Currently the code considers the absence of the NVRAM firmware rollback space a a trigger for invoking the TPM factory initialization sequence. Note that the kernel rollback and MRC cache hash spaces are created after the firmware rollback space. This opens an ever so narrow window of opportunity for bricking the device, in case a startup is interrupted after firmware space has been created, but before kernel and MRC hash spaces are created. The suggested solution is to create the firmware space last, and to allow for kernel and MRC cache spaces to exist during TPM factory initialization. BRANCH=none BUG=chrome-os-partner:59654 TEST=odified the code not to create the firmware space, wiped out the TPM NVRAM and booted the device. Observed it create kernel and MRC cache spaces on the first run, and then reporting return code 0x14c for already existing spaces on the following restarts. Verified that the device boots fine in normal and recovery modes and TPM NVRAM spaces are writeable in recovery mode. Change-Id: Id0e772448d6af1340e800ec3b78ec67913aa6289 Signed-off-by: Vadim Bendebury <vbendeb@chromium.org> Reviewed-on: https://review.coreboot.org/17398 Reviewed-by: Aaron Durbin <adurbin@chromium.org> Tested-by: build bot (Jenkins)
559 lines
16 KiB
C
559 lines
16 KiB
C
/* Copyright (c) 2013 The Chromium OS Authors. All rights reserved.
|
|
* Use of this source code is governed by a BSD-style license that can be
|
|
* found in the LICENSE file.
|
|
*
|
|
* Functions for querying, manipulating and locking rollback indices
|
|
* stored in the TPM NVRAM.
|
|
*/
|
|
|
|
#include <antirollback.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <tpm_lite/tlcl.h>
|
|
#include <vb2_api.h>
|
|
#include <console/console.h>
|
|
|
|
#ifndef offsetof
|
|
#define offsetof(A,B) __builtin_offsetof(A,B)
|
|
#endif
|
|
|
|
#ifdef FOR_TEST
|
|
#include <stdio.h>
|
|
#define VBDEBUG(format, args...) printf(format, ## args)
|
|
#else
|
|
#include <console/console.h>
|
|
#define VBDEBUG(format, args...) \
|
|
printk(BIOS_INFO, "%s():%d: " format, __func__, __LINE__, ## args)
|
|
#endif
|
|
|
|
#define RETURN_ON_FAILURE(tpm_cmd) do { \
|
|
uint32_t result_; \
|
|
if ((result_ = (tpm_cmd)) != TPM_SUCCESS) { \
|
|
VBDEBUG("Antirollback: %08x returned by " #tpm_cmd \
|
|
"\n", (int)result_); \
|
|
return result_; \
|
|
} \
|
|
} while (0)
|
|
|
|
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length);
|
|
|
|
uint32_t tpm_extend_pcr(struct vb2_context *ctx, int pcr,
|
|
enum vb2_pcr_digest which_digest)
|
|
{
|
|
uint8_t buffer[VB2_PCR_DIGEST_RECOMMENDED_SIZE];
|
|
uint32_t size = sizeof(buffer);
|
|
int rv;
|
|
|
|
rv = vb2api_get_pcr_digest(ctx, which_digest, buffer, &size);
|
|
if (rv != VB2_SUCCESS)
|
|
return rv;
|
|
if (size < TPM_PCR_DIGEST)
|
|
return VB2_ERROR_UNKNOWN;
|
|
|
|
return tlcl_extend(pcr, buffer, NULL);
|
|
}
|
|
|
|
static uint32_t read_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
int attempts = 3;
|
|
|
|
while (attempts--) {
|
|
RETURN_ON_FAILURE(tlcl_read(FIRMWARE_NV_INDEX, ctx->secdata,
|
|
VB2_SECDATA_SIZE));
|
|
|
|
if (vb2api_secdata_check(ctx) == VB2_SUCCESS)
|
|
return TPM_SUCCESS;
|
|
|
|
VBDEBUG("TPM: %s() - bad CRC\n", __func__);
|
|
}
|
|
|
|
VBDEBUG("TPM: %s() - too many bad CRCs, giving up\n", __func__);
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
|
|
static uint32_t read_space_rec_hash(uint8_t *data)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_read(REC_HASH_NV_INDEX, data,
|
|
REC_HASH_NV_SIZE));
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
static uint32_t write_secdata(uint32_t index,
|
|
const uint8_t *secdata,
|
|
uint32_t len)
|
|
{
|
|
uint8_t sd[32];
|
|
uint32_t rv;
|
|
int attempts = 3;
|
|
|
|
if (len > sizeof(sd)) {
|
|
VBDEBUG("TPM: %s() - data is too large\n", __func__);
|
|
return TPM_E_WRITE_FAILURE;
|
|
}
|
|
|
|
while (attempts--) {
|
|
rv = safe_write(index, secdata, len);
|
|
/* Can't write, not gonna try again */
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
/* Read it back to be sure it got the right values. */
|
|
rv = tlcl_read(index, sd, len);
|
|
if (rv == TPM_SUCCESS && memcmp(secdata, sd, len) == 0)
|
|
return rv;
|
|
|
|
VBDEBUG("TPM: %s() failed. trying again\n", __func__);
|
|
/* Try writing it again. Maybe it was garbled on the way out. */
|
|
}
|
|
|
|
VBDEBUG("TPM: %s() - too many failures, giving up\n", __func__);
|
|
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
|
|
/*
|
|
* This is derived from rollback_index.h of vboot_reference. see struct
|
|
* RollbackSpaceKernel for details.
