Files
system76-coreboot/src/southbridge/intel/lynxpoint/me.c
Matt DeVillier 52c553e838 sb/intel/lynxpoint: Add Kconfig option to hide Intel ME
On lynxpoint devices, coreboot currently disables and hides the ME PCI
interface by default, without any way to opt out of this behavior.
Add a Kconfig option to allow for leaving the ME PCI interface
enabled, but set the default to disabled as to leave the current
behavior unchanged.

Change-Id: I994cb5b05829eddad2e423a7440a9458f9952370
Signed-off-by: Matt DeVillier <matt.devillier@gmail.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/71195
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Angel Pons <th3fanbus@gmail.com>
Reviewed-by: Paul Menzel <paulepanter@mailbox.org>
2022-12-23 14:20:39 +00:00

936 lines
23 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* This is a ramstage driver for the Intel Management Engine found in the
* 6-series chipset. It handles the required boot-time messages over the
* MMIO-based Management Engine Interface to tell the ME that the BIOS is
* finished with POST. Additional messages are defined for debug but are
* not used unless the console loglevel is high enough.
*/
#include <acpi/acpi.h>
#include <device/mmio.h>
#include <device/pci_ops.h>
#include <console/console.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_ids.h>
#include <device/pci_def.h>
#include <string.h>
#include <delay.h>
#include <elog.h>
#include <stdlib.h>
#include "chip.h"
#include "me.h"
#include "pch.h"
#include <vendorcode/google/chromeos/chromeos.h>
/* Path that the BIOS should take based on ME state */
static const char *const me_bios_path_values[] = {
[ME_NORMAL_BIOS_PATH] = "Normal",
[ME_S3WAKE_BIOS_PATH] = "S3 Wake",
[ME_ERROR_BIOS_PATH] = "Error",
[ME_RECOVERY_BIOS_PATH] = "Recovery",
[ME_DISABLE_BIOS_PATH] = "Disable",
[ME_FIRMWARE_UPDATE_BIOS_PATH] = "Firmware Update",
};
/* MMIO base address for MEI interface */
static u8 *mei_base_address;
static void mei_dump(u32 dword, int offset, const char *type)
{
union mei_csr csr;
if (!CONFIG(DEBUG_INTEL_ME))
return;
printk(BIOS_SPEW, "%-9s[%02x] : ", type, offset);
switch (offset) {
case MEI_H_CSR:
case MEI_ME_CSR_HA:
csr.raw = dword;
printk(BIOS_SPEW, "cbd=%u cbrp=%02u cbwp=%02u ready=%u "
"reset=%u ig=%u is=%u ie=%u\n", csr.buffer_depth,
csr.buffer_read_ptr, csr.buffer_write_ptr,
csr.ready, csr.reset, csr.interrupt_generate,
csr.interrupt_status, csr.interrupt_enable);
break;
case MEI_ME_CB_RW:
case MEI_H_CB_WW:
printk(BIOS_SPEW, "CB: 0x%08x\n", dword);
break;
default:
printk(BIOS_SPEW, "0x%08x\n", offset);
break;
}
}
/*
* ME/MEI access helpers using memcpy to avoid aliasing.
