Files
system76-coreboot/src/northbridge/intel/i855pm/raminit.c
Ronald G. Minnich 43dd85e7ec more fixes.
git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1643 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2004-08-30 16:08:30 +00:00

2002 lines
53 KiB
C

/* This was originally for the e7500, modified for i855pm
*/
/* converted to C 6/2004 yhlu */
#define DEBUG_RAM_CONFIG 1
#define dumpnorth() dump_pci_device(PCI_DEV(0, 0, 0))
/* DDR DIMM Mode register Definitions */
#define BURST_2 (1<<0)
#define BURST_4 (2<<0)
#define BURST_8 (3<<0)
#define BURST_SEQUENTIAL (0<<3)
#define BURST_INTERLEAVED (1<<3)
#define CAS_2_0 (0x2<<4)
#define CAS_3_0 (0x3<<4)
#define CAS_1_5 (0x5<<4)
#define CAS_2_5 (0x6<<4)
#define MODE_NORM (0 << 7)
#define MODE_DLL_RESET (2 << 7)
#define MODE_TEST (1 << 7)
#define BURST_LENGTH BURST_4
#define BURST_TYPE BURST_INTERLEAVED
#define CAS_LATENCY CAS_2_0
//#define CAS_LATENCY CAS_2_5
//#define CAS_LATENCY CAS_1_5
#define MRS_VALUE (MODE_NORM | CAS_LATENCY | BURST_TYPE | BURST_LENGTH)
#define EMRS_VALUE 0x000
#define MD_SHIFT 4
#define RAM_COMMAND_NONE 0x0
#define RAM_COMMAND_NOP 0x1
#define RAM_COMMAND_PRECHARGE 0x2
#define RAM_COMMAND_MRS 0x3
#define RAM_COMMAND_EMRS 0x4
#define RAM_COMMAND_CBR 0x6
#define RAM_COMMAND_NORMAL 0x7
static inline void do_ram_command (const struct mem_controller *ctrl, uint32_t value) {
uint32_t dword;
uint8_t byte;
int i;
uint32_t result;
#if DEBUG_RAM_CONFIG >= 2
print_debug("P:");
print_debug_hex8(value);
print_debug("\r\n");
#endif
/* %ecx - initial address to read from */
/* Compute the offset */
dword = value >> 16;
for(i=0;i<8;i++) {
/* Set the ram command */
byte = pci_read_config8(ctrl->d0, 0x7c);
byte &= 0x8f;
byte |= (uint8_t)(value & 0xff);
pci_write_config8(ctrl->d0, 0x7c, byte);
/* Assert the command to the memory */
#if DEBUG_RAM_CONFIG >= 2
print_debug("R:");
print_debug_hex32(dword);
print_debug("\r\n");
#endif
result = read32(dword);
/* Go to the next base address */
dword += 0x04000000;
}
/* The command has been sent to all dimms so get out */
}
static inline void RAM_CMD(const struct mem_controller *ctrl, uint32_t command, uint32_t offset) {
uint32_t value = ((offset) << (MD_SHIFT + 16))|((command << 4) & 0x70) ;
do_ram_command(ctrl, value);
}
#define RAM_NOP(ctrl) RAM_CMD(ctrl, RAM_COMMAND_NOP, 0)
#define RAM_PRECHARGE(ctrl) RAM_CMD(ctrl, RAM_COMMAND_PRECHARGE, 0)
#define RAM_CBR(ctrl) RAM_CMD(ctrl, RAM_COMMAND_CBR, 0)
#define RAM_EMRS(ctrl) RAM_CMD(ctrl, RAM_COMMAND_EMRS, EMRS_VALUE)
static const uint8_t ram_cas_latency[] = {
CAS_2_5, CAS_2_0, CAS_1_5, CAS_2_5
};
static inline void ram_mrs(const struct mem_controller *ctrl, uint32_t value){
/* Read the cas latency setting */
uint8_t byte;
uint32_t dword;
byte = pci_read_config8(ctrl->d0, 0x78);
/* Transform it into the form expected by SDRAM */
dword = ram_cas_latency[(byte>>4) & 3];
value |= (dword<<(16+MD_SHIFT));
value |= (MODE_NORM | BURST_TYPE | BURST_LENGTH) << (16+MD_SHIFT);
do_ram_command(ctrl, value);
}
#define RAM_MRS(ctrl, dll_reset) ram_mrs( ctrl, (dll_reset << (8+MD_SHIFT+ 16)) | ((RAM_COMMAND_MRS <<4)& 0x70) )
static void RAM_NORMAL(const struct mem_controller *ctrl) {
uint8_t byte;
byte = pci_read_config8(ctrl->d0, 0x7c);
byte &= 0x8f;
byte |= (RAM_COMMAND_NORMAL << 4);
pci_write_config8(ctrl->d0, 0x7c, byte);
}
static void RAM_RESET_DDR_PTR(const struct mem_controller *ctrl) {
uint8_t byte;
byte = pci_read_config8(ctrl->d0, 0x88);
byte |= (1 << 4 );
pci_write_config8(ctrl->d0, 0x88, byte);
byte = pci_read_config8(ctrl->d0, 0x88);
byte &= ~(1 << 4);
pci_write_config8(ctrl->d0, 0x88, byte);
}
static void ENABLE_REFRESH(const struct mem_controller *ctrl)
{
uint32_t dword;
dword = pci_read_config32(ctrl->d0, 0x7c);
dword |= (1 << 29);
pci_write_config32(ctrl->d0, 0x7c, dword);
}
/*
* Table: constant_register_values
*/
static const long register_values[] = {
/* DRB - DRAM Row Boundary Registers
* 0x60 - 0x63
* An array of 8 byte registers, which hold the ending
* memory address assigned to each pair of DIMMS, in 32MB
* granularity.
