while others dislike them being extra commits, let's clean them up once and for all for the existing code. If it's ugly, let it only be ugly once :-) Signed-off-by: Stefan Reinauer <stepan@coresystems.de> Acked-by: Stefan Reinauer <stepan@coresystems.de> git-svn-id: svn://svn.coreboot.org/coreboot/trunk@5507 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
		
			
				
	
	
		
			4949 lines
		
	
	
		
			156 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4949 lines
		
	
	
		
			156 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Extended regular expression matching and search library,
 | ||
|    version 0.12.
 | ||
|    (Implements POSIX draft P10003.2/D11.2, except for
 | ||
|    internationalization features.)
 | ||
| 
 | ||
|    Copyright (C) 1993 Free Software Foundation, Inc.
 | ||
| 
 | ||
|    This program is free software; you can redistribute it and/or modify
 | ||
|    it under the terms of the GNU General Public License as published by
 | ||
|    the Free Software Foundation; either version 2, or (at your option)
 | ||
|    any later version.
 | ||
| 
 | ||
|    This program is distributed in the hope that it will be useful,
 | ||
|    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | ||
|    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | ||
|    GNU General Public License for more details.
 | ||
| 
 | ||
|    You should have received a copy of the GNU General Public License
 | ||
|    along with this program; if not, write to the Free Software
 | ||
|    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  */
 | ||
| 
 | ||
| /* AIX requires this to be the first thing in the file. */
 | ||
| #if defined (_AIX) && !defined (REGEX_MALLOC)
 | ||
|   #pragma alloca
 | ||
| #endif
 | ||
| 
 | ||
| #define _GNU_SOURCE
 | ||
| 
 | ||
| /* We need this for `regex.h', and perhaps for the Emacs include files.  */
 | ||
| #include <sys/types.h>
 | ||
| 
 | ||
| #ifdef HAVE_CONFIG_H
 | ||
| #include "config.h"
 | ||
| #endif
 | ||
| 
 | ||
| /* The `emacs' switch turns on certain matching commands
 | ||
|    that make sense only in Emacs. */
 | ||
| #ifdef emacs
 | ||
| 
 | ||
| #include "lisp.h"
 | ||
| #include "buffer.h"
 | ||
| #include "syntax.h"
 | ||
| 
 | ||
| /* Emacs uses `NULL' as a predicate.  */
 | ||
| #undef NULL
 | ||
| 
 | ||
| #else  /* not emacs */
 | ||
| 
 | ||
| /* We used to test for `BSTRING' here, but only GCC and Emacs define
 | ||
|    `BSTRING', as far as I know, and neither of them use this code.  */
 | ||
| #if HAVE_STRING_H || STDC_HEADERS
 | ||
| #include <string.h>
 | ||
| #ifndef bcmp
 | ||
| #define bcmp(s1, s2, n)	memcmp ((s1), (s2), (n))
 | ||
| #endif
 | ||
| #ifndef bcopy
 | ||
| #define bcopy(s, d, n)	memcpy ((d), (s), (n))
 | ||
| #endif
 | ||
| #ifndef bzero
 | ||
| #define bzero(s, n)	memset ((s), 0, (n))
 | ||
| #endif
 | ||
| #else
 | ||
| #include <strings.h>
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef STDC_HEADERS
 | ||
| #include <stdlib.h>
 | ||
| #else
 | ||
| char *malloc ();
 | ||
| char *realloc ();
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /* Define the syntax stuff for \<, \>, etc.  */
 | ||
| 
 | ||
| /* This must be nonzero for the wordchar and notwordchar pattern
 | ||
|    commands in re_match_2.  */
 | ||
| #ifndef Sword
 | ||
| #define Sword 1
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef SYNTAX_TABLE
 | ||
| 
 | ||
| extern char *re_syntax_table;
 | ||
| 
 | ||
| #else /* not SYNTAX_TABLE */
 | ||
| 
 | ||
| /* How many characters in the character set.  */
 | ||
| #define CHAR_SET_SIZE 256
 | ||
| 
 | ||
| static char re_syntax_table[CHAR_SET_SIZE];
 | ||
| 
 | ||
| static void
 | ||
| init_syntax_once ()
 | ||
| {
 | ||
|    register int c;
 | ||
|    static int done = 0;
 | ||
| 
 | ||
|    if (done)
 | ||
|      return;
 | ||
| 
 | ||
|    bzero (re_syntax_table, sizeof re_syntax_table);
 | ||
| 
 | ||
|    for (c = 'a'; c <= 'z'; c++)
 | ||
|      re_syntax_table[c] = Sword;
 | ||
| 
 | ||
|    for (c = 'A'; c <= 'Z'; c++)
 | ||
|      re_syntax_table[c] = Sword;
 | ||
| 
 | ||
|    for (c = '0'; c <= '9'; c++)
 | ||
|      re_syntax_table[c] = Sword;
 | ||
| 
 | ||
|    re_syntax_table['_'] = Sword;
 | ||
| 
 | ||
|    done = 1;
 | ||
| }
 | ||
| 
 | ||
| #endif /* not SYNTAX_TABLE */
 | ||
| 
 | ||
| #define SYNTAX(c) re_syntax_table[c]
 | ||
| 
 | ||
| #endif /* not emacs */
 | ||
| 
 | ||
| /* Get the interface, including the syntax bits.  */
 | ||
| #include "regex.h"
 | ||
| 
 | ||
| /* isalpha etc. are used for the character classes.  */
 | ||
| #include <ctype.h>
 | ||
| 
 | ||
| #ifndef isascii
 | ||
| #define isascii(c) 1
 | ||
| #endif
 | ||
| 
 | ||
| #ifdef isblank
 | ||
| #define ISBLANK(c) (isascii (c) && isblank (c))
 | ||
| #else
 | ||
| #define ISBLANK(c) ((c) == ' ' || (c) == '\t')
 | ||
| #endif
 | ||
| #ifdef isgraph
 | ||
| #define ISGRAPH(c) (isascii (c) && isgraph (c))
 | ||
| #else
 | ||
| #define ISGRAPH(c) (isascii (c) && isprint (c) && !isspace (c))
 | ||
| #endif
 | ||
| 
 | ||
| #define ISPRINT(c) (isascii (c) && isprint (c))
 | ||
| #define ISDIGIT(c) (isascii (c) && isdigit (c))
 | ||
| #define ISALNUM(c) (isascii (c) && isalnum (c))
 | ||
| #define ISALPHA(c) (isascii (c) && isalpha (c))
 | ||
| #define ISCNTRL(c) (isascii (c) && iscntrl (c))
 | ||
| #define ISLOWER(c) (isascii (c) && islower (c))
 | ||
| #define ISPUNCT(c) (isascii (c) && ispunct (c))
 | ||
| #define ISSPACE(c) (isascii (c) && isspace (c))
 | ||
| #define ISUPPER(c) (isascii (c) && isupper (c))
 | ||
| #define ISXDIGIT(c) (isascii (c) && isxdigit (c))
 | ||
| 
 | ||
| #ifndef NULL
 | ||
| #define NULL 0
 | ||
| #endif
 | ||
| 
 | ||
| /* We remove any previous definition of `SIGN_EXTEND_CHAR',
 | ||
|    since ours (we hope) works properly with all combinations of
 | ||
|    machines, compilers, `char' and `unsigned char' argument types.
 | ||
|    (Per Bothner suggested the basic approach.)  */
 | ||
| #undef SIGN_EXTEND_CHAR
 | ||
| #if __STDC__
 | ||
| #define SIGN_EXTEND_CHAR(c) ((signed char) (c))
 | ||
| #else  /* not __STDC__ */
 | ||
| /* As in Harbison and Steele.  */
 | ||
| #define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
 | ||
| #endif
 | ||
| 
 | ||
| /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
 | ||
|    use `alloca' instead of `malloc'.  This is because using malloc in
 | ||
|    re_search* or re_match* could cause memory leaks when C-g is used in
 | ||
|    Emacs; also, malloc is slower and causes storage fragmentation.  On
 | ||
|    the other hand, malloc is more portable, and easier to debug.
 | ||
| 
 | ||
|    Because we sometimes use alloca, some routines have to be macros,
 | ||
|    not functions -- `alloca'-allocated space disappears at the end of the
 | ||
|    function it is called in.  */
 | ||
| 
 | ||
| #ifdef REGEX_MALLOC
 | ||
| 
 | ||
| #define REGEX_ALLOCATE malloc
 | ||
| #define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
 | ||
| 
 | ||
| #else /* not REGEX_MALLOC  */
 | ||
| 
 | ||
| /* Emacs already defines alloca, sometimes.  */
 | ||
| #ifndef alloca
 | ||
| 
 | ||
| /* Make alloca work the best possible way.  */
 | ||
| #ifdef __GNUC__
 | ||
| #define alloca __builtin_alloca
 | ||
| #else /* not __GNUC__ */
 | ||
| #if HAVE_ALLOCA_H
 | ||
| #include <alloca.h>
 | ||
| #else /* not __GNUC__ or HAVE_ALLOCA_H */
 | ||
| #ifndef _AIX /* Already did AIX, up at the top.  */
 | ||
| char *alloca ();
 | ||
| #endif /* not _AIX */
 | ||
| #endif /* not HAVE_ALLOCA_H */
 | ||
| #endif /* not __GNUC__ */
 | ||
| 
 | ||
| #endif /* not alloca */
 | ||
| 
 | ||
| #define REGEX_ALLOCATE alloca
 | ||
| 
 | ||
| /* Assumes a `char *destination' variable.  */
 | ||
| #define REGEX_REALLOCATE(source, osize, nsize)				\
 | ||
|   (destination = (char *) alloca (nsize),				\
 | ||
|    bcopy (source, destination, osize),					\
 | ||
|    destination)
 | ||
| 
 | ||
| #endif /* not REGEX_MALLOC */
 | ||
| 
 | ||
| 
 | ||
| /* True if `size1' is non-NULL and PTR is pointing anywhere inside
 | ||
|    `string1' or just past its end.  This works if PTR is NULL, which is
 | ||
|    a good thing.  */
 | ||
| #define FIRST_STRING_P(ptr) 					\
 | ||
|   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
 | ||
| 
 | ||
| /* (Re)Allocate N items of type T using malloc, or fail.  */
 | ||
| #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
 | ||
| #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
 | ||
| #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
 | ||
| 
 | ||
| #define BYTEWIDTH 8 /* In bits.  */
 | ||
| 
 | ||
| #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
 | ||
| 
 | ||
| #define MAX(a, b) ((a) > (b) ? (a) : (b))
 | ||
| #define MIN(a, b) ((a) < (b) ? (a) : (b))
 | ||
| 
 | ||
| typedef char boolean;
 | ||
| #define false 0
 | ||
| #define true 1
 | ||
| 
 | ||
| /* These are the command codes that appear in compiled regular
 | ||
|    expressions.  Some opcodes are followed by argument bytes.  A
 | ||
|    command code can specify any interpretation whatsoever for its
 | ||
|    arguments.  Zero bytes may appear in the compiled regular expression.
 | ||
| 
 | ||
|    The value of `exactn' is needed in search.c (search_buffer) in Emacs.
 | ||
|    So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
 | ||
|    `exactn' we use here must also be 1.  */
 | ||
| 
 | ||
| typedef enum
 | ||
| {
 | ||
|   no_op = 0,
 | ||
| 
 | ||
|         /* Followed by one byte giving n, then by n literal bytes.  */
 | ||
|   exactn = 1,
 | ||
| 
 | ||
|         /* Matches any (more or less) character.  */
 | ||
|   anychar,
 | ||
| 
 | ||
|         /* Matches any one char belonging to specified set.  First
 | ||
|            following byte is number of bitmap bytes.  Then come bytes
 | ||
|            for a bitmap saying which chars are in.  Bits in each byte
 | ||
|            are ordered low-bit-first.  A character is in the set if its
 | ||
|            bit is 1.  A character too large to have a bit in the map is
 | ||
|            automatically not in the set.  */
 | ||
|   charset,
 | ||
| 
 | ||
|         /* Same parameters as charset, but match any character that is
 | ||
|            not one of those specified.  */
 | ||
|   charset_not,
 | ||
| 
 | ||
|         /* Start remembering the text that is matched, for storing in a
 | ||
|            register.  Followed by one byte with the register number, in
 | ||
|            the range 0 to one less than the pattern buffer's re_nsub
 | ||
|            field.  Then followed by one byte with the number of groups
 | ||
|            inner to this one.  (This last has to be part of the
 | ||
|            start_memory only because we need it in the on_failure_jump
 | ||
|            of re_match_2.)  */
 | ||
|   start_memory,
 | ||
| 
 | ||
|         /* Stop remembering the text that is matched and store it in a
 | ||
|            memory register.  Followed by one byte with the register
 | ||
|            number, in the range 0 to one less than `re_nsub' in the
 | ||
|            pattern buffer, and one byte with the number of inner groups,
 | ||
|            just like `start_memory'.  (We need the number of inner
 | ||
|            groups here because we don't have any easy way of finding the
 | ||
|            corresponding start_memory when we're at a stop_memory.)  */
 | ||
|   stop_memory,
 | ||
| 
 | ||
|         /* Match a duplicate of something remembered. Followed by one
 | ||
|            byte containing the register number.  */
 | ||
|   duplicate,
 | ||
| 
 | ||
|         /* Fail unless at beginning of line.  */
 | ||
|   begline,
 | ||
| 
 | ||
|         /* Fail unless at end of line.  */
 | ||
|   endline,
 | ||
| 
 | ||
|         /* Succeeds if at beginning of buffer (if emacs) or at beginning
 | ||
|            of string to be matched (if not).  */
 | ||
|   begbuf,
 | ||
| 
 | ||
|         /* Analogously, for end of buffer/string.  */
 | ||
|   endbuf,
 | ||
| 
 | ||
|         /* Followed by two byte relative address to which to jump.  */
 | ||
|   jump,
 | ||
| 
 | ||
| 	/* Same as jump, but marks the end of an alternative.  */
 | ||
|   jump_past_alt,
 | ||
| 
 | ||
|         /* Followed by two-byte relative address of place to resume at
 | ||
|            in case of failure.  */
 | ||
|   on_failure_jump,
 | ||
| 
 | ||
|         /* Like on_failure_jump, but pushes a placeholder instead of the
 | ||
|            current string position when executed.  */
 | ||
|   on_failure_keep_string_jump,
 | ||
| 
 | ||
|         /* Throw away latest failure point and then jump to following
 | ||
|            two-byte relative address.  */
 | ||
|   pop_failure_jump,
 | ||
| 
 | ||
|         /* Change to pop_failure_jump if know won't have to backtrack to
 | ||
|            match; otherwise change to jump.  This is used to jump
 | ||
|            back to the beginning of a repeat.  If what follows this jump
 | ||
|            clearly won't match what the repeat does, such that we can be
 | ||
|            sure that there is no use backtracking out of repetitions
 | ||
|            already matched, then we change it to a pop_failure_jump.
 | ||
|            Followed by two-byte address.  */
 | ||
|   maybe_pop_jump,
 | ||
| 
 | ||
|         /* Jump to following two-byte address, and push a dummy failure
 | ||
|            point. This failure point will be thrown away if an attempt
 | ||
|            is made to use it for a failure.  A `+' construct makes this
 | ||
|            before the first repeat.  Also used as an intermediary kind
 | ||
|            of jump when compiling an alternative.  */
 | ||
|   dummy_failure_jump,
 | ||
| 
 | ||
| 	/* Push a dummy failure point and continue.  Used at the end of
 | ||
| 	   alternatives.  */
 | ||
|   push_dummy_failure,
 | ||
| 
 | ||
|         /* Followed by two-byte relative address and two-byte number n.
 | ||
|            After matching N times, jump to the address upon failure.  */
 | ||
|   succeed_n,
 | ||
| 
 | ||
|         /* Followed by two-byte relative address, and two-byte number n.
 | ||
|            Jump to the address N times, then fail.  */
 | ||
|   jump_n,
 | ||
| 
 | ||
|         /* Set the following two-byte relative address to the
 | ||
|            subsequent two-byte number.  The address *includes* the two
 | ||
|            bytes of number.  */
 | ||
|   set_number_at,
 | ||
| 
 | ||
|   wordchar,	/* Matches any word-constituent character.  */
 | ||
|   notwordchar,	/* Matches any char that is not a word-constituent.  */
 | ||
| 
 | ||
|   wordbeg,	/* Succeeds if at word beginning.  */
 | ||
|   wordend,	/* Succeeds if at word end.  */
 | ||
| 
 | ||
|   wordbound,	/* Succeeds if at a word boundary.  */
 | ||
|   notwordbound	/* Succeeds if not at a word boundary.  */
 | ||
| 
 | ||
| #ifdef emacs
 | ||
|   ,before_dot,	/* Succeeds if before point.  */
 | ||
|   at_dot,	/* Succeeds if at point.  */
 | ||
|   after_dot,	/* Succeeds if after point.  */
 | ||
| 
 | ||
| 	/* Matches any character whose syntax is specified.  Followed by
 | ||
|            a byte which contains a syntax code, e.g., Sword.  */
 | ||
|   syntaxspec,
 | ||
| 
 | ||
| 	/* Matches any character whose syntax is not that specified.  */
 | ||
|   notsyntaxspec
 | ||
| #endif /* emacs */
 | ||
| } re_opcode_t;
 | ||
| 
 | ||
| /* Common operations on the compiled pattern.  */
 | ||
| 
 | ||
| /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
 | ||
| 
 | ||
| #define STORE_NUMBER(destination, number)				\
 | ||
|   do {									\
 | ||
|     (destination)[0] = (number) & 0377;					\
 | ||
|     (destination)[1] = (number) >> 8;					\
 | ||
|   } while (0)
 | ||
| 
 | ||
| /* Same as STORE_NUMBER, except increment DESTINATION to
 | ||
|    the byte after where the number is stored.  Therefore, DESTINATION
 | ||
|    must be an lvalue.  */
 | ||
| 
 | ||
| #define STORE_NUMBER_AND_INCR(destination, number)			\
 | ||
|   do {									\
 | ||
|     STORE_NUMBER (destination, number);					\
 | ||
|     (destination) += 2;							\
 | ||
|   } while (0)
 | ||
| 
 | ||
| /* Put into DESTINATION a number stored in two contiguous bytes starting
 | ||
|    at SOURCE.  */
 | ||
| 
 | ||
| #define EXTRACT_NUMBER(destination, source)				\
 | ||
|   do {									\
 | ||
|     (destination) = *(source) & 0377;					\
 | ||
|     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
 | ||
|   } while (0)
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
| static void
 | ||
| extract_number (dest, source)
 | ||
|     int *dest;
 | ||
|     unsigned char *source;
 | ||
| {
 | ||
|   int temp = SIGN_EXTEND_CHAR (*(source + 1));
 | ||
|   *dest = *source & 0377;
 | ||
|   *dest += temp << 8;
 | ||
| }
 | ||
| 
 | ||
| #ifndef EXTRACT_MACROS /* To debug the macros.  */
 | ||
| #undef EXTRACT_NUMBER
 | ||
| #define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
 | ||
| #endif /* not EXTRACT_MACROS */
 | ||
| 
 | ||
| #endif /* DEBUG */
 | ||
| 
 | ||
| /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
 | ||
|    SOURCE must be an lvalue.  */
 | ||
| 
 | ||
| #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
 | ||
|   do {									\
 | ||
|     EXTRACT_NUMBER (destination, source);				\
 | ||
|     (source) += 2; 							\
 | ||
|   } while (0)
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
| static void
 | ||
| extract_number_and_incr (destination, source)
 | ||
|     int *destination;
 | ||
|     unsigned char **source;
 | ||
| {
 | ||
|   extract_number (destination, *source);
 | ||
|   *source += 2;
 | ||
| }
 | ||
| 
 | ||
| #ifndef EXTRACT_MACROS
 | ||
| #undef EXTRACT_NUMBER_AND_INCR
 | ||
| #define EXTRACT_NUMBER_AND_INCR(dest, src) \
 | ||
|   extract_number_and_incr (&dest, &src)
 | ||
| #endif /* not EXTRACT_MACROS */
 | ||
| 
 | ||
| #endif /* DEBUG */
 | ||
| 
 | ||
| /* If DEBUG is defined, Regex prints many voluminous messages about what
 | ||
|    it is doing (if the variable `debug' is nonzero).  If linked with the
 | ||
|    main program in `iregex.c', you can enter patterns and strings
 | ||
|    interactively.  And if linked with the main program in `main.c' and
 | ||
|    the other test files, you can run the already-written tests.  */
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
| 
 | ||
| /* We use standard I/O for debugging.  */
 | ||
| #include <stdio.h>
 | ||
| 
 | ||
| /* It is useful to test things that ``must'' be true when debugging.  */
 | ||
| #include <assert.h>
 | ||
| 
 | ||
| static int debug = 0;
 | ||
| 
 | ||
| #define DEBUG_STATEMENT(e) e
 | ||
| #define DEBUG_PRINT1(x) if (debug) printf (x)
 | ||
| #define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
 | ||
| #define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
 | ||
| #define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
 | ||
| #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
 | ||
|   if (debug) print_partial_compiled_pattern (s, e)
 | ||
| #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
 | ||
|   if (debug) print_double_string (w, s1, sz1, s2, sz2)
 | ||
| 
 | ||
| 
 | ||
| extern void printchar ();
 | ||
| 
 | ||
| /* Print the fastmap in human-readable form.  */
 | ||
| 
 | ||
| void
 | ||
| print_fastmap (fastmap)
 | ||
|     char *fastmap;
 | ||
| {
 | ||
|   unsigned was_a_range = 0;
 | ||
|   unsigned i = 0;
 | ||
| 
 | ||
|   while (i < (1 << BYTEWIDTH))
 | ||
|     {
 | ||
|       if (fastmap[i++])
 | ||
| 	{
 | ||
| 	  was_a_range = 0;
 | ||
|           printchar (i - 1);
 | ||
|           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
 | ||
|             {
 | ||
|               was_a_range = 1;
 | ||
|               i++;
 | ||
|             }
 | ||
| 	  if (was_a_range)
 | ||
|             {
 | ||
|               printf ("-");
 | ||
|               printchar (i - 1);
 | ||
|             }
 | ||
|         }
 | ||
|     }
 | ||
|   putchar ('\n');
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Print a compiled pattern string in human-readable form, starting at
 | ||
|    the START pointer into it and ending just before the pointer END.  */
 | ||
| 
 | ||
| void
 | ||
| print_partial_compiled_pattern (start, end)
 | ||
|     unsigned char *start;
 | ||
|     unsigned char *end;
 | ||
| {
 | ||
|   int mcnt, mcnt2;
 | ||
|   unsigned char *p = start;
 | ||
|   unsigned char *pend = end;
 | ||
| 
 | ||
|   if (start == NULL)
 | ||
|     {
 | ||
|       printf ("(null)\n");
 | ||
|       return;
 | ||
|     }
 | ||
| 
 | ||
|   /* Loop over pattern commands.  */
 | ||
|   while (p < pend)
 | ||
|     {
 | ||
|       switch ((re_opcode_t) *p++)
 | ||
| 	{
 | ||
|         case no_op:
 | ||
|           printf ("/no_op");
 | ||
|           break;
 | ||
| 
 | ||
| 	case exactn:
 | ||
| 	  mcnt = *p++;
 | ||
|           printf ("/exactn/%d", mcnt);
 | ||
|           do
 | ||
| 	    {
 | ||
|               putchar ('/');
 | ||
| 	      printchar (*p++);
 | ||
|             }
 | ||
|           while (--mcnt);
 | ||
|           break;
 | ||
| 
 | ||
| 	case start_memory:
 | ||
|           mcnt = *p++;
 | ||
|           printf ("/start_memory/%d/%d", mcnt, *p++);
 | ||
|           break;
 | ||
| 
 | ||
| 	case stop_memory:
 | ||
|           mcnt = *p++;
 | ||
| 	  printf ("/stop_memory/%d/%d", mcnt, *p++);
 | ||
|           break;
 | ||
| 
 | ||
| 	case duplicate:
 | ||
| 	  printf ("/duplicate/%d", *p++);
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case anychar:
 | ||
| 	  printf ("/anychar");
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case charset:
 | ||
|         case charset_not:
 | ||
|           {
 | ||
|             register int c;
 | ||
| 
 | ||
|             printf ("/charset%s",
 | ||
| 	            (re_opcode_t) *(p - 1) == charset_not ? "_not" : "");
 | ||
| 
 | ||
|             assert (p + *p < pend);
 | ||
| 
 | ||
|             for (c = 0; c < *p; c++)
 | ||
|               {
 | ||
|                 unsigned bit;
 | ||
|                 unsigned char map_byte = p[1 + c];
 | ||
| 
 | ||
|                 putchar ('/');
 | ||
| 
 | ||
| 		for (bit = 0; bit < BYTEWIDTH; bit++)
 | ||
|                   if (map_byte & (1 << bit))
 | ||
|                     printchar (c * BYTEWIDTH + bit);
 | ||
|               }
 | ||
| 	    p += 1 + *p;
 | ||
| 	    break;
 | ||
| 	  }
 | ||
| 
 | ||
| 	case begline:
 | ||
| 	  printf ("/begline");
 | ||
|           break;
 | ||
| 
 | ||
| 	case endline:
 | ||
|           printf ("/endline");
 | ||
|           break;
 | ||
| 
 | ||
| 	case on_failure_jump:
 | ||
|           extract_number_and_incr (&mcnt, &p);
 | ||
|   	  printf ("/on_failure_jump/0/%d", mcnt);
 | ||
|           break;
 | ||
| 
 | ||
| 	case on_failure_keep_string_jump:
 | ||
|           extract_number_and_incr (&mcnt, &p);
 | ||
|   	  printf ("/on_failure_keep_string_jump/0/%d", mcnt);
 | ||
|           break;
 | ||
| 
 | ||
| 	case dummy_failure_jump:
 | ||
|           extract_number_and_incr (&mcnt, &p);
 | ||
|   	  printf ("/dummy_failure_jump/0/%d", mcnt);
 | ||
|           break;
 | ||
| 
 | ||
| 	case push_dummy_failure:
 | ||
|           printf ("/push_dummy_failure");
 | ||
|           break;
 | ||
| 
 | ||
|         case maybe_pop_jump:
 | ||
|           extract_number_and_incr (&mcnt, &p);
 | ||
|   	  printf ("/maybe_pop_jump/0/%d", mcnt);
 | ||
| 	  break;
 | ||
| 
 | ||
|         case pop_failure_jump:
 | ||
| 	  extract_number_and_incr (&mcnt, &p);
 | ||
|   	  printf ("/pop_failure_jump/0/%d", mcnt);
 | ||
| 	  break;
 | ||
| 
 | ||
|         case jump_past_alt:
 | ||
| 	  extract_number_and_incr (&mcnt, &p);
 | ||
|   	  printf ("/jump_past_alt/0/%d", mcnt);
 | ||
| 	  break;
 | ||
| 
 | ||
|         case jump:
 | ||
| 	  extract_number_and_incr (&mcnt, &p);
 | ||
|   	  printf ("/jump/0/%d", mcnt);
 | ||
| 	  break;
 | ||
| 
 | ||
|         case succeed_n:
 | ||
|           extract_number_and_incr (&mcnt, &p);
 | ||
|           extract_number_and_incr (&mcnt2, &p);
 | ||
|  	  printf ("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
 | ||
|           break;
 | ||
| 
 | ||
|         case jump_n:
 | ||
|           extract_number_and_incr (&mcnt, &p);
 | ||
|           extract_number_and_incr (&mcnt2, &p);
 | ||
|  	  printf ("/jump_n/0/%d/0/%d", mcnt, mcnt2);
 | ||
|           break;
 | ||
| 
 | ||
|         case set_number_at:
 | ||
|           extract_number_and_incr (&mcnt, &p);
 | ||
|           extract_number_and_incr (&mcnt2, &p);
 | ||
|  	  printf ("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
 | ||
|           break;
 | ||
| 
 | ||
|         case wordbound:
 | ||
| 	  printf ("/wordbound");
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case notwordbound:
 | ||
| 	  printf ("/notwordbound");
 | ||
|           break;
 | ||
| 
 | ||
| 	case wordbeg:
 | ||
| 	  printf ("/wordbeg");
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case wordend:
 | ||
| 	  printf ("/wordend");
 | ||
| 
 | ||
| #ifdef emacs
 | ||
| 	case before_dot:
 | ||
| 	  printf ("/before_dot");
 | ||
|           break;
 | ||
| 
 | ||
| 	case at_dot:
 | ||
| 	  printf ("/at_dot");
 | ||
|           break;
 | ||
| 
 | ||
| 	case after_dot:
 | ||
| 	  printf ("/after_dot");
 | ||
|           break;
 | ||
| 
 | ||
| 	case syntaxspec:
 | ||
|           printf ("/syntaxspec");
 | ||
| 	  mcnt = *p++;
 | ||
| 	  printf ("/%d", mcnt);
 | ||
|           break;
 | ||
| 
 | ||
| 	case notsyntaxspec:
 | ||
|           printf ("/notsyntaxspec");
 | ||
| 	  mcnt = *p++;
 | ||
| 	  printf ("/%d", mcnt);
 | ||
| 	  break;
 | ||
| #endif /* emacs */
 | ||
| 
 | ||
| 	case wordchar:
 | ||
| 	  printf ("/wordchar");
 | ||
|           break;
 | ||
| 
 | ||
| 	case notwordchar:
 | ||
| 	  printf ("/notwordchar");
 | ||
|           break;
 | ||
| 
 | ||
| 	case begbuf:
 | ||
| 	  printf ("/begbuf");
 | ||
|           break;
 | ||
| 
 | ||
| 	case endbuf:
 | ||
| 	  printf ("/endbuf");
 | ||
|           break;
 | ||
| 
 | ||
|         default:
 | ||
|           printf ("?%d", *(p-1));
 | ||
| 	}
 | ||
|     }
 | ||
|   printf ("/\n");
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| void
 | ||
| print_compiled_pattern (bufp)
 | ||
|     struct re_pattern_buffer *bufp;
 | ||
| {
 | ||
|   unsigned char *buffer = bufp->buffer;
 | ||
| 
 | ||
|   print_partial_compiled_pattern (buffer, buffer + bufp->used);
 | ||
|   printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
 | ||
| 
 | ||
|   if (bufp->fastmap_accurate && bufp->fastmap)
 | ||
|     {
 | ||
|       printf ("fastmap: ");
 | ||
|       print_fastmap (bufp->fastmap);
 | ||
|     }
 | ||
| 
 | ||
|   printf ("re_nsub: %d\t", bufp->re_nsub);
 | ||
|   printf ("regs_alloc: %d\t", bufp->regs_allocated);
 | ||
|   printf ("can_be_null: %d\t", bufp->can_be_null);
 | ||
|   printf ("newline_anchor: %d\n", bufp->newline_anchor);
 | ||
|   printf ("no_sub: %d\t", bufp->no_sub);
 | ||
|   printf ("not_bol: %d\t", bufp->not_bol);
 | ||
|   printf ("not_eol: %d\t", bufp->not_eol);
 | ||
|   printf ("syntax: %d\n", bufp->syntax);
 | ||
|   /* Perhaps we should print the translate table?  */
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| void
 | ||
| print_double_string (where, string1, size1, string2, size2)
 | ||
|     const char *where;
 | ||
|     const char *string1;
 | ||
|     const char *string2;
 | ||
|     int size1;
 | ||
|     int size2;
 | ||
| {
 | ||
|   unsigned this_char;
 | ||
| 
 | ||
|   if (where == NULL)
 | ||
|     printf ("(null)");
 | ||
|   else
 | ||
|     {
 | ||
|       if (FIRST_STRING_P (where))
 | ||
|         {
 | ||
|           for (this_char = where - string1; this_char < size1; this_char++)
 | ||
|             printchar (string1[this_char]);
 | ||
| 
 | ||
|           where = string2;
 | ||
|         }
 | ||
| 
 | ||
|       for (this_char = where - string2; this_char < size2; this_char++)
 | ||
|         printchar (string2[this_char]);
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| #else /* not DEBUG */
 | ||
| 
 | ||
| #undef assert
 | ||
| #define assert(e)
 | ||
| 
 | ||
| #define DEBUG_STATEMENT(e)
 | ||
| #define DEBUG_PRINT1(x)
 | ||
| #define DEBUG_PRINT2(x1, x2)
 | ||
| #define DEBUG_PRINT3(x1, x2, x3)
 | ||
| #define DEBUG_PRINT4(x1, x2, x3, x4)
 | ||
| #define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
 | ||
| #define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
 | ||
| 
 | ||
| #endif /* not DEBUG */
 | ||
| 
 | ||
| /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
 | ||
|    also be assigned to arbitrarily: each pattern buffer stores its own
 | ||
|    syntax, so it can be changed between regex compilations.  */
 | ||
| reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
 | ||
| 
 | ||
| 
 | ||
| /* Specify the precise syntax of regexps for compilation.  This provides
 | ||
|    for compatibility for various utilities which historically have
 | ||
|    different, incompatible syntaxes.
