Change-Id: I689c5663ef59861f79b68220abd146144f7618de Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/27988 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Martin Roth <martinroth@google.com>
1837 lines
57 KiB
C
1837 lines
57 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2012 secunet Security Networks AG
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; version 2 of
|
|
* the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <arch/cpu.h>
|
|
#include <arch/io.h>
|
|
#include <device/pci_def.h>
|
|
#include <device/pnp_def.h>
|
|
#include <device/device.h>
|
|
#include <spd.h>
|
|
#include <console/console.h>
|
|
#include <lib.h>
|
|
#include <delay.h>
|
|
#include <timestamp.h>
|
|
#include "gm45.h"
|
|
#include "chip.h"
|
|
|
|
static const gmch_gfx_t gmch_gfx_types[][5] = {
|
|
/* MAX_667MHz MAX_533MHz MAX_400MHz MAX_333MHz MAX_800MHz */
|
|
{ GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
|
|
{ GMCH_GM47, GMCH_GM45, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_GM49 },
|
|
{ GMCH_GE45, GMCH_GE45, GMCH_GE45, GMCH_GE45, GMCH_GE45 },
|
|
{ GMCH_UNKNOWN, GMCH_GL43, GMCH_GL40, GMCH_UNKNOWN, GMCH_UNKNOWN },
|
|
{ GMCH_UNKNOWN, GMCH_GS45, GMCH_GS40, GMCH_UNKNOWN, GMCH_UNKNOWN },
|
|
{ GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
|
|
{ GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
|
|
{ GMCH_PM45, GMCH_PM45, GMCH_PM45, GMCH_PM45, GMCH_PM45 },
|
|
};
|
|
|
|
void get_gmch_info(sysinfo_t *sysinfo)
|
|
{
|
|
sysinfo->stepping = pci_read_config8(PCI_DEV(0, 0, 0), PCI_CLASS_REVISION);
|
|
if ((sysinfo->stepping > STEPPING_B3) &&
|
|
(sysinfo->stepping != STEPPING_CONVERSION_A1))
|
|
die("Unknown stepping.\n");
|
|
if (sysinfo->stepping <= STEPPING_B3)
|
|
printk(BIOS_DEBUG, "Stepping %c%d\n", 'A' + sysinfo->stepping / 4, sysinfo->stepping % 4);
|
|
else
|
|
printk(BIOS_DEBUG, "Conversion stepping A1\n");
|
|
|
|
const u32 eax = cpuid_ext(0x04, 0).eax;
|
|
sysinfo->cores = ((eax >> 26) & 0x3f) + 1;
|
|
printk(BIOS_SPEW, "%d CPU cores\n", sysinfo->cores);
|
|
|
|
u32 capid = pci_read_config16(PCI_DEV(0, 0, 0), D0F0_CAPID0+8);
|
|
if (!(capid & (1<<(79-64)))) {
|
|
printk(BIOS_SPEW, "iTPM enabled\n");
|
|
}
|
|
|
|
capid = pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0+4);
|
|
if (!(capid & (1<<(57-32)))) {
|
|
printk(BIOS_SPEW, "ME enabled\n");
|
|
}
|
|
|
|
if (!(capid & (1<<(56-32)))) {
|
|
printk(BIOS_SPEW, "AMT enabled\n");
|
|
}
|
|
|
|
sysinfo->max_ddr2_mhz = (capid & (1<<(53-32)))?667:800;
|
|
printk(BIOS_SPEW, "capable of DDR2 of %d MHz or lower\n", sysinfo->max_ddr2_mhz);
|
|
|
|
if (!(capid & (1<<(48-32)))) {
|
|
printk(BIOS_SPEW, "VT-d enabled\n");
|
|
}
|
|
|
|
const u32 gfx_variant = (capid>>(42-32)) & 0x7;
|
|
const u32 render_freq = ((capid>>(50-32) & 0x1) << 2) | ((capid>>(35-32)) & 0x3);
|
|
if (render_freq <= 4)
|
|
sysinfo->gfx_type = gmch_gfx_types[gfx_variant][render_freq];
|
|
else
|
|
sysinfo->gfx_type = GMCH_UNKNOWN;
|
|
switch (sysinfo->gfx_type) {
|
|
case GMCH_GM45:
|
|
printk(BIOS_SPEW, "GMCH: GM45\n");
|
|
break;
|
|
case GMCH_GM47:
|
|
printk(BIOS_SPEW, "GMCH: GM47\n");
|
|
break;
|
|
case GMCH_GM49:
|
|
printk(BIOS_SPEW, "GMCH: GM49\n");
|
|
break;
|
|
case GMCH_GE45:
|
|
printk(BIOS_SPEW, "GMCH: GE45\n");
|
|
break;
|
|
case GMCH_GL40:
|
|
printk(BIOS_SPEW, "GMCH: GL40\n");
|
|
break;
|
|
case GMCH_GL43:
|
|
printk(BIOS_SPEW, "GMCH: GL43\n");
|
|
break;
|
|
case GMCH_GS40:
|
|
printk(BIOS_SPEW, "GMCH: GS40\n");
|
|
break;
|
|
case GMCH_GS45:
|
|
printk(BIOS_SPEW, "GMCH: GS45, using %s-power mode\n",
|
|
sysinfo->gs45_low_power_mode ? "low" : "high");
|
|
break;
|
|
case GMCH_PM45:
|
|
printk(BIOS_SPEW, "GMCH: PM45\n");
|
|
break;
|
|
case GMCH_UNKNOWN:
|
|
printk(BIOS_SPEW, "unknown GMCH\n");
|
|
break;
|
|
}
|
|
|
|
sysinfo->txt_enabled = !(capid & (1 << (37-32)));
|
|
if (sysinfo->txt_enabled) {
|
|
printk(BIOS_SPEW, "TXT enabled\n");
|
|
}
|
|
|
|
switch (render_freq) {
|
|
case 4:
|
|
sysinfo->max_render_mhz = 800;
|
|
break;
|
|
case 0:
|
|
sysinfo->max_render_mhz = 667;
|
|
break;
|
|
case 1:
|
|
sysinfo->max_render_mhz = 533;
|
|
break;
|
|
case 2:
|
|
sysinfo->max_render_mhz = 400;
|
|
break;
|
|
case 3:
|
|
sysinfo->max_render_mhz = 333;
|
|
break;
|
|
default:
|
|
printk(BIOS_SPEW, "Unknown render frequency\n");
|
|
sysinfo->max_render_mhz = 0;
|
|
break;
|
|
}
|
|
if (sysinfo->max_render_mhz != 0) {
|
|
printk(BIOS_SPEW, "Render frequency: %d MHz\n", sysinfo->max_render_mhz);
|
|
}
|
|
|
|
if (!(capid & (1<<(33-32)))) {
|
|
printk(BIOS_SPEW, "IGD enabled\n");
|
|
}
|
|
|
|
if (!(capid & (1<<(32-32)))) {
|
|
printk(BIOS_SPEW, "PCIe-to-GMCH enabled\n");
|
|
}
|
|
|
|
capid = pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0);
|
|
|
|
u32 ddr_cap = capid>>30 & 0x3;
|
|
switch (ddr_cap) {
|
|
case 0:
|
|
sysinfo->max_ddr3_mt = 1067;
|
|
break;
|
|
case 1:
|
|
sysinfo->max_ddr3_mt = 800;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
printk(BIOS_SPEW, "GMCH not DDR3 capable\n");
|
|
sysinfo->max_ddr3_mt = 0;
|
|
break;
|
|
}
|
|
if (sysinfo->max_ddr3_mt != 0) {
|
|
printk(BIOS_SPEW, "GMCH supports DDR3 with %d MT or less\n", sysinfo->max_ddr3_mt);
|
|
}
|
|
|
|
const unsigned max_fsb = (capid >> 28) & 0x3;
|
|
switch (max_fsb) {
|
|
case 1:
|
|
sysinfo->max_fsb_mhz = 1067;
|
|
break;
|
|
case 2:
|
|
sysinfo->max_fsb_mhz = 800;
|
|
break;
|
|
case 3:
|
|
sysinfo->max_fsb_mhz = 667;
|
|
break;
|
|
default:
|
|
die("unknown FSB capability\n");
|
|
break;
|
|
}
|
|
if (sysinfo->max_fsb_mhz != 0) {
|
|
printk(BIOS_SPEW, "GMCH supports FSB with up to %d MHz\n", sysinfo->max_fsb_mhz);
|
|
}
|
|
sysinfo->max_fsb = max_fsb - 1;
|
|
}
|
|
|
|
/*
|
|
* Detect if the system went through an interrupted RAM init or is incon-
|
|
* sistent. If so, initiate a cold reboot. Otherwise mark the system to be
|
|
* in RAM init, so this function would detect it on an erroneous reboot.
|
|
*/
|
|
void enter_raminit_or_reset(void)
|
|
{
|
|
/* Interrupted RAM init or inconsistent system? */
|
|
u8 reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
|
|
|
|
if (reg8 & (1 << 2)) { /* S4-assertion-width violation */
|
|
/* Ignore S4-assertion-width violation like original BIOS. */
|
|
printk(BIOS_WARNING,
|
|
"WARNING: Ignoring S4-assertion-width violation.\n");
|
|
/* Bit2 is R/WC, so it will clear itself below. */
|
|
}
|
|
|
|
if (reg8 & (1 << 7)) { /* interrupted RAM init */
|
|
/* Don't enable S4-assertion stretch. Makes trouble on roda/rk9.
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4);
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8 | 0x08);
|
|
*/
|
|
|
|
/* Clear bit7. */
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 & ~(1 << 7));
|
|
|
|
printk(BIOS_INFO, "Interrupted RAM init, reset required.\n");
|
|
gm45_early_reset();
|
|
}
|
|
/* Mark system to be in RAM init. */
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 | (1 << 7));
|
|
}
|
|
|
|
|
|
/* For a detected DIMM, test the value of an SPD byte to
|
|
match the expected value after masking some bits. */
|
|
static int test_dimm(sysinfo_t *const sysinfo,
|
|
int dimm, int addr, int bitmask, int expected)
|
|
{
|
|
return (smbus_read_byte(sysinfo->spd_map[dimm], addr) & bitmask) == expected;
|
|
}
|
|
|
|
/* This function dies if dimm is unsuitable for the chipset. */
|
|
static void verify_ddr3_dimm(sysinfo_t *const sysinfo, int dimm)
|
|
{
|
|
if (!test_dimm(sysinfo, dimm, 3, 15, 3))
|
|
die("Chipset only supports SO-DIMM\n");
|
|
|
|
if (!test_dimm(sysinfo, dimm, 8, 0x18, 0))
|
|
die("Chipset doesn't support ECC RAM\n");
|
|
|
|
if (!test_dimm(sysinfo, dimm, 7, 0x38, 0) &&
|
|
!test_dimm(sysinfo, dimm, 7, 0x38, 8))
|
|
die("Chipset wants single or double sided DIMMs\n");
|
|
|
|
if (!test_dimm(sysinfo, dimm, 7, 7, 1) &&
|
|
!test_dimm(sysinfo, dimm, 7, 7, 2))
|
|
die("Chipset requires x8 or x16 width\n");
|
|
|
|
if (!test_dimm(sysinfo, dimm, 4, 0x0f, 0) &&
|
|
!test_dimm(sysinfo, dimm, 4, 0x0f, 1) &&
|
|
!test_dimm(sysinfo, dimm, 4, 0x0f, 2) &&
|
|
!test_dimm(sysinfo, dimm, 4, 0x0f, 3))
|
|
die("Chipset requires 256Mb, 512Mb, 1Gb or 2Gb chips.");
|
|
|
|
if (!test_dimm(sysinfo, dimm, 4, 0x70, 0))
|
|
die("Chipset requires 8 banks on DDR3\n");
|
|
|
|
/* How to check if burst length is 8?
