Move STRINGIFY() from coreboot string.h to commonlib/bsd/helpers.h Remove redundant defines from libpayload.h and libpayloads' standard headers. Signed-off-by: Jakub Czapiga <jacz@semihalf.com> Change-Id: I3263b2aa7657759207bf6ffda750d839e741f99c Reviewed-on: https://review.coreboot.org/c/coreboot/+/62921 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Tim Wawrzynczak <twawrzynczak@chromium.org> Reviewed-by: Julius Werner <jwerner@chromium.org>
		
			
				
	
	
		
			1298 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1298 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *
 | |
|  * Copyright (C) 2015 Google, Inc.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. The name of the author may not be used to endorse or promote products
 | |
|  *    derived from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| #include <libpayload.h>
 | |
| #include <cbfs.h>
 | |
| #include <fpmath.h>
 | |
| #include <sysinfo.h>
 | |
| #include "bitmap.h"
 | |
| 
 | |
| /*
 | |
|  * 'canvas' is the drawing area located in the center of the screen. It's a
 | |
|  * square area, stretching vertically to the edges of the screen, leaving
 | |
|  * non-drawing areas on the left and right. The screen is assumed to be
 | |
|  * landscape.
 | |
|  */
 | |
| static struct rect canvas;
 | |
| static struct rect screen;
 | |
| 
 | |
| static uint8_t *gfx_buffer;
 | |
| 
 | |
| /*
 | |
|  * Framebuffer is assumed to assign a higher coordinate (larger x, y) to
 | |
|  * a higher address
 | |
|  */
 | |
| static const struct cb_framebuffer *fbinfo;
 | |
| 
 | |
| /* Shorthand for up-to-date virtual framebuffer address */
 | |
| #define REAL_FB ((unsigned char *)phys_to_virt(fbinfo->physical_address))
 | |
| #define FB	(gfx_buffer ? gfx_buffer : REAL_FB)
 | |
| 
 | |
| #define LOG(x...)	printf("CBGFX: " x)
 | |
| #define PIVOT_H_MASK	(PIVOT_H_LEFT|PIVOT_H_CENTER|PIVOT_H_RIGHT)
 | |
| #define PIVOT_V_MASK	(PIVOT_V_TOP|PIVOT_V_CENTER|PIVOT_V_BOTTOM)
 | |
| #define ROUNDUP(x, y)	((((x) + ((y) - 1)) / (y)) * (y))
 | |
| 
 | |
| static char initialized = 0;
 | |
| 
 | |
| static const struct vector vzero = {
 | |
| 	.x = 0,
 | |
| 	.y = 0,
 | |
| };
 | |
| 
 | |
| struct color_transformation {
 | |
| 	uint8_t base;
 | |
| 	int16_t scale;
 | |
| };
 | |
| 
 | |
| struct color_mapping {
 | |
| 	struct color_transformation red;
 | |
| 	struct color_transformation green;
 | |
| 	struct color_transformation blue;
 | |
| 	int enabled;
 | |
| };
 | |
| 
 | |
| static struct color_mapping color_map;
 | |
| 
 | |
| static inline void set_color_trans(struct color_transformation *trans,
 | |
| 				   uint8_t bg_color, uint8_t fg_color)
 | |
| {
 | |
| 	trans->base = bg_color;
 | |
| 	trans->scale = fg_color - bg_color;
 | |
| }
 | |
| 
 | |
| int set_color_map(const struct rgb_color *background,
 | |
| 		  const struct rgb_color *foreground)
 | |
| {
 | |
| 	if (background == NULL || foreground == NULL)
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 
 | |
| 	set_color_trans(&color_map.red, background->red, foreground->red);
 | |
| 	set_color_trans(&color_map.green, background->green,
 | |
| 			foreground->green);
 | |
| 	set_color_trans(&color_map.blue, background->blue, foreground->blue);
 | |
| 	color_map.enabled = 1;
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| void clear_color_map(void)
 | |
| {
 | |
| 	color_map.enabled = 0;
 | |
| }
 | |
| 
 | |
| struct blend_value {
 | |
| 	uint8_t alpha;
 | |
| 	struct rgb_color rgb;
 | |
| };
 | |
| 
 | |
| static struct blend_value blend;
 | |
| 
 | |
| int set_blend(const struct rgb_color *rgb, uint8_t alpha)
 | |
| {
 | |
| 	if (rgb == NULL)
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 
 | |
| 	blend.alpha = alpha;
 | |
| 	blend.rgb = *rgb;
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| void clear_blend(void)
 | |
| {
 | |
| 	blend.alpha = 0;
 | |
| 	blend.rgb.red = 0;
 | |
| 	blend.rgb.green = 0;
 | |
| 	blend.rgb.blue = 0;
 | |
| }
 | |
| 
 | |
| static void add_vectors(struct vector *out,
 | |
| 			const struct vector *v1, const struct vector *v2)
 | |
| {
 | |
| 	out->x = v1->x + v2->x;
 | |
| 	out->y = v1->y + v2->y;
 | |
| }
 | |
| 
 | |
| static int fraction_equal(const struct fraction *f1, const struct fraction *f2)
 | |
| {
 | |
| 	return (int64_t)f1->n * f2->d == (int64_t)f2->n * f1->d;
 | |
| }
 | |
| 
 | |
| static int is_valid_fraction(const struct fraction *f)
 | |
| {
 | |
| 	return f->d != 0;
 | |
| }
 | |
| 
 | |
| static int is_valid_scale(const struct scale *s)
 | |
| {
 | |
| 	return is_valid_fraction(&s->x) && is_valid_fraction(&s->y);
 | |
| }
 | |
| 
 | |
| static void reduce_fraction(struct fraction *out, int64_t n, int64_t d)
 | |
| {
 | |
| 	/* Simplest way to reduce the fraction until fitting in int32_t */
 | |
| 	int shift = log2(MAX(ABS(n), ABS(d)) >> 31) + 1;
 | |
| 	out->n = n >> shift;
 | |
| 	out->d = d >> shift;
 | |
| }
 | |
| 
 | |
| /* out = f1 + f2 */
 | |
| static void add_fractions(struct fraction *out,
 | |
| 			  const struct fraction *f1, const struct fraction *f2)
 | |
| {
 | |
| 	reduce_fraction(out,
 | |
| 			(int64_t)f1->n * f2->d + (int64_t)f2->n * f1->d,
 | |
| 			(int64_t)f1->d * f2->d);
 | |
| }
 | |
| 
 | |
| /* out = f1 - f2 */
 | |
| static void subtract_fractions(struct fraction *out,
 | |
| 			       const struct fraction *f1,
 | |
| 			       const struct fraction *f2)
 | |
| {
 | |
| 	reduce_fraction(out,
 | |
| 			(int64_t)f1->n * f2->d - (int64_t)f2->n * f1->d,
 | |
| 			(int64_t)f1->d * f2->d);
 | |
| }
 | |
| 
 | |
| static void add_scales(struct scale *out,
 | |
| 		       const struct scale *s1, const struct scale *s2)
 | |
| {
 | |
| 	add_fractions(&out->x, &s1->x, &s2->x);
 | |
| 	add_fractions(&out->y, &s1->y, &s2->y);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transform a vector:
 | |
|  * 	x' = x * a_x + offset_x
 | |
|  * 	y' = y * a_y + offset_y
 | |
|  */
 | |
| static int transform_vector(struct vector *out,
 | |
| 			    const struct vector *in,
 | |
| 			    const struct scale *a,
 | |
| 			    const struct vector *offset)
 | |
| {
 | |
| 	if (!is_valid_scale(a))
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 	out->x = (int64_t)a->x.n * in->x / a->x.d + offset->x;
 | |
| 	out->y = (int64_t)a->y.n * in->y / a->y.d + offset->y;
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns 1 if v is exclusively within box, 0 if v is inclusively within box,
 | |
|  * or -1 otherwise.