*/
static inline union mei_csr read_host_csr(void)
{
union mei_csr csr = { .raw = read32(mei_base_address + MEI_H_CSR) };
mei_dump(csr.raw, MEI_H_CSR, "READ");
return csr;
}
static inline void write_host_csr(union mei_csr csr)
{
write32(mei_base_address + MEI_H_CSR, csr.raw);
mei_dump(csr.raw, MEI_H_CSR, "WRITE");
}
static inline union mei_csr read_me_csr(void)
{
union mei_csr csr = { .raw = read32(mei_base_address + MEI_ME_CSR_HA) };
mei_dump(csr.raw, MEI_ME_CSR_HA, "READ");
return csr;
}
static inline void write_cb(u32 dword)
{
write32(mei_base_address + MEI_H_CB_WW, dword);
mei_dump(dword, MEI_H_CB_WW, "WRITE");
}
static inline u32 read_cb(void)
{
u32 dword = read32(mei_base_address + MEI_ME_CB_RW);
mei_dump(dword, MEI_ME_CB_RW, "READ");
return dword;
}
/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
union mei_csr me;
unsigned int try = ME_RETRY;
while (try--) {
me = read_me_csr();
if (me.ready)
return 0;
udelay(ME_DELAY);
}
printk(BIOS_ERR, "ME: failed to become ready\n");
return -1;
}
static void mei_reset(void)
{
union mei_csr host;
if (mei_wait_for_me_ready() < 0)
return;
/* Reset host and ME circular buffers for next message */
host = read_host_csr();
host.reset = 1;
host.interrupt_generate = 1;
write_host_csr(host);
if (mei_wait_for_me_ready() < 0)
return;
/* Re-init and indicate host is ready */
host = read_host_csr();
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(host);
}
static int mei_send_packet(union mei_header *mei, void *req_data)
{
union mei_csr host;
unsigned int ndata, n;
u32 *data;
/* Number of dwords to write */
ndata = mei->length >> 2;
/* Pad non-dword aligned request message length */
if (mei->length & 3)
ndata++;
if (!ndata) {
printk(BIOS_DEBUG, "ME: request has no data\n");
return -1;
}
ndata++; /* Add MEI header */
/*
* Make sure there is still room left in the circular buffer.
* Reset the buffer pointers if the requested message will not fit.
*/
host = read_host_csr();
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: circular buffer full, resetting...\n");
mei_reset();
host = read_host_csr();
}
/* Ensure the requested length will fit in the circular buffer. */
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printk(BIOS_ERR, "ME: message (%u) too large for buffer (%u)\n",
ndata + 2, host.buffer_depth);
return -1;
}
/* Write MEI header */
write_cb(mei->raw);
ndata--;
/* Write message data */
data = req_data;
for (n = 0; n < ndata; ++n)
write_cb(*data++);
/* Generate interrupt to the ME */
host = read_host_csr();
host.interrupt_generate = 1;
write_host_csr(host);
/* Make sure ME is ready after sending request data */
return mei_wait_for_me_ready();
}
static int mei_send_data(u8 me_address, u8 host_address,
void *req_data, int req_bytes)
{
union mei_header header = {
.client_address = me_address,
.host_address = host_address,
};
union mei_csr host;
int current = 0;
u8 *req_ptr = req_data;
while (!header.is_complete) {
int remain = req_bytes - current;
int buf_len;
host = read_host_csr();
buf_len = host.buffer_depth - host.buffer_write_ptr;
if (buf_len > remain) {
/* Send all remaining data as final message */
header.length = req_bytes - current;
header.is_complete = 1;
} else {
/* Send as much data as the buffer can hold */
header.length = buf_len;
}
mei_send_packet(&header, req_ptr);
req_ptr += header.length;
current += header.length;
}
return 0;
}
static int mei_send_header(u8 me_address, u8 host_address,
void *header, int header_len, int complete)
{
union mei_header mei = {
.client_address = me_address,
.host_address = host_address,
.length = header_len,
.is_complete = complete,
};
return mei_send_packet(&mei, header);
}
static int mei_recv_msg(void *header, int header_bytes,
void *rsp_data, int rsp_bytes)
{
union mei_header mei_rsp;
union mei_csr me, host;
unsigned int ndata, n;
unsigned int expected;
u32 *data;
/* Total number of dwords to read from circular buffer */
expected = (rsp_bytes + sizeof(mei_rsp) + header_bytes) >> 2;
if (rsp_bytes & 3)
expected++;
if (mei_wait_for_me_ready() < 0)
return -1;
/*
* The interrupt status bit does not appear to indicate that the
* message has actually been received. Instead we wait until the
* expected number of dwords are present in the circular buffer.