 | ||
| 
 | ||
|    The argument SYNTAX is a bit mask comprised of the various bits
 | ||
|    defined in regex.h.  We return the old syntax.  */
 | ||
| 
 | ||
| reg_syntax_t
 | ||
| re_set_syntax (syntax)
 | ||
|     reg_syntax_t syntax;
 | ||
| {
 | ||
|   reg_syntax_t ret = re_syntax_options;
 | ||
| 
 | ||
|   re_syntax_options = syntax;
 | ||
|   return ret;
 | ||
| }
 | ||
| 
 | ||
| /* This table gives an error message for each of the error codes listed
 | ||
|    in regex.h.  Obviously the order here has to be same as there.  */
 | ||
| 
 | ||
| static const char *re_error_msg[] =
 | ||
|   { NULL,					/* REG_NOERROR */
 | ||
|     "No match",					/* REG_NOMATCH */
 | ||
|     "Invalid regular expression",		/* REG_BADPAT */
 | ||
|     "Invalid collation character",		/* REG_ECOLLATE */
 | ||
|     "Invalid character class name",		/* REG_ECTYPE */
 | ||
|     "Trailing backslash",			/* REG_EESCAPE */
 | ||
|     "Invalid back reference",			/* REG_ESUBREG */
 | ||
|     "Unmatched [ or [^",			/* REG_EBRACK */
 | ||
|     "Unmatched ( or \\(",			/* REG_EPAREN */
 | ||
|     "Unmatched \\{",				/* REG_EBRACE */
 | ||
|     "Invalid content of \\{\\}",		/* REG_BADBR */
 | ||
|     "Invalid range end",			/* REG_ERANGE */
 | ||
|     "Memory exhausted",				/* REG_ESPACE */
 | ||
|     "Invalid preceding regular expression",	/* REG_BADRPT */
 | ||
|     "Premature end of regular expression",	/* REG_EEND */
 | ||
|     "Regular expression too big",		/* REG_ESIZE */
 | ||
|     "Unmatched ) or \\)",			/* REG_ERPAREN */
 | ||
|   };
 | ||
| 
 | ||
| /* Subroutine declarations and macros for regex_compile.  */
 | ||
| 
 | ||
| static void store_op1 (), store_op2 ();
 | ||
| static void insert_op1 (), insert_op2 ();
 | ||
| static boolean at_begline_loc_p (), at_endline_loc_p ();
 | ||
| static boolean group_in_compile_stack ();
 | ||
| static reg_errcode_t compile_range ();
 | ||
| 
 | ||
| /* Fetch the next character in the uncompiled pattern---translating it
 | ||
|    if necessary.  Also cast from a signed character in the constant
 | ||
|    string passed to us by the user to an unsigned char that we can use
 | ||
|    as an array index (in, e.g., `translate').  */
 | ||
| #define PATFETCH(c)							\
 | ||
|   do {if (p == pend) return REG_EEND;					\
 | ||
|     c = (unsigned char) *p++;						\
 | ||
|     if (translate) c = translate[c]; 					\
 | ||
|   } while (0)
 | ||
| 
 | ||
| /* Fetch the next character in the uncompiled pattern, with no
 | ||
|    translation.  */
 | ||
| #define PATFETCH_RAW(c)							\
 | ||
|   do {if (p == pend) return REG_EEND;					\
 | ||
|     c = (unsigned char) *p++; 						\
 | ||
|   } while (0)
 | ||
| 
 | ||
| /* Go backwards one character in the pattern.  */
 | ||
| #define PATUNFETCH p--
 | ||
| 
 | ||
| 
 | ||
| /* If `translate' is non-null, return translate[D], else just D.  We
 | ||
|    cast the subscript to translate because some data is declared as
 | ||
|    `char *', to avoid warnings when a string constant is passed.  But
 | ||
|    when we use a character as a subscript we must make it unsigned.  */
 | ||
| #define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
 | ||
| 
 | ||
| 
 | ||
| /* Macros for outputting the compiled pattern into `buffer'.  */
 | ||
| 
 | ||
| /* If the buffer isn't allocated when it comes in, use this.  */
 | ||
| #define INIT_BUF_SIZE  32
 | ||
| 
 | ||
| /* Make sure we have at least N more bytes of space in buffer.  */
 | ||
| #define GET_BUFFER_SPACE(n)						\
 | ||
|     while (b - bufp->buffer + (n) > bufp->allocated)			\
 | ||
|       EXTEND_BUFFER ()
 | ||
| 
 | ||
| /* Make sure we have one more byte of buffer space and then add C to it.  */
 | ||
| #define BUF_PUSH(c)							\
 | ||
|   do {									\
 | ||
|     GET_BUFFER_SPACE (1);						\
 | ||
|     *b++ = (unsigned char) (c);						\
 | ||
|   } while (0)
 | ||
| 
 | ||
| 
 | ||
| /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
 | ||
| #define BUF_PUSH_2(c1, c2)						\
 | ||
|   do {									\
 | ||
|     GET_BUFFER_SPACE (2);						\
 | ||
|     *b++ = (unsigned char) (c1);					\
 | ||
|     *b++ = (unsigned char) (c2);					\
 | ||
|   } while (0)
 | ||
| 
 | ||
| 
 | ||
| /* As with BUF_PUSH_2, except for three bytes.  */
 | ||
| #define BUF_PUSH_3(c1, c2, c3)						\
 | ||
|   do {									\
 | ||
|     GET_BUFFER_SPACE (3);						\
 | ||
|     *b++ = (unsigned char) (c1);					\
 | ||
|     *b++ = (unsigned char) (c2);					\
 | ||
|     *b++ = (unsigned char) (c3);					\
 | ||
|   } while (0)
 | ||
| 
 | ||
| 
 | ||
| /* Store a jump with opcode OP at LOC to location TO.  We store a
 | ||
|    relative address offset by the three bytes the jump itself occupies.  */
 | ||
| #define STORE_JUMP(op, loc, to) \
 | ||
|   store_op1 (op, loc, (to) - (loc) - 3)
 | ||
| 
 | ||
| /* Likewise, for a two-argument jump.  */
 | ||
| #define STORE_JUMP2(op, loc, to, arg) \
 | ||
|   store_op2 (op, loc, (to) - (loc) - 3, arg)
 | ||
| 
 | ||
| /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
 | ||
| #define INSERT_JUMP(op, loc, to) \
 | ||
|   insert_op1 (op, loc, (to) - (loc) - 3, b)
 | ||
| 
 | ||
| /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
 | ||
| #define INSERT_JUMP2(op, loc, to, arg) \
 | ||
|   insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
 | ||
| 
 | ||
| 
 | ||
| /* This is not an arbitrary limit: the arguments which represent offsets
 | ||
|    into the pattern are two bytes long.  So if 2^16 bytes turns out to
 | ||
|    be too small, many things would have to change.  */
 | ||
| #define MAX_BUF_SIZE (1L << 16)
 | ||
| 
 | ||
| 
 | ||
| /* Extend the buffer by twice its current size via realloc and
 | ||
|    reset the pointers that pointed into the old block to point to the
 | ||
|    correct places in the new one.  If extending the buffer results in it
 | ||
|    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
 | ||
| #define EXTEND_BUFFER()							\
 | ||
|   do { 									\
 | ||
|     unsigned char *old_buffer = bufp->buffer;				\
 | ||
|     if (bufp->allocated == MAX_BUF_SIZE) 				\
 | ||
|       return REG_ESIZE;							\
 | ||
|     bufp->allocated <<= 1;						\
 | ||
|     if (bufp->allocated > MAX_BUF_SIZE)					\
 | ||
|       bufp->allocated = MAX_BUF_SIZE; 					\
 | ||
|     bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
 | ||
|     if (bufp->buffer == NULL)						\
 | ||
|       return REG_ESPACE;						\
 | ||
|     /* If the buffer moved, move all the pointers into it.  */		\
 | ||
|     if (old_buffer != bufp->buffer)					\
 | ||
|       {									\
 | ||
|         b = (b - old_buffer) + bufp->buffer;				\
 | ||
|         begalt = (begalt - old_buffer) + bufp->buffer;			\
 | ||
|         if (fixup_alt_jump)						\
 | ||
|           fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
 | ||
|         if (laststart)							\
 | ||
|           laststart = (laststart - old_buffer) + bufp->buffer;		\
 | ||
|         if (pending_exact)						\
 | ||
|           pending_exact = (pending_exact - old_buffer) + bufp->buffer;	\
 | ||
|       }									\
 | ||
|   } while (0)
 | ||
| 
 | ||
| 
 | ||
| /* Since we have one byte reserved for the register number argument to
 | ||
|    {start,stop}_memory, the maximum number of groups we can report
 | ||
|    things about is what fits in that byte.  */
 | ||
| #define MAX_REGNUM 255
 | ||
| 
 | ||
| /* But patterns can have more than `MAX_REGNUM' registers.  We just
 | ||
|    ignore the excess.  */
 | ||
| typedef unsigned regnum_t;
 | ||
| 
 | ||
| 
 | ||
| /* Macros for the compile stack.  */
 | ||
| 
 | ||
| /* Since offsets can go either forwards or backwards, this type needs to
 | ||
|    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
 | ||
| typedef int pattern_offset_t;
 | ||
| 
 | ||
| typedef struct
 | ||
| {
 | ||
|   pattern_offset_t begalt_offset;
 | ||
|   pattern_offset_t fixup_alt_jump;
 | ||
|   pattern_offset_t inner_group_offset;
 | ||
|   pattern_offset_t laststart_offset;
 | ||
|   regnum_t regnum;
 | ||
| } compile_stack_elt_t;
 | ||
| 
 | ||
| 
 | ||
| typedef struct
 | ||
| {
 | ||
|   compile_stack_elt_t *stack;
 | ||
|   unsigned size;
 | ||
|   unsigned avail;			/* Offset of next open position.  */
 | ||
| } compile_stack_type;
 | ||
| 
 | ||
| 
 | ||
| #define INIT_COMPILE_STACK_SIZE 32
 | ||
| 
 | ||
| #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
 | ||
| #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
 | ||
| 
 | ||
| /* The next available element.  */
 | ||
| #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
 | ||
| 
 | ||
| 
 | ||
| /* Set the bit for character C in a list.  */
 | ||
| #define SET_LIST_BIT(c)                               \
 | ||
|   (b[((unsigned char) (c)) / BYTEWIDTH]               \
 | ||
|    |= 1 << (((unsigned char) c) % BYTEWIDTH))
 | ||
| 
 | ||
| 
 | ||
| /* Get the next unsigned number in the uncompiled pattern.  */
 | ||
| #define GET_UNSIGNED_NUMBER(num) 					\
 | ||
|   { if (p != pend)							\
 | ||
|      {									\
 | ||
|        PATFETCH (c); 							\
 | ||
|        while (ISDIGIT (c)) 						\
 | ||
|          { 								\
 | ||
|            if (num < 0)							\
 | ||
|               num = 0;							\
 | ||
|            num = num * 10 + c - '0'; 					\
 | ||
|            if (p == pend) 						\
 | ||
|               break; 							\
 | ||
|            PATFETCH (c);						\
 | ||
|          } 								\
 | ||
|        } 								\
 | ||
|     }
 | ||
| 
 | ||
| #define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
 | ||
| 
 | ||
| #define IS_CHAR_CLASS(string)						\
 | ||
|    (STREQ (string, "alpha") || STREQ (string, "upper")			\
 | ||
|     || STREQ (string, "lower") || STREQ (string, "digit")		\
 | ||
|     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
 | ||
|     || STREQ (string, "space") || STREQ (string, "print")		\
 | ||
|     || STREQ (string, "punct") || STREQ (string, "graph")		\
 | ||
|     || STREQ (string, "cntrl") || STREQ (string, "blank"))
 | ||
| 
 | ||
| /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
 | ||
|    Returns one of error codes defined in `regex.h', or zero for success.
 | ||
| 
 | ||
|    Assumes the `allocated' (and perhaps `buffer') and `translate'
 | ||
|    fields are set in BUFP on entry.
 | ||
| 
 | ||
|    If it succeeds, results are put in BUFP (if it returns an error, the
 | ||
|    contents of BUFP are undefined):
 | ||
|      `buffer' is the compiled pattern;
 | ||
|      `syntax' is set to SYNTAX;
 | ||
|      `used' is set to the length of the compiled pattern;
 | ||
|      `fastmap_accurate' is zero;
 | ||
|      `re_nsub' is the number of subexpressions in PATTERN;
 | ||
|      `not_bol' and `not_eol' are zero;
 | ||
| 
 | ||
|    The `fastmap' and `newline_anchor' fields are neither
 | ||
|    examined nor set.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| regex_compile (pattern, size, syntax, bufp)
 | ||
|      const char *pattern;
 | ||
|      int size;
 | ||
|      reg_syntax_t syntax;
 | ||
|      struct re_pattern_buffer *bufp;
 | ||
| {
 | ||
|   /* We fetch characters from PATTERN here.  Even though PATTERN is
 | ||
|      `char *' (i.e., signed), we declare these variables as unsigned, so
 | ||
|      they can be reliably used as array indices.  */
 | ||
|   register unsigned char c, c1;
 | ||
| 
 | ||
|   /* A random tempory spot in PATTERN.  */
 | ||
|   const char *p1;
 | ||
| 
 | ||
|   /* Points to the end of the buffer, where we should append.  */
 | ||
|   register unsigned char *b;
 | ||
| 
 | ||
|   /* Keeps track of unclosed groups.  */
 | ||
|   compile_stack_type compile_stack;
 | ||
| 
 | ||
|   /* Points to the current (ending) position in the pattern.  */
 | ||
|   const char *p = pattern;
 | ||
|   const char *pend = pattern + size;
 | ||
| 
 | ||
|   /* How to translate the characters in the pattern.  */
 | ||
|   char *translate = bufp->translate;
 | ||
| 
 | ||
|   /* Address of the count-byte of the most recently inserted `exactn'
 | ||
|      command.  This makes it possible to tell if a new exact-match
 | ||
|      character can be added to that command or if the character requires
 | ||
|      a new `exactn' command.  */
 | ||
|   unsigned char *pending_exact = 0;
 | ||
| 
 | ||
|   /* Address of start of the most recently finished expression.
 | ||
|      This tells, e.g., postfix * where to find the start of its
 | ||
|      operand.  Reset at the beginning of groups and alternatives.  */
 | ||
|   unsigned char *laststart = 0;
 | ||
| 
 | ||
|   /* Address of beginning of regexp, or inside of last group.  */
 | ||
|   unsigned char *begalt;
 | ||
| 
 | ||
|   /* Place in the uncompiled pattern (i.e., the {) to
 | ||
|      which to go back if the interval is invalid.  */
 | ||
|   const char *beg_interval;
 | ||
| 
 | ||
|   /* Address of the place where a forward jump should go to the end of
 | ||
|      the containing expression.  Each alternative of an `or' -- except the
 | ||
|      last -- ends with a forward jump of this sort.  */
 | ||
|   unsigned char *fixup_alt_jump = 0;
 | ||
| 
 | ||
|   /* Counts open-groups as they are encountered.  Remembered for the
 | ||
|      matching close-group on the compile stack, so the same register
 | ||
|      number is put in the stop_memory as the start_memory.  */
 | ||
|   regnum_t regnum = 0;
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   DEBUG_PRINT1 ("\nCompiling pattern: ");
 | ||
|   if (debug)
 | ||
|     {
 | ||
|       unsigned debug_count;
 | ||
| 
 | ||
|       for (debug_count = 0; debug_count < size; debug_count++)
 | ||
|         printchar (pattern[debug_count]);
 | ||
|       putchar ('\n');
 | ||
|     }
 | ||
| #endif /* DEBUG */
 | ||
| 
 | ||
|   /* Initialize the compile stack.  */
 | ||
|   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
 | ||
|   if (compile_stack.stack == NULL)
 | ||
|     return REG_ESPACE;
 | ||
| 
 | ||
|   compile_stack.size = INIT_COMPILE_STACK_SIZE;
 | ||
|   compile_stack.avail = 0;
 | ||
| 
 | ||
|   /* Initialize the pattern buffer.  */
 | ||
|   bufp->syntax = syntax;
 | ||
|   bufp->fastmap_accurate = 0;
 | ||
|   bufp->not_bol = bufp->not_eol = 0;
 | ||
| 
 | ||
|   /* Set `used' to zero, so that if we return an error, the pattern
 | ||
|      printer (for debugging) will think there's no pattern.  We reset it
 | ||
|      at the end.  */
 | ||
|   bufp->used = 0;
 | ||
| 
 | ||
|   /* Always count groups, whether or not bufp->no_sub is set.  */
 | ||
|   bufp->re_nsub = 0;
 | ||
| 
 | ||
| #if !defined (emacs) && !defined (SYNTAX_TABLE)
 | ||
|   /* Initialize the syntax table.  */
 | ||
|    init_syntax_once ();
 | ||
| #endif
 | ||
| 
 | ||
|   if (bufp->allocated == 0)
 | ||
|     {
 | ||
|       if (bufp->buffer)
 | ||
| 	{ /* If zero allocated, but buffer is non-null, try to realloc
 | ||
|              enough space.  This loses if buffer's address is bogus, but
 | ||
|              that is the user's responsibility.  */
 | ||
|           RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
 | ||
|         }
 | ||
|       else
 | ||
|         { /* Caller did not allocate a buffer.  Do it for them.  */
 | ||
|           bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
 | ||
|         }
 | ||
|       if (!bufp->buffer) return REG_ESPACE;
 | ||
| 
 | ||
|       bufp->allocated = INIT_BUF_SIZE;
 | ||
|     }
 | ||
| 
 | ||
|   begalt = b = bufp->buffer;
 | ||
| 
 | ||
|   /* Loop through the uncompiled pattern until we're at the end.  */
 | ||
|   while (p != pend)
 | ||
|     {
 | ||
|       PATFETCH (c);
 | ||
| 
 | ||
|       switch (c)
 | ||
|         {
 | ||
|         case '^':
 | ||
|           {
 | ||
|             if (   /* If at start of pattern, it's an operator.  */
 | ||
|                    p == pattern + 1
 | ||
|                    /* If context independent, it's an operator.  */
 | ||
|                 || syntax & RE_CONTEXT_INDEP_ANCHORS
 | ||
|                    /* Otherwise, depends on what's come before.  */
 | ||
|                 || at_begline_loc_p (pattern, p, syntax))
 | ||
|               BUF_PUSH (begline);
 | ||
|             else
 | ||
|               goto normal_char;
 | ||
|           }
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         case '$':
 | ||
|           {
 | ||
|             if (   /* If at end of pattern, it's an operator.  */
 | ||
|                    p == pend
 | ||
|                    /* If context independent, it's an operator.  */
 | ||
|                 || syntax & RE_CONTEXT_INDEP_ANCHORS
 | ||
|                    /* Otherwise, depends on what's next.  */
 | ||
|                 || at_endline_loc_p (p, pend, syntax))
 | ||
|                BUF_PUSH (endline);
 | ||
|              else
 | ||
|                goto normal_char;
 | ||
|            }
 | ||
|            break;
 | ||
| 
 | ||
| 
 | ||
| 	case '+':
 | ||
|         case '?':
 | ||
|           if ((syntax & RE_BK_PLUS_QM)
 | ||
|               || (syntax & RE_LIMITED_OPS))
 | ||
|             goto normal_char;
 | ||
|         handle_plus:
 | ||
|         case '*':
 | ||
|           /* If there is no previous pattern... */
 | ||
|           if (!laststart)
 | ||
|             {
 | ||
|               if (syntax & RE_CONTEXT_INVALID_OPS)
 | ||
|                 return REG_BADRPT;
 | ||
|               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
 | ||
|                 goto normal_char;
 | ||
|             }
 | ||
| 
 | ||
|           {
 | ||
|             /* Are we optimizing this jump?  */
 | ||
|             boolean keep_string_p = false;
 | ||
| 
 | ||
|             /* 1 means zero (many) matches is allowed.  */
 | ||
|             char zero_times_ok = 0, many_times_ok = 0;
 | ||
| 
 | ||
|             /* If there is a sequence of repetition chars, collapse it
 | ||
|                down to just one (the right one).  We can't combine
 | ||
|                interval operators with these because of, e.g., `a{2}*',
 | ||
|                which should only match an even number of `a's.  */
 | ||
| 
 | ||
|             for (;;)
 | ||
|               {
 | ||
|                 zero_times_ok |= c != '+';
 | ||
|                 many_times_ok |= c != '?';
 | ||
| 
 | ||
|                 if (p == pend)
 | ||
|                   break;
 | ||
| 
 | ||
|                 PATFETCH (c);
 | ||
| 
 | ||
|                 if (c == '*'
 | ||
|                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
 | ||
|                   ;
 | ||
| 
 | ||
|                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
 | ||
|                   {
 | ||
|                     if (p == pend) return REG_EESCAPE;
 | ||
| 
 | ||
|                     PATFETCH (c1);
 | ||
|                     if (!(c1 == '+' || c1 == '?'))
