git-svn-id: svn://svn.coreboot.org/coreboot/trunk@1772 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
1595 lines
42 KiB
C
1595 lines
42 KiB
C
/* This was originally for the e7500, modified for i855pm
|
|
*/
|
|
|
|
/* the 855pm uses only
|
|
* memory type (must be ddr)
|
|
* number of row addresses, not counting bank addresses
|
|
* number of column addresses
|
|
* number of so-dimm banks
|
|
* ecc, no ecc
|
|
* refresh rate/type
|
|
* number banks on each device
|
|
*
|
|
* that's it. No other bytes are used.
|
|
* these are bytes
|
|
* 2, 3, 4, 5, 11, 12 17
|
|
*/
|
|
|
|
/* converted to C 6/2004 yhlu */
|
|
|
|
#define DEBUG_RAM_CONFIG 1
|
|
#undef ASM_CONSOLE_LOGLEVEL
|
|
#define ASM_CONSOLE_LOGLEVEL 9
|
|
#define dumpnorth() dump_pci_device(PCI_DEV(0, 0, 1))
|
|
|
|
/* DDR DIMM Mode register Definitions */
|
|
|
|
#define BURST_2 (1<<0)
|
|
#define BURST_4 (2<<0)
|
|
#define BURST_8 (3<<0)
|
|
|
|
#define BURST_SEQUENTIAL (0<<3)
|
|
#define BURST_INTERLEAVED (1<<3)
|
|
|
|
#define CAS_2_0 (0x2<<4)
|
|
#define CAS_3_0 (0x3<<4)
|
|
#define CAS_1_5 (0x5<<4)
|
|
#define CAS_2_5 (0x6<<4)
|
|
|
|
#define MODE_NORM (0 << 7)
|
|
#define MODE_DLL_RESET (2 << 7)
|
|
#define MODE_TEST (1 << 7)
|
|
|
|
#define BURST_LENGTH BURST_4
|
|
#define BURST_TYPE BURST_INTERLEAVED
|
|
#define CAS_LATENCY CAS_2_0
|
|
/*#define CAS_LATENCY CAS_2_5*/
|
|
/*#define CAS_LATENCY CAS_1_5*/
|
|
|
|
/* WOW! this could be bad! sets casl to 2 without checking! */
|
|
#define MRS_VALUE (MODE_NORM | CAS_LATENCY | BURST_TYPE | BURST_LENGTH)
|
|
#define EMRS_VALUE 0x000
|
|
|
|
#define MD_SHIFT 4
|
|
|
|
#define RAM_COMMAND_NONE 0x0
|
|
#define RAM_COMMAND_NOP 0x1
|
|
#define RAM_COMMAND_PRECHARGE 0x2
|
|
#define RAM_COMMAND_MRS 0x3
|
|
#define RAM_COMMAND_EMRS 0x4
|
|
#define RAM_COMMAND_CBR 0x6
|
|
#define RAM_COMMAND_NORMAL 0x7
|
|
|
|
|
|
static inline void do_ram_command (const struct mem_controller *ctrl, uint32_t value) {
|
|
uint32_t dword;
|
|
uint8_t byte;
|
|
int i;
|
|
uint32_t result;
|
|
#if DEBUG_RAM_CONFIG >=2
|
|
print_debug("P:");
|
|
print_debug_hex8(value);
|
|
print_debug("\r\n");
|
|
#endif
|
|
/* %ecx - initial address to read from */
|
|
/* Compute the offset */
|
|
dword = value >> 16;
|
|
/* for(i=0;i<4;i++) {*/
|
|
for(i=0;i<1;i++) {
|
|
/* Set the ram command */
|
|
byte = pci_read_config8(ctrl->d0, 0x70);
|
|
byte &= 0x8f;
|
|
byte |= (uint8_t)(value & 0xff);
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("R:");
|
|
print_debug_hex8(byte);
|
|
print_debug("\r\n");
|
|
#endif
|
|
|
|
pci_write_config8(ctrl->d0, 0x70, byte);
|
|
|
|
/* Assert the command to the memory */
|
|
#if DEBUG_RAM_CONFIG >= 2
|
|
print_debug("R:");
|
|
print_debug_hex32(dword);
|
|
print_debug("\r\n");
|
|
#endif
|
|
|
|
result = read32(dword);
|
|
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("Done\r\n");
|
|
#endif
|
|
/* Go to the next base address */
|
|
dword += 0x0200000;
|
|
|
|
}
|
|
|
|
/* The command has been sent to all dimms so get out */
|
|
}
|
|
|
|
static inline void RAM_CMD(const struct mem_controller *ctrl, uint32_t command, uint32_t offset) {
|
|
uint32_t value = ((offset) << (MD_SHIFT + 16))|((command << 4) & 0x70) ;
|
|
do_ram_command(ctrl, value);
|
|
}
|
|
|
|
#define RAM_NOP(ctrl) RAM_CMD(ctrl, RAM_COMMAND_NOP, 0)
|
|
#define RAM_PRECHARGE(ctrl) RAM_CMD(ctrl, RAM_COMMAND_PRECHARGE, 0)
|
|
#define RAM_CBR(ctrl) RAM_CMD(ctrl, RAM_COMMAND_CBR, 0)
|
|
#define RAM_EMRS(ctrl) RAM_CMD(ctrl, RAM_COMMAND_EMRS, EMRS_VALUE)
|
|
|
|
static const uint8_t ram_cas_latency[] = {
|
|
CAS_2_5, CAS_2_0, CAS_1_5, CAS_2_5
|
|
};
|
|
|
|
static inline void ram_mrs(const struct mem_controller *ctrl, uint32_t value){
|
|
/* Read the cas latency setting */
|
|
uint8_t byte;
|
|
uint32_t dword;
|
|
byte = pci_read_config8(ctrl->d0, 0x60);
|
|
/* Transform it into the form expected by SDRAM */
|
|
dword = ram_cas_latency[(byte>>5) & 1];
|
|
#warning RAM_MRS -- using BROKEN hard-wired CAS 2.0. FIX ME SOON
|
|
/*
|
|
*/
|
|
value |= (dword<<(16+MD_SHIFT));
|
|
|
|
value |= (MODE_NORM | BURST_TYPE | BURST_LENGTH) << (16+MD_SHIFT);
|
|
|
|
do_ram_command(ctrl, value);
|
|
}
|
|
|
|
#define RAM_MRS(ctrl, dll_reset) ram_mrs( ctrl, (dll_reset << (8+MD_SHIFT+ 16)) | ((RAM_COMMAND_MRS <<4)& 0x70) )
|
|
|
|
static void RAM_NORMAL(const struct mem_controller *ctrl) {
|
|
uint8_t byte;
|
|
byte = pci_read_config8(ctrl->d0, 0x70);
|
|
byte &= 0x8f;
|
|
byte |= (RAM_COMMAND_NORMAL << 4);
|
|
pci_write_config8(ctrl->d0, 0x70, byte);
|
|
}
|
|
|
|
static void RAM_RESET_DDR_PTR(const struct mem_controller *ctrl) {
|
|
uint8_t byte;
|
|
byte = pci_read_config8(ctrl->d0, 0x88);
|
|
byte |= (1 << 4 );
|
|
pci_write_config8(ctrl->d0, 0x88, byte);
|
|
byte = pci_read_config8(ctrl->d0, 0x88);
|
|
byte &= ~(1 << 4);
|
|
pci_write_config8(ctrl->d0, 0x88, byte);
|
|
}
|
|
|
|
static void ENABLE_REFRESH(const struct mem_controller *ctrl)
|
|
{
|
|
uint32_t dword;
|
|
dword = pci_read_config32(ctrl->d0, 0x70);
|
|
dword |= (1 << 29);
|
|
pci_write_config32(ctrl->d0, 0x70, dword);
|
|
}
|
|
|
|
/*
|
|
* Table: constant_register_values
|
|
*/
|
|
static const long register_values[] = {
|
|
/* DRB - DRAM Row Boundary Registers
|
|
* 0x60 - 0x63
|
|
* An array of 8 byte registers, which hold the ending
|
|
* memory address assigned to each pair of DIMMS, in 32MB
|
|
* granularity.
