboot) to initialize CPU
- [MP Service PPI](mp_service_ppi.md)

Some files were not shown because too many files have changed in this diff Show More