*/
for (n = ME_RETRY; n; --n) {
me = read_me_csr();
if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
break;
udelay(ME_DELAY);
}
if (!n) {
printk(BIOS_ERR, "ME: timeout waiting for data: expected "
"%u, available %u\n", expected,
me.buffer_write_ptr - me.buffer_read_ptr);
return -1;
}
/* Read and verify MEI response header from the ME */
mei_rsp.raw = read_cb();
if (!mei_rsp.is_complete) {
printk(BIOS_ERR, "ME: response is not complete\n");
return -1;
}
/* Handle non-dword responses and expect at least the header */
ndata = mei_rsp.length >> 2;
if (mei_rsp.length & 3)
ndata++;
if (ndata != (expected - 1)) {
printk(BIOS_ERR, "ME: response is missing data %d != %d\n",
ndata, (expected - 1));
return -1;
}
/* Read response header from the ME */
data = header;
for (n = 0; n < (header_bytes >> 2); ++n)
*data++ = read_cb();
ndata -= header_bytes >> 2;
/* Make sure caller passed a buffer with enough space */
if (ndata != (rsp_bytes >> 2)) {
printk(BIOS_ERR, "ME: not enough room in response buffer: "
"%u != %u\n", ndata, rsp_bytes >> 2);
return -1;
}
/* Read response data from the circular buffer */
data = rsp_data;
for (n = 0; n < ndata; ++n)
*data++ = read_cb();
/* Tell the ME that we have consumed the response */
host = read_host_csr();
host.interrupt_status = 1;
host.interrupt_generate = 1;
write_host_csr(host);
return mei_wait_for_me_ready();
}
static inline int mei_sendrecv_mkhi(struct mkhi_header *mkhi,
void *req_data, int req_bytes,
void *rsp_data, int rsp_bytes)
{
struct mkhi_header mkhi_rsp;
/* Send header */
if (mei_send_header(MEI_ADDRESS_MKHI, MEI_HOST_ADDRESS,
mkhi, sizeof(*mkhi), req_bytes ? 0 : 1) < 0)
return -1;
/* Send data if available */
if (req_bytes && mei_send_data(MEI_ADDRESS_MKHI, MEI_HOST_ADDRESS,
req_data, req_bytes) < 0)
return -1;
/* Return now if no response expected */
if (!rsp_bytes)
return 0;
/* Read header and data */
if (mei_recv_msg(&mkhi_rsp, sizeof(mkhi_rsp),
rsp_data, rsp_bytes) < 0)
return -1;
if (!mkhi_rsp.is_response ||
mkhi->group_id != mkhi_rsp.group_id ||
mkhi->command != mkhi_rsp.command) {
printk(BIOS_ERR, "ME: invalid response, group %u ?= %u,"
"command %u ?= %u, is_response %u\n", mkhi->group_id,
mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
mkhi_rsp.is_response);
return -1;
}
return 0;
}
static inline int mei_sendrecv_icc(struct icc_header *icc,
void *req_data, int req_bytes,
void *rsp_data, int rsp_bytes)
{
struct icc_header icc_rsp;
/* Send header */
if (mei_send_header(MEI_ADDRESS_ICC, MEI_HOST_ADDRESS,
icc, sizeof(*icc), req_bytes ? 0 : 1) < 0)
return -1;
/* Send data if available */
if (req_bytes && mei_send_data(MEI_ADDRESS_ICC, MEI_HOST_ADDRESS,
req_data, req_bytes) < 0)
return -1;
/* Read header and data, if needed */
if (rsp_bytes && mei_recv_msg(&icc_rsp, sizeof(icc_rsp),
rsp_data, rsp_bytes) < 0)
return -1;
return 0;
}
/*
* mbp give up routine. This path is taken if hfs.mpb_rdy is 0 or the read
* state machine on the BIOS end doesn't match the ME's state machine.
*/
static void intel_me_mbp_give_up(struct device *dev)
{
union mei_csr csr;
pci_write_config32(dev, PCI_ME_H_GS2, PCI_ME_MBP_GIVE_UP);
csr = read_host_csr();
csr.reset = 1;
csr.interrupt_generate = 1;
write_host_csr(csr);
}
/*
* mbp clear routine. This will wait for the ME to indicate that
* the MBP has been read and cleared.