 | |
|  */
 | |
| static int within_box(const struct vector *v, const struct rect *bound)
 | |
| {
 | |
| 	if (v->x > bound->offset.x &&
 | |
| 	    v->y > bound->offset.y &&
 | |
| 	    v->x < bound->offset.x + bound->size.width &&
 | |
| 	    v->y < bound->offset.y + bound->size.height)
 | |
| 		return 1;
 | |
| 	else if (v->x >= bound->offset.x &&
 | |
| 		 v->y >= bound->offset.y &&
 | |
| 		 v->x <= bound->offset.x + bound->size.width &&
 | |
| 		 v->y <= bound->offset.y + bound->size.height)
 | |
| 		return 0;
 | |
| 	else
 | |
| 		return -1;
 | |
| }
 | |
| 
 | |
| /* Helper function that applies color_map to the color. */
 | |
| static inline uint8_t apply_map(uint8_t color,
 | |
| 				const struct color_transformation *trans)
 | |
| {
 | |
| 	if (!color_map.enabled)
 | |
| 		return color;
 | |
| 	return trans->base + trans->scale * color / UINT8_MAX;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Helper function that applies color and opacity from blend struct
 | |
|  * into the color.
 | |
|  */
 | |
| static inline uint8_t apply_blend(uint8_t color, uint8_t blend_color)
 | |
| {
 | |
| 	if (blend.alpha == 0 || color == blend_color)
 | |
| 		return color;
 | |
| 
 | |
| 	return (color * (256 - blend.alpha) +
 | |
| 		blend_color * blend.alpha) / 256;
 | |
| }
 | |
| 
 | |
| static inline uint32_t calculate_color(const struct rgb_color *rgb,
 | |
| 				       uint8_t invert)
 | |
| {
 | |
| 	uint32_t color = 0;
 | |
| 
 | |
| 	color |= (apply_blend(apply_map(rgb->red, &color_map.red),
 | |
| 			      blend.rgb.red)
 | |
| 		  >> (8 - fbinfo->red_mask_size))
 | |
| 		 << fbinfo->red_mask_pos;
 | |
| 	color |= (apply_blend(apply_map(rgb->green, &color_map.green),
 | |
| 			      blend.rgb.green)
 | |
| 		  >> (8 - fbinfo->green_mask_size))
 | |
| 		 << fbinfo->green_mask_pos;
 | |
| 	color |= (apply_blend(apply_map(rgb->blue, &color_map.blue),
 | |
| 			      blend.rgb.blue)
 | |
| 		  >> (8 - fbinfo->blue_mask_size))
 | |
| 		 << fbinfo->blue_mask_pos;
 | |
| 	if (invert)
 | |
| 		color ^= 0xffffffff;
 | |
| 	return color;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Plot a pixel in a framebuffer. This is called from tight loops. Keep it slim
 | |
|  * and do the validation at callers' site.
 | |
|  */
 | |
| static inline void set_pixel(struct vector *coord, uint32_t color)
 | |
| {
 | |
| 	const int bpp = fbinfo->bits_per_pixel;
 | |
| 	const int bpl = fbinfo->bytes_per_line;
 | |
| 	struct vector rcoord;
 | |
| 	int i;
 | |
| 
 | |
| 	switch (fbinfo->orientation) {
 | |
| 	case CB_FB_ORIENTATION_NORMAL:
 | |
| 	default:
 | |
| 		rcoord.x = coord->x;
 | |
| 		rcoord.y = coord->y;
 | |
| 		break;
 | |
| 	case CB_FB_ORIENTATION_BOTTOM_UP:
 | |
| 		rcoord.x = screen.size.width - 1 - coord->x;
 | |
| 		rcoord.y = screen.size.height - 1 - coord->y;
 | |
| 		break;
 | |
| 	case CB_FB_ORIENTATION_LEFT_UP:
 | |
| 		rcoord.x = coord->y;
 | |
| 		rcoord.y = screen.size.width - 1 - coord->x;
 | |
| 		break;
 | |
| 	case CB_FB_ORIENTATION_RIGHT_UP:
 | |
| 		rcoord.x = screen.size.height - 1 - coord->y;
 | |
| 		rcoord.y = coord->x;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	uint8_t * const pixel = FB + rcoord.y * bpl + rcoord.x * bpp / 8;
 | |
| 	for (i = 0; i < bpp / 8; i++)
 | |
| 		pixel[i] = (color >> (i * 8));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Initializes the library. Automatically called by APIs. It sets up
 | |
|  * the canvas and the framebuffer.
 | |
|  */
 | |
| static int cbgfx_init(void)
 | |
| {
 | |
| 	if (initialized)
 | |
| 		return 0;
 | |
| 
 | |
| 	fbinfo = &lib_sysinfo.framebuffer;
 | |
| 
 | |
| 	if (!fbinfo->physical_address)
 | |
| 		return CBGFX_ERROR_FRAMEBUFFER_ADDR;
 | |
| 
 | |
| 	switch (fbinfo->orientation) {
 | |
| 	default: /* Normal or rotated 180 degrees. */
 | |
| 		screen.size.width = fbinfo->x_resolution;
 | |
| 		screen.size.height = fbinfo->y_resolution;
 | |
| 		break;
 | |
| 	case CB_FB_ORIENTATION_LEFT_UP: /* 90 degree rotation. */
 | |
| 	case CB_FB_ORIENTATION_RIGHT_UP:
 | |
| 		screen.size.width = fbinfo->y_resolution;
 | |
| 		screen.size.height = fbinfo->x_resolution;
 | |
| 		break;
 | |
| 	}
 | |
| 	screen.offset.x = 0;
 | |
| 	screen.offset.y = 0;
 | |
| 
 | |
| 	/* Calculate canvas size & offset. Canvas is always square. */
 | |
| 	if (screen.size.height > screen.size.width) {
 | |
| 		canvas.size.height = screen.size.width;
 | |
| 		canvas.size.width = canvas.size.height;
 | |
| 		canvas.offset.x = 0;
 | |
| 		canvas.offset.y = (screen.size.height - canvas.size.height) / 2;
 | |
| 	} else {
 | |
| 		canvas.size.height = screen.size.height;
 | |
| 		canvas.size.width = canvas.size.height;
 | |
| 		canvas.offset.x = (screen.size.width - canvas.size.width) / 2;
 | |
| 		canvas.offset.y = 0;
 | |
| 	}
 | |
| 
 | |
| 	initialized = 1;
 | |
| 	LOG("cbgfx initialized: screen:width=%d, height=%d, offset=%d canvas:width=%d, height=%d, offset=%d\n",
 | |
| 	    screen.size.width, screen.size.height, screen.offset.x,
 | |
| 	    canvas.size.width, canvas.size.height, canvas.offset.x);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int draw_box(const struct rect *box, const struct rgb_color *rgb)
 | |
| {
 | |
| 	struct vector top_left;
 | |
| 	struct vector p, t;
 | |
| 
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	const uint32_t color = calculate_color(rgb, 0);
 | |
| 	const struct scale top_left_s = {
 | |
| 		.x = { .n = box->offset.x, .d = CANVAS_SCALE, },
 | |
| 		.y = { .n = box->offset.y, .d = CANVAS_SCALE, }
 | |
| 	};
 | |
| 	const struct scale bottom_right_s = {