*/
/* Conservatively say each row has 32MB of ram, we will fix this up later */
0x60, 0x00000000, (0x01 << 0) | (0x02 << 8) | (0x03 << 16) | (0x04 << 24),
/* DRA - DRAM Row Attribute Register
* 0x70 Row 0,1
* 0x71 Row 2,3
* [2:0] Row Attributes for both rows
* 001 == 2KB
* 010 == 4KB
* 011 == 8KB
* 100 == 16KB
* Others == Reserved
*/
/* leave it alone for now -- seems bad to set it at all
0x70, 0x00000000,
(((0<<3)|(0<<0))<< 0) |
(((0<<3)|(0<<0))<< 4) |
(((0<<3)|(0<<0))<< 8) |
(((0<<3)|(0<<0))<<12) |
(((0<<3)|(0<<0))<<16) |
(((0<<3)|(0<<0))<<20) |
(((0<<3)|(0<<0))<<24) |
(((0<<3)|(0<<0))<<28),
*/
/* DRT - DRAM Time Register
* 0x78
* [31:31] Additional CKE to CS Clock for Read/Write
* [30:30] Additional CKE to CS clock for Precharge/Activate
* [29:29] Back to Back Write-Read Turn Around
* Intel recommends set to 1
*
* [28:28] Back to Back Read-Write Turn Around
* Intel recommends 0 for CL 2.5 and 1 for CL 2
*
* [27:27] Back to Back Read Turn Around
* Intel recommends 1 for all configs
*
* [26:24] Read Delay (tRD)
* 000 == 9 clocks
* 001 == 8 clocks
* 010 == 7 clocks
* 011 == 6 clocks
* 100 == 5 clocks
* 101 == 4 clocks
* 110 == 3 clocks
* Others == Reserved
* [23:20] Reserved
* [19:19] No Wake for DDR page closes
* 0 is default
* [18:16] Page Close Counter
* 000 == infinite
* 010 == 8-15 clocks
* 011 == 16-31 clocks
* 100 == 64-127 clocks
* 101 == 128-255 clocks
* 110 == 192-383 clocks
* 111 == 255-510 clocks
*
* [15:12] Reserved
* [11:11] DQS Slave DLL Dynamic Management
* power saving, when set to 1, slave DLLS disabled
* we'll leave it at 0 for now
* [10:09] Active to Precharge (tRAS)
* 00 == 7 clocks
* 01 == 6 clocks
* 10 == 5 clocks
* 11 == Reserved
* [08:06] Reserved
* [05:04] Cas Latency (tCL)
* 00 == 2.5 Clocks
* 01 == 2.0 Clocks (default)
* 10 == 1.5 Clocks
* 11 == Reserved
* [03:03] Reserved
* [02:02] Ras# to Cas# Delay (tRCD)
* 0 == 3 DRAM Clocks
* 1 == 2 DRAM Clocks
* [01:01] Reserved
* [00:00] DRAM RAS# to Precharge (tRP)
* 0 == 3 DRAM Clocks
* 1 == 2 DRAM Clocks
*/
#define DRT_CAS_2_5 (0<<4)
#define DRT_CAS_2_0 (1<<4)
#define DRT_CAS_1_5 (2<<4)
#define DRT_CAS_MASK (3<<4)
#if CAS_LATENCY == CAS_2_5
#define DRT_CL DRT_CAS_2_5
#elif CAS_LATENCY == CAS_2_0
#define DRT_CL DRT_CAS_2_0
#elif CAS_LATENCY == CAS_1_5
#define DRT_CL DRT_CAS_1_5
#endif
/* Most unaggressive settings possible */
/* clear bits 26:24,18:16,11,10:9,5:4,2:2,0 */
/* ~ (7<<26)|(7<<18)|(1<<11)|(3<<10)|(3<<5)|(1<<2)|1 */
// 0x78, 0xc0fff8c4, (1<<29)|(1<<28)|(1<<27)|(2<<24)|(2<<9)|DRT_CL|(1<<3)|(1<<1)|(1<<0),
// 0x78, 0xc0f8f8c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|DRT_CL|(1<<3)|(3<<1)|(1<<0),
// 0x78, 0xc0f8f9c0, (1<<29)|(1<<28)|(1<<27)|(1<<24)|(1<<16)|(2<<9)|DRT_CL|(1<<3)|(3<<1)|(1<<0),
0x78, ~((7<<26)|(7<<18)|(1<<11)|(3<<10)|(3<<5)|(1<<2)|1),
(1<<29)|(1<<28)|(9<<26)|(0<<18)|(0<<11)|(0<<10)|(0<<5)|(0<<2)|(0<<0),
/* FDHC - Fixed DRAM Hole Control
* 0x97
* [7:7] Hole_Enable
* 0 == No memory Hole
* 1 == Memory Hole from 15MB to 16MB
* [6:0] Reserved
*
* PAM - Programmable Attribute Map
* 0x90 [3:0] Reserved
* 0x90 [5:4] 0xF0000 - 0xFFFFF
* 0x91 [1:0] 0xC0000 - 0xC3FFF
* 0x91 [5:4] 0xC4000 - 0xC7FFF
* 0x92 [1:0] 0xC8000 - 0xCBFFF
* 0x92 [5:4] 0xCC000 - 0xCFFFF
* 0x93 [1:0] 0xD0000 - 0xD3FFF
* 0x93 [5:4] 0xD4000 - 0xD7FFF
* 0x94 [1:0] 0xD8000 - 0xDBFFF
* 0x94 [5:4] 0xDC000 - 0xDFFFF
* 0x95 [1:0] 0xE0000 - 0xE3FFF
* 0x95 [5:4] 0xE4000 - 0xE7FFF
* 0x96 [1:0] 0xE8000 - 0xEBFFF
* 0x96 [5:4] 0xEC000 - 0xEFFFF
* 00 == DRAM Disabled (All Access go to memory mapped I/O space)
* 01 == Read Only (Reads to DRAM, Writes to memory mapped I/O space)
* 10 == Write Only (Writes to DRAM, Reads to memory mapped I/O space)
* 11 == Normal (All Access go to DRAM)
*/
0x90, 0xcccccf7f, (0x00 << 0) | (0x30 << 8) | (0x33 << 16) | (0x33 << 24),
0x94, 0xcccccccc, (0x33 << 0) | (0x33 << 8) | (0x33 << 16) | (0x33 << 24),
/* FIXME why was I attempting to set a reserved bit? */
/* 0x0100040f */
/* DRC - DRAM Contoller Mode Register
* 0x7c
* [31:30] Rev #
* [29:29] Initialization Complete
* 0 == Not Complete
* 1 == Complete
* [28:27] Dynamic Power Down Enable (leave at 0 for now)
* [27:24] Reserved
* [23:23] Reduced Comamnd Drive Delay (leave at 0 for now)
* [22:22] Reduced Command Drive Enable (leave at 0 for now)
* [21:21] DRAM Data Integrity Mode
* 0 == Disabled, no ECC
* 1 == Error checking, with correction
* [20:20] Reserved
* [19:18] Reserved
* Must equal 00
* [17:17] (Intel Undocumented) should always be set to
* [16:16] Disable SCK Tri-state in C3/S1-m
* 0 == 2n Rule
* 1 == 1n rule
* [15:14] Reserved
* [13:13] Dynamic CS Disable
* [12:12] SM Interface Tristate enable
* [11:11] Reserved
* [10:08] Refresh mode select
* 000 == Refresh disabled
* 001 == Refresh interval 15.6 usec
* 010 == Refresh interval 7.8 usec
* 011 == Refresh interval 64 usec
* 111 == Reserved
* [07:07] Reserved
* [06:04] Mode Select (SMS)
* 000 == Self Refresh Mode
* 001 == NOP Command
* 010 == All Banks Precharge
* 011 == Mode Register Set
* 100 == Extended Mode Register Set
* 101 == Reserved
* 110 == CBR Refresh
* 111 == Normal Operation
* [03:01] Reserved
* [00:00] DRAM type --hardwired to 1 to indicate DDR
*/
// .long 0x7c, 0xffcefcff, (1<<22)|(2 << 20)|(1 << 16)| (0 << 8),
// .long 0x7c, 0xff8cfcff, (1<<22)|(2 << 20)|(1 << 17)|(1 << 16)| (0 << 8),
// .long 0x7c, 0xff80fcff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 17)|(1 << 16)| (0 << 8),
// 0x7c, 0xff82fcff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 16)| (0 << 8),
0x7c, 0xff82f8ff, (1<<22)|(2 << 20)|(1 << 18)|(1 << 16)| (0 << 8),
};
/*
* Routine: ram_set_registers
* Arguments: none
* Results: none
* Trashed: %eax, %ebx, %ecx, %edx, %esi, %eflags
* Effects: Do basic ram setup that does not depend on serial
* presence detect information.
* This sets PCI configuration registers to known good
* values based on the table:
* constant_register_values
* Which are a triple of configuration regiser, mask, and value.
