Newest clang compilers warn about "misleading indentation", and because warnings-are-errors in our builds, that breaks the build. The lzma code base is vendored in, so we might just have to update it, but that's a bigger effort than just removing a couple of spaces (the coding style of the file is horrible, but I will only change it as much as the compilers ask for). BUG=chromium:1039526 Change-Id: I6b9d7a760380081af996ea5412d7e3e688048bfd Signed-off-by: Patrick Georgi <pgeorgi@google.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/38637 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org> Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net> Reviewed-by: Idwer Vollering <vidwer@gmail.com> Reviewed-by: Angel Pons <th3fanbus@gmail.com>
		
			
				
	
	
		
			2137 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2137 lines
		
	
	
		
			60 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* LzmaEnc.c -- LZMA Encoder
 | |
| 2009-11-24 : Igor Pavlov : Public domain */
 | |
| 
 | |
| #include <string.h>
 | |
| 
 | |
| #include "LzmaEnc.h"
 | |
| 
 | |
| #include "LzFind.h"
 | |
| 
 | |
| #define kBlockSizeMax ((1 << LZMA_NUM_BLOCK_SIZE_BITS) - 1)
 | |
| 
 | |
| #define kBlockSize (9 << 10)
 | |
| #define kUnpackBlockSize (1 << 18)
 | |
| #define kMatchArraySize (1 << 21)
 | |
| #define kMatchRecordMaxSize ((LZMA_MATCH_LEN_MAX * 2 + 3) * LZMA_MATCH_LEN_MAX)
 | |
| 
 | |
| #define kNumMaxDirectBits (31)
 | |
| 
 | |
| #define kNumTopBits 24
 | |
| #define kTopValue ((uint32_t)1 << kNumTopBits)
 | |
| 
 | |
| #define kNumBitModelTotalBits 11
 | |
| #define kBitModelTotal (1 << kNumBitModelTotalBits)
 | |
| #define kNumMoveBits 5
 | |
| #define kProbInitValue (kBitModelTotal >> 1)
 | |
| 
 | |
| #define kNumMoveReducingBits 4
 | |
| #define kNumBitPriceShiftBits 4
 | |
| #define kBitPrice (1 << kNumBitPriceShiftBits)
 | |
| 
 | |
| void LzmaEncProps_Init(struct CLzmaEncProps *p)
 | |
| {
 | |
|   p->level = 5;
 | |
|   p->dictSize = p->mc = 0;
 | |
|   p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
 | |
|   p->writeEndMark = 0;
 | |
| }
 | |
| 
 | |
| void LzmaEncProps_Normalize(struct CLzmaEncProps *p)
 | |
| {
 | |
|   int level = p->level;
 | |
|   if (level < 0) level = 5;
 | |
|   p->level = level;
 | |
|   if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level == 6 ? (1 << 25) : (1 << 26)));
 | |
|   if (p->lc < 0) p->lc = 3;
 | |
|   if (p->lp < 0) p->lp = 0;
 | |
|   if (p->pb < 0) p->pb = 2;
 | |
|   if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
 | |
|   if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
 | |
|   if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
 | |
|   if (p->numHashBytes < 0) p->numHashBytes = 4;
 | |
|   if (p->mc == 0)  p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
 | |
|   if (p->numThreads < 0)
 | |
|     p->numThreads = 1;
 | |
| }
 | |
| 
 | |
| uint32_t LzmaEncProps_GetDictSize(const struct CLzmaEncProps *props2)
 | |
| {
 | |
|   struct CLzmaEncProps props = *props2;
 | |
|   LzmaEncProps_Normalize(&props);
 | |
|   return props.dictSize;
 | |
| }
 | |
| 
 | |
| #define kNumLogBits (9 + (int)sizeof(size_t) / 2)
 | |
| #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
 | |
| 
 | |
| static void LzmaEnc_FastPosInit(uint8_t *g_FastPos)
 | |
| {
 | |
|   int c = 2, slotFast;
 | |
|   g_FastPos[0] = 0;
 | |
|   g_FastPos[1] = 1;
 | |
| 
 | |
|   for (slotFast = 2; slotFast < kNumLogBits * 2; slotFast++)
 | |
|   {
 | |
|     uint32_t k = (1 << ((slotFast >> 1) - 1));
 | |
|     uint32_t j;
 | |
|     for (j = 0; j < k; j++, c++)
 | |
|       g_FastPos[c] = (uint8_t)slotFast;
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define BSR2_RET(pos, res) { uint32_t macro_i = 6 + ((kNumLogBits - 1) & \
 | |
|   (0 - (((((uint32_t)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
 | |
|   res = p->g_FastPos[pos >> macro_i] + (macro_i * 2); }
 | |
| /*
 | |
| #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
 | |
|   p->g_FastPos[pos >> 6] + 12 : \
 | |
|   p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
 | |
| */
 | |
| 
 | |
| #define GetPosSlot1(pos) p->g_FastPos[pos]
 | |
| #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
 | |
| #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos]; else BSR2_RET(pos, res); }
 | |
| 
 | |
| #define LZMA_NUM_REPS 4
 | |
| 
 | |
| typedef unsigned CState;
 | |
| 
 | |
| struct COptimal
 | |
| {
 | |
|   uint32_t price;
 | |
| 
 | |
|   CState state;
 | |
|   int prev1IsChar;
 | |
|   int prev2;
 | |
| 
 | |
|   uint32_t posPrev2;
 | |
|   uint32_t backPrev2;
 | |
| 
 | |
|   uint32_t posPrev;
 | |
|   uint32_t backPrev;
 | |
|   uint32_t backs[LZMA_NUM_REPS];
 | |
| };
 | |
| 
 | |
| #define kNumOpts (1 << 12)
 | |
| 
 | |
| #define kNumLenToPosStates 4
 | |
| #define kNumPosSlotBits 6
 | |
| #define kDicLogSizeMin 0
 | |
| #define kDicLogSizeMax 32
 | |
| #define kDistTableSizeMax (kDicLogSizeMax * 2)
 | |
| 
 | |
| 
 | |
| #define kNumAlignBits 4
 | |
| #define kAlignTableSize (1 << kNumAlignBits)
 | |
| #define kAlignMask (kAlignTableSize - 1)
 | |
| 
 | |
| #define kStartPosModelIndex 4
 | |
| #define kEndPosModelIndex 14
 | |
| #define kNumPosModels (kEndPosModelIndex - kStartPosModelIndex)
 | |
| 
 | |
| #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
 | |
| 
 | |
| typedef uint16_t CLzmaProb;
 | |
| 
 | |
| 
 | |
| #define LZMA_PB_MAX 4
 | |
| #define LZMA_LC_MAX 8
 | |
| #define LZMA_LP_MAX 4
 | |
| 
 | |
| #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
 | |
| 
 | |
| 
 | |
| #define kLenNumLowBits 3
 | |
| #define kLenNumLowSymbols (1 << kLenNumLowBits)
 | |
| #define kLenNumMidBits 3
 | |
| #define kLenNumMidSymbols (1 << kLenNumMidBits)
 | |
| #define kLenNumHighBits 8
 | |
| #define kLenNumHighSymbols (1 << kLenNumHighBits)
 | |
| 
 | |
| #define kLenNumSymbolsTotal (kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
 | |
| 
 | |
| #define LZMA_MATCH_LEN_MIN 2
 | |
| #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
 | |
| 
 | |
| #define kNumStates 12
 | |
| 
 | |
| struct CLenEnc
 | |
| {
 | |
|   CLzmaProb choice;
 | |
|   CLzmaProb choice2;
 | |
|   CLzmaProb low[LZMA_NUM_PB_STATES_MAX << kLenNumLowBits];
 | |
|   CLzmaProb mid[LZMA_NUM_PB_STATES_MAX << kLenNumMidBits];
 | |
|   CLzmaProb high[kLenNumHighSymbols];
 | |
| };
 | |
| 
 | |
| struct CLenPriceEnc
 | |
| {
 | |
|   struct CLenEnc p;
 | |
|   uint32_t prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
 | |
|   uint32_t tableSize;
 | |
|   uint32_t counters[LZMA_NUM_PB_STATES_MAX];
 | |
| };
 | |
| 
 | |
| struct CRangeEnc
 | |
| {
 | |
|   uint32_t range;
 | |
|   uint8_t cache;
 | |
|   uint64_t low;
 | |
|   uint64_t cacheSize;
 | |
|   uint8_t *buf;
 | |
|   uint8_t *bufLim;
 | |
|   uint8_t *bufBase;
 | |
|   struct ISeqOutStream *outStream;
 | |
|   uint64_t processed;
 | |
|   SRes res;
 | |
| };
 | |
| 
 | |
| struct CSaveState
 | |
| {
 | |
|   CLzmaProb *litProbs;
 | |
| 
 | |
|   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
 | |
|   CLzmaProb isRep[kNumStates];
 | |
|   CLzmaProb isRepG0[kNumStates];
 | |
|   CLzmaProb isRepG1[kNumStates];
 | |
|   CLzmaProb isRepG2[kNumStates];
 | |
|   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
 | |
| 
 | |
|   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
 | |
|   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
 | |
|   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
 | |
| 
 | |
|   struct CLenPriceEnc lenEnc;
 | |
|   struct CLenPriceEnc repLenEnc;
 | |
| 
 | |
|   uint32_t reps[LZMA_NUM_REPS];
 | |
|   uint32_t state;
 | |
| };
 | |
| 
 | |
| struct CLzmaEnc
 | |
| {
 | |
|   struct IMatchFinder matchFinder;
 | |
|   void *matchFinderObj;
 | |
| 
 | |
|   struct CMatchFinder matchFinderBase;
 | |
| 
 | |
|   uint32_t optimumEndIndex;
 | |
|   uint32_t optimumCurrentIndex;
 | |
| 
 | |
|   uint32_t longestMatchLength;
 | |
|   uint32_t numPairs;
 | |
|   uint32_t numAvail;
 | |
|   struct COptimal opt[kNumOpts];
 | |
| 
 | |
|   #ifndef LZMA_LOG_BSR
 | |
|   uint8_t g_FastPos[1 << kNumLogBits];
 | |
|   #endif
 | |
| 
 | |
|   uint32_t ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
 | |
|   uint32_t matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
 | |
|   uint32_t numFastuint8_ts;
 | |
|   uint32_t additionalOffset;
 | |
|   uint32_t reps[LZMA_NUM_REPS];
 | |
|   uint32_t state;
 | |
| 
 | |
|   uint32_t posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
 | |
|   uint32_t distancesPrices[kNumLenToPosStates][kNumFullDistances];
 | |
|   uint32_t alignPrices[kAlignTableSize];
 | |
|   uint32_t alignPriceCount;
 | |
| 
 | |
|   uint32_t distTableSize;
 | |
| 
 | |
|   unsigned lc, lp, pb;
 | |
|   unsigned lpMask, pbMask;
 | |
| 
 | |
|   CLzmaProb *litProbs;
 | |
| 
 | |
|   CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
 | |
|   CLzmaProb isRep[kNumStates];
 | |
|   CLzmaProb isRepG0[kNumStates];
 | |
|   CLzmaProb isRepG1[kNumStates];
 | |
|   CLzmaProb isRepG2[kNumStates];
 | |
|   CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
 | |
| 
 | |
|   CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
 | |
|   CLzmaProb posEncoders[kNumFullDistances - kEndPosModelIndex];
 | |
|   CLzmaProb posAlignEncoder[1 << kNumAlignBits];
 | |
| 
 | |
|   struct CLenPriceEnc lenEnc;
 | |
|   struct CLenPriceEnc repLenEnc;
 | |
| 
 | |
|   unsigned lclp;
 | |
| 
 | |
|   bool fastMode;
 | |
| 
 | |
|   struct CRangeEnc rc;
 | |
| 
 | |
|   bool writeEndMark;
 | |
|   uint64_t nowPos64;
 | |
|   uint32_t matchPriceCount;
 | |
|   bool finished;
 | |
|   bool multiThread;
 | |
| 
 | |
|   SRes result;
 | |
|   uint32_t dictSize;
 | |
|   uint32_t matchFinderCycles;
 | |
| 
 | |
|   int needInit;
 | |
| 
 | |
|   struct CSaveState saveState;
