This renames TARGET_I386 to ARCH_X86 to make it more uniform with other parts of the codebase, e.g. cbfs_core.h from cbfstool. Change-Id: I1babcc941245ed1dde0478a21828766759373a42 Signed-off-by: David Hendricks <dhendrix@chromium.org> Reviewed-on: http://review.coreboot.org/1961 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org> Reviewed-by: Dave Frodin <dave.frodin@se-eng.com>
		
			
				
	
	
		
			221 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This file is part of the libpayload project.
 | |
|  *
 | |
|  * It has originally been taken from the OpenBSD project.
 | |
|  */
 | |
| 
 | |
| /*	$OpenBSD: sha1.c,v 1.20 2005/08/08 08:05:35 espie Exp $	*/
 | |
| 
 | |
| /*
 | |
|  * SHA-1 in C
 | |
|  * By Steve Reid <steve@edmweb.com>
 | |
|  * 100% Public Domain
 | |
|  *
 | |
|  * Test Vectors (from FIPS PUB 180-1)
 | |
|  * "abc"
 | |
|  *   A9993E36 4706816A BA3E2571 7850C26C 9CD0D89D
 | |
|  * "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"
 | |
|  *   84983E44 1C3BD26E BAAE4AA1 F95129E5 E54670F1
 | |
|  * A million repetitions of "a"
 | |
|  *   34AA973C D4C4DAA4 F61EEB2B DBAD2731 6534016F
 | |
|  */
 | |
| 
 | |
| #include <libpayload-config.h>
 | |
| #include <libpayload.h>
 | |
| 
 | |
| typedef u8 u_int8_t;
 | |
| typedef u32 u_int32_t;
 | |
| typedef u64 u_int64_t;
 | |
| typedef unsigned int u_int;
 | |
| 
 | |
| /* Moved from libpayload.h */
 | |
| 
 | |
| #ifdef CONFIG_ARCH_X86
 | |
| #define BYTE_ORDER      LITTLE_ENDIAN
 | |
| #else
 | |
| #define BYTE_ORDER      BIG_ENDIAN
 | |
| #endif
 | |
| 
 | |
| #if 0
 | |
| #include <sys/param.h>
 | |
| #include <string.h>
 | |
| #include <sha1.h>
 | |
| #endif
 | |
| 
 | |
| #define rol(value, bits) (((value) << (bits)) | ((value) >> (32 - (bits))))
 | |
| 
 | |
| /*
 | |
|  * blk0() and blk() perform the initial expand.
 | |
|  * I got the idea of expanding during the round function from SSLeay
 | |
|  */
 | |
| #if BYTE_ORDER == LITTLE_ENDIAN
 | |
| # define blk0(i) (block->l[i] = (rol(block->l[i],24)&0xFF00FF00) \
 | |
|     |(rol(block->l[i],8)&0x00FF00FF))
 | |
| #else
 | |
| # define blk0(i) block->l[i]
 | |
| #endif
 | |
| #define blk(i) (block->l[i&15] = rol(block->l[(i+13)&15]^block->l[(i+8)&15] \
 | |
|     ^block->l[(i+2)&15]^block->l[i&15],1))
 | |
| 
 | |
| /*
 | |
|  * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
 | |
|  */
 | |
| #define R0(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
 | |
| #define R1(v,w,x,y,z,i) z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=rol(w,30);
 | |
| #define R2(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=rol(w,30);
 | |
| #define R3(v,w,x,y,z,i) z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=rol(w,30);
 | |
| #define R4(v,w,x,y,z,i) z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=rol(w,30);
 | |
| 
 | |
| /*
 | |
|  * Hash a single 512-bit block. This is the core of the algorithm.
 | |
|  */
 | |
| void
 | |
| SHA1Transform(u_int32_t state[5], const u_int8_t buffer[SHA1_BLOCK_LENGTH])
 | |
| {
 | |
| 	u_int32_t a, b, c, d, e;
 | |
| 	u_int8_t workspace[SHA1_BLOCK_LENGTH];
 | |
| 	typedef union {
 | |
| 		u_int8_t c[64];
 | |
| 		u_int32_t l[16];
 | |
| 	} CHAR64LONG16;
 | |
| 	CHAR64LONG16 *block = (CHAR64LONG16 *)workspace;
 | |
| 
 | |
| 	(void)memcpy(block, buffer, SHA1_BLOCK_LENGTH);
 | |
| 
 | |
| 	/* Copy context->state[] to working vars */
 | |
| 	a = state[0];
 | |
| 	b = state[1];
 | |
| 	c = state[2];
 | |
| 	d = state[3];
 | |
| 	e = state[4];
 | |
| 
 | |
| 	/* 4 rounds of 20 operations each. Loop unrolled. */
 | |
| 	R0(a,b,c,d,e, 0); R0(e,a,b,c,d, 1); R0(d,e,a,b,c, 2); R0(c,d,e,a,b, 3);
 | |
| 	R0(b,c,d,e,a, 4); R0(a,b,c,d,e, 5); R0(e,a,b,c,d, 6); R0(d,e,a,b,c, 7);
 | |
| 	R0(c,d,e,a,b, 8); R0(b,c,d,e,a, 9); R0(a,b,c,d,e,10); R0(e,a,b,c,d,11);
 | |
| 	R0(d,e,a,b,c,12); R0(c,d,e,a,b,13); R0(b,c,d,e,a,14); R0(a,b,c,d,e,15);
 | |
| 	R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
 | |
| 	R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
 | |
