Add support for Intel PTT. For supporting Intel PTT we need to disable read and write access to the TPM NVRAM during the bootblock. TPM NVRAM will only be available once the DRAM is initialized. To circumvent this, we mock secdata if HAVE_INTEL_PTT is set. The underlying problem is, that the iTPM only supports a stripped down instruction set while the Intel ME is not fully booted up. Details can be found in Intel document number 571993 - Paragraph 2.10. Change-Id: I08c9a839f53f96506be5fb68f7c1ed5bf6692505 Signed-off-by: Christian Walter <christian.walter@9elements.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/34510 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Philipp Deppenwiese <zaolin.daisuki@gmail.com> Reviewed-by: Julius Werner <jwerner@chromium.org>
486 lines
13 KiB
C
486 lines
13 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright 2014 Google Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <arch/exception.h>
|
|
#include <assert.h>
|
|
#include <bootmode.h>
|
|
#include <cbmem.h>
|
|
#include <console/console.h>
|
|
#include <console/vtxprintf.h>
|
|
#include <string.h>
|
|
#include <timestamp.h>
|
|
#include <vb2_api.h>
|
|
#include <security/vboot/misc.h>
|
|
#include <security/vboot/vbnv.h>
|
|
#include <security/vboot/vboot_crtm.h>
|
|
#include <security/vboot/tpm_common.h>
|
|
|
|
#include "antirollback.h"
|
|
|
|
/* The max hash size to expect is for SHA512. */
|
|
#define VBOOT_MAX_HASH_SIZE VB2_SHA512_DIGEST_SIZE
|
|
|
|
#define TODO_BLOCK_SIZE 1024
|
|
|
|
static int is_slot_a(struct vb2_context *ctx)
|
|
{
|
|
return !(ctx->flags & VB2_CONTEXT_FW_SLOT_B);
|
|
}
|
|
|
|
/* exports */
|
|
|
|
void vb2ex_printf(const char *func, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (func)
|
|
printk(BIOS_INFO, "VB2:%s() ", func);
|
|
|
|
va_start(args, fmt);
|
|
vprintk(BIOS_INFO, fmt, args);
|
|
va_end(args);
|
|
|
|
return;
|
|
}
|
|
|
|
int vb2ex_read_resource(struct vb2_context *ctx,
|
|
enum vb2_resource_index index,
|
|
uint32_t offset,
|
|
void *buf,
|
|
uint32_t size)
|
|
{
|
|
struct region_device rdev;
|
|
const char *name;
|
|
|
|
switch (index) {
|
|
case VB2_RES_GBB:
|
|
name = "GBB";
|
|
break;
|
|
case VB2_RES_FW_VBLOCK:
|
|
if (is_slot_a(ctx))
|
|
name = "VBLOCK_A";
|
|
else
|
|
name = "VBLOCK_B";
|
|
break;
|
|
default:
|
|
return VB2_ERROR_EX_READ_RESOURCE_INDEX;
|
|
}
|
|
|
|
if (vboot_named_region_device(name, &rdev))
|
|
return VB2_ERROR_EX_READ_RESOURCE_SIZE;
|
|
|
|
if (rdev_readat(&rdev, buf, offset, size) != size)
|
|
return VB2_ERROR_EX_READ_RESOURCE_SIZE;
|
|
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
/* No-op stubs that can be overridden by SoCs with hardware crypto support. */
|
|
__weak int vb2ex_hwcrypto_digest_init(enum vb2_hash_algorithm hash_alg,
|
|
uint32_t data_size)
|
|
{
|
|
return VB2_ERROR_EX_HWCRYPTO_UNSUPPORTED;
|
|
}
|
|
|
|
__weak int vb2ex_hwcrypto_digest_extend(const uint8_t *buf, uint32_t size)
|
|
{
|
|
BUG(); /* Should never get called if init() returned an error. */
|
|
return VB2_ERROR_UNKNOWN;
|
|
}
|
|
|
|
__weak int vb2ex_hwcrypto_digest_finalize(uint8_t *digest, uint32_t digest_size)
|
|
{
|
|
BUG(); /* Should never get called if init() returned an error. */
|
|
return VB2_ERROR_UNKNOWN;
|
|
}
|
|
|
|
static int handle_digest_result(void *slot_hash, size_t slot_hash_sz)
|
|
{
|
|
int is_resume;
|
|
|
|
/*
|
|
* Chrome EC is the only support for vboot_save_hash() &
|
|
* vboot_retrieve_hash(), if Chrome EC is not enabled then return.