 | |
| };
 | |
| 
 | |
| /*static void LzmaEnc_SaveState(CLzmaEncHandle pp)
 | |
| {
 | |
|   CLzmaEnc *p = (CLzmaEnc *)pp;
 | |
|   CSaveState *dest = &p->saveState;
 | |
|   int i;
 | |
|   dest->lenEnc = p->lenEnc;
 | |
|   dest->repLenEnc = p->repLenEnc;
 | |
|   dest->state = p->state;
 | |
| 
 | |
|   for (i = 0; i < kNumStates; i++)
 | |
|   {
 | |
|     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
 | |
|     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
 | |
|   }
 | |
|   for (i = 0; i < kNumLenToPosStates; i++)
 | |
|     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
 | |
|   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
 | |
|   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
 | |
|   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
 | |
|   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
 | |
|   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
 | |
|   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
 | |
|   memcpy(dest->reps, p->reps, sizeof(p->reps));
 | |
|   memcpy(dest->litProbs, p->litProbs, (0x300 << p->lclp) * sizeof(CLzmaProb));
 | |
| }*/
 | |
| 
 | |
| /*static void LzmaEnc_RestoreState(CLzmaEncHandle pp)
 | |
| {
 | |
|   CLzmaEnc *dest = (CLzmaEnc *)pp;
 | |
|   const CSaveState *p = &dest->saveState;
 | |
|   int i;
 | |
|   dest->lenEnc = p->lenEnc;
 | |
|   dest->repLenEnc = p->repLenEnc;
 | |
|   dest->state = p->state;
 | |
| 
 | |
|   for (i = 0; i < kNumStates; i++)
 | |
|   {
 | |
|     memcpy(dest->isMatch[i], p->isMatch[i], sizeof(p->isMatch[i]));
 | |
|     memcpy(dest->isRep0Long[i], p->isRep0Long[i], sizeof(p->isRep0Long[i]));
 | |
|   }
 | |
|   for (i = 0; i < kNumLenToPosStates; i++)
 | |
|     memcpy(dest->posSlotEncoder[i], p->posSlotEncoder[i], sizeof(p->posSlotEncoder[i]));
 | |
|   memcpy(dest->isRep, p->isRep, sizeof(p->isRep));
 | |
|   memcpy(dest->isRepG0, p->isRepG0, sizeof(p->isRepG0));
 | |
|   memcpy(dest->isRepG1, p->isRepG1, sizeof(p->isRepG1));
 | |
|   memcpy(dest->isRepG2, p->isRepG2, sizeof(p->isRepG2));
 | |
|   memcpy(dest->posEncoders, p->posEncoders, sizeof(p->posEncoders));
 | |
|   memcpy(dest->posAlignEncoder, p->posAlignEncoder, sizeof(p->posAlignEncoder));
 | |
|   memcpy(dest->reps, p->reps, sizeof(p->reps));
 | |
|   memcpy(dest->litProbs, p->litProbs, (0x300 << dest->lclp) * sizeof(CLzmaProb));
 | |
| }*/
 | |
| 
 | |
| SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const struct CLzmaEncProps *props2)
 | |
| {
 | |
|   struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
 | |
|   struct CLzmaEncProps props = *props2;
 | |
|   LzmaEncProps_Normalize(&props);
 | |
| 
 | |
|   if (props.lc > LZMA_LC_MAX || props.lp > LZMA_LP_MAX || props.pb > LZMA_PB_MAX ||
 | |
|       props.dictSize > (1 << kDicLogSizeMaxCompress) || props.dictSize > (1 << 30))
 | |
|     return SZ_ERROR_PARAM;
 | |
|   p->dictSize = props.dictSize;
 | |
|   p->matchFinderCycles = props.mc;
 | |
|   {
 | |
|     unsigned fb = props.fb;
 | |
|     if (fb < 5)
 | |
|       fb = 5;
 | |
|     if (fb > LZMA_MATCH_LEN_MAX)
 | |
|       fb = LZMA_MATCH_LEN_MAX;
 | |
|     p->numFastuint8_ts = fb;
 | |
|   }
 | |
|   p->lc = props.lc;
 | |
|   p->lp = props.lp;
 | |
|   p->pb = props.pb;
 | |
|   p->fastMode = (props.algo == 0);
 | |
|   p->matchFinderBase.btMode = props.btMode;
 | |
|   {
 | |
|     uint32_t numHashBytes = 4;
 | |
|     if (props.btMode)
 | |
|     {
 | |
|       if (props.numHashBytes < 2)
 | |
|         numHashBytes = 2;
 | |
|       else if (props.numHashBytes < 4)
 | |
|         numHashBytes = props.numHashBytes;
 | |
|     }
 | |
|     p->matchFinderBase.numHashBytes = numHashBytes;
 | |
|   }
 | |
| 
 | |
|   p->matchFinderBase.cutValue = props.mc;
 | |
| 
 | |
|   p->writeEndMark = props.writeEndMark;
 | |
| 
 | |
|   return SZ_OK;
 | |
| }
 | |
| 
 | |
| static const int kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4,  5,  6,   4, 5};
 | |
| static const int kMatchNextStates[kNumStates]   = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
 | |
| static const int kRepNextStates[kNumStates]     = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
 | |
| static const int kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
 | |
| 
 | |
| #define IsCharState(s) ((s) < 7)
 | |
| 
 | |
| #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
 | |
| 
 | |
| #define kInfinityPrice (1 << 30)
 | |
| 
 | |
| static void RangeEnc_Construct(struct CRangeEnc *p)
 | |
| {
 | |
|   p->outStream = 0;
 | |
|   p->bufBase = 0;
 | |
| }
 | |
| 
 | |
| #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
 | |
| 
 | |
| #define RC_BUF_SIZE (1 << 16)
 | |
| static int RangeEnc_Alloc(struct CRangeEnc *p, struct ISzAlloc *alloc)
 | |
| {
 | |
|   if (p->bufBase == 0)
 | |
|   {
 | |
|     p->bufBase = (uint8_t *)alloc->Alloc(alloc, RC_BUF_SIZE);
 | |
|     if (p->bufBase == 0)
 | |
|       return 0;
 | |
|     p->bufLim = p->bufBase + RC_BUF_SIZE;
 | |
|   }
 | |
|   return 1;
 | |
| }
 | |
| 
 | |
| static void RangeEnc_Free(struct CRangeEnc *p, struct ISzAlloc *alloc)
 | |
| {
 | |
|   alloc->Free(alloc, p->bufBase);
 | |
|   p->bufBase = 0;
 | |
| }
 | |
| 
 | |
| static void RangeEnc_Init(struct CRangeEnc *p)
 | |
| {
 | |
|   /* Stream.Init(); */
 | |
|   p->low = 0;
 | |
|   p->range = 0xFFFFFFFF;
 | |
|   p->cacheSize = 1;
 | |
|   p->cache = 0;
 | |
| 
 | |
|   p->buf = p->bufBase;
 | |
| 
 | |
|   p->processed = 0;
 | |
|   p->res = SZ_OK;
 | |
| }
 | |
| 
 | |
| static void RangeEnc_FlushStream(struct CRangeEnc *p)
 | |
| {
 | |
|   size_t num;
 | |
|   if (p->res != SZ_OK)
 | |
|     return;
 | |
|   num = p->buf - p->bufBase;
 | |
|   if (num != p->outStream->Write(p->outStream, p->bufBase, num))
 | |
|     p->res = SZ_ERROR_WRITE;
 | |
|   p->processed += num;
 | |
|   p->buf = p->bufBase;
 | |
| }
 | |
| 
 | |
| static void RangeEnc_ShiftLow(struct CRangeEnc *p)
 | |
| {
 | |
|   if ((uint32_t)p->low < (uint32_t)0xFF000000 || (int)(p->low >> 32) != 0)
 | |
|   {
 | |
|     uint8_t temp = p->cache;
 | |
|     do
 | |
|     {
 | |
|       uint8_t *buf = p->buf;
 | |
|       *buf++ = (uint8_t)(temp + (uint8_t)(p->low >> 32));
 | |
|       p->buf = buf;
 | |
|       if (buf == p->bufLim)
 | |
|         RangeEnc_FlushStream(p);
 | |
|       temp = 0xFF;
 | |
|     }
 | |
|     while (--p->cacheSize != 0);
 | |
|     p->cache = (uint8_t)((uint32_t)p->low >> 24);
 | |
|   }
 | |
|   p->cacheSize++;
 | |
|   p->low = (uint32_t)p->low << 8;
 | |
| }
 | |
| 
 | |
| static void RangeEnc_FlushData(struct CRangeEnc *p)
 | |
| {
 | |
|   int i;
 | |
|   for (i = 0; i < 5; i++)
 | |
|     RangeEnc_ShiftLow(p);
 | |
| }
 | |
| 
 | |
| static void RangeEnc_EncodeDirectBits(struct CRangeEnc *p, uint32_t value, int numBits)
 | |
| {
 | |
|   do
 | |
|   {
 | |
|     p->range >>= 1;
 | |
|     p->low += p->range & (0 - ((value >> --numBits) & 1));
 | |
|     if (p->range < kTopValue)
 | |
|     {
 | |
|       p->range <<= 8;
 | |
|       RangeEnc_ShiftLow(p);
 | |
|     }
 | |
|   }
 | |
|   while (numBits != 0);
 | |
| }
 | |
| 
 | |
| static void RangeEnc_EncodeBit(struct CRangeEnc *p, CLzmaProb *prob, uint32_t symbol)
 | |
| {
 | |
|   uint32_t ttt = *prob;
 | |
|   uint32_t newBound = (p->range >> kNumBitModelTotalBits) * ttt;
 | |
|   if (symbol == 0)
 | |
|   {
 | |
|     p->range = newBound;
 | |
|     ttt += (kBitModelTotal - ttt) >> kNumMoveBits;
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     p->low += newBound;
 | |
|     p->range -= newBound;
 | |
|     ttt -= ttt >> kNumMoveBits;
 | |
|   }
 | |
|   *prob = (CLzmaProb)ttt;
 | |
|   if (p->range < kTopValue)
 | |
|   {
 | |
|     p->range <<= 8;
 | |
|     RangeEnc_ShiftLow(p);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void LitEnc_Encode(struct CRangeEnc *p, CLzmaProb *probs, uint32_t symbol)
 | |
| {
 | |
|   symbol |= 0x100;
 | |
|   do
 | |
|   {
 | |
|     RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
 | |
|     symbol <<= 1;
 | |
|   }
 | |
|   while (symbol < 0x10000);
 | |
| }
 | |
| 
 | |
| static void LitEnc_EncodeMatched(struct CRangeEnc *p, CLzmaProb *probs, uint32_t symbol, uint32_t matchuint8_t)
 | |
| {
 | |
|   uint32_t offs = 0x100;
 | |
|   symbol |= 0x100;
 | |
|   do
 | |
|   {
 | |
|     matchuint8_t <<= 1;
 | |
|     RangeEnc_EncodeBit(p, probs + (offs + (matchuint8_t & offs) + (symbol >> 8)), (symbol >> 7) & 1);
 | |
|     symbol <<= 1;
 | |
|     offs &= ~(matchuint8_t ^ symbol);
 | |
|   }
 | |
|   while (symbol < 0x10000);
 | |
| }
 | |
| 
 | |
| static void LzmaEnc_InitPriceTables(uint32_t *ProbPrices)
 | |
| {
 | |
|   uint32_t i;
 | |
|   for (i = (1 << kNumMoveReducingBits) / 2; i < kBitModelTotal; i += (1 << kNumMoveReducingBits))
 | |
|   {
 | |
|     const int kCyclesBits = kNumBitPriceShiftBits;
 | |
|     uint32_t w = i;
 | |
|     uint32_t bitCount = 0;
 | |
|     int j;
 | |
|     for (j = 0; j < kCyclesBits; j++)
 | |
|     {
 | |
|       w = w * w;
 | |
|       bitCount <<= 1;
 | |
|       while (w >= ((uint32_t)1 << 16))
 | |
|       {
 | |
|         w >>= 1;
 | |
|         bitCount++;
 | |
|       }
 | |
|     }
 | |
|     ProbPrices[i >> kNumMoveReducingBits] = ((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
 | |
|   }
 | |
| }
 | |
| 
 | |
| 
 | |
| #define GET_PRICE(prob, symbol) \
 | |
|   p->ProbPrices[((prob) ^ (((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
 | |
| 
 | |
| #define GET_PRICEa(prob, symbol) \
 | |
|   ProbPrices[((prob) ^ ((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
 | |
| 
 | |
| #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
 | |
| #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
 | |
| 
 | |
| #define GET_PRICE_0a(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
 | |