*
*/
/* from 1M or 512K */
#define RCOMP_MMIO 0x100000
/* DDR RECOMP table */
static const long ddr_rcomp_1[] = {
0x44332211, 0xc9776655, 0xffffffff, 0xffffffff,
0x22111111, 0x55444332, 0xfffca876, 0xffffffff,
};
static const long ddr_rcomp_2[] = {
0x00000000, 0x76543210, 0xffffeca8, 0xffffffff,
0x21000000, 0xa8765432, 0xffffffec, 0xffffffff,
};
static const long ddr_rcomp_3[] = {
0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
0x88888888, 0x88888888, 0x88888888, 0x88888888,
};
#define rcomp_init_str "Setting RCOMP registers.\r\n"
static void write_8dwords(uint32_t src_addr, uint32_t dst_addr) {
int i;
uint32_t dword;
for(i=0;i<8;i++) {
dword = read32(src_addr);
write32(dst_addr, dword);
src_addr+=4;
dst_addr+=4;
}
}
//#define SLOW_DOWN_IO inb(0x80);
#define SLOW_DOWN_IO udelay(40);
static void ram_set_rcomp_regs(const struct mem_controller *ctrl) {
uint32_t dword;
#if DEBUG_RAM_CONFIG
print_debug(rcomp_init_str);
#endif
/*enable access to the rcomp bar */
/* for e7501 they also set bit 31 ... */
dword = pci_read_config32(ctrl->d0, 0x0f4);
dword |= 1<<22;
pci_write_config32(ctrl->d0, 0x0f4, dword);
/* Set the MMIO address to 512K */
pci_write_config32(ctrl->d0, 0x14, RCOMP_MMIO);
dword = read32(RCOMP_MMIO + 0x20);
dword |= (1<<9);
write32(RCOMP_MMIO + 0x20, dword);
#ifdef NOTNOW
/* Begin to write the RCOMP registers */
write8(RCOMP_MMIO + 0x2c, 0xff);
write32(RCOMP_MMIO + 0x30, 0x01040444);
write8(RCOMP_MMIO + 0x34, 0x04);
write32(RCOMP_MMIO + 0x40, 0);
write16(RCOMP_MMIO + 0x44, 0);
write16(RCOMP_MMIO + 0x48, 0);
write16(RCOMP_MMIO + 0x50, 0);
write_8dwords((uint32_t)ddr_rcomp_1, RCOMP_MMIO + 0x60);
write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x80);
write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0xa0);
write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x140);
write_8dwords((uint32_t)ddr_rcomp_2, RCOMP_MMIO + 0x1c0);
write_8dwords((uint32_t)ddr_rcomp_3, RCOMP_MMIO + 0x180);
#if 0 /* Print the RCOMP registers */
movl $RCOMP_MMIO, %ecx
1: movl %ecx, %eax
andb $0x0f, %al
jnz 2f
CONSOLE_INFO_TX_CHAR($'\r')
CONSOLE_INFO_TX_CHAR($'\n')
CONSOLE_INFO_TX_HEX32(%ecx)
CONSOLE_INFO_TX_CHAR($' ')
CONSOLE_INFO_TX_CHAR($'-')
CONSOLE_INFO_TX_CHAR($' ')
2: movl (%ecx), %eax
CONSOLE_INFO_TX_HEX32(%eax)
CONSOLE_INFO_TX_CHAR($' ')
addl $4, %ecx
cmpl $(RCOMP_MMIO + 0x1e0), %ecx
jnz 1b
CONSOLE_INFO_TX_CHAR($'\r')
CONSOLE_INFO_TX_CHAR($'\n')
#endif
dword = read32(RCOMP_MMIO + 0x20);
dword &= ~(3);
dword |= 1;
write32(RCOMP_MMIO + 0x20, dword);
/* Wait 40 usec */
SLOW_DOWN_IO;
/* unblock updates */
dword = read32(RCOMP_MMIO + 0x20);
dword &= ~(1<<9);
write32(RCOMP_MMIO+0x20, dword);
dword |= (1<<8);
write32(RCOMP_MMIO+0x20, dword);
dword &= ~(1<<8);
write32(RCOMP_MMIO+0x20, dword);
/* Wait 40 usec */
SLOW_DOWN_IO;
#endif
/*disable access to the rcomp bar */
dword = pci_read_config32(ctrl->d0, 0x0f4);
dword &= ~(1<<22);
pci_write_config32(ctrl->d0, 0x0f4, dword);
}
static void ram_set_d0f0_regs(const struct mem_controller *ctrl) {
#if DEBUG_RAM_CONFIG
dumpnorth();
#endif
int i;
int max;
max = sizeof(register_values)/sizeof(register_values[0]);
for(i = 0; i < max; i += 3) {
uint32_t reg;
#if DEBUG_RAM_CONFIG
print_debug_hex32(register_values[i]);
print_debug(" <-");
print_debug_hex32(register_values[i+2]);
print_debug("\r\n");
#endif
reg = pci_read_config32(ctrl->d0,register_values[i]);
reg &= register_values[i+1];
reg |= register_values[i+2] & ~(register_values[i+1]);
pci_write_config32(ctrl->d0,register_values[i], reg);
}
#if DEBUG_RAM_CONFIG
dumpnorth();
#endif
}
static void sdram_set_registers(const struct mem_controller *ctrl){
ram_set_rcomp_regs(ctrl);
ram_set_d0f0_regs(ctrl);
}
/*
* Routine: sdram_spd_get_page_size
* Arguments: %bl SMBUS_MEM_DEVICE
* Results:
* %edi log base 2 page size of DIMM side 1 in bits
* %esi log base 2 page size of DIMM side 2 in bits
*
* Preserved: %ebx (except %bh), %ebp
*
* Trashed: %eax, %bh, %ecx, %edx, %esp, %eflags
* Used: %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
*
* Effects: Uses serial presence detect to set %edi & %esi
* to the page size of a dimm.
* Notes:
* %bl SMBUS_MEM_DEVICE
* %edi holds the page size for the first side of the DIMM.
* %esi holds the page size for the second side of the DIMM.
* memory size is represent as a power of 2.
*
* This routine may be worth moving into generic code somewhere.
*/
struct dimm_page_size {
unsigned long side1;
unsigned long side2;
};
static struct dimm_page_size sdram_spd_get_page_size(unsigned device) {
uint32_t ecx;
int value;
struct dimm_page_size pgsz;
pgsz.side1 = 0;
pgsz.side2 = 0;
value = spd_read_byte(device, 4); /* columns */
if(value < 0) goto hw_err;
pgsz.side1 = value & 0xf;
/* Get the module data width and convert it to a power of two */
value = spd_read_byte(device,7); /* (high byte) */
if(value < 0) goto hw_err;
ecx = value & 0xff;
ecx <<= 8;
value = spd_read_byte(device, 6); /* (low byte) */
if(value < 0) goto hw_err;
ecx |= (value & 0xff);
pgsz.side1 += log2(ecx); /* compute cheap log base 2 */
/* side two */
value = spd_read_byte(device, 5); /* number of physical banks */
if(value < 0) goto hw_err;
if(value==1) goto out;
if(value!=2) goto val_err;
/* Start with the symmetrical case */
pgsz.side2 = pgsz.side1;
value = spd_read_byte(device,4); /* columns */
if(value < 0) goto hw_err;
if((value & 0xf0)==0 ) goto out;
pgsz.side2 -=value & 0xf; /* Subtract out columns on side 1 */
pgsz.side2 +=(value>>4)& 0xf; /* Add in columns on side 2 */
goto out;
val_err:
die("Bad SPD value\r\n");
/* If an hw_error occurs report that I have no memory */
hw_err:
pgsz.side1 = 0;
pgsz.side2 = 0;
out:
return pgsz;
}
/*
* Routine: sdram_spd_get_width
* Arguments: %bl SMBUS_MEM_DEVICE
* Results:
* %edi width of SDRAM chips on DIMM side 1 in bits
* %esi width of SDRAM chips on DIMM side 2 in bits
*
* Preserved: %ebx (except %bh), %ebp
*
* Trashed: %eax, %bh, %ecx, %edx, %esp, %eflags
* Used: %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
*
* Effects: Uses serial presence detect to set %edi & %esi
* to the width of a dimm.
* Notes:
* %bl SMBUS_MEM_DEVICE
* %edi holds the width for the first side of the DIMM.
* %esi holds the width for the second side of the DIMM.
* memory size is represent as a power of 2.
*
* This routine may be worth moving into generic code somewhere.