|
|
*/
|
|
if (!CONFIG(EC_GOOGLE_CHROMEEC))
|
|
return 0;
|
|
|
|
/*
|
|
* Nothing to do since resuming on the platform doesn't require
|
|
* vboot verification again.
|
|
*/
|
|
if (!CONFIG(RESUME_PATH_SAME_AS_BOOT))
|
|
return 0;
|
|
|
|
/*
|
|
* Assume that if vboot doesn't start in bootblock verified
|
|
* RW memory init code is not employed. i.e. memory init code
|
|
* lives in RO CBFS.
|
|
*/
|
|
if (!CONFIG(VBOOT_STARTS_IN_BOOTBLOCK))
|
|
return 0;
|
|
|
|
is_resume = vboot_platform_is_resuming();
|
|
|
|
if (is_resume > 0) {
|
|
uint8_t saved_hash[VBOOT_MAX_HASH_SIZE];
|
|
const size_t saved_hash_sz = sizeof(saved_hash);
|
|
|
|
assert(slot_hash_sz == saved_hash_sz);
|
|
|
|
printk(BIOS_DEBUG, "Platform is resuming.\n");
|
|
|
|
if (vboot_retrieve_hash(saved_hash, saved_hash_sz)) {
|
|
printk(BIOS_ERR, "Couldn't retrieve saved hash.\n");
|
|
return -1;
|
|
}
|
|
|
|
if (memcmp(saved_hash, slot_hash, slot_hash_sz)) {
|
|
printk(BIOS_ERR, "Hash mismatch on resume.\n");
|
|
return -1;
|
|
}
|
|
} else if (is_resume < 0)
|
|
printk(BIOS_ERR, "Unable to determine if platform resuming.\n");
|
|
|
|
printk(BIOS_DEBUG, "Saving vboot hash.\n");
|
|
|
|
/* Always save the hash for the current boot. */
|
|
if (vboot_save_hash(slot_hash, slot_hash_sz)) {
|
|
printk(BIOS_ERR, "Error saving vboot hash.\n");
|
|
/* Though this is an error don't report it up since it could
|
|
* lead to a reboot loop. The consequence of this is that
|
|
* we will most likely fail resuming because of EC issues or
|
|
* the hash digest not matching. */
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int hash_body(struct vb2_context *ctx, struct region_device *fw_main)
|
|
{
|
|
uint64_t load_ts;
|
|
uint32_t expected_size;
|
|
uint8_t block[TODO_BLOCK_SIZE];
|
|
uint8_t hash_digest[VBOOT_MAX_HASH_SIZE];
|
|
const size_t hash_digest_sz = sizeof(hash_digest);
|
|
size_t block_size = sizeof(block);
|
|
size_t offset;
|
|
int rv;
|
|
|
|
/* Clear the full digest so that any hash digests less than the
|
|
* max have trailing zeros. */
|
|
memset(hash_digest, 0, hash_digest_sz);
|
|
|
|
/*
|
|
* Since loading the firmware and calculating its hash is intertwined,
|
|
* we use this little trick to measure them separately and pretend it
|
|
* was first loaded and then hashed in one piece with the timestamps.
|
|
* (This split won't make sense with memory-mapped media like on x86.)
|
|
*/
|
|
load_ts = timestamp_get();
|
|
timestamp_add(TS_START_HASH_BODY, load_ts);
|
|
|
|
expected_size = region_device_sz(fw_main);
|
|
offset = 0;
|
|
|
|
/* Start the body hash */
|
|
rv = vb2api_init_hash(ctx, VB2_HASH_TAG_FW_BODY, &expected_size);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/*
|
|
* Honor vboot's RW slot size. The expected size is pulled out of
|
|
* the preamble and obtained through vb2api_init_hash() above. By
|
|
* creating sub region the RW slot portion of the boot media is
|
|
* limited.
