Some of these can be changed from #if to if(), but that will happen in a follow-on commmit. Change-Id: Ib3a1cf04482a8f19b159c31cfb16a7b492748d91 Signed-off-by: Martin Roth <martinroth@google.com> Reviewed-on: https://review.coreboot.org/20352 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
452 lines
12 KiB
C
452 lines
12 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright 2014 The Chromium OS Authors. All rights reserved.
|
|
* Copyright (C) 2015 Timothy Pearson <tpearson@raptorengineeringinc.com>, Raptor Engineering
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <arch/acpi.h>
|
|
#include <arch/io.h>
|
|
#include <bcd.h>
|
|
#include <fallback.h>
|
|
#include <stdint.h>
|
|
#include <version.h>
|
|
#include <console/console.h>
|
|
#include <pc80/mc146818rtc.h>
|
|
#include <boot/coreboot_tables.h>
|
|
#include <rtc.h>
|
|
#include <string.h>
|
|
#include <cbfs.h>
|
|
|
|
/* There's no way around this include guard. option_table.h is autogenerated */
|
|
#if IS_ENABLED(CONFIG_USE_OPTION_TABLE)
|
|
#include "option_table.h"
|
|
#else
|
|
#define LB_CKS_RANGE_START 0
|
|
#define LB_CKS_RANGE_END 0
|
|
#define LB_CKS_LOC 0
|
|
#endif
|
|
|
|
#include <smp/spinlock.h>
|
|
|
|
#if (defined(__PRE_RAM__) && \
|
|
IS_ENABLED(CONFIG_HAVE_ROMSTAGE_NVRAM_CBFS_SPINLOCK))
|
|
#define LOCK_NVRAM_CBFS_SPINLOCK() spin_lock(romstage_nvram_cbfs_lock())
|
|
#define UNLOCK_NVRAM_CBFS_SPINLOCK() spin_unlock(romstage_nvram_cbfs_lock())
|
|
#else
|
|
#define LOCK_NVRAM_CBFS_SPINLOCK() { }
|
|
#define UNLOCK_NVRAM_CBFS_SPINLOCK() { }
|
|
#endif
|
|
|
|
static void cmos_reset_date(void)
|
|
{
|
|
/* Now setup a default date equals to the build date */
|
|
struct rtc_time time = {
|
|
.sec = 0,
|
|
.min = 0,
|
|
.hour = 1,
|
|
.mday = bcd2bin(coreboot_build_date.day),
|
|
.mon = bcd2bin(coreboot_build_date.month),
|
|
.year = (bcd2bin(coreboot_build_date.century) * 100) +
|
|
bcd2bin(coreboot_build_date.year),
|
|
.wday = bcd2bin(coreboot_build_date.weekday)
|
|
};
|
|
rtc_set(&time);
|
|
}
|
|
|
|
static int cmos_checksum_valid(int range_start, int range_end, int cks_loc)
|
|
{
|
|
int i;
|
|
u16 sum, old_sum;
|
|
|
|
if (IS_ENABLED(CONFIG_STATIC_OPTION_TABLE))
|
|
return 1;
|
|
|
|
sum = 0;
|
|
for (i = range_start; i <= range_end; i++)
|
|
sum += cmos_read(i);
|
|
old_sum = ((cmos_read(cks_loc) << 8) | cmos_read(cks_loc + 1)) &
|
|
0x0ffff;
|
|
return sum == old_sum;
|
|
}
|
|
|
|
static void cmos_set_checksum(int range_start, int range_end, int cks_loc)
|
|
{
|
|
int i;
|
|
u16 sum;
|
|
|
|
sum = 0;
|
|
for (i = range_start; i <= range_end; i++)
|
|
sum += cmos_read(i);
|
|
cmos_write(((sum >> 8) & 0x0ff), cks_loc);
|
|
cmos_write(((sum >> 0) & 0x0ff), cks_loc + 1);
|
|
}
|
|
|
|
#define RTC_CONTROL_DEFAULT (RTC_24H)
|
|
#define RTC_FREQ_SELECT_DEFAULT (RTC_REF_CLCK_32KHZ | RTC_RATE_1024HZ)
|
|
|
|
#ifndef __SMM__
|
|
void cmos_init(bool invalid)
|
|
{
|
|
bool cmos_invalid;
|
|
bool checksum_invalid = false;
|
|
bool clear_cmos;
|
|
size_t i;
|
|
uint8_t x;
|
|
|
|
#ifndef __PRE_RAM__
|
|
/*
|
|
* Avoid clearing pending interrupts and resetting the RTC control
|
|
* register in the resume path because the Linux kernel relies on
|
|
* this to know if it should restart the RTC timer queue if the wake
|
|
* was due to the RTC alarm.