 | ||
|                       {
 | ||
|                         PATUNFETCH;
 | ||
|                         PATUNFETCH;
 | ||
|                         break;
 | ||
|                       }
 | ||
| 
 | ||
|                     c = c1;
 | ||
|                   }
 | ||
|                 else
 | ||
|                   {
 | ||
|                     PATUNFETCH;
 | ||
|                     break;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* If we get here, we found another repeat character.  */
 | ||
|                }
 | ||
| 
 | ||
|             /* Star, etc. applied to an empty pattern is equivalent
 | ||
|                to an empty pattern.  */
 | ||
|             if (!laststart)
 | ||
|               break;
 | ||
| 
 | ||
|             /* Now we know whether or not zero matches is allowed
 | ||
|                and also whether or not two or more matches is allowed.  */
 | ||
|             if (many_times_ok)
 | ||
|               { /* More than one repetition is allowed, so put in at the
 | ||
|                    end a backward relative jump from `b' to before the next
 | ||
|                    jump we're going to put in below (which jumps from
 | ||
|                    laststart to after this jump).
 | ||
| 
 | ||
|                    But if we are at the `*' in the exact sequence `.*\n',
 | ||
|                    insert an unconditional jump backwards to the .,
 | ||
|                    instead of the beginning of the loop.  This way we only
 | ||
|                    push a failure point once, instead of every time
 | ||
|                    through the loop.  */
 | ||
|                 assert (p - 1 > pattern);
 | ||
| 
 | ||
|                 /* Allocate the space for the jump.  */
 | ||
|                 GET_BUFFER_SPACE (3);
 | ||
| 
 | ||
|                 /* We know we are not at the first character of the pattern,
 | ||
|                    because laststart was nonzero.  And we've already
 | ||
|                    incremented `p', by the way, to be the character after
 | ||
|                    the `*'.  Do we have to do something analogous here
 | ||
|                    for null bytes, because of RE_DOT_NOT_NULL?  */
 | ||
|                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
 | ||
| 		    && zero_times_ok
 | ||
|                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
 | ||
|                     && !(syntax & RE_DOT_NEWLINE))
 | ||
|                   { /* We have .*\n.  */
 | ||
|                     STORE_JUMP (jump, b, laststart);
 | ||
|                     keep_string_p = true;
 | ||
|                   }
 | ||
|                 else
 | ||
|                   /* Anything else.  */
 | ||
|                   STORE_JUMP (maybe_pop_jump, b, laststart - 3);
 | ||
| 
 | ||
|                 /* We've added more stuff to the buffer.  */
 | ||
|                 b += 3;
 | ||
|               }
 | ||
| 
 | ||
|             /* On failure, jump from laststart to b + 3, which will be the
 | ||
|                end of the buffer after this jump is inserted.  */
 | ||
|             GET_BUFFER_SPACE (3);
 | ||
|             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
 | ||
|                                        : on_failure_jump,
 | ||
|                          laststart, b + 3);
 | ||
|             pending_exact = 0;
 | ||
|             b += 3;
 | ||
| 
 | ||
|             if (!zero_times_ok)
 | ||
|               {
 | ||
|                 /* At least one repetition is required, so insert a
 | ||
|                    `dummy_failure_jump' before the initial
 | ||
|                    `on_failure_jump' instruction of the loop. This
 | ||
|                    effects a skip over that instruction the first time
 | ||
|                    we hit that loop.  */
 | ||
|                 GET_BUFFER_SPACE (3);
 | ||
|                 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
 | ||
|                 b += 3;
 | ||
|               }
 | ||
|             }
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case '.':
 | ||
|           laststart = b;
 | ||
|           BUF_PUSH (anychar);
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         case '[':
 | ||
|           {
 | ||
|             boolean had_char_class = false;
 | ||
| 
 | ||
|             if (p == pend) return REG_EBRACK;
 | ||
| 
 | ||
|             /* Ensure that we have enough space to push a charset: the
 | ||
|                opcode, the length count, and the bitset; 34 bytes in all.  */
 | ||
| 	    GET_BUFFER_SPACE (34);
 | ||
| 
 | ||
|             laststart = b;
 | ||
| 
 | ||
|             /* We test `*p == '^' twice, instead of using an if
 | ||
|                statement, so we only need one BUF_PUSH.  */
 | ||
|             BUF_PUSH (*p == '^' ? charset_not : charset);
 | ||
|             if (*p == '^')
 | ||
|               p++;
 | ||
| 
 | ||
|             /* Remember the first position in the bracket expression.  */
 | ||
|             p1 = p;
 | ||
| 
 | ||
|             /* Push the number of bytes in the bitmap.  */
 | ||
|             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
 | ||
| 
 | ||
|             /* Clear the whole map.  */
 | ||
|             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
 | ||
| 
 | ||
|             /* charset_not matches newline according to a syntax bit.  */
 | ||
|             if ((re_opcode_t) b[-2] == charset_not
 | ||
|                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
 | ||
|               SET_LIST_BIT ('\n');
 | ||
| 
 | ||
|             /* Read in characters and ranges, setting map bits.  */
 | ||
|             for (;;)
 | ||
|               {
 | ||
|                 if (p == pend) return REG_EBRACK;
 | ||
| 
 | ||
|                 PATFETCH (c);
 | ||
| 
 | ||
|                 /* \ might escape characters inside [...] and [^...].  */
 | ||
|                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
 | ||
|                   {
 | ||
|                     if (p == pend) return REG_EESCAPE;
 | ||
| 
 | ||
|                     PATFETCH (c1);
 | ||
|                     SET_LIST_BIT (c1);
 | ||
|                     continue;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* Could be the end of the bracket expression.  If it's
 | ||
|                    not (i.e., when the bracket expression is `[]' so
 | ||
|                    far), the ']' character bit gets set way below.  */
 | ||
|                 if (c == ']' && p != p1 + 1)
 | ||
|                   break;
 | ||
| 
 | ||
|                 /* Look ahead to see if it's a range when the last thing
 | ||
|                    was a character class.  */
 | ||
|                 if (had_char_class && c == '-' && *p != ']')
 | ||
|                   return REG_ERANGE;
 | ||
| 
 | ||
|                 /* Look ahead to see if it's a range when the last thing
 | ||
|                    was a character: if this is a hyphen not at the
 | ||
|                    beginning or the end of a list, then it's the range
 | ||
|                    operator.  */
 | ||
|                 if (c == '-'
 | ||
|                     && !(p - 2 >= pattern && p[-2] == '[')
 | ||
|                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
 | ||
|                     && *p != ']')
 | ||
|                   {
 | ||
|                     reg_errcode_t ret
 | ||
|                       = compile_range (&p, pend, translate, syntax, b);
 | ||
|                     if (ret != REG_NOERROR) return ret;
 | ||
|                   }
 | ||
| 
 | ||
|                 else if (p[0] == '-' && p[1] != ']')
 | ||
|                   { /* This handles ranges made up of characters only.  */
 | ||
|                     reg_errcode_t ret;
 | ||
| 
 | ||
| 		    /* Move past the `-'.  */
 | ||
|                     PATFETCH (c1);
 | ||
| 
 | ||
|                     ret = compile_range (&p, pend, translate, syntax, b);
 | ||
|                     if (ret != REG_NOERROR) return ret;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* See if we're at the beginning of a possible character
 | ||
|                    class.  */
 | ||
| 
 | ||
|                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
 | ||
|                   { /* Leave room for the null.  */
 | ||
|                     char str[CHAR_CLASS_MAX_LENGTH + 1];
 | ||
| 
 | ||
|                     PATFETCH (c);
 | ||
|                     c1 = 0;
 | ||
| 
 | ||
|                     /* If pattern is `[[:'.  */
 | ||
|                     if (p == pend) return REG_EBRACK;
 | ||
| 
 | ||
|                     for (;;)
 | ||
|                       {
 | ||
|                         PATFETCH (c);
 | ||
|                         if (c == ':' || c == ']' || p == pend
 | ||
|                             || c1 == CHAR_CLASS_MAX_LENGTH)
 | ||
|                           break;
 | ||
|                         str[c1++] = c;
 | ||
|                       }
 | ||
|                     str[c1] = '\0';
 | ||
| 
 | ||
|                     /* If isn't a word bracketed by `[:' and:`]':
 | ||
|                        undo the ending character, the letters, and leave
 | ||
|                        the leading `:' and `[' (but set bits for them).  */
 | ||
|                     if (c == ':' && *p == ']')
 | ||
|                       {
 | ||
|                         int ch;
 | ||
|                         boolean is_alnum = STREQ (str, "alnum");
 | ||
|                         boolean is_alpha = STREQ (str, "alpha");
 | ||
|                         boolean is_blank = STREQ (str, "blank");
 | ||
|                         boolean is_cntrl = STREQ (str, "cntrl");
 | ||
|                         boolean is_digit = STREQ (str, "digit");
 | ||
|                         boolean is_graph = STREQ (str, "graph");
 | ||
|                         boolean is_lower = STREQ (str, "lower");
 | ||
|                         boolean is_print = STREQ (str, "print");
 | ||
|                         boolean is_punct = STREQ (str, "punct");
 | ||
|                         boolean is_space = STREQ (str, "space");
 | ||
|                         boolean is_upper = STREQ (str, "upper");
 | ||
|                         boolean is_xdigit = STREQ (str, "xdigit");
 | ||
| 
 | ||
|                         if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
 | ||
| 
 | ||
|                         /* Throw away the ] at the end of the character
 | ||
|                            class.  */
 | ||
|                         PATFETCH (c);
 | ||
| 
 | ||
|                         if (p == pend) return REG_EBRACK;
 | ||
| 
 | ||
|                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
 | ||
|                           {
 | ||
|                             if (   (is_alnum  && ISALNUM (ch))
 | ||
|                                 || (is_alpha  && ISALPHA (ch))
 | ||
|                                 || (is_blank  && ISBLANK (ch))
 | ||
|                                 || (is_cntrl  && ISCNTRL (ch))
 | ||
|                                 || (is_digit  && ISDIGIT (ch))
 | ||
|                                 || (is_graph  && ISGRAPH (ch))
 | ||
|                                 || (is_lower  && ISLOWER (ch))
 | ||
|                                 || (is_print  && ISPRINT (ch))
 | ||
|                                 || (is_punct  && ISPUNCT (ch))
 | ||
|                                 || (is_space  && ISSPACE (ch))
 | ||
|                                 || (is_upper  && ISUPPER (ch))
 | ||
|                                 || (is_xdigit && ISXDIGIT (ch)))
 | ||
|                             SET_LIST_BIT (ch);
 | ||
|                           }
 | ||
|                         had_char_class = true;
 | ||
|                       }
 | ||
|                     else
 | ||
|                       {
 | ||
|                         c1++;
 | ||
|                         while (c1--)
 | ||
|                           PATUNFETCH;
 | ||
|                         SET_LIST_BIT ('[');
 | ||
|                         SET_LIST_BIT (':');
 | ||
|                         had_char_class = false;
 | ||
|                       }
 | ||
|                   }
 | ||
|                 else
 | ||
|                   {
 | ||
|                     had_char_class = false;
 | ||
|                     SET_LIST_BIT (c);
 | ||
|                   }
 | ||
|               }
 | ||
| 
 | ||
|             /* Discard any (non)matching list bytes that are all 0 at the
 | ||
|                end of the map.  Decrease the map-length byte too.  */
 | ||
|             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
 | ||
|               b[-1]--;
 | ||
|             b += b[-1];
 | ||
|           }
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	case '(':
 | ||
|           if (syntax & RE_NO_BK_PARENS)
 | ||
|             goto handle_open;
 | ||
|           else
 | ||
|             goto normal_char;
 | ||
| 
 | ||
| 
 | ||
|         case ')':
 | ||
|           if (syntax & RE_NO_BK_PARENS)
 | ||
|             goto handle_close;
 | ||
|           else
 | ||
|             goto normal_char;
 | ||
| 
 | ||
| 
 | ||
|         case '\n':
 | ||
|           if (syntax & RE_NEWLINE_ALT)
 | ||
|             goto handle_alt;
 | ||
|           else
 | ||
|             goto normal_char;
 | ||
| 
 | ||
| 
 | ||
| 	case '|':
 | ||
|           if (syntax & RE_NO_BK_VBAR)
 | ||
|             goto handle_alt;
 | ||
|           else
 | ||
|             goto normal_char;
 | ||
| 
 | ||
| 
 | ||
|         case '{':
 | ||
|            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
 | ||
|              goto handle_interval;
 | ||
|            else
 | ||
|              goto normal_char;
 | ||
| 
 | ||
| 
 | ||
|         case '\\':
 | ||
|           if (p == pend) return REG_EESCAPE;
 | ||
| 
 | ||
|           /* Do not translate the character after the \, so that we can
 | ||
|              distinguish, e.g., \B from \b, even if we normally would
 | ||
|              translate, e.g., B to b.  */
 | ||
|           PATFETCH_RAW (c);
 | ||
| 
 | ||
|           switch (c)
 | ||
|             {
 | ||
|             case '(':
 | ||
|               if (syntax & RE_NO_BK_PARENS)
 | ||
|                 goto normal_backslash;
 | ||
| 
 | ||
|             handle_open:
 | ||
|               bufp->re_nsub++;
 | ||
|               regnum++;
 | ||
| 
 | ||
|               if (COMPILE_STACK_FULL)
 | ||
|                 {
 | ||
|                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
 | ||
|                             compile_stack_elt_t);
 | ||
|                   if (compile_stack.stack == NULL) return REG_ESPACE;
 | ||
| 
 | ||
|                   compile_stack.size <<= 1;
 | ||
|                 }
 | ||
| 
 | ||
|               /* These are the values to restore when we hit end of this
 | ||
|                  group.  They are all relative offsets, so that if the
 | ||
|                  whole pattern moves because of realloc, they will still
 | ||
|                  be valid.  */
 | ||
|               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
 | ||
|               COMPILE_STACK_TOP.fixup_alt_jump
 | ||
|                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
 | ||
|               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
 | ||
|               COMPILE_STACK_TOP.regnum = regnum;
 | ||
| 
 | ||
|               /* We will eventually replace the 0 with the number of
 | ||
|                  groups inner to this one.  But do not push a
 | ||
|                  start_memory for groups beyond the last one we can
 | ||
|                  represent in the compiled pattern.  */
 | ||
|               if (regnum <= MAX_REGNUM)
 | ||
|                 {
 | ||
|                   COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
 | ||
|                   BUF_PUSH_3 (start_memory, regnum, 0);
 | ||
|                 }
 | ||
| 
 | ||
|               compile_stack.avail++;
 | ||
| 
 | ||
|               fixup_alt_jump = 0;
 | ||
|               laststart = 0;
 | ||
|               begalt = b;
 | ||
| 	      /* If we've reached MAX_REGNUM groups, then this open
 | ||
| 		 won't actually generate any code, so we'll have to
 | ||
| 		 clear pending_exact explicitly.  */
 | ||
| 	      pending_exact = 0;
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case ')':
 | ||
|               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
 | ||
| 
 | ||
|               if (COMPILE_STACK_EMPTY)
 | ||
|                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
 | ||
|                   goto normal_backslash;
 | ||
|                 else
 | ||
|                   return REG_ERPAREN;
 | ||
| 
 | ||
|             handle_close:
 | ||
|               if (fixup_alt_jump)
 | ||
|                 { /* Push a dummy failure point at the end of the
 | ||
|                      alternative for a possible future
 | ||
|                      `pop_failure_jump' to pop.  See comments at
 | ||
|                      `push_dummy_failure' in `re_match_2'.  */
 | ||
|                   BUF_PUSH (push_dummy_failure);
 | ||
| 
 | ||
|                   /* We allocated space for this jump when we assigned
 | ||
|                      to `fixup_alt_jump', in the `handle_alt' case below.  */
 | ||
|                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
 | ||
|                 }
 | ||
| 
 | ||
|               /* See similar code for backslashed left paren above.  */
 | ||
|               if (COMPILE_STACK_EMPTY)
 | ||
|                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
 | ||
|                   goto normal_char;
 | ||
|                 else
 | ||
|                   return REG_ERPAREN;
 | ||
| 
 | ||
|               /* Since we just checked for an empty stack above, this
 | ||
|                  ``can't happen''.  */
 | ||
|               assert (compile_stack.avail != 0);
 | ||
|               {
 | ||
|                 /* We don't just want to restore into `regnum', because
 | ||
|                    later groups should continue to be numbered higher,
 | ||
|                    as in `(ab)c(de)' -- the second group is #2.  */
 | ||
|                 regnum_t this_group_regnum;
 | ||
| 
 | ||
|                 compile_stack.avail--;
 | ||
|                 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
 | ||
|                 fixup_alt_jump
 | ||
|                   = COMPILE_STACK_TOP.fixup_alt_jump
 | ||
|                     ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
 | ||
|                     : 0;
 | ||
|                 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
 | ||
|                 this_group_regnum = COMPILE_STACK_TOP.regnum;
 | ||
| 		/* If we've reached MAX_REGNUM groups, then this open
 | ||
| 		   won't actually generate any code, so we'll have to
 | ||
| 		   clear pending_exact explicitly.  */
 | ||
| 		pending_exact = 0;
 | ||
| 
 | ||
|                 /* We're at the end of the group, so now we know how many
 | ||
|                    groups were inside this one.  */
 | ||
|                 if (this_group_regnum <= MAX_REGNUM)
 | ||
|                   {
 | ||
|                     unsigned char *inner_group_loc
 | ||
|                       = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
 | ||
| 
 | ||
|                     *inner_group_loc = regnum - this_group_regnum;
 | ||
|                     BUF_PUSH_3 (stop_memory, this_group_regnum,
 | ||
|                                 regnum - this_group_regnum);
 | ||
|                   }
 | ||
|               }
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case '|':					/* `\|'.  */
 | ||
|               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
 | ||
|                 goto normal_backslash;
 | ||
|             handle_alt:
 | ||
|               if (syntax & RE_LIMITED_OPS)
 | ||
|                 goto normal_char;
 | ||
| 
 | ||
|               /* Insert before the previous alternative a jump which
 | ||
|                  jumps to this alternative if the former fails.  */
 | ||
|               GET_BUFFER_SPACE (3);
 | ||
|               INSERT_JUMP (on_failure_jump, begalt, b + 6);
 | ||
|               pending_exact = 0;
 | ||
|               b += 3;
 | ||
| 
 | ||
|               /* The alternative before this one has a jump after it
 | ||
|                  which gets executed if it gets matched.  Adjust that
 | ||
|                  jump so it will jump to this alternative's analogous
 | ||
|                  jump (put in below, which in turn will jump to the next
 | ||
|                  (if any) alternative's such jump, etc.).  The last such
 | ||
|                  jump jumps to the correct final destination.  A picture:
 | ||
|                           _____ _____
 | ||
|                           |   | |   |
 | ||
|                           |   v |   v
 | ||
|                          a | b   | c
 | ||
| 
 | ||
|                  If we are at `b', then fixup_alt_jump right now points to a
 | ||
|                  three-byte space after `a'.  We'll put in the jump, set
 | ||
|                  fixup_alt_jump to right after `b', and leave behind three
 | ||
|                  bytes which we'll fill in when we get to after `c'.  */
 | ||
| 
 | ||
|               if (fixup_alt_jump)
 | ||
|                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
 | ||
| 
 | ||
|               /* Mark and leave space for a jump after this alternative,
 | ||
|                  to be filled in later either by next alternative or
 | ||
|                  when know we're at the end of a series of alternatives.  */
 | ||
|               fixup_alt_jump = b;
 | ||
|               GET_BUFFER_SPACE (3);
 | ||
|               b += 3;
 | ||
| 
 | ||
|               laststart = 0;
 | ||
|               begalt = b;
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case '{':
 | ||
|               /* If \{ is a literal.  */
 | ||
|               if (!(syntax & RE_INTERVALS)
 | ||
|                      /* If we're at `\{' and it's not the open-interval
 | ||
|                         operator.  */
 | ||
|                   || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
 | ||
|                   || (p - 2 == pattern  &&  p == pend))
 | ||
|                 goto normal_backslash;
 | ||
| 
 | ||
|             handle_interval:
 | ||
|               {
 | ||
|                 /* If got here, then the syntax allows intervals.  */
 | ||
| 
 | ||
|                 /* At least (most) this many matches must be made.  */
 | ||
|                 int lower_bound = -1, upper_bound = -1;
 | ||
| 
 | ||
|                 beg_interval = p - 1;
 | ||
| 
 | ||
|                 if (p == pend)
 | ||
|                   {
 | ||
|                     if (syntax & RE_NO_BK_BRACES)
 | ||
|                       goto unfetch_interval;
 | ||
|                     else
 | ||
|                       return REG_EBRACE;
 | ||
|                   }
 | ||
| 
 | ||
|                 GET_UNSIGNED_NUMBER (lower_bound);
 | ||
| 
 | ||
|                 if (c == ',')
 | ||
|                   {
 | ||
|                     GET_UNSIGNED_NUMBER (upper_bound);
 | ||
|                     if (upper_bound < 0) upper_bound = RE_DUP_MAX;
 | ||
|                   }
 | ||
|                 else
 | ||
|                   /* Interval such as `{1}' => match exactly once. */
 | ||
|                   upper_bound = lower_bound;
 | ||
| 
 | ||
|                 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
 | ||
|                     || lower_bound > upper_bound)
 | ||
|                   {
 | ||
|                     if (syntax & RE_NO_BK_BRACES)
 | ||
|                       goto unfetch_interval;
 | ||
|                     else
 | ||
|                       return REG_BADBR;
 | ||
|                   }
 | ||
| 
 | ||
|                 if (!(syntax & RE_NO_BK_BRACES))
 | ||
|                   {
 | ||
|                     if (c != '\\') return REG_EBRACE;
 | ||
| 
 | ||
|                     PATFETCH (c);
 | ||
|                   }
 | ||
| 
 | ||
|                 if (c != '}')
 | ||
|                   {
 | ||
|                     if (syntax & RE_NO_BK_BRACES)
 | ||
|                       goto unfetch_interval;
 | ||
|                     else
 | ||
|                       return REG_BADBR;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* We just parsed a valid interval.  */
 | ||
| 
 | ||
|                 /* If it's invalid to have no preceding re.  */
 | ||
|                 if (!laststart)
 | ||
|                   {
 | ||
|                     if (syntax & RE_CONTEXT_INVALID_OPS)
 | ||
|                       return REG_BADRPT;
 | ||
|                     else if (syntax & RE_CONTEXT_INDEP_OPS)
 | ||
|                       laststart = b;
 | ||
|                     else
 | ||
|                       goto unfetch_interval;
 | ||
|                   }
 | ||
| 
 | ||
|                 /* If the upper bound is zero, don't want to succeed at
 | ||
|                    all; jump from `laststart' to `b + 3', which will be
 | ||
|                    the end of the buffer after we insert the jump.  */
 | ||
|                  if (upper_bound == 0)
 | ||
|                    {
 | ||
|                      GET_BUFFER_SPACE (3);
 | ||
|                      INSERT_JUMP (jump, laststart, b + 3);
 | ||
|                      b += 3;
 | ||
|                    }
 | ||
| 
 | ||
|                  /* Otherwise, we have a nontrivial interval.  When
 | ||
|                     we're all done, the pattern will look like:
 | ||
|                       set_number_at <jump count> <upper bound>
 | ||
|                       set_number_at <succeed_n count> <lower bound>
 | ||
|                       succeed_n <after jump addr> <succed_n count>
 | ||
|                       <body of loop>
 | ||
|                       jump_n <succeed_n addr> <jump count>
 | ||
|                     (The upper bound and `jump_n' are omitted if
 | ||
|                     `upper_bound' is 1, though.)  */
 | ||
|                  else
 | ||
|                    { /* If the upper bound is > 1, we need to insert
 | ||
|                         more at the end of the loop.  */
 | ||
|                      unsigned nbytes = 10 + (upper_bound > 1) * 10;
 | ||
| 
 | ||
|                      GET_BUFFER_SPACE (nbytes);
 | ||
| 
 | ||
|                      /* Initialize lower bound of the `succeed_n', even
 | ||
|                         though it will be set during matching by its
 | ||
|                         attendant `set_number_at' (inserted next),
 | ||
|                         because `re_compile_fastmap' needs to know.
