Right before CB:49334 was submitted, I changed the signature of cbfs_allocator_t function pointers to include another argument passing in the already loaded CBFS metadata (to allow for the rare edge case of allocators needing to read CBFS attributes). This interface is not meant to be able to modify the passed-in metadata, so to clarify that and prevent potential errors, we should declare the argument const. Signed-off-by: Julius Werner <jwerner@chromium.org> Change-Id: I7e3756490b9ad7ded91268c61797cef36c4118ee Reviewed-on: https://review.coreboot.org/c/coreboot/+/52081 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org> Reviewed-by: Furquan Shaikh <furquan@google.com>
548 lines
16 KiB
C
548 lines
16 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
#include <assert.h>
|
|
#include <boot_device.h>
|
|
#include <cbfs.h>
|
|
#include <cbfs_private.h>
|
|
#include <cbmem.h>
|
|
#include <commonlib/bsd/compression.h>
|
|
#include <commonlib/endian.h>
|
|
#include <console/console.h>
|
|
#include <fmap.h>
|
|
#include <lib.h>
|
|
#include <metadata_hash.h>
|
|
#include <security/tpm/tspi/crtm.h>
|
|
#include <security/vboot/vboot_common.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <symbols.h>
|
|
#include <timestamp.h>
|
|
|
|
#if CBFS_CACHE_AVAILABLE
|
|
struct mem_pool cbfs_cache = MEM_POOL_INIT(_cbfs_cache, REGION_SIZE(cbfs_cache));
|
|
|
|
static void switch_to_postram_cache(int unused)
|
|
{
|
|
if (_preram_cbfs_cache != _postram_cbfs_cache)
|
|
mem_pool_init(&cbfs_cache, _postram_cbfs_cache,
|
|
REGION_SIZE(postram_cbfs_cache));
|
|
}
|
|
ROMSTAGE_CBMEM_INIT_HOOK(switch_to_postram_cache);
|
|
#endif
|
|
|
|
cb_err_t cbfs_boot_lookup(const char *name, bool force_ro,
|
|
union cbfs_mdata *mdata, struct region_device *rdev)
|
|
{
|
|
const struct cbfs_boot_device *cbd = cbfs_get_boot_device(force_ro);
|
|
if (!cbd)
|
|
return CB_ERR;
|
|
|
|
size_t data_offset;
|
|
cb_err_t err = CB_CBFS_CACHE_FULL;
|
|
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size)
|
|
err = cbfs_mcache_lookup(cbd->mcache, cbd->mcache_size,
|
|
name, mdata, &data_offset);
|
|
if (err == CB_CBFS_CACHE_FULL) {
|
|
struct vb2_hash *metadata_hash = NULL;
|
|
if (CONFIG(TOCTOU_SAFETY)) {
|
|
if (ENV_SMM) /* Cannot provide TOCTOU safety for SMM */
|
|
dead_code();
|
|
if (!cbd->mcache_size)
|
|
die("Cannot access CBFS TOCTOU-safely in " ENV_STRING " before CBMEM init!\n");
|
|
/* We can only reach this for the RW CBFS -- an mcache overflow in the
|
|
RO CBFS would have been caught when building the mcache in cbfs_get
|
|
boot_device(). (Note that TOCTOU_SAFETY implies !NO_CBFS_MCACHE.) */
|
|
assert(cbd == vboot_get_cbfs_boot_device());
|
|
/* TODO: set metadata_hash to RW metadata hash here. */
|
|
}
|
|
err = cbfs_lookup(&cbd->rdev, name, mdata, &data_offset, metadata_hash);
|
|
}
|
|
|
|
if (CONFIG(VBOOT_ENABLE_CBFS_FALLBACK) && !force_ro && err == CB_CBFS_NOT_FOUND) {
|
|
printk(BIOS_INFO, "CBFS: Fall back to RO region for %s\n", name);
|
|
return cbfs_boot_lookup(name, true, mdata, rdev);
|
|
}
|
|
if (err) {
|
|
if (err == CB_CBFS_NOT_FOUND)
|
|
printk(BIOS_WARNING, "CBFS: '%s' not found.\n", name);
|
|
else if (err == CB_CBFS_HASH_MISMATCH)