| #define GET_PRICE_1a(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
 | |
| 
 | |
| static uint32_t LitEnc_GetPrice(const CLzmaProb *probs, uint32_t symbol, uint32_t *ProbPrices)
 | |
| {
 | |
|   uint32_t price = 0;
 | |
|   symbol |= 0x100;
 | |
|   do
 | |
|   {
 | |
|     price += GET_PRICEa(probs[symbol >> 8], (symbol >> 7) & 1);
 | |
|     symbol <<= 1;
 | |
|   }
 | |
|   while (symbol < 0x10000);
 | |
|   return price;
 | |
| }
 | |
| 
 | |
| static uint32_t LitEnc_GetPriceMatched(const CLzmaProb *probs, uint32_t symbol, uint32_t matchuint8_t, uint32_t *ProbPrices)
 | |
| {
 | |
|   uint32_t price = 0;
 | |
|   uint32_t offs = 0x100;
 | |
|   symbol |= 0x100;
 | |
|   do
 | |
|   {
 | |
|     matchuint8_t <<= 1;
 | |
|     price += GET_PRICEa(probs[offs + (matchuint8_t & offs) + (symbol >> 8)], (symbol >> 7) & 1);
 | |
|     symbol <<= 1;
 | |
|     offs &= ~(matchuint8_t ^ symbol);
 | |
|   }
 | |
|   while (symbol < 0x10000);
 | |
|   return price;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void RcTree_Encode(struct CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, uint32_t symbol)
 | |
| {
 | |
|   uint32_t m = 1;
 | |
|   int i;
 | |
|   for (i = numBitLevels; i != 0;)
 | |
|   {
 | |
|     uint32_t bit;
 | |
|     i--;
 | |
|     bit = (symbol >> i) & 1;
 | |
|     RangeEnc_EncodeBit(rc, probs + m, bit);
 | |
|     m = (m << 1) | bit;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void RcTree_ReverseEncode(struct CRangeEnc *rc, CLzmaProb *probs, int numBitLevels, uint32_t symbol)
 | |
| {
 | |
|   uint32_t m = 1;
 | |
|   int i;
 | |
|   for (i = 0; i < numBitLevels; i++)
 | |
|   {
 | |
|     uint32_t bit = symbol & 1;
 | |
|     RangeEnc_EncodeBit(rc, probs + m, bit);
 | |
|     m = (m << 1) | bit;
 | |
|     symbol >>= 1;
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint32_t RcTree_GetPrice(const CLzmaProb *probs, int numBitLevels, uint32_t symbol, uint32_t *ProbPrices)
 | |
| {
 | |
|   uint32_t price = 0;
 | |
|   symbol |= (1 << numBitLevels);
 | |
|   while (symbol != 1)
 | |
|   {
 | |
|     price += GET_PRICEa(probs[symbol >> 1], symbol & 1);
 | |
|     symbol >>= 1;
 | |
|   }
 | |
|   return price;
 | |
| }
 | |
| 
 | |
| static uint32_t RcTree_ReverseGetPrice(const CLzmaProb *probs, int numBitLevels, uint32_t symbol, uint32_t *ProbPrices)
 | |
| {
 | |
|   uint32_t price = 0;
 | |
|   uint32_t m = 1;
 | |
|   int i;
 | |
|   for (i = numBitLevels; i != 0; i--)
 | |
|   {
 | |
|     uint32_t bit = symbol & 1;
 | |
|     symbol >>= 1;
 | |
|     price += GET_PRICEa(probs[m], bit);
 | |
|     m = (m << 1) | bit;
 | |
|   }
 | |
|   return price;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void LenEnc_Init(struct CLenEnc *p)
 | |
| {
 | |
|   unsigned i;
 | |
|   p->choice = p->choice2 = kProbInitValue;
 | |
|   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumLowBits); i++)
 | |
|     p->low[i] = kProbInitValue;
 | |
|   for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << kLenNumMidBits); i++)
 | |
|     p->mid[i] = kProbInitValue;
 | |
|   for (i = 0; i < kLenNumHighSymbols; i++)
 | |
|     p->high[i] = kProbInitValue;
 | |
| }
 | |
| 
 | |
| static void LenEnc_Encode(struct CLenEnc *p, struct CRangeEnc *rc, uint32_t symbol, uint32_t posState)
 | |
| {
 | |
|   if (symbol < kLenNumLowSymbols)
 | |
|   {
 | |
|     RangeEnc_EncodeBit(rc, &p->choice, 0);
 | |
|     RcTree_Encode(rc, p->low + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     RangeEnc_EncodeBit(rc, &p->choice, 1);
 | |
|     if (symbol < kLenNumLowSymbols + kLenNumMidSymbols)
 | |
|     {
 | |
|       RangeEnc_EncodeBit(rc, &p->choice2, 0);
 | |
|       RcTree_Encode(rc, p->mid + (posState << kLenNumMidBits), kLenNumMidBits, symbol - kLenNumLowSymbols);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       RangeEnc_EncodeBit(rc, &p->choice2, 1);
 | |
|       RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols - kLenNumMidSymbols);
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| static void LenEnc_SetPrices(struct CLenEnc *p, uint32_t posState, uint32_t numSymbols, uint32_t *prices, uint32_t *ProbPrices)
 | |
| {
 | |
|   uint32_t a0 = GET_PRICE_0a(p->choice);
 | |
|   uint32_t a1 = GET_PRICE_1a(p->choice);
 | |
|   uint32_t b0 = a1 + GET_PRICE_0a(p->choice2);
 | |
|   uint32_t b1 = a1 + GET_PRICE_1a(p->choice2);
 | |
|   uint32_t i = 0;
 | |
|   for (i = 0; i < kLenNumLowSymbols; i++)
 | |
|   {
 | |
|     if (i >= numSymbols)
 | |
|       return;
 | |
|     prices[i] = a0 + RcTree_GetPrice(p->low + (posState << kLenNumLowBits), kLenNumLowBits, i, ProbPrices);
 | |
|   }
 | |
|   for (; i < kLenNumLowSymbols + kLenNumMidSymbols; i++)
 | |
|   {
 | |
|     if (i >= numSymbols)
 | |
|       return;
 | |
|     prices[i] = b0 + RcTree_GetPrice(p->mid + (posState << kLenNumMidBits), kLenNumMidBits, i - kLenNumLowSymbols, ProbPrices);
 | |
|   }
 | |
|   for (; i < numSymbols; i++)
 | |
|     prices[i] = b1 + RcTree_GetPrice(p->high, kLenNumHighBits, i - kLenNumLowSymbols - kLenNumMidSymbols, ProbPrices);
 | |
| }
 | |
| 
 | |
| static void LenPriceEnc_UpdateTable(struct CLenPriceEnc *p, uint32_t posState, uint32_t *ProbPrices)
 | |
| {
 | |
|   LenEnc_SetPrices(&p->p, posState, p->tableSize, p->prices[posState], ProbPrices);
 | |
|   p->counters[posState] = p->tableSize;
 | |
| }
 | |
| 
 | |
| static void LenPriceEnc_UpdateTables(struct CLenPriceEnc *p, uint32_t numPosStates, uint32_t *ProbPrices)
 | |
| {
 | |
|   uint32_t posState;
 | |
|   for (posState = 0; posState < numPosStates; posState++)
 | |
|     LenPriceEnc_UpdateTable(p, posState, ProbPrices);
 | |
| }
 | |
| 
 | |
| static void LenEnc_Encode2(struct CLenPriceEnc *p, struct CRangeEnc *rc, uint32_t symbol, uint32_t posState, bool updatePrice, uint32_t *ProbPrices)
 | |
| {
 | |
|   LenEnc_Encode(&p->p, rc, symbol, posState);
 | |
|   if (updatePrice)
 | |
|     if (--p->counters[posState] == 0)
 | |
|       LenPriceEnc_UpdateTable(p, posState, ProbPrices);
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| static void MovePos(struct CLzmaEnc *p, uint32_t num)
 | |
| {
 | |
|   if (num != 0)
 | |
|   {
 | |
|     p->additionalOffset += num;
 | |
|     p->matchFinder.Skip(p->matchFinderObj, num);
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint32_t ReadMatchDistances(struct CLzmaEnc *p, uint32_t *numDistancePairsRes)
 | |
| {
 | |
|   uint32_t lenRes = 0, numPairs;
 | |
|   p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
 | |
|   numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
 | |
|   if (numPairs > 0)
 | |
|   {
 | |
|     lenRes = p->matches[numPairs - 2];
 | |
|     if (lenRes == p->numFastuint8_ts)
 | |
|     {
 | |
|       const uint8_t *pby = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 | |
|       uint32_t distance = p->matches[numPairs - 1] + 1;
 | |
|       uint32_t numAvail = p->numAvail;
 | |
|       if (numAvail > LZMA_MATCH_LEN_MAX)
 | |
|         numAvail = LZMA_MATCH_LEN_MAX;
 | |
|       {
 | |
|         const uint8_t *pby2 = pby - distance;
 | |
|         for (; lenRes < numAvail && pby[lenRes] == pby2[lenRes]; lenRes++);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   p->additionalOffset++;
 | |
|   *numDistancePairsRes = numPairs;
 | |
|   return lenRes;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define MakeAsChar(p) (p)->backPrev = (uint32_t)(-1); (p)->prev1IsChar = false;
 | |
| #define MakeAsShortRep(p) (p)->backPrev = 0; (p)->prev1IsChar = false;
 | |
| #define IsShortRep(p) ((p)->backPrev == 0)
 | |
| 
 | |
| static uint32_t GetRepLen1Price(struct CLzmaEnc *p, uint32_t state, uint32_t posState)
 | |
| {
 | |
|   return
 | |
|     GET_PRICE_0(p->isRepG0[state]) +
 | |
|     GET_PRICE_0(p->isRep0Long[state][posState]);
 | |
| }
 | |
| 
 | |
| static uint32_t GetPureRepPrice(struct CLzmaEnc *p, uint32_t repIndex, uint32_t state, uint32_t posState)
 | |
| {
 | |
|   uint32_t price;
 | |
|   if (repIndex == 0)
 | |
|   {
 | |
|     price = GET_PRICE_0(p->isRepG0[state]);
 | |
|     price += GET_PRICE_1(p->isRep0Long[state][posState]);
 | |
|   }
 | |
|   else
 | |
|   {
 | |
|     price = GET_PRICE_1(p->isRepG0[state]);
 | |
|     if (repIndex == 1)
 | |
|       price += GET_PRICE_0(p->isRepG1[state]);
 | |
|     else
 | |
|     {
 | |
|       price += GET_PRICE_1(p->isRepG1[state]);
 | |
|       price += GET_PRICE(p->isRepG2[state], repIndex - 2);
 | |
|     }
 | |
|   }
 | |
|   return price;
 | |
| }
 | |
| 
 | |
| static uint32_t GetRepPrice(struct CLzmaEnc *p, uint32_t repIndex, uint32_t len, uint32_t state, uint32_t posState)
 | |
| {
 | |
|   return p->repLenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN] +
 | |
|     GetPureRepPrice(p, repIndex, state, posState);
 | |
| }
 | |
| 
 | |
| static uint32_t Backward(struct CLzmaEnc *p, uint32_t *backRes, uint32_t cur)
 | |
| {
 | |
|   uint32_t posMem = p->opt[cur].posPrev;
 | |
|   uint32_t backMem = p->opt[cur].backPrev;
 | |
|   p->optimumEndIndex = cur;
 | |
|   do
 | |
|   {
 | |
|     if (p->opt[cur].prev1IsChar)
 | |
|     {
 | |
|       MakeAsChar(&p->opt[posMem])
 | |
|       p->opt[posMem].posPrev = posMem - 1;
 | |
|       if (p->opt[cur].prev2)
 | |
|       {
 | |
|         p->opt[posMem - 1].prev1IsChar = false;
 | |
|         p->opt[posMem - 1].posPrev = p->opt[cur].posPrev2;
 | |
|         p->opt[posMem - 1].backPrev = p->opt[cur].backPrev2;
 | |
|       }
 | |
|     }
 | |
|     {
 | |
|       uint32_t posPrev = posMem;
 | |
|       uint32_t backCur = backMem;
 | |
| 
 | |
|       backMem = p->opt[posPrev].backPrev;
 | |
|       posMem = p->opt[posPrev].posPrev;
 | |
| 
 | |
|       p->opt[posPrev].backPrev = backCur;
 | |
|       p->opt[posPrev].posPrev = cur;
 | |
|       cur = posPrev;
 | |
|     }
 | |
|   }
 | |
|   while (cur != 0);
 | |