|
|
*/
|
|
/* Conservatively say each row has 32MB of ram, we will fix this up later */
|
|
0x40, 0x00000000, (0x01 << 0) | (0x02 << 8) | (0x03 << 16) | (0x04 << 24),
|
|
/* DRA - DRAM Row Attribute Register
|
|
* 0x70 Row 0,1
|
|
* 0x71 Row 2,3
|
|
* [2:0] Row Attributes for both rows
|
|
* 001 == 2KB
|
|
* 010 == 4KB
|
|
* 011 == 8KB
|
|
* 100 == 16KB
|
|
* Others == Reserved
|
|
*/
|
|
/* leave it alone for now -- seems bad to set it at all
|
|
0x70, 0x00000000,
|
|
(((0<<3)|(0<<0))<< 0) |
|
|
(((0<<3)|(0<<0))<< 4) |
|
|
(((0<<3)|(0<<0))<< 8) |
|
|
(((0<<3)|(0<<0))<<12) |
|
|
(((0<<3)|(0<<0))<<16) |
|
|
(((0<<3)|(0<<0))<<20) |
|
|
(((0<<3)|(0<<0))<<24) |
|
|
(((0<<3)|(0<<0))<<28),
|
|
*/
|
|
/* DRT - DRAM Time Register
|
|
* 0x60
|
|
* [31:31] tWTR -- MBZ
|
|
* [30:30] tWR 0 is 2, 1 is 3 clocks
|
|
* [29:28] back to back write-read commands spacing
|
|
* different rows
|
|
* 00 4, 01 3, 10 2, 11 reserved
|
|
*
|
|
* [27:26] same or different
|
|
* CL + .5x BL + TA(RD-WR) - DQSS
|
|
* wow that's hard!
|
|
* 00 7, 01 6, 10 5, 11 4
|
|
* 00 4, 01 3, 10 2, 11 reserved
|
|
*
|
|
* [25:25] Back to Back Read-read spacing
|
|
* .5xBL + TA(RD-RD)
|
|
* 0 4 , 1 3
|
|
*
|
|
* [24:15] Reserved
|
|
*
|
|
* [14:12] Refresh cycle time
|
|
* 000 14, 001 13, 010 12, 011 11, 100 10, 101 9, 110 8, 111 7
|
|
*
|
|
* [11:11] tRAS, max
|
|
* 0 120 us, 1 reserved
|
|
*
|
|
* [10:09] Active to Precharge (tRAS)
|
|
* 00 == 8 clocks
|
|
* 01 == 7 clocks
|
|
* 10 == 6 clocks
|
|
* 11 == 5 clocks
|
|
* [08:07] Reserved
|
|
* [06:05] Cas Latency (tCL)
|
|
* 00 == 2.5 Clocks
|
|
* 01 == 2.0 Clocks (default)
|
|
* 10 == Reserved
|
|
* 11 == Reserved
|
|
* [04:04] Reserved
|
|
* [03:02] Ras# to Cas# Delay (tRCD)
|
|
* 00 == 4 DRAM Clocks
|
|
* 01 == 3 DRAM Clocks
|
|
* 10 == 2 DRAM Clocks
|
|
* 11 == reserved
|
|
* [01:00] DRAM RAS# to Precharge (tRP)
|
|
* 00 == 4 DRAM Clocks
|
|
* 01 == 3 DRAM Clocks
|
|
* 10 == 2 DRAM Clocks
|
|
* 11 == reserved
|
|
*/
|
|
|
|
#define DRT_CAS_2_5 (0<<5)
|
|
#define DRT_CAS_2_0 (1<<5)
|
|
#define DRT_CAS_MASK (3<<5)
|
|
|
|
#if CAS_LATENCY == CAS_2_5
|
|
#define DRT_CL DRT_CAS_2_5
|
|
#elif CAS_LATENCY == CAS_2_0
|
|
#define DRT_CL DRT_CAS_2_0
|
|
#endif
|
|
|
|
/* bios is 0x2a004425 */
|
|
/* default hardware is 18004425 */
|
|
/* no setting for now */
|
|
|
|
/* FDHC - Fixed DRAM Hole Control
|
|
* 0x97
|
|
* [7:7] Hole_Enable
|
|
* 0 == No memory Hole
|
|
* 1 == Memory Hole from 15MB to 16MB
|
|
* [6:0] Reserved
|
|
*
|
|
* PAM - Programmable Attribute Map
|
|
* 0x90 [3:0] Reserved
|
|
* 0x90 [5:4] 0xF0000 - 0xFFFFF
|
|
* 0x91 [1:0] 0xC0000 - 0xC3FFF
|
|
* 0x91 [5:4] 0xC4000 - 0xC7FFF
|
|
* 0x92 [1:0] 0xC8000 - 0xCBFFF
|
|
* 0x92 [5:4] 0xCC000 - 0xCFFFF
|
|
* 0x93 [1:0] 0xD0000 - 0xD3FFF
|
|
* 0x93 [5:4] 0xD4000 - 0xD7FFF
|
|
* 0x94 [1:0] 0xD8000 - 0xDBFFF
|
|
* 0x94 [5:4] 0xDC000 - 0xDFFFF
|
|
* 0x95 [1:0] 0xE0000 - 0xE3FFF
|
|
* 0x95 [5:4] 0xE4000 - 0xE7FFF
|
|
* 0x96 [1:0] 0xE8000 - 0xEBFFF
|
|
* 0x96 [5:4] 0xEC000 - 0xEFFFF
|
|
* 00 == DRAM Disabled (All Access go to memory mapped I/O space)
|
|
* 01 == Read Only (Reads to DRAM, Writes to memory mapped I/O space)
|
|
* 10 == Write Only (Writes to DRAM, Reads to memory mapped I/O space)
|
|
* 11 == Normal (All Access go to DRAM)
|
|
*/
|
|
/* 0x90, 0xcccccf7f, (0x00 << 0) | (0x30 << 8) | (0x33 << 16) | (0x33 << 24),*/
|
|
/*0x94, 0xcccccccc, (0x33 << 0) | (0x33 << 8) | (0x33 << 16) | (0x33 << 24),*/
|
|
|
|
|
|
/* FIXME why was I attempting to set a reserved bit? */
|
|
/* 0x0100040f */
|
|
|
|
/* DRC - DRAM Contoller Mode Register
|
|
* 0x7c
|
|
* [31:30] Rev #
|
|
* [29:29] Initialization Complete
|
|
* 0 == Not Complete
|
|
* 1 == Complete
|
|
* [28:27] Dynamic Power Down Enable (leave at 0 for now)
|
|
* [27:24] Reserved
|
|
* [23:23] Reduced Comamnd Drive Delay (leave at 0 for now)
|
|
* [22:22] Reduced Command Drive Enable (leave at 0 for now)
|
|
* [21:21] DRAM Data Integrity Mode
|
|
* 0 == Disabled, no ECC
|
|
* 1 == Error checking, with correction
|
|
* [20:20] Reserved
|
|
* [19:18] Reserved
|
|
* Must equal 00
|
|
* [17:17] (Intel Undocumented) should always be set to
|
|
* [16:16] Disable SCK Tri-state in C3/S1-m
|
|
* 0 == 2n Rule
|
|
* 1 == 1n rule
|
|
* [15:14] Reserved
|
|
* [13:13] Dynamic CS Disable
|
|
* [12:12] SM Interface Tristate enable
|
|
* [11:11] Reserved
|
|
* [10:08] Refresh mode select
|
|
* 000 == Refresh disabled
|
|
* 001 == Refresh interval 15.6 usec
|
|
* 010 == Refresh interval 7.8 usec
|
|
* 011 == Refresh interval 64 usec
|
|
* 111 == Reserved
|
|
* [07:07] Reserved
|
|
* [06:04] Mode Select (SMS)
|
|
* 000 == Self Refresh Mode
|
|
* 001 == NOP Command
|
|
* 010 == All Banks Precharge
|
|
* 011 == Mode Register Set
|
|
* 100 == Extended Mode Register Set
|
|
* 101 == Reserved
|
|
* 110 == CBR Refresh
|
|
* 111 == Normal Operation
|
|
* [03:01] Reserved
|
|
* [00:00] DRAM type --hardwired to 1 to indicate DDR
|
|
*/
|
|
0x70, 0xdf0f6c7f, 0,
|
|
/* undocumnted shit */
|
|
0x80, 0, 0xaf0031,
|
|
|
|
};
|
|
|
|
|
|
/*
|
|
* Routine: ram_set_registers
|
|
* Arguments: none
|
|
* Results: none
|
|
* Trashed: %eax, %ebx, %ecx, %edx, %esi, %eflags
|
|
* Effects: Do basic ram setup that does not depend on serial
|
|
* presence detect information.