 | |
| 		.x = { .n = box->offset.x + box->size.x, .d = CANVAS_SCALE, },
 | |
| 		.y = { .n = box->offset.y + box->size.y, .d = CANVAS_SCALE, }
 | |
| 	};
 | |
| 
 | |
| 	transform_vector(&top_left, &canvas.size, &top_left_s, &canvas.offset);
 | |
| 	transform_vector(&t, &canvas.size, &bottom_right_s, &canvas.offset);
 | |
| 	if (within_box(&t, &canvas) < 0) {
 | |
| 		LOG("Box exceeds canvas boundary\n");
 | |
| 		return CBGFX_ERROR_BOUNDARY;
 | |
| 	}
 | |
| 
 | |
| 	for (p.y = top_left.y; p.y < t.y; p.y++)
 | |
| 		for (p.x = top_left.x; p.x < t.x; p.x++)
 | |
| 			set_pixel(&p, color);
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| int draw_rounded_box(const struct scale *pos_rel, const struct scale *dim_rel,
 | |
| 		     const struct rgb_color *rgb,
 | |
| 		     const struct fraction *thickness,
 | |
| 		     const struct fraction *radius)
 | |
| {
 | |
| 	struct scale pos_end_rel;
 | |
| 	struct vector top_left;
 | |
| 	struct vector p, t;
 | |
| 
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	const uint32_t color = calculate_color(rgb, 0);
 | |
| 
 | |
| 	if (!is_valid_scale(pos_rel) || !is_valid_scale(dim_rel))
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 
 | |
| 	add_scales(&pos_end_rel, pos_rel, dim_rel);
 | |
| 	transform_vector(&top_left, &canvas.size, pos_rel, &canvas.offset);
 | |
| 	transform_vector(&t, &canvas.size, &pos_end_rel, &canvas.offset);
 | |
| 	if (within_box(&t, &canvas) < 0) {
 | |
| 		LOG("Box exceeds canvas boundary\n");
 | |
| 		return CBGFX_ERROR_BOUNDARY;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_valid_fraction(thickness) || !is_valid_fraction(radius))
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 
 | |
| 	struct scale thickness_scale = {
 | |
| 		.x = { .n = thickness->n, .d = thickness->d },
 | |
| 		.y = { .n = thickness->n, .d = thickness->d },
 | |
| 	};
 | |
| 	struct scale radius_scale = {
 | |
| 		.x = { .n = radius->n, .d = radius->d },
 | |
| 		.y = { .n = radius->n, .d = radius->d },
 | |
| 	};
 | |
| 	struct vector d, r, s;
 | |
| 	transform_vector(&d, &canvas.size, &thickness_scale, &vzero);
 | |
| 	transform_vector(&r, &canvas.size, &radius_scale, &vzero);
 | |
| 	const uint8_t has_thickness = d.x > 0 && d.y > 0;
 | |
| 	if (thickness->n != 0 && !has_thickness)
 | |
| 		LOG("Thickness truncated to 0\n");
 | |
| 	const uint8_t has_radius = r.x > 0 && r.y > 0;
 | |
| 	if (radius->n != 0 && !has_radius)
 | |
| 		LOG("Radius truncated to 0\n");
 | |
| 	if (has_radius) {
 | |
| 		if (d.x > r.x || d.y > r.y) {
 | |
| 			LOG("Thickness cannot be greater than radius\n");
 | |
| 			return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 		}
 | |
| 		if (r.x * 2 > t.x - top_left.x || r.y * 2 > t.y - top_left.y) {
 | |
| 			LOG("Radius cannot be greater than half of the box\n");
 | |
| 			return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Step 1: Draw edges */
 | |
| 	int32_t x_begin, x_end;
 | |
| 	if (has_thickness) {
 | |
| 		/* top */
 | |
| 		for (p.y = top_left.y; p.y < top_left.y + d.y; p.y++)
 | |
| 			for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
 | |
| 				set_pixel(&p, color);
 | |
| 		/* bottom */
 | |
| 		for (p.y = t.y - d.y; p.y < t.y; p.y++)
 | |
| 			for (p.x = top_left.x + r.x; p.x < t.x - r.x; p.x++)
 | |
| 				set_pixel(&p, color);
 | |
| 		for (p.y = top_left.y + r.y; p.y < t.y - r.y; p.y++) {
 | |
| 			/* left */
 | |
| 			for (p.x = top_left.x; p.x < top_left.x + d.x; p.x++)
 | |
| 				set_pixel(&p, color);
 | |
| 			/* right */
 | |
| 			for (p.x = t.x - d.x; p.x < t.x; p.x++)
 | |
| 				set_pixel(&p, color);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* Fill the regions except circular sectors */
 | |
| 		for (p.y = top_left.y; p.y < t.y; p.y++) {
 | |
| 			if (p.y >= top_left.y + r.y && p.y < t.y - r.y) {
 | |
| 				x_begin = top_left.x;
 | |
| 				x_end = t.x;
 | |
| 			} else {
 | |
| 				x_begin = top_left.x + r.x;
 | |
| 				x_end = t.x - r.x;
 | |
| 			}
 | |
| 			for (p.x = x_begin; p.x < x_end; p.x++)
 | |
| 				set_pixel(&p, color);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!has_radius)
 | |
| 		return CBGFX_SUCCESS;
 | |
| 
 | |
| 	/*
 | |
| 	 * Step 2: Draw rounded corners
 | |
| 	 * When has_thickness, only the border is drawn. With fixed thickness,
 | |
| 	 * the time complexity is linear to the size of the box.
 | |
| 	 */
 | |
| 	if (has_thickness) {
 | |
| 		s.x = r.x - d.x;
 | |
| 		s.y = r.y - d.y;
 | |
| 	} else {
 | |
| 		s.x = 0;
 | |
| 		s.y = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Use 64 bits to avoid overflow */
 | |
| 	int32_t x, y;
 | |
| 	uint64_t yy;
 | |
| 	const uint64_t rrx = (uint64_t)r.x * r.x, rry = (uint64_t)r.y * r.y;
 | |
| 	const uint64_t ssx = (uint64_t)s.x * s.x, ssy = (uint64_t)s.y * s.y;
 | |
| 	x_begin = 0;
 | |
| 	x_end = 0;
 | |
| 	for (y = r.y - 1; y >= 0; y--) {
 | |
| 		/*
 | |
| 		 * The inequality is valid in the beginning of each iteration:
 | |
| 		 * y^2 + x_end^2 < r^2
 | |
| 		 */
 | |
| 		yy = (uint64_t)y * y;
 | |
| 		/* Check yy/ssy + xx/ssx < 1 */
 | |
| 		while (yy * ssx + x_begin * x_begin * ssy < ssx * ssy)
 | |
| 			x_begin++;
 | |
| 		/* The inequality must be valid now: y^2 + x_begin >= s^2 */
 | |
| 		x = x_begin;
 | |
| 		/* Check yy/rry + xx/rrx < 1 */
 | |
| 		while (x < x_end || yy * rrx + x * x * rry < rrx * rry) {
 | |
| 			/*
 | |
| 			 * Example sequence of (y, x) when s = (4, 4) and
 | |
| 			 * r = (5, 5):
 | |
| 			 *   [(4, 0), (4, 1), (4, 2), (3, 3), (2, 4),
 | |
| 			 *    (1, 4), (0, 4)].
