This is spotted using ./util/lint/kconfig_lint To work around the issue, rename the prefix from `CONFIG_` to `CONF_`. Change-Id: Ia31aed366bf768ab167ed5f8595bee8234aac46b Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/c/31049 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Nico Huber <nico.h@gmx.de> Reviewed-by: Angel Pons <th3fanbus@gmail.com>
634 lines
16 KiB
C
634 lines
16 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2010 Samsung Electronics
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <arch/io.h>
|
|
#include <assert.h>
|
|
#include <console/console.h>
|
|
#include <soc/clk.h>
|
|
#include <soc/periph.h>
|
|
#include <stdlib.h>
|
|
#include <timer.h>
|
|
|
|
/* input clock of PLL: SMDK5420 has 24MHz input clock */
|
|
#define CONF_SYS_CLK_FREQ 24000000
|
|
|
|
/* Epll Clock division values to achieve different frequency output */
|
|
static struct st_epll_con_val epll_div[] = {
|
|
{ 192000000, 0, 48, 3, 1, 0 },
|
|
{ 180000000, 0, 45, 3, 1, 0 },
|
|
{ 73728000, 1, 73, 3, 3, 47710 },
|
|
{ 67737600, 1, 90, 4, 3, 20762 },
|
|
{ 49152000, 0, 49, 3, 3, 9961 },
|
|
{ 45158400, 0, 45, 3, 3, 10381 },
|
|
{ 180633600, 0, 45, 3, 1, 10381 }
|
|
};
|
|
|
|
/* exynos5: return pll clock frequency */
|
|
unsigned long get_pll_clk(int pllreg)
|
|
{
|
|
unsigned long r, m, p, s, k = 0, mask, fout;
|
|
unsigned int freq;
|
|
|
|
switch (pllreg) {
|
|
case APLL:
|
|
r = read32(&exynos_clock->apll_con0);
|
|
break;
|
|
case MPLL:
|
|
r = read32(&exynos_clock->mpll_con0);
|
|
break;
|
|
case EPLL:
|
|
r = read32(&exynos_clock->epll_con0);
|
|
k = read32(&exynos_clock->epll_con1);
|
|
break;
|
|
case VPLL:
|
|
r = read32(&exynos_clock->vpll_con0);
|
|
k = read32(&exynos_clock->vpll_con1);
|
|
break;
|
|
case BPLL:
|
|
r = read32(&exynos_clock->bpll_con0);
|
|
break;
|
|
case RPLL:
|
|
r = read32(&exynos_clock->rpll_con0);
|
|
k = read32(&exynos_clock->rpll_con1);
|
|
break;
|
|
case SPLL:
|
|
r = read32(&exynos_clock->spll_con0);
|
|
break;
|
|
case CPLL:
|
|
r = read32(&exynos_clock->cpll_con0);
|
|
break;
|
|
case DPLL:
|
|
r = read32(&exynos_clock->dpll_con0);
|
|
break;
|
|
default:
|
|
printk(BIOS_DEBUG, "Unsupported PLL (%d)\n", pllreg);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* APLL_CON: MIDV [25:16]
|
|
* MPLL_CON: MIDV [25:16]
|
|
* EPLL_CON: MIDV [24:16]
|
|
* VPLL_CON: MIDV [24:16]
|
|
*/
|
|
if (pllreg == APLL || pllreg == BPLL || pllreg == MPLL ||
|
|
pllreg == SPLL)
|
|
mask = 0x3ff;
|
|
else
|
|
mask = 0x1ff;
|
|
|
|
m = (r >> 16) & mask;
|
|
|
|
/* PDIV [13:8] */
|
|
p = (r >> 8) & 0x3f;
|
|
/* SDIV [2:0] */
|
|
s = r & 0x7;
|
|
|
|
freq = CONF_SYS_CLK_FREQ;
|
|
|
|
if (pllreg == EPLL || pllreg == RPLL) {
|
|
k = k & 0xffff;
|
|
/* FOUT = (MDIV + K / 65536) * FIN / (PDIV * 2^SDIV) */
|
|
fout = (m + k / 65536) * (freq / (p * (1 << s)));
|
|
} else if (pllreg == VPLL) {
|
|
k = k & 0xfff;
|
|
/* FOUT = (MDIV + K / 1024) * FIN / (PDIV * 2^SDIV) */
|
|
fout = (m + k / 1024) * (freq / (p * (1 << s)));
|
|
} else {
|
|
/* FOUT = MDIV * FIN / (PDIV * 2^SDIV) */
|
|
fout = m * (freq / (p * (1 << s)));
|
|
}
|
|
|
|
return fout;
|
|
}
|