*/
struct dimm_width {
unsigned side1;
unsigned side2;
};
static struct dimm_width sdram_spd_get_width(unsigned device) {
int value;
struct dimm_width wd;
uint32_t ecx;
wd.side1 = 0;
wd.side2 = 0;
value = spd_read_byte(device, 13); /* sdram width */
if(value < 0 ) goto hw_err;
ecx = value;
wd.side1 = value & 0x7f;
/* side two */
value = spd_read_byte(device, 5); /* number of physical banks */
if(value < 0 ) goto hw_err;
if(value <=1 ) goto out;
/* Start with the symmetrical case */
wd.side2 = wd.side1;
if((ecx & 0x80)==0) goto out;
wd.side2 <<=1;
hw_err:
wd.side1 = 0;
wd.side2 = 0;
out:
return wd;
}
/*
* Routine: sdram_spd_get_dimm_size
* Arguments: %bl SMBUS_MEM_DEVICE
* Results:
* %edi log base 2 size of DIMM side 1 in bits
* %esi log base 2 size of DIMM side 2 in bits
*
* Preserved: %ebx (except %bh), %ebp
*
* Trashed: %eax, %bh, %ecx, %edx, %esp, %eflags
* Used: %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
*
* Effects: Uses serial presence detect to set %edi & %esi
* the size of a dimm.
* Notes:
* %bl SMBUS_MEM_DEVICE
* %edi holds the memory size for the first side of the DIMM.
* %esi holds the memory size for the second side of the DIMM.
* memory size is represent as a power of 2.
*
* This routine may be worth moving into generic code somewhere.
*/
struct dimm_size {
unsigned long side1;
unsigned long side2;
};
static struct dimm_size spd_get_dimm_size(unsigned device)
{
/* Calculate the log base 2 size of a DIMM in bits */
struct dimm_size sz;
int value, low;
sz.side1 = 0;
sz.side2 = 0;
/* Note it might be easier to use byte 31 here, it has the DIMM size as
* a multiple of 4MB. The way we do it now we can size both
* sides of an assymetric dimm.
*/
value = spd_read_byte(device, 3); /* rows */
if (value < 0) goto hw_err;
// if ((value & 0xf) == 0) goto val_err;
sz.side1 += value & 0xf;
value = spd_read_byte(device, 4); /* columns */
if (value < 0) goto hw_err;
// if ((value & 0xf) == 0) goto val_err;
sz.side1 += value & 0xf;
value = spd_read_byte(device, 17); /* banks */
if (value < 0) goto hw_err;
// if ((value & 0xff) == 0) goto val_err;
value &=0xff;
sz.side1 += log2(value);
/* Get the module data width and convert it to a power of two */
value = spd_read_byte(device, 7); /* (high byte) */
if (value < 0) goto hw_err;
value &= 0xff;
value <<= 8;
low = spd_read_byte(device, 6); /* (low byte) */
if (low < 0) goto hw_err;
value |= (low & 0xff);
// if ((value != 72) && (value != 64)) goto val_err;
sz.side1 += log2(value);
/* side 2 */
value = spd_read_byte(device, 5); /* number of physical banks */
if (value < 0) goto hw_err;
if (value == 1) goto out;
// if (value != 2) goto val_err;
/* Start with the symmetrical case */
sz.side2 = sz.side1;
value = spd_read_byte(device, 3); /* rows */
if (value < 0) goto hw_err;
if ((value & 0xf0) == 0) goto out; /* If symmetrical we are done */
sz.side2 -= (value & 0x0f); /* Subtract out rows on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in rows on side 2 */
value = spd_read_byte(device, 4); /* columns */
if (value < 0) goto hw_err;
// if ((value & 0xff) == 0) goto val_err;
sz.side2 -= (value & 0x0f); /* Subtract out columns on side 1 */
sz.side2 += ((value >> 4) & 0x0f); /* Add in columsn on side 2 */
goto out;
val_err:
die("Bad SPD value\r\n");
/* If an hw_error occurs report that I have no memory */
hw_err:
sz.side1 = 0;
sz.side2 = 0;
out:
return sz;
}
/*
* This is a place holder fill this out
* Routine: spd_set_row_attributes
* Arguments: %bl SMBUS_MEM_DEVICE
* Results:
* %edi log base 2 size of DIMM side 1 in bits
* %esi log base 2 size of DIMM side 2 in bits
*
* Preserved: %ebx (except %bh), %ebp
*
* Trashed: %eax, %bh, %ecx, %edx, %esp, %eflags
* Used: %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
*
* Effects: Uses serial presence detect to set %edi & %esi
* the size of a dimm.
* Notes:
* %bl SMBUS_MEM_DEVICE
* %edi holds the memory size for the first side of the DIMM.
* %esi holds the memory size for the second side of the DIMM.
* memory size is represent as a power of 2.
*
* This routine may be worth moving into generic code somewhere.
*/
static long spd_set_row_attributes(const struct mem_controller *ctrl, long dimm_mask) {
int i;
uint32_t dword=0;
int value;
/* Walk through all dimms and find the interesection of the support
* for ecc sdram and refresh rates
*/
for(i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i))) {
continue;
}
/* Test to see if I have ecc sdram */
struct dimm_page_size sz;
sz = sdram_spd_get_page_size(ctrl->channel0[i]); /* SDRAM type */
#if DEBUG_RAM_CONFIG
print_debug("page size =");
print_debug_hex32(sz.side1);
print_debug(" ");
print_debug_hex32(sz.side2);
print_debug("\r\n");
#endif
/* Test to see if the dimm is present */
if( sz.side1 !=0) {
/* Test for a valid dimm width */
if((sz.side1 <15) || (sz.side1>18) ) {
print_err("unsupported page size\r\n");
}
/* double because I have 2 channels */
sz.side1++;
/* Convert to the format needed for the DRA register */
sz.side1-=14;
/* Place in the %ebp the dra place holder */ //i
dword |= sz.side1<<(i<<3);
/* Test to see if the second side is present */
if( sz.side2 !=0) {
/* Test for a valid dimm width */
if((sz.side2 <15) || (sz.side2>18) ) {
print_err("unsupported page size\r\n");
}
/* double because I have 2 channels */
sz.side2++;
/* Convert to the format needed for the DRA register */
sz.side2-=14;
/* Place in the %ebp the dra place holder */ //i
dword |= sz.side2<<((i<<3) + 4 );
}
}
/* Now add the SDRAM chip width to the DRA */
struct dimm_width wd;
wd = sdram_spd_get_width(ctrl->channel0[i]);
#if DEBUG_RAM_CONFIG
print_debug("width =");
print_debug_hex32(wd.side1);
print_debug(" ");
print_debug_hex32(wd.side2);
print_debug("\r\n");
#endif
if(wd.side1 == 0) continue;
if(wd.side1 == 4) {
/* Enable an x4 device */
dword |= 0x08 << (i<<3);
}
if(wd.side2 == 0) continue;
if(wd.side2 == 4) {
/* Enable an x4 device */
dword |= 0x08 << ((i<<3 ) + 4);
}
/* go to the next DIMM */
}
/* Write the new row attributes register */
pci_write_config32(ctrl->d0, 0x70, dword);
return dimm_mask;
}
#if 0
/*
* Routine: sdram_read_paired_byte
* Arguments: %esp return address
* %bl device on the smbus to read from
* %bh address on the smbus to read
* Results:
* zf clear
* byte read in %al
* On Error:
* zf set
* %eax trashed
*
* Preserved: %ebx, %esi, %edi
*
* Trashed: %eax, %ecx, %edx, %ebp, %esp, %eflags
* Used: %eax, %ebx, %ecx, %edx, %esp, %eflags
*
* Effects: Reads two spd bytes from both ram channesl
* and errors if they are not equal.
* It then returns the equal result.