 | |
| 			 * If s.x==s.y r.x==r.y, then the sequence will be
 | |
| 			 * symmetric, and x and y will range from 0 to (r-1).
 | |
| 			 */
 | |
| 			/* top left */
 | |
| 			p.y = top_left.y + r.y - 1 - y;
 | |
| 			p.x = top_left.x + r.x - 1 - x;
 | |
| 			set_pixel(&p, color);
 | |
| 			/* top right */
 | |
| 			p.y = top_left.y + r.y - 1 - y;
 | |
| 			p.x = t.x - r.x + x;
 | |
| 			set_pixel(&p, color);
 | |
| 			/* bottom left */
 | |
| 			p.y = t.y - r.y + y;
 | |
| 			p.x = top_left.x + r.x - 1 - x;
 | |
| 			set_pixel(&p, color);
 | |
| 			/* bottom right */
 | |
| 			p.y = t.y - r.y + y;
 | |
| 			p.x = t.x - r.x + x;
 | |
| 			set_pixel(&p, color);
 | |
| 			x++;
 | |
| 		}
 | |
| 		x_end = x;
 | |
| 		/* (x_begin <= x_end) must hold now */
 | |
| 	}
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| int draw_line(const struct scale *pos1, const struct scale *pos2,
 | |
| 	      const struct fraction *thickness, const struct rgb_color *rgb)
 | |
| {
 | |
| 	struct fraction len;
 | |
| 	struct vector top_left;
 | |
| 	struct vector size;
 | |
| 	struct vector p, t;
 | |
| 
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	const uint32_t color = calculate_color(rgb, 0);
 | |
| 
 | |
| 	if (!is_valid_fraction(thickness))
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 
 | |
| 	transform_vector(&top_left, &canvas.size, pos1, &canvas.offset);
 | |
| 	if (fraction_equal(&pos1->y, &pos2->y)) {
 | |
| 		/* Horizontal line */
 | |
| 		subtract_fractions(&len, &pos2->x, &pos1->x);
 | |
| 		struct scale dim = {
 | |
| 			.x = { .n = len.n, .d = len.d },
 | |
| 			.y = { .n = thickness->n, .d = thickness->d },
 | |
| 		};
 | |
| 		transform_vector(&size, &canvas.size, &dim, &vzero);
 | |
| 		size.y = MAX(size.y, 1);
 | |
| 	} else if (fraction_equal(&pos1->x, &pos2->x)) {
 | |
| 		/* Vertical line */
 | |
| 		subtract_fractions(&len, &pos2->y, &pos1->y);
 | |
| 		struct scale dim = {
 | |
| 			.x = { .n = thickness->n, .d = thickness->d },
 | |
| 			.y = { .n = len.n, .d = len.d },
 | |
| 		};
 | |
| 		transform_vector(&size, &canvas.size, &dim, &vzero);
 | |
| 		size.x = MAX(size.x, 1);
 | |
| 	} else {
 | |
| 		LOG("Only support horizontal and vertical lines\n");
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 	}
 | |
| 
 | |
| 	add_vectors(&t, &top_left, &size);
 | |
| 	if (within_box(&t, &canvas) < 0) {
 | |
| 		LOG("Line exceeds canvas boundary\n");
 | |
| 		return CBGFX_ERROR_BOUNDARY;
 | |
| 	}
 | |
| 
 | |
| 	for (p.y = top_left.y; p.y < t.y; p.y++)
 | |
| 		for (p.x = top_left.x; p.x < t.x; p.x++)
 | |
| 			set_pixel(&p, color);
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| int clear_canvas(const struct rgb_color *rgb)
 | |
| {
 | |
| 	const struct rect box = {
 | |
| 		vzero,
 | |
| 		.size = {
 | |
| 			.width = CANVAS_SCALE,
 | |
| 			.height = CANVAS_SCALE,
 | |
| 		},
 | |
| 	};
 | |
| 
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	return draw_box(&box, rgb);
 | |
| }
 | |
| 
 | |
| int clear_screen(const struct rgb_color *rgb)
 | |
| {
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	int x, y, i;
 | |
| 	uint32_t color = calculate_color(rgb, 0);
 | |
| 	const int bpp = fbinfo->bits_per_pixel;
 | |
| 	const int bpl = fbinfo->bytes_per_line;
 | |
| 	uint8_t *line = malloc(bpl);
 | |
| 
 | |
| 	if (!line) {
 | |
| 		LOG("Failed to allocate line buffer (%u bytes)\n", bpl);
 | |
| 		return CBGFX_ERROR_UNKNOWN;
 | |
| 	}
 | |
| 
 | |
| 	/* Set line buffer pixels, then memcpy to framebuffer */
 | |
| 	for (x = 0; x < fbinfo->x_resolution; x++)
 | |
| 		for (i = 0; i < bpp / 8; i++)
 | |
| 			line[x * bpp / 8 + i] = (color >> (i * 8));
 | |
| 	for (y = 0; y < fbinfo->y_resolution; y++)
 | |
| 		memcpy(FB + y * bpl, line, bpl);
 | |
| 
 | |
| 	free(line);
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int pal_to_rgb(uint8_t index, const struct bitmap_palette_element_v3 *pal,
 | |
| 		      size_t palcount, struct rgb_color *out)
 | |
| {
 | |
| 	if (index >= palcount) {
 | |
| 		LOG("Color index %d exceeds palette boundary\n", index);
 | |
| 		return CBGFX_ERROR_BITMAP_DATA;
 | |
| 	}
 | |
| 
 | |
| 	out->red = pal[index].red;
 | |
| 	out->green = pal[index].green;
 | |
| 	out->blue = pal[index].blue;
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * We're using the Lanczos resampling algorithm to rescale images to a new size.
 | |
|  * Since output size is often not cleanly divisible by input size, an output
 | |
|  * pixel (ox,oy) corresponds to a point that lies in the middle between several
 | |
|  * input pixels (ix,iy), meaning that if you transformed the coordinates of the
 | |
|  * output pixel into the input image space, they would be fractional. To sample
 | |
|  * the color of this "virtual" pixel with fractional coordinates, we gather the
 | |
|  * 6x6 grid of nearest real input pixels in a sample array. Then we multiply the
 | |
|  * color values for each of those pixels (separately for red, green and blue)
 | |
|  * with a "weight" value that was calculated from the distance between that
 | |
|  * input pixel and the fractional output pixel coordinates. This is done for
 | |
|  * both X and Y dimensions separately. The combined weights for all 36 sample
 | |
|  * pixels add up to 1.0, so by adding up the multiplied color values we get the
 | |
|  * interpolated color for the output pixel.