|
|
*/
|
|
static const uint8_t secdata_kernel[] = {
|
|
0x02,
|
|
0x4C, 0x57, 0x52, 0x47,
|
|
0x00, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00,
|
|
0xE8,
|
|
};
|
|
|
|
/*
|
|
* This is used to initialize the TPM space for recovery hash after defining
|
|
* it. Since there is no data available to calculate hash at the point where TPM
|
|
* space is defined, initialize it to all 0s.
|
|
*/
|
|
static const uint8_t rec_hash_data[REC_HASH_NV_SIZE] = { };
|
|
|
|
#if IS_ENABLED(CONFIG_TPM2)
|
|
|
|
/* Nothing special in the TPM2 path yet. */
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length)
|
|
{
|
|
return tlcl_write(index, data, length);
|
|
}
|
|
|
|
static uint32_t set_firmware_space(const void *firmware_blob)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_define_space(FIRMWARE_NV_INDEX,
|
|
VB2_SECDATA_SIZE));
|
|
RETURN_ON_FAILURE(safe_write(FIRMWARE_NV_INDEX, firmware_blob,
|
|
VB2_SECDATA_SIZE));
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
static uint32_t set_kernel_space(const void *kernel_blob)
|
|
{
|
|
uint32_t rv;
|
|
|
|
rv = tlcl_define_space(KERNEL_NV_INDEX, sizeof(secdata_kernel));
|
|
if (rv == TPM_E_NV_DEFINED) {
|
|
VBDEBUG("%s: kernel space already exists\n", __func__);
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return safe_write(KERNEL_NV_INDEX, kernel_blob, sizeof(secdata_kernel));
|
|
}
|
|
|
|
static uint32_t set_rec_hash_space(const uint8_t *data)
|
|
{
|
|
uint32_t rv;
|
|
|
|
rv = tlcl_define_space(REC_HASH_NV_INDEX, REC_HASH_NV_SIZE);
|
|
if (rv == TPM_E_NV_DEFINED) {
|
|
VBDEBUG("%s: MRC Hash space already exists\n", __func__);
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return safe_write(REC_HASH_NV_INDEX, data, REC_HASH_NV_SIZE);
|
|
}
|
|
|
|
static uint32_t _factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_force_clear());
|
|
|
|
/*
|
|
* Of all NVRAM spaces defined by this function the firmware space
|
|
* must be defined last, because its existence is considered an
|
|
* indication that TPM factory initialization was successfully
|
|
* completed.
|
|
*/
|
|
RETURN_ON_FAILURE(set_kernel_space(secdata_kernel));
|
|
|
|
if (IS_ENABLED(CONFIG_VBOOT_HAS_REC_HASH_SPACE))
|
|
RETURN_ON_FAILURE(set_rec_hash_space(rec_hash_data));
|
|
|
|
RETURN_ON_FAILURE(set_firmware_space(ctx->secdata));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t tpm_clear_and_reenable(void)
|
|
{
|
|
VBDEBUG("TPM: Clear and re-enable\n");
|
|
RETURN_ON_FAILURE(tlcl_force_clear());
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_firmware(void)
|
|
{
|
|
return tlcl_lock_nv_write(FIRMWARE_NV_INDEX);
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_rec_hash(void)
|
|
{
|
|
return tlcl_lock_nv_write(REC_HASH_NV_INDEX);
|
|
}
|
|
|
|
#else
|
|
|
|
uint32_t tpm_clear_and_reenable(void)
|
|
{
|
|
VBDEBUG("TPM: Clear and re-enable\n");
|
|
RETURN_ON_FAILURE(tlcl_force_clear());
|
|
RETURN_ON_FAILURE(tlcl_set_enable());
|
|
RETURN_ON_FAILURE(tlcl_set_deactivated(0));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
/**
|
|
* Like tlcl_write(), but checks for write errors due to hitting the 64-write
|
|
* limit and clears the TPM when that happens. This can only happen when the
|
|
* TPM is unowned, so it is OK to clear it (and we really have no choice).