|
|
|
enum peripheral_clock_select {
|
|
PERIPH_SRC_CPLL = 1,
|
|
PERIPH_SRC_DPLL = 2,
|
|
PERIPH_SRC_MPLL = 3,
|
|
PERIPH_SRC_SPLL = 4,
|
|
PERIPH_SRC_IPLL = 5,
|
|
PERIPH_SRC_EPLL = 6,
|
|
PERIPH_SRC_RPLL = 7,
|
|
};
|
|
|
|
static int clock_select_to_pll(enum peripheral_clock_select sel)
|
|
{
|
|
int pll;
|
|
|
|
switch (sel) {
|
|
case PERIPH_SRC_CPLL:
|
|
pll = CPLL;
|
|
break;
|
|
case PERIPH_SRC_DPLL:
|
|
pll = DPLL;
|
|
break;
|
|
case PERIPH_SRC_MPLL:
|
|
pll = MPLL;
|
|
break;
|
|
case PERIPH_SRC_SPLL:
|
|
pll = SPLL;
|
|
break;
|
|
case PERIPH_SRC_IPLL:
|
|
pll = IPLL;
|
|
break;
|
|
case PERIPH_SRC_EPLL:
|
|
pll = EPLL;
|
|
break;
|
|
case PERIPH_SRC_RPLL:
|
|
pll = RPLL;
|
|
break;
|
|
default:
|
|
pll = -1;
|
|
break;
|
|
}
|
|
|
|
return pll;
|
|
}
|
|
|
|
unsigned long clock_get_periph_rate(enum periph_id peripheral)
|
|
{
|
|
unsigned long sclk;
|
|
unsigned int div;
|
|
int src;
|
|
|
|
switch (peripheral) {
|
|
case PERIPH_ID_UART0:
|
|
src = (read32(&exynos_clock->clk_src_peric0) >> 4) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_peric0) >> 8) & 0xf;
|
|
break;
|
|
case PERIPH_ID_UART1:
|
|
src = (read32(&exynos_clock->clk_src_peric0) >> 8) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_peric0) >> 12) & 0xf;
|
|
break;
|
|
case PERIPH_ID_UART2:
|
|
src = (read32(&exynos_clock->clk_src_peric0) >> 12) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_peric0) >> 16) & 0xf;
|
|
break;
|
|
case PERIPH_ID_UART3:
|
|
src = (read32(&exynos_clock->clk_src_peric0) >> 16) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_peric0) >> 20) & 0xf;
|
|
break;
|
|
case PERIPH_ID_PWM0:
|
|
case PERIPH_ID_PWM1:
|
|
case PERIPH_ID_PWM2:
|
|
case PERIPH_ID_PWM3:
|
|
case PERIPH_ID_PWM4:
|
|
src = (read32(&exynos_clock->clk_src_peric0) >> 24) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_peric0) >> 28) & 0x7;
|
|
break;
|
|
case PERIPH_ID_SPI0:
|
|
src = (read32(&exynos_clock->clk_src_peric1) >> 20) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_peric1) >> 20) & 0xf;
|
|
break;
|
|
case PERIPH_ID_SPI1:
|
|
src = (read32(&exynos_clock->clk_src_peric1) >> 24) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_peric1) >> 24) & 0xf;
|
|
break;
|
|
case PERIPH_ID_SPI2:
|
|
src = (read32(&exynos_clock->clk_src_peric1) >> 28) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_peric1) >> 28) & 0xf;
|
|
break;
|
|
case PERIPH_ID_SPI3: /* aka SPI0_ISP */
|
|
src = (read32(&exynos_clock->clk_src_isp) >> 16) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_isp0) >> 0) & 0x7;
|
|
break;
|
|
case PERIPH_ID_SPI4: /* aka SPI1_ISP */
|
|
src = (read32(&exynos_clock->clk_src_isp) >> 12) & 0x7;
|
|
div = (read32(&exynos_clock->clk_div_isp1) >> 4) & 0x7;
|
|
break;
|
|
case PERIPH_ID_I2C0:
|
|
case PERIPH_ID_I2C1:
|
|
case PERIPH_ID_I2C2:
|
|
case PERIPH_ID_I2C3:
|
|
case PERIPH_ID_I2C4:
|
|
case PERIPH_ID_I2C5:
|
|
case PERIPH_ID_I2C6:
|
|
case PERIPH_ID_I2C7:
|
|
case PERIPH_ID_I2C8:
|
|
case PERIPH_ID_I2C9:
|
|
case PERIPH_ID_I2C10:
|
|
/*
|
|
* I2C block parent clock selection is different from other
|
|
* peripherals, so we handle it all here.