 | ||
|                         Jump to the `jump_n' we might insert below.  */
 | ||
|                      INSERT_JUMP2 (succeed_n, laststart,
 | ||
|                                    b + 5 + (upper_bound > 1) * 5,
 | ||
|                                    lower_bound);
 | ||
|                      b += 5;
 | ||
| 
 | ||
|                      /* Code to initialize the lower bound.  Insert
 | ||
|                         before the `succeed_n'.  The `5' is the last two
 | ||
|                         bytes of this `set_number_at', plus 3 bytes of
 | ||
|                         the following `succeed_n'.  */
 | ||
|                      insert_op2 (set_number_at, laststart, 5, lower_bound, b);
 | ||
|                      b += 5;
 | ||
| 
 | ||
|                      if (upper_bound > 1)
 | ||
|                        { /* More than one repetition is allowed, so
 | ||
|                             append a backward jump to the `succeed_n'
 | ||
|                             that starts this interval.
 | ||
| 
 | ||
|                             When we've reached this during matching,
 | ||
|                             we'll have matched the interval once, so
 | ||
|                             jump back only `upper_bound - 1' times.  */
 | ||
|                          STORE_JUMP2 (jump_n, b, laststart + 5,
 | ||
|                                       upper_bound - 1);
 | ||
|                          b += 5;
 | ||
| 
 | ||
|                          /* The location we want to set is the second
 | ||
|                             parameter of the `jump_n'; that is `b-2' as
 | ||
|                             an absolute address.  `laststart' will be
 | ||
|                             the `set_number_at' we're about to insert;
 | ||
|                             `laststart+3' the number to set, the source
 | ||
|                             for the relative address.  But we are
 | ||
|                             inserting into the middle of the pattern --
 | ||
|                             so everything is getting moved up by 5.
 | ||
|                             Conclusion: (b - 2) - (laststart + 3) + 5,
 | ||
|                             i.e., b - laststart.
 | ||
| 
 | ||
|                             We insert this at the beginning of the loop
 | ||
|                             so that if we fail during matching, we'll
 | ||
|                             reinitialize the bounds.  */
 | ||
|                          insert_op2 (set_number_at, laststart, b - laststart,
 | ||
|                                      upper_bound - 1, b);
 | ||
|                          b += 5;
 | ||
|                        }
 | ||
|                    }
 | ||
|                 pending_exact = 0;
 | ||
|                 beg_interval = NULL;
 | ||
|               }
 | ||
|               break;
 | ||
| 
 | ||
|             unfetch_interval:
 | ||
|               /* If an invalid interval, match the characters as literals.  */
 | ||
|                assert (beg_interval);
 | ||
|                p = beg_interval;
 | ||
|                beg_interval = NULL;
 | ||
| 
 | ||
|                /* normal_char and normal_backslash need `c'.  */
 | ||
|                PATFETCH (c);
 | ||
| 
 | ||
|                if (!(syntax & RE_NO_BK_BRACES))
 | ||
|                  {
 | ||
|                    if (p > pattern  &&  p[-1] == '\\')
 | ||
|                      goto normal_backslash;
 | ||
|                  }
 | ||
|                goto normal_char;
 | ||
| 
 | ||
| #ifdef emacs
 | ||
|             /* There is no way to specify the before_dot and after_dot
 | ||
|                operators.  rms says this is ok.  --karl  */
 | ||
|             case '=':
 | ||
|               BUF_PUSH (at_dot);
 | ||
|               break;
 | ||
| 
 | ||
|             case 's':
 | ||
|               laststart = b;
 | ||
|               PATFETCH (c);
 | ||
|               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
 | ||
|               break;
 | ||
| 
 | ||
|             case 'S':
 | ||
|               laststart = b;
 | ||
|               PATFETCH (c);
 | ||
|               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
 | ||
|               break;
 | ||
| #endif /* emacs */
 | ||
| 
 | ||
| 
 | ||
|             case 'w':
 | ||
|               laststart = b;
 | ||
|               BUF_PUSH (wordchar);
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case 'W':
 | ||
|               laststart = b;
 | ||
|               BUF_PUSH (notwordchar);
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case '<':
 | ||
|               BUF_PUSH (wordbeg);
 | ||
|               break;
 | ||
| 
 | ||
|             case '>':
 | ||
|               BUF_PUSH (wordend);
 | ||
|               break;
 | ||
| 
 | ||
|             case 'b':
 | ||
|               BUF_PUSH (wordbound);
 | ||
|               break;
 | ||
| 
 | ||
|             case 'B':
 | ||
|               BUF_PUSH (notwordbound);
 | ||
|               break;
 | ||
| 
 | ||
|             case '`':
 | ||
|               BUF_PUSH (begbuf);
 | ||
|               break;
 | ||
| 
 | ||
|             case '\'':
 | ||
|               BUF_PUSH (endbuf);
 | ||
|               break;
 | ||
| 
 | ||
|             case '1': case '2': case '3': case '4': case '5':
 | ||
|             case '6': case '7': case '8': case '9':
 | ||
|               if (syntax & RE_NO_BK_REFS)
 | ||
|                 goto normal_char;
 | ||
| 
 | ||
|               c1 = c - '0';
 | ||
| 
 | ||
|               if (c1 > regnum)
 | ||
|                 return REG_ESUBREG;
 | ||
| 
 | ||
|               /* Can't back reference to a subexpression if inside of it.  */
 | ||
|               if (group_in_compile_stack (compile_stack, c1))
 | ||
|                 goto normal_char;
 | ||
| 
 | ||
|               laststart = b;
 | ||
|               BUF_PUSH_2 (duplicate, c1);
 | ||
|               break;
 | ||
| 
 | ||
| 
 | ||
|             case '+':
 | ||
|             case '?':
 | ||
|               if (syntax & RE_BK_PLUS_QM)
 | ||
|                 goto handle_plus;
 | ||
|               else
 | ||
|                 goto normal_backslash;
 | ||
| 
 | ||
|             default:
 | ||
|             normal_backslash:
 | ||
|               /* You might think it would be useful for \ to mean
 | ||
|                  not to translate; but if we don't translate it
 | ||
|                  it will never match anything.  */
 | ||
|               c = TRANSLATE (c);
 | ||
|               goto normal_char;
 | ||
|             }
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	default:
 | ||
|         /* Expects the character in `c'.  */
 | ||
| 	normal_char:
 | ||
| 	      /* If no exactn currently being built.  */
 | ||
|           if (!pending_exact
 | ||
| 
 | ||
|               /* If last exactn not at current position.  */
 | ||
|               || pending_exact + *pending_exact + 1 != b
 | ||
| 
 | ||
|               /* We have only one byte following the exactn for the count.  */
 | ||
| 	      || *pending_exact == (1 << BYTEWIDTH) - 1
 | ||
| 
 | ||
|               /* If followed by a repetition operator.  */
 | ||
|               || *p == '*' || *p == '^'
 | ||
| 	      || ((syntax & RE_BK_PLUS_QM)
 | ||
| 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
 | ||
| 		  : (*p == '+' || *p == '?'))
 | ||
| 	      || ((syntax & RE_INTERVALS)
 | ||
|                   && ((syntax & RE_NO_BK_BRACES)
 | ||
| 		      ? *p == '{'
 | ||
|                       : (p[0] == '\\' && p[1] == '{'))))
 | ||
| 	    {
 | ||
| 	      /* Start building a new exactn.  */
 | ||
| 
 | ||
|               laststart = b;
 | ||
| 
 | ||
| 	      BUF_PUSH_2 (exactn, 0);
 | ||
| 	      pending_exact = b - 1;
 | ||
|             }
 | ||
| 
 | ||
| 	  BUF_PUSH (c);
 | ||
|           (*pending_exact)++;
 | ||
| 	  break;
 | ||
|         } /* switch (c) */
 | ||
|     } /* while p != pend */
 | ||
| 
 | ||
| 
 | ||
|   /* Through the pattern now.  */
 | ||
| 
 | ||
|   if (fixup_alt_jump)
 | ||
|     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
 | ||
| 
 | ||
|   if (!COMPILE_STACK_EMPTY)
 | ||
|     return REG_EPAREN;
 | ||
| 
 | ||
|   free (compile_stack.stack);
 | ||
| 
 | ||
|   /* We have succeeded; set the length of the buffer.  */
 | ||
|   bufp->used = b - bufp->buffer;
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   if (debug)
 | ||
|     {
 | ||
|       DEBUG_PRINT1 ("\nCompiled pattern: ");
 | ||
|       print_compiled_pattern (bufp);
 | ||
|     }
 | ||
| #endif /* DEBUG */
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| } /* regex_compile */
 | ||
| 
 | ||
| /* Subroutines for `regex_compile'.  */
 | ||
| 
 | ||
| /* Store OP at LOC followed by two-byte integer parameter ARG.  */
 | ||
| 
 | ||
| static void
 | ||
| store_op1 (op, loc, arg)
 | ||
|     re_opcode_t op;
 | ||
|     unsigned char *loc;
 | ||
|     int arg;
 | ||
| {
 | ||
|   *loc = (unsigned char) op;
 | ||
|   STORE_NUMBER (loc + 1, arg);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
 | ||
| 
 | ||
| static void
 | ||
| store_op2 (op, loc, arg1, arg2)
 | ||
|     re_opcode_t op;
 | ||
|     unsigned char *loc;
 | ||
|     int arg1, arg2;
 | ||
| {
 | ||
|   *loc = (unsigned char) op;
 | ||
|   STORE_NUMBER (loc + 1, arg1);
 | ||
|   STORE_NUMBER (loc + 3, arg2);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Copy the bytes from LOC to END to open up three bytes of space at LOC
 | ||
|    for OP followed by two-byte integer parameter ARG.  */
 | ||
| 
 | ||
| static void
 | ||
| insert_op1 (op, loc, arg, end)
 | ||
|     re_opcode_t op;
 | ||
|     unsigned char *loc;
 | ||
|     int arg;
 | ||
|     unsigned char *end;
 | ||
| {
 | ||
|   register unsigned char *pfrom = end;
 | ||
|   register unsigned char *pto = end + 3;
 | ||
| 
 | ||
|   while (pfrom != loc)
 | ||
|     *--pto = *--pfrom;
 | ||
| 
 | ||
|   store_op1 (op, loc, arg);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
 | ||
| 
 | ||
| static void
 | ||
| insert_op2 (op, loc, arg1, arg2, end)
 | ||
|     re_opcode_t op;
 | ||
|     unsigned char *loc;
 | ||
|     int arg1, arg2;
 | ||
|     unsigned char *end;
 | ||
| {
 | ||
|   register unsigned char *pfrom = end;
 | ||
|   register unsigned char *pto = end + 5;
 | ||
| 
 | ||
|   while (pfrom != loc)
 | ||
|     *--pto = *--pfrom;
 | ||
| 
 | ||
|   store_op2 (op, loc, arg1, arg2);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
 | ||
|    after an alternative or a begin-subexpression.  We assume there is at
 | ||
|    least one character before the ^.  */
 | ||
| 
 | ||
| static boolean
 | ||
| at_begline_loc_p (pattern, p, syntax)
 | ||
|     const char *pattern, *p;
 | ||
|     reg_syntax_t syntax;
 | ||
| {
 | ||
|   const char *prev = p - 2;
 | ||
|   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
 | ||
| 
 | ||
|   return
 | ||
|        /* After a subexpression?  */
 | ||
|        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
 | ||
|        /* After an alternative?  */
 | ||
|     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
 | ||
|    at least one character after the $, i.e., `P < PEND'.  */
 | ||
| 
 | ||
| static boolean
 | ||
| at_endline_loc_p (p, pend, syntax)
 | ||
|     const char *p, *pend;
 | ||
|     int syntax;
 | ||
| {
 | ||
|   const char *next = p;
 | ||
|   boolean next_backslash = *next == '\\';
 | ||
|   const char *next_next = p + 1 < pend ? p + 1 : NULL;
 | ||
| 
 | ||
|   return
 | ||
|        /* Before a subexpression?  */
 | ||
|        (syntax & RE_NO_BK_PARENS ? *next == ')'
 | ||
|         : next_backslash && next_next && *next_next == ')')
 | ||
|        /* Before an alternative?  */
 | ||
|     || (syntax & RE_NO_BK_VBAR ? *next == '|'
 | ||
|         : next_backslash && next_next && *next_next == '|');
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
 | ||
|    false if it's not.  */
 | ||
| 
 | ||
| static boolean
 | ||
| group_in_compile_stack (compile_stack, regnum)
 | ||
|     compile_stack_type compile_stack;
 | ||
|     regnum_t regnum;
 | ||
| {
 | ||
|   int this_element;
 | ||
| 
 | ||
|   for (this_element = compile_stack.avail - 1;
 | ||
|        this_element >= 0;
 | ||
|        this_element--)
 | ||
|     if (compile_stack.stack[this_element].regnum == regnum)
 | ||
|       return true;
 | ||
| 
 | ||
|   return false;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Read the ending character of a range (in a bracket expression) from the
 | ||
|    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
 | ||
|    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
 | ||
|    Then we set the translation of all bits between the starting and
 | ||
|    ending characters (inclusive) in the compiled pattern B.
 | ||
| 
 | ||
|    Return an error code.
 | ||
| 
 | ||
|    We use these short variable names so we can use the same macros as
 | ||
|    `regex_compile' itself.  */
 | ||
| 
 | ||
| static reg_errcode_t
 | ||
| compile_range (p_ptr, pend, translate, syntax, b)
 | ||
|     const char **p_ptr, *pend;
 | ||
|     char *translate;
 | ||
|     reg_syntax_t syntax;
 | ||
|     unsigned char *b;
 | ||
| {
 | ||
|   unsigned this_char;
 | ||
| 
 | ||
|   const char *p = *p_ptr;
 | ||
|   int range_start, range_end;
 | ||
| 
 | ||
|   if (p == pend)
 | ||
|     return REG_ERANGE;
 | ||
| 
 | ||
|   /* Even though the pattern is a signed `char *', we need to fetch
 | ||
|      with unsigned char *'s; if the high bit of the pattern character
 | ||
|      is set, the range endpoints will be negative if we fetch using a
 | ||
|      signed char *.
 | ||
| 
 | ||
|      We also want to fetch the endpoints without translating them; the
 | ||
|      appropriate translation is done in the bit-setting loop below.  */
 | ||
|   range_start = ((unsigned char *) p)[-2];
 | ||
|   range_end   = ((unsigned char *) p)[0];
 | ||
| 
 | ||
|   /* Have to increment the pointer into the pattern string, so the
 | ||
|      caller isn't still at the ending character.  */
 | ||
|   (*p_ptr)++;
 | ||
| 
 | ||
|   /* If the start is after the end, the range is empty.  */
 | ||
|   if (range_start > range_end)
 | ||
|     return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
 | ||
| 
 | ||
|   /* Here we see why `this_char' has to be larger than an `unsigned
 | ||
|      char' -- the range is inclusive, so if `range_end' == 0xff
 | ||
|      (assuming 8-bit characters), we would otherwise go into an infinite
 | ||
|      loop, since all characters <= 0xff.  */
 | ||
|   for (this_char = range_start; this_char <= range_end; this_char++)
 | ||
|     {
 | ||
|       SET_LIST_BIT (TRANSLATE (this_char));
 | ||
|     }
 | ||
| 
 | ||
|   return REG_NOERROR;
 | ||
| }
 | ||
| 
 | ||
| /* Failure stack declarations and macros; both re_compile_fastmap and
 | ||
|    re_match_2 use a failure stack.  These have to be macros because of
 | ||
|    REGEX_ALLOCATE.  */
 | ||
| 
 | ||
| 
 | ||
| /* Number of failure points for which to initially allocate space
 | ||
|    when matching.  If this number is exceeded, we allocate more
 | ||
|    space, so it is not a hard limit.  */
 | ||
| #ifndef INIT_FAILURE_ALLOC
 | ||
| #define INIT_FAILURE_ALLOC 5
 | ||
| #endif
 | ||
| 
 | ||
| /* Roughly the maximum number of failure points on the stack.  Would be
 | ||
|    exactly that if always used MAX_FAILURE_SPACE each time we failed.
 | ||
|    This is a variable only so users of regex can assign to it; we never
 | ||
|    change it ourselves.  */
 | ||
| int re_max_failures = 2000;
 | ||
| 
 | ||
| typedef const unsigned char *fail_stack_elt_t;
 | ||
| 
 | ||
| typedef struct
 | ||
| {
 | ||
|   fail_stack_elt_t *stack;
 | ||
|   unsigned size;
 | ||
|   unsigned avail;			/* Offset of next open position.  */
 | ||
| } fail_stack_type;
 | ||
| 
 | ||
| #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
 | ||
| #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
 | ||
| #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
 | ||
| #define FAIL_STACK_TOP()       (fail_stack.stack[fail_stack.avail])
 | ||
| 
 | ||
| 
 | ||
| /* Initialize `fail_stack'.  Do `return -2' if the alloc fails.  */
 | ||
| 
 | ||
| #define INIT_FAIL_STACK()						\
 | ||
|   do {									\
 | ||
|     fail_stack.stack = (fail_stack_elt_t *)				\
 | ||
|       REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));	\
 | ||
| 									\
 | ||
|     if (fail_stack.stack == NULL)					\
 | ||
|       return -2;							\
 | ||
| 									\
 | ||
|     fail_stack.size = INIT_FAILURE_ALLOC;				\
 | ||
|     fail_stack.avail = 0;						\
 | ||
|   } while (0)
 | ||
| 
 | ||
| 
 | ||
| /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
 | ||
| 
 | ||
|    Return 1 if succeeds, and 0 if either ran out of memory
 | ||
|    allocating space for it or it was already too large.
 | ||
| 
 | ||
|    REGEX_REALLOCATE requires `destination' be declared.   */
 | ||
| 
 | ||
| #define DOUBLE_FAIL_STACK(fail_stack)					\
 | ||
|   ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS		\
 | ||
|    ? 0									\
 | ||
|    : ((fail_stack).stack = (fail_stack_elt_t *)				\
 | ||
|         REGEX_REALLOCATE ((fail_stack).stack, 				\
 | ||
|           (fail_stack).size * sizeof (fail_stack_elt_t),		\
 | ||
|           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
 | ||
| 									\
 | ||
|       (fail_stack).stack == NULL					\
 | ||
|       ? 0								\
 | ||
|       : ((fail_stack).size <<= 1, 					\
 | ||
|          1)))
 | ||
| 
 | ||
| 
 | ||
| /* Push PATTERN_OP on FAIL_STACK.
 | ||
| 
 | ||
|    Return 1 if was able to do so and 0 if ran out of memory allocating
 | ||
|    space to do so.  */
 | ||
| #define PUSH_PATTERN_OP(pattern_op, fail_stack)				\
 | ||
|   ((FAIL_STACK_FULL ()							\
 | ||
|     && !DOUBLE_FAIL_STACK (fail_stack))					\
 | ||
|     ? 0									\
 | ||
|     : ((fail_stack).stack[(fail_stack).avail++] = pattern_op,		\
 | ||
|        1))
 | ||
| 
 | ||
| /* This pushes an item onto the failure stack.  Must be a four-byte
 | ||
|    value.  Assumes the variable `fail_stack'.  Probably should only
 | ||
|    be called from within `PUSH_FAILURE_POINT'.  */
 | ||
| #define PUSH_FAILURE_ITEM(item)						\
 | ||
|   fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
 | ||
| 
 | ||
| /* The complement operation.  Assumes `fail_stack' is nonempty.  */
 | ||
| #define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
 | ||
| 
 | ||
| /* Used to omit pushing failure point id's when we're not debugging.  */
 | ||
| #ifdef DEBUG
 | ||
| #define DEBUG_PUSH PUSH_FAILURE_ITEM
 | ||
| #define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
 | ||
| #else
 | ||
| #define DEBUG_PUSH(item)
 | ||
| #define DEBUG_POP(item_addr)
 | ||
| #endif
 | ||
| 
 | ||
| 
 | ||
| /* Push the information about the state we will need
 | ||
|    if we ever fail back to it.
 | ||
| 
 | ||
|    Requires variables fail_stack, regstart, regend, reg_info, and
 | ||
|    num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
 | ||
|    declared.
 | ||
| 
 | ||
|    Does `return FAILURE_CODE' if runs out of memory.  */
 | ||
| 
 | ||
| #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
 | ||
|   do {									\
 | ||
|     char *destination;							\
 | ||
|     /* Must be int, so when we don't save any registers, the arithmetic	\
 | ||
|        of 0 + -1 isn't done as unsigned.  */				\
 | ||
|     int this_reg;							\
 | ||
|     									\
 | ||
|     DEBUG_STATEMENT (failure_id++);					\
 | ||
|     DEBUG_STATEMENT (nfailure_points_pushed++);				\
 | ||
|     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
 | ||
|     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
 | ||
|     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);		\
 | ||
|     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
 | ||
| 									\
 | ||
|     /* Ensure we have enough space allocated for what we will push.  */	\
 | ||
|     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
 | ||
|       {									\
 | ||
|         if (!DOUBLE_FAIL_STACK (fail_stack))			\
 | ||
|           return failure_code;						\
 | ||
| 									\
 | ||
|         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
 | ||
| 		       (fail_stack).size);				\
 | ||
|         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
 | ||
|       }									\
 | ||
| 									\
 | ||
|     /* Push the info, starting with the registers.  */			\
 | ||
|     DEBUG_PRINT1 ("\n");						\
 | ||
| 									\
 | ||
|     for (this_reg = lowest_active_reg; this_reg <= highest_active_reg;	\
 | ||
|          this_reg++)							\
 | ||
|       {									\
 | ||
| 	DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);			\
 | ||
|         DEBUG_STATEMENT (num_regs_pushed++);				\
 | ||
| 									\
 | ||
| 	DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);		\
 | ||
|         PUSH_FAILURE_ITEM (regstart[this_reg]);				\
 | ||
|                                                                         \
 | ||
| 	DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);		\
 | ||
|         PUSH_FAILURE_ITEM (regend[this_reg]);				\
 | ||
| 									\
 | ||
| 	DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);	\
 | ||
|         DEBUG_PRINT2 (" match_null=%d",					\
 | ||
|                       REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
 | ||
|         DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
 | ||
|         DEBUG_PRINT2 (" matched_something=%d",				\
 | ||
|                       MATCHED_SOMETHING (reg_info[this_reg]));		\
 | ||
|         DEBUG_PRINT2 (" ever_matched=%d",				\
 | ||
|                       EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
 | ||
| 	DEBUG_PRINT1 ("\n");						\
 | ||
|         PUSH_FAILURE_ITEM (reg_info[this_reg].word);			\
 | ||
|       }									\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
 | ||
|     PUSH_FAILURE_ITEM (lowest_active_reg);				\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
 | ||
|     PUSH_FAILURE_ITEM (highest_active_reg);				\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);		\
 | ||
|     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
 | ||
|     PUSH_FAILURE_ITEM (pattern_place);					\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);		\
 | ||
|     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
 | ||
| 				 size2);				\
 | ||
|     DEBUG_PRINT1 ("'\n");						\
 | ||
|     PUSH_FAILURE_ITEM (string_place);					\
 | ||
| 									\
 | ||
|     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
 | ||
|     DEBUG_PUSH (failure_id);						\
 | ||
|   } while (0)
 | ||
| 
 | ||
| /* This is the number of items that are pushed and popped on the stack
 | ||
|    for each register.  */
 | ||
| #define NUM_REG_ITEMS  3
 | ||
| 
 | ||
| /* Individual items aside from the registers.  */
 | ||
| #ifdef DEBUG
 | ||
| #define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
 | ||
| #else
 | ||
| #define NUM_NONREG_ITEMS 4
 | ||
| #endif
 | ||
| 
 | ||
| /* We push at most this many items on the stack.  */
 | ||
| #define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
 | ||
| 
 | ||
| /* We actually push this many items.  */
 | ||
| #define NUM_FAILURE_ITEMS						\
 | ||
|   ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS 	\
 | ||
|     + NUM_NONREG_ITEMS)
 | ||
| 
 | ||
| /* How many items can still be added to the stack without overflowing it.  */
 | ||
| #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
 | ||
| 
 | ||
| 
 | ||
| /* Pops what PUSH_FAIL_STACK pushes.