|
|
*/
|
|
if (acpi_is_wakeup_s3())
|
|
return;
|
|
#endif /* __PRE_RAM__ */
|
|
|
|
printk(BIOS_DEBUG, "RTC Init\n");
|
|
|
|
/* See if there has been a CMOS power problem. */
|
|
x = cmos_read(RTC_VALID);
|
|
cmos_invalid = !(x & RTC_VRT);
|
|
|
|
if (IS_ENABLED(CONFIG_USE_OPTION_TABLE)) {
|
|
/* See if there is a CMOS checksum error */
|
|
checksum_invalid = !cmos_checksum_valid(PC_CKS_RANGE_START,
|
|
PC_CKS_RANGE_END, PC_CKS_LOC);
|
|
|
|
clear_cmos = false;
|
|
} else {
|
|
clear_cmos = true;
|
|
}
|
|
|
|
if (cmos_invalid || invalid)
|
|
cmos_write(cmos_read(RTC_CONTROL) | RTC_SET, RTC_CONTROL);
|
|
|
|
if (invalid || cmos_invalid || checksum_invalid) {
|
|
if (clear_cmos) {
|
|
cmos_write(0, 0x01);
|
|
cmos_write(0, 0x03);
|
|
cmos_write(0, 0x05);
|
|
for (i = 10; i < 128; i++)
|
|
cmos_write(0, i);
|
|
}
|
|
|
|
if (cmos_invalid)
|
|
cmos_reset_date();
|
|
|
|
printk(BIOS_WARNING, "RTC:%s%s%s%s\n",
|
|
invalid ? " Clear requested":"",
|
|
cmos_invalid ? " Power Problem":"",
|
|
checksum_invalid ? " Checksum invalid":"",
|
|
clear_cmos ? " zeroing cmos":"");
|
|
}
|
|
|
|
/* Setup the real time clock */
|
|
cmos_write(RTC_CONTROL_DEFAULT, RTC_CONTROL);
|
|
/* Setup the frequency it operates at */
|
|
cmos_write(RTC_FREQ_SELECT_DEFAULT, RTC_FREQ_SELECT);
|
|
/* Ensure all reserved bits are 0 in register D */
|
|
cmos_write(RTC_VRT, RTC_VALID);
|
|
|
|
if (IS_ENABLED(CONFIG_USE_OPTION_TABLE)) {
|
|
/* See if there is a LB CMOS checksum error */
|
|
checksum_invalid = !cmos_checksum_valid(LB_CKS_RANGE_START,
|
|
LB_CKS_RANGE_END, LB_CKS_LOC);
|
|
if (checksum_invalid)
|
|
printk(BIOS_DEBUG, "RTC: coreboot checksum invalid\n");
|
|
|
|
/* Make certain we have a valid checksum */
|
|
cmos_set_checksum(PC_CKS_RANGE_START, PC_CKS_RANGE_END, PC_CKS_LOC);
|
|
}
|
|
|
|
/* Clear any pending interrupts */
|
|
cmos_read(RTC_INTR_FLAGS);
|
|
}
|
|
#endif /* __SMM__ */
|
|
|
|
|
|
/*
|
|
* This routine returns the value of the requested bits.