|
|
* This sets PCI configuration registers to known good
|
|
* values based on the table:
|
|
* constant_register_values
|
|
* Which are a triple of configuration regiser, mask, and value.
|
|
*
|
|
*/
|
|
|
|
static void write_8dwords(uint32_t src_addr, uint32_t dst_addr) {
|
|
int i;
|
|
uint32_t dword;
|
|
for(i=0;i<8;i++) {
|
|
dword = read32(src_addr);
|
|
write32(dst_addr, dword);
|
|
src_addr+=4;
|
|
dst_addr+=4;
|
|
|
|
}
|
|
}
|
|
|
|
/*#define SLOW_DOWN_IO inb(0x80);*/
|
|
#define SLOW_DOWN_IO udelay(40);
|
|
|
|
|
|
static void ram_set_d0f0_regs(const struct mem_controller *ctrl) {
|
|
#if DEBUG_RAM_CONFIG
|
|
dumpnorth();
|
|
#endif
|
|
int i;
|
|
int max;
|
|
max = sizeof(register_values)/sizeof(register_values[0]);
|
|
for(i = 0; i < max; i += 3) {
|
|
uint32_t reg;
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug_hex32(register_values[i]);
|
|
print_debug(" <-");
|
|
print_debug_hex32(register_values[i+2]);
|
|
print_debug("\r\n");
|
|
#endif
|
|
reg = pci_read_config32(ctrl->d0,register_values[i]);
|
|
reg &= register_values[i+1];
|
|
reg |= register_values[i+2] & ~(register_values[i+1]);
|
|
pci_write_config32(ctrl->d0,register_values[i], reg);
|
|
|
|
|
|
}
|
|
#if DEBUG_RAM_CONFIG
|
|
dumpnorth();
|
|
#endif
|
|
}
|
|
static void sdram_set_registers(const struct mem_controller *ctrl){
|
|
ram_set_d0f0_regs(ctrl);
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine: sdram_spd_get_page_size
|
|
* Arguments: %bl SMBUS_MEM_DEVICE
|
|
* Results:
|
|
* %edi log base 2 page size of DIMM side 1 in bits
|
|
* %esi log base 2 page size of DIMM side 2 in bits
|
|
*
|
|
* Preserved: %ebx (except %bh), %ebp
|
|
*
|
|
* Trashed: %eax, %bh, %ecx, %edx, %esp, %eflags
|
|
* Used: %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
|
|
*
|
|
* Effects: Uses serial presence detect to set %edi & %esi
|
|
* to the page size of a dimm.
|
|
* Notes:
|
|
* %bl SMBUS_MEM_DEVICE
|
|
* %edi holds the page size for the first side of the DIMM.
|
|
* %esi holds the page size for the second side of the DIMM.
|
|
* memory size is represent as a power of 2.
|
|
*
|
|
* This routine may be worth moving into generic code somewhere.
|
|
*/
|
|
struct dimm_page_size {
|
|
unsigned long side1;
|
|
unsigned long side2;
|
|
};
|
|
|
|
static struct dimm_page_size sdram_spd_get_page_size(unsigned device) {
|
|
|
|
uint32_t ecx;
|
|
int value;
|
|
struct dimm_page_size pgsz;
|
|
|
|
pgsz.side1 = 0;
|
|
pgsz.side2 = 0;
|
|
|
|
value = spd_read_byte(device, 4); /* columns */
|
|
if(value < 0) goto hw_err;
|
|
pgsz.side1 = value & 0xf;
|
|
|
|
/* Get the module data width and convert it to a power of two */
|
|
value = spd_read_byte(device,7); /* (high byte) */
|
|
if(value < 0) goto hw_err;
|
|
ecx = value & 0xff;
|
|
ecx <<= 8;
|
|
|
|
value = spd_read_byte(device, 6); /* (low byte) */
|
|
if(value < 0) goto hw_err;
|
|
ecx |= (value & 0xff);
|
|
|
|
pgsz.side1 += log2(ecx); /* compute cheap log base 2 */
|
|
|
|
/* side two */
|
|
value = spd_read_byte(device, 5); /* number of physical banks */
|
|
if(value < 0) goto hw_err;
|
|
if(value==1) goto out;
|
|
if(value!=2) goto val_err;
|
|
|
|
/* Start with the symmetrical case */
|
|
pgsz.side2 = pgsz.side1;
|
|
value = spd_read_byte(device,4); /* columns */
|
|
if(value < 0) goto hw_err;
|
|
if((value & 0xf0)==0 ) goto out;
|
|
pgsz.side2 -=value & 0xf; /* Subtract out columns on side 1 */
|
|
pgsz.side2 +=(value>>4)& 0xf; /* Add in columns on side 2 */
|
|
goto out;
|
|
|
|
val_err:
|
|
die("Bad SPD value\r\n");
|
|
/* If an hw_error occurs report that I have no memory */
|
|
hw_err:
|
|
pgsz.side1 = 0;
|
|
pgsz.side2 = 0;
|
|
out:
|
|
return pgsz;
|
|
}
|
|
|
|
|
|
/*
|
|
* Routine: sdram_spd_get_width
|
|
* Arguments: %bl SMBUS_MEM_DEVICE
|
|
* Results:
|
|
* %edi width of SDRAM chips on DIMM side 1 in bits
|
|
* %esi width of SDRAM chips on DIMM side 2 in bits
|
|
*
|
|
* Preserved: %ebx (except %bh), %ebp
|
|
*
|
|
* Trashed: %eax, %bh, %ecx, %edx, %esp, %eflags
|
|
* Used: %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
|
|
*
|
|
* Effects: Uses serial presence detect to set %edi & %esi
|
|
* to the width of a dimm.
|
|
* Notes:
|
|
* %bl SMBUS_MEM_DEVICE
|
|
* %edi holds the width for the first side of the DIMM.
|
|
* %esi holds the width for the second side of the DIMM.
|
|
* memory size is represent as a power of 2.
|
|
*
|
|
* This routine may be worth moving into generic code somewhere.
|
|
*/
|
|
struct dimm_width {
|
|
unsigned side1;
|
|
unsigned side2;
|
|
};
|
|
|
|
static struct dimm_width sdram_spd_get_width(unsigned device) {
|
|
int value;
|
|
struct dimm_width wd;
|
|
uint32_t ecx;
|
|
|
|
wd.side1 = 0;
|
|
wd.side2 = 0;
|
|
|
|
value = spd_read_byte(device, 13); /* sdram width */
|
|
if(value < 0 ) goto hw_err;
|
|
ecx = value;
|
|
|
|
wd.side1 = value & 0x7f;
|
|
|
|
/* side two */
|
|
value = spd_read_byte(device, 5); /* number of physical banks */
|
|
if(value < 0 ) goto hw_err;
|
|
if(value <=1 ) goto out;
|
|
|
|
/* Start with the symmetrical case */
|
|
wd.side2 = wd.side1;
|
|
|
|
if((ecx & 0x80)==0) goto out;
|
|
|
|
wd.side2 <<=1;
|
|
hw_err:
|
|
wd.side1 = 0;
|
|
wd.side2 = 0;
|
|
|
|
out:
|
|
return wd;
|
|
}
|
|
|
|
/*
|
|
* Routine: sdram_spd_get_dimm_size
|
|
* Arguments: %bl SMBUS_MEM_DEVICE
|
|
* Results:
|
|
* %edi log base 2 size of DIMM side 1 in bits
|
|
* %esi log base 2 size of DIMM side 2 in bits
|
|
*
|
|
* Preserved: %ebx (except %bh), %ebp
|
|
*
|
|
* Trashed: %eax, %bh, %ecx, %edx, %esp, %eflags
|
|
* Used: %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
|
|
*
|
|
* Effects: Uses serial presence detect to set %edi & %esi
|
|
* the size of a dimm.