|
|
printk(BIOS_ERR, "CBFS ERROR: metadata hash mismatch!\n");
|
|
else
|
|
printk(BIOS_ERR, "CBFS ERROR: error %d when looking up '%s'\n",
|
|
err, name);
|
|
return err;
|
|
}
|
|
|
|
if (rdev_chain(rdev, &cbd->rdev, data_offset, be32toh(mdata->h.len)))
|
|
return CB_ERR;
|
|
|
|
if (tspi_measure_cbfs_hook(rdev, name, be32toh(mdata->h.type))) {
|
|
printk(BIOS_ERR, "CBFS ERROR: error when measuring '%s'\n", name);
|
|
}
|
|
|
|
return CB_SUCCESS;
|
|
}
|
|
|
|
int cbfs_boot_locate(struct cbfsf *fh, const char *name, uint32_t *type)
|
|
{
|
|
if (cbfs_boot_lookup(name, false, &fh->mdata, &fh->data))
|
|
return -1;
|
|
|
|
size_t msize = be32toh(fh->mdata.h.offset);
|
|
if (rdev_chain(&fh->metadata, &addrspace_32bit.rdev, (uintptr_t)&fh->mdata, msize))
|
|
return -1;
|
|
|
|
if (type) {
|
|
if (!*type)
|
|
*type = be32toh(fh->mdata.h.type);
|
|
else if (*type != be32toh(fh->mdata.h.type))
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void cbfs_unmap(void *mapping)
|
|
{
|
|
/*
|
|
* This is save to call with mappings that weren't allocated in the cache (e.g. x86
|
|
* direct mappings) -- mem_pool_free() just does nothing for addresses it doesn't
|
|
* recognize. This hardcodes the assumption that if platforms implement an rdev_mmap()
|
|
* that requires a free() for the boot_device, they need to implement it via the
|
|
* cbfs_cache mem_pool.
|
|
*/
|
|
if (CBFS_CACHE_AVAILABLE)
|
|
mem_pool_free(&cbfs_cache, mapping);
|
|
}
|
|
|
|
int cbfs_locate_file_in_region(struct cbfsf *fh, const char *region_name,
|
|
const char *name, uint32_t *type)
|
|
{
|
|
struct region_device rdev;
|
|
int ret = 0;
|
|
if (fmap_locate_area_as_rdev(region_name, &rdev)) {
|
|
LOG("%s region not found while looking for %s\n", region_name, name);
|
|
return -1;
|
|
}
|
|
|
|
uint32_t dummy_type = 0;
|
|
if (!type)
|
|
type = &dummy_type;
|
|
|
|
ret = cbfs_locate(fh, &rdev, name, type);
|
|
if (!ret)
|
|
if (tspi_measure_cbfs_hook(&rdev, name, *type))
|
|
LOG("error measuring %s in region %s\n", name, region_name);
|
|
return ret;
|
|
}
|
|
|
|
static inline bool fsps_env(void)
|
|
{
|
|
/* FSP-S is assumed to be loaded in ramstage. */
|
|
if (ENV_RAMSTAGE)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline bool fspm_env(void)
|
|
{
|
|
/* FSP-M is assumed to be loaded in romstage. */
|
|
if (ENV_ROMSTAGE)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static inline bool cbfs_lz4_enabled(void)
|
|
{
|
|
if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZ4))
|
|
return true;
|
|
if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZ4))
|
|
return true;
|
|
|
|
if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) && !CONFIG(COMPRESS_PRERAM_STAGES))
|
|
return false;
|
|
|
|
if (ENV_SMM)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool cbfs_lzma_enabled(void)
|
|
{
|
|
if (fsps_env() && CONFIG(FSP_COMPRESS_FSP_S_LZMA))
|
|
return true;
|
|
if (fspm_env() && CONFIG(FSP_COMPRESS_FSP_M_LZMA))
|
|
return true;
|
|
/* We assume here romstage and postcar are never compressed. */
|
|
if (ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE)
|
|
return false;
|
|
if (ENV_ROMSTAGE && CONFIG(POSTCAR_STAGE))
|
|
return false;
|
|