| 	R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
 | |
| 	R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
 | |
| 	R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
 | |
| 	R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
 | |
| 	R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
 | |
| 	R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
 | |
| 	R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
 | |
| 	R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
 | |
| 	R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
 | |
| 	R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
 | |
| 	R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
 | |
| 	R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
 | |
| 	R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
 | |
| 	R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
 | |
| 
 | |
| 	/* Add the working vars back into context.state[] */
 | |
| 	state[0] += a;
 | |
| 	state[1] += b;
 | |
| 	state[2] += c;
 | |
| 	state[3] += d;
 | |
| 	state[4] += e;
 | |
| 
 | |
| 	/* Wipe variables */
 | |
| 	a = b = c = d = e = 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * SHA1Init - Initialize new context
 | |
|  */
 | |
| void
 | |
| SHA1Init(SHA1_CTX *context)
 | |
| {
 | |
| 
 | |
| 	/* SHA1 initialization constants */
 | |
| 	context->count = 0;
 | |
| 	context->state[0] = 0x67452301;
 | |
| 	context->state[1] = 0xEFCDAB89;
 | |
| 	context->state[2] = 0x98BADCFE;
 | |
| 	context->state[3] = 0x10325476;
 | |
| 	context->state[4] = 0xC3D2E1F0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Run your data through this.
 | |
|  */
 | |
| void
 | |
| SHA1Update(SHA1_CTX *context, const u_int8_t *data, size_t len)
 | |
| {
 | |
| 	size_t i, j;
 | |
| 
 | |
| 	j = (size_t)((context->count >> 3) & 63);
 | |
| 	context->count += (len << 3);
 | |
| 	if ((j + len) > 63) {
 | |
| 		(void)memcpy(&context->buffer[j], data, (i = 64-j));
 | |
| 		SHA1Transform(context->state, context->buffer);
 | |
| 		for ( ; i + 63 < len; i += 64)
 | |
| 			SHA1Transform(context->state, (u_int8_t *)&data[i]);
 | |
| 		j = 0;
 | |
| 	} else {
 | |
| 		i = 0;
 | |
| 	}
 | |
| 	(void)memcpy(&context->buffer[j], &data[i], len - i);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Add padding and return the message digest.
 | |
|  */
 | |
| void
 | |
| SHA1Pad(SHA1_CTX *context)
 | |
| {
 | |
| 	u_int8_t finalcount[8];
 | |
| 	u_int i;
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		finalcount[i] = (u_int8_t)((context->count >>
 | |
| 		    ((7 - (i & 7)) * 8)) & 255);	/* Endian independent */
 | |
| 	}
 | |
| 	SHA1Update(context, (u_int8_t *)"\200", 1);
 | |
| 	while ((context->count & 504) != 448)
 | |
| 		SHA1Update(context, (u_int8_t *)"\0", 1);
 | |
| 	SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
 | |
| }
 | |
| 
 | |
| void
 | |
| SHA1Final(u_int8_t digest[SHA1_DIGEST_LENGTH], SHA1_CTX *context)
 | |
| {
 | |
| 	u_int i;
 | |
| 
 | |
| 	SHA1Pad(context);
 | |
| 	if (digest) {
 | |
| 		for (i = 0; i < SHA1_DIGEST_LENGTH; i++) {
 | |
| 			digest[i] = (u_int8_t)
 | |
| 			   ((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
 | |
| 		}
 | |
| 		memset(context, 0, sizeof(*context));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Compute the SHA-1 hash of the given data as specified by the 'data' and
 | |
|  * 'len' arguments, and place the result -- 160 bits (20 bytes) -- into the
 | |
|  * specified output buffer 'buf'.
 | |
|  *
 | |
|  * @param data Pointer to the input data that shall be hashed.
 | |
|  * @param len Length of the input data (in bytes).
 | |
|  * @param buf Buffer which will hold the resulting hash (must be at
 | |
|  * 	      least 20 bytes in size).
 | |
|  * @return Pointer to the output buffer where the hash is stored.
 | |
|  */
 | |
| u8 *sha1(const u8 *data, size_t len, u8 *buf)
 | |
| {
 | |
| 	SHA1_CTX ctx;
 | |
| 
 | |
| 	SHA1Init(&ctx);
 | |
| 	SHA1Update(&ctx, data, len);
 | |
| 	SHA1Final(buf, &ctx);
 | |
| 
 | |
| 	return buf;
 | |
| }
 |