|
|
* Notes:
|
|
* %bl SMBUS_MEM_DEVICE
|
|
* %edi holds the memory size for the first side of the DIMM.
|
|
* %esi holds the memory size for the second side of the DIMM.
|
|
* memory size is represent as a power of 2.
|
|
*
|
|
* This routine may be worth moving into generic code somewhere.
|
|
*/
|
|
|
|
struct dimm_size {
|
|
unsigned long side1;
|
|
unsigned long side2;
|
|
};
|
|
|
|
static struct dimm_size spd_get_dimm_size(unsigned device)
|
|
{
|
|
/* Calculate the log base 2 size of a DIMM in bits */
|
|
struct dimm_size sz;
|
|
int value, low;
|
|
sz.side1 = 0;
|
|
sz.side2 = 0;
|
|
|
|
/* Note it might be easier to use byte 31 here, it has the DIMM size as
|
|
* a multiple of 4MB. The way we do it now we can size both
|
|
* sides of an assymetric dimm.
|
|
*/
|
|
/* the hell with that! just use byte 31 -- rgm */
|
|
value = spd_read_byte(device, 31); /* size * 4 MB */
|
|
value = log2(value);
|
|
/* this is in 4 MB chunks, or 32 MBits chunks.
|
|
* log base 2 of 32 Mbits is log2 of (32*1024*1024) is 25
|
|
* so add 25
|
|
*/
|
|
value += 25;
|
|
sz.side1 = value;
|
|
sz.side2 = 0;
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("returned size log 2 in bits is :");
|
|
print_debug_hex32(value);
|
|
print_debug("\r\n");
|
|
#endif
|
|
goto out;
|
|
val_err:
|
|
die("Bad SPD value\r\n");
|
|
/* If an hw_error occurs report that I have no memory */
|
|
hw_err:
|
|
sz.side1 = 0;
|
|
sz.side2 = 0;
|
|
out:
|
|
return sz;
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* This is a place holder fill this out
|
|
* Routine: spd_set_row_attributes
|
|
* Arguments: %bl SMBUS_MEM_DEVICE
|
|
* Results:
|
|
* %edi log base 2 size of DIMM side 1 in bits
|
|
* %esi log base 2 size of DIMM side 2 in bits
|
|
*
|
|
* Preserved: %ebx (except %bh), %ebp
|
|
*
|
|
* Trashed: %eax, %bh, %ecx, %edx, %esp, %eflags
|
|
* Used: %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %eflags
|
|
*
|
|
* Effects: Uses serial presence detect to set %edi & %esi
|
|
* the size of a dimm.
|
|
* Notes:
|
|
* %bl SMBUS_MEM_DEVICE
|
|
* %edi holds the memory size for the first side of the DIMM.
|
|
* %esi holds the memory size for the second side of the DIMM.
|
|
* memory size is represent as a power of 2.
|
|
*
|
|
* This routine may be worth moving into generic code somewhere.
|
|
*/
|
|
static long spd_set_row_attributes(const struct mem_controller *ctrl, long dimm_mask) {
|
|
int i;
|
|
uint16_t word=0x7777;
|
|
int value;
|
|
|
|
|
|
/* Walk through all dimms and find the interesection of the support
|
|
* for ecc sdram and refresh rates
|
|
*/
|
|
|
|
|
|
for(i = 0; i < DIMM_SOCKETS; i++) {
|
|
if (!(dimm_mask & (1 << i))) {
|
|
continue;
|
|
}
|
|
/* Test to see if I have ecc sdram */
|
|
struct dimm_page_size sz;
|
|
sz = sdram_spd_get_page_size(ctrl->channel0[i]); /* SDRAM type */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("page size =");
|
|
print_debug_hex32(sz.side1);
|
|
print_debug(" ");
|
|
print_debug_hex32(sz.side2);
|
|
print_debug("\r\n");
|
|
#endif
|
|
|
|
/* Test to see if the dimm is present */
|
|
if( sz.side1 !=0) {
|
|
|
|
/* Test for a valid dimm width */
|
|
if((sz.side1 <15) || (sz.side1>18) ) {
|
|
print_err("unsupported page size\r\n");
|
|
}
|
|
|
|
/* Convert to the format needed for the DRA register */
|
|
/* subtract 3 (there are 8 bytes)
|
|
* then subtract 11
|
|
* (since 12 bit size should map to a value of 1)
|
|
* so subtract 14 total
|
|
*/
|
|
sz.side1-=14;
|
|
|
|
/* Place in the %ebp the dra place holder */ /*i*/
|
|
word &= ~(7<<i);
|
|
word |= sz.side1<<(i<<3);
|
|
|
|
/* Test to see if the second side is present */
|
|
|
|
if( sz.side2 !=0) {
|
|
|
|
/* Test for a valid dimm width */
|
|
if((sz.side2 <15) || (sz.side2>18) ) {
|
|
print_err("unsupported page size\r\n");
|
|
}
|
|
|
|
/* Convert to the format needed for the DRA register */
|
|
sz.side2-=14;
|
|
|
|
/* Place in the %ebp the dra place holder */ /*i*/
|
|
word &= ~(7<<i);
|
|
word |= sz.side2<<((i<<3) + 4 );
|
|
|
|
}
|
|
}
|
|
/* go to the next DIMM */
|
|
}
|
|
|
|
/* Write the new row attributes register */
|
|
pci_write_config32(ctrl->d0, 0x50, word);
|
|
|
|
return dimm_mask;
|
|
|
|
}
|
|
#define spd_pre_init "Reading SPD data...\r\n"
|
|
#define spd_pre_set "setting based on SPD data...\r\n"
|
|
#define spd_post_init "done\r\n"
|
|
|
|
|
|
static const uint32_t refresh_rate_rank[]= {
|
|
/* Refresh rates ordered from most conservative (lowest)
|
|
* to most agressive (highest)
|
|
* disabled 0 -> rank 3
|
|
* 15.6usec 1 -> rank 1
|
|
* 7.8 usec 2 -> rank 0
|
|
* 64usec 3 -> rank 2
|
|
*/
|
|
3, 1, 0, 2 };
|
|
static const uint32_t refresh_rate_index[] = {
|
|
/* Map the spd refresh rates to memory controller settings
|
|
* 15.625us -> 15.6us
|
|
* 3.9us -> err
|
|
* 7.8us -> 7.8us
|
|
* 31.3s -> 15.6us
|
|
* 62.5us -> 15.6us
|
|
* 125us -> 15.6us
|
|
*/
|
|
1, 0xff, 2, 1, 1, 1
|
|
};
|
|
#define MAX_SPD_REFRESH_RATE 5
|
|
|
|
static long spd_set_dram_controller_mode (const struct mem_controller *ctrl, long dimm_mask) {
|
|
|
|
int i;
|
|
uint32_t dword;
|
|
int value;
|
|
uint32_t ecx;
|
|
uint32_t edx;
|
|
/* on this chipset we only do refresh "slow" or "fast" for now */
|
|
/* we start out assuming "slow" (15.6 microseconds) */
|
|
uint32_t refrate = 1; /* better than 7.8 */
|
|
|
|
/* Read the inititial state */
|
|
dword = pci_read_config32(ctrl->d0, 0x70);
|
|
/* WTF? */
|
|
/*dword |= 0x10000;*/
|
|
#if 0 /* DEBUG_RAM_CONFIG*/
|
|
print_debug("spd_detect_dimms: 0x70.l is:");
|
|
print_debug_hex32(dword);
|
|
print_debug("\r\n");
|
|
#endif
|
|
|
|
#if 0
|
|
/* Test if ECC cmos option is enabled */
|
|
/* Clear the ecc enable */
|
|
1:
|
|
#endif
|
|
|
|
|
|
/* Walk through all dimms and find the interesection of the support
|
|
* for ecc sdram and refresh rates
|
|
*/
|
|
|
|
|
|
for(i = 0; i < DIMM_SOCKETS; i++) {
|
|
if (!(dimm_mask & (1 << i))) {
|
|
continue;
|
|
}
|
|
/* Test to see if I have ecc sdram */
|
|
value = spd_read_byte(ctrl->channel0[i], 11); /* SDRAM type */
|
|
if(value < 0) continue;
|
|
if(value !=2 ) {
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("spd_detect_dimms:\r\n");
|
|
#endif
|
|
/* Clear the ecc enable */
|
|
dword &= ~(3 << 20);
|
|
#if 0 &&DEBUG_RAM_CONFIG
|
|
print_debug("spd_detect_dimms: no ecc so set:");
|
|
print_debug_hex32(dword);
|
|
print_debug("\r\n");
|
|
#endif
|
|
|
|
}
|
|
value = spd_read_byte(ctrl->channel0[i], 12); /* SDRAM refresh rate */
|
|
if(value < 0 ) continue;
|
|
value &= 0x7f;
|
|
if(value > MAX_SPD_REFRESH_RATE) { print_err("unsupported refresh rate\r\n");}
|
|
/* if(value == 0xff) { print_err("unsupported refresh rate\r\n");}*/
|
|
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("spd_detect_dimms: ref rate index:");
|
|
print_debug_hex8(value);
|
|
print_debug("\r\n");
|
|
#endif
|
|
if (value == 2) /* have to go faster */
|
|
refrate = 2;
|
|
#if 0 &&DEBUG_RAM_CONFIG
|
|
print_debug("spd_detect_dimms: dword is now w/refresh:");
|
|
print_debug_hex32(dword);
|
|
print_debug("\r\n");
|
|
#endif
|
|
/* no applicability here but there are similar things
|
|
* we'll try later.