*/
static spd_read_paired_byte () {
movl %esp, %ebp
CALLSP(smbus_read_byte)
setnz %cl
movb %al, %ch
addb $(SMBUS_MEM_CHANNEL_OFF), %bl
CALLSP(smbus_read_byte)
movb %ch, %ah
setnz %ch
subb $(SMBUS_MEM_CHANNEL_OFF), %bl
/* See if dimms on both sides are equally present */
cmp %cl, %ch
jne sdram_presence_mismatch
/* Leave if I have no data */
testb %cl, %cl
jz spd_verify_byte_out
/* Verify the data is identical */
cmp %ah, %al
jne sdram_value_mismatch
/* Clear the zero flag */
testb %cl, %cl
spd_verify_byte_out:
movl %ebp, %esp
RETSP
}
/*
* Routine: spd_verify_dimms
* Arguments: none
* Results: none
* Preserved: none
* Trashed: %eax, %ebx, %ecx, %edx, %ebp, %esi, %edi, %esp, %eflags
* Used: %eax, %ebx, %ecx, %edx, %ebp, %esi, %edi, %esp, %eflags
*
* Effects:
* - Verify all interesting spd information
* matches for both dimm channels.
* - Additional error checks that can be easily done
* here are computed as well, so I don't need to
* worry about them later.
*/
static spd_verify_dimms() {
movl $(SMBUS_MEM_DEVICE_START), %ebx
spd_verify_dimm:
/* Verify this is DDR SDRAM */
movb $2, %bh
CALLSP(spd_read_paired_byte)
jz spd_verify_next_dimm
cmpb $7, %al
jne invalid_dimm_type
/* Verify the row addresses */
movb $3, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb $0x0f, %al
jz spd_invalid_data
/* Column addresses */
movb $4, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb $0xf, %al
jz spd_invalid_data
/* Physical Banks */
movb $5, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
cmp $1, %al
jb spd_invalid_data
cmp $2, %al
ja spd_invalid_data
/* Module Data Width */
movb $7, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
cmpb $0, %al
jne spd_invalid_data
movb $6, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
cmpb $64, %al
je 1f
cmpb $72, %al
je 1f
jmp spd_unsupported_data
1:
/* Cycle time at highest CAS latency CL=X */
movb $9, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
/* SDRAM type */
movb $11, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
/* Refresh Interval */
movb $12, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
/* SDRAM Width */
movb $13, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
andb $0x7f, %al
cmpb $4, %al
je 1f
cmpb $8, %al
je 1f
jmp spd_unsupported_data
1:
/* Back-to-Back Random Column Accesses */
movb $15, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb %al, %al
jz spd_invalid_data
cmpb $4, %al
ja spd_unsupported_data
/* Burst Lengths */
movb $16, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb $(1<<2), %al
jz spd_unsupported_data
/* Logical Banks */
movb $17, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb %al, %al
jz spd_invalid_data
/* Supported CAS Latencies */
movb $18, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb $(1 << 1), %al /* CL 1.5 */
jnz 1f
testb $(1 << 2), %al /* CL 2.0 */
jnz 1f
testb $(1 << 3), %al /* CL 2.5 */
jnz 1f
jmp spd_unsupported_data
1:
/* Cycle time at Cas Latency (CLX - 0.5) */
movb $23, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
/* Cycle time at Cas Latency (CLX - 1.0) */
movb $26, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
/* tRP Row precharge time */
movb $27, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb $0xfc, %al
jz spd_invalid_data
/* tRCD RAS to CAS */
movb $29, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb $0xfc, %al
jz spd_invalid_data
/* tRAS Activate to Precharge */
movb $30, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb %al, %al
jz spd_invalid_data
/* Module Bank Density */
movb $31, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
testb $(1<<2), %al /* 16MB */
jnz spd_unsupported_data
testb $(1<<3), %al
jnz spd_unsupported_data /* 32MB */
/* Address and Command Hold Time After Clock */
movb $33, %bh
CALLSP(spd_read_paired_byte)
jz spd_missing_data
spd_verify_next_dimm:
/* go to the next DIMM */
addb $(SMBUS_MEM_DEVICE_INC), %bl /* increment the smbus device */
cmpb $SMBUS_MEM_DEVICE_END, %bl
jbe spd_verify_dimm
spd_verify_dimms_out:
RET_LABEL(spd_verify_dimms)
}
#endif
#define spd_pre_init "Reading SPD data...\r\n"
#define spd_pre_set "setting based on SPD data...\r\n"
#define spd_post_init "done\r\n"
static const uint32_t refresh_rate_rank[]= {
/* Refresh rates ordered from most conservative (lowest)
* to most agressive (highest)
* disabled 0 -> rank 3
* 15.6usec 1 -> rank 1
* 7.8 usec 2 -> rank 0
* 64usec 3 -> rank 2
*/
3, 1, 0, 2 };
static const uint32_t refresh_rate_index[] = {
/* Map the spd refresh rates to memory controller settings
* 15.625us -> 15.6us
* 3.9us -> err
* 7.8us -> 7.8us
* 31.3s -> 15.6us
* 62.5us -> 15.6us
* 125us -> 64us
*/
1, 0xff, 2, 1, 1, 3
};
#define MAX_SPD_REFRESH_RATE 5
static long spd_set_dram_controller_mode (const struct mem_controller *ctrl, long dimm_mask) {
int i;
uint32_t dword;
int value;
uint32_t ecx;
uint32_t edx;
/* Read the inititial state */
dword = pci_read_config32(ctrl->d0, 0x7c);
#if 0
/* Test if ECC cmos option is enabled */
movb $RTC_BOOT_BYTE, %al
outb %al, $0x70
inb $0x71, %al
testb $(1<<2), %al
jnz 1f
/* Clear the ecc enable */
andl $~(3 << 20), %esi
1:
#endif
/* Walk through all dimms and find the interesection of the support
* for ecc sdram and refresh rates
*/
for(i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i))) {
continue;
}
/* Test to see if I have ecc sdram */
value = spd_read_byte(ctrl->channel0[i], 11); /* SDRAM type */
if(value < 0) continue;
if(value !=2 ) {
/* Clear the ecc enable */
dword &= ~(3 << 20);
}
value = spd_read_byte(ctrl->channel0[i], 12); /* SDRAM refresh rate */
if(value < 0 ) continue;
value &= 0x7f;
if(value > MAX_SPD_REFRESH_RATE) { print_err("unsupported refresh rate\r\n");}
// if(value == 0xff) { print_err("unsupported refresh rate\r\n");}
ecx = refresh_rate_index[value];
/* Isolate the old refresh rate setting */
/* Load the refresh rate ranks */
edx = refresh_rate_rank[(dword >> 8) & 3]<<8;
edx |= refresh_rate_rank[ecx] & 0xff;
/* See if the new refresh rate is more conservative than the old
* refresh rate setting. (Lower ranks are more conservative)
*/
if((edx & 0xff)< ((edx >> 8) & 0xff) ) {
/* Clear the old refresh rate */
dword &= ~(3<<8);
/* Move in the new refresh rate */
dword |= (ecx<<8);
}
value = spd_read_byte(ctrl->channel0[i], 33); /* Address and command hold time after clock */
if(value < 0) continue;
if(value >= 0xa0) { /* At 133Mhz this constant should be 0x75 */
dword &= ~(1<<16); /* Use two clock cyles instead of one */
}
/* go to the next DIMM */
}
/* Now write the controller mode */
pci_write_config32(ctrl->d0, 0x7c, dword);
return dimm_mask;
}
static long spd_enable_clocks(const struct mem_controller *ctrl, long dimm_mask)
{
int i;
uint32_t dword;
int value;
/* Read the inititial state */
dword = pci_read_config32(ctrl->d0, 0x8c);
#if 0
# Intel clears top bit here, should we?
# No the default is on and for normal timming it should be on. Tom Z
andl $0x7f, %esi
#endif
for(i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i))) {
continue;
}
/* Read any spd byte to see if the dimm is present */
value = spd_read_byte(ctrl->channel0[i], 5); /* Physical Banks */
if(value < 0) continue;
dword &= ~(1<<i);
}
pci_write_config32(ctrl->d0, 0x8c, dword);
return dimm_mask;
}
static const uint16_t cas_latency_80[] = {
/* For cas latency 2.0 0x01 works and until I see a large test sample
* I am not prepared to change this value, to the intel recommended value
* of 0x0d. Eric Biederman
*/
/* The E7501 requires b1 rather than 01 for CAS2 or memory will be hosed
* CAS 1.5 is claimed to be unsupported, will try to test that
* will need to determine correct values for other CAS values
* (perhaps b5, b1, b6?)