if ((ENV_ROMSTAGE || ENV_POSTCAR) && !CONFIG(COMPRESS_RAMSTAGE))
|
|
return false;
|
|
if (ENV_SMM)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
size_t cbfs_load_and_decompress(const struct region_device *rdev, size_t offset, size_t in_size,
|
|
void *buffer, size_t buffer_size, uint32_t compression)
|
|
{
|
|
size_t out_size;
|
|
void *map;
|
|
|
|
DEBUG("Decompressing %zu bytes to %p with algo %d\n", buffer_size, buffer, compression);
|
|
|
|
switch (compression) {
|
|
case CBFS_COMPRESS_NONE:
|
|
if (buffer_size < in_size)
|
|
return 0;
|
|
if (rdev_readat(rdev, buffer, offset, in_size) != in_size)
|
|
return 0;
|
|
return in_size;
|
|
|
|
case CBFS_COMPRESS_LZ4:
|
|
if (!cbfs_lz4_enabled())
|
|
return 0;
|
|
|
|
/* cbfs_stage_load_and_decompress() takes care of in-place LZ4 decompression by
|
|
setting up the rdev to be in memory. */
|
|
map = rdev_mmap(rdev, offset, in_size);
|
|
if (map == NULL)
|
|
return 0;
|
|
|
|
timestamp_add_now(TS_START_ULZ4F);
|
|
out_size = ulz4fn(map, in_size, buffer, buffer_size);
|
|
timestamp_add_now(TS_END_ULZ4F);
|
|
|
|
rdev_munmap(rdev, map);
|
|
|
|
return out_size;
|
|
|
|
case CBFS_COMPRESS_LZMA:
|
|
if (!cbfs_lzma_enabled())
|
|
return 0;
|
|
map = rdev_mmap(rdev, offset, in_size);
|
|
if (map == NULL)
|
|
return 0;
|
|
|
|
/* Note: timestamp not useful for memory-mapped media (x86) */
|
|
timestamp_add_now(TS_START_ULZMA);
|
|
out_size = ulzman(map, in_size, buffer, buffer_size);
|
|
timestamp_add_now(TS_END_ULZMA);
|
|
|
|
rdev_munmap(rdev, map);
|
|
|
|
return out_size;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static size_t cbfs_stage_load_and_decompress(const struct region_device *rdev, size_t offset,
|
|
size_t in_size, void *buffer, size_t buffer_size, uint32_t compression)
|
|
{
|
|
struct region_device rdev_src;
|
|
|
|
if (compression == CBFS_COMPRESS_LZ4) {
|
|
if (!cbfs_lz4_enabled())
|
|
return 0;
|
|
/* Load the compressed image to the end of the available memory area for
|
|
in-place decompression. It is the responsibility of the caller to ensure that
|
|
buffer_size is large enough (see compression.h, guaranteed by cbfstool for
|
|
stages). */
|
|
void *compr_start = buffer + buffer_size - in_size;
|
|
if (rdev_readat(rdev, compr_start, offset, in_size) != in_size)
|
|
return 0;
|
|
/* Create a region device backed by memory. */
|
|
rdev_chain(&rdev_src, &addrspace_32bit.rdev, (uintptr_t)compr_start, in_size);
|
|
|
|
return cbfs_load_and_decompress(&rdev_src, 0, in_size, buffer, buffer_size,
|
|
compression);
|
|
}
|
|
|
|
/* All other algorithms can use the generic implementation. */
|
|
return cbfs_load_and_decompress(rdev, offset, in_size, buffer, buffer_size,
|
|
compression);
|
|
}
|
|
|
|
static inline int tohex4(unsigned int c)
|
|
{
|
|
return (c <= 9) ? (c + '0') : (c - 10 + 'a');
|
|
}
|
|
|
|
static void tohex8(unsigned int val, char *dest)
|
|
{
|
|
dest[0] = tohex4((val >> 4) & 0xf);
|
|
dest[1] = tohex4(val & 0xf);
|
|
}
|
|
|
|
static void tohex16(unsigned int val, char *dest)
|
|
{
|
|
dest[0] = tohex4(val >> 12);
|
|
dest[1] = tohex4((val >> 8) & 0xf);
|
|
dest[2] = tohex4((val >> 4) & 0xf);
|
|
dest[3] = tohex4(val & 0xf);
|
|
}
|
|
|
|