*/
static void intel_me_mbp_clear(struct device *dev)
{
int count;
union me_hfs2 hfs2;
/* Wait for the mbp_cleared indicator */
for (count = ME_RETRY; count > 0; --count) {
hfs2.raw = pci_read_config32(dev, PCI_ME_HFS2);
if (hfs2.mbp_cleared)
break;
udelay(ME_DELAY);
}
if (count == 0) {
printk(BIOS_WARNING, "ME: Timeout waiting for mbp_cleared\n");
intel_me_mbp_give_up(dev);
} else {
printk(BIOS_INFO, "ME: MBP cleared\n");
}
}
static void me_print_fw_version(struct mbp_fw_version_name *vers_name)
{
if (!vers_name) {
printk(BIOS_ERR, "ME: mbp missing version report\n");
return;
}
printk(BIOS_DEBUG, "ME: found version %d.%d.%d.%d\n",
vers_name->major_version, vers_name->minor_version,
vers_name->hotfix_version, vers_name->build_version);
}
static inline void print_cap(const char *name, int state)
{
printk(BIOS_DEBUG, "ME Capability: %-41s : %sabled\n",
name, state ? " en" : "dis");
}
/* Get ME Firmware Capabilities */
static int mkhi_get_fwcaps(struct mbp_mefwcaps *cap)
{
u32 rule_id = 0;
struct me_fwcaps cap_msg;
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_FWCAPS,
.command = MKHI_FWCAPS_GET_RULE,
};
/* Send request and wait for response */
if (mei_sendrecv_mkhi(&mkhi, &rule_id, sizeof(u32),
&cap_msg, sizeof(cap_msg)) < 0) {
printk(BIOS_ERR, "ME: GET FWCAPS message failed\n");
return -1;
}
*cap = cap_msg.caps_sku;
return 0;
}
/* Get ME Firmware Capabilities */
static void me_print_fwcaps(struct mbp_mefwcaps *cap)
{
struct mbp_mefwcaps local_caps;
if (!cap) {
cap = &local_caps;
printk(BIOS_ERR, "ME: mbp missing fwcaps report\n");
if (mkhi_get_fwcaps(cap))
return;
}
print_cap("Full Network manageability", cap->full_net);
print_cap("Regular Network manageability", cap->std_net);
print_cap("Manageability", cap->manageability);
print_cap("IntelR Anti-Theft (AT)", cap->intel_at);
print_cap("IntelR Capability Licensing Service (CLS)", cap->intel_cls);
print_cap("IntelR Power Sharing Technology (MPC)", cap->intel_mpc);
print_cap("ICC Over Clocking", cap->icc_over_clocking);
print_cap("Protected Audio Video Path (PAVP)", cap->pavp);
print_cap("IPV6", cap->ipv6);
print_cap("KVM Remote Control (KVM)", cap->kvm);
print_cap("Outbreak Containment Heuristic (OCH)", cap->och);
print_cap("Virtual LAN (VLAN)", cap->vlan);
print_cap("TLS", cap->tls);
print_cap("Wireless LAN (WLAN)", cap->wlan);
}
/* Send END OF POST message to the ME */
static int mkhi_end_of_post(void)
{
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = MKHI_END_OF_POST,
};
u32 eop_ack;
/* Send request and wait for response */
printk(BIOS_NOTICE, "ME: %s\n", __func__);
if (mei_sendrecv_mkhi(&mkhi, NULL, 0, &eop_ack, sizeof(eop_ack)) < 0) {
printk(BIOS_ERR, "ME: END OF POST message failed\n");
return -1;
}
printk(BIOS_INFO, "ME: END OF POST message successful (%d)\n", eop_ack);
return 0;
}
void intel_me_finalize(struct device *dev)
{
union me_hfs hfs;
u32 reg32;
reg32 = pci_read_config32(dev, PCI_BASE_ADDRESS_0);
mei_base_address = (u8 *)(uintptr_t)(reg32 & ~PCI_BASE_ADDRESS_MEM_ATTR_MASK);
/* S3 path will have hidden this device already */
if (!mei_base_address || mei_base_address == (u8 *)0xfffffff0)
return;
/* Wait for ME MBP Cleared indicator */
intel_me_mbp_clear(dev);
/* Make sure ME is in a mode that expects EOP */
hfs.raw = pci_read_config32(dev, PCI_ME_HFS);