|
|
* This is not expected to happen frequently, but it could happen.
|
|
*/
|
|
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length)
|
|
{
|
|
uint32_t result = tlcl_write(index, data, length);
|
|
if (result == TPM_E_MAXNVWRITES) {
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
return tlcl_write(index, data, length);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Similarly to safe_write(), this ensures we don't fail a DefineSpace because
|
|
* we hit the TPM write limit. This is even less likely to happen than with
|
|
* writes because we only define spaces once at initialization, but we'd
|
|
* rather be paranoid about this.
|
|
*/
|
|
static uint32_t safe_define_space(uint32_t index, uint32_t perm, uint32_t size)
|
|
{
|
|
uint32_t result = tlcl_define_space(index, perm, size);
|
|
if (result == TPM_E_MAXNVWRITES) {
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
return tlcl_define_space(index, perm, size);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
static uint32_t set_rec_hash_space(const uint8_t *data)
|
|
{
|
|
RETURN_ON_FAILURE(safe_define_space(REC_HASH_NV_INDEX,
|
|
TPM_NV_PER_GLOBALLOCK |
|
|
TPM_NV_PER_PPWRITE,
|
|
REC_HASH_NV_SIZE));
|
|
RETURN_ON_FAILURE(write_secdata(REC_HASH_NV_INDEX, data,
|
|
REC_HASH_NV_SIZE));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
static uint32_t _factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
TPM_PERMANENT_FLAGS pflags;
|
|
uint32_t result;
|
|
|
|
result = tlcl_get_permanent_flags(&pflags);
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
/*
|
|
* TPM may come from the factory without physical presence finalized.
|
|
* Fix if necessary.
|
|
*/
|
|
VBDEBUG("TPM: physicalPresenceLifetimeLock=%d\n",
|
|
pflags.physicalPresenceLifetimeLock);
|
|
if (!pflags.physicalPresenceLifetimeLock) {
|
|
VBDEBUG("TPM: Finalizing physical presence\n");
|
|
RETURN_ON_FAILURE(tlcl_finalize_physical_presence());
|
|
}
|
|
|
|
/*
|
|
* The TPM will not enforce the NV authorization restrictions until the
|
|
* execution of a TPM_NV_DefineSpace with the handle of
|
|
* TPM_NV_INDEX_LOCK. Here we create that space if it doesn't already
|
|
* exist. */
|
|
VBDEBUG("TPM: nvLocked=%d\n", pflags.nvLocked);
|
|
if (!pflags.nvLocked) {
|
|
VBDEBUG("TPM: Enabling NV locking\n");
|
|
RETURN_ON_FAILURE(tlcl_set_nv_locked());
|
|
}
|
|
|
|
/* Clear TPM owner, in case the TPM is already owned for some reason. */
|
|
VBDEBUG("TPM: Clearing owner\n");
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
|
|
/* Define and initialize the kernel space */
|
|
RETURN_ON_FAILURE(safe_define_space(KERNEL_NV_INDEX,
|
|
TPM_NV_PER_PPWRITE,
|
|
sizeof(secdata_kernel)));
|
|
RETURN_ON_FAILURE(write_secdata(KERNEL_NV_INDEX,
|
|
secdata_kernel,
|
|
sizeof(secdata_kernel)));
|
|
|
|
/* Defines and sets vb2 secdata space */
|
|
vb2api_secdata_create(ctx);
|
|
RETURN_ON_FAILURE(safe_define_space(FIRMWARE_NV_INDEX,
|
|
TPM_NV_PER_GLOBALLOCK |
|
|
TPM_NV_PER_PPWRITE,
|
|
VB2_SECDATA_SIZE));
|
|
RETURN_ON_FAILURE(write_secdata(FIRMWARE_NV_INDEX,
|
|
ctx->secdata,
|
|
VB2_SECDATA_SIZE));
|
|
|
|
/* Define and set rec hash space, if available. */
|
|
if (IS_ENABLED(CONFIG_VBOOT_HAS_REC_HASH_SPACE))
|
|
RETURN_ON_FAILURE(set_rec_hash_space(rec_hash_data));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_firmware(void)
|
|
{
|
|
return tlcl_set_global_lock();
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_rec_hash(void)
|
|
{
|
|
/*
|
|
* Nothing needs to be done here, since global lock is already set while
|
|
* locking firmware space.