|
|
*/
|
|
#if 0
|
|
value = spd_read_byte(ctrl->channel0[i], 33); /* Address and command hold time after clock */
|
|
if(value < 0) continue;
|
|
if(value >= 0xa0) { /* At 133Mhz this constant should be 0x75 */
|
|
dword &= ~(1<<16); /* Use two clock cyles instead of one */
|
|
}
|
|
#endif
|
|
|
|
/* go to the next DIMM */
|
|
}
|
|
|
|
/* set the refrate now */
|
|
dword |= (refrate << 7);
|
|
/* Now write the controller mode */
|
|
pci_write_config32(ctrl->d0, 0x70, dword);
|
|
|
|
return dimm_mask;
|
|
|
|
}
|
|
static long spd_enable_clocks(const struct mem_controller *ctrl, long dimm_mask)
|
|
{
|
|
int i;
|
|
uint32_t dword;
|
|
int value;
|
|
|
|
/* Read the inititial state */
|
|
dword = pci_read_config32(ctrl->d0, 0x8c);
|
|
/*
|
|
Intel clears top bit here, should we?
|
|
No the default is on and for normal timming it should be on. Tom Z
|
|
andl $0x7f, %esi
|
|
*/
|
|
|
|
for(i = 0; i < DIMM_SOCKETS; i++) {
|
|
if (!(dimm_mask & (1 << i))) {
|
|
continue;
|
|
}
|
|
/* Read any spd byte to see if the dimm is present */
|
|
value = spd_read_byte(ctrl->channel0[i], 5); /* Physical Banks */
|
|
if(value < 0) continue;
|
|
|
|
dword &= ~(1<<i);
|
|
}
|
|
|
|
pci_write_config32(ctrl->d0, 0x8c, dword);
|
|
|
|
return dimm_mask;
|
|
}
|
|
|
|
static const uint16_t cas_latency_80[] = {
|
|
/* For cas latency 2.0 0x01 works and until I see a large test sample
|
|
* I am not prepared to change this value, to the intel recommended value
|
|
* of 0x0d. Eric Biederman
|
|
*/
|
|
/* The E7501 requires b1 rather than 01 for CAS2 or memory will be hosed
|
|
* CAS 1.5 is claimed to be unsupported, will try to test that
|
|
* will need to determine correct values for other CAS values
|
|
* (perhaps b5, b1, b6?)
|
|
* Steven James 02/06/2003
|
|
*/
|
|
|
|
/*# .byte 0x05, 0x01, 0x06 */
|
|
/*# .byte 0xb5, 0xb1, 0xb6 */
|
|
0x0, 0x0bb1, 0x0662 /* RCVEN */
|
|
};
|
|
static const uint16_t cas_latency_80_4dimms[] = {
|
|
0x0, 0x0bb1, 0x0882
|
|
};
|
|
|
|
|
|
static const uint8_t cas_latency_78[] = {
|
|
DRT_CAS_2_0, DRT_CAS_2_5
|
|
};
|
|
|
|
static long spd_set_cas_latency(const struct mem_controller *ctrl, long dimm_mask) {
|
|
/* Walk through all dimms and find the interesection of the
|
|
* supported cas latencies.
|
|
*/
|
|
int i;
|
|
/* Initially allow cas latencies 2.5, 2.0
|
|
* which the chipset supports.
|
|
*/
|
|
uint32_t dword = (1<<3)| (1<<2);/* esi*/
|
|
uint32_t edi;
|
|
uint32_t ecx;
|
|
unsigned device;
|
|
int value;
|
|
uint8_t byte;
|
|
uint16_t word;
|
|
|
|
|
|
for(i = 0; i < DIMM_SOCKETS; i++) {
|
|
if (!(dimm_mask & (1 << i))) {
|
|
continue;
|
|
}
|
|
value = spd_read_byte(ctrl->channel0[i], 18);
|
|
if(value < 0) continue;
|
|
/* Find the highest supported cas latency */
|
|
ecx = log2(value & 0xff);
|
|
edi = (1<< ecx);
|
|
|
|
/* Remember the supported cas latencies */
|
|
ecx = (value & 0xff);
|
|
|
|
/* Verify each cas latency at 133Mhz */
|
|
/* Verify slowest/highest CAS latency */
|
|
value = spd_read_byte(ctrl->channel0[i], 9);
|
|
if(value < 0 ) continue;
|
|
if(value > 0x75 ) {
|
|
/* The bus is too fast so we cannot support this case latency */
|
|
ecx &= ~edi;
|
|
}
|
|
|
|
/* Verify the highest CAS latency - 0.5 clocks */
|
|
edi >>= 1;
|
|
if(edi != 0) {
|
|
value = spd_read_byte(ctrl->channel0[i], 23);
|
|
if(value < 0 ) continue;
|
|
if(value > 0x75) {
|
|
/* The bus is too fast so we cannot support this cas latency */
|
|
ecx &= ~edi;
|
|
}
|
|
}
|
|
|
|
/* Verify the highest CAS latency - 1.0 clocks */
|
|
edi >>=1;
|
|
if(edi !=0) {
|
|
value = spd_read_byte(ctrl->channel0[i], 25);
|
|
if(value < 0 ) continue;
|
|
if(value > 0x75) {
|
|
/* The bus is too fast so we cannot support this cas latency */
|
|
ecx &= ~edi;
|
|
}
|
|
}
|
|
|
|
/* Now find which cas latencies are supported for the bus */
|
|
dword &= ecx;
|
|
/* go to the next DIMM */
|
|
}
|
|
|
|
/* After all of the arduous calculation setup with the fastest
|
|
* cas latency I can use.