* Steven James 02/06/2003
*/
//# .byte 0x05, 0x01, 0x06
//# .byte 0xb5, 0xb1, 0xb6
0x0, 0x0bb1, 0x0662 /* RCVEN */
};
static const uint16_t cas_latency_80_4dimms[] = {
0x0, 0x0bb1, 0x0882
};
static const uint8_t cas_latency_78[] = {
DRT_CAS_1_5, DRT_CAS_2_0, DRT_CAS_2_5
};
static long spd_set_cas_latency(const struct mem_controller *ctrl, long dimm_mask) {
/* Walk through all dimms and find the interesection of the
* supported cas latencies.
*/
int i;
/* Initially allow cas latencies 2.5, 2.0
* which the chipset supports.
*/
uint32_t dword = (1<<3)| (1<<2);// esi
uint32_t edi;
uint32_t ecx;
unsigned device;
int value;
uint8_t byte;
uint16_t word;
for(i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i))) {
continue;
}
value = spd_read_byte(ctrl->channel0[i], 18);
if(value < 0) continue;
/* Find the highest supported cas latency */
ecx = log2(value & 0xff);
edi = (1<< ecx);
/* Remember the supported cas latencies */
ecx = (value & 0xff);
/* Verify each cas latency at 133Mhz */
/* Verify slowest/highest CAS latency */
value = spd_read_byte(ctrl->channel0[i], 9);
if(value < 0 ) continue;
if(value > 0x75 ) {
/* The bus is too fast so we cannot support this case latency */
ecx &= ~edi;
}
/* Verify the highest CAS latency - 0.5 clocks */
edi >>= 1;
if(edi != 0) {
value = spd_read_byte(ctrl->channel0[i], 23);
if(value < 0 ) continue;
if(value > 0x75) {
/* The bus is too fast so we cannot support this cas latency */
ecx &= ~edi;
}
}
/* Verify the highest CAS latency - 1.0 clocks */
edi >>=1;
if(edi !=0) {
value = spd_read_byte(ctrl->channel0[i], 25);
if(value < 0 ) continue;
if(value > 0x75) {
/* The bus is too fast so we cannot support this cas latency */
ecx &= ~edi;
}
}
/* Now find which cas latencies are supported for the bus */
dword &= ecx;
/* go to the next DIMM */
}
/* After all of the arduous calculation setup with the fastest
* cas latency I can use.
*/
value = __builtin_bsf(dword); // bsrl = log2 how about bsfl?
if(value ==0 ) return -1;
ecx = value -1;
byte = pci_read_config8(ctrl->d0, 0x78);
byte &= ~(DRT_CAS_MASK);
byte |= cas_latency_78[ecx];
pci_write_config8(ctrl->d0,0x78, byte);
/* set master DLL reset */
dword = pci_read_config32(ctrl->d0, 0x88);
dword |= (1<<26);
/* the rest of the references are words */
// ecx<<=1; // don't need shift left, because we already define that in u16 array
pci_write_config32(ctrl->d0, 0x88, dword);
dword &= 0x0c0000ff; /* patch try register 88 is undocumented tnz */
dword |= 0xd2109800;
pci_write_config32(ctrl->d0, 0x88, dword);
word = pci_read_config16(ctrl->d0, 0x80);
word &= ~(0x0fff);
word |= cas_latency_80[ecx];
dword = pci_read_config32(ctrl->d0, 0x70);
if((dword & 0xff) !=0 ) {
dword >>=8;
if((dword & 0xff)!=0) {
dword >>=8;
if((dword & 0xff)!=0) {
dword >>= 8;
if( (dword & 0xff)!=0) {
word &=~(0x0fff); /* we have dimms in all 4 slots */
word |=cas_latency_80_4dimms[ecx];
}
}
}
}
pci_write_config16(ctrl->d0, 0x80, word);
dword = pci_read_config32(ctrl->d0, 0x88); /* reset master DLL reset */
dword &= ~(1<<26);
pci_write_config32(ctrl->d0, 0x88, dword);
RAM_RESET_DDR_PTR(ctrl);
return dimm_mask;
}
static long spd_set_dram_timing(const struct mem_controller *ctrl, long dimm_mask) {
/* Walk through all dimms and find the interesection of the
* supported dram timings.
*/
int i;
uint32_t dword;
int value;
/* Read the inititial state */
dword = pci_read_config32(ctrl->d0, 0x78);
#if 0
# Intel clears top bit here, should we?
# No the default is on and for normal timming it should be on. Tom Z
andl $0x7f, %esi
#endif
for(i = 0; i < DIMM_SOCKETS; i++) {
if (!(dimm_mask & (1 << i))) {
continue;
}
/* Trp */
value = spd_read_byte(ctrl->channel0[i], 27);
if(value < 0) continue;
if(value > (15<<2)) {
/* At 133Mhz if row precharge time is above than 15ns than we
* need 3 clocks not 2 clocks.
*/
dword &= ~(1<<0);
}
/* Trcd */
value = spd_read_byte(ctrl->channel0[i],29);
if(value < 0 ) continue;
if(value > (15<<2)) {
/* At 133Mhz if the Minimum ras to cas delay is about 15ns we
* need 3 clocks not 2 clocks.
*/
dword &= ~((1<<3)|(1<<1));
}
/* Tras */
value = spd_read_byte(ctrl->channel0[i],30);
if(value < 0 ) continue;
/* Convert tRAS from ns to 133Mhz clock cycles */
value <<=1; /* mult by 2 to make 7.5 15 */
value += 15; /* Make certain we round up */
value --;
value &= 0xff; /* Clear the upper bits of eax */
value /= 15;
/* Don't even process small timings */
if(value >5) {
uint32_t tmp;
/* Die if the value is to large */
if(value>7) {
die ("unsupported_rcd\r\n");
}
/* Convert to clocks - 5 */
value -=5;
/* Convert the existing value into clocks - 5 */
tmp = (~((dword>>9) & 3) - 1) & 3;
/* See if we need a slower timing */
if(value > tmp ) {
/* O.k. put in our slower timing */
dword &= ~(3<<9);
dword |= ((~(value + 1)) & 3)<<9 ;
}
}
/* Trd */
/* Set to a 7 clock read delay. This is for 133Mhz
* with a CAS latency of 2.5 if 2.0 a 6 clock
* delay is good */
if( (pci_read_config8(ctrl->d0, 0x78) & 0x30) ==0 ){
dword &= ~(7<<24); /* CAS latency is 2.5, make 7 clks */
}
/*
* Back to Back Read Turn Around
*/
/* Set to a 3 clock back to back read turn around. This
* is good for CAS latencys 2.5 and 2.0 */
dword |= (1<<27);
/*
* Back to Back Read-Write Turn Around
*/
/* Set to a 5 clock back to back read to write turn around.
* 4 is a good delay if the CAS latency is 2.0 */
if( ( pci_read_config8(ctrl->d0, 0x78) & (1<<4)) == 0) {
dword &= ~(1<<28);
}
/*
* Back to Back Write-Read Turn Around
*/
/* Set to a 2 clock back to back write to read turn around.