 | |
|  *
 | |
|  * The CONFIG_LP_CBGFX_FAST_RESAMPLE option let's the user change the 'a'
 | |
|  * parameter from the Lanczos weight formula from 3 to 2, which effectively
 | |
|  * reduces the size of the sample array from 6x6 to 4x4. This is a bit faster
 | |
|  * but doesn't look as good. Most use cases should be fine without it.
 | |
|  */
 | |
| #if CONFIG(LP_CBGFX_FAST_RESAMPLE)
 | |
| #define LNCZ_A 2
 | |
| #else
 | |
| #define LNCZ_A 3
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * When walking the sample array we often need to start at a pixel close to our
 | |
|  * fractional output pixel (for convenience we choose the pixel on the top-left
 | |
|  * which corresponds to the integer parts of the output pixel coordinates) and
 | |
|  * then work our way outwards in both directions from there. Arrays in C must
 | |
|  * start at 0 but we'd really prefer indexes to go from -2 to 3 (for 6x6)
 | |
|  * instead, so that this "start pixel" could be 0. Since we cannot do that,
 | |
|  * define a constant for the index of that "0th" pixel instead.
 | |
|  */
 | |
| #define S0 (LNCZ_A - 1)
 | |
| 
 | |
| /* The size of the sample array, which we need a lot. */
 | |
| #define SSZ (LNCZ_A * 2)
 | |
| 
 | |
| /*
 | |
|  * This is implementing the Lanczos kernel according to:
 | |
|  * https://en.wikipedia.org/wiki/Lanczos_resampling
 | |
|  *
 | |
|  *         / 1							if x = 0
 | |
|  * L(x) = <  a * sin(pi * x) * sin(pi * x / a) / (pi^2 * x^2)	if -a < x <= a
 | |
|  *	   \ 0							otherwise
 | |
|  */
 | |
| static fpmath_t lanczos_weight(fpmath_t in, int off)
 | |
| {
 | |
| 	/*
 | |
| 	 * |in| is the output pixel coordinate scaled into the input pixel
 | |
| 	 * space. |off| is the offset in the sample array for the pixel whose
 | |
| 	 * weight we're calculating. (off - S0) is the distance from that
 | |
| 	 * sample pixel to the S0 pixel, and the fractional part of |in|
 | |
| 	 * (in - floor(in)) is by definition the distance between S0 and the
 | |
| 	 * output pixel.
 | |
| 	 *
 | |
| 	 * So (off - S0) - (in - floor(in)) is the distance from the sample
 | |
| 	 * pixel to S0 minus the distance from S0 to the output pixel, aka
 | |
| 	 * the distance from the sample pixel to the output pixel.
 | |
| 	 */
 | |
| 	fpmath_t x = fpisub(off - S0, fpsubi(in, fpfloor(in)));
 | |
| 
 | |
| 	if (fpequals(x, fp(0)))
 | |
| 		return fp(1);
 | |
| 
 | |
| 	/* x * 2 / a can save some instructions if a == 2 */
 | |
| 	fpmath_t x2a = x;
 | |
| 	if (LNCZ_A != 2)
 | |
| 		x2a = fpmul(x, fpfrac(2, LNCZ_A));
 | |
| 
 | |
| 	fpmath_t x_times_pi = fpmul(x, fppi());
 | |
| 
 | |
| 	/*
 | |
| 	 * Rather than using sinr(pi*x), we leverage the "one-based" sine
 | |
| 	 * function (see <fpmath.h>) with sin1(2*x) so that the pi is eliminated
 | |
| 	 * since multiplication by an integer is a slightly faster operation.
 | |
| 	 */
 | |
| 	fpmath_t tmp = fpmuli(fpdiv(fpsin1(fpmuli(x, 2)), x_times_pi), LNCZ_A);
 | |
| 	return fpdiv(fpmul(tmp, fpsin1(x2a)), x_times_pi);
 | |
| }
 | |
| 
 | |
| static int draw_bitmap_v3(const struct vector *top_left,
 | |
| 			  const struct vector *dim,
 | |
| 			  const struct vector *dim_org,
 | |
| 			  const struct bitmap_header_v3 *header,
 | |
| 			  const struct bitmap_palette_element_v3 *pal,
 | |
| 			  const uint8_t *pixel_array, uint8_t invert)
 | |
| {
 | |
| 	const int bpp = header->bits_per_pixel;
 | |
| 	int32_t dir;
 | |
| 	struct vector p;
 | |
| 	int32_t ox, oy;		/* output (resampled) pixel coordinates */
 | |
| 	int32_t ix, iy;		/* input (source image) pixel coordinates */
 | |
| 	int sx, sy;	/* index into |sample| (not ringbuffer adjusted) */
 | |
| 
 | |
| 	if (header->compression) {
 | |
| 		LOG("Compressed bitmaps are not supported\n");
 | |
| 		return CBGFX_ERROR_BITMAP_FORMAT;
 | |
| 	}
 | |
| 	if (bpp >= 16) {
 | |
| 		LOG("Non-palette bitmaps are not supported\n");
 | |
| 		return CBGFX_ERROR_BITMAP_FORMAT;
 | |
| 	}
 | |
| 	if (bpp != 8) {
 | |
| 		LOG("Unsupported bits per pixel: %d\n", bpp);
 | |
| 		return CBGFX_ERROR_BITMAP_FORMAT;
 | |
| 	}
 | |
| 
 | |
| 	const int32_t y_stride = ROUNDUP(dim_org->width * bpp / 8, 4);
 | |
| 	/*
 | |
| 	 * header->height can be positive or negative.
 | |
| 	 *
 | |
| 	 * If it's negative, pixel data is stored from top to bottom. We render
 | |
| 	 * image from the lowest row to the highest row.
 | |
| 	 *
 | |
| 	 * If it's positive, pixel data is stored from bottom to top. We render
 | |
| 	 * image from the highest row to the lowest row.
 | |
| 	 */
 | |
| 	p.y = top_left->y;
 | |
| 	if (header->height < 0) {
 | |
| 		dir = 1;
 | |
| 	} else {
 | |
| 		p.y += dim->height - 1;
 | |
| 		dir = -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Don't waste time resampling when the scale is 1:1. */
 | |
| 	if (dim_org->width == dim->width && dim_org->height == dim->height) {
 | |
| 		for (oy = 0; oy < dim->height; oy++, p.y += dir) {
 | |
| 			p.x = top_left->x;
 | |
| 			for (ox = 0; ox < dim->width; ox++, p.x++) {
 | |
| 				struct rgb_color rgb;
 | |
| 				if (pal_to_rgb(pixel_array[oy * y_stride + ox],
 | |
| 					       pal, header->colors_used, &rgb))
 | |
| 					return CBGFX_ERROR_BITMAP_DATA;
 | |
| 				set_pixel(&p, calculate_color(&rgb, invert));
 | |
| 			}
 | |
| 		}
 | |
| 		return CBGFX_SUCCESS;
 | |
| 	}
 | |
| 
 | |
| 	/* Precalculate the X-weights for every possible ox so that we only have
 | |
| 	   to multiply weights together in the end. */
 | |
| 	fpmath_t (*weight_x)[SSZ] = malloc(sizeof(fpmath_t) * SSZ * dim->width);
 | |
| 	if (!weight_x)
 | |
| 		return CBGFX_ERROR_UNKNOWN;
 | |
| 	for (ox = 0; ox < dim->width; ox++) {
 | |
| 		for (sx = 0; sx < SSZ; sx++) {
 | |
| 			fpmath_t ixfp = fpfrac(ox * dim_org->width, dim->width);
 | |
| 			weight_x[ox][sx] = lanczos_weight(ixfp, sx);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * For every sy in the sample array, we directly cache a pointer into
 | |
| 	 * the .BMP pixel array for the start of the corresponding line. On the
 | |
| 	 * edges of the image (where we don't have any real pixels to fill all
 | |
| 	 * lines in the sample array), we just reuse the last valid lines inside
 | |
| 	 * the image for all lines that would lie outside.