|
|
*/
|
|
return TPM_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Perform one-time initializations.
|
|
*
|
|
* Create the NVRAM spaces, and set their initial values as needed. Sets the
|
|
* nvLocked bit and ensures the physical presence command is enabled and
|
|
* locked.
|
|
*/
|
|
static uint32_t factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
uint32_t result;
|
|
|
|
/* Defines and sets vb2 secdata space */
|
|
vb2api_secdata_create(ctx);
|
|
|
|
VBDEBUG("TPM: factory initialization\n");
|
|
|
|
/*
|
|
* Do a full test. This only happens the first time the device is
|
|
* turned on in the factory, so performance is not an issue. This is
|
|
* almost certainly not necessary, but it gives us more confidence
|
|
* about some code paths below that are difficult to
|
|
* test---specifically the ones that set lifetime flags, and are only
|
|
* executed once per physical TPM.
|
|
*/
|
|
result = tlcl_self_test_full();
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
result = _factory_initialize_tpm(ctx);
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
VBDEBUG("TPM: factory initialization successful\n");
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* SetupTPM starts the TPM and establishes the root of trust for the
|
|
* anti-rollback mechanism. SetupTPM can fail for three reasons. 1 A bug. 2 a
|
|
* TPM hardware failure. 3 An unexpected TPM state due to some attack. In
|
|
* general we cannot easily distinguish the kind of failure, so our strategy is
|
|
* to reboot in recovery mode in all cases. The recovery mode calls SetupTPM
|
|
* again, which executes (almost) the same sequence of operations. There is a
|
|
* good chance that, if recovery mode was entered because of a TPM failure, the
|
|
* failure will repeat itself. (In general this is impossible to guarantee
|
|
* because we have no way of creating the exact TPM initial state at the
|
|
* previous boot.) In recovery mode, we ignore the failure and continue, thus
|
|
* giving the recovery kernel a chance to fix things (that's why we don't set
|
|
* bGlobalLock). The choice is between a knowingly insecure device and a
|
|
* bricked device.
|
|
*
|
|
* As a side note, observe that we go through considerable hoops to avoid using
|
|
* the STCLEAR permissions for the index spaces. We do this to avoid writing
|
|
* to the TPM flashram at every reboot or wake-up, because of concerns about
|
|
* the durability of the NVRAM.
|
|
*/
|
|
uint32_t setup_tpm(struct vb2_context *ctx)
|
|
{
|
|
uint8_t disable;
|
|
uint8_t deactivated;
|
|
uint32_t result;
|
|
|
|
RETURN_ON_FAILURE(tlcl_lib_init());
|
|
|
|
/* Handle special init for S3 resume path */
|
|
if (ctx->flags & VB2_CONTEXT_S3_RESUME) {
|
|
result = tlcl_resume();
|
|
if (result == TPM_E_INVALID_POSTINIT)
|
|
printk(BIOS_DEBUG, "TPM: Already initialized.\n");
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
#ifdef TEGRA_SOFT_REBOOT_WORKAROUND
|
|
result = tlcl_startup();
|
|
if (result == TPM_E_INVALID_POSTINIT) {
|
|
/*
|
|
* Some prototype hardware doesn't reset the TPM on a CPU
|
|
* reset. We do a hard reset to get around this.
|
|
*/
|
|
VBDEBUG("TPM: soft reset detected\n", result);
|
|
ctx->flags |= VB2_CONTEXT_SECDATA_WANTS_REBOOT;
|
|
return TPM_E_MUST_REBOOT;
|
|
} else if (result != TPM_SUCCESS) {
|
|
VBDEBUG("TPM: tlcl_startup returned %08x\n", result);
|
|
return result;
|
|
}
|
|
#else
|
|
RETURN_ON_FAILURE(tlcl_startup());
|
|
#endif
|
|
|
|
/*
|
|
* Some TPMs start the self test automatically at power on. In that case
|
|
* we don't need to call ContinueSelfTest. On some (other) TPMs,
|
|
* continue_self_test may block. In that case, we definitely don't want
|
|
* to call it here. For TPMs in the intersection of these two sets, we
|
|
* are screwed. (In other words: TPMs that require manually starting the
|
|
* self-test AND block will have poor performance until we split
|
|
* tlcl_send_receive() into send() and receive(), and have a state
|
|
* machine to control setup.)