 | ||
| 
 | ||
|    We restore into the parameters, all of which should be lvalues:
 | ||
|      STR -- the saved data position.
 | ||
|      PAT -- the saved pattern position.
 | ||
|      LOW_REG, HIGH_REG -- the highest and lowest active registers.
 | ||
|      REGSTART, REGEND -- arrays of string positions.
 | ||
|      REG_INFO -- array of information about each subexpression.
 | ||
| 
 | ||
|    Also assumes the variables `fail_stack' and (if debugging), `bufp',
 | ||
|    `pend', `string1', `size1', `string2', and `size2'.  */
 | ||
| 
 | ||
| #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
 | ||
| {									\
 | ||
|   DEBUG_STATEMENT (fail_stack_elt_t failure_id;)			\
 | ||
|   int this_reg;								\
 | ||
|   const unsigned char *string_temp;					\
 | ||
| 									\
 | ||
|   assert (!FAIL_STACK_EMPTY ());					\
 | ||
| 									\
 | ||
|   /* Remove failure points and point to how many regs pushed.  */	\
 | ||
|   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
 | ||
|   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
 | ||
|   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
 | ||
| 									\
 | ||
|   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
 | ||
| 									\
 | ||
|   DEBUG_POP (&failure_id);						\
 | ||
|   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
 | ||
| 									\
 | ||
|   /* If the saved string location is NULL, it came from an		\
 | ||
|      on_failure_keep_string_jump opcode, and we want to throw away the	\
 | ||
|      saved NULL, thus retaining our current position in the string.  */	\
 | ||
|   string_temp = POP_FAILURE_ITEM ();					\
 | ||
|   if (string_temp != NULL)						\
 | ||
|     str = (const char *) string_temp;					\
 | ||
| 									\
 | ||
|   DEBUG_PRINT2 ("  Popping string 0x%x: `", str);			\
 | ||
|   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
 | ||
|   DEBUG_PRINT1 ("'\n");							\
 | ||
| 									\
 | ||
|   pat = (unsigned char *) POP_FAILURE_ITEM ();				\
 | ||
|   DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);			\
 | ||
|   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
 | ||
| 									\
 | ||
|   /* Restore register info.  */						\
 | ||
|   high_reg = (unsigned) POP_FAILURE_ITEM ();				\
 | ||
|   DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);		\
 | ||
| 									\
 | ||
|   low_reg = (unsigned) POP_FAILURE_ITEM ();				\
 | ||
|   DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);		\
 | ||
| 									\
 | ||
|   for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
 | ||
|     {									\
 | ||
|       DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);			\
 | ||
| 									\
 | ||
|       reg_info[this_reg].word = POP_FAILURE_ITEM ();			\
 | ||
|       DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);		\
 | ||
| 									\
 | ||
|       regend[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
 | ||
|       DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);		\
 | ||
| 									\
 | ||
|       regstart[this_reg] = (const char *) POP_FAILURE_ITEM ();		\
 | ||
|       DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);		\
 | ||
|     }									\
 | ||
| 									\
 | ||
|   DEBUG_STATEMENT (nfailure_points_popped++);				\
 | ||
| } /* POP_FAILURE_POINT */
 | ||
| 
 | ||
| /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
 | ||
|    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
 | ||
|    characters can start a string that matches the pattern.  This fastmap
 | ||
|    is used by re_search to skip quickly over impossible starting points.
 | ||
| 
 | ||
|    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
 | ||
|    area as BUFP->fastmap.
 | ||
| 
 | ||
|    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
 | ||
|    the pattern buffer.
 | ||
| 
 | ||
|    Returns 0 if we succeed, -2 if an internal error.   */
 | ||
| 
 | ||
| int
 | ||
| re_compile_fastmap (bufp)
 | ||
|      struct re_pattern_buffer *bufp;
 | ||
| {
 | ||
|   int j, k;
 | ||
|   fail_stack_type fail_stack;
 | ||
| #ifndef REGEX_MALLOC
 | ||
|   char *destination;
 | ||
| #endif
 | ||
|   /* We don't push any register information onto the failure stack.  */
 | ||
|   unsigned num_regs = 0;
 | ||
| 
 | ||
|   register char *fastmap = bufp->fastmap;
 | ||
|   unsigned char *pattern = bufp->buffer;
 | ||
|   unsigned long size = bufp->used;
 | ||
|   const unsigned char *p = pattern;
 | ||
|   register unsigned char *pend = pattern + size;
 | ||
| 
 | ||
|   /* Assume that each path through the pattern can be null until
 | ||
|      proven otherwise.  We set this false at the bottom of switch
 | ||
|      statement, to which we get only if a particular path doesn't
 | ||
|      match the empty string.  */
 | ||
|   boolean path_can_be_null = true;
 | ||
| 
 | ||
|   /* We aren't doing a `succeed_n' to begin with.  */
 | ||
|   boolean succeed_n_p = false;
 | ||
| 
 | ||
|   assert (fastmap != NULL && p != NULL);
 | ||
| 
 | ||
|   INIT_FAIL_STACK ();
 | ||
|   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
 | ||
|   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
 | ||
|   bufp->can_be_null = 0;
 | ||
| 
 | ||
|   while (p != pend || !FAIL_STACK_EMPTY ())
 | ||
|     {
 | ||
|       if (p == pend)
 | ||
|         {
 | ||
|           bufp->can_be_null |= path_can_be_null;
 | ||
| 
 | ||
|           /* Reset for next path.  */
 | ||
|           path_can_be_null = true;
 | ||
| 
 | ||
|           p = fail_stack.stack[--fail_stack.avail];
 | ||
| 	}
 | ||
| 
 | ||
|       /* We should never be about to go beyond the end of the pattern.  */
 | ||
|       assert (p < pend);
 | ||
| 
 | ||
| #ifdef SWITCH_ENUM_BUG
 | ||
|       switch ((int) ((re_opcode_t) *p++))
 | ||
| #else
 | ||
|       switch ((re_opcode_t) *p++)
 | ||
| #endif
 | ||
| 	{
 | ||
| 
 | ||
|         /* I guess the idea here is to simply not bother with a fastmap
 | ||
|            if a backreference is used, since it's too hard to figure out
 | ||
|            the fastmap for the corresponding group.  Setting
 | ||
|            `can_be_null' stops `re_search_2' from using the fastmap, so
 | ||
|            that is all we do.  */
 | ||
| 	case duplicate:
 | ||
| 	  bufp->can_be_null = 1;
 | ||
|           return 0;
 | ||
| 
 | ||
| 
 | ||
|       /* Following are the cases which match a character.  These end
 | ||
|          with `break'.  */
 | ||
| 
 | ||
| 	case exactn:
 | ||
|           fastmap[p[1]] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
|         case charset:
 | ||
|           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
 | ||
| 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
 | ||
|               fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case charset_not:
 | ||
| 	  /* Chars beyond end of map must be allowed.  */
 | ||
| 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
 | ||
|             fastmap[j] = 1;
 | ||
| 
 | ||
| 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
 | ||
| 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
 | ||
|               fastmap[j] = 1;
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	case wordchar:
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	    if (SYNTAX (j) == Sword)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case notwordchar:
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	    if (SYNTAX (j) != Sword)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
|         case anychar:
 | ||
|           /* `.' matches anything ...  */
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
|             fastmap[j] = 1;
 | ||
| 
 | ||
|           /* ... except perhaps newline.  */
 | ||
|           if (!(bufp->syntax & RE_DOT_NEWLINE))
 | ||
|             fastmap['\n'] = 0;
 | ||
| 
 | ||
|           /* Return if we have already set `can_be_null'; if we have,
 | ||
|              then the fastmap is irrelevant.  Something's wrong here.  */
 | ||
| 	  else if (bufp->can_be_null)
 | ||
| 	    return 0;
 | ||
| 
 | ||
|           /* Otherwise, have to check alternative paths.  */
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| #ifdef emacs
 | ||
|         case syntaxspec:
 | ||
| 	  k = *p++;
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	    if (SYNTAX (j) == (enum syntaxcode) k)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case notsyntaxspec:
 | ||
| 	  k = *p++;
 | ||
| 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
 | ||
| 	    if (SYNTAX (j) != (enum syntaxcode) k)
 | ||
| 	      fastmap[j] = 1;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
|       /* All cases after this match the empty string.  These end with
 | ||
|          `continue'.  */
 | ||
| 
 | ||
| 
 | ||
| 	case before_dot:
 | ||
| 	case at_dot:
 | ||
| 	case after_dot:
 | ||
|           continue;
 | ||
| #endif /* not emacs */
 | ||
| 
 | ||
| 
 | ||
|         case no_op:
 | ||
|         case begline:
 | ||
|         case endline:
 | ||
| 	case begbuf:
 | ||
| 	case endbuf:
 | ||
| 	case wordbound:
 | ||
| 	case notwordbound:
 | ||
| 	case wordbeg:
 | ||
| 	case wordend:
 | ||
|         case push_dummy_failure:
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
| 	case jump_n:
 | ||
|         case pop_failure_jump:
 | ||
| 	case maybe_pop_jump:
 | ||
| 	case jump:
 | ||
|         case jump_past_alt:
 | ||
| 	case dummy_failure_jump:
 | ||
|           EXTRACT_NUMBER_AND_INCR (j, p);
 | ||
| 	  p += j;
 | ||
| 	  if (j > 0)
 | ||
| 	    continue;
 | ||
| 
 | ||
|           /* Jump backward implies we just went through the body of a
 | ||
|              loop and matched nothing.  Opcode jumped to should be
 | ||
|              `on_failure_jump' or `succeed_n'.  Just treat it like an
 | ||
|              ordinary jump.  For a * loop, it has pushed its failure
 | ||
|              point already; if so, discard that as redundant.  */
 | ||
|           if ((re_opcode_t) *p != on_failure_jump
 | ||
| 	      && (re_opcode_t) *p != succeed_n)
 | ||
| 	    continue;
 | ||
| 
 | ||
|           p++;
 | ||
|           EXTRACT_NUMBER_AND_INCR (j, p);
 | ||
|           p += j;
 | ||
| 
 | ||
|           /* If what's on the stack is where we are now, pop it.  */
 | ||
|           if (!FAIL_STACK_EMPTY ()
 | ||
| 	      && fail_stack.stack[fail_stack.avail - 1] == p)
 | ||
|             fail_stack.avail--;
 | ||
| 
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
|         case on_failure_jump:
 | ||
|         case on_failure_keep_string_jump:
 | ||
| 	handle_on_failure_jump:
 | ||
|           EXTRACT_NUMBER_AND_INCR (j, p);
 | ||
| 
 | ||
|           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
 | ||
|              end of the pattern.  We don't want to push such a point,
 | ||
|              since when we restore it above, entering the switch will
 | ||
|              increment `p' past the end of the pattern.  We don't need
 | ||
|              to push such a point since we obviously won't find any more
 | ||
|              fastmap entries beyond `pend'.  Such a pattern can match
 | ||
|              the null string, though.  */
 | ||
|           if (p + j < pend)
 | ||
|             {
 | ||
|               if (!PUSH_PATTERN_OP (p + j, fail_stack))
 | ||
|                 return -2;
 | ||
|             }
 | ||
|           else
 | ||
|             bufp->can_be_null = 1;
 | ||
| 
 | ||
|           if (succeed_n_p)
 | ||
|             {
 | ||
|               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
 | ||
|               succeed_n_p = false;
 | ||
| 	    }
 | ||
| 
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
| 	case succeed_n:
 | ||
|           /* Get to the number of times to succeed.  */
 | ||
|           p += 2;
 | ||
| 
 | ||
|           /* Increment p past the n for when k != 0.  */
 | ||
|           EXTRACT_NUMBER_AND_INCR (k, p);
 | ||
|           if (k == 0)
 | ||
| 	    {
 | ||
|               p -= 4;
 | ||
|   	      succeed_n_p = true;  /* Spaghetti code alert.  */
 | ||
|               goto handle_on_failure_jump;
 | ||
|             }
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
| 	case set_number_at:
 | ||
|           p += 4;
 | ||
|           continue;
 | ||
| 
 | ||
| 
 | ||
| 	case start_memory:
 | ||
|         case stop_memory:
 | ||
| 	  p += 2;
 | ||
| 	  continue;
 | ||
| 
 | ||
| 
 | ||
| 	default:
 | ||
|           abort (); /* We have listed all the cases.  */
 | ||
|         } /* switch *p++ */
 | ||
| 
 | ||
|       /* Getting here means we have found the possible starting
 | ||
|          characters for one path of the pattern -- and that the empty
 | ||
|          string does not match.  We need not follow this path further.
 | ||
|          Instead, look at the next alternative (remembered on the
 | ||
|          stack), or quit if no more.  The test at the top of the loop
 | ||
|          does these things.  */
 | ||
|       path_can_be_null = false;
 | ||
|       p = pend;
 | ||
|     } /* while p */
 | ||
| 
 | ||
|   /* Set `can_be_null' for the last path (also the first path, if the
 | ||
|      pattern is empty).  */
 | ||
|   bufp->can_be_null |= path_can_be_null;
 | ||
|   return 0;
 | ||
| } /* re_compile_fastmap */
 | ||
| 
 | ||
| /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
 | ||
|    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
 | ||
|    this memory for recording register information.  STARTS and ENDS
 | ||
|    must be allocated using the malloc library routine, and must each
 | ||
|    be at least NUM_REGS * sizeof (regoff_t) bytes long.
 | ||
| 
 | ||
|    If NUM_REGS == 0, then subsequent matches should allocate their own
 | ||
|    register data.
 | ||
| 
 | ||
|    Unless this function is called, the first search or match using
 | ||
|    PATTERN_BUFFER will allocate its own register data, without
 | ||
|    freeing the old data.  */
 | ||
| 
 | ||
| void
 | ||
| re_set_registers (bufp, regs, num_regs, starts, ends)
 | ||
|     struct re_pattern_buffer *bufp;
 | ||
|     struct re_registers *regs;
 | ||
|     unsigned num_regs;
 | ||
|     regoff_t *starts, *ends;
 | ||
| {
 | ||
|   if (num_regs)
 | ||
|     {
 | ||
|       bufp->regs_allocated = REGS_REALLOCATE;
 | ||
|       regs->num_regs = num_regs;
 | ||
|       regs->start = starts;
 | ||
|       regs->end = ends;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       bufp->regs_allocated = REGS_UNALLOCATED;
 | ||
|       regs->num_regs = 0;
 | ||
|       regs->start = regs->end = (regoff_t) 0;
 | ||
|     }
 | ||
| }
 | ||
| 
 | ||
| /* Searching routines.  */
 | ||
| 
 | ||
| /* Like re_search_2, below, but only one string is specified, and
 | ||
|    doesn't let you say where to stop matching. */
 | ||
| 
 | ||
| int
 | ||
| re_search (bufp, string, size, startpos, range, regs)
 | ||
|      struct re_pattern_buffer *bufp;
 | ||
|      const char *string;
 | ||
|      int size, startpos, range;
 | ||
|      struct re_registers *regs;
 | ||
| {
 | ||
|   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
 | ||
| 		      regs, size);
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Using the compiled pattern in BUFP->buffer, first tries to match the
 | ||
|    virtual concatenation of STRING1 and STRING2, starting first at index
 | ||
|    STARTPOS, then at STARTPOS + 1, and so on.
 | ||
| 
 | ||
|    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
 | ||
| 
 | ||
|    RANGE is how far to scan while trying to match.  RANGE = 0 means try
 | ||
|    only at STARTPOS; in general, the last start tried is STARTPOS +
 | ||
|    RANGE.
 | ||
| 
 | ||
|    In REGS, return the indices of the virtual concatenation of STRING1
 | ||
|    and STRING2 that matched the entire BUFP->buffer and its contained
 | ||
|    subexpressions.
 | ||
| 
 | ||
|    Do not consider matching one past the index STOP in the virtual
 | ||
|    concatenation of STRING1 and STRING2.
 | ||
| 
 | ||
|    We return either the position in the strings at which the match was
 | ||
|    found, -1 if no match, or -2 if error (such as failure
 | ||
|    stack overflow).  */
 | ||
| 
 | ||
| int
 | ||
| re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
 | ||
|      struct re_pattern_buffer *bufp;
 | ||
|      const char *string1, *string2;
 | ||
|      int size1, size2;
 | ||
|      int startpos;
 | ||
|      int range;
 | ||
|      struct re_registers *regs;
 | ||
|      int stop;
 | ||
| {
 | ||
|   int val;
 | ||
|   register char *fastmap = bufp->fastmap;
 | ||
|   register char *translate = bufp->translate;
 | ||
|   int total_size = size1 + size2;
 | ||
|   int endpos = startpos + range;
 | ||
| 
 | ||
|   /* Check for out-of-range STARTPOS.  */
 | ||
|   if (startpos < 0 || startpos > total_size)
 | ||
|     return -1;
 | ||
| 
 | ||
|   /* Fix up RANGE if it might eventually take us outside
 | ||
|      the virtual concatenation of STRING1 and STRING2.  */
 | ||
|   if (endpos < -1)
 | ||
|     range = -1 - startpos;
 | ||
|   else if (endpos > total_size)
 | ||
|     range = total_size - startpos;
 | ||
| 
 | ||
|   /* If the search isn't to be a backwards one, don't waste time in a
 | ||
|      search for a pattern that must be anchored.  */
 | ||
|   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
 | ||
|     {
 | ||
|       if (startpos > 0)
 | ||
| 	return -1;
 | ||
|       else
 | ||
| 	range = 1;
 | ||
|     }
 | ||
| 
 | ||
|   /* Update the fastmap now if not correct already.  */
 | ||
|   if (fastmap && !bufp->fastmap_accurate)
 | ||
|     if (re_compile_fastmap (bufp) == -2)
 | ||
|       return -2;
 | ||
| 
 | ||
|   /* Loop through the string, looking for a place to start matching.  */
 | ||
|   for (;;)
 | ||
|     {
 | ||
|       /* If a fastmap is supplied, skip quickly over characters that
 | ||
|          cannot be the start of a match.  If the pattern can match the
 | ||
|          null string, however, we don't need to skip characters; we want
 | ||
|          the first null string.  */
 | ||
|       if (fastmap && startpos < total_size && !bufp->can_be_null)
 | ||
| 	{
 | ||
| 	  if (range > 0)	/* Searching forwards.  */
 | ||
| 	    {
 | ||
| 	      register const char *d;
 | ||
| 	      register int lim = 0;
 | ||
| 	      int irange = range;
 | ||
| 
 | ||
|               if (startpos < size1 && startpos + range >= size1)
 | ||
|                 lim = range - (size1 - startpos);
 | ||
| 
 | ||
| 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
 | ||
| 
 | ||
|               /* Written out as an if-else to avoid testing `translate'
 | ||
|                  inside the loop.  */
 | ||
| 	      if (translate)
 | ||
|                 while (range > lim
 | ||
|                        && !fastmap[(unsigned char)
 | ||
| 				   translate[(unsigned char) *d++]])
 | ||
|                   range--;
 | ||
| 	      else
 | ||
|                 while (range > lim && !fastmap[(unsigned char) *d++])
 | ||
|                   range--;
 | ||
| 
 | ||
| 	      startpos += irange - range;
 | ||
| 	    }
 | ||
| 	  else				/* Searching backwards.  */
 | ||
| 	    {
 | ||
| 	      register char c = (size1 == 0 || startpos >= size1
 | ||
|                                  ? string2[startpos - size1]
 | ||
|                                  : string1[startpos]);
 | ||
| 
 | ||
| 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
 | ||
| 		goto advance;
 | ||
| 	    }
 | ||
| 	}
 | ||
| 
 | ||
|       /* If can't match the null string, and that's all we have left, fail.  */
 | ||
|       if (range >= 0 && startpos == total_size && fastmap
 | ||
|           && !bufp->can_be_null)
 | ||
| 	return -1;
 | ||
| 
 | ||
|       val = re_match_2 (bufp, string1, size1, string2, size2,
 | ||
| 	                startpos, regs, stop);
 | ||
|       if (val >= 0)
 | ||
| 	return startpos;
 | ||
| 
 | ||
|       if (val == -2)
 | ||
| 	return -2;
 | ||
| 
 | ||
|     advance:
 | ||
|       if (!range)
 | ||
|         break;
 | ||
|       else if (range > 0)
 | ||
|         {
 | ||
|           range--;
 | ||
|           startpos++;
 | ||
|         }
 | ||
|       else
 | ||
|         {
 | ||
|           range++;
 | ||
|           startpos--;
 | ||
|         }
 | ||
|     }
 | ||
|   return -1;
 | ||
| } /* re_search_2 */
 | ||
| 
 | ||
| /* Declarations and macros for re_match_2.  */
 | ||
| 
 | ||
| static int bcmp_translate ();
 | ||
| static boolean alt_match_null_string_p (),
 | ||
|                common_op_match_null_string_p (),
 | ||
|                group_match_null_string_p ();
 | ||
| 
 | ||
| /* Structure for per-register (a.k.a. per-group) information.
 | ||
|    This must not be longer than one word, because we push this value
 | ||
|    onto the failure stack.  Other register information, such as the
 | ||
|    starting and ending positions (which are addresses), and the list of
 | ||
|    inner groups (which is a bits list) are maintained in separate
 | ||
|    variables.
 | ||
| 
 | ||
|    We are making a (strictly speaking) nonportable assumption here: that
 | ||
|    the compiler will pack our bit fields into something that fits into
 | ||
|    the type of `word', i.e., is something that fits into one item on the
 | ||
|    failure stack.  */
 | ||
| typedef union
 | ||
| {
 | ||
|   fail_stack_elt_t word;
 | ||
|   struct
 | ||
|   {
 | ||
|       /* This field is one if this group can match the empty string,
 | ||
|          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
 | ||
| #define MATCH_NULL_UNSET_VALUE 3
 | ||
|     unsigned match_null_string_p : 2;
 | ||
|     unsigned is_active : 1;
 | ||
|     unsigned matched_something : 1;
 | ||
|     unsigned ever_matched_something : 1;
 | ||
|   } bits;
 | ||
| } register_info_type;
 | ||
| 
 | ||
| #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
 | ||
| #define IS_ACTIVE(R)  ((R).bits.is_active)
 | ||
| #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
 | ||
| #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
 | ||
| 
 | ||
| 
 | ||
| /* Call this when have matched a real character; it sets `matched' flags
 | ||
|    for the subexpressions which we are currently inside.  Also records
 | ||
|    that those subexprs have matched.  */
 | ||
| #define SET_REGS_MATCHED()						\
 | ||
|   do									\
 | ||
|     {									\
 | ||
|       unsigned r;							\
 | ||
|       for (r = lowest_active_reg; r <= highest_active_reg; r++)		\
 | ||
|         {								\
 | ||
|           MATCHED_SOMETHING (reg_info[r])				\
 | ||
|             = EVER_MATCHED_SOMETHING (reg_info[r])			\
 | ||
|             = 1;							\
 | ||
|         }								\
 | ||
|     }									\
 | ||
|   while (0)
 | ||
| 
 | ||
| 
 | ||
| /* This converts PTR, a pointer into one of the search strings `string1'
 | ||
|    and `string2' into an offset from the beginning of that string.  */
 | ||
| #define POINTER_TO_OFFSET(ptr)						\
 | ||
|   (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
 | ||
| 
 | ||
| /* Registers are set to a sentinel when they haven't yet matched.  */
 | ||
| #define REG_UNSET_VALUE ((char *) -1)
 | ||
| #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
 | ||
| 
 | ||
| 
 | ||
| /* Macros for dealing with the split strings in re_match_2.  */
 | ||
| 
 | ||
| #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
 | ||
| 
 | ||
| /* Call before fetching a character with *d.  This switches over to
 | ||
|    string2 if necessary.  */
 | ||
| #define PREFETCH()							\
 | ||
|   while (d == dend)						    	\
 | ||
|     {									\
 | ||
|       /* End of string2 => fail.  */					\
 | ||
|       if (dend == end_match_2) 						\
 | ||
|         goto fail;							\
 | ||
|       /* End of string1 => advance to string2.  */ 			\
 | ||
|       d = string2;						        \
 | ||
|       dend = end_match_2;						\
 | ||
|     }
 | ||
| 
 | ||
| 
 | ||
| /* Test if at very beginning or at very end of the virtual concatenation
 | ||
|    of `string1' and `string2'.  If only one string, it's `string2'.  */
 | ||
| #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
 | ||
| #define AT_STRINGS_END(d) ((d) == end2)
 | ||
| 
 | ||
| 
 | ||
| /* Test if D points to a character which is word-constituent.  We have
 | ||
|    two special cases to check for: if past the end of string1, look at
 | ||
|    the first character in string2; and if before the beginning of
 | ||
|    string2, look at the last character in string1.  */
 | ||
| #define WORDCHAR_P(d)							\
 | ||
|   (SYNTAX ((d) == end1 ? *string2					\
 | ||
|            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
 | ||
|    == Sword)
 | ||
| 
 | ||
| /* Test if the character before D and the one at D differ with respect
 | ||
|    to being word-constituent.  */
 | ||
| #define AT_WORD_BOUNDARY(d)						\
 | ||
|   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
 | ||
|    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
 | ||
| 
 | ||
| 
 | ||
| /* Free everything we malloc.  */
 | ||
| #ifdef REGEX_MALLOC
 | ||
| #define FREE_VAR(var) if (var) free (var); var = NULL
 | ||
| #define FREE_VARIABLES()						\
 | ||
|   do {									\
 | ||
|     FREE_VAR (fail_stack.stack);					\
 | ||
|     FREE_VAR (regstart);						\
 | ||
|     FREE_VAR (regend);							\
 | ||
|     FREE_VAR (old_regstart);						\
 | ||
|     FREE_VAR (old_regend);						\
 | ||
|     FREE_VAR (best_regstart);						\
 | ||
|     FREE_VAR (best_regend);						\
 | ||
|     FREE_VAR (reg_info);						\
 | ||
|     FREE_VAR (reg_dummy);						\
 | ||
|     FREE_VAR (reg_info_dummy);						\
 | ||
|   } while (0)
 | ||
| #else /* not REGEX_MALLOC */
 | ||
| /* Some MIPS systems (at least) want this to free alloca'd storage.  */
 | ||
| #define FREE_VARIABLES() alloca (0)
 | ||
| #endif /* not REGEX_MALLOC */
 | ||
| 
 | ||
| 
 | ||
| /* These values must meet several constraints.  They must not be valid
 | ||
|    register values; since we have a limit of 255 registers (because
 | ||
|    we use only one byte in the pattern for the register number), we can
 | ||
|    use numbers larger than 255.  They must differ by 1, because of
 | ||
|    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
 | ||
|    be larger than the value for the highest register, so we do not try
 | ||
|    to actually save any registers when none are active.  */
 | ||
| #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
 | ||
| #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
 | ||
| 
 | ||
| /* Matching routines.  */
 | ||
| 
 | ||
| #ifndef emacs   /* Emacs never uses this.  */
 | ||
| /* re_match is like re_match_2 except it takes only a single string.  */
 | ||
| 
 | ||
| int
 | ||
| re_match (bufp, string, size, pos, regs)
 | ||
|      struct re_pattern_buffer *bufp;
 | ||
|      const char *string;
 | ||
|      int size, pos;
 | ||
|      struct re_registers *regs;
 | ||
|  {
 | ||
|   return re_match_2 (bufp, NULL, 0, string, size, pos, regs, size);
 | ||
| }
 | ||
| #endif /* not emacs */
 | ||
| 
 | ||
| 
 | ||
| /* re_match_2 matches the compiled pattern in BUFP against the
 | ||
|    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
 | ||
|    and SIZE2, respectively).  We start matching at POS, and stop
 | ||
|    matching at STOP.