|
|
Other values are not supported, are they even possible? */
|
|
|
|
if (!test_dimm(sysinfo, dimm, 10, 0xff, 1))
|
|
die("Code assumes 1/8ns MTB\n");
|
|
|
|
if (!test_dimm(sysinfo, dimm, 11, 0xff, 8))
|
|
die("Code assumes 1/8ns MTB\n");
|
|
|
|
if (!test_dimm(sysinfo, dimm, 62, 0x9f, 0) &&
|
|
!test_dimm(sysinfo, dimm, 62, 0x9f, 1) &&
|
|
!test_dimm(sysinfo, dimm, 62, 0x9f, 2) &&
|
|
!test_dimm(sysinfo, dimm, 62, 0x9f, 3) &&
|
|
!test_dimm(sysinfo, dimm, 62, 0x9f, 5))
|
|
die("Only raw card types A, B, C, D and F are supported.\n");
|
|
}
|
|
|
|
/* For every detected DIMM, test if it's suitable for the chipset. */
|
|
static void verify_ddr3(sysinfo_t *const sysinfo, int mask)
|
|
{
|
|
int cur = 0;
|
|
while (mask) {
|
|
if (mask & 1) {
|
|
verify_ddr3_dimm(sysinfo, cur);
|
|
}
|
|
mask >>= 1;
|
|
cur++;
|
|
}
|
|
}
|
|
|
|
|
|
typedef struct {
|
|
int dimm_mask;
|
|
struct {
|
|
unsigned int rows;
|
|
unsigned int cols;
|
|
unsigned int chip_capacity;
|
|
unsigned int banks;
|
|
unsigned int ranks;
|
|
unsigned int cas_latencies;
|
|
unsigned int tAAmin;
|
|
unsigned int tCKmin;
|
|
unsigned int width;
|
|
unsigned int tRAS;
|
|
unsigned int tRP;
|
|
unsigned int tRCD;
|
|
unsigned int tWR;
|
|
unsigned int page_size;
|
|
unsigned int raw_card;
|
|
} channel[2];
|
|
} spdinfo_t;
|
|
/*
|
|
* This function collects RAM characteristics from SPD, assuming that RAM
|
|
* is generally within chipset's requirements, since verify_ddr3() passed.
|
|
*/
|
|
static void collect_ddr3(sysinfo_t *const sysinfo, spdinfo_t *const config)
|
|
{
|
|
int mask = config->dimm_mask;
|
|
int cur = 0;
|
|
while (mask != 0) {
|
|
/* FIXME: support several dimms on same channel. */
|
|
if ((mask & 1) && sysinfo->spd_map[2 * cur]) {
|
|
int tmp;
|
|
const int smb_addr = sysinfo->spd_map[2 * cur];
|
|
|
|
config->channel[cur].rows = ((smbus_read_byte(smb_addr, 5) >> 3) & 7) + 12;
|
|
config->channel[cur].cols = (smbus_read_byte(smb_addr, 5) & 7) + 9;
|
|
|
|
config->channel[cur].chip_capacity = smbus_read_byte(smb_addr, 4) & 0xf;
|
|
|
|
config->channel[cur].banks = 8; /* GM45 only accepts this for DDR3.
|
|
verify_ddr3() fails for other values. */
|
|
config->channel[cur].ranks = ((smbus_read_byte(smb_addr, 7) >> 3) & 7) + 1;
|
|
|
|
config->channel[cur].cas_latencies =
|
|
((smbus_read_byte(smb_addr, 15) << 8) | smbus_read_byte(smb_addr, 14))
|
|
<< 4; /* so bit x is CAS x */
|
|
config->channel[cur].tAAmin = smbus_read_byte(smb_addr, 16); /* in MTB */
|
|
config->channel[cur].tCKmin = smbus_read_byte(smb_addr, 12); /* in MTB */
|
|
|
|
config->channel[cur].width = smbus_read_byte(smb_addr, 7) & 7;
|
|
config->channel[cur].page_size = config->channel[cur].width *
|
|
(1 << config->channel[cur].cols); /* in Bytes */
|
|
|
|
tmp = smbus_read_byte(smb_addr, 21);
|
|
config->channel[cur].tRAS = smbus_read_byte(smb_addr, 22) | ((tmp & 0xf) << 8);
|
|
config->channel[cur].tRP = smbus_read_byte(smb_addr, 20);
|
|
config->channel[cur].tRCD = smbus_read_byte(smb_addr, 18);
|
|
config->channel[cur].tWR = smbus_read_byte(smb_addr, 17);
|
|
|
|
config->channel[cur].raw_card = smbus_read_byte(smb_addr, 62) & 0x1f;
|
|
}
|
|
cur++;
|
|
mask >>= 2;
|
|
}
|
|
}
|
|
|
|
#define ROUNDUP_DIV(val, by) CEIL_DIV(val, by)
|
|
#define ROUNDUP_DIV_THIS(val, by) val = ROUNDUP_DIV(val, by)
|
|
static fsb_clock_t read_fsb_clock(void)
|
|
{
|
|
switch (MCHBAR32(CLKCFG_MCHBAR) & CLKCFG_FSBCLK_MASK) {
|
|
case 6:
|
|
return FSB_CLOCK_1067MHz;
|
|
case 2:
|
|
return FSB_CLOCK_800MHz;
|
|
case 3:
|
|
return FSB_CLOCK_667MHz;
|
|
default:
|
|
die("Unsupported FSB clock.\n");
|
|
}
|
|
}
|
|
static mem_clock_t clock_index(const unsigned int clock)
|
|
{
|
|
switch (clock) {
|
|
case 533: return MEM_CLOCK_533MHz;
|
|
case 400: return MEM_CLOCK_400MHz;
|
|
case 333: return MEM_CLOCK_333MHz;
|
|
default: die("Unknown clock value.\n");
|
|
}
|
|
return -1; /* Won't be reached. */
|
|
}
|
|
static void normalize_clock(unsigned int *const clock)
|
|
{
|
|
if (*clock >= 533)
|
|
*clock = 533;
|
|
else if (*clock >= 400)
|
|
*clock = 400;
|
|
else if (*clock >= 333)
|
|
*clock = 333;
|
|
else
|
|
*clock = 0;
|
|
}
|
|
static void lower_clock(unsigned int *const clock)
|
|
{
|
|
--*clock;
|
|
normalize_clock(clock);
|
|
}
|
|
static unsigned int find_common_clock_cas(sysinfo_t *const sysinfo,
|
|
const spdinfo_t *const spdinfo)
|
|
{
|
|
/* various constraints must be fulfilled:
|
|
CAS * tCK < 20ns == 160MTB
|
|
tCK_max >= tCK >= tCK_min
|
|
CAS >= roundup(tAA_min/tCK)
|
|
CAS supported
|
|
Clock(MHz) = 1000 / tCK(ns)
|
|
Clock(MHz) = 8000 / tCK(MTB)
|
|
AND BTW: Clock(MT) = 2000 / tCK(ns) - intel uses MTs but calls them MHz
|
|
*/
|
|
int i;
|
|
|
|
/* Calculate common cas_latencies mask, tCKmin and tAAmin. */
|
|
unsigned int cas_latencies = (unsigned int)-1;
|
|
unsigned int tCKmin = 0, tAAmin = 0;
|
|
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
|
|
cas_latencies &= spdinfo->channel[i].cas_latencies;
|
|
if (spdinfo->channel[i].tCKmin > tCKmin)
|
|
tCKmin = spdinfo->channel[i].tCKmin;
|
|
if (spdinfo->channel[i].tAAmin > tAAmin)
|
|
tAAmin = spdinfo->channel[i].tAAmin;
|
|
}
|
|
|
|
/* Get actual value of fsb clock. */
|
|
sysinfo->selected_timings.fsb_clock = read_fsb_clock();
|
|
unsigned int fsb_mhz = 0;
|
|
switch (sysinfo->selected_timings.fsb_clock) {
|
|
case FSB_CLOCK_1067MHz: fsb_mhz = 1067; break;
|
|
case FSB_CLOCK_800MHz: fsb_mhz = 800; break;
|
|
case FSB_CLOCK_667MHz: fsb_mhz = 667; break;
|
|
}
|
|
|
|
unsigned int clock = 8000 / tCKmin;
|
|
if ((clock > sysinfo->max_ddr3_mt / 2) || (clock > fsb_mhz / 2)) {
|
|
int new_clock = min(sysinfo->max_ddr3_mt / 2, fsb_mhz / 2);
|
|
printk(BIOS_SPEW, "DIMMs support %d MHz, but chipset only runs at up to %d. Limiting...\n",
|
|
clock, new_clock);
|
|
clock = new_clock;
|
|
}
|
|
normalize_clock(&clock);
|
|
|
|
/* Find compatible clock / CAS pair. */
|
|
unsigned int tCKproposed;
|
|
unsigned int CAS;
|
|
while (1) {
|
|
if (!clock)
|
|
die("Couldn't find compatible clock / CAS settings.\n");
|
|
tCKproposed = 8000 / clock;
|
|
CAS = ROUNDUP_DIV(tAAmin, tCKproposed);
|
|
printk(BIOS_SPEW, "Trying CAS %u, tCK %u.\n", CAS, tCKproposed);
|
|
for (; CAS <= DDR3_MAX_CAS; ++CAS)
|
|
if (cas_latencies & (1 << CAS))
|
|
break;
|
|
if ((CAS <= DDR3_MAX_CAS) && (CAS * tCKproposed < 160)) {
|
|
/* Found good CAS. */
|
|
printk(BIOS_SPEW, "Found compatible clock / CAS pair: %u / %u.\n", clock, CAS);
|
|
break;
|
|
}
|
|
lower_clock(&clock);
|
|
}
|
|
sysinfo->selected_timings.CAS = CAS;
|
|
sysinfo->selected_timings.mem_clock = clock_index(clock);
|
|
|
|
return tCKproposed;
|
|
}
|
|
|
|
static void calculate_derived_timings(sysinfo_t *const sysinfo,
|
|
const unsigned int tCLK,
|
|
const spdinfo_t *const spdinfo)
|
|
{
|
|
int i;
|
|
|
|
/* Calculate common tRASmin, tRPmin, tRCDmin and tWRmin. */
|
|
unsigned int tRASmin = 0, tRPmin = 0, tRCDmin = 0, tWRmin = 0;
|
|
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
|
|
if (spdinfo->channel[i].tRAS > tRASmin)
|
|
tRASmin = spdinfo->channel[i].tRAS;
|
|
if (spdinfo->channel[i].tRP > tRPmin)
|
|
tRPmin = spdinfo->channel[i].tRP;
|
|
if (spdinfo->channel[i].tRCD > tRCDmin)
|
|
tRCDmin = spdinfo->channel[i].tRCD;
|
|
if (spdinfo->channel[i].tWR > tWRmin)
|
|
tWRmin = spdinfo->channel[i].tWR;
|
|
}
|
|
ROUNDUP_DIV_THIS(tRASmin, tCLK);
|
|
ROUNDUP_DIV_THIS(tRPmin, tCLK);
|
|
ROUNDUP_DIV_THIS(tRCDmin, tCLK);
|
|
ROUNDUP_DIV_THIS(tWRmin, tCLK);
|
|
|
|
/* Lookup tRFC and calculate common tRFCmin. */
|
|
const unsigned int tRFC_from_clock_and_cap[][4] = {
|
|
/* CAP_256M CAP_512M CAP_1G CAP_2G */
|
|
/* 533MHz */ { 40, 56, 68, 104 },
|
|
/* 400MHz */ { 30, 42, 51, 78 },