* This is good for 2.5 and 2.0 CAS Latencies. */
dword |= (1<<29);
}
pci_write_config32(ctrl->d0, 0x78, dword);
return dimm_mask;
}
static unsigned int spd_detect_dimms(const struct mem_controller *ctrl)
{
unsigned dimm_mask;
int i;
dimm_mask = 0;
#if DEBUG_RAM_CONFIG
print_debug("spd_detect_dimms:\r\n");
#endif
for(i = 0; i < DIMM_SOCKETS; i++) {
int byte;
unsigned device;
#if DEBUG_RAM_CONFIG
print_debug_hex32(i);
print_debug("\r\n");
#endif
device = ctrl->channel0[i];
if (device) {
byte = spd_read_byte(ctrl->channel0[i], 2); /* Type */
if (byte == 7) {
dimm_mask |= (1 << i);
}
}
#if 1
device = ctrl->channel1[i];
if (device) {
byte = spd_read_byte(ctrl->channel1[i], 2);
if (byte == 7) {
dimm_mask |= (1 << (i + DIMM_SOCKETS));
}
}
#endif
}
#if 1
i = (dimm_mask>>DIMM_SOCKETS);
if(i != (dimm_mask & ( (1<<DIMM_SOCKETS) - 1) ) ) {
die("now we only support dual channel\r\n");
}
#endif
return dimm_mask;
}
static uint32_t set_dimm_size(const struct mem_controller *ctrl, struct dimm_size sz, uint32_t memsz, unsigned index)
{
int i;
uint32_t base0, base1;
uint32_t dch;
uint8_t byte;
/* Double the size if we are using dual channel memory */
// if (is_dual_channel(ctrl)) {
/* Since I have 2 identical channels double the sizes */
sz.side1++ ;
sz.side2++;
// }
if (sz.side1 != sz.side2) {
sz.side2 = 0;
}
/* Make certain side1 of the dimm is at least 64MB */
if (sz.side1 >= (25 + 4)) {
memsz += (1 << (sz.side1 - (25 + 4)) ) ;
}
/* Write the size of side 1 of the dimm */
byte = memsz;
pci_write_config8(ctrl->d0, 0x60+(index<<1), byte);
/* Make certain side2 of the dimm is at least 64MB */
if (sz.side2 >= (25 + 4)) {
memsz += (1 << (sz.side2 - (25 + 4)) ) ;
}
/* Write the size of side 2 of the dimm */
byte = memsz;
pci_write_config8(ctrl->d0, 0x61+(index<<1), byte);
/* now, fill in DRBs where no physical slot exists */
for(i=index+1;i<4;i++) {
pci_write_config8(ctrl->d0, 0x60+(i<<1),byte);
pci_write_config8(ctrl->d0, 0x61+(i<<1),byte);
}
return memsz;
}
/* LAST_DRB_SLOT is a constant for any E7500 board */
#define LAST_DRB_SLOT 0x67
static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
{
int i;
uint32_t memsz=0;
uint16_t word;
for(i = 0; i < DIMM_SOCKETS; i++) {
struct dimm_size sz;
if (!(dimm_mask & (1 << i))) {
continue;
}
sz = spd_get_dimm_size(ctrl->channel0[i]);
#if DEBUG_RAM_CONFIG
print_debug("dimm size =");
print_debug_hex32(sz.side1);
print_debug(" ");
print_debug_hex32(sz.side2);
print_debug("\r\n");
#endif
if (sz.side1 == 0) {
return -1; /* Report SPD error */
}
memsz = set_dimm_size(ctrl, sz, memsz, i);
}
/* For now hardset everything at 128MB boundaries */
/* %ebp has the ram size in multiples of 64MB */
// cmpl $0, %ebp /* test if there is no mem - smbus went bad */
// jz no_memory_bad_smbus
if(memsz < 0x30) {
/* I should really adjust all of this in C after I have resources
* to all of the pcie devices.
*/
/* Round up to 128M granularity */
memsz++;
memsz &= 0xfe;
memsz<<= 10;
word = memsz;
pci_write_config16(ctrl->d0, 0xc4, word);
} else {
/* FIXME will this work with 3.5G of ram? */
/* Put TOLM at 3G */
pci_write_config16(ctrl->d0, 0xc4, 0xc000);
/* Hard code a 1G remap window, right after the ram */
if(memsz< 0x40){
word = 0x40; /* Ensure we are over 4G */
} else {
word = memsz;
}
pci_write_config16(ctrl->d0, 0xc6, word);
word += 0x10;
pci_write_config16(ctrl->d0, 0xc8, word);
}
return dimm_mask;
}
static void sdram_set_spd_registers(const struct mem_controller *ctrl) {
long dimm_mask;
#if DEBUG_RAM_CONFIG
print_debug(spd_pre_init);
#endif
//activate_spd_rom(ctrl);
dimm_mask = spd_detect_dimms(ctrl);
if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
print_debug("No memory for this controller\n");
return;
}
dimm_mask = spd_enable_clocks(ctrl, dimm_mask);
if (dimm_mask < 0)
goto hw_spd_err;
//spd_verify_dimms(ctrl);
#if DEBUG_RAM_CONFIG
print_debug(spd_pre_set);
#endif
dimm_mask = spd_set_row_attributes(ctrl,dimm_mask);
if (dimm_mask < 0)
goto hw_spd_err;
dimm_mask = spd_set_dram_controller_mode(ctrl,dimm_mask);
if (dimm_mask < 0)
goto hw_spd_err;
dimm_mask = spd_set_cas_latency(ctrl,dimm_mask);
if (dimm_mask < 0)
goto hw_spd_err;
dimm_mask = spd_set_dram_timing(ctrl,dimm_mask);
if (dimm_mask < 0)
goto hw_spd_err;
#if DEBUG_RAM_CONFIG
print_debug(spd_post_init);
#endif
//moved from dram_post_init
spd_set_ram_size(ctrl, dimm_mask);
return;
hw_spd_err:
/* Unrecoverable error reading SPD data */
print_err("SPD error - reset\r\n");
hard_reset();
return;
}
/* I have finally seen ram bad enough to cause LinuxBIOS
* to die in mysterious ways, before booting up far
* enough to run a memory tester. This code attempts
* to catch this blatantly bad ram, with a spot check.
* For most cases you should boot all of the way up
* and run a memory tester.
*/
/* Ensure I read/write each stick of bank of memory &&
* that I do more than 1000 bytes to avoid the northbridge cache.
* Only 64M of each side of each DIMM is currently mapped,
* so we can handle > 4GB of ram here.
*/
#if 0
#define bank_msg "Bank "
#define side_msg " Side "
static void verify_ram() {
xorl %ecx, %ecx
/* Check to see if the RAM is present,
* in the specified bank and side.
*/
1: movl %ecx, %ebx
shrl $1, %ebx
addl $((5<<8) | SMBUS_MEM_DEVICE_START), %ebx
CALLSP(smbus_read_byte)
jz 5f
testl $1, %ecx
jz 2f
cmpb $2, %al
jne 5f
/* Display the bank and side we are spot checking.
*/
2: CONSOLE_INFO_TX_STRING($bank_msg)
movl %ecx, %ebx
shrl $1, %ebx
incl %ebx
CONSOLE_INFO_TX_HEX8(%bl)
CONSOLE_INFO_TX_STRING($side_msg)
movl %ecx, %ebx
andl $1, %ebx
CONSOLE_INFO_TX_HEX8(%bl)
/* Compute the memory address to spot check. */
movl %ecx, %ebx
xorl %eax, %eax
3: testl %ebx, %ebx
jz 4f
addl $0x04000000, %eax
decl %ebx
jmp 3b
4:
/* Spot check 512K of RAM */
movl %eax, %ebx
addl $0x0007ffff, %ebx
CALLSP(spot_check)
5:
/* Now find the next bank and side to spot check */
incl %ecx
cmpl $((SMBUS_MEM_DEVICE_END - SMBUS_MEM_DEVICE_START)<<1), %ecx
jb 1b
RET_LABEL(verify_ram)
}
#endif
#if 0
static void ram_postinit(const struct mem_controller *ctrl) {
#if DEBUG_RAM_CONFIG
dumpnorth();
#endif
/* Include a test to verify that memory is more or less working o.k.