|
|
* TODO: Add a helper function like with the peripheral clock
|
|
* select fields?
|
|
*/
|
|
src = (read32(&exynos_clock->clk_src_top1) >> 8) & 0x3;
|
|
if (src == 0x0)
|
|
src = CPLL;
|
|
else if (src == 0x1)
|
|
src = DPLL;
|
|
else if (src == 0x2)
|
|
src = MPLL;
|
|
else
|
|
return -1;
|
|
|
|
sclk = get_pll_clk(src);
|
|
div = ((read32(&exynos_clock->clk_div_top1) >> 8) & 0x3f) + 1;
|
|
return sclk / div;
|
|
default:
|
|
printk(BIOS_DEBUG, "%s: invalid peripheral %d",
|
|
__func__, peripheral);
|
|
return -1;
|
|
};
|
|
|
|
src = clock_select_to_pll(src);
|
|
if (src < 0) {
|
|
printk(BIOS_DEBUG, "%s: cannot determine source PLL", __func__);
|
|
return -1;
|
|
}
|
|
|
|
sclk = get_pll_clk(src);
|
|
|
|
return sclk / (div + 1);
|
|
}
|
|
|
|
/* exynos5: return ARM clock frequency */
|
|
unsigned long get_arm_clk(void)
|
|
{
|
|
unsigned long div;
|
|
unsigned long armclk;
|
|
unsigned int arm_ratio;
|
|
unsigned int arm2_ratio;
|
|
|
|
div = read32(&exynos_clock->clk_div_cpu0);
|
|
|
|
/* ARM_RATIO: [2:0], ARM2_RATIO: [30:28] */
|
|
arm_ratio = (div >> 0) & 0x7;
|
|
arm2_ratio = (div >> 28) & 0x7;
|
|
|
|
armclk = get_pll_clk(APLL) / (arm_ratio + 1);
|
|
armclk /= (arm2_ratio + 1);
|
|
|
|
return armclk;
|
|
}
|
|
|
|
/* exynos5: get the mmc clock */
|
|
static unsigned long get_mmc_clk(int dev_index)
|
|
{
|
|
unsigned long uclk, sclk;
|
|
unsigned int sel, ratio;
|
|
int shift = 0;
|
|
|
|
sel = read32(&exynos_clock->clk_src_fsys);
|
|
sel = (sel >> ((dev_index * 4) + 8)) & 0x7;
|
|
|
|
if (sel == 0x3)
|
|
sclk = get_pll_clk(MPLL);
|
|
else if (sel == 0x6)
|
|
sclk = get_pll_clk(EPLL);
|
|
else
|
|
return 0;
|
|
|
|
ratio = read32(&exynos_clock->clk_div_fsys1);
|
|
|
|
shift = dev_index * 10;
|
|
|
|
ratio = (ratio >> shift) & 0x3ff;
|
|
uclk = (sclk / (ratio + 1));
|
|
printk(BIOS_DEBUG, "%s(%d): %lu\n", __func__, dev_index, uclk);
|
|
|
|
return uclk;
|
|
}
|
|
|
|
/* exynos5: set the mmc clock */
|
|
void set_mmc_clk(int dev_index, unsigned int div)
|
|
{
|
|
void *addr;
|
|
unsigned int val, shift;
|
|
|
|
addr = &exynos_clock->clk_div_fsys1;
|
|
shift = dev_index * 10;
|
|
|
|
val = read32(addr);
|
|
val &= ~(0x3ff << shift);
|
|
val |= (div & 0x3ff) << shift;
|
|
write32(addr, val);
|
|
}
|
|
|
|
/* Set DW MMC Controller clock */
|
|
int clock_set_dwmci(enum periph_id peripheral)
|
|
{
|
|
/* Request MMC clock value to 52MHz. */
|
|
const unsigned long freq = 52000000;
|
|
unsigned long sdclkin, cclkin;
|
|
int device_index = (int)peripheral - (int)PERIPH_ID_SDMMC0;
|
|
|
|
ASSERT(device_index >= 0 && device_index < 4);
|
|
sdclkin = get_mmc_clk(device_index);
|
|
if (!sdclkin) {
|
|
return -1;
|
|
}
|
|
|
|
/* The SDCLKIN is divided inside the controller by the DIVRATIO field in
|
|
* CLKSEL register, so we must calculate clock value as
|
|
* cclk_in = SDCLKIN / (DIVRATIO + 1)
|
|
* Currently the RIVRATIO must be 3 for MMC0 and MMC2 on Exynos5420
|
|
* (and must be configured in payload).