void *cbfs_boot_map_optionrom(uint16_t vendor, uint16_t device)
|
|
{
|
|
char name[17] = "pciXXXX,XXXX.rom";
|
|
|
|
tohex16(vendor, name + 3);
|
|
tohex16(device, name + 8);
|
|
|
|
return cbfs_map(name, NULL);
|
|
}
|
|
|
|
void *cbfs_boot_map_optionrom_revision(uint16_t vendor, uint16_t device, uint8_t rev)
|
|
{
|
|
char name[20] = "pciXXXX,XXXX,XX.rom";
|
|
|
|
tohex16(vendor, name + 3);
|
|
tohex16(device, name + 8);
|
|
tohex8(rev, name + 13);
|
|
|
|
return cbfs_map(name, NULL);
|
|
}
|
|
|
|
void *_cbfs_alloc(const char *name, cbfs_allocator_t allocator, void *arg,
|
|
size_t *size_out, bool force_ro, enum cbfs_type *type)
|
|
{
|
|
struct region_device rdev;
|
|
union cbfs_mdata mdata;
|
|
void *loc;
|
|
|
|
DEBUG("%s(name='%s', alloc=%p(%p), force_ro=%s, type=%d)\n", __func__, name, allocator,
|
|
arg, force_ro ? "true" : "false", type ? *type : -1);
|
|
|
|
if (cbfs_boot_lookup(name, force_ro, &mdata, &rdev))
|
|
return NULL;
|
|
|
|
if (type) {
|
|
const enum cbfs_type real_type = be32toh(mdata.h.type);
|
|
if (*type == CBFS_TYPE_QUERY)
|
|
*type = real_type;
|
|
else if (*type != real_type) {
|
|
ERROR("'%s' type mismatch (is %u, expected %u)\n",
|
|
mdata.h.filename, real_type, *type);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
size_t size = region_device_sz(&rdev);
|
|
uint32_t compression = CBFS_COMPRESS_NONE;
|
|
const struct cbfs_file_attr_compression *cattr = cbfs_find_attr(&mdata,
|
|
CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*cattr));
|
|
if (cattr) {
|
|
compression = be32toh(cattr->compression);
|
|
size = be32toh(cattr->decompressed_size);
|
|
}
|
|
|
|
if (size_out)
|
|
*size_out = size;
|
|
|
|
/* allocator == NULL means do a cbfs_map() */
|
|
if (allocator) {
|
|
loc = allocator(arg, size, &mdata);
|
|
} else if (compression == CBFS_COMPRESS_NONE) {
|
|
return rdev_mmap_full(&rdev);
|
|
} else if (!CBFS_CACHE_AVAILABLE) {
|
|
ERROR("Cannot map compressed file %s on x86\n", mdata.h.filename);
|
|
return NULL;
|
|
} else {
|
|
loc = mem_pool_alloc(&cbfs_cache, size);
|
|
}
|
|
|
|
if (!loc) {
|
|
ERROR("'%s' allocation failure\n", mdata.h.filename);
|
|
return NULL;
|
|
}
|
|
|
|
size = cbfs_load_and_decompress(&rdev, 0, region_device_sz(&rdev),
|
|
loc, size, compression);
|
|
if (!size)
|
|
return NULL;
|
|
|
|
return loc;
|
|
}
|
|
|
|
void *_cbfs_default_allocator(void *arg, size_t size, const union cbfs_mdata *unused)
|
|
{
|
|
struct _cbfs_default_allocator_arg *darg = arg;
|
|
if (size > darg->buf_size)
|
|
return NULL;
|
|
return darg->buf;
|
|
}
|
|
|
|
void *_cbfs_cbmem_allocator(void *arg, size_t size, const union cbfs_mdata *unused)
|
|
{
|
|
return cbmem_add((uintptr_t)arg, size);
|
|
}
|
|
|
|
cb_err_t cbfs_prog_stage_load(struct prog *pstage)
|
|
{
|
|
union cbfs_mdata mdata;
|
|
struct region_device rdev;
|
|
cb_err_t err;
|
|
|
|
prog_locate_hook(pstage);
|
|
|
|
if ((err = cbfs_boot_lookup(prog_name(pstage), false, &mdata, &rdev)))
|
|
return err;
|
|
|
|
assert(be32toh(mdata.h.type) == CBFS_TYPE_STAGE);
|
|
pstage->cbfs_type = CBFS_TYPE_STAGE;
|
|
|
|
enum cbfs_compression compression = CBFS_COMPRESS_NONE;
|
|
const struct cbfs_file_attr_compression *cattr = cbfs_find_attr(&mdata,