|
|
* input bit = bit count from the beginning of the cmos image
|
|
* length = number of bits to include in the value
|
|
* ret = a character pointer to where the value is to be returned
|
|
* returns CB_SUCCESS = successful, cb_err code if an error occurred
|
|
*/
|
|
static enum cb_err get_cmos_value(unsigned long bit, unsigned long length,
|
|
void *vret)
|
|
{
|
|
unsigned char *ret;
|
|
unsigned long byte, byte_bit;
|
|
unsigned long i;
|
|
unsigned char uchar;
|
|
|
|
/*
|
|
* The table is checked when it is built to ensure all
|
|
* values are valid.
|
|
*/
|
|
ret = vret;
|
|
byte = bit / 8; /* find the byte where the data starts */
|
|
byte_bit = bit % 8; /* find the bit in the byte where the data starts */
|
|
if (length < 9) { /* one byte or less */
|
|
uchar = cmos_read(byte); /* load the byte */
|
|
uchar >>= byte_bit; /* shift the bits to byte align */
|
|
/* clear unspecified bits */
|
|
ret[0] = uchar & ((1 << length) - 1);
|
|
} else { /* more than one byte so transfer the whole bytes */
|
|
for (i = 0; length; i++, length -= 8, byte++) {
|
|
/* load the byte */
|
|
ret[i] = cmos_read(byte);
|
|
}
|
|
}
|
|
return CB_SUCCESS;
|
|
}
|
|
|
|
enum cb_err get_option(void *dest, const char *name)
|
|
{
|
|
struct cmos_option_table *ct;
|
|
struct cmos_entries *ce;
|
|
size_t namelen;
|
|
int found = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_USE_OPTION_TABLE))
|
|
return CB_CMOS_OTABLE_DISABLED;
|
|
|
|
LOCK_NVRAM_CBFS_SPINLOCK();
|
|
|
|
/* Figure out how long name is */
|
|
namelen = strnlen(name, CMOS_MAX_NAME_LENGTH);
|
|
|
|
/* find the requested entry record */
|
|
ct = cbfs_boot_map_with_leak("cmos_layout.bin",
|
|
CBFS_COMPONENT_CMOS_LAYOUT, NULL);
|
|
if (!ct) {
|
|
printk(BIOS_ERR, "RTC: cmos_layout.bin could not be found. "
|
|
"Options are disabled\n");
|
|
|
|
UNLOCK_NVRAM_CBFS_SPINLOCK();
|
|
return CB_CMOS_LAYOUT_NOT_FOUND;
|
|
}
|
|
ce = (struct cmos_entries *)((unsigned char *)ct + ct->header_length);
|
|
for (; ce->tag == LB_TAG_OPTION;
|
|
ce = (struct cmos_entries *)((unsigned char *)ce + ce->size)) {
|
|
if (memcmp(ce->name, name, namelen) == 0) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
printk(BIOS_DEBUG, "WARNING: No CMOS option '%s'.\n", name);
|
|
UNLOCK_NVRAM_CBFS_SPINLOCK();
|
|
return CB_CMOS_OPTION_NOT_FOUND;
|
|
}
|
|
|
|
if (!cmos_checksum_valid(LB_CKS_RANGE_START, LB_CKS_RANGE_END, LB_CKS_LOC)) {
|
|
UNLOCK_NVRAM_CBFS_SPINLOCK();
|
|
return CB_CMOS_CHECKSUM_INVALID;
|
|
}
|
|
if (get_cmos_value(ce->bit, ce->length, dest) != CB_SUCCESS) {
|
|
UNLOCK_NVRAM_CBFS_SPINLOCK();
|
|
return CB_CMOS_ACCESS_ERROR;
|
|
}
|
|
UNLOCK_NVRAM_CBFS_SPINLOCK();
|
|
return CB_SUCCESS;
|
|
}
|
|
|
|
static enum cb_err set_cmos_value(unsigned long bit, unsigned long length,
|
|
void *vret)
|
|
{
|
|
unsigned char *ret;
|
|
unsigned long byte, byte_bit;
|
|
unsigned long i;
|
|
unsigned char uchar, mask;
|
|
unsigned int chksum_update_needed = 0;
|
|
|
|
ret = vret;
|
|
byte = bit / 8; /* find the byte where the data starts */