|
|
/* 333MHz */ { 25, 35, 43, 65 },
|
|
};
|
|
unsigned int tRFCmin = 0;
|
|
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
|
|
const unsigned int tRFC = tRFC_from_clock_and_cap
|
|
[sysinfo->selected_timings.mem_clock][spdinfo->channel[i].chip_capacity];
|
|
if (tRFC > tRFCmin)
|
|
tRFCmin = tRFC;
|
|
}
|
|
|
|
/* Calculate common tRD from CAS and FSB and DRAM clocks. */
|
|
unsigned int tRDmin = sysinfo->selected_timings.CAS;
|
|
switch (sysinfo->selected_timings.fsb_clock) {
|
|
case FSB_CLOCK_667MHz:
|
|
tRDmin += 1;
|
|
break;
|
|
case FSB_CLOCK_800MHz:
|
|
tRDmin += 2;
|
|
break;
|
|
case FSB_CLOCK_1067MHz:
|
|
tRDmin += 3;
|
|
if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT)
|
|
tRDmin += 1;
|
|
break;
|
|
}
|
|
|
|
/* Calculate common tRRDmin. */
|
|
unsigned int tRRDmin = 0;
|
|
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
|
|
unsigned int tRRD = 2 + (spdinfo->channel[i].page_size / 1024);
|
|
if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT)
|
|
tRRD += (spdinfo->channel[i].page_size / 1024);
|
|
if (tRRD > tRRDmin)
|
|
tRRDmin = tRRD;
|
|
}
|
|
|
|
/* Lookup and calculate common tFAWmin. */
|
|
unsigned int tFAW_from_pagesize_and_clock[][3] = {
|
|
/* 533MHz 400MHz 333MHz */
|
|
/* 1K */ { 20, 15, 13 },
|
|
/* 2K */ { 27, 20, 17 },
|
|
};
|
|
unsigned int tFAWmin = 0;
|
|
FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
|
|
const unsigned int tFAW = tFAW_from_pagesize_and_clock
|
|
[spdinfo->channel[i].page_size / 1024 - 1]
|
|
[sysinfo->selected_timings.mem_clock];
|
|
if (tFAW > tFAWmin)
|
|
tFAWmin = tFAW;
|
|
}
|
|
|
|
/* Refresh rate is fixed. */
|
|
unsigned int tWL;
|
|
if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT) {
|
|
tWL = 6;
|
|
} else {
|
|
tWL = 5;
|
|
}
|
|
|
|
printk(BIOS_SPEW, "Timing values:\n"
|
|
" tCLK: %3u\n"
|
|
" tRAS: %3u\n"
|
|
" tRP: %3u\n"
|
|
" tRCD: %3u\n"
|
|
" tRFC: %3u\n"
|
|
" tWR: %3u\n"
|
|
" tRD: %3u\n"
|
|
" tRRD: %3u\n"
|
|
" tFAW: %3u\n"
|
|
" tWL: %3u\n",
|
|
tCLK, tRASmin, tRPmin, tRCDmin, tRFCmin, tWRmin, tRDmin, tRRDmin, tFAWmin, tWL);
|
|
|
|
sysinfo->selected_timings.tRAS = tRASmin;
|
|
sysinfo->selected_timings.tRP = tRPmin;
|
|
sysinfo->selected_timings.tRCD = tRCDmin;
|
|
sysinfo->selected_timings.tRFC = tRFCmin;
|
|
sysinfo->selected_timings.tWR = tWRmin;
|
|
sysinfo->selected_timings.tRD = tRDmin;
|
|
sysinfo->selected_timings.tRRD = tRRDmin;
|
|
sysinfo->selected_timings.tFAW = tFAWmin;
|
|
sysinfo->selected_timings.tWL = tWL;
|
|
}
|
|
|
|
static void collect_dimm_config(sysinfo_t *const sysinfo)
|
|
{
|
|
int i;
|
|
spdinfo_t spdinfo;
|
|
|
|
spdinfo.dimm_mask = 0;
|
|
sysinfo->spd_type = 0;
|
|
|
|
for (i = 0; i < 4; i++)
|
|
if (sysinfo->spd_map[i]) {
|
|
const u8 spd = smbus_read_byte(sysinfo->spd_map[i], 2);
|
|
printk (BIOS_DEBUG, "%x:%x:%x\n",
|
|
i, sysinfo->spd_map[i],
|
|
spd);
|
|
if ((spd == 7) || (spd == 8) || (spd == 0xb)) {
|
|
spdinfo.dimm_mask |= 1 << i;
|
|
if (sysinfo->spd_type && sysinfo->spd_type != spd) {
|
|
die("Multiple types of DIMM installed in the system, don't do that!\n");
|
|
}
|
|
sysinfo->spd_type = spd;
|
|
}
|
|
}
|
|
if (spdinfo.dimm_mask == 0) {
|
|
die("Could not find any DIMM.\n");
|
|
}
|
|
|
|
/* Normalize spd_type to 1, 2, 3. */
|
|
sysinfo->spd_type = (sysinfo->spd_type & 1) | ((sysinfo->spd_type & 8) >> 2);
|
|
printk(BIOS_SPEW, "DDR mask %x, DDR %d\n", spdinfo.dimm_mask, sysinfo->spd_type);
|
|
|
|
if (sysinfo->spd_type == DDR2) {
|
|
die("DDR2 not supported at this time.\n");
|
|
} else if (sysinfo->spd_type == DDR3) {
|
|
verify_ddr3(sysinfo, spdinfo.dimm_mask);
|
|
collect_ddr3(sysinfo, &spdinfo);
|
|
} else {
|
|
die("Will never support DDR1.\n");
|
|
}
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
if ((spdinfo.dimm_mask >> (i*2)) & 1) {
|
|
printk(BIOS_SPEW, "Bank %d populated:\n"
|
|
" Raw card type: %4c\n"
|
|
" Row addr bits: %4u\n"
|
|
" Col addr bits: %4u\n"
|
|
" byte width: %4u\n"
|
|
" page size: %4u\n"
|
|
" banks: %4u\n"
|
|
" ranks: %4u\n"
|
|
" tAAmin: %3u\n"
|
|
" tCKmin: %3u\n"
|
|
" Max clock: %3u MHz\n"
|
|
" CAS: 0x%04x\n",
|
|
i, spdinfo.channel[i].raw_card + 'A',
|
|
spdinfo.channel[i].rows, spdinfo.channel[i].cols,
|
|
spdinfo.channel[i].width, spdinfo.channel[i].page_size,
|
|
spdinfo.channel[i].banks, spdinfo.channel[i].ranks,
|
|
spdinfo.channel[i].tAAmin, spdinfo.channel[i].tCKmin,
|
|
8000 / spdinfo.channel[i].tCKmin, spdinfo.channel[i].cas_latencies);
|
|
}
|
|
}
|
|
|
|
FOR_EACH_CHANNEL(i) {
|
|
sysinfo->dimms[i].card_type =
|
|
(spdinfo.dimm_mask & (1 << (i * 2))) ? spdinfo.channel[i].raw_card + 0xa : 0;
|
|
}
|
|
|
|
/* Find common memory clock and CAS. */
|
|
const unsigned int tCLK = find_common_clock_cas(sysinfo, &spdinfo);
|
|
|
|
/* Calculate other timings from clock and CAS. */
|
|
calculate_derived_timings(sysinfo, tCLK, &spdinfo);
|
|
|
|
/* Initialize DIMM infos. */
|
|
/* Always prefer interleaved over async channel mode. */
|
|
FOR_EACH_CHANNEL(i) {
|
|
IF_CHANNEL_POPULATED(sysinfo->dimms, i) {
|
|
sysinfo->dimms[i].banks = spdinfo.channel[i].banks;
|
|
sysinfo->dimms[i].ranks = spdinfo.channel[i].ranks;
|
|
|
|
/* .width is 1 for x8 or 2 for x16, bus width is 8 bytes. */
|
|
const unsigned int chips_per_rank = 8 / spdinfo.channel[i].width;
|
|
|
|
sysinfo->dimms[i].chip_width = spdinfo.channel[i].width;
|
|
sysinfo->dimms[i].chip_capacity = spdinfo.channel[i].chip_capacity;
|
|
sysinfo->dimms[i].page_size = spdinfo.channel[i].page_size * chips_per_rank;
|
|
sysinfo->dimms[i].rank_capacity_mb =
|
|
/* offset of chip_capacity is 8 (256M), therefore, add 8
|
|
chip_capacity is in Mbit, we want MByte, therefore, subtract 3 */
|
|
(1 << (spdinfo.channel[i].chip_capacity + 8 - 3)) * chips_per_rank;
|
|
}
|
|
}
|
|
if (CHANNEL_IS_POPULATED(sysinfo->dimms, 0) &&
|
|
CHANNEL_IS_POPULATED(sysinfo->dimms, 1))
|
|
sysinfo->selected_timings.channel_mode = CHANNEL_MODE_DUAL_INTERLEAVED;
|
|
else
|
|
sysinfo->selected_timings.channel_mode = CHANNEL_MODE_SINGLE;
|
|
}
|
|
|
|
static void reset_on_bad_warmboot(void)
|
|
{
|
|
/* Check self refresh channel status. */
|
|
const u32 reg = MCHBAR32(PMSTS_MCHBAR);
|
|
/* Clear status bits. R/WC */
|
|
MCHBAR32(PMSTS_MCHBAR) = reg;
|
|
if ((reg & PMSTS_WARM_RESET) && !(reg & PMSTS_BOTH_SELFREFRESH)) {
|
|
printk(BIOS_INFO, "DRAM was not in self refresh "
|
|
"during warm boot, reset required.\n");
|
|
gm45_early_reset();
|
|
}
|
|
}
|
|
|
|
static void set_system_memory_frequency(const timings_t *const timings)
|
|
{
|
|
MCHBAR16(CLKCFG_MCHBAR + 0x60) &= ~(1 << 15);
|
|
MCHBAR16(CLKCFG_MCHBAR + 0x48) &= ~(1 << 15);
|
|
|
|
/* Calculate wanted frequency setting. */
|
|
const int want_freq = 6 - timings->mem_clock;
|
|
|
|
/* Read current memory frequency. */
|
|
const u32 clkcfg = MCHBAR32(CLKCFG_MCHBAR);
|
|
int cur_freq = (clkcfg & CLKCFG_MEMCLK_MASK) >> CLKCFG_MEMCLK_SHIFT;
|
|
if (0 == cur_freq) {
|
|
/* Try memory frequency from scratchpad. */
|
|
printk(BIOS_DEBUG, "Reading current memory frequency from scratchpad.\n");
|
|
cur_freq = (MCHBAR16(SSKPD_MCHBAR) & SSKPD_CLK_MASK) >> SSKPD_CLK_SHIFT;
|
|
}
|
|
|
|
if (cur_freq != want_freq) {
|
|
printk(BIOS_DEBUG, "Changing memory frequency: old %x, new %x.\n", cur_freq, want_freq);
|
|
/* When writing new frequency setting, reset, then set update bit. */
|
|
MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(CLKCFG_UPDATE | CLKCFG_MEMCLK_MASK)) |
|
|
(want_freq << CLKCFG_MEMCLK_SHIFT);
|
|
MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~CLKCFG_MEMCLK_MASK) |
|
|
(want_freq << CLKCFG_MEMCLK_SHIFT) | CLKCFG_UPDATE;
|
|
/* Reset update bit. */
|
|
MCHBAR32(CLKCFG_MCHBAR) &= ~CLKCFG_UPDATE;
|
|
}
|