|
|
*
|
|
* This comment is likely to become obsolete in the near future, so
|
|
* don't trust it. It may have not been updated.
|
|
*/
|
|
#ifdef TPM_MANUAL_SELFTEST
|
|
#ifdef TPM_BLOCKING_CONTINUESELFTEST
|
|
#warning "lousy TPM!"
|
|
#endif
|
|
RETURN_ON_FAILURE(tlcl_continue_self_test());
|
|
#endif
|
|
result = tlcl_assert_physical_presence();
|
|
if (result != TPM_SUCCESS) {
|
|
/*
|
|
* It is possible that the TPM was delivered with the physical
|
|
* presence command disabled. This tries enabling it, then
|
|
* tries asserting PP again.
|
|
*/
|
|
RETURN_ON_FAILURE(tlcl_physical_presence_cmd_enable());
|
|
RETURN_ON_FAILURE(tlcl_assert_physical_presence());
|
|
}
|
|
|
|
/* Check that the TPM is enabled and activated. */
|
|
RETURN_ON_FAILURE(tlcl_get_flags(&disable, &deactivated, NULL));
|
|
if (disable || deactivated) {
|
|
VBDEBUG("TPM: disabled (%d) or deactivated (%d). Fixing...\n",
|
|
disable, deactivated);
|
|
RETURN_ON_FAILURE(tlcl_set_enable());
|
|
RETURN_ON_FAILURE(tlcl_set_deactivated(0));
|
|
VBDEBUG("TPM: Must reboot to re-enable\n");
|
|
ctx->flags |= VB2_CONTEXT_SECDATA_WANTS_REBOOT;
|
|
return TPM_E_MUST_REBOOT;
|
|
}
|
|
|
|
VBDEBUG("TPM: SetupTPM() succeeded\n");
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_read_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
uint32_t rv;
|
|
|
|
rv = setup_tpm(ctx);
|
|
if (rv)
|
|
return rv;
|
|
|
|
/* Read the firmware space. */
|
|
rv = read_space_firmware(ctx);
|
|
if (rv == TPM_E_BADINDEX) {
|
|
/*
|
|
* This seems the first time we've run. Initialize the TPM.
|
|
*/
|
|
VBDEBUG("TPM: Not initialized yet.\n");
|
|
RETURN_ON_FAILURE(factory_initialize_tpm(ctx));
|
|
} else if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("TPM: Firmware space in a bad state; giving up.\n");
|
|
//RETURN_ON_FAILURE(factory_initialize_tpm(ctx));
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_write_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
return write_secdata(FIRMWARE_NV_INDEX, ctx->secdata, VB2_SECDATA_SIZE);
|
|
}
|
|
|
|
uint32_t antirollback_read_space_rec_hash(uint8_t *data, uint32_t size)
|
|
{
|
|
if (size != REC_HASH_NV_SIZE) {
|
|
VBDEBUG("TPM: Incorrect buffer size for rec hash. "
|
|
"(Expected=0x%x Actual=0x%x).\n", REC_HASH_NV_SIZE,
|
|
size);
|
|
return TPM_E_READ_FAILURE;
|
|
}
|
|
return read_space_rec_hash(data);
|
|
}
|
|
|
|
uint32_t antirollback_write_space_rec_hash(const uint8_t *data, uint32_t size)
|
|
{
|
|
uint8_t spc_data[REC_HASH_NV_SIZE];
|
|
uint32_t rv;
|
|
|
|
if (size != REC_HASH_NV_SIZE) {
|
|
VBDEBUG("TPM: Incorrect buffer size for rec hash. "
|
|
"(Expected=0x%x Actual=0x%x).\n", REC_HASH_NV_SIZE,
|
|
size);
|
|
return TPM_E_WRITE_FAILURE;
|
|
}
|
|
|
|
rv = read_space_rec_hash(spc_data);
|
|
if (rv == TPM_E_BADINDEX) {
|
|
/*
|
|
* If space is not defined already for recovery hash, define
|
|
* new space.
|
|
*/
|
|
VBDEBUG("TPM: Initializing recovery hash space.\n");
|
|
return set_rec_hash_space(data);
|
|
}
|
|
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return write_secdata(REC_HASH_NV_INDEX, data, size);
|
|
}
|