/* Abort and leave device alone if not normal mode */
if (hfs.fpt_bad ||
hfs.working_state != ME_HFS_CWS_NORMAL ||
hfs.operation_mode != ME_HFS_MODE_NORMAL)
return;
/* Try to send EOP command so ME stops accepting other commands */
mkhi_end_of_post();
if (!CONFIG(DISABLE_ME_PCI))
return;
/* Make sure IO is disabled */
pci_and_config16(dev, PCI_COMMAND,
~(PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | PCI_COMMAND_IO));
/* Hide the PCI device */
RCBA32_OR(FD2, PCH_DISABLE_MEI1);
}
static int me_icc_set_clock_enables(u32 mask)
{
struct icc_clock_enables_msg clk = {
.clock_enables = 0, /* Turn off specified clocks */
.clock_mask = mask,
.no_response = 1, /* Do not expect response */
};
struct icc_header icc = {
.api_version = ICC_API_VERSION_LYNXPOINT,
.icc_command = ICC_SET_CLOCK_ENABLES,
.length = sizeof(clk),
};
/* Send request and wait for response */
if (mei_sendrecv_icc(&icc, &clk, sizeof(clk), NULL, 0) < 0) {
printk(BIOS_ERR, "ME: ICC SET CLOCK ENABLES message failed\n");
return -1;
}
printk(BIOS_INFO, "ME: ICC SET CLOCK ENABLES 0x%08x\n", mask);
return 0;
}
/* Determine the path that we should take based on ME status */
static enum me_bios_path intel_me_path(struct device *dev)
{
enum me_bios_path path = ME_DISABLE_BIOS_PATH;
union me_hfs hfs = { .raw = pci_read_config32(dev, PCI_ME_HFS) };
union me_hfs2 hfs2 = { .raw = pci_read_config32(dev, PCI_ME_HFS2) };
/* Check and dump status */
intel_me_status(hfs, hfs2);
/* Check Current Working State */
switch (hfs.working_state) {
case ME_HFS_CWS_NORMAL:
path = ME_NORMAL_BIOS_PATH;
break;
case ME_HFS_CWS_REC:
path = ME_RECOVERY_BIOS_PATH;
break;
default:
path = ME_DISABLE_BIOS_PATH;
break;
}
/* Check Current Operation Mode */
switch (hfs.operation_mode) {
case ME_HFS_MODE_NORMAL:
break;
case ME_HFS_MODE_DEBUG:
case ME_HFS_MODE_DIS:
case ME_HFS_MODE_OVER_JMPR:
case ME_HFS_MODE_OVER_MEI:
default:
path = ME_DISABLE_BIOS_PATH;
break;
}
/* Check for any error code and valid firmware and MBP */
if (hfs.error_code || hfs.fpt_bad)
path = ME_ERROR_BIOS_PATH;
/* Check if the MBP is ready */
if (!hfs2.mbp_rdy) {
printk(BIOS_CRIT, "%s: mbp is not ready!\n",
__func__);
path = ME_ERROR_BIOS_PATH;
}
if (CONFIG(ELOG) && path != ME_NORMAL_BIOS_PATH) {
struct elog_event_data_me_extended data = {
.current_working_state = hfs.working_state,
.operation_state = hfs.operation_state,
.operation_mode = hfs.operation_mode,
.error_code = hfs.error_code,
.progress_code = hfs2.progress_code,
.current_pmevent = hfs2.current_pmevent,
.current_state = hfs2.current_state,
};
elog_add_event_byte(ELOG_TYPE_MANAGEMENT_ENGINE, path);
elog_add_event_raw(ELOG_TYPE_MANAGEMENT_ENGINE_EXT,
&data, sizeof(data));
}
return path;
}
/* Prepare ME for MEI messages */
static int intel_mei_setup(struct device *dev)
{
struct resource *res;
union mei_csr host;
/* Find the MMIO base for the ME interface */
res = probe_resource(dev, PCI_BASE_ADDRESS_0);
if (!res || res->base == 0 || res->size == 0) {
printk(BIOS_DEBUG, "ME: MEI resource not present!\n");
return -1;
}
mei_base_address = res2mmio(res, 0, 0);
/* Ensure Memory and Bus Master bits are set */
pci_or_config16(dev, PCI_COMMAND, PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY);
/* Clean up status for next message */