 | ||
| 
 | ||
|    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
 | ||
|    store offsets for the substring each group matched in REGS.  See the
 | ||
|    documentation for exactly how many groups we fill.
 | ||
| 
 | ||
|    We return -1 if no match, -2 if an internal error (such as the
 | ||
|    failure stack overflowing).  Otherwise, we return the length of the
 | ||
|    matched substring.  */
 | ||
| 
 | ||
| int
 | ||
| re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
 | ||
|      struct re_pattern_buffer *bufp;
 | ||
|      const char *string1, *string2;
 | ||
|      int size1, size2;
 | ||
|      int pos;
 | ||
|      struct re_registers *regs;
 | ||
|      int stop;
 | ||
| {
 | ||
|   /* General temporaries.  */
 | ||
|   int mcnt;
 | ||
|   unsigned char *p1;
 | ||
| 
 | ||
|   /* Just past the end of the corresponding string.  */
 | ||
|   const char *end1, *end2;
 | ||
| 
 | ||
|   /* Pointers into string1 and string2, just past the last characters in
 | ||
|      each to consider matching.  */
 | ||
|   const char *end_match_1, *end_match_2;
 | ||
| 
 | ||
|   /* Where we are in the data, and the end of the current string.  */
 | ||
|   const char *d, *dend;
 | ||
| 
 | ||
|   /* Where we are in the pattern, and the end of the pattern.  */
 | ||
|   unsigned char *p = bufp->buffer;
 | ||
|   register unsigned char *pend = p + bufp->used;
 | ||
| 
 | ||
|   /* We use this to map every character in the string.  */
 | ||
|   char *translate = bufp->translate;
 | ||
| 
 | ||
|   /* Failure point stack.  Each place that can handle a failure further
 | ||
|      down the line pushes a failure point on this stack.  It consists of
 | ||
|      restart, regend, and reg_info for all registers corresponding to
 | ||
|      the subexpressions we're currently inside, plus the number of such
 | ||
|      registers, and, finally, two char *'s.  The first char * is where
 | ||
|      to resume scanning the pattern; the second one is where to resume
 | ||
|      scanning the strings.  If the latter is zero, the failure point is
 | ||
|      a ``dummy''; if a failure happens and the failure point is a dummy,
 | ||
|      it gets discarded and the next next one is tried.  */
 | ||
|   fail_stack_type fail_stack;
 | ||
| #ifdef DEBUG
 | ||
|   static unsigned failure_id = 0;
 | ||
|   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
 | ||
| #endif
 | ||
| 
 | ||
|   /* We fill all the registers internally, independent of what we
 | ||
|      return, for use in backreferences.  The number here includes
 | ||
|      an element for register zero.  */
 | ||
|   unsigned num_regs = bufp->re_nsub + 1;
 | ||
| 
 | ||
|   /* The currently active registers.  */
 | ||
|   unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
 | ||
|   unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
 | ||
| 
 | ||
|   /* Information on the contents of registers. These are pointers into
 | ||
|      the input strings; they record just what was matched (on this
 | ||
|      attempt) by a subexpression part of the pattern, that is, the
 | ||
|      regnum-th regstart pointer points to where in the pattern we began
 | ||
|      matching and the regnum-th regend points to right after where we
 | ||
|      stopped matching the regnum-th subexpression.  (The zeroth register
 | ||
|      keeps track of what the whole pattern matches.)  */
 | ||
|   const char **regstart, **regend;
 | ||
| 
 | ||
|   /* If a group that's operated upon by a repetition operator fails to
 | ||
|      match anything, then the register for its start will need to be
 | ||
|      restored because it will have been set to wherever in the string we
 | ||
|      are when we last see its open-group operator.  Similarly for a
 | ||
|      register's end.  */
 | ||
|   const char **old_regstart, **old_regend;
 | ||
| 
 | ||
|   /* The is_active field of reg_info helps us keep track of which (possibly
 | ||
|      nested) subexpressions we are currently in. The matched_something
 | ||
|      field of reg_info[reg_num] helps us tell whether or not we have
 | ||
|      matched any of the pattern so far this time through the reg_num-th
 | ||
|      subexpression.  These two fields get reset each time through any
 | ||
|      loop their register is in.  */
 | ||
|   register_info_type *reg_info;
 | ||
| 
 | ||
|   /* The following record the register info as found in the above
 | ||
|      variables when we find a match better than any we've seen before.
 | ||
|      This happens as we backtrack through the failure points, which in
 | ||
|      turn happens only if we have not yet matched the entire string. */
 | ||
|   unsigned best_regs_set = false;
 | ||
|   const char **best_regstart, **best_regend;
 | ||
| 
 | ||
|   /* Logically, this is `best_regend[0]'.  But we don't want to have to
 | ||
|      allocate space for that if we're not allocating space for anything
 | ||
|      else (see below).  Also, we never need info about register 0 for
 | ||
|      any of the other register vectors, and it seems rather a kludge to
 | ||
|      treat `best_regend' differently than the rest.  So we keep track of
 | ||
|      the end of the best match so far in a separate variable.  We
 | ||
|      initialize this to NULL so that when we backtrack the first time
 | ||
|      and need to test it, it's not garbage.  */
 | ||
|   const char *match_end = NULL;
 | ||
| 
 | ||
|   /* Used when we pop values we don't care about.  */
 | ||
|   const char **reg_dummy;
 | ||
|   register_info_type *reg_info_dummy;
 | ||
| 
 | ||
| #ifdef DEBUG
 | ||
|   /* Counts the total number of registers pushed.  */
 | ||
|   unsigned num_regs_pushed = 0;
 | ||
| #endif
 | ||
| 
 | ||
|   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
 | ||
| 
 | ||
|   INIT_FAIL_STACK ();
 | ||
| 
 | ||
|   /* Do not bother to initialize all the register variables if there are
 | ||
|      no groups in the pattern, as it takes a fair amount of time.  If
 | ||
|      there are groups, we include space for register 0 (the whole
 | ||
|      pattern), even though we never use it, since it simplifies the
 | ||
|      array indexing.  We should fix this.  */
 | ||
|   if (bufp->re_nsub)
 | ||
|     {
 | ||
|       regstart = REGEX_TALLOC (num_regs, const char *);
 | ||
|       regend = REGEX_TALLOC (num_regs, const char *);
 | ||
|       old_regstart = REGEX_TALLOC (num_regs, const char *);
 | ||
|       old_regend = REGEX_TALLOC (num_regs, const char *);
 | ||
|       best_regstart = REGEX_TALLOC (num_regs, const char *);
 | ||
|       best_regend = REGEX_TALLOC (num_regs, const char *);
 | ||
|       reg_info = REGEX_TALLOC (num_regs, register_info_type);
 | ||
|       reg_dummy = REGEX_TALLOC (num_regs, const char *);
 | ||
|       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
 | ||
| 
 | ||
|       if (!(regstart && regend && old_regstart && old_regend && reg_info
 | ||
|             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
 | ||
|         {
 | ||
|           FREE_VARIABLES ();
 | ||
|           return -2;
 | ||
|         }
 | ||
|     }
 | ||
| #ifdef REGEX_MALLOC
 | ||
|   else
 | ||
|     {
 | ||
|       /* We must initialize all our variables to NULL, so that
 | ||
|          `FREE_VARIABLES' doesn't try to free them.  */
 | ||
|       regstart = regend = old_regstart = old_regend = best_regstart
 | ||
|         = best_regend = reg_dummy = NULL;
 | ||
|       reg_info = reg_info_dummy = (register_info_type *) NULL;
 | ||
|     }
 | ||
| #endif /* REGEX_MALLOC */
 | ||
| 
 | ||
|   /* The starting position is bogus.  */
 | ||
|   if (pos < 0 || pos > size1 + size2)
 | ||
|     {
 | ||
|       FREE_VARIABLES ();
 | ||
|       return -1;
 | ||
|     }
 | ||
| 
 | ||
|   /* Initialize subexpression text positions to -1 to mark ones that no
 | ||
|      start_memory/stop_memory has been seen for. Also initialize the
 | ||
|      register information struct.  */
 | ||
|   for (mcnt = 1; mcnt < num_regs; mcnt++)
 | ||
|     {
 | ||
|       regstart[mcnt] = regend[mcnt]
 | ||
|         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
 | ||
| 
 | ||
|       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
 | ||
|       IS_ACTIVE (reg_info[mcnt]) = 0;
 | ||
|       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
 | ||
|       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
 | ||
|     }
 | ||
| 
 | ||
|   /* We move `string1' into `string2' if the latter's empty -- but not if
 | ||
|      `string1' is null.  */
 | ||
|   if (size2 == 0 && string1 != NULL)
 | ||
|     {
 | ||
|       string2 = string1;
 | ||
|       size2 = size1;
 | ||
|       string1 = 0;
 | ||
|       size1 = 0;
 | ||
|     }
 | ||
|   end1 = string1 + size1;
 | ||
|   end2 = string2 + size2;
 | ||
| 
 | ||
|   /* Compute where to stop matching, within the two strings.  */
 | ||
|   if (stop <= size1)
 | ||
|     {
 | ||
|       end_match_1 = string1 + stop;
 | ||
|       end_match_2 = string2;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       end_match_1 = end1;
 | ||
|       end_match_2 = string2 + stop - size1;
 | ||
|     }
 | ||
| 
 | ||
|   /* `p' scans through the pattern as `d' scans through the data.
 | ||
|      `dend' is the end of the input string that `d' points within.  `d'
 | ||
|      is advanced into the following input string whenever necessary, but
 | ||
|      this happens before fetching; therefore, at the beginning of the
 | ||
|      loop, `d' can be pointing at the end of a string, but it cannot
 | ||
|      equal `string2'.  */
 | ||
|   if (size1 > 0 && pos <= size1)
 | ||
|     {
 | ||
|       d = string1 + pos;
 | ||
|       dend = end_match_1;
 | ||
|     }
 | ||
|   else
 | ||
|     {
 | ||
|       d = string2 + pos - size1;
 | ||
|       dend = end_match_2;
 | ||
|     }
 | ||
| 
 | ||
|   DEBUG_PRINT1 ("The compiled pattern is: ");
 | ||
|   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
 | ||
|   DEBUG_PRINT1 ("The string to match is: `");
 | ||
|   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
 | ||
|   DEBUG_PRINT1 ("'\n");
 | ||
| 
 | ||
|   /* This loops over pattern commands.  It exits by returning from the
 | ||
|      function if the match is complete, or it drops through if the match
 | ||
|      fails at this starting point in the input data.  */
 | ||
|   for (;;)
 | ||
|     {
 | ||
|       DEBUG_PRINT2 ("\n0x%x: ", p);
 | ||
| 
 | ||
|       if (p == pend)
 | ||
| 	{ /* End of pattern means we might have succeeded.  */
 | ||
|           DEBUG_PRINT1 ("end of pattern ... ");
 | ||
| 
 | ||
| 	  /* If we haven't matched the entire string, and we want the
 | ||
|              longest match, try backtracking.  */
 | ||
|           if (d != end_match_2)
 | ||
| 	    {
 | ||
|               DEBUG_PRINT1 ("backtracking.\n");
 | ||
| 
 | ||
|               if (!FAIL_STACK_EMPTY ())
 | ||
|                 { /* More failure points to try.  */
 | ||
|                   boolean same_str_p = (FIRST_STRING_P (match_end)
 | ||
| 	        	                == MATCHING_IN_FIRST_STRING);
 | ||
| 
 | ||
|                   /* If exceeds best match so far, save it.  */
 | ||
|                   if (!best_regs_set
 | ||
|                       || (same_str_p && d > match_end)
 | ||
|                       || (!same_str_p && !MATCHING_IN_FIRST_STRING))
 | ||
|                     {
 | ||
|                       best_regs_set = true;
 | ||
|                       match_end = d;
 | ||
| 
 | ||
|                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
 | ||
| 
 | ||
|                       for (mcnt = 1; mcnt < num_regs; mcnt++)
 | ||
|                         {
 | ||
|                           best_regstart[mcnt] = regstart[mcnt];
 | ||
|                           best_regend[mcnt] = regend[mcnt];
 | ||
|                         }
 | ||
|                     }
 | ||
|                   goto fail;
 | ||
|                 }
 | ||
| 
 | ||
|               /* If no failure points, don't restore garbage.  */
 | ||
|               else if (best_regs_set)
 | ||
|                 {
 | ||
|   	        restore_best_regs:
 | ||
|                   /* Restore best match.  It may happen that `dend ==
 | ||
|                      end_match_1' while the restored d is in string2.
 | ||
|                      For example, the pattern `x.*y.*z' against the
 | ||
|                      strings `x-' and `y-z-', if the two strings are
 | ||
|                      not consecutive in memory.  */
 | ||
|                   DEBUG_PRINT1 ("Restoring best registers.\n");
 | ||
| 
 | ||
|                   d = match_end;
 | ||
|                   dend = ((d >= string1 && d <= end1)
 | ||
| 		           ? end_match_1 : end_match_2);
 | ||
| 
 | ||
| 		  for (mcnt = 1; mcnt < num_regs; mcnt++)
 | ||
| 		    {
 | ||
| 		      regstart[mcnt] = best_regstart[mcnt];
 | ||
| 		      regend[mcnt] = best_regend[mcnt];
 | ||
| 		    }
 | ||
|                 }
 | ||
|             } /* d != end_match_2 */
 | ||
| 
 | ||
|           DEBUG_PRINT1 ("Accepting match.\n");
 | ||
| 
 | ||
|           /* If caller wants register contents data back, do it.  */
 | ||
|           if (regs && !bufp->no_sub)
 | ||
| 	    {
 | ||
|               /* Have the register data arrays been allocated?  */
 | ||
|               if (bufp->regs_allocated == REGS_UNALLOCATED)
 | ||
|                 { /* No.  So allocate them with malloc.  We need one
 | ||
|                      extra element beyond `num_regs' for the `-1' marker
 | ||
|                      GNU code uses.  */
 | ||
|                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
 | ||
|                   regs->start = TALLOC (regs->num_regs, regoff_t);
 | ||
|                   regs->end = TALLOC (regs->num_regs, regoff_t);
 | ||
|                   if (regs->start == NULL || regs->end == NULL)
 | ||
|                     return -2;
 | ||
|                   bufp->regs_allocated = REGS_REALLOCATE;
 | ||
|                 }
 | ||
|               else if (bufp->regs_allocated == REGS_REALLOCATE)
 | ||
|                 { /* Yes.  If we need more elements than were already
 | ||
|                      allocated, reallocate them.  If we need fewer, just
 | ||
|                      leave it alone.  */
 | ||
|                   if (regs->num_regs < num_regs + 1)
 | ||
|                     {
 | ||
|                       regs->num_regs = num_regs + 1;
 | ||
|                       RETALLOC (regs->start, regs->num_regs, regoff_t);
 | ||
|                       RETALLOC (regs->end, regs->num_regs, regoff_t);
 | ||
|                       if (regs->start == NULL || regs->end == NULL)
 | ||
|                         return -2;
 | ||
|                     }
 | ||
|                 }
 | ||
|               else
 | ||
|                 assert (bufp->regs_allocated == REGS_FIXED);
 | ||
| 
 | ||
|               /* Convert the pointer data in `regstart' and `regend' to
 | ||
|                  indices.  Register zero has to be set differently,
 | ||
|                  since we haven't kept track of any info for it.  */
 | ||
|               if (regs->num_regs > 0)
 | ||
|                 {
 | ||
|                   regs->start[0] = pos;
 | ||
|                   regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
 | ||
| 			          : d - string2 + size1);
 | ||
|                 }
 | ||
| 
 | ||
|               /* Go through the first `min (num_regs, regs->num_regs)'
 | ||
|                  registers, since that is all we initialized.  */
 | ||
| 	      for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
 | ||
| 		{
 | ||
|                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
 | ||
|                     regs->start[mcnt] = regs->end[mcnt] = -1;
 | ||
|                   else
 | ||
|                     {
 | ||
| 		      regs->start[mcnt] = POINTER_TO_OFFSET (regstart[mcnt]);
 | ||
|                       regs->end[mcnt] = POINTER_TO_OFFSET (regend[mcnt]);
 | ||
|                     }
 | ||
| 		}
 | ||
| 
 | ||
|               /* If the regs structure we return has more elements than
 | ||
|                  were in the pattern, set the extra elements to -1.  If
 | ||
|                  we (re)allocated the registers, this is the case,
 | ||
|                  because we always allocate enough to have at least one
 | ||
|                  -1 at the end.  */
 | ||
|               for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
 | ||
|                 regs->start[mcnt] = regs->end[mcnt] = -1;
 | ||
| 	    } /* regs && !bufp->no_sub */
 | ||
| 
 | ||
|           FREE_VARIABLES ();
 | ||
|           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
 | ||
|                         nfailure_points_pushed, nfailure_points_popped,
 | ||
|                         nfailure_points_pushed - nfailure_points_popped);
 | ||
|           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
 | ||
| 
 | ||
|           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
 | ||
| 			    ? string1
 | ||
| 			    : string2 - size1);
 | ||
| 
 | ||
|           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
 | ||
| 
 | ||
|           return mcnt;
 | ||
|         }
 | ||
| 
 | ||
|       /* Otherwise match next pattern command.  */
 | ||
| #ifdef SWITCH_ENUM_BUG
 | ||
|       switch ((int) ((re_opcode_t) *p++))
 | ||
| #else
 | ||
|       switch ((re_opcode_t) *p++)
 | ||
| #endif
 | ||
| 	{
 | ||
|         /* Ignore these.  Used to ignore the n of succeed_n's which
 | ||
|            currently have n == 0.  */
 | ||
|         case no_op:
 | ||
|           DEBUG_PRINT1 ("EXECUTING no_op.\n");
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         /* Match the next n pattern characters exactly.  The following
 | ||
|            byte in the pattern defines n, and the n bytes after that
 | ||
|            are the characters to match.  */
 | ||
| 	case exactn:
 | ||
| 	  mcnt = *p++;
 | ||
|           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
 | ||
| 
 | ||
|           /* This is written out as an if-else so we don't waste time
 | ||
|              testing `translate' inside the loop.  */
 | ||
|           if (translate)
 | ||
| 	    {
 | ||
| 	      do
 | ||
| 		{
 | ||
| 		  PREFETCH ();
 | ||
| 		  if (translate[(unsigned char) *d++] != (char) *p++)
 | ||
|                     goto fail;
 | ||
| 		}
 | ||
| 	      while (--mcnt);
 | ||
| 	    }
 | ||
| 	  else
 | ||
| 	    {
 | ||
| 	      do
 | ||
| 		{
 | ||
| 		  PREFETCH ();
 | ||
| 		  if (*d++ != (char) *p++) goto fail;
 | ||
| 		}
 | ||
| 	      while (--mcnt);
 | ||
| 	    }
 | ||
| 	  SET_REGS_MATCHED ();
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         /* Match any character except possibly a newline or a null.  */
 | ||
| 	case anychar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING anychar.\n");
 | ||
| 
 | ||
|           PREFETCH ();
 | ||
| 
 | ||
|           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
 | ||
|               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
 | ||
| 	    goto fail;
 | ||
| 
 | ||
|           SET_REGS_MATCHED ();
 | ||
|           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
 | ||
|           d++;
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
| 	case charset:
 | ||
| 	case charset_not:
 | ||
| 	  {
 | ||
| 	    register unsigned char c;
 | ||
| 	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
 | ||
| 
 | ||
|             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
 | ||
| 
 | ||
| 	    PREFETCH ();
 | ||
| 	    c = TRANSLATE (*d); /* The character to match.  */
 | ||
| 
 | ||
|             /* Cast to `unsigned' instead of `unsigned char' in case the
 | ||
|                bit list is a full 32 bytes long.  */
 | ||
| 	    if (c < (unsigned) (*p * BYTEWIDTH)
 | ||
| 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
 | ||
| 	      not = !not;
 | ||
| 
 | ||
| 	    p += 1 + *p;
 | ||
| 
 | ||
| 	    if (!not) goto fail;
 | ||
| 
 | ||
| 	    SET_REGS_MATCHED ();
 | ||
|             d++;
 | ||
| 	    break;
 | ||
| 	  }
 | ||
| 
 | ||
| 
 | ||
|         /* The beginning of a group is represented by start_memory.
 | ||
|            The arguments are the register number in the next byte, and the
 | ||
|            number of groups inner to this one in the next.  The text
 | ||
|            matched within the group is recorded (in the internal
 | ||
|            registers data structure) under the register number.  */
 | ||
|         case start_memory:
 | ||
| 	  DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
 | ||
| 
 | ||
|           /* Find out if this group can match the empty string.  */
 | ||
| 	  p1 = p;		/* To send to group_match_null_string_p.  */
 | ||
| 
 | ||
|           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
 | ||
|             REG_MATCH_NULL_STRING_P (reg_info[*p])
 | ||
|               = group_match_null_string_p (&p1, pend, reg_info);
 | ||
| 
 | ||
|           /* Save the position in the string where we were the last time
 | ||
|              we were at this open-group operator in case the group is
 | ||
|              operated upon by a repetition operator, e.g., with `(a*)*b'
 | ||
|              against `ab'; then we want to ignore where we are now in
 | ||
|              the string in case this attempt to match fails.  */
 | ||
|           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
 | ||
|                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
 | ||
|                              : regstart[*p];
 | ||
| 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
 | ||
| 			 POINTER_TO_OFFSET (old_regstart[*p]));
 | ||
| 
 | ||
|           regstart[*p] = d;
 | ||
| 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
 | ||
| 
 | ||
|           IS_ACTIVE (reg_info[*p]) = 1;
 | ||
|           MATCHED_SOMETHING (reg_info[*p]) = 0;
 | ||
| 
 | ||
|           /* This is the new highest active register.  */
 | ||
|           highest_active_reg = *p;
 | ||
| 
 | ||
|           /* If nothing was active before, this is the new lowest active
 | ||
|              register.  */
 | ||
|           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
 | ||
|             lowest_active_reg = *p;
 | ||
| 
 | ||
|           /* Move past the register number and inner group count.  */
 | ||
|           p += 2;
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         /* The stop_memory opcode represents the end of a group.  Its
 | ||
|            arguments are the same as start_memory's: the register
 | ||
|            number, and the number of inner groups.  */
 | ||
| 	case stop_memory:
 | ||
| 	  DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
 | ||
| 
 | ||
|           /* We need to save the string position the last time we were at
 | ||
|              this close-group operator in case the group is operated
 | ||
|              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
 | ||
|              against `aba'; then we want to ignore where we are now in
 | ||
|              the string in case this attempt to match fails.  */
 | ||
|           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
 | ||
|                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
 | ||
| 			   : regend[*p];
 | ||
| 	  DEBUG_PRINT2 ("      old_regend: %d\n",
 | ||
| 			 POINTER_TO_OFFSET (old_regend[*p]));
 | ||
| 
 | ||
|           regend[*p] = d;
 | ||
| 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
 | ||
| 
 | ||
|           /* This register isn't active anymore.  */
 | ||
|           IS_ACTIVE (reg_info[*p]) = 0;
 | ||
| 
 | ||
|           /* If this was the only register active, nothing is active
 | ||
|              anymore.  */
 | ||
|           if (lowest_active_reg == highest_active_reg)
 | ||
|             {
 | ||
|               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
 | ||
|               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
 | ||
|             }
 | ||
|           else
 | ||
|             { /* We must scan for the new highest active register, since
 | ||
|                  it isn't necessarily one less than now: consider
 | ||
|                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
 | ||
|                  new highest active register is 1.  */
 | ||
|               unsigned char r = *p - 1;
 | ||
|               while (r > 0 && !IS_ACTIVE (reg_info[r]))
 | ||
|                 r--;
 | ||
| 
 | ||
|               /* If we end up at register zero, that means that we saved
 | ||
|                  the registers as the result of an `on_failure_jump', not
 | ||
|                  a `start_memory', and we jumped to past the innermost
 | ||
|                  `stop_memory'.  For example, in ((.)*) we save
 | ||
|                  registers 1 and 2 as a result of the *, but when we pop
 | ||
|                  back to the second ), we are at the stop_memory 1.