 | |
| 	 */
 | |
| 	const uint8_t *ypix[SSZ];
 | |
| 	for (sy = 0; sy < SSZ; sy++) {
 | |
| 		if (sy <= S0)
 | |
| 			ypix[sy] = pixel_array;
 | |
| 		else if (sy - S0 >= dim_org->height)
 | |
| 			ypix[sy] = ypix[sy - 1];
 | |
| 		else
 | |
| 			ypix[sy] = &pixel_array[y_stride * (sy - S0)];
 | |
| 	}
 | |
| 
 | |
| 	/* iy and ix track the input pixel corresponding to sample[S0][S0]. */
 | |
| 	iy = 0;
 | |
| 	for (oy = 0; oy < dim->height; oy++, p.y += dir) {
 | |
| 		struct rgb_color sample[SSZ][SSZ];
 | |
| 
 | |
| 		/* Like with X weights, we also cache all Y weights. */
 | |
| 		fpmath_t iyfp = fpfrac(oy * dim_org->height, dim->height);
 | |
| 		fpmath_t weight_y[SSZ];
 | |
| 		for (sy = 0; sy < SSZ; sy++)
 | |
| 			weight_y[sy] = lanczos_weight(iyfp, sy);
 | |
| 
 | |
| 		/*
 | |
| 		 * If we have a new input pixel line between the last oy and
 | |
| 		 * this one, we have to adjust iy forward. When upscaling, this
 | |
| 		 * is not always the case for each new output line. When
 | |
| 		 * downscaling, we may even cross more than one line per output
 | |
| 		 * pixel.
 | |
| 		 */
 | |
| 		while (fpfloor(iyfp) > iy) {
 | |
| 			iy++;
 | |
| 
 | |
| 			/* Shift ypix array up to center around next iy line. */
 | |
| 			for (sy = 0; sy < SSZ - 1; sy++)
 | |
| 				ypix[sy] = ypix[sy + 1];
 | |
| 
 | |
| 			/* Calculate the last ypix that is being shifted in,
 | |
| 			   but beware of reaching the end of the input image. */
 | |
| 			if (iy + LNCZ_A < dim_org->height)
 | |
| 				ypix[SSZ - 1] = &pixel_array[y_stride *
 | |
| 							     (iy + LNCZ_A)];
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Initialize the sample array for this line, and also
 | |
| 		 * the equals counter, which counts how many of the latest
 | |
| 		 * pixels were exactly equal.
 | |
| 		 */
 | |
| 		int equals = 0;
 | |
| 		uint8_t last_equal = ypix[0][0];
 | |
| 		for (sx = 0; sx < SSZ; sx++) {
 | |
| 			for (sy = 0; sy < SSZ; sy++) {
 | |
| 				if (sx - S0 >= dim_org->width) {
 | |
| 					sample[sx][sy] = sample[sx - 1][sy];
 | |
| 					equals++;
 | |
| 					continue;
 | |
| 				}
 | |
| 				/*
 | |
| 				 * For pixels to the left of S0 there are no
 | |
| 				 * corresponding input pixels so just use
 | |
| 				 * ypix[sy][0].
 | |
| 				 */
 | |
| 				uint8_t i = ypix[sy][MAX(0, sx - S0)];
 | |
| 				if (pal_to_rgb(i, pal, header->colors_used,
 | |
| 					       &sample[sx][sy]))
 | |
| 					goto bitmap_error;
 | |
| 				if (i == last_equal) {
 | |
| 					equals++;
 | |
| 				} else {
 | |
| 					last_equal = i;
 | |
| 					equals = 1;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		ix = 0;
 | |
| 		p.x = top_left->x;
 | |
| 		for (ox = 0; ox < dim->width; ox++, p.x++) {
 | |
| 			/* Adjust ix forward, same as iy above. */
 | |
| 			fpmath_t ixfp = fpfrac(ox * dim_org->width, dim->width);
 | |
| 			while (fpfloor(ixfp) > ix) {
 | |
| 				ix++;
 | |
| 
 | |
| 				/*
 | |
| 				 * We want to reuse the sample columns we
 | |
| 				 * already have, but we don't want to copy them
 | |
| 				 * all around for every new column either.
 | |
| 				 * Instead, treat the X dimension of the sample
 | |
| 				 * array like a ring buffer indexed by ix. rx is
 | |
| 				 * the ringbuffer-adjusted offset of the new
 | |
| 				 * column in sample (the rightmost one) we're
 | |
| 				 * trying to fill.
 | |
| 				 */
 | |
| 				int rx = (SSZ - 1 + ix) % SSZ;
 | |
| 				for (sy = 0; sy < SSZ; sy++) {
 | |
| 					if (ix + LNCZ_A >= dim_org->width) {
 | |
| 						sample[rx][sy] = sample[(SSZ - 2
 | |
| 							+ ix) % SSZ][sy];
 | |
| 						equals++;
 | |
| 						continue;
 | |
| 					}
 | |
| 					uint8_t i = ypix[sy][ix + LNCZ_A];
 | |
| 					if (i == last_equal) {
 | |
| 						if (equals++ >= (SSZ * SSZ))
 | |
| 							continue;
 | |
| 					} else {
 | |
| 						last_equal = i;
 | |
| 						equals = 1;
 | |
| 					}
 | |
| 					if (pal_to_rgb(i, pal,
 | |
| 						       header->colors_used,
 | |
| 						       &sample[rx][sy]))
 | |
| 						goto bitmap_error;
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/* If all pixels in sample are equal, fast path. */
 | |
| 			if (equals >= (SSZ * SSZ)) {
 | |
| 				set_pixel(&p, calculate_color(&sample[0][0],
 | |
| 							      invert));
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			fpmath_t red = fp(0);
 | |
| 			fpmath_t green = fp(0);
 | |
| 			fpmath_t blue = fp(0);
 | |
| 			for (sy = 0; sy < SSZ; sy++) {
 | |
| 				for (sx = 0; sx < SSZ; sx++) {
 | |
| 					int rx = (sx + ix) % SSZ;
 | |
| 					fpmath_t weight = fpmul(weight_x[ox][sx],
 | |
| 								weight_y[sy]);
 | |
| 					red = fpadd(red, fpmuli(weight,
 | |
| 						sample[rx][sy].red));
 | |
| 					green = fpadd(green, fpmuli(weight,
 | |
| 						sample[rx][sy].green));
 | |
| 					blue = fpadd(blue, fpmuli(weight,
 | |
| 						sample[rx][sy].blue));
 | |
| 				}
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * Weights *should* sum up to 1.0 (making this not
 | |
| 			 * necessary) but just to hedge against rounding errors
 | |
| 			 * we should clamp color values to their legal limits.