host = read_host_csr();
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(host);
return 0;
}
/* Read the Extend register hash of ME firmware */
static int intel_me_extend_valid(struct device *dev)
{
union me_heres status = { .raw = pci_read_config32(dev, PCI_ME_HERES) };
u32 extend[8] = {0};
int i, count = 0;
if (!status.extend_feature_present) {
printk(BIOS_ERR, "ME: Extend Feature not present\n");
return -1;
}
if (!status.extend_reg_valid) {
printk(BIOS_ERR, "ME: Extend Register not valid\n");
return -1;
}
switch (status.extend_reg_algorithm) {
case PCI_ME_EXT_SHA1:
count = 5;
printk(BIOS_DEBUG, "ME: Extend SHA-1: ");
break;
case PCI_ME_EXT_SHA256:
count = 8;
printk(BIOS_DEBUG, "ME: Extend SHA-256: ");
break;
default:
printk(BIOS_ERR, "ME: Extend Algorithm %d unknown\n",
status.extend_reg_algorithm);
return -1;
}
for (i = 0; i < count; ++i) {
extend[i] = pci_read_config32(dev, PCI_ME_HER(i));
printk(BIOS_DEBUG, "%08x", extend[i]);
}
printk(BIOS_DEBUG, "\n");
/* Save hash in NVS for the OS to verify */
if (CONFIG(CHROMEOS_NVS))
chromeos_set_me_hash(extend, count);
return 0;
}
static u32 me_to_host_words_pending(void)
{
union mei_csr me = read_me_csr();
if (!me.ready)
return 0;
return (me.buffer_write_ptr - me.buffer_read_ptr) &
(me.buffer_depth - 1);
}
struct mbp_payload {
union mbp_header header;
u32 data[0];
};
/*
* Read and print ME MBP data
*
* Return -1 to indicate a problem (give up)
* Return 0 to indicate success (send LOCK+EOP)
*/
static int intel_me_read_mbp(struct me_bios_payload *mbp_data, struct device *dev)
{
union mbp_header mbp_hdr;
u32 me2host_pending;
union mei_csr host;
union me_hfs2 hfs2 = { .raw = pci_read_config32(dev, PCI_ME_HFS2) };
struct mbp_payload *mbp;
int i;
if (!hfs2.mbp_rdy) {
printk(BIOS_ERR, "ME: MBP not ready\n");
goto mbp_failure;
}
me2host_pending = me_to_host_words_pending();
if (!me2host_pending) {
printk(BIOS_ERR, "ME: no mbp data!\n");
goto mbp_failure;
}
/* we know for sure that at least the header is there */
mbp_hdr.raw = read_cb();
if ((mbp_hdr.num_entries > (mbp_hdr.mbp_size / 2)) ||
(me2host_pending < mbp_hdr.mbp_size)) {
printk(BIOS_ERR, "ME: mbp of %d entries, total size %d words"
" buffer contains %d words\n",
mbp_hdr.num_entries, mbp_hdr.mbp_size,
me2host_pending);
goto mbp_failure;
}
mbp = malloc(mbp_hdr.mbp_size * sizeof(u32));
if (!mbp)
goto mbp_failure;
mbp->header = mbp_hdr;
me2host_pending--;
i = 0;
while (i != me2host_pending) {
mbp->data[i] = read_cb();
i++;
}
/* Signal to the ME that the host has finished reading the MBP. */
host = read_host_csr();
host.interrupt_generate = 1;
write_host_csr(host);
/* Dump out the MBP contents. */
if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
printk(BIOS_INFO, "ME MBP: Header: items: %d, size dw: %d\n",
mbp->header.num_entries, mbp->header.mbp_size);
if (CONFIG(DEBUG_INTEL_ME)) {
for (i = 0; i < mbp->header.mbp_size - 1; i++) {
printk(BIOS_INFO, "ME MBP: %04x: 0x%08x\n", i, mbp->data[i]);
}
}
}
#define ASSIGN_FIELD_PTR(field_,val_) \
{ \
mbp_data->field_ = (typeof(mbp_data->field_))(void *)val_; \
break; \
}
/* Setup the pointers in the me_bios_payload structure. */
for (i = 0; i < mbp->header.mbp_size - 1;) {
struct mbp_item_header *item = (void *)&mbp->data[i];
switch (MBP_MAKE_IDENT(item->app_id, item->item_id)) {