|
|
*/
|
|
if (rdev_chain(fw_main, fw_main, 0, expected_size)) {
|
|
printk(BIOS_ERR, "Unable to restrict CBFS size.\n");
|
|
return VB2_ERROR_UNKNOWN;
|
|
}
|
|
|
|
/* Extend over the body */
|
|
while (expected_size) {
|
|
uint64_t temp_ts;
|
|
if (block_size > expected_size)
|
|
block_size = expected_size;
|
|
|
|
temp_ts = timestamp_get();
|
|
if (rdev_readat(fw_main, block, offset, block_size) < 0)
|
|
return VB2_ERROR_UNKNOWN;
|
|
load_ts += timestamp_get() - temp_ts;
|
|
|
|
rv = vb2api_extend_hash(ctx, block, block_size);
|
|
if (rv)
|
|
return rv;
|
|
|
|
expected_size -= block_size;
|
|
offset += block_size;
|
|
}
|
|
|
|
timestamp_add(TS_DONE_LOADING, load_ts);
|
|
timestamp_add_now(TS_DONE_HASHING);
|
|
|
|
/* Check the result (with RSA signature verification) */
|
|
rv = vb2api_check_hash_get_digest(ctx, hash_digest, hash_digest_sz);
|
|
if (rv)
|
|
return rv;
|
|
|
|
timestamp_add_now(TS_END_HASH_BODY);
|
|
|
|
if (handle_digest_result(hash_digest, hash_digest_sz))
|
|
return VB2_ERROR_UNKNOWN;
|
|
|
|
return VB2_SUCCESS;
|
|
}
|
|
|
|
static int locate_firmware(struct vb2_context *ctx,
|
|
struct region_device *fw_main)
|
|
{
|
|
const char *name;
|
|
|
|
if (is_slot_a(ctx))
|
|
name = "FW_MAIN_A";
|
|
else
|
|
name = "FW_MAIN_B";
|
|
|
|
return vboot_named_region_device(name, fw_main);
|
|
}
|
|
|
|
/**
|
|
* Save non-volatile and/or secure data if needed.
|
|
*/
|
|
static void save_if_needed(struct vb2_context *ctx)
|
|
{
|
|
if (ctx->flags & VB2_CONTEXT_NVDATA_CHANGED) {
|
|
printk(BIOS_INFO, "Saving nvdata\n");
|
|
save_vbnv(ctx->nvdata);
|
|
ctx->flags &= ~VB2_CONTEXT_NVDATA_CHANGED;
|
|
}
|
|
if (ctx->flags & VB2_CONTEXT_SECDATA_CHANGED) {
|
|
printk(BIOS_INFO, "Saving secdata\n");
|
|
antirollback_write_space_firmware(ctx);
|
|
ctx->flags &= ~VB2_CONTEXT_SECDATA_CHANGED;
|
|
}
|
|
}
|
|
|
|
static uint32_t extend_pcrs(struct vb2_context *ctx)
|
|
{
|
|
return vboot_extend_pcr(ctx, 0, BOOT_MODE_PCR) ||
|
|
vboot_extend_pcr(ctx, 1, HWID_DIGEST_PCR);
|
|
}
|
|
|
|
static void vboot_log_and_clear_recovery_mode_switch(int unused)
|
|
{
|
|
/* Log the recovery mode switches if required, before clearing them. */
|
|
log_recovery_mode_switch();
|
|
|
|
/*
|
|
* The recovery mode switch is cleared (typically backed by EC) here
|
|
* to allow multiple queries to get_recovery_mode_switch() and have
|
|
* them return consistent results during the verified boot path as well
|
|
* as dram initialization. x86 systems ignore the saved dram settings
|
|
* in the recovery path in order to start from a clean slate. Therefore
|
|
* clear the state here since this function is called when memory
|
|
* is known to be up.
|
|
*/
|
|
clear_recovery_mode_switch();
|
|
}
|
|
#if !CONFIG(VBOOT_STARTS_IN_ROMSTAGE)
|
|
ROMSTAGE_CBMEM_INIT_HOOK(vboot_log_and_clear_recovery_mode_switch)
|
|
#endif
|
|
|
|
/**
|
|
* Verify and select the firmware in the RW image
|
|
*
|
|
* TODO: Avoid loading a stage twice (once in hash_body & again in load_stage).
|
|
* when per-stage verification is ready.