 | |
| 			 */
 | |
| 			struct rgb_color rgb = {
 | |
| 				.red = MAX(0, MIN(UINT8_MAX, fpround(red))),
 | |
| 				.green = MAX(0, MIN(UINT8_MAX, fpround(green))),
 | |
| 				.blue = MAX(0, MIN(UINT8_MAX, fpround(blue))),
 | |
| 			};
 | |
| 
 | |
| 			set_pixel(&p, calculate_color(&rgb, invert));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	free(weight_x);
 | |
| 	return CBGFX_SUCCESS;
 | |
| 
 | |
| bitmap_error:
 | |
| 	free(weight_x);
 | |
| 	return CBGFX_ERROR_BITMAP_DATA;
 | |
| }
 | |
| 
 | |
| static int get_bitmap_file_header(const void *bitmap, size_t size,
 | |
| 				  struct bitmap_file_header *file_header)
 | |
| {
 | |
| 	const struct bitmap_file_header *fh;
 | |
| 
 | |
| 	if (sizeof(*file_header) > size) {
 | |
| 		LOG("Invalid bitmap data\n");
 | |
| 		return CBGFX_ERROR_BITMAP_DATA;
 | |
| 	}
 | |
| 	fh = (struct bitmap_file_header *)bitmap;
 | |
| 	if (fh->signature[0] != 'B' || fh->signature[1] != 'M') {
 | |
| 		LOG("Bitmap signature mismatch\n");
 | |
| 		return CBGFX_ERROR_BITMAP_SIGNATURE;
 | |
| 	}
 | |
| 	file_header->file_size = le32toh(fh->file_size);
 | |
| 	if (file_header->file_size != size) {
 | |
| 		LOG("Bitmap file size does not match cbfs file size\n");
 | |
| 		return CBGFX_ERROR_BITMAP_DATA;
 | |
| 	}
 | |
| 	file_header->bitmap_offset = le32toh(fh->bitmap_offset);
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int parse_bitmap_header_v3(
 | |
| 			const uint8_t *bitmap,
 | |
| 			size_t size,
 | |
| 			/* ^--- IN / OUT ---v */
 | |
| 			struct bitmap_header_v3 *header,
 | |
| 			const struct bitmap_palette_element_v3 **palette,
 | |
| 			const uint8_t **pixel_array,
 | |
| 			struct vector *dim_org)
 | |
| {
 | |
| 	struct bitmap_file_header file_header;
 | |
| 	struct bitmap_header_v3 *h;
 | |
| 	int rv;
 | |
| 
 | |
| 	rv = get_bitmap_file_header(bitmap, size, &file_header);
 | |
| 	if (rv)
 | |
| 		return rv;
 | |
| 
 | |
| 	size_t header_offset = sizeof(struct bitmap_file_header);
 | |
| 	size_t header_size = sizeof(struct bitmap_header_v3);
 | |
| 	size_t palette_offset = header_offset + header_size;
 | |
| 	size_t file_size = file_header.file_size;
 | |
| 
 | |
| 	h = (struct bitmap_header_v3 *)(bitmap + header_offset);
 | |
| 	header->header_size = le32toh(h->header_size);
 | |
| 	if (header->header_size != header_size) {
 | |
| 		LOG("Unsupported bitmap format\n");
 | |
| 		return CBGFX_ERROR_BITMAP_FORMAT;
 | |
| 	}
 | |
| 
 | |
| 	header->width = le32toh(h->width);
 | |
| 	header->height = le32toh(h->height);
 | |
| 	if (header->width == 0 || header->height == 0) {
 | |
| 		LOG("Invalid image width or height\n");
 | |
| 		return CBGFX_ERROR_BITMAP_DATA;
 | |
| 	}
 | |
| 	dim_org->width = header->width;
 | |
| 	dim_org->height = ABS(header->height);
 | |
| 
 | |
| 	header->bits_per_pixel = le16toh(h->bits_per_pixel);
 | |
| 	header->compression = le32toh(h->compression);
 | |
| 	header->size = le32toh(h->size);
 | |
| 	header->colors_used = le32toh(h->colors_used);
 | |
| 	size_t palette_size = header->colors_used
 | |
| 			* sizeof(struct bitmap_palette_element_v3);
 | |
| 	size_t pixel_offset = file_header.bitmap_offset;
 | |
| 	if (pixel_offset > file_size) {
 | |
| 		LOG("Bitmap pixel data exceeds buffer boundary\n");
 | |
| 		return CBGFX_ERROR_BITMAP_DATA;
 | |
| 	}
 | |
| 	if (palette_offset + palette_size > pixel_offset) {
 | |
| 		LOG("Bitmap palette data exceeds palette boundary\n");
 | |
| 		return CBGFX_ERROR_BITMAP_DATA;
 | |
| 	}
 | |
| 	*palette = (struct bitmap_palette_element_v3 *)(bitmap +
 | |
| 			palette_offset);
 | |
| 
 | |
| 	size_t pixel_size = header->size;
 | |
| 	if (pixel_size != dim_org->height *
 | |
| 		ROUNDUP(dim_org->width * header->bits_per_pixel / 8, 4)) {
 | |
| 		LOG("Bitmap pixel array size does not match expected size\n");
 | |
| 		return CBGFX_ERROR_BITMAP_DATA;
 | |
| 	}
 | |
| 	if (pixel_offset + pixel_size > file_size) {
 | |
| 		LOG("Bitmap pixel array exceeds buffer boundary\n");
 | |
| 		return CBGFX_ERROR_BITMAP_DATA;
 | |
| 	}
 | |
| 	*pixel_array = bitmap + pixel_offset;
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This calculates the dimension of the image projected on the canvas from the
 | |
|  * dimension relative to the canvas size. If either width or height is zero, it
 | |
|  * is derived from the other (non-zero) value to keep the aspect ratio.