 | ||
|                  Thus, nothing is active.  */
 | ||
| 	      if (r == 0)
 | ||
|                 {
 | ||
|                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
 | ||
|                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
 | ||
|                 }
 | ||
|               else
 | ||
|                 highest_active_reg = r;
 | ||
|             }
 | ||
| 
 | ||
|           /* If just failed to match something this time around with a
 | ||
|              group that's operated on by a repetition operator, try to
 | ||
|              force exit from the ``loop'', and restore the register
 | ||
|              information for this group that we had before trying this
 | ||
|              last match.  */
 | ||
|           if ((!MATCHED_SOMETHING (reg_info[*p])
 | ||
|                || (re_opcode_t) p[-3] == start_memory)
 | ||
| 	      && (p + 2) < pend)
 | ||
|             {
 | ||
|               boolean is_a_jump_n = false;
 | ||
| 
 | ||
|               p1 = p + 2;
 | ||
|               mcnt = 0;
 | ||
|               switch ((re_opcode_t) *p1++)
 | ||
|                 {
 | ||
|                   case jump_n:
 | ||
| 		    is_a_jump_n = true;
 | ||
|                   case pop_failure_jump:
 | ||
| 		  case maybe_pop_jump:
 | ||
| 		  case jump:
 | ||
| 		  case dummy_failure_jump:
 | ||
|                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
| 		    if (is_a_jump_n)
 | ||
| 		      p1 += 2;
 | ||
|                     break;
 | ||
| 
 | ||
|                   default:
 | ||
|                     /* do nothing */ ;
 | ||
|                 }
 | ||
| 	      p1 += mcnt;
 | ||
| 
 | ||
|               /* If the next operation is a jump backwards in the pattern
 | ||
| 	         to an on_failure_jump right before the start_memory
 | ||
|                  corresponding to this stop_memory, exit from the loop
 | ||
|                  by forcing a failure after pushing on the stack the
 | ||
|                  on_failure_jump's jump in the pattern, and d.  */
 | ||
|               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
 | ||
|                   && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
 | ||
| 		{
 | ||
|                   /* If this group ever matched anything, then restore
 | ||
|                      what its registers were before trying this last
 | ||
|                      failed match, e.g., with `(a*)*b' against `ab' for
 | ||
|                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
 | ||
|                      against `aba' for regend[3].
 | ||
| 
 | ||
|                      Also restore the registers for inner groups for,
 | ||
|                      e.g., `((a*)(b*))*' against `aba' (register 3 would
 | ||
|                      otherwise get trashed).  */
 | ||
| 
 | ||
|                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
 | ||
| 		    {
 | ||
| 		      unsigned r;
 | ||
| 
 | ||
|                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
 | ||
| 
 | ||
| 		      /* Restore this and inner groups' (if any) registers.  */
 | ||
|                       for (r = *p; r < *p + *(p + 1); r++)
 | ||
|                         {
 | ||
|                           regstart[r] = old_regstart[r];
 | ||
| 
 | ||
|                           /* xx why this test?  */
 | ||
|                           if ((int) old_regend[r] >= (int) regstart[r])
 | ||
|                             regend[r] = old_regend[r];
 | ||
|                         }
 | ||
|                     }
 | ||
| 		  p1++;
 | ||
|                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
 | ||
| 
 | ||
|                   goto fail;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|           /* Move past the register number and the inner group count.  */
 | ||
|           p += 2;
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	/* \<digit> has been turned into a `duplicate' command which is
 | ||
|            followed by the numeric value of <digit> as the register number.  */
 | ||
|         case duplicate:
 | ||
| 	  {
 | ||
| 	    register const char *d2, *dend2;
 | ||
| 	    int regno = *p++;   /* Get which register to match against.  */
 | ||
| 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
 | ||
| 
 | ||
| 	    /* Can't back reference a group which we've never matched.  */
 | ||
|             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
 | ||
|               goto fail;
 | ||
| 
 | ||
|             /* Where in input to try to start matching.  */
 | ||
|             d2 = regstart[regno];
 | ||
| 
 | ||
|             /* Where to stop matching; if both the place to start and
 | ||
|                the place to stop matching are in the same string, then
 | ||
|                set to the place to stop, otherwise, for now have to use
 | ||
|                the end of the first string.  */
 | ||
| 
 | ||
|             dend2 = ((FIRST_STRING_P (regstart[regno])
 | ||
| 		      == FIRST_STRING_P (regend[regno]))
 | ||
| 		     ? regend[regno] : end_match_1);
 | ||
| 	    for (;;)
 | ||
| 	      {
 | ||
| 		/* If necessary, advance to next segment in register
 | ||
|                    contents.  */
 | ||
| 		while (d2 == dend2)
 | ||
| 		  {
 | ||
| 		    if (dend2 == end_match_2) break;
 | ||
| 		    if (dend2 == regend[regno]) break;
 | ||
| 
 | ||
|                     /* End of string1 => advance to string2. */
 | ||
|                     d2 = string2;
 | ||
|                     dend2 = regend[regno];
 | ||
| 		  }
 | ||
| 		/* At end of register contents => success */
 | ||
| 		if (d2 == dend2) break;
 | ||
| 
 | ||
| 		/* If necessary, advance to next segment in data.  */
 | ||
| 		PREFETCH ();
 | ||
| 
 | ||
| 		/* How many characters left in this segment to match.  */
 | ||
| 		mcnt = dend - d;
 | ||
| 
 | ||
| 		/* Want how many consecutive characters we can match in
 | ||
|                    one shot, so, if necessary, adjust the count.  */
 | ||
|                 if (mcnt > dend2 - d2)
 | ||
| 		  mcnt = dend2 - d2;
 | ||
| 
 | ||
| 		/* Compare that many; failure if mismatch, else move
 | ||
|                    past them.  */
 | ||
| 		if (translate
 | ||
|                     ? bcmp_translate (d, d2, mcnt, translate)
 | ||
|                     : bcmp (d, d2, mcnt))
 | ||
| 		  goto fail;
 | ||
| 		d += mcnt, d2 += mcnt;
 | ||
| 	      }
 | ||
| 	  }
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
|         /* begline matches the empty string at the beginning of the string
 | ||
|            (unless `not_bol' is set in `bufp'), and, if
 | ||
|            `newline_anchor' is set, after newlines.  */
 | ||
| 	case begline:
 | ||
|           DEBUG_PRINT1 ("EXECUTING begline.\n");
 | ||
| 
 | ||
|           if (AT_STRINGS_BEG (d))
 | ||
|             {
 | ||
|               if (!bufp->not_bol) break;
 | ||
|             }
 | ||
|           else if (d[-1] == '\n' && bufp->newline_anchor)
 | ||
|             {
 | ||
|               break;
 | ||
|             }
 | ||
|           /* In all other cases, we fail.  */
 | ||
|           goto fail;
 | ||
| 
 | ||
| 
 | ||
|         /* endline is the dual of begline.  */
 | ||
| 	case endline:
 | ||
|           DEBUG_PRINT1 ("EXECUTING endline.\n");
 | ||
| 
 | ||
|           if (AT_STRINGS_END (d))
 | ||
|             {
 | ||
|               if (!bufp->not_eol) break;
 | ||
|             }
 | ||
| 
 | ||
|           /* We have to ``prefetch'' the next character.  */
 | ||
|           else if ((d == end1 ? *string2 : *d) == '\n'
 | ||
|                    && bufp->newline_anchor)
 | ||
|             {
 | ||
|               break;
 | ||
|             }
 | ||
|           goto fail;
 | ||
| 
 | ||
| 
 | ||
| 	/* Match at the very beginning of the data.  */
 | ||
|         case begbuf:
 | ||
|           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
 | ||
|           if (AT_STRINGS_BEG (d))
 | ||
|             break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| 
 | ||
| 	/* Match at the very end of the data.  */
 | ||
|         case endbuf:
 | ||
|           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
 | ||
| 	  if (AT_STRINGS_END (d))
 | ||
| 	    break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| 
 | ||
|         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
 | ||
|            pushes NULL as the value for the string on the stack.  Then
 | ||
|            `pop_failure_point' will keep the current value for the
 | ||
|            string, instead of restoring it.  To see why, consider
 | ||
|            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
 | ||
|            then the . fails against the \n.  But the next thing we want
 | ||
|            to do is match the \n against the \n; if we restored the
 | ||
|            string value, we would be back at the foo.
 | ||
| 
 | ||
|            Because this is used only in specific cases, we don't need to
 | ||
|            check all the things that `on_failure_jump' does, to make
 | ||
|            sure the right things get saved on the stack.  Hence we don't
 | ||
|            share its code.  The only reason to push anything on the
 | ||
|            stack at all is that otherwise we would have to change
 | ||
|            `anychar's code to do something besides goto fail in this
 | ||
|            case; that seems worse than this.  */
 | ||
|         case on_failure_keep_string_jump:
 | ||
|           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
 | ||
| 
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
|           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
 | ||
| 
 | ||
|           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
| 	/* Uses of on_failure_jump:
 | ||
| 
 | ||
|            Each alternative starts with an on_failure_jump that points
 | ||
|            to the beginning of the next alternative.  Each alternative
 | ||
|            except the last ends with a jump that in effect jumps past
 | ||
|            the rest of the alternatives.  (They really jump to the
 | ||
|            ending jump of the following alternative, because tensioning
 | ||
|            these jumps is a hassle.)
 | ||
| 
 | ||
|            Repeats start with an on_failure_jump that points past both
 | ||
|            the repetition text and either the following jump or
 | ||
|            pop_failure_jump back to this on_failure_jump.  */
 | ||
| 	case on_failure_jump:
 | ||
|         on_failure:
 | ||
|           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
 | ||
| 
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
|           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
 | ||
| 
 | ||
|           /* If this on_failure_jump comes right before a group (i.e.,
 | ||
|              the original * applied to a group), save the information
 | ||
|              for that group and all inner ones, so that if we fail back
 | ||
|              to this point, the group's information will be correct.
 | ||
|              For example, in \(a*\)*\1, we need the preceding group,
 | ||
|              and in \(\(a*\)b*\)\2, we need the inner group.  */
 | ||
| 
 | ||
|           /* We can't use `p' to check ahead because we push
 | ||
|              a failure point to `p + mcnt' after we do this.  */
 | ||
|           p1 = p;
 | ||
| 
 | ||
|           /* We need to skip no_op's before we look for the
 | ||
|              start_memory in case this on_failure_jump is happening as
 | ||
|              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
 | ||
|              against aba.  */
 | ||
|           while (p1 < pend && (re_opcode_t) *p1 == no_op)
 | ||
|             p1++;
 | ||
| 
 | ||
|           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
 | ||
|             {
 | ||
|               /* We have a new highest active register now.  This will
 | ||
|                  get reset at the start_memory we are about to get to,
 | ||
|                  but we will have saved all the registers relevant to
 | ||
|                  this repetition op, as described above.  */
 | ||
|               highest_active_reg = *(p1 + 1) + *(p1 + 2);
 | ||
|               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
 | ||
|                 lowest_active_reg = *(p1 + 1);
 | ||
|             }
 | ||
| 
 | ||
|           DEBUG_PRINT1 (":\n");
 | ||
|           PUSH_FAILURE_POINT (p + mcnt, d, -2);
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         /* A smart repeat ends with `maybe_pop_jump'.
 | ||
| 	   We change it to either `pop_failure_jump' or `jump'.  */
 | ||
|         case maybe_pop_jump:
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
|           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
 | ||
|           {
 | ||
| 	    register unsigned char *p2 = p;
 | ||
| 
 | ||
|             /* Compare the beginning of the repeat with what in the
 | ||
|                pattern follows its end. If we can establish that there
 | ||
|                is nothing that they would both match, i.e., that we
 | ||
|                would have to backtrack because of (as in, e.g., `a*a')
 | ||
|                then we can change to pop_failure_jump, because we'll
 | ||
|                never have to backtrack.
 | ||
| 
 | ||
|                This is not true in the case of alternatives: in
 | ||
|                `(a|ab)*' we do need to backtrack to the `ab' alternative
 | ||
|                (e.g., if the string was `ab').  But instead of trying to
 | ||
|                detect that here, the alternative has put on a dummy
 | ||
|                failure point which is what we will end up popping.  */
 | ||
| 
 | ||
| 	    /* Skip over open/close-group commands.  */
 | ||
| 	    while (p2 + 2 < pend
 | ||
| 		   && ((re_opcode_t) *p2 == stop_memory
 | ||
| 		       || (re_opcode_t) *p2 == start_memory))
 | ||
| 	      p2 += 3;			/* Skip over args, too.  */
 | ||
| 
 | ||
|             /* If we're at the end of the pattern, we can change.  */
 | ||
|             if (p2 == pend)
 | ||
| 	      {
 | ||
| 		/* Consider what happens when matching ":\(.*\)"
 | ||
| 		   against ":/".  I don't really understand this code
 | ||
| 		   yet.  */
 | ||
|   	        p[-3] = (unsigned char) pop_failure_jump;
 | ||
|                 DEBUG_PRINT1
 | ||
|                   ("  End of pattern: change to `pop_failure_jump'.\n");
 | ||
|               }
 | ||
| 
 | ||
|             else if ((re_opcode_t) *p2 == exactn
 | ||
| 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
 | ||
| 	      {
 | ||
| 		register unsigned char c
 | ||
|                   = *p2 == (unsigned char) endline ? '\n' : p2[2];
 | ||
| 		p1 = p + mcnt;
 | ||
| 
 | ||
|                 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
 | ||
|                    to the `maybe_finalize_jump' of this case.  Examine what
 | ||
|                    follows.  */
 | ||
|                 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
 | ||
|                   {
 | ||
|   		    p[-3] = (unsigned char) pop_failure_jump;
 | ||
|                     DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
 | ||
|                                   c, p1[5]);
 | ||
|                   }
 | ||
| 
 | ||
| 		else if ((re_opcode_t) p1[3] == charset
 | ||
| 			 || (re_opcode_t) p1[3] == charset_not)
 | ||
| 		  {
 | ||
| 		    int not = (re_opcode_t) p1[3] == charset_not;
 | ||
| 
 | ||
| 		    if (c < (unsigned char) (p1[4] * BYTEWIDTH)
 | ||
| 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
 | ||
| 		      not = !not;
 | ||
| 
 | ||
|                     /* `not' is equal to 1 if c would match, which means
 | ||
|                         that we can't change to pop_failure_jump.  */
 | ||
| 		    if (!not)
 | ||
|                       {
 | ||
|   		        p[-3] = (unsigned char) pop_failure_jump;
 | ||
|                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
 | ||
|                       }
 | ||
| 		  }
 | ||
| 	      }
 | ||
| 	  }
 | ||
| 	  p -= 2;		/* Point at relative address again.  */
 | ||
| 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
 | ||
| 	    {
 | ||
| 	      p[-1] = (unsigned char) jump;
 | ||
|               DEBUG_PRINT1 ("  Match => jump.\n");
 | ||
| 	      goto unconditional_jump;
 | ||
| 	    }
 | ||
|         /* Note fall through.  */
 | ||
| 
 | ||
| 
 | ||
| 	/* The end of a simple repeat has a pop_failure_jump back to
 | ||
|            its matching on_failure_jump, where the latter will push a
 | ||
|            failure point.  The pop_failure_jump takes off failure
 | ||
|            points put on by this pop_failure_jump's matching
 | ||
|            on_failure_jump; we got through the pattern to here from the
 | ||
|            matching on_failure_jump, so didn't fail.  */
 | ||
|         case pop_failure_jump:
 | ||
|           {
 | ||
|             /* We need to pass separate storage for the lowest and
 | ||
|                highest registers, even though we don't care about the
 | ||
|                actual values.  Otherwise, we will restore only one
 | ||
|                register from the stack, since lowest will == highest in
 | ||
|                `pop_failure_point'.  */
 | ||
|             unsigned dummy_low_reg, dummy_high_reg;
 | ||
|             unsigned char *pdummy;
 | ||
|             const char *sdummy;
 | ||
| 
 | ||
|             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
 | ||
|             POP_FAILURE_POINT (sdummy, pdummy,
 | ||
|                                dummy_low_reg, dummy_high_reg,
 | ||
|                                reg_dummy, reg_dummy, reg_info_dummy);
 | ||
|           }
 | ||
|           /* Note fall through.  */
 | ||
| 
 | ||
| 
 | ||
|         /* Unconditionally jump (without popping any failure points).  */
 | ||
|         case jump:
 | ||
| 	unconditional_jump:
 | ||
| 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
 | ||
|           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
 | ||
| 	  p += mcnt;				/* Do the jump.  */
 | ||
|           DEBUG_PRINT2 ("(to 0x%x).\n", p);
 | ||
| 	  break;
 | ||
| 
 | ||
| 
 | ||
|         /* We need this opcode so we can detect where alternatives end
 | ||
|            in `group_match_null_string_p' et al.  */
 | ||
|         case jump_past_alt:
 | ||
|           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
 | ||
|           goto unconditional_jump;
 | ||
| 
 | ||
| 
 | ||
|         /* Normally, the on_failure_jump pushes a failure point, which
 | ||
|            then gets popped at pop_failure_jump.  We will end up at
 | ||
|            pop_failure_jump, also, and with a pattern of, say, `a+', we
 | ||
|            are skipping over the on_failure_jump, so we have to push
 | ||
|            something meaningless for pop_failure_jump to pop.  */
 | ||
|         case dummy_failure_jump:
 | ||
|           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
 | ||
|           /* It doesn't matter what we push for the string here.  What
 | ||
|              the code at `fail' tests is the value for the pattern.  */
 | ||
|           PUSH_FAILURE_POINT (0, 0, -2);
 | ||
|           goto unconditional_jump;
 | ||
| 
 | ||
| 
 | ||
|         /* At the end of an alternative, we need to push a dummy failure
 | ||
|            point in case we are followed by a `pop_failure_jump', because
 | ||
|            we don't want the failure point for the alternative to be
 | ||
|            popped.  For example, matching `(a|ab)*' against `aab'
 | ||
|            requires that we match the `ab' alternative.  */
 | ||
|         case push_dummy_failure:
 | ||
|           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
 | ||
|           /* See comments just above at `dummy_failure_jump' about the
 | ||
|              two zeroes.  */
 | ||
|           PUSH_FAILURE_POINT (0, 0, -2);
 | ||
|           break;
 | ||
| 
 | ||
|         /* Have to succeed matching what follows at least n times.
 | ||
|            After that, handle like `on_failure_jump'.  */
 | ||
|         case succeed_n:
 | ||
|           EXTRACT_NUMBER (mcnt, p + 2);
 | ||
|           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
 | ||
| 
 | ||
|           assert (mcnt >= 0);
 | ||
|           /* Originally, this is how many times we HAVE to succeed.  */
 | ||
|           if (mcnt > 0)
 | ||
|             {
 | ||
|                mcnt--;
 | ||
| 	       p += 2;
 | ||
|                STORE_NUMBER_AND_INCR (p, mcnt);
 | ||
|                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p, mcnt);
 | ||
|             }
 | ||
| 	  else if (mcnt == 0)
 | ||
|             {
 | ||
|               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
 | ||
| 	      p[2] = (unsigned char) no_op;
 | ||
|               p[3] = (unsigned char) no_op;
 | ||
|               goto on_failure;
 | ||
|             }
 | ||
|           break;
 | ||
| 
 | ||
|         case jump_n:
 | ||
|           EXTRACT_NUMBER (mcnt, p + 2);
 | ||
|           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
 | ||
| 
 | ||
|           /* Originally, this is how many times we CAN jump.  */
 | ||
|           if (mcnt)
 | ||
|             {
 | ||
|                mcnt--;
 | ||
|                STORE_NUMBER (p + 2, mcnt);
 | ||
| 	       goto unconditional_jump;
 | ||
|             }
 | ||
|           /* If don't have to jump any more, skip over the rest of command.  */
 | ||
| 	  else
 | ||
| 	    p += 4;
 | ||
|           break;
 | ||
| 
 | ||
| 	case set_number_at:
 | ||
| 	  {
 | ||
|             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
 | ||
| 
 | ||
|             EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
|             p1 = p + mcnt;
 | ||
|             EXTRACT_NUMBER_AND_INCR (mcnt, p);
 | ||
|             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
 | ||
| 	    STORE_NUMBER (p1, mcnt);
 | ||
|             break;
 | ||
|           }
 | ||
| 
 | ||
|         case wordbound:
 | ||
|           DEBUG_PRINT1 ("EXECUTING wordbound.\n");
 | ||
|           if (AT_WORD_BOUNDARY (d))
 | ||
| 	    break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| 	case notwordbound:
 | ||
|           DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
 | ||
| 	  if (AT_WORD_BOUNDARY (d))
 | ||
| 	    goto fail;
 | ||
|           break;
 | ||
| 
 | ||
| 	case wordbeg:
 | ||
|           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
 | ||
| 	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
 | ||
| 	    break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| 	case wordend:
 | ||
|           DEBUG_PRINT1 ("EXECUTING wordend.\n");
 | ||
| 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
 | ||
|               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
 | ||
| 	    break;
 | ||
|           goto fail;
 | ||
| 
 | ||
| #ifdef emacs
 | ||
| #ifdef emacs19
 | ||
|   	case before_dot:
 | ||
|           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
 | ||
|  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
 | ||
|   	    goto fail;
 | ||
|   	  break;
 | ||
| 
 | ||
|   	case at_dot:
 | ||
|           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
 | ||
|  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
 | ||
|   	    goto fail;
 | ||
|   	  break;
 | ||
| 
 | ||
|   	case after_dot:
 | ||
|           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
 | ||
|           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
 | ||
|   	    goto fail;
 | ||
|   	  break;
 | ||
| #else /* not emacs19 */
 | ||
| 	case at_dot:
 | ||
|           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
 | ||
| 	  if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
 | ||
| 	    goto fail;
 | ||
| 	  break;
 | ||
| #endif /* not emacs19 */
 | ||
| 
 | ||
| 	case syntaxspec:
 | ||
|           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
 | ||
| 	  mcnt = *p++;
 | ||
| 	  goto matchsyntax;
 | ||
| 
 | ||
|         case wordchar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
 | ||
| 	  mcnt = (int) Sword;
 | ||
|         matchsyntax:
 | ||
| 	  PREFETCH ();
 | ||
| 	  if (SYNTAX (*d++) != (enum syntaxcode) mcnt)
 | ||
|             goto fail;
 | ||
|           SET_REGS_MATCHED ();
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case notsyntaxspec:
 | ||
|           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
 | ||
| 	  mcnt = *p++;
 | ||
| 	  goto matchnotsyntax;
 | ||
| 
 | ||
|         case notwordchar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
 | ||
| 	  mcnt = (int) Sword;
 | ||
|         matchnotsyntax:
 | ||
| 	  PREFETCH ();
 | ||
| 	  if (SYNTAX (*d++) == (enum syntaxcode) mcnt)
 | ||
|             goto fail;
 | ||
| 	  SET_REGS_MATCHED ();
 | ||
|           break;
 | ||
| 
 | ||
| #else /* not emacs */
 | ||
| 	case wordchar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
 | ||
| 	  PREFETCH ();
 | ||
|           if (!WORDCHAR_P (d))
 | ||
|             goto fail;
 | ||
| 	  SET_REGS_MATCHED ();
 | ||
|           d++;
 | ||
| 	  break;
 | ||
| 
 | ||
| 	case notwordchar:
 | ||
|           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
 | ||
| 	  PREFETCH ();
 | ||
| 	  if (WORDCHAR_P (d))
 | ||
|             goto fail;
 | ||
|           SET_REGS_MATCHED ();
 | ||
|           d++;
 | ||
| 	  break;
 | ||
| #endif /* not emacs */
 | ||
| 
 | ||
|         default:
 | ||
|           abort ();
 | ||
| 	}
 | ||
|       continue;  /* Successfully executed one pattern command; keep going.  */
 | ||
| 
 | ||
| 
 | ||
|     /* We goto here if a matching operation fails. */
 | ||
|     fail:
 | ||
|       if (!FAIL_STACK_EMPTY ())
 | ||
| 	{ /* A restart point is known.  Restore to that state.  */
 | ||
|           DEBUG_PRINT1 ("\nFAIL:\n");
 | ||
|           POP_FAILURE_POINT (d, p,
 | ||
|                              lowest_active_reg, highest_active_reg,
 | ||
|                              regstart, regend, reg_info);
 | ||
| 
 | ||
|           /* If this failure point is a dummy, try the next one.  */
 | ||
|           if (!p)
 | ||
| 	    goto fail;
 | ||
| 
 | ||
|           /* If we failed to the end of the pattern, don't examine *p.  */
 | ||
| 	  assert (p <= pend);
 | ||
|           if (p < pend)
 | ||
|             {
 | ||
|               boolean is_a_jump_n = false;
 | ||
| 
 | ||
|               /* If failed to a backwards jump that's part of a repetition
 | ||
|                  loop, need to pop this failure point and use the next one.  */
 | ||
|               switch ((re_opcode_t) *p)
 | ||
|                 {
 | ||
|                 case jump_n:
 | ||
|                   is_a_jump_n = true;
 | ||
|                 case maybe_pop_jump:
 | ||
|                 case pop_failure_jump:
 | ||
|                 case jump:
 | ||
|                   p1 = p + 1;
 | ||
|                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|                   p1 += mcnt;
 | ||
| 
 | ||
|                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
 | ||
|                       || (!is_a_jump_n
 | ||
|                           && (re_opcode_t) *p1 == on_failure_jump))
 | ||
|                     goto fail;
 | ||
|                   break;
 | ||
|                 default:
 | ||
|                   /* do nothing */ ;
 | ||
|                 }
 | ||
|             }
 | ||
| 
 | ||
|           if (d >= string1 && d <= end1)
 | ||
| 	    dend = end_match_1;
 | ||
|         }
 | ||
|       else
 | ||
|         break;   /* Matching at this starting point really fails.  */
 | ||
|     } /* for (;;) */
 | ||
| 
 | ||
|   if (best_regs_set)
 | ||
|     goto restore_best_regs;
 | ||
| 
 | ||
|   FREE_VARIABLES ();
 | ||
| 
 | ||
|   return -1;         			/* Failure to match.  */
 | ||
| } /* re_match_2 */
 | ||
| 
 | ||
| /* Subroutine definitions for re_match_2.  */
 | ||
| 
 | ||
| 
 | ||
| /* We are passed P pointing to a register number after a start_memory.