|
|
*/
|
|
if (device_index == 0 || device_index == 2){
|
|
int divratio = 3;
|
|
sdclkin /= (divratio + 1);
|
|
}
|
|
printk(BIOS_DEBUG, "%s(%d): sdclkin: %ld\n", __func__, device_index, sdclkin);
|
|
|
|
cclkin = DIV_ROUND_UP(sdclkin, freq);
|
|
set_mmc_clk(device_index, cclkin);
|
|
return 0;
|
|
}
|
|
|
|
void clock_ll_set_pre_ratio(enum periph_id periph_id, unsigned divisor)
|
|
{
|
|
unsigned shift;
|
|
unsigned mask = 0xff;
|
|
u32 *reg;
|
|
|
|
/*
|
|
* For now we only handle a very small subset of peripherals here.
|
|
* Others will need to (and do) mangle the clock registers
|
|
* themselves, At some point it is hoped that this function can work
|
|
* from a table or calculated register offset / mask. For now this
|
|
* is at least better than spreading clock control code around
|
|
* U-Boot.
|
|
*/
|
|
switch (periph_id) {
|
|
case PERIPH_ID_SPI0:
|
|
reg = &exynos_clock->clk_div_peric4;
|
|
shift = 8;
|
|
break;
|
|
case PERIPH_ID_SPI1:
|
|
reg = &exynos_clock->clk_div_peric4;
|
|
shift = 16;
|
|
break;
|
|
case PERIPH_ID_SPI2:
|
|
reg = &exynos_clock->clk_div_peric4;
|
|
shift = 24;
|
|
break;
|
|
case PERIPH_ID_SPI3:
|
|
reg = &exynos_clock->clk_div_isp1;
|
|
shift = 0;
|
|
break;
|
|
case PERIPH_ID_SPI4:
|
|
reg = &exynos_clock->clk_div_isp1;
|
|
shift = 8;
|
|
break;
|
|
default:
|
|
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
|
|
periph_id);
|
|
return;
|
|
}
|
|
clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift);
|
|
}
|
|
|
|
void clock_ll_set_ratio(enum periph_id periph_id, unsigned divisor)
|
|
{
|
|
unsigned shift;
|
|
unsigned mask = 0xf;
|
|
u32 *reg;
|
|
|
|
switch (periph_id) {
|
|
case PERIPH_ID_SPI0:
|
|
reg = &exynos_clock->clk_div_peric1;
|
|
shift = 20;
|
|
break;
|
|
case PERIPH_ID_SPI1:
|
|
reg = &exynos_clock->clk_div_peric1;
|
|
shift = 24;
|
|
break;
|
|
case PERIPH_ID_SPI2:
|
|
reg = &exynos_clock->clk_div_peric1;
|
|
shift = 28;
|
|
break;
|
|
case PERIPH_ID_SPI3:
|
|
reg = &exynos_clock->clk_div_isp1;
|
|
shift = 16;
|
|
break;
|
|
case PERIPH_ID_SPI4:
|
|
reg = &exynos_clock->clk_div_isp1;
|
|
shift = 20;
|
|
break;
|
|
default:
|
|
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
|
|
periph_id);
|
|
return;
|
|
}
|
|
clrsetbits_le32(reg, mask << shift, (divisor & mask) << shift);
|
|
}
|
|
|
|
/**
|
|
* Linearly searches for the most accurate main and fine stage clock scalars
|
|
* (divisors) for a specified target frequency and scalar bit sizes by checking
|
|
* all multiples of main_scalar_bits values. Will always return scalars up to or
|
|
* slower than target.