|
|
*/
|
|
void verstage_main(void)
|
|
{
|
|
struct vb2_context ctx;
|
|
struct region_device fw_main;
|
|
int rv;
|
|
|
|
timestamp_add_now(TS_START_VBOOT);
|
|
|
|
/* Set up context and work buffer */
|
|
vboot_init_work_context(&ctx);
|
|
|
|
/* Initialize and read nvdata from non-volatile storage. */
|
|
vbnv_init(ctx.nvdata);
|
|
|
|
/* Set S3 resume flag if vboot should behave differently when selecting
|
|
* which slot to boot. This is only relevant to vboot if the platform
|
|
* does verification of memory init and thus must ensure it resumes with
|
|
* the same slot that it booted from. */
|
|
if (CONFIG(RESUME_PATH_SAME_AS_BOOT) &&
|
|
vboot_platform_is_resuming())
|
|
ctx.flags |= VB2_CONTEXT_S3_RESUME;
|
|
|
|
/* Read secdata from TPM. Initialize TPM if secdata not found. We don't
|
|
* check the return value here because vb2api_fw_phase1 will catch
|
|
* invalid secdata and tell us what to do (=reboot). */
|
|
timestamp_add_now(TS_START_TPMINIT);
|
|
rv = vboot_setup_tpm(&ctx);
|
|
if (rv)
|
|
antirollback_read_space_firmware(&ctx);
|
|
timestamp_add_now(TS_END_TPMINIT);
|
|
|
|
/* Enable measured boot mode */
|
|
if (CONFIG(VBOOT_MEASURED_BOOT) &&
|
|
!(ctx.flags & VB2_CONTEXT_S3_RESUME)) {
|
|
if (vboot_init_crtm() != VB2_SUCCESS)
|
|
die_with_post_code(POST_INVALID_ROM,
|
|
"Initializing measured boot mode failed!");
|
|
}
|
|
|
|
if (get_recovery_mode_switch()) {
|
|
ctx.flags |= VB2_CONTEXT_FORCE_RECOVERY_MODE;
|
|
if (CONFIG(VBOOT_DISABLE_DEV_ON_RECOVERY))
|
|
ctx.flags |= VB2_CONTEXT_DISABLE_DEVELOPER_MODE;
|
|
}
|
|
|
|
if (CONFIG(VBOOT_WIPEOUT_SUPPORTED) &&
|
|
get_wipeout_mode_switch())
|
|
ctx.flags |= VB2_CONTEXT_FORCE_WIPEOUT_MODE;
|
|
|
|
if (CONFIG(VBOOT_LID_SWITCH) && !get_lid_switch())
|
|
ctx.flags |= VB2_CONTEXT_NOFAIL_BOOT;
|
|
|
|
/* Mainboard/SoC always initializes display. */
|
|
if (!CONFIG(VBOOT_MUST_REQUEST_DISPLAY))
|
|
ctx.flags |= VB2_CONTEXT_DISPLAY_INIT;
|
|
|
|
/* Do early init (set up secdata and NVRAM, load GBB) */
|
|
printk(BIOS_INFO, "Phase 1\n");
|
|
rv = vb2api_fw_phase1(&ctx);
|
|
|
|
/* Jot down some information from vboot which may be required later on
|
|
in coreboot boot flow. */
|
|
if (ctx.flags & VB2_CONTEXT_DISPLAY_INIT)
|
|
/* Mainboard/SoC should initialize display. */
|
|
vboot_get_working_data()->flags |= VBOOT_WD_FLAG_DISPLAY_INIT;
|
|
if (ctx.flags & VB2_CONTEXT_DEVELOPER_MODE)
|
|
vboot_get_working_data()->flags |= VBOOT_WD_FLAG_DEVELOPER_MODE;
|
|
|
|
if (rv) {
|
|
/*
|
|
* If vb2api_fw_phase1 fails, check for return value.
|
|
* If it is set to VB2_ERROR_API_PHASE1_RECOVERY, then continue
|
|
* into recovery mode.
|
|
* For any other error code, save context if needed and reboot.