|
|
*/
|
|
value = __builtin_bsf(dword); /* bsrl = log2 how about bsfl?*/
|
|
if(value ==0 ) return -1;
|
|
ecx = value -1;
|
|
|
|
byte = pci_read_config8(ctrl->d0, 0x78);
|
|
byte &= ~(DRT_CAS_MASK);
|
|
byte |= cas_latency_78[ecx];
|
|
pci_write_config8(ctrl->d0,0x78, byte);
|
|
|
|
/* set master DLL reset */
|
|
dword = pci_read_config32(ctrl->d0, 0x88);
|
|
dword |= (1<<26);
|
|
|
|
/* the rest of the references are words */
|
|
/* ecx<<=1; // don't need shift left, because we already define that in u16 array*/
|
|
pci_write_config32(ctrl->d0, 0x88, dword);
|
|
|
|
|
|
dword &= 0x0c0000ff; /* patch try register 88 is undocumented tnz */
|
|
dword |= 0xd2109800;
|
|
|
|
pci_write_config32(ctrl->d0, 0x88, dword);
|
|
|
|
word = pci_read_config16(ctrl->d0, 0x80);
|
|
word &= ~(0x0fff);
|
|
word |= cas_latency_80[ecx];
|
|
|
|
dword = pci_read_config32(ctrl->d0, 0x70);
|
|
|
|
if((dword & 0xff) !=0 ) {
|
|
dword >>=8;
|
|
if((dword & 0xff)!=0) {
|
|
dword >>=8;
|
|
if((dword & 0xff)!=0) {
|
|
dword >>= 8;
|
|
if( (dword & 0xff)!=0) {
|
|
word &=~(0x0fff); /* we have dimms in all 4 slots */
|
|
word |=cas_latency_80_4dimms[ecx];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pci_write_config16(ctrl->d0, 0x80, word);
|
|
|
|
dword = pci_read_config32(ctrl->d0, 0x88); /* reset master DLL reset */
|
|
dword &= ~(1<<26);
|
|
pci_write_config32(ctrl->d0, 0x88, dword);
|
|
|
|
RAM_RESET_DDR_PTR(ctrl);
|
|
|
|
return dimm_mask;
|
|
|
|
}
|
|
|
|
static const unsigned int bustimings[8] = {
|
|
/* first four are for GM part */
|
|
266, 200, 200, -1,
|
|
/* and then the GME part */
|
|
266, 200, 200, 333
|
|
};
|
|
|
|
static long spd_set_dram_timing(const struct mem_controller *ctrl, long dimm_mask) {
|
|
/* Walk through all dimms and find the interesection of the
|
|
* supported dram timings.
|
|
*/
|
|
|
|
int i;
|
|
uint32_t dword;
|
|
int value;
|
|
|
|
/* well, shit. Intel has not seen fit to document the observed
|
|
* setting for these bits. On my chipset it is 3 right now, and
|
|
* that's not in the table documented for this chip.
|
|
* What a shame. We will assume 133 mhz I guess? not sure.
|
|
* also they say in one place it is two bits and in another
|
|
* they say it is 3 bits! we'll assume two bits, that's
|
|
* the only one that makes sense.
|
|
*/
|
|
uint32_t rambusfrequency;
|
|
uint32_t ramindex;
|
|
|
|
/* what kind of chip is it? */
|
|
/* only bit that really matters is high order bit ... */
|
|
/* here is a problem with the memory controller struct ...
|
|
* ram control is spread across d0/d1 on this part!
|
|
*/
|
|
ramindex = pci_read_config8(PCI_DEV(0,0,0), 0x44);
|
|
ramindex >>= 5;
|
|
|
|
/* compute the index into the table. Use the type of chip
|
|
* as the high order bit and the 0:0.3:c0 & 7 as the low
|
|
* order four bits.
|
|
*/
|
|
|
|
ramindex |= pci_read_config8(PCI_DEV(0,0,3), 0xc0) & 7;
|
|
/* we now have an index into the clock rate table ... */
|
|
|
|
rambusfrequency = bustimings[ramindex];
|
|
|
|
/* Read the inititial state */
|
|
dword = pci_read_config32(ctrl->d0, 0x60);
|
|
#if DEBUG_RAM_CONFIG >= 10
|
|
print_debug("spd_detect_dimms: bus timing index: ");
|
|
print_debug_hex32(ramindex);
|
|
print_debug(" and speed ");
|
|
print_debug_hex32(rambusfrequency);
|
|
print_debug("\r\n");
|
|
#endif
|
|
|
|
/* for now, since we are on deadline, set to "known good" and
|
|
* fix later.
|
|
*/
|
|
pci_write_config32(ctrl->d0, 0x60, 0x2a004425);
|
|
return dimm_mask;
|
|
|
|
/*
|
|
Intel clears top bit here, should we?
|
|
No the default is on and for normal timming it should be on. Tom Z
|
|
andl $0x7f, %esi
|
|
*/
|
|
|
|
|
|
/* HERE. WHat's the frequency kenneth? */
|
|
for(i = 0; i < DIMM_SOCKETS; i++) {
|
|
if (!(dimm_mask & (1 << i))) {
|
|
continue;
|
|
}
|
|
/* Trp */
|
|
value = spd_read_byte(ctrl->channel0[i], 27);
|
|
if(value < 0) continue;
|
|
if(value > (15<<2)) {
|
|
/* At 133Mhz if row precharge time is above than 15ns than we
|
|
* need 3 clocks not 2 clocks.
|
|
*/
|
|
dword &= ~(1<<0);
|
|
}
|
|
/* Trcd */
|
|
value = spd_read_byte(ctrl->channel0[i],29);
|
|
if(value < 0 ) continue;
|
|
if(value > (15<<2)) {
|
|
/* At 133Mhz if the Minimum ras to cas delay is about 15ns we
|
|
* need 3 clocks not 2 clocks.
|
|
*/
|
|
dword &= ~((1<<3)|(1<<1));
|
|
}
|
|
/* Tras */
|
|
value = spd_read_byte(ctrl->channel0[i],30);
|
|
if(value < 0 ) continue;
|
|
/* Convert tRAS from ns to 133Mhz clock cycles */
|
|
value <<=1; /* mult by 2 to make 7.5 15 */
|
|
value += 15; /* Make certain we round up */
|
|
value --;
|
|
value &= 0xff; /* Clear the upper bits of eax */
|
|
value /= 15;
|
|
|
|
/* Don't even process small timings */
|
|
if(value >5) {
|
|
uint32_t tmp;
|
|
/* Die if the value is to large */
|
|
if(value>7) {
|
|
die ("unsupported_rcd\r\n");
|
|
}
|
|
/* Convert to clocks - 5 */
|
|
value -=5;
|
|
/* Convert the existing value into clocks - 5 */
|
|
tmp = (~((dword>>9) & 3) - 1) & 3;
|
|
/* See if we need a slower timing */
|
|
if(value > tmp ) {
|
|
/* O.k. put in our slower timing */
|
|
dword &= ~(3<<9);
|
|
dword |= ((~(value + 1)) & 3)<<9 ;
|
|
}
|
|
}
|
|
|
|
/* Trd */
|
|
/* Set to a 7 clock read delay. This is for 133Mhz
|
|
* with a CAS latency of 2.5 if 2.0 a 6 clock
|
|
* delay is good */
|
|
if( (pci_read_config8(ctrl->d0, 0x78) & 0x30) ==0 ){
|
|
dword &= ~(7<<24); /* CAS latency is 2.5, make 7 clks */
|
|
}
|
|
|
|
/*
|
|
* Back to Back Read Turn Around
|
|
*/
|
|
/* Set to a 3 clock back to back read turn around. This
|
|
* is good for CAS latencys 2.5 and 2.0 */
|
|
dword |= (1<<27);
|
|
/*
|
|
* Back to Back Read-Write Turn Around
|
|
*/
|
|
/* Set to a 5 clock back to back read to write turn around.