|   *backRes = p->opt[0].backPrev;
 | |
|   p->optimumCurrentIndex  = p->opt[0].posPrev;
 | |
|   return p->optimumCurrentIndex;
 | |
| }
 | |
| 
 | |
| #define LIT_PROBS(pos, prevuint8_t) (p->litProbs + ((((pos) & p->lpMask) << p->lc) + ((prevuint8_t) >> (8 - p->lc))) * 0x300)
 | |
| 
 | |
| static uint32_t GetOptimum(struct CLzmaEnc *p, uint32_t position, uint32_t *backRes)
 | |
| {
 | |
|   uint32_t numAvail, mainLen, numPairs, repMaxIndex, i, posState, lenEnd, len, cur;
 | |
|   uint32_t matchPrice, repMatchPrice, normalMatchPrice;
 | |
|   uint32_t reps[LZMA_NUM_REPS], repLens[LZMA_NUM_REPS];
 | |
|   uint32_t *matches;
 | |
|   const uint8_t *data;
 | |
|   uint8_t curuint8_t, matchuint8_t;
 | |
|   if (p->optimumEndIndex != p->optimumCurrentIndex)
 | |
|   {
 | |
|     const struct COptimal *opt = &p->opt[p->optimumCurrentIndex];
 | |
|     uint32_t lenRes = opt->posPrev - p->optimumCurrentIndex;
 | |
|     *backRes = opt->backPrev;
 | |
|     p->optimumCurrentIndex = opt->posPrev;
 | |
|     return lenRes;
 | |
|   }
 | |
|   p->optimumCurrentIndex = p->optimumEndIndex = 0;
 | |
| 
 | |
|   if (p->additionalOffset == 0)
 | |
|     mainLen = ReadMatchDistances(p, &numPairs);
 | |
|   else
 | |
|   {
 | |
|     mainLen = p->longestMatchLength;
 | |
|     numPairs = p->numPairs;
 | |
|   }
 | |
| 
 | |
|   numAvail = p->numAvail;
 | |
|   if (numAvail < 2)
 | |
|   {
 | |
|     *backRes = (uint32_t)(-1);
 | |
|     return 1;
 | |
|   }
 | |
|   if (numAvail > LZMA_MATCH_LEN_MAX)
 | |
|     numAvail = LZMA_MATCH_LEN_MAX;
 | |
| 
 | |
|   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 | |
|   repMaxIndex = 0;
 | |
|   for (i = 0; i < LZMA_NUM_REPS; i++)
 | |
|   {
 | |
|     uint32_t lenTest;
 | |
|     const uint8_t *data2;
 | |
|     reps[i] = p->reps[i];
 | |
|     data2 = data - (reps[i] + 1);
 | |
|     if (data[0] != data2[0] || data[1] != data2[1])
 | |
|     {
 | |
|       repLens[i] = 0;
 | |
|       continue;
 | |
|     }
 | |
|     for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
 | |
|     repLens[i] = lenTest;
 | |
|     if (lenTest > repLens[repMaxIndex])
 | |
|       repMaxIndex = i;
 | |
|   }
 | |
|   if (repLens[repMaxIndex] >= p->numFastuint8_ts)
 | |
|   {
 | |
|     uint32_t lenRes;
 | |
|     *backRes = repMaxIndex;
 | |
|     lenRes = repLens[repMaxIndex];
 | |
|     MovePos(p, lenRes - 1);
 | |
|     return lenRes;
 | |
|   }
 | |
| 
 | |
|   matches = p->matches;
 | |
|   if (mainLen >= p->numFastuint8_ts)
 | |
|   {
 | |
|     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
 | |
|     MovePos(p, mainLen - 1);
 | |
|     return mainLen;
 | |
|   }
 | |
|   curuint8_t = *data;
 | |
|   matchuint8_t = *(data - (reps[0] + 1));
 | |
| 
 | |
|   if (mainLen < 2 && curuint8_t != matchuint8_t && repLens[repMaxIndex] < 2)
 | |
|   {
 | |
|     *backRes = (uint32_t)-1;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   p->opt[0].state = (CState)p->state;
 | |
| 
 | |
|   posState = (position & p->pbMask);
 | |
| 
 | |
|   {
 | |
|     const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
 | |
|     p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
 | |
|         (!IsCharState(p->state) ?
 | |
|           LitEnc_GetPriceMatched(probs, curuint8_t, matchuint8_t, p->ProbPrices) :
 | |
|           LitEnc_GetPrice(probs, curuint8_t, p->ProbPrices));
 | |
|   }
 | |
| 
 | |
|   MakeAsChar(&p->opt[1]);
 | |
| 
 | |
|   matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
 | |
|   repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
 | |
| 
 | |
|   if (matchuint8_t == curuint8_t)
 | |
|   {
 | |
|     uint32_t shortRepPrice = repMatchPrice + GetRepLen1Price(p, p->state, posState);
 | |
|     if (shortRepPrice < p->opt[1].price)
 | |
|     {
 | |
|       p->opt[1].price = shortRepPrice;
 | |
|       MakeAsShortRep(&p->opt[1]);
 | |
|     }
 | |
|   }
 | |
|   lenEnd = ((mainLen >= repLens[repMaxIndex]) ? mainLen : repLens[repMaxIndex]);
 | |
| 
 | |
|   if (lenEnd < 2)
 | |
|   {
 | |
|     *backRes = p->opt[1].backPrev;
 | |
|     return 1;
 | |
|   }
 | |
| 
 | |
|   p->opt[1].posPrev = 0;
 | |
|   for (i = 0; i < LZMA_NUM_REPS; i++)
 | |
|     p->opt[0].backs[i] = reps[i];
 | |
| 
 | |
|   len = lenEnd;
 | |
|   do
 | |
|     p->opt[len--].price = kInfinityPrice;
 | |
|   while (len >= 2);
 | |
| 
 | |
|   for (i = 0; i < LZMA_NUM_REPS; i++)
 | |
|   {
 | |
|     uint32_t repLen = repLens[i];
 | |
|     uint32_t price;
 | |
|     if (repLen < 2)
 | |
|       continue;
 | |
|     price = repMatchPrice + GetPureRepPrice(p, i, p->state, posState);
 | |
|     do
 | |
|     {
 | |
|       uint32_t curAndLenPrice = price + p->repLenEnc.prices[posState][repLen - 2];
 | |
|       struct COptimal *opt = &p->opt[repLen];
 | |
|       if (curAndLenPrice < opt->price)
 | |
|       {
 | |
|         opt->price = curAndLenPrice;
 | |
|         opt->posPrev = 0;
 | |
|         opt->backPrev = i;
 | |
|         opt->prev1IsChar = false;
 | |
|       }
 | |
|     }
 | |
|     while (--repLen >= 2);
 | |
|   }
 | |
| 
 | |
|   normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
 | |
| 
 | |
|   len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
 | |
|   if (len <= mainLen)
 | |
|   {
 | |
|     uint32_t offs = 0;
 | |
|     while (len > matches[offs])
 | |
|       offs += 2;
 | |
|     for (; ; len++)
 | |
|     {
 | |
|       struct COptimal *opt;
 | |
|       uint32_t distance = matches[offs + 1];
 | |
| 
 | |
|       uint32_t curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][len - LZMA_MATCH_LEN_MIN];
 | |
|       uint32_t lenToPosState = GetLenToPosState(len);
 | |
|       if (distance < kNumFullDistances)
 | |
|         curAndLenPrice += p->distancesPrices[lenToPosState][distance];
 | |
|       else
 | |
|       {
 | |
|         uint32_t slot;
 | |
|         GetPosSlot2(distance, slot);
 | |
|         curAndLenPrice += p->alignPrices[distance & kAlignMask] + p->posSlotPrices[lenToPosState][slot];
 | |
|       }
 | |
|       opt = &p->opt[len];
 | |
|       if (curAndLenPrice < opt->price)
 | |
|       {
 | |
|         opt->price = curAndLenPrice;
 | |
|         opt->posPrev = 0;
 | |
|         opt->backPrev = distance + LZMA_NUM_REPS;
 | |
|         opt->prev1IsChar = false;
 | |
|       }
 | |
|       if (len == matches[offs])
 | |
|       {
 | |
|         offs += 2;
 | |
|         if (offs == numPairs)
 | |
|           break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   cur = 0;
 | |
| 
 | |
|   for (;;)
 | |
|   {
 | |
|     uint32_t numAvailFull, newLen, posPrev, state, startLen;
 | |
|     uint32_t curPrice, curAnd1Price;
 | |
|     bool nextIsChar;
 | |
|     struct COptimal *curOpt;
 | |
|     struct COptimal *nextOpt;
 | |
| 
 | |
|     cur++;
 | |
|     if (cur == lenEnd)
 | |
|       return Backward(p, backRes, cur);
 | |
| 
 | |
|     newLen = ReadMatchDistances(p, &numPairs);
 | |
|     if (newLen >= p->numFastuint8_ts)
 | |
|     {
 | |
|       p->numPairs = numPairs;
 | |
|       p->longestMatchLength = newLen;
 | |
|       return Backward(p, backRes, cur);
 | |
|     }
 | |
|     position++;
 | |
|     curOpt = &p->opt[cur];
 | |
|     posPrev = curOpt->posPrev;
 | |
|     if (curOpt->prev1IsChar)
 | |
|     {
 | |
|       posPrev--;
 | |
|       if (curOpt->prev2)
 | |
|       {
 | |
|         state = p->opt[curOpt->posPrev2].state;
 | |
|         if (curOpt->backPrev2 < LZMA_NUM_REPS)
 | |
|           state = kRepNextStates[state];
 | |
|         else
 | |
|           state = kMatchNextStates[state];
 | |
|       }
 | |
|       else
 | |
|         state = p->opt[posPrev].state;
 | |
|       state = kLiteralNextStates[state];
 | |
|     }
 | |
|     else
 | |
|       state = p->opt[posPrev].state;
 | |
|     if (posPrev == cur - 1)
 | |
|     {
 | |
|       if (IsShortRep(curOpt))
 | |
|         state = kShortRepNextStates[state];
 | |
|       else
 | |
|         state = kLiteralNextStates[state];
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       uint32_t pos;
 | |
|       const struct COptimal *prevOpt;
 | |
|       if (curOpt->prev1IsChar && curOpt->prev2)
 | |
|       {
 | |
|         posPrev = curOpt->posPrev2;
 | |
|         pos = curOpt->backPrev2;
 | |
|         state = kRepNextStates[state];
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         pos = curOpt->backPrev;
 | |
|         if (pos < LZMA_NUM_REPS)
 | |
|           state = kRepNextStates[state];
 | |
|         else
 | |
|           state = kMatchNextStates[state];
 | |
|       }
 | |
|       prevOpt = &p->opt[posPrev];
 | |
|       if (pos < LZMA_NUM_REPS)
 | |
|       {
 | |
|         reps[0] = prevOpt->backs[pos];
 | |
|         for (i = 1; i <= pos; i++)
 | |
|           reps[i] = prevOpt->backs[i - 1];
 | |
|         for (; i < LZMA_NUM_REPS; i++)
 | |
|           reps[i] = prevOpt->backs[i];
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         reps[0] = (pos - LZMA_NUM_REPS);
 | |
|         for (i = 1; i < LZMA_NUM_REPS; i++)
 | |
|           reps[i] = prevOpt->backs[i - 1];
 | |
|       }
 | |
|     }
 | |
|     curOpt->state = (CState)state;
 | |
| 
 | |
|     curOpt->backs[0] = reps[0];
 | |
|     curOpt->backs[1] = reps[1];
 | |
|     curOpt->backs[2] = reps[2];
 | |
|     curOpt->backs[3] = reps[3];
 | |
| 
 | |
|     curPrice = curOpt->price;
 | |
|     nextIsChar = false;
 | |
|     data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 | |
|     curuint8_t = *data;
 | |
|     matchuint8_t = *(data - (reps[0] + 1));
 | |
| 
 | |
|     posState = (position & p->pbMask);
 | |
| 
 | |
|     curAnd1Price = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
 | |
|     {
 | |
|       const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
 | |
|       curAnd1Price +=
 | |
|         (!IsCharState(state) ?