|
|
|
if ((timings->fsb_clock == FSB_CLOCK_1067MHz) && (timings->mem_clock == MEM_CLOCK_667MT)) {
|
|
MCHBAR32(CLKCFG_MCHBAR + 0x16) = 0x000030f0;
|
|
MCHBAR32(CLKCFG_MCHBAR + 0x64) = 0x000050c1;
|
|
|
|
MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(1 << 12)) | (1 << 17);
|
|
MCHBAR32(CLKCFG_MCHBAR) |= (1 << 17) | (1 << 12);
|
|
MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 12);
|
|
|
|
MCHBAR32(CLKCFG_MCHBAR + 0x04) = 0x9bad1f1f;
|
|
MCHBAR8(CLKCFG_MCHBAR + 0x08) = 0xf4;
|
|
MCHBAR8(CLKCFG_MCHBAR + 0x0a) = 0x43;
|
|
MCHBAR8(CLKCFG_MCHBAR + 0x0c) = 0x10;
|
|
MCHBAR8(CLKCFG_MCHBAR + 0x0d) = 0x80;
|
|
MCHBAR32(CLKCFG_MCHBAR + 0x50) = 0x0b0e151b;
|
|
MCHBAR8(CLKCFG_MCHBAR + 0x54) = 0xb4;
|
|
MCHBAR8(CLKCFG_MCHBAR + 0x55) = 0x10;
|
|
MCHBAR8(CLKCFG_MCHBAR + 0x56) = 0x08;
|
|
|
|
MCHBAR32(CLKCFG_MCHBAR) |= (1 << 10);
|
|
MCHBAR32(CLKCFG_MCHBAR) |= (1 << 11);
|
|
MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 10);
|
|
MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 11);
|
|
}
|
|
|
|
MCHBAR32(CLKCFG_MCHBAR + 0x48) |= 0x3f << 24;
|
|
}
|
|
|
|
int raminit_read_vco_index(void)
|
|
{
|
|
switch (MCHBAR8(HPLLVCO_MCHBAR) & 0x7) {
|
|
case VCO_2666:
|
|
return 0;
|
|
case VCO_3200:
|
|
return 1;
|
|
case VCO_4000:
|
|
return 2;
|
|
case VCO_5333:
|
|
return 3;
|
|
default:
|
|
die("Unknown VCO frequency.\n");
|
|
return 0;
|
|
}
|
|
}
|
|
static void set_igd_memory_frequencies(const sysinfo_t *const sysinfo)
|
|
{
|
|
const int gfx_idx = ((sysinfo->gfx_type == GMCH_GS45) &&
|
|
!sysinfo->gs45_low_power_mode)
|
|
? (GMCH_GS45 + 1) : sysinfo->gfx_type;
|
|
|
|
/* Render and sampler frequency values seem to be some kind of factor. */
|
|
const u16 render_freq_from_vco_and_gfxtype[][10] = {
|
|
/* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
|
|
/* VCO 2666 */ { 0xd, 0xd, 0xe, 0xd, 0xb, 0xd, 0xb, 0xa, 0xd },
|
|
/* VCO 3200 */ { 0xd, 0xe, 0xf, 0xd, 0xb, 0xd, 0xb, 0x9, 0xd },
|
|
/* VCO 4000 */ { 0xc, 0xd, 0xf, 0xc, 0xa, 0xc, 0xa, 0x9, 0xc },
|
|
/* VCO 5333 */ { 0xb, 0xc, 0xe, 0xb, 0x9, 0xb, 0x9, 0x8, 0xb },
|
|
};
|
|
const u16 sampler_freq_from_vco_and_gfxtype[][10] = {
|
|
/* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
|
|
/* VCO 2666 */ { 0xc, 0xc, 0xd, 0xc, 0x9, 0xc, 0x9, 0x8, 0xc },
|
|
/* VCO 3200 */ { 0xc, 0xd, 0xe, 0xc, 0x9, 0xc, 0x9, 0x8, 0xc },
|
|
/* VCO 4000 */ { 0xa, 0xc, 0xd, 0xa, 0x8, 0xa, 0x8, 0x8, 0xa },
|
|
/* VCO 5333 */ { 0xa, 0xa, 0xc, 0xa, 0x7, 0xa, 0x7, 0x6, 0xa },
|
|
};
|
|
const u16 display_clock_select_from_gfxtype[] = {
|
|
/* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
|
|
1, 1, 1, 1, 1, 1, 1, 0, 1
|
|
};
|
|
|
|
if (pci_read_config16(GCFGC_PCIDEV, 0) != 0x8086) {
|
|
printk(BIOS_DEBUG, "Skipping IGD memory frequency setting.\n");
|
|
return;
|
|
}
|
|
|
|
MCHBAR16(0x119e) = 0xa800;
|
|
MCHBAR16(0x11c0) = (MCHBAR16(0x11c0) & ~0xff00) | (0x01 << 8);
|
|
MCHBAR16(0x119e) = 0xb800;
|
|
MCHBAR8(0x0f10) |= 1 << 7;
|
|
|
|
/* Read VCO. */
|
|
const int vco_idx = raminit_read_vco_index();
|
|
printk(BIOS_DEBUG, "Setting IGD memory frequencies for VCO #%d.\n", vco_idx);
|
|
|
|
const u32 freqcfg =
|
|
((render_freq_from_vco_and_gfxtype[vco_idx][gfx_idx]
|
|
<< GCFGC_CR_SHIFT) & GCFGC_CR_MASK) |
|
|
((sampler_freq_from_vco_and_gfxtype[vco_idx][gfx_idx]
|
|
<< GCFGC_CS_SHIFT) & GCFGC_CS_MASK);
|
|
|
|
/* Set frequencies, clear update bit. */
|
|
u32 gcfgc = pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET);
|
|
gcfgc &= ~(GCFGC_CS_MASK | GCFGC_UPDATE | GCFGC_CR_MASK);
|
|
gcfgc |= freqcfg;
|
|
pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET, gcfgc);
|
|
|
|
/* Set frequencies, set update bit. */
|
|
gcfgc = pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET);
|
|
gcfgc &= ~(GCFGC_CS_MASK | GCFGC_CR_MASK);
|
|
gcfgc |= freqcfg | GCFGC_UPDATE;
|
|
pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET, gcfgc);
|
|
|
|
/* Clear update bit. */
|
|
pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET,
|
|
pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET) & ~GCFGC_UPDATE);
|
|
|
|
/* Set display clock select bit. */
|
|
pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET,
|
|
(pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET) & ~GCFGC_CD_MASK) |
|
|
(display_clock_select_from_gfxtype[gfx_idx] << GCFGC_CD_SHIFT));
|
|
}
|
|
|
|
static void configure_dram_control_mode(const timings_t *const timings, const dimminfo_t *const dimms)
|
|
{
|
|
int ch, r;
|
|
|
|
FOR_EACH_CHANNEL(ch) {
|
|
unsigned int mchbar = CxDRC0_MCHBAR(ch);
|
|
u32 cxdrc = MCHBAR32(mchbar);
|
|
cxdrc &= ~CxDRC0_RANKEN_MASK;
|
|
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
|
|
cxdrc |= CxDRC0_RANKEN(r);
|
|
cxdrc = (cxdrc & ~CxDRC0_RMS_MASK) |
|
|
/* Always 7.8us for DDR3: */
|
|
CxDRC0_RMS_78US;
|
|
MCHBAR32(mchbar) = cxdrc;
|
|
|
|
mchbar = CxDRC1_MCHBAR(ch);
|
|
cxdrc = MCHBAR32(mchbar);
|
|
cxdrc |= CxDRC1_NOTPOP_MASK;
|
|
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
|
|
cxdrc &= ~CxDRC1_NOTPOP(r);
|
|
cxdrc |= CxDRC1_MUSTWR;
|
|
MCHBAR32(mchbar) = cxdrc;
|
|
|
|
mchbar = CxDRC2_MCHBAR(ch);
|
|
cxdrc = MCHBAR32(mchbar);
|
|
cxdrc |= CxDRC2_NOTPOP_MASK;
|
|
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
|
|
cxdrc &= ~CxDRC2_NOTPOP(r);
|
|
cxdrc |= CxDRC2_MUSTWR;
|
|
if (timings->mem_clock == MEM_CLOCK_1067MT)
|
|
cxdrc |= CxDRC2_CLK1067MT;
|
|
MCHBAR32(mchbar) = cxdrc;
|
|
}
|
|
}
|
|
|
|
static void rcomp_initialization(const stepping_t stepping, const int sff)
|
|
{
|
|
/* Program RCOMP codes. */
|
|
if (sff)
|
|
die("SFF platform unsupported in RCOMP initialization.\n");
|
|
/* Values are for DDR3. */
|
|
MCHBAR8(0x6ac) &= ~0x0f;
|
|
MCHBAR8(0x6b0) = 0x55;
|
|
MCHBAR8(0x6ec) &= ~0x0f;
|
|
MCHBAR8(0x6f0) = 0x66;
|
|
MCHBAR8(0x72c) &= ~0x0f;
|
|
MCHBAR8(0x730) = 0x66;
|
|
MCHBAR8(0x76c) &= ~0x0f;
|
|
MCHBAR8(0x770) = 0x66;
|
|
MCHBAR8(0x7ac) &= ~0x0f;
|
|
MCHBAR8(0x7b0) = 0x66;
|
|
MCHBAR8(0x7ec) &= ~0x0f;
|
|
MCHBAR8(0x7f0) = 0x66;
|
|
MCHBAR8(0x86c) &= ~0x0f;
|
|
MCHBAR8(0x870) = 0x55;
|
|
MCHBAR8(0x8ac) &= ~0x0f;
|
|
MCHBAR8(0x8b0) = 0x66;
|
|
/* ODT multiplier bits. */
|
|
MCHBAR32(0x04d0) = (MCHBAR32(0x04d0) & ~((7 << 3) | (7 << 0))) | (2 << 3) | (2 << 0);
|
|
|
|
/* Perform RCOMP calibration for DDR3. */
|
|
raminit_rcomp_calibration(stepping);
|
|
|
|
/* Run initial RCOMP. */
|
|
MCHBAR32(0x418) |= 1 << 17;
|
|
MCHBAR32(0x40c) &= ~(1 << 23);
|
|
MCHBAR32(0x41c) &= ~((1 << 7) | (1 << 3));
|
|
MCHBAR32(0x400) |= 1;
|
|
while (MCHBAR32(0x400) & 1) {}
|
|
|
|
/* Run second RCOMP. */
|
|
MCHBAR32(0x40c) |= 1 << 19;
|
|
MCHBAR32(0x400) |= 1;
|
|
while (MCHBAR32(0x400) & 1) {}
|
|
|
|
/* Cleanup and start periodic RCOMP. */
|
|
MCHBAR32(0x40c) &= ~(1 << 19);
|
|
MCHBAR32(0x40c) |= 1 << 23;
|
|
MCHBAR32(0x418) &= ~(1 << 17);
|
|
MCHBAR32(0x41c) |= (1 << 7) | (1 << 3);
|
|
MCHBAR32(0x400) |= (1 << 1);
|
|
}
|
|
|
|
static void dram_powerup(const int resume)
|
|
{
|
|
udelay(200);
|
|
MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(1 << 3)) | (3 << 21);
|
|
if (!resume) {
|
|
MCHBAR32(0x1434) |= (1 << 10);
|
|
udelay(1);
|
|
}
|
|
MCHBAR32(0x1434) |= (1 << 6);
|
|
if (!resume) {
|
|
udelay(1);
|
|
MCHBAR32(0x1434) |= (1 << 9);
|
|
MCHBAR32(0x1434) &= ~(1 << 10);
|
|
udelay(500);
|
|
}
|
|
}
|
|
static void dram_program_timings(const timings_t *const timings)
|
|
{
|
|
/* Values are for DDR3. */
|
|
const int burst_length = 8;
|
|
const int tWTR = 4, tRTP = 1;
|
|
int i;
|
|
|
|
FOR_EACH_CHANNEL(i) {
|
|
u32 reg = MCHBAR32(CxDRT0_MCHBAR(i));
|
|
const int btb_wtp = timings->tWL + burst_length/2 + timings->tWR;
|
|
const int btb_wtr = timings->tWL + burst_length/2 + tWTR;
|
|