|
|
*/
|
|
if (rv == VB2_ERROR_API_PHASE1_RECOVERY) {
|
|
printk(BIOS_INFO, "Recovery requested (%x)\n", rv);
|
|
save_if_needed(&ctx);
|
|
extend_pcrs(&ctx); /* ignore failures */
|
|
goto verstage_main_exit;
|
|
}
|
|
|
|
printk(BIOS_INFO, "Reboot requested (%x)\n", rv);
|
|
save_if_needed(&ctx);
|
|
vboot_reboot();
|
|
}
|
|
|
|
/* Determine which firmware slot to boot (based on NVRAM) */
|
|
printk(BIOS_INFO, "Phase 2\n");
|
|
rv = vb2api_fw_phase2(&ctx);
|
|
if (rv) {
|
|
printk(BIOS_INFO, "Reboot requested (%x)\n", rv);
|
|
save_if_needed(&ctx);
|
|
vboot_reboot();
|
|
}
|
|
|
|
/* Try that slot (verify its keyblock and preamble) */
|
|
printk(BIOS_INFO, "Phase 3\n");
|
|
timestamp_add_now(TS_START_VERIFY_SLOT);
|
|
rv = vb2api_fw_phase3(&ctx);
|
|
timestamp_add_now(TS_END_VERIFY_SLOT);
|
|
if (rv) {
|
|
printk(BIOS_INFO, "Reboot requested (%x)\n", rv);
|
|
save_if_needed(&ctx);
|
|
vboot_reboot();
|
|
}
|
|
|
|
printk(BIOS_INFO, "Phase 4\n");
|
|
rv = locate_firmware(&ctx, &fw_main);
|
|
if (rv)
|
|
die_with_post_code(POST_INVALID_ROM,
|
|
"Failed to read FMAP to locate firmware");
|
|
|
|
rv = hash_body(&ctx, &fw_main);
|
|
save_if_needed(&ctx);
|
|
if (rv) {
|
|
printk(BIOS_INFO, "Reboot requested (%x)\n", rv);
|
|
vboot_reboot();
|
|
}
|
|
|
|
/* Only extend PCRs once on boot. */
|
|
if (!(ctx.flags & VB2_CONTEXT_S3_RESUME)) {
|
|
timestamp_add_now(TS_START_TPMPCR);
|
|
rv = extend_pcrs(&ctx);
|
|
if (rv) {
|
|
printk(BIOS_WARNING,
|
|
"Failed to extend TPM PCRs (%#x)\n", rv);
|
|
vb2api_fail(&ctx, VB2_RECOVERY_RO_TPM_U_ERROR, rv);
|
|
save_if_needed(&ctx);
|
|
vboot_reboot();
|
|
}
|
|
timestamp_add_now(TS_END_TPMPCR);
|
|
}
|
|
|
|
/* Lock TPM */
|
|
|
|
timestamp_add_now(TS_START_TPMLOCK);
|
|
rv = antirollback_lock_space_firmware();
|
|
if (rv) {
|
|
printk(BIOS_INFO, "Failed to lock TPM (%x)\n", rv);
|
|
vb2api_fail(&ctx, VB2_RECOVERY_RO_TPM_L_ERROR, 0);
|
|
save_if_needed(&ctx);
|
|
vboot_reboot();
|
|
}
|
|
timestamp_add_now(TS_END_TPMLOCK);
|
|
|
|
/* Lock rec hash space if available. */
|
|
if (CONFIG(VBOOT_HAS_REC_HASH_SPACE)) {
|
|
rv = antirollback_lock_space_rec_hash();
|
|
if (rv) {
|
|
printk(BIOS_INFO, "Failed to lock rec hash space(%x)\n",
|
|
rv);
|
|
vb2api_fail(&ctx, VB2_RECOVERY_RO_TPM_REC_HASH_L_ERROR,
|
|
0);
|
|
save_if_needed(&ctx);
|
|
vboot_reboot();
|
|
}
|
|
}
|
|
|
|
printk(BIOS_INFO, "Slot %c is selected\n", is_slot_a(&ctx) ? 'A' : 'B');
|
|
vboot_set_selected_region(region_device_region(&fw_main));
|
|
|
|
verstage_main_exit:
|
|
/* If CBMEM is not up yet, let the ROMSTAGE_CBMEM_INIT_HOOK take care
|
|
of running this function. */
|
|
if (ENV_ROMSTAGE && CONFIG(VBOOT_STARTS_IN_ROMSTAGE))
|
|
vboot_log_and_clear_recovery_mode_switch(0);
|
|
|
|
/* Save recovery reason in case of unexpected reboots on x86. */
|
|
vboot_save_recovery_reason_vbnv();
|
|
|
|
vboot_finalize_work_context(&ctx);
|
|
timestamp_add_now(TS_END_VBOOT);
|
|
}
|