|
|
*
|
|
* @param main_scalar_bits Number of main scalar bits, must be > 0 and < 32
|
|
* @param fine_scalar_bits Number of fine scalar bits, must be > 0 and < 32
|
|
* @param input_rate Clock frequency to be scaled in Hz
|
|
* @param target_rate Desired clock frequency in Hz
|
|
* @param best_fine_scalar Pointer to store the fine stage divisor
|
|
*
|
|
* @return best_main_scalar Main scalar for desired frequency or -1 if none
|
|
* found
|
|
*/
|
|
static int clock_calc_best_scalar(unsigned int main_scaler_bits,
|
|
unsigned int fine_scalar_bits, unsigned int input_rate,
|
|
unsigned int target_rate, unsigned int *best_fine_scalar)
|
|
{
|
|
int i;
|
|
int best_main_scalar = -1;
|
|
unsigned int best_error = target_rate;
|
|
const unsigned int cap = (1 << fine_scalar_bits) - 1;
|
|
const unsigned int loops = 1 << main_scaler_bits;
|
|
|
|
printk(BIOS_DEBUG, "Input Rate is %u, Target is %u, Cap is %u\n", input_rate,
|
|
target_rate, cap);
|
|
|
|
ASSERT(best_fine_scalar != NULL);
|
|
ASSERT(main_scaler_bits <= fine_scalar_bits);
|
|
|
|
*best_fine_scalar = 1;
|
|
|
|
if (input_rate == 0 || target_rate == 0)
|
|
return -1;
|
|
|
|
if (target_rate >= input_rate)
|
|
return 1;
|
|
|
|
for (i = 1; i <= loops; i++) {
|
|
const unsigned int effective_div = MAX(MIN(input_rate / i /
|
|
target_rate, cap), 1);
|
|
const unsigned int effective_rate = input_rate / i /
|
|
effective_div;
|
|
const int error = target_rate - effective_rate;
|
|
|
|
printk(BIOS_DEBUG, "%d|effdiv:%u, effrate:%u, error:%d\n", i, effective_div,
|
|
effective_rate, error);
|
|
|
|
if (error >= 0 && error <= best_error) {
|
|
best_error = error;
|
|
best_main_scalar = i;
|
|
*best_fine_scalar = effective_div;
|
|
}
|
|
}
|
|
|
|
return best_main_scalar;
|
|
}
|
|
|
|
int clock_set_rate(enum periph_id periph_id, unsigned int rate)
|
|
{
|
|
int main_scalar;
|
|
unsigned int fine;
|
|
|
|
switch (periph_id) {
|
|
case PERIPH_ID_SPI0:
|
|
case PERIPH_ID_SPI1:
|
|
case PERIPH_ID_SPI2:
|
|
case PERIPH_ID_SPI3:
|
|
case PERIPH_ID_SPI4:
|
|
main_scalar = clock_calc_best_scalar(4, 8, 400000000, rate, &fine);
|
|
if (main_scalar < 0) {
|
|
printk(BIOS_DEBUG, "%s: Cannot set clock rate for periph %d",
|
|
__func__, periph_id);
|
|
return -1;
|
|
}
|
|
clock_ll_set_ratio(periph_id, main_scalar - 1);
|
|
clock_ll_set_pre_ratio(periph_id, fine - 1);
|
|
break;
|
|
default:
|
|
printk(BIOS_DEBUG, "%s: Unsupported peripheral ID %d\n", __func__,
|
|
periph_id);
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int clock_set_mshci(enum periph_id peripheral)
|
|
{
|
|
u32 *addr;
|
|
unsigned int clock;
|
|
unsigned int tmp;
|
|
unsigned int i;
|
|
|
|
/* get mpll clock */
|
|
clock = get_pll_clk(MPLL) / 1000000;
|
|
|
|
/*
|
|
* CLK_DIV_FSYS1
|
|
* MMC0_PRE_RATIO [15:8], MMC0_RATIO [3:0]
|
|
* CLK_DIV_FSYS2
|
|
* MMC2_PRE_RATIO [15:8], MMC2_RATIO [3:0]
|
|
*/
|
|
switch (peripheral) {
|
|