 | |
|  */
 | |
| static int calculate_dimension(const struct vector *dim_org,
 | |
| 			       const struct scale *dim_rel,
 | |
| 			       struct vector *dim)
 | |
| {
 | |
| 	if (dim_rel->x.n == 0 && dim_rel->y.n == 0)
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 
 | |
| 	if (dim_rel->x.n > dim_rel->x.d || dim_rel->y.n > dim_rel->y.d)
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 
 | |
| 	if (dim_rel->x.n > 0) {
 | |
| 		if (!is_valid_fraction(&dim_rel->x))
 | |
| 			return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 		dim->width = canvas.size.width  * dim_rel->x.n / dim_rel->x.d;
 | |
| 	}
 | |
| 	if (dim_rel->y.n > 0) {
 | |
| 		if (!is_valid_fraction(&dim_rel->y))
 | |
| 			return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 		dim->height = canvas.size.height * dim_rel->y.n / dim_rel->y.d;
 | |
| 	}
 | |
| 
 | |
| 	/* Derive height from width using aspect ratio */
 | |
| 	if (dim_rel->y.n == 0)
 | |
| 		dim->height = dim->width * dim_org->height / dim_org->width;
 | |
| 	/* Derive width from height using aspect ratio */
 | |
| 	if (dim_rel->x.n == 0)
 | |
| 		dim->width = dim->height * dim_org->width / dim_org->height;
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int calculate_position(const struct vector *dim,
 | |
| 			      const struct scale *pos_rel, uint8_t pivot,
 | |
| 			      struct vector *top_left)
 | |
| {
 | |
| 	int rv;
 | |
| 
 | |
| 	rv = transform_vector(top_left, &canvas.size, pos_rel, &canvas.offset);
 | |
| 	if (rv)
 | |
| 		return rv;
 | |
| 
 | |
| 	switch (pivot & PIVOT_H_MASK) {
 | |
| 	case PIVOT_H_LEFT:
 | |
| 		break;
 | |
| 	case PIVOT_H_CENTER:
 | |
| 		top_left->x -= dim->width / 2;
 | |
| 		break;
 | |
| 	case PIVOT_H_RIGHT:
 | |
| 		top_left->x -= dim->width;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 	}
 | |
| 
 | |
| 	switch (pivot & PIVOT_V_MASK) {
 | |
| 	case PIVOT_V_TOP:
 | |
| 		break;
 | |
| 	case PIVOT_V_CENTER:
 | |
| 		top_left->y -= dim->height / 2;
 | |
| 		break;
 | |
| 	case PIVOT_V_BOTTOM:
 | |
| 		top_left->y -= dim->height;
 | |
| 		break;
 | |
| 	default:
 | |
| 		return CBGFX_ERROR_INVALID_PARAMETER;
 | |
| 	}
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int check_boundary(const struct vector *top_left,
 | |
| 			  const struct vector *dim,
 | |
| 			  const struct rect *bound)
 | |
| {
 | |
| 	struct vector v;
 | |
| 	add_vectors(&v, dim, top_left);
 | |
| 	if (top_left->x < bound->offset.x
 | |
| 			|| top_left->y < bound->offset.y
 | |
| 			|| within_box(&v, bound) < 0)
 | |
| 		return CBGFX_ERROR_BOUNDARY;
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| int draw_bitmap(const void *bitmap, size_t size,
 | |
| 		const struct scale *pos_rel, const struct scale *dim_rel,
 | |
| 		uint32_t flags)
 | |
| {
 | |
| 	struct bitmap_header_v3 header;
 | |
| 	const struct bitmap_palette_element_v3 *palette;
 | |
| 	const uint8_t *pixel_array;
 | |
| 	struct vector top_left, dim, dim_org;
 | |
| 	int rv;
 | |
| 	const uint8_t pivot = flags & PIVOT_MASK;
 | |
| 	const uint8_t invert = (flags & INVERT_COLORS) >> INVERT_SHIFT;
 | |
| 
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	/* only v3 is supported now */
 | |
| 	rv = parse_bitmap_header_v3(bitmap, size,
 | |
| 				    &header, &palette, &pixel_array, &dim_org);
 | |
| 	if (rv)
 | |
| 		return rv;
 | |
| 
 | |
| 	/* Calculate height and width of the image */
 | |
| 	rv = calculate_dimension(&dim_org, dim_rel, &dim);
 | |
| 	if (rv)
 | |
| 		return rv;
 | |
| 
 | |
| 	/* Calculate coordinate */
 | |
| 	rv = calculate_position(&dim, pos_rel, pivot, &top_left);
 | |
| 	if (rv)
 | |
| 		return rv;
 | |
| 
 | |
| 	rv = check_boundary(&top_left, &dim, &canvas);
 | |
| 	if (rv) {
 | |
| 		LOG("Bitmap image exceeds canvas boundary\n");
 | |
| 		return rv;
 | |
| 	}
 | |
| 
 | |
| 	return draw_bitmap_v3(&top_left, &dim, &dim_org,
 | |
| 			      &header, palette, pixel_array, invert);
 | |
| }
 | |
| 
 | |
| int draw_bitmap_direct(const void *bitmap, size_t size,
 | |
| 		       const struct vector *top_left)
 | |
| {
 | |
| 	struct bitmap_header_v3 header;
 | |
| 	const struct bitmap_palette_element_v3 *palette;
 | |
| 	const uint8_t *pixel_array;
 | |
| 	struct vector dim;
 | |
| 	int rv;
 | |
| 
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	/* only v3 is supported now */
 | |
| 	rv = parse_bitmap_header_v3(bitmap, size,
 | |
| 				    &header, &palette, &pixel_array, &dim);
 | |
| 	if (rv)
 | |
| 		return rv;
 | |
| 
 | |
| 	rv = check_boundary(top_left, &dim, &screen);
 | |
| 	if (rv) {
 | |
| 		LOG("Bitmap image exceeds screen boundary\n");
 | |
| 		return rv;
 | |
| 	}
 | |
| 
 | |
| 	return draw_bitmap_v3(top_left, &dim, &dim,
 | |
| 			      &header, palette, pixel_array, 0);
 | |
| }
 | |
| 
 | |
| int get_bitmap_dimension(const void *bitmap, size_t sz, struct scale *dim_rel)
 | |
| {
 | |
| 	struct bitmap_header_v3 header;
 | |
| 	const struct bitmap_palette_element_v3 *palette;
 | |
| 	const uint8_t *pixel_array;
 | |
| 	struct vector dim, dim_org;
 | |
| 	int rv;
 | |
| 
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	/* Only v3 is supported now */
 | |
| 	rv = parse_bitmap_header_v3(bitmap, sz,
 | |
| 				    &header, &palette, &pixel_array, &dim_org);
 | |
| 	if (rv)
 | |
| 		return rv;
 | |
| 
 | |
| 	/* Calculate height and width of the image */
 | |
| 	rv = calculate_dimension(&dim_org, dim_rel, &dim);
 | |
| 	if (rv)
 | |
| 		return rv;
 | |
| 
 | |
| 	/* Calculate size relative to the canvas */
 | |
| 	dim_rel->x.n = dim.width;
 | |
| 	dim_rel->x.d = canvas.size.width;
 | |
| 	dim_rel->y.n = dim.height;
 | |
| 	dim_rel->y.d = canvas.size.height;
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| int enable_graphics_buffer(void)
 | |
| {
 | |
| 	if (gfx_buffer)
 | |
| 		return CBGFX_SUCCESS;
 | |
| 
 | |
| 	if (cbgfx_init())
 | |
| 		return CBGFX_ERROR_INIT;
 | |
| 
 | |
| 	size_t buffer_size = fbinfo->y_resolution * fbinfo->bytes_per_line;
 | |
| 	gfx_buffer = malloc(buffer_size);
 | |
| 	if (!gfx_buffer) {
 | |
| 		LOG("%s: Failed to create graphics buffer (%zu bytes).\n",
 | |
| 		    __func__, buffer_size);
 | |
| 		return CBGFX_ERROR_GRAPHICS_BUFFER;
 | |
| 	}
 | |
| 
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| int flush_graphics_buffer(void)
 | |
| {
 | |
| 	if (!gfx_buffer)
 | |
| 		return CBGFX_ERROR_GRAPHICS_BUFFER;
 | |
| 
 | |
| 	memcpy(REAL_FB, gfx_buffer, fbinfo->y_resolution * fbinfo->bytes_per_line);
 | |
| 	return CBGFX_SUCCESS;
 | |
| }
 | |
| 
 | |
| void disable_graphics_buffer(void)
 | |
| {
 | |
| 	free(gfx_buffer);
 | |
| 	gfx_buffer = NULL;
 | |
| }
 |