|
|
byte_bit = bit % 8; /* find the bit where the data starts */
|
|
if (length <= 8) { /* one byte or less */
|
|
mask = (1 << length) - 1;
|
|
mask <<= byte_bit;
|
|
|
|
uchar = cmos_read(byte);
|
|
uchar &= ~mask;
|
|
uchar |= (ret[0] << byte_bit);
|
|
cmos_write(uchar, byte);
|
|
if (byte >= LB_CKS_RANGE_START && byte <= LB_CKS_RANGE_END)
|
|
chksum_update_needed = 1;
|
|
} else { /* more that one byte so transfer the whole bytes */
|
|
if (byte_bit || length % 8)
|
|
return CB_ERR_ARG;
|
|
|
|
for (i = 0; length; i++, length -= 8, byte++) {
|
|
cmos_write(ret[i], byte);
|
|
if (byte >= LB_CKS_RANGE_START &&
|
|
byte <= LB_CKS_RANGE_END)
|
|
chksum_update_needed = 1;
|
|
}
|
|
}
|
|
|
|
if (chksum_update_needed) {
|
|
cmos_set_checksum(LB_CKS_RANGE_START, LB_CKS_RANGE_END,
|
|
LB_CKS_LOC);
|
|
}
|
|
return CB_SUCCESS;
|
|
}
|
|
|
|
unsigned int read_option_lowlevel(unsigned int start, unsigned int size,
|
|
unsigned int def)
|
|
{
|
|
printk(BIOS_NOTICE, "NOTICE: read_option() used to access CMOS "
|
|
"from non-ROMCC code, please use get_option() instead.\n");
|
|
if (IS_ENABLED(CONFIG_USE_OPTION_TABLE)) {
|
|
const unsigned char byte = cmos_read(start / 8);
|
|
return (byte >> (start & 7U)) & ((1U << size) - 1U);
|
|
}
|
|
return def;
|
|
}
|
|
|
|
enum cb_err set_option(const char *name, void *value)
|
|
{
|
|
struct cmos_option_table *ct;
|
|
struct cmos_entries *ce;
|
|
unsigned long length;
|
|
size_t namelen;
|
|
int found = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_USE_OPTION_TABLE))
|
|
return CB_CMOS_OTABLE_DISABLED;
|
|
|
|
/* Figure out how long name is */
|
|
namelen = strnlen(name, CMOS_MAX_NAME_LENGTH);
|
|
|
|
/* find the requested entry record */
|
|
ct = cbfs_boot_map_with_leak("cmos_layout.bin",
|
|
CBFS_COMPONENT_CMOS_LAYOUT, NULL);
|
|
if (!ct) {
|
|
printk(BIOS_ERR, "cmos_layout.bin could not be found. "
|
|
"Options are disabled\n");
|
|
return CB_CMOS_LAYOUT_NOT_FOUND;
|
|
}
|
|
ce = (struct cmos_entries *)((unsigned char *)ct + ct->header_length);
|
|
for (; ce->tag == LB_TAG_OPTION;
|
|
ce = (struct cmos_entries *)((unsigned char *)ce + ce->size)) {
|
|
if (memcmp(ce->name, name, namelen) == 0) {
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
printk(BIOS_DEBUG, "WARNING: No CMOS option '%s'.\n", name);
|
|
return CB_CMOS_OPTION_NOT_FOUND;
|
|
}
|
|
|
|
length = ce->length;
|
|
if (ce->config == 's') {
|
|
length = MAX(strlen((const char *)value) * 8, ce->length - 8);
|
|
/* make sure the string is null terminated */
|
|
if (set_cmos_value(ce->bit + ce->length - 8, 8, &(u8[]){0})
|
|
!= CB_SUCCESS)
|
|
return CB_CMOS_ACCESS_ERROR;
|
|
}
|
|
|
|
if (set_cmos_value(ce->bit, length, value) != CB_SUCCESS)
|
|
return CB_CMOS_ACCESS_ERROR;
|
|
|
|
return CB_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* If the CMOS is cleared, the rtc_reg has the invalid date. That
|
|
* hurts some OSes. Even if we don't set USE_OPTION_TABLE, we need
|
|
* to make sure the date is valid.