case PERIPH_ID_SDMMC0:
|
|
addr = &exynos_clock->clk_div_fsys1;
|
|
break;
|
|
case PERIPH_ID_SDMMC2:
|
|
addr = &exynos_clock->clk_div_fsys2;
|
|
break;
|
|
default:
|
|
printk(BIOS_DEBUG, "invalid peripheral\n");
|
|
return -1;
|
|
}
|
|
tmp = read32(addr) & ~0xff0f;
|
|
for (i = 0; i <= 0xf; i++) {
|
|
if ((clock / (i + 1)) <= 400) {
|
|
write32(addr, tmp | i << 0);
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int clock_epll_set_rate(unsigned long rate)
|
|
{
|
|
unsigned int epll_con, epll_con_k;
|
|
unsigned int i;
|
|
unsigned int lockcnt;
|
|
struct stopwatch sw;
|
|
|
|
epll_con = read32(&exynos_clock->epll_con0);
|
|
epll_con &= ~((EPLL_CON0_LOCK_DET_EN_MASK <<
|
|
EPLL_CON0_LOCK_DET_EN_SHIFT) |
|
|
EPLL_CON0_MDIV_MASK << EPLL_CON0_MDIV_SHIFT |
|
|
EPLL_CON0_PDIV_MASK << EPLL_CON0_PDIV_SHIFT |
|
|
EPLL_CON0_SDIV_MASK << EPLL_CON0_SDIV_SHIFT);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(epll_div); i++) {
|
|
if (epll_div[i].freq_out == rate)
|
|
break;
|
|
}
|
|
|
|
if (i == ARRAY_SIZE(epll_div))
|
|
return -1;
|
|
|
|
epll_con_k = epll_div[i].k_dsm << 0;
|
|
epll_con |= epll_div[i].en_lock_det << EPLL_CON0_LOCK_DET_EN_SHIFT;
|
|
epll_con |= epll_div[i].m_div << EPLL_CON0_MDIV_SHIFT;
|
|
epll_con |= epll_div[i].p_div << EPLL_CON0_PDIV_SHIFT;
|
|
epll_con |= epll_div[i].s_div << EPLL_CON0_SDIV_SHIFT;
|
|
|
|
/*
|
|
* Required period (in cycles) to generate a stable clock output.
|
|
* The maximum clock time can be up to 3000 * PDIV cycles of PLLs
|
|
* frequency input (as per spec)
|
|
*/
|
|
lockcnt = 3000 * epll_div[i].p_div;
|
|
|
|
write32(&exynos_clock->epll_lock, lockcnt);
|
|
write32(&exynos_clock->epll_con0, epll_con);
|
|
write32(&exynos_clock->epll_con1, epll_con_k);
|
|
|
|
stopwatch_init_msecs_expire(&sw, TIMEOUT_EPLL_LOCK);
|
|
|
|
while (!(read32(&exynos_clock->epll_con0) &
|
|
(0x1 << EXYNOS5_EPLLCON0_LOCKED_SHIFT))) {
|
|
if (stopwatch_expired(&sw)) {
|
|
printk(BIOS_DEBUG, "%s: Timeout waiting for EPLL lock\n", __func__);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void clock_select_i2s_clk_source(void)
|
|
{
|
|
clrsetbits_le32(&exynos_clock->clk_src_peric1, AUDIO1_SEL_MASK,
|
|
(CLK_SRC_SCLK_EPLL));
|
|
}
|
|
|
|
int clock_set_i2s_clk_prescaler(unsigned int src_frq, unsigned int dst_frq)
|
|
{
|
|
unsigned int div ;
|
|
|
|
if ((dst_frq == 0) || (src_frq == 0)) {
|
|
printk(BIOS_DEBUG, "%s: Invalid frequency input for prescaler\n", __func__);
|
|
printk(BIOS_DEBUG, "src frq = %d des frq = %d ", src_frq, dst_frq);
|
|
return -1;
|
|
}
|
|
|
|
div = (src_frq / dst_frq);
|
|
if (div > AUDIO_1_RATIO_MASK) {
|
|
printk(BIOS_DEBUG, "%s: Frequency ratio is out of range\n", __func__);
|
|
printk(BIOS_DEBUG, "src frq = %d des frq = %d ", src_frq, dst_frq);
|
|
return -1;
|
|
}
|
|
clrsetbits_le32(&exynos_clock->clk_div_peric4, AUDIO_1_RATIO_MASK,
|
|
(div & AUDIO_1_RATIO_MASK));
|
|
return 0;
|
|
}
|