 | ||
| 
 | ||
|    Return true if the pattern up to the corresponding stop_memory can
 | ||
|    match the empty string, and false otherwise.
 | ||
| 
 | ||
|    If we find the matching stop_memory, sets P to point to one past its number.
 | ||
|    Otherwise, sets P to an undefined byte less than or equal to END.
 | ||
| 
 | ||
|    We don't handle duplicates properly (yet).  */
 | ||
| 
 | ||
| static boolean
 | ||
| group_match_null_string_p (p, end, reg_info)
 | ||
|     unsigned char **p, *end;
 | ||
|     register_info_type *reg_info;
 | ||
| {
 | ||
|   int mcnt;
 | ||
|   /* Point to after the args to the start_memory.  */
 | ||
|   unsigned char *p1 = *p + 2;
 | ||
| 
 | ||
|   while (p1 < end)
 | ||
|     {
 | ||
|       /* Skip over opcodes that can match nothing, and return true or
 | ||
| 	 false, as appropriate, when we get to one that can't, or to the
 | ||
|          matching stop_memory.  */
 | ||
| 
 | ||
|       switch ((re_opcode_t) *p1)
 | ||
|         {
 | ||
|         /* Could be either a loop or a series of alternatives.  */
 | ||
|         case on_failure_jump:
 | ||
|           p1++;
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
| 
 | ||
|           /* If the next operation is not a jump backwards in the
 | ||
| 	     pattern.  */
 | ||
| 
 | ||
| 	  if (mcnt >= 0)
 | ||
| 	    {
 | ||
|               /* Go through the on_failure_jumps of the alternatives,
 | ||
|                  seeing if any of the alternatives cannot match nothing.
 | ||
|                  The last alternative starts with only a jump,
 | ||
|                  whereas the rest start with on_failure_jump and end
 | ||
|                  with a jump, e.g., here is the pattern for `a|b|c':
 | ||
| 
 | ||
|                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
 | ||
|                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
 | ||
|                  /exactn/1/c
 | ||
| 
 | ||
|                  So, we have to first go through the first (n-1)
 | ||
|                  alternatives and then deal with the last one separately.  */
 | ||
| 
 | ||
| 
 | ||
|               /* Deal with the first (n-1) alternatives, which start
 | ||
|                  with an on_failure_jump (see above) that jumps to right
 | ||
|                  past a jump_past_alt.  */
 | ||
| 
 | ||
|               while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
 | ||
|                 {
 | ||
|                   /* `mcnt' holds how many bytes long the alternative
 | ||
|                      is, including the ending `jump_past_alt' and
 | ||
|                      its number.  */
 | ||
| 
 | ||
|                   if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
 | ||
| 				                      reg_info))
 | ||
|                     return false;
 | ||
| 
 | ||
|                   /* Move to right after this alternative, including the
 | ||
| 		     jump_past_alt.  */
 | ||
|                   p1 += mcnt;
 | ||
| 
 | ||
|                   /* Break if it's the beginning of an n-th alternative
 | ||
|                      that doesn't begin with an on_failure_jump.  */
 | ||
|                   if ((re_opcode_t) *p1 != on_failure_jump)
 | ||
|                     break;
 | ||
| 
 | ||
| 		  /* Still have to check that it's not an n-th
 | ||
| 		     alternative that starts with an on_failure_jump.  */
 | ||
| 		  p1++;
 | ||
|                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|                   if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
 | ||
|                     {
 | ||
| 		      /* Get to the beginning of the n-th alternative.  */
 | ||
|                       p1 -= 3;
 | ||
|                       break;
 | ||
|                     }
 | ||
|                 }
 | ||
| 
 | ||
|               /* Deal with the last alternative: go back and get number
 | ||
|                  of the `jump_past_alt' just before it.  `mcnt' contains
 | ||
|                  the length of the alternative.  */
 | ||
|               EXTRACT_NUMBER (mcnt, p1 - 2);
 | ||
| 
 | ||
|               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
 | ||
|                 return false;
 | ||
| 
 | ||
|               p1 += mcnt;	/* Get past the n-th alternative.  */
 | ||
|             } /* if mcnt > 0 */
 | ||
|           break;
 | ||
| 
 | ||
| 
 | ||
|         case stop_memory:
 | ||
| 	  assert (p1[1] == **p);
 | ||
|           *p = p1 + 2;
 | ||
|           return true;
 | ||
| 
 | ||
| 
 | ||
|         default:
 | ||
|           if (!common_op_match_null_string_p (&p1, end, reg_info))
 | ||
|             return false;
 | ||
|         }
 | ||
|     } /* while p1 < end */
 | ||
| 
 | ||
|   return false;
 | ||
| } /* group_match_null_string_p */
 | ||
| 
 | ||
| 
 | ||
| /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
 | ||
|    It expects P to be the first byte of a single alternative and END one
 | ||
|    byte past the last. The alternative can contain groups.  */
 | ||
| 
 | ||
| static boolean
 | ||
| alt_match_null_string_p (p, end, reg_info)
 | ||
|     unsigned char *p, *end;
 | ||
|     register_info_type *reg_info;
 | ||
| {
 | ||
|   int mcnt;
 | ||
|   unsigned char *p1 = p;
 | ||
| 
 | ||
|   while (p1 < end)
 | ||
|     {
 | ||
|       /* Skip over opcodes that can match nothing, and break when we get
 | ||
|          to one that can't.  */
 | ||
| 
 | ||
|       switch ((re_opcode_t) *p1)
 | ||
|         {
 | ||
| 	/* It's a loop.  */
 | ||
|         case on_failure_jump:
 | ||
|           p1++;
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|           p1 += mcnt;
 | ||
|           break;
 | ||
| 
 | ||
| 	default:
 | ||
|           if (!common_op_match_null_string_p (&p1, end, reg_info))
 | ||
|             return false;
 | ||
|         }
 | ||
|     }  /* while p1 < end */
 | ||
| 
 | ||
|   return true;
 | ||
| } /* alt_match_null_string_p */
 | ||
| 
 | ||
| 
 | ||
| /* Deals with the ops common to group_match_null_string_p and
 | ||
|    alt_match_null_string_p.
 | ||
| 
 | ||
|    Sets P to one after the op and its arguments, if any.  */
 | ||
| 
 | ||
| static boolean
 | ||
| common_op_match_null_string_p (p, end, reg_info)
 | ||
|     unsigned char **p, *end;
 | ||
|     register_info_type *reg_info;
 | ||
| {
 | ||
|   int mcnt;
 | ||
|   boolean ret;
 | ||
|   int reg_no;
 | ||
|   unsigned char *p1 = *p;
 | ||
| 
 | ||
|   switch ((re_opcode_t) *p1++)
 | ||
|     {
 | ||
|     case no_op:
 | ||
|     case begline:
 | ||
|     case endline:
 | ||
|     case begbuf:
 | ||
|     case endbuf:
 | ||
|     case wordbeg:
 | ||
|     case wordend:
 | ||
|     case wordbound:
 | ||
|     case notwordbound:
 | ||
| #ifdef emacs
 | ||
|     case before_dot:
 | ||
|     case at_dot:
 | ||
|     case after_dot:
 | ||
| #endif
 | ||
|       break;
 | ||
| 
 | ||
|     case start_memory:
 | ||
|       reg_no = *p1;
 | ||
|       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
 | ||
|       ret = group_match_null_string_p (&p1, end, reg_info);
 | ||
| 
 | ||
|       /* Have to set this here in case we're checking a group which
 | ||
|          contains a group and a back reference to it.  */
 | ||
| 
 | ||
|       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
 | ||
|         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
 | ||
| 
 | ||
|       if (!ret)
 | ||
|         return false;
 | ||
|       break;
 | ||
| 
 | ||
|     /* If this is an optimized succeed_n for zero times, make the jump.  */
 | ||
|     case jump:
 | ||
|       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|       if (mcnt >= 0)
 | ||
|         p1 += mcnt;
 | ||
|       else
 | ||
|         return false;
 | ||
|       break;
 | ||
| 
 | ||
|     case succeed_n:
 | ||
|       /* Get to the number of times to succeed.  */
 | ||
|       p1 += 2;
 | ||
|       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
| 
 | ||
|       if (mcnt == 0)
 | ||
|         {
 | ||
|           p1 -= 4;
 | ||
|           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
 | ||
|           p1 += mcnt;
 | ||
|         }
 | ||
|       else
 | ||
|         return false;
 | ||
|       break;
 | ||
| 
 | ||
|     case duplicate:
 | ||
|       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
 | ||
|         return false;
 | ||
|       break;
 | ||
| 
 | ||
|     case set_number_at:
 | ||
|       p1 += 4;
 | ||
| 
 | ||
|     default:
 | ||
|       /* All other opcodes mean we cannot match the empty string.  */
 | ||
|       return false;
 | ||
|   }
 | ||
| 
 | ||
|   *p = p1;
 | ||
|   return true;
 | ||
| } /* common_op_match_null_string_p */
 | ||
| 
 | ||
| 
 | ||
| /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
 | ||
|    bytes; nonzero otherwise.  */
 | ||
| 
 | ||
| static int
 | ||
| bcmp_translate (s1, s2, len, translate)
 | ||
|      unsigned char *s1, *s2;
 | ||
|      register int len;
 | ||
|      char *translate;
 | ||
| {
 | ||
|   register unsigned char *p1 = s1, *p2 = s2;
 | ||
|   while (len)
 | ||
|     {
 | ||
|       if (translate[*p1++] != translate[*p2++]) return 1;
 | ||
|       len--;
 | ||
|     }
 | ||
|   return 0;
 | ||
| }
 | ||
| 
 | ||
| /* Entry points for GNU code.  */
 | ||
| 
 | ||
| /* re_compile_pattern is the GNU regular expression compiler: it
 | ||
|    compiles PATTERN (of length SIZE) and puts the result in BUFP.
 | ||
|    Returns 0 if the pattern was valid, otherwise an error string.
 | ||
| 
 | ||
|    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
 | ||
|    are set in BUFP on entry.
 | ||
| 
 | ||
|    We call regex_compile to do the actual compilation.  */
 | ||
| 
 | ||
| const char *
 | ||
| re_compile_pattern (pattern, length, bufp)
 | ||
|      const char *pattern;
 | ||
|      int length;
 | ||
|      struct re_pattern_buffer *bufp;
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
| 
 | ||
|   /* GNU code is written to assume at least RE_NREGS registers will be set
 | ||
|      (and at least one extra will be -1).  */
 | ||
|   bufp->regs_allocated = REGS_UNALLOCATED;
 | ||
| 
 | ||
|   /* And GNU code determines whether or not to get register information
 | ||
|      by passing null for the REGS argument to re_match, etc., not by
 | ||
|      setting no_sub.  */
 | ||
|   bufp->no_sub = 0;
 | ||
| 
 | ||
|   /* Match anchors at newline.  */
 | ||
|   bufp->newline_anchor = 1;
 | ||
| 
 | ||
|   ret = regex_compile (pattern, length, re_syntax_options, bufp);
 | ||
| 
 | ||
|   return re_error_msg[(int) ret];
 | ||
| }
 | ||
| 
 | ||
| /* Entry points compatible with 4.2 BSD regex library.  We don't define
 | ||
|    them if this is an Emacs or POSIX compilation.  */
 | ||
| 
 | ||
| #if !defined (emacs) && !defined (_POSIX_SOURCE)
 | ||
| 
 | ||
| /* BSD has one and only one pattern buffer.  */
 | ||
| static struct re_pattern_buffer re_comp_buf;
 | ||
| 
 | ||
| char *
 | ||
| re_comp (s)
 | ||
|     const char *s;
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
| 
 | ||
|   if (!s)
 | ||
|     {
 | ||
|       if (!re_comp_buf.buffer)
 | ||
| 	return "No previous regular expression";
 | ||
|       return 0;
 | ||
|     }
 | ||
| 
 | ||
|   if (!re_comp_buf.buffer)
 | ||
|     {
 | ||
|       re_comp_buf.buffer = (unsigned char *) malloc (200);
 | ||
|       if (re_comp_buf.buffer == NULL)
 | ||
|         return "Memory exhausted";
 | ||
|       re_comp_buf.allocated = 200;
 | ||
| 
 | ||
|       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
 | ||
|       if (re_comp_buf.fastmap == NULL)
 | ||
| 	return "Memory exhausted";
 | ||
|     }
 | ||
| 
 | ||
|   /* Since `re_exec' always passes NULL for the `regs' argument, we
 | ||
|      don't need to initialize the pattern buffer fields which affect it.  */
 | ||
| 
 | ||
|   /* Match anchors at newlines.  */
 | ||
|   re_comp_buf.newline_anchor = 1;
 | ||
| 
 | ||
|   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
 | ||
| 
 | ||
|   /* Yes, we're discarding `const' here.  */
 | ||
|   return (char *) re_error_msg[(int) ret];
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| int
 | ||
| re_exec (s)
 | ||
|     const char *s;
 | ||
| {
 | ||
|   const int len = strlen (s);
 | ||
|   return
 | ||
|     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
 | ||
| }
 | ||
| #endif /* not emacs and not _POSIX_SOURCE */
 | ||
| 
 | ||
| /* POSIX.2 functions.  Don't define these for Emacs.  */
 | ||
| 
 | ||
| #ifndef emacs
 | ||
| 
 | ||
| /* regcomp takes a regular expression as a string and compiles it.
 | ||
| 
 | ||
|    PREG is a regex_t *.  We do not expect any fields to be initialized,
 | ||
|    since POSIX says we shouldn't.  Thus, we set
 | ||
| 
 | ||
|      `buffer' to the compiled pattern;
 | ||
|      `used' to the length of the compiled pattern;
 | ||
|      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
 | ||
|        REG_EXTENDED bit in CFLAGS is set; otherwise, to
 | ||
|        RE_SYNTAX_POSIX_BASIC;
 | ||
|      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
 | ||
|      `fastmap' and `fastmap_accurate' to zero;
 | ||
|      `re_nsub' to the number of subexpressions in PATTERN.
 | ||
| 
 | ||
|    PATTERN is the address of the pattern string.
 | ||
| 
 | ||
|    CFLAGS is a series of bits which affect compilation.
 | ||
| 
 | ||
|      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
 | ||
|      use POSIX basic syntax.
 | ||
| 
 | ||
|      If REG_NEWLINE is set, then . and [^...] don't match newline.
 | ||
|      Also, regexec will try a match beginning after every newline.
 | ||
| 
 | ||
|      If REG_ICASE is set, then we considers upper- and lowercase
 | ||
|      versions of letters to be equivalent when matching.
 | ||
| 
 | ||
|      If REG_NOSUB is set, then when PREG is passed to regexec, that
 | ||
|      routine will report only success or failure, and nothing about the
 | ||
|      registers.
 | ||
| 
 | ||
|    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
 | ||
|    the return codes and their meanings.)  */
 | ||
| 
 | ||
| int
 | ||
| regcomp (preg, pattern, cflags)
 | ||
|     regex_t *preg;
 | ||
|     const char *pattern;
 | ||
|     int cflags;
 | ||
| {
 | ||
|   reg_errcode_t ret;
 | ||
|   unsigned syntax
 | ||
|     = (cflags & REG_EXTENDED) ?
 | ||
|       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
 | ||
| 
 | ||
|   /* regex_compile will allocate the space for the compiled pattern.  */
 | ||
|   preg->buffer = 0;
 | ||
|   preg->allocated = 0;
 | ||
| 
 | ||
|   /* Don't bother to use a fastmap when searching.  This simplifies the
 | ||
|      REG_NEWLINE case: if we used a fastmap, we'd have to put all the
 | ||
|      characters after newlines into the fastmap.  This way, we just try
 | ||
|      every character.  */
 | ||
|   preg->fastmap = 0;
 | ||
| 
 | ||
|   if (cflags & REG_ICASE)
 | ||
|     {
 | ||
|       unsigned i;
 | ||
| 
 | ||
|       preg->translate = (char *) malloc (CHAR_SET_SIZE);
 | ||
|       if (preg->translate == NULL)
 | ||
|         return (int) REG_ESPACE;
 | ||
| 
 | ||
|       /* Map uppercase characters to corresponding lowercase ones.  */
 | ||
|       for (i = 0; i < CHAR_SET_SIZE; i++)
 | ||
|         preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
 | ||
|     }
 | ||
|   else
 | ||
|     preg->translate = NULL;
 | ||
| 
 | ||
|   /* If REG_NEWLINE is set, newlines are treated differently.  */
 | ||
|   if (cflags & REG_NEWLINE)
 | ||
|     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
 | ||
|       syntax &= ~RE_DOT_NEWLINE;
 | ||
|       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
 | ||
|       /* It also changes the matching behavior.  */
 | ||
|       preg->newline_anchor = 1;
 | ||
|     }
 | ||
|   else
 | ||
|     preg->newline_anchor = 0;
 | ||
| 
 | ||
|   preg->no_sub = !!(cflags & REG_NOSUB);
 | ||
| 
 | ||
|   /* POSIX says a null character in the pattern terminates it, so we
 | ||
|      can use strlen here in compiling the pattern.  */
 | ||
|   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
 | ||
| 
 | ||
|   /* POSIX doesn't distinguish between an unmatched open-group and an
 | ||
|      unmatched close-group: both are REG_EPAREN.  */
 | ||
|   if (ret == REG_ERPAREN) ret = REG_EPAREN;
 | ||
| 
 | ||
|   return (int) ret;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* regexec searches for a given pattern, specified by PREG, in the
 | ||
|    string STRING.
 | ||
| 
 | ||
|    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
 | ||
|    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
 | ||
|    least NMATCH elements, and we set them to the offsets of the
 | ||
|    corresponding matched substrings.
 | ||
| 
 | ||
|    EFLAGS specifies `execution flags' which affect matching: if
 | ||
|    REG_NOTBOL is set, then ^ does not match at the beginning of the
 | ||
|    string; if REG_NOTEOL is set, then $ does not match at the end.
 | ||
| 
 | ||
|    We return 0 if we find a match and REG_NOMATCH if not.  */
 | ||
| 
 | ||
| int
 | ||
| regexec (preg, string, nmatch, pmatch, eflags)
 | ||
|     const regex_t *preg;
 | ||
|     const char *string;
 | ||
|     size_t nmatch;
 | ||
|     regmatch_t pmatch[];
 | ||
|     int eflags;
 | ||
| {
 | ||
|   int ret;
 | ||
|   struct re_registers regs;
 | ||
|   regex_t private_preg;
 | ||
|   int len = strlen (string);
 | ||
|   boolean want_reg_info = !preg->no_sub && nmatch > 0;
 | ||
| 
 | ||
|   private_preg = *preg;
 | ||
| 
 | ||
|   private_preg.not_bol = !!(eflags & REG_NOTBOL);
 | ||
|   private_preg.not_eol = !!(eflags & REG_NOTEOL);
 | ||
| 
 | ||
|   /* The user has told us exactly how many registers to return
 | ||
|      information about, via `nmatch'.  We have to pass that on to the
 | ||
|      matching routines.  */
 | ||
|   private_preg.regs_allocated = REGS_FIXED;
 | ||
| 
 | ||
|   if (want_reg_info)
 | ||
|     {
 | ||
|       regs.num_regs = nmatch;
 | ||
|       regs.start = TALLOC (nmatch, regoff_t);
 | ||
|       regs.end = TALLOC (nmatch, regoff_t);
 | ||
|       if (regs.start == NULL || regs.end == NULL)
 | ||
|         return (int) REG_NOMATCH;
 | ||
|     }
 | ||
| 
 | ||
|   /* Perform the searching operation.  */
 | ||
|   ret = re_search (&private_preg, string, len,
 | ||
|                    /* start: */ 0, /* range: */ len,
 | ||
|                    want_reg_info ? ®s : (struct re_registers *) 0);
 | ||
| 
 | ||
|   /* Copy the register information to the POSIX structure.  */
 | ||
|   if (want_reg_info)
 | ||
|     {
 | ||
|       if (ret >= 0)
 | ||
|         {
 | ||
|           unsigned r;
 | ||
| 
 | ||
|           for (r = 0; r < nmatch; r++)
 | ||
|             {
 | ||
|               pmatch[r].rm_so = regs.start[r];
 | ||
|               pmatch[r].rm_eo = regs.end[r];
 | ||
|             }
 | ||
|         }
 | ||
| 
 | ||
|       /* If we needed the temporary register info, free the space now.  */
 | ||
|       free (regs.start);
 | ||
|       free (regs.end);
 | ||
|     }
 | ||
| 
 | ||
|   /* We want zero return to mean success, unlike `re_search'.  */
 | ||
|   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Returns a message corresponding to an error code, ERRCODE, returned
 | ||
|    from either regcomp or regexec.   We don't use PREG here.  */
 | ||
| 
 | ||
| size_t
 | ||
| regerror (errcode, preg, errbuf, errbuf_size)
 | ||
|     int errcode;
 | ||
|     const regex_t *preg;
 | ||
|     char *errbuf;
 | ||
|     size_t errbuf_size;
 | ||
| {
 | ||
|   const char *msg;
 | ||
|   size_t msg_size;
 | ||
| 
 | ||
|   if (errcode < 0
 | ||
|       || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
 | ||
|     /* Only error codes returned by the rest of the code should be passed
 | ||
|        to this routine.  If we are given anything else, or if other regex
 | ||
|        code generates an invalid error code, then the program has a bug.
 | ||
|        Dump core so we can fix it.  */
 | ||
|     abort ();
 | ||
| 
 | ||
|   msg = re_error_msg[errcode];
 | ||
| 
 | ||
|   /* POSIX doesn't require that we do anything in this case, but why
 | ||
|      not be nice.  */
 | ||
|   if (! msg)
 | ||
|     msg = "Success";
 | ||
| 
 | ||
|   msg_size = strlen (msg) + 1; /* Includes the null.  */
 | ||
| 
 | ||
|   if (errbuf_size != 0)
 | ||
|     {
 | ||
|       if (msg_size > errbuf_size)
 | ||
|         {
 | ||
|           strncpy (errbuf, msg, errbuf_size - 1);
 | ||
|           errbuf[errbuf_size - 1] = 0;
 | ||
|         }
 | ||
|       else
 | ||
|         strcpy (errbuf, msg);
 | ||
|     }
 | ||
| 
 | ||
|   return msg_size;
 | ||
| }
 | ||
| 
 | ||
| 
 | ||
| /* Free dynamically allocated space used by PREG.  */
 | ||
| 
 | ||
| void
 | ||
| regfree (preg)
 | ||
|     regex_t *preg;
 | ||
| {
 | ||
|   if (preg->buffer != NULL)
 | ||
|     free (preg->buffer);
 | ||
|   preg->buffer = NULL;
 | ||
| 
 | ||
|   preg->allocated = 0;
 | ||
|   preg->used = 0;
 | ||
| 
 | ||
|   if (preg->fastmap != NULL)
 | ||
|     free (preg->fastmap);
 | ||
|   preg->fastmap = NULL;
 | ||
|   preg->fastmap_accurate = 0;
 | ||
| 
 | ||
|   if (preg->translate != NULL)
 | ||
|     free (preg->translate);
 | ||
|   preg->translate = NULL;
 | ||
| }
 | ||
| 
 | ||
| #endif /* not emacs  */
 | ||
| 
 | ||
| /*
 | ||
| Local variables:
 | ||
| make-backup-files: t
 | ||
| version-control: t
 | ||
| trim-versions-without-asking: nil
 | ||
| End:
 | ||
| */
 |