 | |
|           LitEnc_GetPriceMatched(probs, curuint8_t, matchuint8_t, p->ProbPrices) :
 | |
|           LitEnc_GetPrice(probs, curuint8_t, p->ProbPrices));
 | |
|     }
 | |
| 
 | |
|     nextOpt = &p->opt[cur + 1];
 | |
| 
 | |
|     if (curAnd1Price < nextOpt->price)
 | |
|     {
 | |
|       nextOpt->price = curAnd1Price;
 | |
|       nextOpt->posPrev = cur;
 | |
|       MakeAsChar(nextOpt);
 | |
|       nextIsChar = true;
 | |
|     }
 | |
| 
 | |
|     matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
 | |
|     repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
 | |
| 
 | |
|     if (matchuint8_t == curuint8_t && !(nextOpt->posPrev < cur && nextOpt->backPrev == 0))
 | |
|     {
 | |
|       uint32_t shortRepPrice = repMatchPrice + GetRepLen1Price(p, state, posState);
 | |
|       if (shortRepPrice <= nextOpt->price)
 | |
|       {
 | |
|         nextOpt->price = shortRepPrice;
 | |
|         nextOpt->posPrev = cur;
 | |
|         MakeAsShortRep(nextOpt);
 | |
|         nextIsChar = true;
 | |
|       }
 | |
|     }
 | |
|     numAvailFull = p->numAvail;
 | |
|     {
 | |
|       uint32_t temp = kNumOpts - 1 - cur;
 | |
|       if (temp < numAvailFull)
 | |
|         numAvailFull = temp;
 | |
|     }
 | |
| 
 | |
|     if (numAvailFull < 2)
 | |
|       continue;
 | |
|     numAvail = (numAvailFull <= p->numFastuint8_ts ? numAvailFull : p->numFastuint8_ts);
 | |
| 
 | |
|     if (!nextIsChar && matchuint8_t != curuint8_t) /* speed optimization */
 | |
|     {
 | |
|       /* try Literal + rep0 */
 | |
|       uint32_t temp;
 | |
|       uint32_t lenTest2;
 | |
|       const uint8_t *data2 = data - (reps[0] + 1);
 | |
|       uint32_t limit = p->numFastuint8_ts + 1;
 | |
|       if (limit > numAvailFull)
 | |
|         limit = numAvailFull;
 | |
| 
 | |
|       for (temp = 1; temp < limit && data[temp] == data2[temp]; temp++);
 | |
|       lenTest2 = temp - 1;
 | |
|       if (lenTest2 >= 2)
 | |
|       {
 | |
|         uint32_t state2 = kLiteralNextStates[state];
 | |
|         uint32_t posStateNext = (position + 1) & p->pbMask;
 | |
|         uint32_t nextRepMatchPrice = curAnd1Price +
 | |
|             GET_PRICE_1(p->isMatch[state2][posStateNext]) +
 | |
|             GET_PRICE_1(p->isRep[state2]);
 | |
|         /* for (; lenTest2 >= 2; lenTest2--) */
 | |
|         {
 | |
|           uint32_t curAndLenPrice;
 | |
|           struct COptimal *opt;
 | |
|           uint32_t offset = cur + 1 + lenTest2;
 | |
|           while (lenEnd < offset)
 | |
|             p->opt[++lenEnd].price = kInfinityPrice;
 | |
|           curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
 | |
|           opt = &p->opt[offset];
 | |
|           if (curAndLenPrice < opt->price)
 | |
|           {
 | |
|             opt->price = curAndLenPrice;
 | |
|             opt->posPrev = cur + 1;
 | |
|             opt->backPrev = 0;
 | |
|             opt->prev1IsChar = true;
 | |
|             opt->prev2 = false;
 | |
|           }
 | |
|         }
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     startLen = 2; /* speed optimization */
 | |
|     {
 | |
|     uint32_t repIndex;
 | |
|     for (repIndex = 0; repIndex < LZMA_NUM_REPS; repIndex++)
 | |
|     {
 | |
|       uint32_t lenTest;
 | |
|       uint32_t lenTestTemp;
 | |
|       uint32_t price;
 | |
|       const uint8_t *data2 = data - (reps[repIndex] + 1);
 | |
|       if (data[0] != data2[0] || data[1] != data2[1])
 | |
|         continue;
 | |
|       for (lenTest = 2; lenTest < numAvail && data[lenTest] == data2[lenTest]; lenTest++);
 | |
|       while (lenEnd < cur + lenTest)
 | |
|         p->opt[++lenEnd].price = kInfinityPrice;
 | |
|       lenTestTemp = lenTest;
 | |
|       price = repMatchPrice + GetPureRepPrice(p, repIndex, state, posState);
 | |
|       do
 | |
|       {
 | |
|         uint32_t curAndLenPrice = price + p->repLenEnc.prices[posState][lenTest - 2];
 | |
|         struct COptimal *opt = &p->opt[cur + lenTest];
 | |
|         if (curAndLenPrice < opt->price)
 | |
|         {
 | |
|           opt->price = curAndLenPrice;
 | |
|           opt->posPrev = cur;
 | |
|           opt->backPrev = repIndex;
 | |
|           opt->prev1IsChar = false;
 | |
|         }
 | |
|       }
 | |
|       while (--lenTest >= 2);
 | |
|       lenTest = lenTestTemp;
 | |
| 
 | |
|       if (repIndex == 0)
 | |
|         startLen = lenTest + 1;
 | |
| 
 | |
|       /* if (_maxMode) */
 | |
|       {
 | |
|           uint32_t lenTest2 = lenTest + 1;
 | |
|           uint32_t limit = lenTest2 + p->numFastuint8_ts;
 | |
|           uint32_t nextRepMatchPrice;
 | |
|           if (limit > numAvailFull)
 | |
|             limit = numAvailFull;
 | |
|           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
 | |
|           lenTest2 -= lenTest + 1;
 | |
|           if (lenTest2 >= 2)
 | |
|           {
 | |
|             uint32_t state2 = kRepNextStates[state];
 | |
|             uint32_t posStateNext = (position + lenTest) & p->pbMask;
 | |
|             uint32_t curAndLenCharPrice =
 | |
|                 price + p->repLenEnc.prices[posState][lenTest - 2] +
 | |
|                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
 | |
|                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
 | |
|                     data[lenTest], data2[lenTest], p->ProbPrices);
 | |
|             state2 = kLiteralNextStates[state2];
 | |
|             posStateNext = (position + lenTest + 1) & p->pbMask;
 | |
|             nextRepMatchPrice = curAndLenCharPrice +
 | |
|                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
 | |
|                 GET_PRICE_1(p->isRep[state2]);
 | |
| 
 | |
|             /* for (; lenTest2 >= 2; lenTest2--) */
 | |
|             {
 | |
|               uint32_t curAndLenPrice;
 | |
|               struct COptimal *opt;
 | |
|               uint32_t offset = cur + lenTest + 1 + lenTest2;
 | |
|               while (lenEnd < offset)
 | |
|                 p->opt[++lenEnd].price = kInfinityPrice;
 | |
|               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
 | |
|               opt = &p->opt[offset];
 | |
|               if (curAndLenPrice < opt->price)
 | |
|               {
 | |
|                 opt->price = curAndLenPrice;
 | |
|                 opt->posPrev = cur + lenTest + 1;
 | |
|                 opt->backPrev = 0;
 | |
|                 opt->prev1IsChar = true;
 | |
|                 opt->prev2 = true;
 | |
|                 opt->posPrev2 = cur;
 | |
|                 opt->backPrev2 = repIndex;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|       }
 | |
|     }
 | |
|     }
 | |
|     /* for (uint32_t lenTest = 2; lenTest <= newLen; lenTest++) */
 | |
|     if (newLen > numAvail)
 | |
|     {
 | |
|       newLen = numAvail;
 | |
|       for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
 | |
|       matches[numPairs] = newLen;
 | |
|       numPairs += 2;
 | |
|     }
 | |
|     if (newLen >= startLen)
 | |
|     {
 | |
|       uint32_t offs, curBack, posSlot;
 | |
|       uint32_t lenTest;
 | |
| 
 | |
|       normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
 | |
| 
 | |
|       while (lenEnd < cur + newLen)
 | |
|         p->opt[++lenEnd].price = kInfinityPrice;
 | |
| 
 | |
|       offs = 0;
 | |
|       while (startLen > matches[offs])
 | |
|         offs += 2;
 | |
|       curBack = matches[offs + 1];
 | |
|       GetPosSlot2(curBack, posSlot);
 | |
|       for (lenTest = /*2*/ startLen; ; lenTest++)
 | |
|       {
 | |
|         uint32_t curAndLenPrice = normalMatchPrice + p->lenEnc.prices[posState][lenTest - LZMA_MATCH_LEN_MIN];
 | |
|         uint32_t lenToPosState = GetLenToPosState(lenTest);
 | |
|         struct COptimal *opt;
 | |
|         if (curBack < kNumFullDistances)
 | |
|           curAndLenPrice += p->distancesPrices[lenToPosState][curBack];
 | |
|         else
 | |
|           curAndLenPrice += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[curBack & kAlignMask];
 | |
| 
 | |
|         opt = &p->opt[cur + lenTest];
 | |
|         if (curAndLenPrice < opt->price)
 | |
|         {
 | |
|           opt->price = curAndLenPrice;
 | |
|           opt->posPrev = cur;
 | |
|           opt->backPrev = curBack + LZMA_NUM_REPS;
 | |
|           opt->prev1IsChar = false;
 | |
|         }
 | |
| 
 | |
|         if (/*_maxMode && */lenTest == matches[offs])
 | |
|         {
 | |
|           /* Try Match + Literal + Rep0 */
 | |
|           const uint8_t *data2 = data - (curBack + 1);
 | |
|           uint32_t lenTest2 = lenTest + 1;
 | |
|           uint32_t limit = lenTest2 + p->numFastuint8_ts;
 | |
|           uint32_t nextRepMatchPrice;
 | |
|           if (limit > numAvailFull)
 | |
|             limit = numAvailFull;
 | |
|           for (; lenTest2 < limit && data[lenTest2] == data2[lenTest2]; lenTest2++);
 | |
|           lenTest2 -= lenTest + 1;
 | |
|           if (lenTest2 >= 2)
 | |
|           {
 | |
|             uint32_t state2 = kMatchNextStates[state];
 | |
|             uint32_t posStateNext = (position + lenTest) & p->pbMask;
 | |
|             uint32_t curAndLenCharPrice = curAndLenPrice +
 | |