|
|
* 4 is a good delay if the CAS latency is 2.0 */
|
|
if( ( pci_read_config8(ctrl->d0, 0x78) & (1<<4)) == 0) {
|
|
dword &= ~(1<<28);
|
|
}
|
|
/*
|
|
* Back to Back Write-Read Turn Around
|
|
*/
|
|
/* Set to a 2 clock back to back write to read turn around.
|
|
* This is good for 2.5 and 2.0 CAS Latencies. */
|
|
dword |= (1<<29);
|
|
}
|
|
|
|
pci_write_config32(ctrl->d0, 0x60, dword);
|
|
|
|
return dimm_mask;
|
|
|
|
}
|
|
static unsigned int spd_detect_dimms(const struct mem_controller *ctrl)
|
|
{
|
|
unsigned dimm_mask;
|
|
int i;
|
|
dimm_mask = 0;
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("spd_detect_dimms:\r\n");
|
|
#endif
|
|
for(i = 0; i < DIMM_SOCKETS; i++) {
|
|
int byte;
|
|
unsigned device;
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug_hex32(i);
|
|
print_debug("\r\n");
|
|
#endif
|
|
device = ctrl->channel0[i];
|
|
if (device) {
|
|
byte = spd_read_byte(ctrl->channel0[i], 2); /* Type */
|
|
if (byte == 7) {
|
|
dimm_mask |= (1 << i);
|
|
}
|
|
}
|
|
}
|
|
|
|
return dimm_mask;
|
|
}
|
|
|
|
static uint32_t set_dimm_size(const struct mem_controller *ctrl, struct dimm_size sz, uint32_t memsz, unsigned index)
|
|
{
|
|
int i;
|
|
uint32_t base0, base1;
|
|
uint32_t dch;
|
|
uint8_t byte;
|
|
|
|
/* I think size2 is always 0 ... */
|
|
/* Double the size if we are using dual channel memory */
|
|
if (sz.side1 != sz.side2) {
|
|
sz.side2 = 0;
|
|
}
|
|
|
|
|
|
/* Make certain side1 of the dimm is at least 32MB */
|
|
/* This 28 is weird.
|
|
* sz.size1 is log2 size in bits.
|
|
* so what's 28? So think of it as this:
|
|
* in log2 space: 10 + 10 + 8, i.e. 1024 * 1024 * 256 or
|
|
* 256 Mbits, or 32 Mbytes.
|
|
*/
|
|
/* this is from the e7500 code and it's just wrong for small dimes (< 64 MB)
|
|
* However, realistically, this case will never happen! the dimms are all bigger ...
|
|
* so skip the conditional completely.
|
|
* if (sz.side1 >= (28)) { }
|
|
*/
|
|
memsz += (1 << (sz.side1 - (28)) ) ;
|
|
|
|
/* Write the size of side 1 of the dimm */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("Write size ");
|
|
print_debug_hex8(memsz);
|
|
print_debug(" to ");
|
|
print_debug_hex8(0x40 + index);
|
|
print_debug("\r\n");
|
|
#endif
|
|
byte = memsz;
|
|
pci_write_config8(ctrl->d0, 0x40+index, byte);
|
|
|
|
/* now, fill in DRBs where no physical slot exists */
|
|
|
|
for(i=index+1;i<4;i++) {
|
|
pci_write_config8(ctrl->d0, 0x40+i, byte);
|
|
}
|
|
|
|
return memsz;
|
|
|
|
}
|
|
|
|
#define LAST_DRB_SLOT 0x43
|
|
|
|
static long spd_set_ram_size(const struct mem_controller *ctrl, long dimm_mask)
|
|
{
|
|
int i;
|
|
uint32_t memsz=0;
|
|
uint16_t word;
|
|
|
|
for(i = 0; i < DIMM_SOCKETS; i++) {
|
|
struct dimm_size sz;
|
|
if (!(dimm_mask & (1 << i))) {
|
|
continue;
|
|
}
|
|
sz = spd_get_dimm_size(ctrl->channel0[i]);
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug("dimm size =");
|
|
print_debug_hex32(sz.side1);
|
|
print_debug(" ");
|
|
print_debug_hex32(sz.side2);
|
|
print_debug("\r\n");
|
|
#endif
|
|
|
|
if (sz.side1 == 0) {
|
|
return -1; /* Report SPD error */
|
|
}
|
|
memsz = set_dimm_size(ctrl, sz, memsz, i);
|
|
}
|
|
#if 0
|
|
/* For now hardset everything at 128MB boundaries */
|
|
/* %ebp has the ram size in multiples of 64MB */
|
|
/* cmpl $0, %ebp /* test if there is no mem - smbus went bad */*/
|
|
/* jz no_memory_bad_smbus*/
|
|
if(memsz < 0x30) {
|
|
/* I should really adjust all of this in C after I have resources
|
|
* to all of the pcie devices.
|
|
*/
|
|
|
|
/* Round up to 128M granularity */
|
|
memsz++;
|
|
memsz &= 0xfe;
|
|
memsz<<= 10;
|
|
word = memsz;
|
|
pci_write_config16(ctrl->d0, 0xc4, word);
|
|
} else {
|
|
|
|
/* FIXME will this work with 3.5G of ram? */
|
|
/* Put TOLM at 3G */
|
|
pci_write_config16(ctrl->d0, 0xc4, 0xc000);
|
|
/* Hard code a 1G remap window, right after the ram */
|
|
if(memsz< 0x40){
|
|
word = 0x40; /* Ensure we are over 4G */
|
|
} else {
|
|
word = memsz;
|
|
}
|
|
pci_write_config16(ctrl->d0, 0xc6, word);
|
|
word += 0x10;
|
|
pci_write_config16(ctrl->d0, 0xc8, word);
|
|
|
|
}
|
|
#endif
|
|
|
|
return dimm_mask;
|
|
}
|
|
|
|
static void sdram_set_spd_registers(const struct mem_controller *ctrl) {
|
|
long dimm_mask;
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(spd_pre_init);
|
|
#endif
|
|
/*activate_spd_rom(ctrl);*/
|
|
dimm_mask = spd_detect_dimms(ctrl);
|
|
if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1))) {
|
|
print_debug("No memory for this controller\n");
|
|
return;
|
|
}
|
|
dimm_mask = spd_enable_clocks(ctrl, dimm_mask);
|
|
if (dimm_mask < 0)
|
|
goto hw_spd_err;
|
|
/*spd_verify_dimms(ctrl);*/
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(spd_pre_set);
|
|
#endif
|
|
dimm_mask = spd_set_row_attributes(ctrl,dimm_mask);
|
|
|
|
if (dimm_mask < 0)
|
|
goto hw_spd_err;
|
|
dimm_mask = spd_set_dram_controller_mode(ctrl,dimm_mask);
|
|
|
|
if (dimm_mask < 0)
|
|
goto hw_spd_err;
|
|
|
|
/* skip for now until we just get "known good" up
|
|
dimm_mask = spd_set_cas_latency(ctrl,dimm_mask);
|
|
*/
|
|
|
|
if (dimm_mask < 0)
|
|
goto hw_spd_err;
|
|
dimm_mask = spd_set_dram_timing(ctrl,dimm_mask);
|
|
if (dimm_mask < 0)
|
|
goto hw_spd_err;
|
|
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(spd_post_init);
|
|
#endif
|
|
/*moved from dram_post_init*/
|
|
spd_set_ram_size(ctrl, dimm_mask);
|
|
dump_pci_device(PCI_DEV(0,0,1));
|
|
return;
|
|
|
|
hw_spd_err:
|
|
/* Unrecoverable error reading SPD data */
|
|
print_err("SPD error - reset\r\n");
|
|
hard_reset();
|
|
return;
|
|
}
|
|
|
|
|
|
/* I have finally seen ram bad enough to cause LinuxBIOS
|
|
* to die in mysterious ways, before booting up far
|
|
* enough to run a memory tester. This code attempts
|
|
* to catch this blatantly bad ram, with a spot check.
|
|
* For most cases you should boot all of the way up
|
|
* and run a memory tester.