case MBP_IDENT(KERNEL, FW_VER):
ASSIGN_FIELD_PTR(fw_version_name, &mbp->data[i+1]);
case MBP_IDENT(ICC, PROFILE):
ASSIGN_FIELD_PTR(icc_profile, &mbp->data[i+1]);
case MBP_IDENT(INTEL_AT, STATE):
ASSIGN_FIELD_PTR(at_state, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, FW_CAP):
ASSIGN_FIELD_PTR(fw_capabilities, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, ROM_BIST):
ASSIGN_FIELD_PTR(rom_bist_data, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, PLAT_KEY):
ASSIGN_FIELD_PTR(platform_key, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, FW_TYPE):
ASSIGN_FIELD_PTR(fw_plat_type, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, MFS_FAILURE):
ASSIGN_FIELD_PTR(mfsintegrity, &mbp->data[i+1]);
case MBP_IDENT(KERNEL, PLAT_TIME):
ASSIGN_FIELD_PTR(plat_time, &mbp->data[i+1]);
case MBP_IDENT(NFC, SUPPORT_DATA):
ASSIGN_FIELD_PTR(nfc_data, &mbp->data[i+1]);
default:
printk(BIOS_ERR, "ME MBP: unknown item 0x%x @ "
"dw offset 0x%x\n", mbp->data[i], i);
break;
}
i += item->length;
}
#undef ASSIGN_FIELD_PTR
return 0;
mbp_failure:
intel_me_mbp_give_up(dev);
return -1;
}
/* Check whether ME is present and do basic init */
static void intel_me_init(struct device *dev)
{
struct southbridge_intel_lynxpoint_config *config = dev->chip_info;
enum me_bios_path path = intel_me_path(dev);
struct me_bios_payload mbp_data;
/* Do initial setup and determine the BIOS path */
printk(BIOS_NOTICE, "ME: BIOS path: %s\n", me_bios_path_values[path]);
if (path == ME_NORMAL_BIOS_PATH) {
/* Validate the extend register */
intel_me_extend_valid(dev);
}
memset(&mbp_data, 0, sizeof(mbp_data));
/*
* According to the ME9 BWG, BIOS is required to fetch MBP data in
* all boot flows except S3 Resume.
*/
/* Prepare MEI MMIO interface */
if (intel_mei_setup(dev) < 0)
return;
if (intel_me_read_mbp(&mbp_data, dev))
return;
if (CONFIG_DEFAULT_CONSOLE_LOGLEVEL >= BIOS_DEBUG) {
me_print_fw_version(mbp_data.fw_version_name);
if (CONFIG(DEBUG_INTEL_ME))
me_print_fwcaps(mbp_data.fw_capabilities);
if (mbp_data.plat_time) {
printk(BIOS_DEBUG, "ME: Wake Event to ME Reset: %u ms\n",
mbp_data.plat_time->wake_event_mrst_time_ms);
printk(BIOS_DEBUG, "ME: ME Reset to Platform Reset: %u ms\n",
mbp_data.plat_time->mrst_pltrst_time_ms);
printk(BIOS_DEBUG, "ME: Platform Reset to CPU Reset: %u ms\n",
mbp_data.plat_time->pltrst_cpurst_time_ms);
}
}
/* Set clock enables according to devicetree */
if (config && config->icc_clock_disable)
me_icc_set_clock_enables(config->icc_clock_disable);
/*
* Leave the ME unlocked. It will be locked later.
*/
}
static void intel_me_enable(struct device *dev)
{
/* Avoid talking to the device in S3 path */
if (acpi_is_wakeup_s3() && CONFIG(DISABLE_ME_PCI)) {
dev->enabled = 0;
pch_disable_devfn(dev);
}
}
static struct device_operations device_ops = {
.read_resources = pci_dev_read_resources,
.set_resources = pci_dev_set_resources,
.enable_resources = pci_dev_enable_resources,
.enable = intel_me_enable,
.init = intel_me_init,
.final = intel_me_finalize,
.ops_pci = &pci_dev_ops_pci,
};
static const unsigned short pci_device_ids[] = {
PCI_DID_INTEL_LPT_H_MEI,
PCI_DID_INTEL_LPT_LP_MEI,
0
};
static const struct pci_driver intel_me __pci_driver = {
.ops = &device_ops,
.vendor = PCI_VID_INTEL,
.devices = pci_device_ids,
};