reg = (reg & ~(CxDRT0_BtB_WtP_MASK | CxDRT0_BtB_WtR_MASK)) |
|
|
((btb_wtp << CxDRT0_BtB_WtP_SHIFT) & CxDRT0_BtB_WtP_MASK) |
|
|
((btb_wtr << CxDRT0_BtB_WtR_SHIFT) & CxDRT0_BtB_WtR_MASK);
|
|
if (timings->mem_clock != MEM_CLOCK_1067MT) {
|
|
reg = (reg & ~(0x7 << 15)) | ((9 - timings->CAS) << 15);
|
|
reg = (reg & ~(0xf << 10)) | ((timings->CAS - 3) << 10);
|
|
} else {
|
|
reg = (reg & ~(0x7 << 15)) | ((10 - timings->CAS) << 15);
|
|
reg = (reg & ~(0xf << 10)) | ((timings->CAS - 4) << 10);
|
|
}
|
|
reg = (reg & ~(0x7 << 5)) | (3 << 5);
|
|
reg = (reg & ~(0x7 << 0)) | (1 << 0);
|
|
MCHBAR32(CxDRT0_MCHBAR(i)) = reg;
|
|
|
|
reg = MCHBAR32(CxDRT1_MCHBAR(i));
|
|
reg = (reg & ~(0x03 << 28)) | ((tRTP & 0x03) << 28);
|
|
reg = (reg & ~(0x1f << 21)) | ((timings->tRAS & 0x1f) << 21);
|
|
reg = (reg & ~(0x07 << 10)) | (((timings->tRRD - 2) & 0x07) << 10);
|
|
reg = (reg & ~(0x07 << 5)) | (((timings->tRCD - 2) & 0x07) << 5);
|
|
reg = (reg & ~(0x07 << 0)) | (((timings->tRP - 2) & 0x07) << 0);
|
|
MCHBAR32(CxDRT1_MCHBAR(i)) = reg;
|
|
|
|
reg = MCHBAR32(CxDRT2_MCHBAR(i));
|
|
reg = (reg & ~(0x1f << 17)) | ((timings->tFAW & 0x1f) << 17);
|
|
if (timings->mem_clock != MEM_CLOCK_1067MT) {
|
|
reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
|
|
reg = (reg & ~(0xf << 6)) | (0x9 << 6);
|
|
} else {
|
|
reg = (reg & ~(0x7 << 12)) | (0x3 << 12);
|
|
reg = (reg & ~(0xf << 6)) | (0xc << 6);
|
|
}
|
|
reg = (reg & ~(0x1f << 0)) | (0x13 << 0);
|
|
MCHBAR32(CxDRT2_MCHBAR(i)) = reg;
|
|
|
|
reg = MCHBAR32(CxDRT3_MCHBAR(i));
|
|
reg |= 0x3 << 28;
|
|
reg = (reg & ~(0x03 << 26));
|
|
reg = (reg & ~(0x07 << 23)) | (((timings->CAS - 3) & 0x07) << 23);
|
|
reg = (reg & ~(0xff << 13)) | ((timings->tRFC & 0xff) << 13);
|
|
reg = (reg & ~(0x07 << 0)) | (((timings->tWL - 2) & 0x07) << 0);
|
|
MCHBAR32(CxDRT3_MCHBAR(i)) = reg;
|
|
|
|
reg = MCHBAR32(CxDRT4_MCHBAR(i));
|
|
static const u8 timings_by_clock[4][3] = {
|
|
/* 333MHz 400MHz 533MHz
|
|
667MT 800MT 1067MT */
|
|
{ 0x07, 0x0a, 0x0d },
|
|
{ 0x3a, 0x46, 0x5d },
|
|
{ 0x0c, 0x0e, 0x18 },
|
|
{ 0x21, 0x28, 0x35 },
|
|
};
|
|
const int clk_idx = 2 - timings->mem_clock;
|
|
reg = (reg & ~(0x01f << 27)) | (timings_by_clock[0][clk_idx] << 27);
|
|
reg = (reg & ~(0x3ff << 17)) | (timings_by_clock[1][clk_idx] << 17);
|
|
reg = (reg & ~(0x03f << 10)) | (timings_by_clock[2][clk_idx] << 10);
|
|
reg = (reg & ~(0x1ff << 0)) | (timings_by_clock[3][clk_idx] << 0);
|
|
MCHBAR32(CxDRT4_MCHBAR(i)) = reg;
|
|
|
|
reg = MCHBAR32(CxDRT5_MCHBAR(i));
|
|
if (timings->mem_clock == MEM_CLOCK_1067MT)
|
|
reg = (reg & ~(0xf << 28)) | (0x8 << 28);
|
|
reg = (reg & ~(0x00f << 22)) | ((burst_length/2 + timings->CAS + 2) << 22);
|
|
reg = (reg & ~(0x3ff << 12)) | (0x190 << 12);
|
|
reg = (reg & ~(0x00f << 4)) | ((timings->CAS - 2) << 4);
|
|
reg = (reg & ~(0x003 << 2)) | (0x001 << 2);
|
|
reg = (reg & ~(0x003 << 0));
|
|
MCHBAR32(CxDRT5_MCHBAR(i)) = reg;
|
|
|
|
reg = MCHBAR32(CxDRT6_MCHBAR(i));
|
|
reg = (reg & ~(0xffff << 16)) | (0x066a << 16); /* always 7.8us refresh rate for DDR3 */
|
|
reg |= (1 << 2);
|
|
MCHBAR32(CxDRT6_MCHBAR(i)) = reg;
|
|
}
|
|
}
|
|
|
|
static void dram_program_banks(const dimminfo_t *const dimms)
|
|
{
|
|
int ch, r;
|
|
|
|
FOR_EACH_CHANNEL(ch) {
|
|
const int tRPALL = dimms[ch].banks == 8;
|
|
|
|
u32 reg = MCHBAR32(CxDRT1_MCHBAR(ch)) & ~(0x01 << 15);
|
|
IF_CHANNEL_POPULATED(dimms, ch)
|
|
reg |= tRPALL << 15;
|
|
MCHBAR32(CxDRT1_MCHBAR(ch)) = reg;
|
|
|
|
reg = MCHBAR32(CxDRA_MCHBAR(ch)) & ~CxDRA_BANKS_MASK;
|
|
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) {
|
|
reg |= CxDRA_BANKS(r, dimms[ch].banks);
|
|
}
|
|
MCHBAR32(CxDRA_MCHBAR(ch)) = reg;
|
|
}
|
|
}
|
|
|
|
static void odt_setup(const timings_t *const timings, const int sff)
|
|
{
|
|
/* Values are for DDR3. */
|
|
int ch;
|
|
|
|
FOR_EACH_CHANNEL(ch) {
|
|
u32 reg = MCHBAR32(CxODT_HIGH(ch));
|
|
if (sff && (timings->mem_clock != MEM_CLOCK_1067MT))
|
|
reg &= ~(0x3 << (61 - 32));
|
|
else
|
|
reg |= 0x3 << (61 - 32);
|
|
reg = (reg & ~(0x3 << (52 - 32))) | (0x2 << (52 - 32));
|
|
reg = (reg & ~(0x7 << (48 - 32))) | ((timings->CAS - 3) << (48 - 32));
|
|
reg = (reg & ~(0xf << (44 - 32))) | (0x7 << (44 - 32));
|
|
if (timings->mem_clock != MEM_CLOCK_1067MT) {
|
|
reg = (reg & ~(0xf << (40 - 32))) | ((12 - timings->CAS) << (40 - 32));
|
|
reg = (reg & ~(0xf << (36 - 32))) | (( 2 + timings->CAS) << (36 - 32));
|
|
} else {
|
|
reg = (reg & ~(0xf << (40 - 32))) | ((13 - timings->CAS) << (40 - 32));
|
|
reg = (reg & ~(0xf << (36 - 32))) | (( 1 + timings->CAS) << (36 - 32));
|
|
}
|
|
reg = (reg & ~(0xf << (32 - 32))) | (0x7 << (32 - 32));
|
|
MCHBAR32(CxODT_HIGH(ch)) = reg;
|
|
|
|
reg = MCHBAR32(CxODT_LOW(ch));
|
|
reg = (reg & ~(0x7 << 28)) | (0x2 << 28);
|
|
reg = (reg & ~(0x3 << 22)) | (0x2 << 22);
|
|
reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
|
|
reg = (reg & ~(0x7 << 4)) | (0x2 << 4);
|
|
switch (timings->mem_clock) {
|
|
case MEM_CLOCK_667MT:
|
|
reg = (reg & ~0x7);
|
|
break;
|
|
case MEM_CLOCK_800MT:
|
|
reg = (reg & ~0x7) | 0x2;
|
|
break;
|
|
case MEM_CLOCK_1067MT:
|
|
reg = (reg & ~0x7) | 0x5;
|
|
break;
|
|
}
|
|
MCHBAR32(CxODT_LOW(ch)) = reg;
|
|
}
|
|
}
|
|
|
|
static void misc_settings(const timings_t *const timings,
|
|
const stepping_t stepping)
|
|
{
|
|
MCHBAR32(0x1260) = (MCHBAR32(0x1260) & ~((1 << 24) | 0x1f)) | timings->tRD;
|
|
MCHBAR32(0x1360) = (MCHBAR32(0x1360) & ~((1 << 24) | 0x1f)) | timings->tRD;
|
|
|
|
MCHBAR8(0x1268) = (MCHBAR8(0x1268) & ~(0xf)) | timings->tWL;
|
|
MCHBAR8(0x1368) = (MCHBAR8(0x1368) & ~(0xf)) | timings->tWL;
|
|
MCHBAR8(0x12a0) = (MCHBAR8(0x12a0) & ~(0xf)) | 0xa;
|
|
MCHBAR8(0x13a0) = (MCHBAR8(0x13a0) & ~(0xf)) | 0xa;
|
|
|
|
MCHBAR32(0x218) = (MCHBAR32(0x218) & ~((7 << 29) | (7 << 25) | (3 << 22) | (3 << 10))) |
|
|
(4 << 29) | (3 << 25) | (0 << 22) | (1 << 10);
|
|
MCHBAR32(0x220) = (MCHBAR32(0x220) & ~(7 << 16)) | (1 << 21) | (1 << 16);
|
|
MCHBAR32(0x224) = (MCHBAR32(0x224) & ~(7 << 8)) | (3 << 8);
|
|
if (stepping >= STEPPING_B1)
|
|
MCHBAR8(0x234) |= (1 << 3);
|
|
}
|
|
|
|
static void clock_crossing_setup(const fsb_clock_t fsb,
|
|
const mem_clock_t ddr3clock,
|
|
const dimminfo_t *const dimms)
|
|
{
|
|
int ch;
|
|
|
|
static const u32 values_from_fsb_and_mem[][3][4] = {
|
|
/* FSB 1067MHz */{
|
|
/* DDR3-1067 */ { 0x00000000, 0x00000000, 0x00180006, 0x00810060 },
|
|
/* DDR3-800 */ { 0x00000000, 0x00000000, 0x0000001c, 0x000300e0 },
|
|
/* DDR3-667 */ { 0x00000000, 0x00001c00, 0x03c00038, 0x0007e000 },
|
|
},
|
|
/* FSB 800MHz */{
|
|
/* DDR3-1067 */ { 0, 0, 0, 0 },
|
|
/* DDR3-800 */ { 0x00000000, 0x00000000, 0x0030000c, 0x000300c0 },
|
|
/* DDR3-667 */ { 0x00000000, 0x00000380, 0x0060001c, 0x00030c00 },
|
|
},
|
|
/* FSB 667MHz */{
|
|
/* DDR3-1067 */ { 0, 0, 0, 0 },
|
|
/* DDR3-800 */ { 0, 0, 0, 0 },
|
|
/* DDR3-667 */ { 0x00000000, 0x00000000, 0x0030000c, 0x000300c0 },
|
|
},
|
|
};
|
|
|
|
const u32 *data = values_from_fsb_and_mem[fsb][ddr3clock];
|
|
MCHBAR32(0x0208) = data[3];
|
|
MCHBAR32(0x020c) = data[2];
|
|
if (((fsb == FSB_CLOCK_1067MHz) || (fsb == FSB_CLOCK_800MHz)) && (ddr3clock == MEM_CLOCK_667MT))
|
|
MCHBAR32(0x0210) = data[1];
|
|
|
|
static const u32 from_fsb_and_mem[][3] = {
|
|
/* DDR3-1067 DDR3-800 DDR3-667 */
|
|
/* FSB 1067MHz */{ 0x40100401, 0x10040220, 0x08040110, },
|
|
/* FSB 800MHz */{ 0x00000000, 0x40100401, 0x00080201, },
|
|
/* FSB 667MHz */{ 0x00000000, 0x00000000, 0x40100401, },
|
|
};
|
|
FOR_EACH_CHANNEL(ch) {
|
|
const unsigned int mchbar = 0x1258 + (ch * 0x0100);
|
|
if ((fsb == FSB_CLOCK_1067MHz) && (ddr3clock == MEM_CLOCK_800MT) && CHANNEL_IS_CARDF(dimms, ch))
|
|
MCHBAR32(mchbar) = 0x08040120;
|
|
else
|
|