|                 GET_PRICE_0(p->isMatch[state2][posStateNext]) +
 | |
|                 LitEnc_GetPriceMatched(LIT_PROBS(position + lenTest, data[lenTest - 1]),
 | |
|                     data[lenTest], data2[lenTest], p->ProbPrices);
 | |
|             state2 = kLiteralNextStates[state2];
 | |
|             posStateNext = (posStateNext + 1) & p->pbMask;
 | |
|             nextRepMatchPrice = curAndLenCharPrice +
 | |
|                 GET_PRICE_1(p->isMatch[state2][posStateNext]) +
 | |
|                 GET_PRICE_1(p->isRep[state2]);
 | |
| 
 | |
|             /* for (; lenTest2 >= 2; lenTest2--) */
 | |
|             {
 | |
|               uint32_t offset = cur + lenTest + 1 + lenTest2;
 | |
|               while (lenEnd < offset)
 | |
|                 p->opt[++lenEnd].price = kInfinityPrice;
 | |
|               curAndLenPrice = nextRepMatchPrice + GetRepPrice(p, 0, lenTest2, state2, posStateNext);
 | |
|               opt = &p->opt[offset];
 | |
|               if (curAndLenPrice < opt->price)
 | |
|               {
 | |
|                 opt->price = curAndLenPrice;
 | |
|                 opt->posPrev = cur + lenTest + 1;
 | |
|                 opt->backPrev = 0;
 | |
|                 opt->prev1IsChar = true;
 | |
|                 opt->prev2 = true;
 | |
|                 opt->posPrev2 = cur;
 | |
|                 opt->backPrev2 = curBack + LZMA_NUM_REPS;
 | |
|               }
 | |
|             }
 | |
|           }
 | |
|           offs += 2;
 | |
|           if (offs == numPairs)
 | |
|             break;
 | |
|           curBack = matches[offs + 1];
 | |
|           if (curBack >= kNumFullDistances)
 | |
|             GetPosSlot2(curBack, posSlot);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
 | |
| 
 | |
| static uint32_t GetOptimumFast(struct CLzmaEnc *p, uint32_t *backRes)
 | |
| {
 | |
|   uint32_t numAvail, mainLen, mainDist, numPairs, repIndex, repLen, i;
 | |
|   const uint8_t *data;
 | |
|   const uint32_t *matches;
 | |
| 
 | |
|   if (p->additionalOffset == 0)
 | |
|     mainLen = ReadMatchDistances(p, &numPairs);
 | |
|   else
 | |
|   {
 | |
|     mainLen = p->longestMatchLength;
 | |
|     numPairs = p->numPairs;
 | |
|   }
 | |
| 
 | |
|   numAvail = p->numAvail;
 | |
|   *backRes = (uint32_t)-1;
 | |
|   if (numAvail < 2)
 | |
|     return 1;
 | |
|   if (numAvail > LZMA_MATCH_LEN_MAX)
 | |
|     numAvail = LZMA_MATCH_LEN_MAX;
 | |
|   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 | |
| 
 | |
|   repLen = repIndex = 0;
 | |
|   for (i = 0; i < LZMA_NUM_REPS; i++)
 | |
|   {
 | |
|     uint32_t len;
 | |
|     const uint8_t *data2 = data - (p->reps[i] + 1);
 | |
|     if (data[0] != data2[0] || data[1] != data2[1])
 | |
|       continue;
 | |
|     for (len = 2; len < numAvail && data[len] == data2[len]; len++);
 | |
|     if (len >= p->numFastuint8_ts)
 | |
|     {
 | |
|       *backRes = i;
 | |
|       MovePos(p, len - 1);
 | |
|       return len;
 | |
|     }
 | |
|     if (len > repLen)
 | |
|     {
 | |
|       repIndex = i;
 | |
|       repLen = len;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   matches = p->matches;
 | |
|   if (mainLen >= p->numFastuint8_ts)
 | |
|   {
 | |
|     *backRes = matches[numPairs - 1] + LZMA_NUM_REPS;
 | |
|     MovePos(p, mainLen - 1);
 | |
|     return mainLen;
 | |
|   }
 | |
| 
 | |
|   mainDist = 0; /* for GCC */
 | |
|   if (mainLen >= 2)
 | |
|   {
 | |
|     mainDist = matches[numPairs - 1];
 | |
|     while (numPairs > 2 && mainLen == matches[numPairs - 4] + 1)
 | |
|     {
 | |
|       if (!ChangePair(matches[numPairs - 3], mainDist))
 | |
|         break;
 | |
|       numPairs -= 2;
 | |
|       mainLen = matches[numPairs - 2];
 | |
|       mainDist = matches[numPairs - 1];
 | |
|     }
 | |
|     if (mainLen == 2 && mainDist >= 0x80)
 | |
|       mainLen = 1;
 | |
|   }
 | |
| 
 | |
|   if (repLen >= 2 && (
 | |
|         (repLen + 1 >= mainLen) ||
 | |
|         (repLen + 2 >= mainLen && mainDist >= (1 << 9)) ||
 | |
|         (repLen + 3 >= mainLen && mainDist >= (1 << 15))))
 | |
|   {
 | |
|     *backRes = repIndex;
 | |
|     MovePos(p, repLen - 1);
 | |
|     return repLen;
 | |
|   }
 | |
| 
 | |
|   if (mainLen < 2 || numAvail <= 2)
 | |
|     return 1;
 | |
| 
 | |
|   p->longestMatchLength = ReadMatchDistances(p, &p->numPairs);
 | |
|   if (p->longestMatchLength >= 2)
 | |
|   {
 | |
|     uint32_t newDistance = matches[p->numPairs - 1];
 | |
|     if ((p->longestMatchLength >= mainLen && newDistance < mainDist) ||
 | |
|         (p->longestMatchLength == mainLen + 1 && !ChangePair(mainDist, newDistance)) ||
 | |
|         (p->longestMatchLength > mainLen + 1) ||
 | |
|         (p->longestMatchLength + 1 >= mainLen && mainLen >= 3 && ChangePair(newDistance, mainDist)))
 | |
|       return 1;
 | |
|   }
 | |
| 
 | |
|   data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
 | |
|   for (i = 0; i < LZMA_NUM_REPS; i++)
 | |
|   {
 | |
|     uint32_t len, limit;
 | |
|     const uint8_t *data2 = data - (p->reps[i] + 1);
 | |
|     if (data[0] != data2[0] || data[1] != data2[1])
 | |
|       continue;
 | |
|     limit = mainLen - 1;
 | |
|     for (len = 2; len < limit && data[len] == data2[len]; len++);
 | |
|     if (len >= limit)
 | |
|       return 1;
 | |
|   }
 | |
|   *backRes = mainDist + LZMA_NUM_REPS;
 | |
|   MovePos(p, mainLen - 2);
 | |
|   return mainLen;
 | |
| }
 | |
| 
 | |
| static void WriteEndMarker(struct CLzmaEnc *p, uint32_t posState)
 | |
| {
 | |
|   uint32_t len;
 | |
|   RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
 | |
|   RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
 | |
|   p->state = kMatchNextStates[p->state];
 | |
|   len = LZMA_MATCH_LEN_MIN;
 | |
|   LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
 | |
|   RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, (1 << kNumPosSlotBits) - 1);
 | |
|   RangeEnc_EncodeDirectBits(&p->rc, (((uint32_t)1 << 30) - 1) >> kNumAlignBits, 30 - kNumAlignBits);
 | |
|   RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
 | |
| }
 | |
| 
 | |
| static SRes CheckErrors(struct CLzmaEnc *p)
 | |
| {
 | |
|   if (p->result != SZ_OK)
 | |
|     return p->result;
 | |
|   if (p->rc.res != SZ_OK)
 | |
|     p->result = SZ_ERROR_WRITE;
 | |
|   if (p->matchFinderBase.result != SZ_OK)
 | |
|     p->result = SZ_ERROR_READ;
 | |
|   if (p->result != SZ_OK)
 | |
|     p->finished = true;
 | |
|   return p->result;
 | |
| }
 | |
| 
 | |
| static SRes Flush(struct CLzmaEnc *p, uint32_t nowPos)
 | |
| {
 | |
|   /* ReleaseMFStream(); */
 | |
|   p->finished = true;
 | |
|   if (p->writeEndMark)
 | |
|     WriteEndMarker(p, nowPos & p->pbMask);
 | |
|   RangeEnc_FlushData(&p->rc);
 | |
|   RangeEnc_FlushStream(&p->rc);
 | |
|   return CheckErrors(p);
 | |
| }
 | |
| 
 | |
| static void FillAlignPrices(struct CLzmaEnc *p)
 | |
| {
 | |
|   uint32_t i;
 | |
|   for (i = 0; i < kAlignTableSize; i++)
 | |
|     p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
 | |
|   p->alignPriceCount = 0;
 | |
| }
 | |
| 
 | |
| static void FillDistancesPrices(struct CLzmaEnc *p)
 | |
| {
 | |
|   uint32_t tempPrices[kNumFullDistances];
 | |
|   uint32_t i, lenToPosState;
 | |
|   for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
 | |
|   {
 | |
|     uint32_t posSlot = GetPosSlot1(i);
 | |
|     uint32_t footerBits = ((posSlot >> 1) - 1);
 | |
|     uint32_t base = ((2 | (posSlot & 1)) << footerBits);
 | |
|     tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base - posSlot - 1, footerBits, i - base, p->ProbPrices);
 | |
|   }
 | |
| 
 | |
|   for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
 | |
|   {
 | |
|     uint32_t posSlot;
 | |
|     const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
 | |
|     uint32_t *posSlotPrices = p->posSlotPrices[lenToPosState];
 | |
|     for (posSlot = 0; posSlot < p->distTableSize; posSlot++)
 | |
|       posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
 | |
|     for (posSlot = kEndPosModelIndex; posSlot < p->distTableSize; posSlot++)
 | |
|       posSlotPrices[posSlot] += ((((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
 | |
| 
 | |
|     {
 | |
|       uint32_t *distancesPrices = p->distancesPrices[lenToPosState];
 | |
|       for (i = 0; i < kStartPosModelIndex; i++)
 | |
|         distancesPrices[i] = posSlotPrices[i];
 | |
|       for (; i < kNumFullDistances; i++)
 | |
|         distancesPrices[i] = posSlotPrices[GetPosSlot1(i)] + tempPrices[i];
 | |
|     }
 | |
|   }
 | |
|   p->matchPriceCount = 0;
 | |
| }
 | |
| 
 | |
| static void LzmaEnc_Construct(struct CLzmaEnc *p)
 | |
| {
 | |
|   RangeEnc_Construct(&p->rc);
 | |
|   MatchFinder_Construct(&p->matchFinderBase);
 | |
| 
 | |
|   {
 | |
|     struct CLzmaEncProps props;
 | |
|     LzmaEncProps_Init(&props);
 | |
|     LzmaEnc_SetProps(p, &props);
 | |
|   }
 | |
| 
 | |
|   #ifndef LZMA_LOG_BSR
 | |
|   LzmaEnc_FastPosInit(p->g_FastPos);
 | |
|   #endif
 | |
| 
 | |
|   LzmaEnc_InitPriceTables(p->ProbPrices);
 | |
|   p->litProbs = 0;
 | |
|   p->saveState.litProbs = 0;
 | |
| }
 | |
| 
 | |
| CLzmaEncHandle LzmaEnc_Create(struct ISzAlloc *alloc)
 | |
| {
 | |
|   void *p;
 | |
|   p = alloc->Alloc(alloc, sizeof(struct CLzmaEnc));