|
|
*/
|
|
/* Ensure I read/write each stick of bank of memory &&
|
|
* that I do more than 1000 bytes to avoid the northbridge cache.
|
|
* Only 64M of each side of each DIMM is currently mapped,
|
|
* so we can handle > 4GB of ram here.
|
|
*/
|
|
|
|
static void ram_postinit(const struct mem_controller *ctrl) {
|
|
#if DEBUG_RAM_CONFIG
|
|
dumpnorth();
|
|
#endif
|
|
/*spd_set_ram_size(ctrl);*/
|
|
}
|
|
#define FIRST_NORMAL_REFERENCE() CALL_LABEL(ram_postinit)
|
|
|
|
#define SPECIAL_FINISHUP() CALL_LABEL(dram_finish)
|
|
|
|
|
|
#define ecc_pre_init "Initializing ECC state...\r\n"
|
|
#define ecc_post_init "ECC state initialized.\r\n"
|
|
static void dram_finish(const struct mem_controller *ctrl)
|
|
{
|
|
uint32_t dword;
|
|
uint8_t byte;
|
|
/* Test to see if ECC support is enabled */
|
|
dword = pci_read_config32(ctrl->d0, 0x70);
|
|
dword >>=20;
|
|
dword &=1;
|
|
if(dword == 1) {
|
|
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ecc_pre_init);
|
|
#endif
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ecc_post_init);
|
|
#endif
|
|
#if 0
|
|
/* Clear the ECC error bits */
|
|
dword = pci_read_config32(ctrl->d0, 0x7c); /* FCS_EN */
|
|
dword |= (1<<17);
|
|
pci_write_config32(ctrl->d0, 0x7c, dword);
|
|
#endif
|
|
}
|
|
|
|
#if DEBUG_RAM_CONFIG
|
|
dumpnorth();
|
|
#endif
|
|
|
|
/* verify_ram(); */
|
|
}
|
|
|
|
#if ASM_CONSOLE_LOGLEVEL > BIOS_DEBUG
|
|
#define ram_enable_1 "Ram Enable 1\r\n"
|
|
#define ram_enable_2 "Ram Enable 2\r\n"
|
|
#define ram_enable_3 "Ram Enable 3\r\n"
|
|
#define ram_enable_4 "Ram Enable 4\r\n"
|
|
#define ram_enable_5 "Ram Enable 5\r\n"
|
|
#define ram_enable_6 "Ram Enable 6\r\n"
|
|
#define ram_enable_7 "Ram Enable 7\r\n"
|
|
#define ram_enable_8 "Ram Enable 8\r\n"
|
|
#define ram_enable_9 "Ram Enable 9\r\n"
|
|
#define ram_enable_10 "Ram Enable 10\r\n"
|
|
#define ram_enable_11 "Ram Enable 11\r\n"
|
|
#endif
|
|
|
|
/* Estimate that SLOW_DOWN_IO takes about 50&76us*/
|
|
/* delay for 200us */
|
|
void udelay(int usecs)
|
|
{
|
|
int i;
|
|
for(i = 0; i < usecs; i++)
|
|
outb(i&0xff, 0x80);
|
|
}
|
|
|
|
|
|
#if 0
|
|
static void DO_DELAY(void){
|
|
udelay(200);
|
|
}
|
|
#endif
|
|
|
|
#define DO_DELAY udelay(200);
|
|
/*
|
|
for(i=0; i<16;i++) { SLOW_DOWN_IO }
|
|
*/
|
|
|
|
|
|
#define EXTRA_DELAY DO_DELAY
|
|
|
|
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
|
|
{
|
|
int i;
|
|
uint32_t mchtst;
|
|
/* 1 & 2 Power up and start clocks */
|
|
/* let the games begin. More undocumented shit, so we'll just set it
|
|
* as intel sets it
|
|
*/
|
|
mchtst = pci_read_config32(ctrl->d0, 0x68);
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_1);
|
|
print_debug_hex32(mchtst);
|
|
dumpnorth();
|
|
#endif
|
|
/*
|
|
mchtst = 0x10f10038;
|
|
pci_write_config32(ctrl->d0, 0x68, mchtst);
|
|
* can't find a ram power register ...
|
|
*/
|
|
|
|
#if DEBUG_RAM_CONFIG
|
|
|
|
print_debug(ram_enable_2);
|
|
#endif
|
|
|
|
/* A 200us delay is needed */
|
|
|
|
DO_DELAY
|
|
EXTRA_DELAY
|
|
|
|
/* 3. Apply NOP */
|
|
#if DEBUG_RAM_CONFIG
|
|
dump_pci_device(PCI_DEV(0, 0, 0)) ;
|
|
print_debug(ram_enable_3);
|
|
#endif
|
|
RAM_NOP(ctrl);
|
|
EXTRA_DELAY
|
|
#undef DEBUG_RAM_CONFIG
|
|
#define DEBUG_RAM_CONFIG 0
|
|
/* 4 Precharge all */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_4);
|
|
#endif
|
|
#undef DEBUG_RAM_CONFIG
|
|
#define DEBUG_RAM_CONFIG 0
|
|
RAM_PRECHARGE(ctrl);
|
|
EXTRA_DELAY
|
|
|
|
/* wait until the all banks idle state... */
|
|
/* 5. Issue EMRS to enable DLL */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_5);
|
|
#endif
|
|
RAM_EMRS(ctrl);
|
|
EXTRA_DELAY
|
|
|
|
/* 6. Reset DLL */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_6);
|
|
#endif
|
|
RAM_MRS(ctrl,1);
|
|
EXTRA_DELAY
|
|
|
|
/* Ensure a 200us delay between the DLL reset in step 6 and the final
|
|
* mode register set in step 9.
|
|
* Infineon needs this before any other command is sent to the ram.
|
|
*/
|
|
DO_DELAY
|
|
EXTRA_DELAY
|
|
|
|
/* 7 Precharge all */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_7);
|
|
#endif
|
|
RAM_PRECHARGE(ctrl);
|
|
EXTRA_DELAY
|
|
|
|
/* 8 Now we need 2 AUTO REFRESH / CBR cycles to be performed */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_8);
|
|
#endif
|
|
RAM_CBR(ctrl);
|
|
EXTRA_DELAY
|
|
RAM_CBR(ctrl);
|
|
EXTRA_DELAY
|
|
/* And for good luck 6 more CBRs */
|
|
RAM_CBR(ctrl);
|
|
EXTRA_DELAY
|
|
RAM_CBR(ctrl);
|
|
EXTRA_DELAY
|
|
RAM_CBR(ctrl);
|
|
EXTRA_DELAY
|
|
RAM_CBR(ctrl);
|
|
EXTRA_DELAY
|
|
RAM_CBR(ctrl);
|
|
EXTRA_DELAY
|
|
RAM_CBR(ctrl);
|
|
EXTRA_DELAY
|
|
|
|
/* 9 mode register set */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_9);
|
|
#endif
|
|
RAM_MRS(ctrl,0);
|
|
EXTRA_DELAY
|
|
|
|
/* 10 DDR Receive FIFO RE-Sync */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_10);
|
|
#endif
|
|
RAM_RESET_DDR_PTR(ctrl);
|
|
EXTRA_DELAY
|
|
|
|
/* 11 normal operation */
|
|
#if DEBUG_RAM_CONFIG
|
|
print_debug(ram_enable_11);
|
|
#endif
|
|
RAM_NORMAL(ctrl);
|
|
|
|
|
|
/* special from v1*/
|
|
/*FIRST_NORMAL_REFERENCE();*/
|
|
/*spd_set_ram_size(ctrl, 0x03);*/
|
|
|
|
/* Finally enable refresh */
|
|
ENABLE_REFRESH(ctrl);
|
|
|
|
/*SPECIAL_FINISHUP();*/
|
|
dram_finish(ctrl);
|
|
{ char *c = (char *) 0;
|
|
*c = 'a';
|
|
print_debug("Test: ");
|
|
print_debug_hex8(*c);
|
|
print_debug("\r\n");
|
|
}
|
|
|
|
|
|
}
|
|
|