|
|
*/
|
|
void cmos_check_update_date(void)
|
|
{
|
|
u8 year, century;
|
|
|
|
/* Assume hardware always supports RTC_CLK_ALTCENTURY. */
|
|
wait_uip();
|
|
century = cmos_read(RTC_CLK_ALTCENTURY);
|
|
year = cmos_read(RTC_CLK_YEAR);
|
|
|
|
/*
|
|
* TODO: If century is 0xFF, 100% that the cmos is cleared.
|
|
* Other than that, so far rtc_year is the only entry to check
|
|
* if the date is valid.
|
|
*/
|
|
if (century > 0x99 || year > 0x99) /* Invalid date */
|
|
cmos_reset_date();
|
|
}
|
|
|
|
int rtc_set(const struct rtc_time *time)
|
|
{
|
|
cmos_write(bin2bcd(time->sec), RTC_CLK_SECOND);
|
|
cmos_write(bin2bcd(time->min), RTC_CLK_MINUTE);
|
|
cmos_write(bin2bcd(time->hour), RTC_CLK_HOUR);
|
|
cmos_write(bin2bcd(time->mday), RTC_CLK_DAYOFMONTH);
|
|
cmos_write(bin2bcd(time->mon), RTC_CLK_MONTH);
|
|
cmos_write(bin2bcd(time->year % 100), RTC_CLK_YEAR);
|
|
/* Same assumption as above: We always have RTC_CLK_ALTCENTURY */
|
|
cmos_write(bin2bcd(time->year / 100), RTC_CLK_ALTCENTURY);
|
|
cmos_write(bin2bcd(time->wday + 1), RTC_CLK_DAYOFWEEK);
|
|
return 0;
|
|
}
|
|
|
|
int rtc_get(struct rtc_time *time)
|
|
{
|
|
wait_uip();
|
|
time->sec = bcd2bin(cmos_read(RTC_CLK_SECOND));
|
|
time->min = bcd2bin(cmos_read(RTC_CLK_MINUTE));
|
|
time->hour = bcd2bin(cmos_read(RTC_CLK_HOUR));
|
|
time->mday = bcd2bin(cmos_read(RTC_CLK_DAYOFMONTH));
|
|
time->mon = bcd2bin(cmos_read(RTC_CLK_MONTH));
|
|
time->year = bcd2bin(cmos_read(RTC_CLK_YEAR));
|
|
/* Same assumption as above: We always have RTC_CLK_ALTCENTURY */
|
|
time->year += bcd2bin(cmos_read(RTC_CLK_ALTCENTURY)) * 100;
|
|
time->wday = bcd2bin(cmos_read(RTC_CLK_DAYOFWEEK)) - 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Signal coreboot proper completed -- just before running payload
|
|
* or jumping to ACPI S3 wakeup vector.
|
|
*/
|
|
void set_boot_successful(void)
|
|
{
|
|
uint8_t index, byte;
|
|
|
|
index = inb(RTC_PORT(0)) & 0x80;
|
|
index |= RTC_BOOT_BYTE;
|
|
outb(index, RTC_PORT(0));
|
|
|
|
byte = inb(RTC_PORT(1));
|
|
|
|
if (IS_ENABLED(CONFIG_SKIP_MAX_REBOOT_CNT_CLEAR)) {
|
|
/*
|
|
* Set the fallback boot bit to allow for recovery if
|
|
* the payload fails to boot.
|
|
* It is the responsibility of the payload to reset
|
|
* the normal boot bit to 1 if desired
|
|
*/
|
|
byte &= ~RTC_BOOT_NORMAL;
|
|
} else {
|
|
/* If we are in normal mode set the boot count to 0 */
|
|
if (byte & RTC_BOOT_NORMAL)
|
|
byte &= 0x0f;
|
|
|
|
}
|
|
|
|
outb(byte, RTC_PORT(1));
|
|
}
|