 | |
|   if (p != 0)
 | |
|     LzmaEnc_Construct((struct CLzmaEnc *)p);
 | |
|   return p;
 | |
| }
 | |
| 
 | |
| static void LzmaEnc_FreeLits(struct CLzmaEnc *p, struct ISzAlloc *alloc)
 | |
| {
 | |
|   alloc->Free(alloc, p->litProbs);
 | |
|   alloc->Free(alloc, p->saveState.litProbs);
 | |
|   p->litProbs = 0;
 | |
|   p->saveState.litProbs = 0;
 | |
| }
 | |
| 
 | |
| static void LzmaEnc_Destruct(struct CLzmaEnc *p, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   MatchFinder_Free(&p->matchFinderBase, allocBig);
 | |
|   LzmaEnc_FreeLits(p, alloc);
 | |
|   RangeEnc_Free(&p->rc, alloc);
 | |
| }
 | |
| 
 | |
| void LzmaEnc_Destroy(CLzmaEncHandle p, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   LzmaEnc_Destruct((struct CLzmaEnc *)p, alloc, allocBig);
 | |
|   alloc->Free(alloc, p);
 | |
| }
 | |
| 
 | |
| static SRes LzmaEnc_CodeOneBlock(struct CLzmaEnc *p, bool useLimits, uint32_t maxPackSize, uint32_t maxUnpackSize)
 | |
| {
 | |
|   uint32_t nowPos32, startPos32;
 | |
|   if (p->needInit)
 | |
|   {
 | |
|     p->matchFinder.Init(p->matchFinderObj);
 | |
|     p->needInit = 0;
 | |
|   }
 | |
| 
 | |
|   if (p->finished)
 | |
|     return p->result;
 | |
|   RINOK(CheckErrors(p));
 | |
| 
 | |
|   nowPos32 = (uint32_t)p->nowPos64;
 | |
|   startPos32 = nowPos32;
 | |
| 
 | |
|   if (p->nowPos64 == 0)
 | |
|   {
 | |
|     uint32_t numPairs;
 | |
|     uint8_t curuint8_t;
 | |
|     if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
 | |
|       return Flush(p, nowPos32);
 | |
|     ReadMatchDistances(p, &numPairs);
 | |
|     RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][0], 0);
 | |
|     p->state = kLiteralNextStates[p->state];
 | |
|     curuint8_t = p->matchFinder.GetIndexByte(p->matchFinderObj, 0 - p->additionalOffset);
 | |
|     LitEnc_Encode(&p->rc, p->litProbs, curuint8_t);
 | |
|     p->additionalOffset--;
 | |
|     nowPos32++;
 | |
|   }
 | |
| 
 | |
|   if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
 | |
|   for (;;)
 | |
|   {
 | |
|     uint32_t pos, len, posState;
 | |
| 
 | |
|     if (p->fastMode)
 | |
|       len = GetOptimumFast(p, &pos);
 | |
|     else
 | |
|       len = GetOptimum(p, nowPos32, &pos);
 | |
| 
 | |
|     posState = nowPos32 & p->pbMask;
 | |
|     if (len == 1 && pos == (uint32_t)-1)
 | |
|     {
 | |
|       uint8_t curuint8_t;
 | |
|       CLzmaProb *probs;
 | |
|       const uint8_t *data;
 | |
| 
 | |
|       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 0);
 | |
|       data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
 | |
|       curuint8_t = *data;
 | |
|       probs = LIT_PROBS(nowPos32, *(data - 1));
 | |
|       if (IsCharState(p->state))
 | |
|         LitEnc_Encode(&p->rc, probs, curuint8_t);
 | |
|       else
 | |
|         LitEnc_EncodeMatched(&p->rc, probs, curuint8_t, *(data - p->reps[0] - 1));
 | |
|       p->state = kLiteralNextStates[p->state];
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|       RangeEnc_EncodeBit(&p->rc, &p->isMatch[p->state][posState], 1);
 | |
|       if (pos < LZMA_NUM_REPS)
 | |
|       {
 | |
|         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 1);
 | |
|         if (pos == 0)
 | |
|         {
 | |
|           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 0);
 | |
|           RangeEnc_EncodeBit(&p->rc, &p->isRep0Long[p->state][posState], ((len == 1) ? 0 : 1));
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|           uint32_t distance = p->reps[pos];
 | |
|           RangeEnc_EncodeBit(&p->rc, &p->isRepG0[p->state], 1);
 | |
|           if (pos == 1)
 | |
|             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 0);
 | |
|           else
 | |
|           {
 | |
|             RangeEnc_EncodeBit(&p->rc, &p->isRepG1[p->state], 1);
 | |
|             RangeEnc_EncodeBit(&p->rc, &p->isRepG2[p->state], pos - 2);
 | |
|             if (pos == 3)
 | |
|               p->reps[3] = p->reps[2];
 | |
|             p->reps[2] = p->reps[1];
 | |
|           }
 | |
|           p->reps[1] = p->reps[0];
 | |
|           p->reps[0] = distance;
 | |
|         }
 | |
|         if (len == 1)
 | |
|           p->state = kShortRepNextStates[p->state];
 | |
|         else
 | |
|         {
 | |
|           LenEnc_Encode2(&p->repLenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
 | |
|           p->state = kRepNextStates[p->state];
 | |
|         }
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|         uint32_t posSlot;
 | |
|         RangeEnc_EncodeBit(&p->rc, &p->isRep[p->state], 0);
 | |
|         p->state = kMatchNextStates[p->state];
 | |
|         LenEnc_Encode2(&p->lenEnc, &p->rc, len - LZMA_MATCH_LEN_MIN, posState, !p->fastMode, p->ProbPrices);
 | |
|         pos -= LZMA_NUM_REPS;
 | |
|         GetPosSlot(pos, posSlot);
 | |
|         RcTree_Encode(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], kNumPosSlotBits, posSlot);
 | |
| 
 | |
|         if (posSlot >= kStartPosModelIndex)
 | |
|         {
 | |
|           uint32_t footerBits = ((posSlot >> 1) - 1);
 | |
|           uint32_t base = ((2 | (posSlot & 1)) << footerBits);
 | |
|           uint32_t posReduced = pos - base;
 | |
| 
 | |
|           if (posSlot < kEndPosModelIndex)
 | |
|             RcTree_ReverseEncode(&p->rc, p->posEncoders + base - posSlot - 1, footerBits, posReduced);
 | |
|           else
 | |
|           {
 | |
|             RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
 | |
|             RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
 | |
|             p->alignPriceCount++;
 | |
|           }
 | |
|         }
 | |
|         p->reps[3] = p->reps[2];
 | |
|         p->reps[2] = p->reps[1];
 | |
|         p->reps[1] = p->reps[0];
 | |
|         p->reps[0] = pos;
 | |
|         p->matchPriceCount++;
 | |
|       }
 | |
|     }
 | |
|     p->additionalOffset -= len;
 | |
|     nowPos32 += len;
 | |
|     if (p->additionalOffset == 0)
 | |
|     {
 | |
|       uint32_t processed;
 | |
|       if (!p->fastMode)
 | |
|       {
 | |
|         if (p->matchPriceCount >= (1 << 7))
 | |
|           FillDistancesPrices(p);
 | |
|         if (p->alignPriceCount >= kAlignTableSize)
 | |
|           FillAlignPrices(p);
 | |
|       }
 | |
|       if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
 | |
|         break;
 | |
|       processed = nowPos32 - startPos32;
 | |
|       if (useLimits)
 | |
|       {
 | |
|         if (processed + kNumOpts + 300 >= maxUnpackSize ||
 | |
|             RangeEnc_GetProcessed(&p->rc) + kNumOpts * 2 >= maxPackSize)
 | |
|           break;
 | |
|       }
 | |
|       else if (processed >= (1 << 15))
 | |
|       {
 | |
|         p->nowPos64 += nowPos32 - startPos32;
 | |
|         return CheckErrors(p);
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   p->nowPos64 += nowPos32 - startPos32;
 | |
|   return Flush(p, nowPos32);
 | |
| }
 | |
| 
 | |
| #define kBigHashDicLimit ((uint32_t)1 << 24)
 | |
| 
 | |
| static SRes LzmaEnc_Alloc(struct CLzmaEnc *p, uint32_t keepWindowSize, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   uint32_t beforeSize = kNumOpts;
 | |
|   if (!RangeEnc_Alloc(&p->rc, alloc))
 | |
|     return SZ_ERROR_MEM;
 | |
| 
 | |
|   {
 | |
|     unsigned lclp = p->lc + p->lp;
 | |
|     if (p->litProbs == 0 || p->saveState.litProbs == 0 || p->lclp != lclp)
 | |
|     {
 | |
|       LzmaEnc_FreeLits(p, alloc);
 | |
|       p->litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
 | |
|       p->saveState.litProbs = (CLzmaProb *)alloc->Alloc(alloc, (0x300 << lclp) * sizeof(CLzmaProb));
 | |
|       if (p->litProbs == 0 || p->saveState.litProbs == 0)
 | |
|       {
 | |
|         LzmaEnc_FreeLits(p, alloc);
 | |
|         return SZ_ERROR_MEM;
 | |
|       }
 | |
|       p->lclp = lclp;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   p->matchFinderBase.bigHash = (p->dictSize > kBigHashDicLimit);
 | |
| 
 | |
|   if (beforeSize + p->dictSize < keepWindowSize)
 | |
|     beforeSize = keepWindowSize - p->dictSize;
 | |
| 
 | |
|   {
 | |
|     if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastuint8_ts, LZMA_MATCH_LEN_MAX, allocBig))
 | |
|       return SZ_ERROR_MEM;
 | |
|     p->matchFinderObj = &p->matchFinderBase;
 | |
|     MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
 | |
|   }
 | |
|   return SZ_OK;
 | |
| }
 | |
| 
 | |
| static void LzmaEnc_Init(struct CLzmaEnc *p)
 | |
| {
 | |
|   uint32_t i;
 | |
|   p->state = 0;
 | |
|   for (i = 0 ; i < LZMA_NUM_REPS; i++)
 | |
|     p->reps[i] = 0;
 | |
| 
 | |
|   RangeEnc_Init(&p->rc);
 | |
| 
 | |
| 
 | |
|   for (i = 0; i < kNumStates; i++)
 | |
|   {
 | |
|     uint32_t j;
 | |
|     for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
 | |
|     {
 | |
|       p->isMatch[i][j] = kProbInitValue;
 | |
|       p->isRep0Long[i][j] = kProbInitValue;
 | |
|     }
 | |
|     p->isRep[i] = kProbInitValue;
 | |
|     p->isRepG0[i] = kProbInitValue;
 | |
|     p->isRepG1[i] = kProbInitValue;
 | |
|     p->isRepG2[i] = kProbInitValue;
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     uint32_t num = 0x300 << (p->lp + p->lc);
 | |
|     for (i = 0; i < num; i++)
 | |
|       p->litProbs[i] = kProbInitValue;