* This test is to catch programming errors and hardware that is out of
* spec, not a test to see if the memory dimms are working 100%
*/
//# CALL_LABEL(verify_ram)
spd_set_ram_size(ctrl);
}
#define FIRST_NORMAL_REFERENCE() CALL_LABEL(ram_postinit)
#define SPECIAL_FINISHUP() CALL_LABEL(dram_finish)
#endif
#define ecc_pre_init "Initializing ECC state...\r\n"
#define ecc_post_init "ECC state initialized.\r\n"
static void dram_finish(const struct mem_controller *ctrl)
{
uint32_t dword;
uint8_t byte;
/* Test to see if ECC support is enabled */
dword = pci_read_config32(ctrl->d0, 0x7c);
dword >>=20;
dword &=3;
if(dword == 2) {
#if DEBUG_RAM_CONFIG
print_debug(ecc_pre_init);
#endif
/* Initialize ECC bits , use ECC zero mode (new to 7501)*/
pci_write_config8(ctrl->d0, 0x52, 0x06);
pci_write_config8(ctrl->d0, 0x52, 0x07);
do {
byte = pci_read_config8(ctrl->d0, 0x52);
} while ( (byte & 0x08 ) == 0);
pci_write_config8(ctrl->d0, 0x52, byte & 0xfc);
#if DEBUG_RAM_CONFIG
print_debug(ecc_post_init);
#endif
/* Clear the ECC error bits */
pci_write_config8(ctrl->d0f1, 0x80, 0x03); /* dev 0, function 1, offset 80 */
pci_write_config8(ctrl->d0f1, 0x82, 0x03); /* dev 0, function 1, offset 82 */
pci_write_config32(ctrl->d0f1, 0x40, 1<<18); /* clear dev 0, function 1, offset 40; bit 18 by writing a 1 to it */
pci_write_config32(ctrl->d0f1, 0x44, 1<<18); /* clear dev 0, function 1, offset 44; bit 18 by writing a 1 to it */
pci_write_config8(ctrl->d0, 0x52, 0x0d);
}
dword = pci_read_config32(ctrl->d0, 0x7c); /* FCS_EN */
dword |= (1<<17);
pci_write_config32(ctrl->d0, 0x7c, dword);
#if DEBUG_RAM_CONFIG
dumpnorth();
#endif
// verify_ram();
}
#if 0
#define ERRFUNC(x, str) mem_err(x, str)
ERRFUNC(invalid_dimm_type, "Invalid dimm type")
ERRFUNC(spd_missing_data, "Missing sdram spd data")
ERRFUNC(spd_invalid_data, "Invalid sdram spd data")
ERRFUNC(spd_unsupported_data, "Unsupported sdram spd value")
ERRFUNC(unsupported_page_size, "Unsupported page size")
ERRFUNC(sdram_presence_mismatch, "DIMM presence mismatch")
ERRFUNC(sdram_value_mismatch, "spd data does not match")
ERRFUNC(unsupported_refresh_rate, "Unsuported spd refresh rate")
ERRFUNC(inconsistent_cas_latencies, "No cas latency supported by all dimms")
ERRFUNC(unsupported_rcd, "Unsupported ras to cas delay")
#undef ERRFUNC
#define mem_err_err "ERROR: "
#define mem_err_pair " on dimm pair "
#define mem_err_byte " spd byte "
static void mem_err {
movl %ebx, %edi
CONSOLE_ERR_TX_STRING($mem_err_err)
CONSOLE_ERR_TX_STRING(%esi)
CONSOLE_ERR_TX_STRING($mem_err_pair)
movl %edi, %ebx
subb $(SMBUS_MEM_DEVICE_START), %bl
CONSOLE_ERR_TX_HEX8(%bl)
CONSOLE_ERR_TX_STRING($mem_err_byte)
movl %edi, %ebx
CONSOLE_ERR_TX_HEX8(%bh)
jmp mem_stop
}
#endif
#if ASM_CONSOLE_LOGLEVEL > BIOS_DEBUG
#define ram_enable_1 "Ram Enable 1\r\n"
#define ram_enable_2 "Ram Enable 2\r\n"
#define ram_enable_3 "Ram Enable 3\r\n"
#define ram_enable_4 "Ram Enable 4\r\n"
#define ram_enable_5 "Ram Enable 5\r\n"
#define ram_enable_6 "Ram Enable 6\r\n"
#define ram_enable_7 "Ram Enable 7\r\n"
#define ram_enable_8 "Ram Enable 8\r\n"
#define ram_enable_9 "Ram Enable 9\r\n"
#define ram_enable_10 "Ram Enable 10\r\n"
#define ram_enable_11 "Ram Enable 11\r\n"
#endif
/* Estimate that SLOW_DOWN_IO takes about 50&76us*/
/* delay for 200us */
#define DO_DELAY \
udelay(200);
// for(i=0; i<16;i++) { SLOW_DOWN_IO }
#define EXTRA_DELAY DO_DELAY
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
int i;
uint32_t mchtst;
/* 1 & 2 Power up and start clocks */
/* arg! the parts are memory mapped! For now, just grab address 0xc0000000 as the base, since I want to use
* constants, not variables, for this.
*/
mchtst = pci_read_config32(ctrl->d0, 0xf4);
mchtst |= (1 << 22);
pci_write_config32(ctrl->d0, 0xf4, mchtst);
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_1);
print_debug(ram_enable_2);
#endif
/* A 200us delay is needed */
DO_DELAY
EXTRA_DELAY
/* 3. Apply NOP */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_3);
#endif
RAM_NOP(ctrl);
EXTRA_DELAY
/* 4 Precharge all */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_4);
#endif
RAM_PRECHARGE(ctrl);
EXTRA_DELAY
/* wait until the all banks idle state... */
/* 5. Issue EMRS to enable DLL */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_5);
#endif
RAM_EMRS(ctrl);
EXTRA_DELAY
/* 6. Reset DLL */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_6);
#endif
RAM_MRS(ctrl,1);
EXTRA_DELAY
/* Ensure a 200us delay between the DLL reset in step 6 and the final
* mode register set in step 9.
* Infineon needs this before any other command is sent to the ram.
*/
DO_DELAY
EXTRA_DELAY
/* 7 Precharge all */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_7);
#endif
RAM_PRECHARGE(ctrl);
EXTRA_DELAY
/* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_8);
#endif
RAM_CBR(ctrl);
EXTRA_DELAY
RAM_CBR(ctrl);
EXTRA_DELAY
/* And for good luck 6 more CBRs */
RAM_CBR(ctrl);
EXTRA_DELAY
RAM_CBR(ctrl);
EXTRA_DELAY
RAM_CBR(ctrl);
EXTRA_DELAY
RAM_CBR(ctrl);
EXTRA_DELAY
RAM_CBR(ctrl);
EXTRA_DELAY
RAM_CBR(ctrl);
EXTRA_DELAY
/* 9 mode register set */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_9);
#endif
RAM_MRS(ctrl,0);
EXTRA_DELAY
/* 10 DDR Receive FIFO RE-Sync */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_10);
#endif
RAM_RESET_DDR_PTR(ctrl);
EXTRA_DELAY
/* 11 normal operation */
#if DEBUG_RAM_CONFIG
print_debug(ram_enable_11);
#endif
RAM_NORMAL(ctrl);
// special from v1
//FIRST_NORMAL_REFERENCE();
//spd_set_ram_size(ctrl, 0x03);
/* Finally enable refresh */
ENABLE_REFRESH(ctrl);
//SPECIAL_FINISHUP();
dram_finish(ctrl);
}