MCHBAR32(mchbar) = from_fsb_and_mem[fsb][ddr3clock];
|
|
MCHBAR32(mchbar + 4) = 0x00000000;
|
|
}
|
|
}
|
|
|
|
/* Program egress VC1 timings. */
|
|
static void vc1_program_timings(const fsb_clock_t fsb)
|
|
{
|
|
const u32 timings_by_fsb[][2] = {
|
|
/* FSB 1067MHz */ { 0x1a, 0x01380138 },
|
|
/* FSB 800MHz */ { 0x14, 0x00f000f0 },
|
|
/* FSB 667MHz */ { 0x10, 0x00c000c0 },
|
|
};
|
|
EPBAR8(0x2c) = timings_by_fsb[fsb][0];
|
|
EPBAR32(0x38) = timings_by_fsb[fsb][1];
|
|
EPBAR32(0x3c) = timings_by_fsb[fsb][1];
|
|
}
|
|
|
|
#define DEFAULT_PCI_MMIO_SIZE 2048
|
|
#define HOST_BRIDGE PCI_DEVFN(0, 0)
|
|
|
|
static unsigned int get_mmio_size(void)
|
|
{
|
|
const struct device *dev;
|
|
const struct northbridge_intel_gm45_config *cfg = NULL;
|
|
|
|
dev = dev_find_slot(0, HOST_BRIDGE);
|
|
if (dev)
|
|
cfg = dev->chip_info;
|
|
|
|
/* If this is zero, it just means devicetree.cb didn't set it */
|
|
if (!cfg || cfg->pci_mmio_size == 0)
|
|
return DEFAULT_PCI_MMIO_SIZE;
|
|
else
|
|
return cfg->pci_mmio_size;
|
|
}
|
|
|
|
/* @prejedec if not zero, set rank size to 128MB and page size to 4KB. */
|
|
static void program_memory_map(const dimminfo_t *const dimms, const channel_mode_t mode, const int prejedec, u16 ggc)
|
|
{
|
|
int ch, r;
|
|
|
|
/* Program rank boundaries (CxDRBy). */
|
|
unsigned int base = 0; /* start of next rank in MB */
|
|
unsigned int total_mb[2] = { 0, 0 }; /* total memory per channel in MB */
|
|
FOR_EACH_CHANNEL(ch) {
|
|
if (mode == CHANNEL_MODE_DUAL_INTERLEAVED)
|
|
/* In interleaved mode, start every channel from 0. */
|
|
base = 0;
|
|
for (r = 0; r < RANKS_PER_CHANNEL; r += 2) {
|
|
/* Fixed capacity for pre-jedec config. */
|
|
const unsigned int rank_capacity_mb =
|
|
prejedec ? 128 : dimms[ch].rank_capacity_mb;
|
|
u32 reg = 0;
|
|
|
|
/* Program bounds in CxDRBy. */
|
|
IF_RANK_POPULATED(dimms, ch, r) {
|
|
base += rank_capacity_mb;
|
|
total_mb[ch] += rank_capacity_mb;
|
|
}
|
|
reg |= CxDRBy_BOUND_MB(r, base);
|
|
IF_RANK_POPULATED(dimms, ch, r+1) {
|
|
base += rank_capacity_mb;
|
|
total_mb[ch] += rank_capacity_mb;
|
|
}
|
|
reg |= CxDRBy_BOUND_MB(r+1, base);
|
|
|
|
MCHBAR32(CxDRBy_MCHBAR(ch, r)) = reg;
|
|
}
|
|
}
|
|
|
|
/* Program page size (CxDRA). */
|
|
FOR_EACH_CHANNEL(ch) {
|
|
u32 reg = MCHBAR32(CxDRA_MCHBAR(ch)) & ~CxDRA_PAGESIZE_MASK;
|
|
FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) {
|
|
/* Fixed page size for pre-jedec config. */
|
|
const unsigned int page_size = /* dimm page size in bytes */
|
|
prejedec ? 4096 : dimms[ch].page_size;
|
|
reg |= CxDRA_PAGESIZE(r, log2(page_size));
|
|
/* deferred to f5_27: reg |= CxDRA_BANKS(r, dimms[ch].banks); */
|
|
}
|
|
MCHBAR32(CxDRA_MCHBAR(ch)) = reg;
|
|
}
|
|
|
|
/* Calculate memory mapping, all values in MB. */
|
|
|
|
u32 uma_sizem = 0;
|
|
if (!prejedec) {
|
|
if (!(ggc & 2)) {
|
|
printk(BIOS_DEBUG, "IGD decoded, subtracting ");
|
|
|
|
/* Graphics memory */
|
|
const u32 gms_sizek = decode_igd_memory_size((ggc >> 4) & 0xf);
|
|
printk(BIOS_DEBUG, "%uM UMA", gms_sizek >> 10);
|
|
|
|
/* GTT Graphics Stolen Memory Size (GGMS) */
|
|
const u32 gsm_sizek = decode_igd_gtt_size((ggc >> 8) & 0xf);
|
|
printk(BIOS_DEBUG, " and %uM GTT\n", gsm_sizek >> 10);
|
|
|
|
uma_sizem = (gms_sizek + gsm_sizek) >> 10;
|
|
}
|
|
/* TSEG 8M */
|
|
u8 reg8 = pci_read_config8(PCI_DEV(0, 0, 0), D0F0_ESMRAMC);
|
|
reg8 &= ~0x7;
|
|
reg8 |= (2 << 1) | (1 << 0); /* 8M and TSEG_Enable */
|
|
pci_write_config8(PCI_DEV(0, 0, 0), D0F0_ESMRAMC, reg8);
|
|
uma_sizem += 8;
|
|
}
|
|
|
|
const unsigned int mmio_size = get_mmio_size();
|
|
const unsigned int MMIOstart = 4096 - mmio_size + uma_sizem;
|
|
const int me_active = pci_read_config8(PCI_DEV(0, 3, 0), PCI_CLASS_REVISION) != 0xff;
|
|
const unsigned int ME_SIZE = prejedec || !me_active ? 0 : 32;
|
|
const unsigned int usedMEsize = (total_mb[0] != total_mb[1]) ? ME_SIZE : 2 * ME_SIZE;
|
|
const unsigned int claimCapable =
|
|
!(pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0 + 4) & (1 << (47 - 32)));
|
|
|
|
const unsigned int TOM = total_mb[0] + total_mb[1];
|
|
unsigned int TOMminusME = TOM - usedMEsize;
|
|
unsigned int TOLUD = (TOMminusME < MMIOstart) ? TOMminusME : MMIOstart;
|
|
unsigned int TOUUD = TOMminusME;
|
|
unsigned int REMAPbase = 0xffff, REMAPlimit = 0;
|
|
|
|
if (claimCapable && (TOMminusME >= (MMIOstart + 64))) {
|
|
/* 64MB alignment: We'll lose some MBs here, if ME is on. */
|
|
TOMminusME &= ~(64 - 1);
|
|
/* 64MB alignment: Loss will be reclaimed. */
|
|
TOLUD &= ~(64 - 1);
|
|
if (TOMminusME > 4096) {
|
|
REMAPbase = TOMminusME;
|
|
REMAPlimit = REMAPbase + (4096 - TOLUD);
|
|
} else {
|
|
REMAPbase = 4096;
|
|
REMAPlimit = REMAPbase + (TOMminusME - TOLUD);
|
|
}
|
|
TOUUD = REMAPlimit;
|
|
/* REMAPlimit is an inclusive bound, all others exclusive. */
|
|
REMAPlimit -= 64;
|
|
}
|
|
|
|
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOM, (TOM >> 7) & 0x1ff);
|
|
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOLUD, TOLUD << 4);
|
|
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOUUD, TOUUD);
|
|
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_REMAPBASE, (REMAPbase >> 6) & 0x03ff);
|
|
pci_write_config16(PCI_DEV(0, 0, 0), D0F0_REMAPLIMIT, (REMAPlimit >> 6) & 0x03ff);
|
|
|
|
/* Program channel mode. */
|
|
switch (mode) {
|
|
case CHANNEL_MODE_SINGLE:
|
|
printk(BIOS_DEBUG, "Memory configured in single-channel mode.\n");
|
|
MCHBAR32(DCC_MCHBAR) &= ~DCC_INTERLEAVED;
|
|
break;
|
|
case CHANNEL_MODE_DUAL_ASYNC:
|
|
printk(BIOS_DEBUG, "Memory configured in dual-channel assymetric mode.\n");
|
|
MCHBAR32(DCC_MCHBAR) &= ~DCC_INTERLEAVED;
|
|
break;
|
|
case CHANNEL_MODE_DUAL_INTERLEAVED:
|
|
printk(BIOS_DEBUG, "Memory configured in dual-channel interleaved mode.\n");
|
|
MCHBAR32(DCC_MCHBAR) &= ~(DCC_NO_CHANXOR | (1 << 9));
|
|
MCHBAR32(DCC_MCHBAR) |= DCC_INTERLEAVED;
|
|
break;
|
|
}
|
|
|
|
printk(BIOS_SPEW, "Memory map:\n"
|
|
"TOM = %5uMB\n"
|
|
"TOLUD = %5uMB\n"
|
|
"TOUUD = %5uMB\n"
|
|
"REMAP:\t base = %5uMB\n"
|
|
"\t limit = %5uMB\n"
|
|
"usedMEsize: %dMB\n",
|
|
TOM, TOLUD, TOUUD, REMAPbase, REMAPlimit, usedMEsize);
|
|
}
|
|
static void prejedec_memory_map(const dimminfo_t *const dimms, channel_mode_t mode)
|
|
{
|
|
/* Never use dual-interleaved mode in pre-jedec config. */
|
|
if (CHANNEL_MODE_DUAL_INTERLEAVED == mode)
|
|
mode = CHANNEL_MODE_DUAL_ASYNC;
|
|
|
|
program_memory_map(dimms, mode, 1, 0);
|
|
MCHBAR32(DCC_MCHBAR) |= DCC_NO_CHANXOR;
|
|
}
|
|
|
|
static void ddr3_select_clock_mux(const mem_clock_t ddr3clock,
|
|
const dimminfo_t *const dimms,
|
|
const stepping_t stepping)
|
|
{
|
|
const int clk1067 = (ddr3clock == MEM_CLOCK_1067MT);
|
|
const int cardF[] = { CHANNEL_IS_CARDF(dimms, 0), CHANNEL_IS_CARDF(dimms, 1) };
|
|
|
|
int ch;
|
|
|
|
if (stepping < STEPPING_B1)
|
|
die("Stepping <B1 unsupported in clock-multiplexer selection.\n");
|
|
|
|
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
|
|
int mixed = 0;
|
|
if ((1 == ch) && (!CHANNEL_IS_POPULATED(dimms, 0) || (cardF[0] != cardF[1])))
|
|
mixed = 4 << 11;
|
|
const unsigned int b = 0x14b0 + (ch * 0x0100);
|
|
MCHBAR32(b+0x1c) = (MCHBAR32(b+0x1c) & ~(7 << 11)) |
|
|
((( cardF[ch])?1:0) << 11) | mixed;
|
|
MCHBAR32(b+0x18) = (MCHBAR32(b+0x18) & ~(7 << 11)) | mixed;
|
|
MCHBAR32(b+0x14) = (MCHBAR32(b+0x14) & ~(7 << 11)) |
|
|
(((!clk1067 && !cardF[ch])?0:1) << 11) | mixed;
|
|
MCHBAR32(b+0x10) = (MCHBAR32(b+0x10) & ~(7 << 11)) |
|
|
((( clk1067 && !cardF[ch])?1:0) << 11) | mixed;
|
|
MCHBAR32(b+0x0c) = (MCHBAR32(b+0x0c) & ~(7 << 11)) |
|
|
((( cardF[ch])?3:2) << 11) | mixed;
|
|
MCHBAR32(b+0x08) = (MCHBAR32(b+0x08) & ~(7 << 11)) |
|
|
(2 << 11) | mixed;
|
|