|
|
CBFS_FILE_ATTR_TAG_COMPRESSION, sizeof(*cattr));
|
|
if (cattr)
|
|
compression = be32toh(cattr->compression);
|
|
|
|
const struct cbfs_file_attr_stageheader *sattr = cbfs_find_attr(&mdata,
|
|
CBFS_FILE_ATTR_TAG_STAGEHEADER, sizeof(*sattr));
|
|
if (!sattr)
|
|
return CB_ERR;
|
|
prog_set_area(pstage, (void *)(uintptr_t)be64toh(sattr->loadaddr),
|
|
be32toh(sattr->memlen));
|
|
prog_set_entry(pstage, prog_start(pstage) +
|
|
be32toh(sattr->entry_offset), NULL);
|
|
|
|
/* Hacky way to not load programs over read only media. The stages
|
|
* that would hit this path initialize themselves. */
|
|
if ((ENV_BOOTBLOCK || ENV_SEPARATE_VERSTAGE) &&
|
|
!CONFIG(NO_XIP_EARLY_STAGES) && CONFIG(BOOT_DEVICE_MEMORY_MAPPED)) {
|
|
void *mapping = rdev_mmap_full(&rdev);
|
|
rdev_munmap(&rdev, mapping);
|
|
if (mapping == prog_start(pstage))
|
|
return CB_SUCCESS;
|
|
}
|
|
|
|
size_t fsize = cbfs_stage_load_and_decompress(&rdev, 0, region_device_sz(&rdev),
|
|
prog_start(pstage), prog_size(pstage), compression);
|
|
if (!fsize)
|
|
return CB_ERR;
|
|
|
|
/* Clear area not covered by file. */
|
|
memset(prog_start(pstage) + fsize, 0, prog_size(pstage) - fsize);
|
|
|
|
prog_segment_loaded((uintptr_t)prog_start(pstage), prog_size(pstage),
|
|
SEG_FINAL);
|
|
|
|
return CB_SUCCESS;
|
|
}
|
|
|
|
void cbfs_boot_device_find_mcache(struct cbfs_boot_device *cbd, uint32_t id)
|
|
{
|
|
if (CONFIG(NO_CBFS_MCACHE) || ENV_SMM)
|
|
return;
|
|
|
|
if (cbd->mcache_size)
|
|
return;
|
|
|
|
const struct cbmem_entry *entry;
|
|
if (cbmem_possibly_online() &&
|
|
(entry = cbmem_entry_find(id))) {
|
|
cbd->mcache = cbmem_entry_start(entry);
|
|
cbd->mcache_size = cbmem_entry_size(entry);
|
|
} else if (ENV_ROMSTAGE_OR_BEFORE) {
|
|
u8 *boundary = _ecbfs_mcache - REGION_SIZE(cbfs_mcache) *
|
|
CONFIG_CBFS_MCACHE_RW_PERCENTAGE / 100;
|
|
boundary = (u8 *)ALIGN_DOWN((uintptr_t)boundary, CBFS_MCACHE_ALIGNMENT);
|
|
if (id == CBMEM_ID_CBFS_RO_MCACHE) {
|
|
cbd->mcache = _cbfs_mcache;
|
|
cbd->mcache_size = boundary - _cbfs_mcache;
|
|
} else if (id == CBMEM_ID_CBFS_RW_MCACHE) {
|
|
cbd->mcache = boundary;
|
|
cbd->mcache_size = _ecbfs_mcache - boundary;
|
|
}
|
|
}
|
|
}
|
|
|
|
cb_err_t cbfs_init_boot_device(const struct cbfs_boot_device *cbd,
|
|
struct vb2_hash *mdata_hash)
|
|
{
|
|
/* If we have an mcache, mcache_build() will also check mdata hash. */
|
|
if (!CONFIG(NO_CBFS_MCACHE) && !ENV_SMM && cbd->mcache_size > 0)
|
|
return cbfs_mcache_build(&cbd->rdev, cbd->mcache, cbd->mcache_size, mdata_hash);
|
|
|
|
/* No mcache and no verification means we have nothing special to do. */
|
|
if (!CONFIG(CBFS_VERIFICATION) || !mdata_hash)
|
|
return CB_SUCCESS;
|
|
|
|
/* Verification only: use cbfs_walk() without a walker() function to just run through
|
|
the CBFS once, will return NOT_FOUND by default. */
|
|
cb_err_t err = cbfs_walk(&cbd->rdev, NULL, NULL, mdata_hash, 0);
|
|
if (err == CB_CBFS_NOT_FOUND)
|
|
err = CB_SUCCESS;
|
|
return err;
|
|
}
|
|
|
|
const struct cbfs_boot_device *cbfs_get_boot_device(bool force_ro)
|
|
{
|
|
static struct cbfs_boot_device ro;
|
|
|
|
/* Ensure we always init RO mcache, even if the first file is from the RW CBFS.