 | |
|   }
 | |
| 
 | |
|   {
 | |
|     for (i = 0; i < kNumLenToPosStates; i++)
 | |
|     {
 | |
|       CLzmaProb *probs = p->posSlotEncoder[i];
 | |
|       uint32_t j;
 | |
|       for (j = 0; j < (1 << kNumPosSlotBits); j++)
 | |
|         probs[j] = kProbInitValue;
 | |
|     }
 | |
|   }
 | |
|   {
 | |
|     for (i = 0; i < kNumFullDistances - kEndPosModelIndex; i++)
 | |
|       p->posEncoders[i] = kProbInitValue;
 | |
|   }
 | |
| 
 | |
|   LenEnc_Init(&p->lenEnc.p);
 | |
|   LenEnc_Init(&p->repLenEnc.p);
 | |
| 
 | |
|   for (i = 0; i < (1 << kNumAlignBits); i++)
 | |
|     p->posAlignEncoder[i] = kProbInitValue;
 | |
| 
 | |
|   p->optimumEndIndex = 0;
 | |
|   p->optimumCurrentIndex = 0;
 | |
|   p->additionalOffset = 0;
 | |
| 
 | |
|   p->pbMask = (1 << p->pb) - 1;
 | |
|   p->lpMask = (1 << p->lp) - 1;
 | |
| }
 | |
| 
 | |
| static void LzmaEnc_InitPrices(struct CLzmaEnc *p)
 | |
| {
 | |
|   if (!p->fastMode)
 | |
|   {
 | |
|     FillDistancesPrices(p);
 | |
|     FillAlignPrices(p);
 | |
|   }
 | |
| 
 | |
|   p->lenEnc.tableSize =
 | |
|   p->repLenEnc.tableSize =
 | |
|       p->numFastuint8_ts + 1 - LZMA_MATCH_LEN_MIN;
 | |
|   LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, p->ProbPrices);
 | |
|   LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, p->ProbPrices);
 | |
| }
 | |
| 
 | |
| static SRes LzmaEnc_AllocAndInit(struct CLzmaEnc *p, uint32_t keepWindowSize, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   uint32_t i;
 | |
|   for (i = 0; i < (uint32_t)kDicLogSizeMaxCompress; i++)
 | |
|     if (p->dictSize <= ((uint32_t)1 << i))
 | |
|       break;
 | |
|   p->distTableSize = i * 2;
 | |
| 
 | |
|   p->finished = false;
 | |
|   p->result = SZ_OK;
 | |
|   RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
 | |
|   LzmaEnc_Init(p);
 | |
|   LzmaEnc_InitPrices(p);
 | |
|   p->nowPos64 = 0;
 | |
|   return SZ_OK;
 | |
| }
 | |
| 
 | |
| static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, struct ISeqOutStream *outStream, struct ISeqInStream *inStream,
 | |
|     struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
 | |
|   p->matchFinderBase.stream = inStream;
 | |
|   p->needInit = 1;
 | |
|   p->rc.outStream = outStream;
 | |
|   return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
 | |
| }
 | |
| 
 | |
| /*static SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
 | |
|     ISeqInStream *inStream, uint32_t keepWindowSize,
 | |
|     ISzAlloc *alloc, ISzAlloc *allocBig)
 | |
| {
 | |
|   CLzmaEnc *p = (CLzmaEnc *)pp;
 | |
|   p->matchFinderBase.stream = inStream;
 | |
|   p->needInit = 1;
 | |
|   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
 | |
| }*/
 | |
| 
 | |
| static void LzmaEnc_SetInputBuf(struct CLzmaEnc *p, const uint8_t *src, size_t srcLen)
 | |
| {
 | |
|   p->matchFinderBase.directInput = 1;
 | |
|   p->matchFinderBase.bufferBase = (uint8_t *)src;
 | |
|   p->matchFinderBase.directInputRem = srcLen;
 | |
| }
 | |
| 
 | |
| static SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const uint8_t *src, size_t srcLen,
 | |
|     uint32_t keepWindowSize, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
 | |
|   LzmaEnc_SetInputBuf(p, src, srcLen);
 | |
|   p->needInit = 1;
 | |
| 
 | |
|   return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
 | |
| }
 | |
| 
 | |
| static void LzmaEnc_Finish(CLzmaEncHandle pp)
 | |
| {
 | |
|   (void)pp;
 | |
| }
 | |
| 
 | |
| struct CSeqOutStreamBuf
 | |
| {
 | |
|   struct ISeqOutStream funcTable;
 | |
|   uint8_t *data;
 | |
|   size_t rem;
 | |
|   bool overflow;
 | |
| };
 | |
| 
 | |
| static size_t MyWrite(void *pp, const void *data, size_t size)
 | |
| {
 | |
|   struct CSeqOutStreamBuf *p = (struct CSeqOutStreamBuf *)pp;
 | |
|   if (p->rem < size)
 | |
|   {
 | |
|     size = p->rem;
 | |
|     p->overflow = true;
 | |
|   }
 | |
|   memcpy(p->data, data, size);
 | |
|   p->rem -= size;
 | |
|   p->data += size;
 | |
|   return size;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*static uint32_t LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
 | |
| {
 | |
|   const CLzmaEnc *p = (CLzmaEnc *)pp;
 | |
|   return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
 | |
| }*/
 | |
| 
 | |
| /*static const uint8_t *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
 | |
| {
 | |
|   const CLzmaEnc *p = (CLzmaEnc *)pp;
 | |
|   return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
 | |
| }*/
 | |
| 
 | |
| /*static SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, bool reInit,
 | |
|     uint8_t *dest, size_t *destLen, uint32_t desiredPackSize, uint32_t *unpackSize)
 | |
| {
 | |
|   CLzmaEnc *p = (CLzmaEnc *)pp;
 | |
|   uint64_t nowPos64;
 | |
|   SRes res;
 | |
|   CSeqOutStreamBuf outStream;
 | |
| 
 | |
|   outStream.funcTable.Write = MyWrite;
 | |
|   outStream.data = dest;
 | |
|   outStream.rem = *destLen;
 | |
|   outStream.overflow = false;
 | |
| 
 | |
|   p->writeEndMark = false;
 | |
|   p->finished = false;
 | |
|   p->result = SZ_OK;
 | |
| 
 | |
|   if (reInit)
 | |
|     LzmaEnc_Init(p);
 | |
|   LzmaEnc_InitPrices(p);
 | |
|   nowPos64 = p->nowPos64;
 | |
|   RangeEnc_Init(&p->rc);
 | |
|   p->rc.outStream = &outStream.funcTable;
 | |
| 
 | |
|   res = LzmaEnc_CodeOneBlock(p, true, desiredPackSize, *unpackSize);
 | |
| 
 | |
|   *unpackSize = (uint32_t)(p->nowPos64 - nowPos64);
 | |
|   *destLen -= outStream.rem;
 | |
|   if (outStream.overflow)
 | |
|     return SZ_ERROR_OUTPUT_EOF;
 | |
| 
 | |
|   return res;
 | |
| }*/
 | |
| 
 | |
| static SRes LzmaEnc_Encode2(struct CLzmaEnc *p, struct ICompressProgress *progress)
 | |
| {
 | |
|   SRes res = SZ_OK;
 | |
| 
 | |
|   for (;;)
 | |
|   {
 | |
|     res = LzmaEnc_CodeOneBlock(p, false, 0, 0);
 | |
|     if (res != SZ_OK || p->finished != 0)
 | |
|       break;
 | |
|     if (progress != 0)
 | |
|     {
 | |
|       res = progress->Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
 | |
|       if (res != SZ_OK)
 | |
|       {
 | |
|         res = SZ_ERROR_PROGRESS;
 | |
|         break;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
|   LzmaEnc_Finish(p);
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| SRes LzmaEnc_Encode(CLzmaEncHandle pp, struct ISeqOutStream *outStream, struct ISeqInStream *inStream, struct ICompressProgress *progress,
 | |
|     struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
 | |
|   return LzmaEnc_Encode2((struct CLzmaEnc *)pp, progress);
 | |
| }
 | |
| 
 | |
| SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, uint8_t *props, size_t *size)
 | |
| {
 | |
|   struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
 | |
|   int i;
 | |
|   uint32_t dictSize = p->dictSize;
 | |
|   if (*size < LZMA_PROPS_SIZE)
 | |
|     return SZ_ERROR_PARAM;
 | |
|   *size = LZMA_PROPS_SIZE;
 | |
|   props[0] = (uint8_t)((p->pb * 5 + p->lp) * 9 + p->lc);
 | |
| 
 | |
|   for (i = 11; i <= 30; i++)
 | |
|   {
 | |
|     if (dictSize <= ((uint32_t)2 << i))
 | |
|     {
 | |
|       dictSize = (2 << i);
 | |
|       break;
 | |
|     }
 | |
|     if (dictSize <= ((uint32_t)3 << i))
 | |
|     {
 | |
|       dictSize = (3 << i);
 | |
|       break;
 | |
|     }
 | |
|   }
 | |
| 
 | |
|   for (i = 0; i < 4; i++)
 | |
|     props[1 + i] = (uint8_t)(dictSize >> (8 * i));
 | |
|   return SZ_OK;
 | |
| }
 | |
| 
 | |
| SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, uint8_t *dest, size_t *destLen, const uint8_t *src, size_t srcLen,
 | |
| 		       int writeEndMark, struct ICompressProgress *progress, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   SRes res;
 | |
|   struct CLzmaEnc *p = (struct CLzmaEnc *)pp;
 | |
| 
 | |
|   struct CSeqOutStreamBuf outStream;
 | |
| 
 | |
|   LzmaEnc_SetInputBuf(p, src, srcLen);
 | |
| 
 | |
|   outStream.funcTable.Write = MyWrite;
 | |
|   outStream.data = dest;
 | |
|   outStream.rem = *destLen;
 | |
|   outStream.overflow = false;
 | |
| 
 | |
|   p->writeEndMark = writeEndMark;
 | |
| 
 | |
|   p->rc.outStream = &outStream.funcTable;
 | |
|   res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
 | |
|   if (res == SZ_OK)
 | |
|     res = LzmaEnc_Encode2(p, progress);
 | |
| 
 | |
|   *destLen -= outStream.rem;
 | |
|   if (outStream.overflow)
 | |
|     return SZ_ERROR_OUTPUT_EOF;
 | |
|   return res;
 | |
| }
 | |
| 
 | |
| SRes LzmaEncode(uint8_t *dest, size_t *destLen, const uint8_t *src, size_t srcLen,
 | |
|     const struct CLzmaEncProps *props, uint8_t *propsEncoded, size_t *propsSize, int writeEndMark,
 | |
|     struct ICompressProgress *progress, struct ISzAlloc *alloc, struct ISzAlloc *allocBig)
 | |
| {
 | |
|   struct CLzmaEnc *p = (struct CLzmaEnc *)LzmaEnc_Create(alloc);
 | |
|   SRes res;
 | |
|   if (p == 0)
 | |
|     return SZ_ERROR_MEM;
 | |
| 
 | |
|   res = LzmaEnc_SetProps(p, props);
 | |
|   if (res == SZ_OK)
 | |
|   {
 | |
|     res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
 | |
|     if (res == SZ_OK)
 | |
|       res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
 | |
|           writeEndMark, progress, alloc, allocBig);
 | |
|   }
 | |
| 
 | |
|   LzmaEnc_Destroy(p, alloc, allocBig);
 | |
|   return res;
 | |
| }
 |