MCHBAR32(b+0x04) = (MCHBAR32(b+0x04) & ~(7 << 11)) |
|
|
(((!clk1067 && !cardF[ch])?2:3) << 11) | mixed;
|
|
MCHBAR32(b+0x00) = (MCHBAR32(b+0x00) & ~(7 << 11)) |
|
|
((( clk1067 && !cardF[ch])?3:2) << 11) | mixed;
|
|
}
|
|
}
|
|
static void ddr3_write_io_init(const mem_clock_t ddr3clock,
|
|
const dimminfo_t *const dimms,
|
|
const stepping_t stepping,
|
|
const int sff)
|
|
{
|
|
const int a1step = stepping >= STEPPING_CONVERSION_A1;
|
|
const int cardF[] = { CHANNEL_IS_CARDF(dimms, 0), CHANNEL_IS_CARDF(dimms, 1) };
|
|
|
|
int ch;
|
|
|
|
if (stepping < STEPPING_B1)
|
|
die("Stepping <B1 unsupported in write i/o initialization.\n");
|
|
if (sff)
|
|
die("SFF platform unsupported in write i/o initialization.\n");
|
|
|
|
static const u32 ddr3_667_800_by_stepping_ddr3_and_card[][2][2][4] = {
|
|
{ /* Stepping B3 and below */
|
|
{ /* 667 MHz */
|
|
{ 0xa3255008, 0x26888209, 0x26288208, 0x6188040f },
|
|
{ 0x7524240b, 0xa5255608, 0x232b8508, 0x5528040f },
|
|
},
|
|
{ /* 800 MHz */
|
|
{ 0xa6255308, 0x26888209, 0x212b7508, 0x6188040f },
|
|
{ 0x7524240b, 0xa6255708, 0x132b7508, 0x5528040f },
|
|
},
|
|
},
|
|
{ /* Conversion stepping A1 and above */
|
|
{ /* 667 MHz */
|
|
{ 0xc5257208, 0x26888209, 0x26288208, 0x6188040f },
|
|
{ 0x7524240b, 0xc5257608, 0x232b8508, 0x5528040f },
|
|
},
|
|
{ /* 800 MHz */
|
|
{ 0xb6256308, 0x26888209, 0x212b7508, 0x6188040f },
|
|
{ 0x7524240b, 0xb6256708, 0x132b7508, 0x5528040f },
|
|
}
|
|
}};
|
|
|
|
static const u32 ddr3_1067_by_channel_and_card[][2][4] = {
|
|
{ /* Channel A */
|
|
{ 0xb2254708, 0x002b7408, 0x132b8008, 0x7228060f },
|
|
{ 0xb0255008, 0xa4254108, 0x4528b409, 0x9428230f },
|
|
},
|
|
{ /* Channel B */
|
|
{ 0xa4254208, 0x022b6108, 0x132b8208, 0x9228210f },
|
|
{ 0x6024140b, 0x92244408, 0x252ba409, 0x9328360c },
|
|
},
|
|
};
|
|
|
|
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
|
|
if ((1 == ch) && CHANNEL_IS_POPULATED(dimms, 0) && (cardF[0] == cardF[1]))
|
|
/* Only write if second channel population differs. */
|
|
continue;
|
|
const u32 *const data = (ddr3clock != MEM_CLOCK_1067MT)
|
|
? ddr3_667_800_by_stepping_ddr3_and_card[a1step][2 - ddr3clock][cardF[ch]]
|
|
: ddr3_1067_by_channel_and_card[ch][cardF[ch]];
|
|
MCHBAR32(CxWRTy_MCHBAR(ch, 0)) = data[0];
|
|
MCHBAR32(CxWRTy_MCHBAR(ch, 1)) = data[1];
|
|
MCHBAR32(CxWRTy_MCHBAR(ch, 2)) = data[2];
|
|
MCHBAR32(CxWRTy_MCHBAR(ch, 3)) = data[3];
|
|
}
|
|
|
|
MCHBAR32(0x1490) = 0x00e70067;
|
|
MCHBAR32(0x1494) = 0x000d8000;
|
|
MCHBAR32(0x1590) = 0x00e70067;
|
|
MCHBAR32(0x1594) = 0x000d8000;
|
|
}
|
|
static void ddr3_read_io_init(const mem_clock_t ddr3clock,
|
|
const dimminfo_t *const dimms,
|
|
const int sff)
|
|
{
|
|
int ch;
|
|
|
|
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
|
|
u32 addr, tmp;
|
|
const unsigned int base = 0x14b0 + (ch * 0x0100);
|
|
for (addr = base + 0x1c; addr >= base; addr -= 4) {
|
|
tmp = MCHBAR32(addr);
|
|
tmp &= ~((3 << 25) | (1 << 8) | (7 << 16) | (0xf << 20) | (1 << 27));
|
|
tmp |= (1 << 27);
|
|
switch (ddr3clock) {
|
|
case MEM_CLOCK_667MT:
|
|
tmp |= (1 << 16) | (4 << 20);
|
|
break;
|
|
case MEM_CLOCK_800MT:
|
|
tmp |= (2 << 16) | (3 << 20);
|
|
break;
|
|
case MEM_CLOCK_1067MT:
|
|
if (!sff)
|
|
tmp |= (2 << 16) | (1 << 20);
|
|
else
|
|
tmp |= (2 << 16) | (2 << 20);
|
|
break;
|
|
default:
|
|
die("Wrong clock");
|
|
}
|
|
MCHBAR32(addr) = tmp;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void memory_io_init(const mem_clock_t ddr3clock,
|
|
const dimminfo_t *const dimms,
|
|
const stepping_t stepping,
|
|
const int sff)
|
|
{
|
|
u32 tmp;
|
|
|
|
if (stepping < STEPPING_B1)
|
|
die("Stepping <B1 unsupported in "
|
|
"system-memory i/o initialization.\n");
|
|
|
|
tmp = MCHBAR32(0x1400);
|
|
tmp &= ~(3<<13);
|
|
tmp |= (1<<9) | (1<<13);
|
|
MCHBAR32(0x1400) = tmp;
|
|
|
|
tmp = MCHBAR32(0x140c);
|
|
tmp &= ~(0xff | (1<<11) | (1<<12) |
|
|
(1<<16) | (1<<18) | (1<<27) | (0xf<<28));
|
|
tmp |= (1<<7) | (1<<11) | (1<<16);
|
|
switch (ddr3clock) {
|
|
case MEM_CLOCK_667MT:
|
|
tmp |= 9 << 28;
|
|
break;
|
|
case MEM_CLOCK_800MT:
|
|
tmp |= 7 << 28;
|
|
break;
|
|
case MEM_CLOCK_1067MT:
|
|
tmp |= 8 << 28;
|
|
break;
|
|
}
|
|
MCHBAR32(0x140c) = tmp;
|
|
|
|
MCHBAR32(0x1440) &= ~1;
|
|
|
|
tmp = MCHBAR32(0x1414);
|
|
tmp &= ~((1<<20) | (7<<11) | (0xf << 24) | (0xf << 16));
|
|
tmp |= (3<<11);
|
|
switch (ddr3clock) {
|
|
case MEM_CLOCK_667MT:
|
|
tmp |= (2 << 24) | (10 << 16);
|
|
break;
|
|
case MEM_CLOCK_800MT:
|
|
tmp |= (3 << 24) | (7 << 16);
|
|
break;
|
|
case MEM_CLOCK_1067MT:
|
|
tmp |= (4 << 24) | (4 << 16);
|
|
break;
|
|
}
|
|
MCHBAR32(0x1414) = tmp;
|
|
|
|
MCHBAR32(0x1418) &= ~((1<<3) | (1<<11) | (1<<19) | (1<<27));
|
|
|
|
MCHBAR32(0x141c) &= ~((1<<3) | (1<<11) | (1<<19) | (1<<27));
|
|
|
|
MCHBAR32(0x1428) |= 1<<14;
|
|
|
|
tmp = MCHBAR32(0x142c);
|
|
tmp &= ~((0xf << 8) | (0x7 << 20) | 0xf | (0xf << 24));
|
|
tmp |= (0x3 << 20) | (5 << 24);
|
|
switch (ddr3clock) {
|
|
case MEM_CLOCK_667MT:
|
|
tmp |= (2 << 8) | 0xc;
|
|
break;
|
|
case MEM_CLOCK_800MT:
|
|
tmp |= (3 << 8) | 0xa;
|
|
break;
|
|
case MEM_CLOCK_1067MT:
|
|
tmp |= (4 << 8) | 0x7;
|
|
break;
|
|
}
|
|
MCHBAR32(0x142c) = tmp;
|
|
|
|
tmp = MCHBAR32(0x400);
|
|
tmp &= ~((3 << 4) | (3 << 16) | (3 << 30));
|
|
tmp |= (2 << 4) | (2 << 16);
|
|
MCHBAR32(0x400) = tmp;
|
|
|
|
MCHBAR32(0x404) &= ~(0xf << 20);
|
|
|
|
MCHBAR32(0x40c) &= ~(1 << 6);
|
|
|
|
tmp = MCHBAR32(0x410);
|
|
tmp &= ~(7 << 28);
|
|
tmp |= 2 << 28;
|
|
MCHBAR32(0x410) = tmp;
|
|
|
|
tmp = MCHBAR32(0x41c);
|
|
tmp &= ~0x77;
|
|
tmp |= 0x11;
|
|
MCHBAR32(0x41c) = tmp;
|
|
|
|
ddr3_select_clock_mux(ddr3clock, dimms, stepping);
|
|
|
|
ddr3_write_io_init(ddr3clock, dimms, stepping, sff);
|
|
|
|
ddr3_read_io_init(ddr3clock, dimms, sff);
|
|
}
|
|
|
|
static void jedec_init(const timings_t *const timings,
|
|
const dimminfo_t *const dimms)
|
|
{
|
|
if ((timings->tWR < 5) || (timings->tWR > 12))
|
|
die("tWR value unsupported in Jedec initialization.\n");
|
|
|
|
/* Pre-jedec settings */
|
|
MCHBAR32(0x40) |= (1 << 1);
|
|
MCHBAR32(0x230) |= (3 << 1);
|
|
MCHBAR32(0x238) |= (3 << 24);
|
|
MCHBAR32(0x23c) |= (3 << 24);
|
|
|
|
/* Normal write pointer operation */
|
|
MCHBAR32(0x14f0) |= (1 << 9);
|
|
MCHBAR32(0x15f0) |= (1 << 9);
|
|
|
|
MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_CMD_NOP;
|
|
|
|
u8 reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
|
|
pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 & ~(1 << 2));
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
|
|
pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 | (1 << 2));
|
|
udelay(2);
|
|
|
|
/* 5 6 7 8 9 10 11 12 */
|
|
static const u8 wr_lut[] = { 1, 2, 3, 4, 5, 5, 6, 6 };
|
|
|
|
const int WL = ((timings->tWL - 5) & 7) << 6;
|
|
const int ODT_120OHMS = (1 << 9);
|
|
const int ODS_34OHMS = (1 << 4);
|
|
const int WR = (wr_lut[timings->tWR - 5] & 7) << 12;
|
|
const int DLL1 = 1 << 11;
|
|
const int CAS = ((timings->CAS - 4) & 7) << 7;
|
|
const int INTERLEAVED = 1 << 6;/* This is READ Burst Type == interleaved. */
|
|
|
|
int ch, r;
|
|
FOR_EACH_POPULATED_RANK(dimms, ch, r) {
|
|
/* We won't do this in dual-interleaved mode,
|
|
so don't care about the offset. */
|
|
const u32 rankaddr = raminit_get_rank_addr(ch, r);
|
|
printk(BIOS_DEBUG, "JEDEC init @0x%08x\n", rankaddr);
|
|
MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(2);
|
|
read32((u32 *)(rankaddr | WL));
|
|
MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(3);
|
|
read32((u32 *)rankaddr);
|
|
MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(1);
|
|
read32((u32 *)(rankaddr | ODT_120OHMS | ODS_34OHMS));
|
|
MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_SET_MREG;