|
|
Otherwise it may not be available when needed in later stages. */
|
|
if (ENV_INITIAL_STAGE && !force_ro && !region_device_sz(&ro.rdev))
|
|
cbfs_get_boot_device(true);
|
|
|
|
if (!force_ro) {
|
|
const struct cbfs_boot_device *rw = vboot_get_cbfs_boot_device();
|
|
/* This will return NULL if vboot isn't enabled, didn't run yet or decided to
|
|
boot into recovery mode. */
|
|
if (rw)
|
|
return rw;
|
|
}
|
|
|
|
/* In rare cases post-RAM stages may run this before cbmem_initialize(), so we can't
|
|
lock in the result of find_mcache() on the first try and should keep trying every
|
|
time until an mcache is found. */
|
|
cbfs_boot_device_find_mcache(&ro, CBMEM_ID_CBFS_RO_MCACHE);
|
|
|
|
if (region_device_sz(&ro.rdev))
|
|
return &ro;
|
|
|
|
if (fmap_locate_area_as_rdev("COREBOOT", &ro.rdev))
|
|
die("Cannot locate primary CBFS");
|
|
|
|
if (ENV_INITIAL_STAGE) {
|
|
cb_err_t err = cbfs_init_boot_device(&ro, metadata_hash_get());
|
|
if (err == CB_CBFS_HASH_MISMATCH)
|
|
die("RO CBFS metadata hash verification failure");
|
|
else if (CONFIG(TOCTOU_SAFETY) && err == CB_CBFS_CACHE_FULL)
|
|
die("RO mcache overflow breaks TOCTOU safety!\n");
|
|
else if (err && err != CB_CBFS_CACHE_FULL)
|
|
die("RO CBFS initialization error: %d", err);
|
|
}
|
|
|
|
return &ro;
|
|
}
|
|
|
|
#if !CONFIG(NO_CBFS_MCACHE)
|
|
static void mcache_to_cbmem(const struct cbfs_boot_device *cbd, u32 cbmem_id)
|
|
{
|
|
if (!cbd)
|
|
return;
|
|
|
|
size_t real_size = cbfs_mcache_real_size(cbd->mcache, cbd->mcache_size);
|
|
void *cbmem_mcache = cbmem_add(cbmem_id, real_size);
|
|
if (!cbmem_mcache) {
|
|
printk(BIOS_ERR, "ERROR: Cannot allocate CBMEM mcache %#x (%#zx bytes)!\n",
|
|
cbmem_id, real_size);
|
|
return;
|
|
}
|
|
memcpy(cbmem_mcache, cbd->mcache, real_size);
|
|
}
|
|
|
|
static void cbfs_mcache_migrate(int unused)
|
|
{
|
|
mcache_to_cbmem(vboot_get_cbfs_boot_device(), CBMEM_ID_CBFS_RW_MCACHE);
|
|
mcache_to_cbmem(cbfs_get_boot_device(true), CBMEM_ID_CBFS_RO_MCACHE);
|
|
}
|
|
ROMSTAGE_CBMEM_INIT_HOOK(cbfs_mcache_migrate)
|
|
#endif
|