|
|
read32((u32 *)(rankaddr | WR | DLL1 | CAS | INTERLEAVED));
|
|
MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_SET_MREG;
|
|
read32((u32 *)(rankaddr | WR | CAS | INTERLEAVED));
|
|
}
|
|
}
|
|
|
|
static void ddr3_calibrate_zq(void) {
|
|
udelay(2);
|
|
|
|
u32 tmp = MCHBAR32(DCC_MCHBAR);
|
|
tmp &= ~(7 << 16);
|
|
tmp |= (5 << 16); /* ZQ calibration mode */
|
|
MCHBAR32(DCC_MCHBAR) = tmp;
|
|
|
|
MCHBAR32(CxDRT6_MCHBAR(0)) |= (1 << 3);
|
|
MCHBAR32(CxDRT6_MCHBAR(1)) |= (1 << 3);
|
|
|
|
udelay(1);
|
|
|
|
MCHBAR32(CxDRT6_MCHBAR(0)) &= ~(1 << 3);
|
|
MCHBAR32(CxDRT6_MCHBAR(1)) &= ~(1 << 3);
|
|
|
|
MCHBAR32(DCC_MCHBAR) |= (7 << 16); /* Normal operation */
|
|
}
|
|
|
|
static void post_jedec_sequence(const int cores) {
|
|
const int quadcore = cores == 4;
|
|
|
|
MCHBAR32(0x0040) &= ~(1 << 1);
|
|
MCHBAR32(0x0230) &= ~(3 << 1);
|
|
MCHBAR32(0x0230) |= 1 << 15;
|
|
MCHBAR32(0x0230) &= ~(1 << 19);
|
|
MCHBAR32(0x1250) = 0x6c4;
|
|
MCHBAR32(0x1350) = 0x6c4;
|
|
MCHBAR32(0x1254) = 0x871a066d;
|
|
MCHBAR32(0x1354) = 0x871a066d;
|
|
MCHBAR32(0x0238) |= 1 << 26;
|
|
MCHBAR32(0x0238) &= ~(3 << 24);
|
|
MCHBAR32(0x0238) |= 1 << 23;
|
|
MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 20)) | (3 << 20);
|
|
MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 17)) | (6 << 17);
|
|
MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 14)) | (6 << 14);
|
|
MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 11)) | (6 << 11);
|
|
MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 8)) | (6 << 8);
|
|
MCHBAR32(0x023c) &= ~(3 << 24);
|
|
MCHBAR32(0x023c) &= ~(1 << 23);
|
|
MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 20)) | (3 << 20);
|
|
MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 17)) | (6 << 17);
|
|
MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 14)) | (6 << 14);
|
|
MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 11)) | (6 << 11);
|
|
MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 8)) | (6 << 8);
|
|
|
|
if (quadcore) {
|
|
MCHBAR32(0xb14) |= (0xbfbf << 16);
|
|
}
|
|
}
|
|
|
|
static void dram_optimizations(const timings_t *const timings,
|
|
const dimminfo_t *const dimms)
|
|
{
|
|
int ch;
|
|
|
|
FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
|
|
const unsigned int mchbar = CxDRC1_MCHBAR(ch);
|
|
u32 cxdrc1 = MCHBAR32(mchbar);
|
|
cxdrc1 &= ~CxDRC1_SSDS_MASK;
|
|
if (dimms[ch].ranks == 1)
|
|
cxdrc1 |= CxDRC1_SS;
|
|
else
|
|
cxdrc1 |= CxDRC1_DS;
|
|
MCHBAR32(mchbar) = cxdrc1;
|
|
}
|
|
}
|
|
|
|
u32 raminit_get_rank_addr(unsigned int channel, unsigned int rank)
|
|
{
|
|
if (!channel && !rank)
|
|
return 0; /* Address of first rank */
|
|
|
|
/* Read the bound of the previous rank. */
|
|
if (rank > 0) {
|
|
rank--;
|
|
} else {
|
|
rank = 3; /* Highest rank per channel */
|
|
channel--;
|
|
}
|
|
const u32 reg = MCHBAR32(CxDRBy_MCHBAR(channel, rank));
|
|
/* Bound is in 32MB. */
|
|
return ((reg & CxDRBy_BOUND_MASK(rank)) >> CxDRBy_BOUND_SHIFT(rank)) << 25;
|
|
}
|
|
|
|
void raminit_reset_readwrite_pointers(void) {
|
|
MCHBAR32(0x1234) |= (1 << 6);
|
|
MCHBAR32(0x1234) &= ~(1 << 6);
|
|
MCHBAR32(0x1334) |= (1 << 6);
|
|
MCHBAR32(0x1334) &= ~(1 << 6);
|
|
MCHBAR32(0x14f0) &= ~(1 << 9);
|
|
MCHBAR32(0x14f0) |= (1 << 9);
|
|
MCHBAR32(0x14f0) |= (1 << 10);
|
|
MCHBAR32(0x15f0) &= ~(1 << 9);
|
|
MCHBAR32(0x15f0) |= (1 << 9);
|
|
MCHBAR32(0x15f0) |= (1 << 10);
|
|
}
|
|
|
|
void raminit(sysinfo_t *const sysinfo, const int s3resume)
|
|
{
|
|
const dimminfo_t *const dimms = sysinfo->dimms;
|
|
const timings_t *const timings = &sysinfo->selected_timings;
|
|
|
|
int ch;
|
|
u8 reg8;
|
|
|
|
timestamp_add_now(TS_BEFORE_INITRAM);
|
|
|
|
/* Wait for some bit, maybe TXT clear. */
|
|
if (sysinfo->txt_enabled) {
|
|
while (!(read8((u8 *)0xfed40000) & (1 << 7))) {}
|
|
}
|
|
|
|
/* Enable SMBUS. */
|
|
enable_smbus();
|
|
|
|
/* Collect information about DIMMs and find common settings. */
|
|
collect_dimm_config(sysinfo);
|
|
|
|
/* Check for bad warm boot. */
|
|
reset_on_bad_warmboot();
|
|
|
|
|
|
/***** From now on, program according to collected infos: *****/
|
|
|
|
/* Program DRAM type. */
|
|
switch (sysinfo->spd_type) {
|
|
case DDR2:
|
|
MCHBAR8(0x1434) |= (1 << 7);
|
|
break;
|
|
case DDR3:
|
|
MCHBAR8(0x1434) |= (3 << 0);
|
|
break;
|
|
}
|
|
|
|
/* Program system memory frequency. */
|
|
set_system_memory_frequency(timings);
|
|
/* Program IGD memory frequency. */
|
|
set_igd_memory_frequencies(sysinfo);
|
|
|
|
/* Configure DRAM control mode for populated channels. */
|
|
configure_dram_control_mode(timings, dimms);
|
|
|
|
/* Initialize RCOMP. */
|
|
rcomp_initialization(sysinfo->stepping, sysinfo->sff);
|
|
|
|
/* Power-up DRAM. */
|
|
dram_powerup(s3resume);
|
|
/* Program DRAM timings. */
|
|
dram_program_timings(timings);
|
|
/* Program number of banks. */
|
|
dram_program_banks(dimms);
|
|
/* Enable DRAM clock pairs for populated DIMMs. */
|
|
FOR_EACH_POPULATED_CHANNEL(dimms, ch)
|
|
MCHBAR32(CxDCLKDIS_MCHBAR(ch)) |= CxDCLKDIS_ENABLE;
|
|
|
|
/* Enable On-Die Termination. */
|
|
odt_setup(timings, sysinfo->sff);
|
|
/* Miscellaneous settings. */
|
|
misc_settings(timings, sysinfo->stepping);
|
|
/* Program clock crossing registers. */
|
|
clock_crossing_setup(timings->fsb_clock, timings->mem_clock, dimms);
|
|
/* Program egress VC1 timings. */
|
|
vc1_program_timings(timings->fsb_clock);
|
|
/* Perform system-memory i/o initialization. */
|
|
memory_io_init(timings->mem_clock, dimms,
|
|
sysinfo->stepping, sysinfo->sff);
|
|
|
|
/* Initialize memory map with dummy values of 128MB per rank with a
|
|
page size of 4KB. This makes the JEDEC initialization code easier. */
|
|
prejedec_memory_map(dimms, timings->channel_mode);
|
|
if (!s3resume)
|
|
/* Perform JEDEC initialization of DIMMS. */
|
|
jedec_init(timings, dimms);
|
|
/* Some programming steps after JEDEC initialization. */
|
|
post_jedec_sequence(sysinfo->cores);
|
|
|
|
/* Announce normal operation, initialization completed. */
|
|
MCHBAR32(DCC_MCHBAR) |= (0x7 << 16) | (0x1 << 19);
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
|
|
pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 | (1 << 2));
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
|
|
pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 & ~(1 << 2));
|
|
|
|
|
|
/* Take a breath (the reader). */
|
|
|
|
|
|
/* Perform ZQ calibration for DDR3. */
|
|
ddr3_calibrate_zq();
|
|
|
|
/* Perform receive-enable calibration. */
|
|
raminit_receive_enable_calibration(timings, dimms);
|
|
/* Lend clock values from receive-enable calibration. */
|
|
MCHBAR32(CxDRT5_MCHBAR(0)) =
|
|
(MCHBAR32(CxDRT5_MCHBAR(0)) & ~(0xf0)) |
|
|
((((MCHBAR32(CxDRT3_MCHBAR(0)) >> 7) - 1) & 0xf) << 4);
|
|
MCHBAR32(CxDRT5_MCHBAR(1)) =
|
|
(MCHBAR32(CxDRT5_MCHBAR(1)) & ~(0xf0)) |
|
|
((((MCHBAR32(CxDRT3_MCHBAR(1)) >> 7) - 1) & 0xf) << 4);
|
|
|
|
/* Perform read/write training for high clock rate. */
|
|
if (timings->mem_clock == MEM_CLOCK_1067MT) {
|
|
raminit_read_training(dimms, s3resume);
|
|
raminit_write_training(timings->mem_clock, dimms, s3resume);
|
|
}
|
|
|
|
igd_compute_ggc(sysinfo);
|
|
|
|
/* Program final memory map (with real values). */
|
|
program_memory_map(dimms, timings->channel_mode, 0, sysinfo->ggc);
|
|
|
|
/* Some last optimizations. */
|
|
dram_optimizations(timings, dimms);
|
|
|
|
/* Mark raminit being finished. :-) */
|
|
u8 tmp8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2) & ~(1 << 7);
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, tmp8);
|
|
|
|
raminit_thermal(sysinfo);
|
|
init_igd(sysinfo);
|
|
|
|
timestamp_add_now(TS_AFTER_INITRAM);
|
|
}
|