Change-Id: I9321391cc06afddff94fbba79f93851b553c74b1 Signed-off-by: Paul Menzel <pmenzel@molgen.mpg.de> Reviewed-on: https://review.coreboot.org/c/coreboot/+/62935 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Jakub Czapiga <jacz@semihalf.com>
		
			
				
	
	
		
			762 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			762 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* SPDX-License-Identifier: GPL-2.0-only */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <types.h>
 | |
| #include <string.h>
 | |
| #include <tests/test.h>
 | |
| #include <imd.h>
 | |
| #include <imd_private.h>
 | |
| #include <cbmem.h>
 | |
| #include <commonlib/bsd/helpers.h>
 | |
| #include <lib.h>
 | |
| 
 | |
| /* Auxiliary functions and definitions. */
 | |
| 
 | |
| #define LG_ROOT_SIZE                                                                           \
 | |
| 	align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root)                \
 | |
| 		      + 3 * sizeof(struct imd_entry))
 | |
| #define LG_ENTRY_ALIGN (2 * sizeof(int32_t))
 | |
| #define LG_ENTRY_SIZE (2 * sizeof(int32_t))
 | |
| #define LG_ENTRY_ID 0xA001
 | |
| 
 | |
| #define SM_ROOT_SIZE LG_ROOT_SIZE
 | |
| #define SM_ENTRY_ALIGN sizeof(uint32_t)
 | |
| #define SM_ENTRY_SIZE sizeof(uint32_t)
 | |
| #define SM_ENTRY_ID 0xB001
 | |
| 
 | |
| #define INVALID_REGION_ID 0xC001
 | |
| 
 | |
| static uint32_t align_up_pow2(uint32_t x)
 | |
| {
 | |
| 	return (1 << log2_ceil(x));
 | |
| }
 | |
| 
 | |
| static size_t max_entries(size_t root_size)
 | |
| {
 | |
| 	return (root_size - sizeof(struct imd_root_pointer) - sizeof(struct imd_root))
 | |
| 	       / sizeof(struct imd_entry);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mainly, we should check that imd_handle_init() aligns upper_limit properly
 | |
|  * for various inputs. Upper limit is the _exclusive_ address, so we expect
 | |
|  * ALIGN_DOWN.
 | |
|  */
 | |
| static void test_imd_handle_init(void **state)
 | |
| {
 | |
| 	int i;
 | |
| 	void *base;
 | |
| 	struct imd imd;
 | |
| 	uintptr_t test_inputs[] = {
 | |
| 		0,		     /* Lowest possible address */
 | |
| 		0xA000,		     /* Fits in 16 bits, should not get rounded down */
 | |
| 		0xDEAA,		     /* Fits in 16 bits */
 | |
| 		0xB0B0B000,	     /* Fits in 32 bits, should not get rounded down */
 | |
| 		0xF0F0F0F0,	     /* Fits in 32 bits */
 | |
| 		((1ULL << 32) + 4),  /* Just above 32-bit limit */
 | |
| 		0x6666777788889000,  /* Fits in 64 bits, should not get rounded down */
 | |
| 		((1ULL << 60) - 100) /* Very large address, fitting in 64 bits */
 | |
| 	};
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(test_inputs); i++) {
 | |
| 		base = (void *)test_inputs[i];
 | |
| 
 | |
| 		imd_handle_init(&imd, (void *)base);
 | |
| 
 | |
| 		assert_int_equal(imd.lg.limit % LIMIT_ALIGN, 0);
 | |
| 		assert_int_equal(imd.lg.limit, ALIGN_DOWN(test_inputs[i], LIMIT_ALIGN));
 | |
| 		assert_ptr_equal(imd.lg.r, NULL);
 | |
| 
 | |
| 		/* Small allocations not initialized */
 | |
| 		assert_ptr_equal(imd.sm.limit, NULL);
 | |
| 		assert_ptr_equal(imd.sm.r, NULL);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void test_imd_handle_init_partial_recovery(void **state)
 | |
| {
 | |
| 	void *base;
 | |
| 	struct imd imd = {0};
 | |
| 	const struct imd_entry *entry;
 | |
| 
 | |
| 	imd_handle_init_partial_recovery(&imd);
 | |
| 	assert_null(imd.lg.limit);
 | |
| 	assert_null(imd.sm.limit);
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 	imd_handle_init_partial_recovery(&imd);
 | |
| 
 | |
| 	assert_non_null(imd.lg.r);
 | |
| 	assert_null(imd.sm.limit);
 | |
| 
 | |
| 	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
 | |
| 	entry = imd_entry_add(&imd, SMALL_REGION_ID, LG_ENTRY_SIZE);
 | |
| 	assert_non_null(entry);
 | |
| 
 | |
| 	imd_handle_init_partial_recovery(&imd);
 | |
| 
 | |
| 	assert_non_null(imd.lg.r);
 | |
| 	assert_non_null(imd.sm.limit);
 | |
| 	assert_ptr_equal(imd.lg.r + entry->start_offset + LG_ENTRY_SIZE, imd.sm.limit);
 | |
| 	assert_non_null(imd.sm.r);
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_create_empty(void **state)
 | |
| {
 | |
| 	struct imd imd = {0};
 | |
| 	void *base;
 | |
| 	struct imd_root *r;
 | |
| 	struct imd_entry *e;
 | |
| 
 | |
| 	/* Expect imd_create_empty to fail, since imd handle is not initialized */
 | |
| 	assert_int_equal(-1, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
 | |
| 	base = malloc(sizeof(struct imd_root_pointer) + sizeof(struct imd_root));
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	/* Try incorrect sizes */
 | |
| 	assert_int_equal(
 | |
| 		-1, imd_create_empty(&imd, sizeof(struct imd_root_pointer), LG_ENTRY_ALIGN));
 | |
| 	assert_int_equal(-1, imd_create_empty(&imd, LG_ROOT_SIZE, 2 * LG_ROOT_SIZE));
 | |
| 
 | |
| 	/* Working case */
 | |
| 	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
 | |
| 
 | |
| 	/* Only large allocation initialized with one entry for the root region */
 | |
| 	r = (struct imd_root *)(imd.lg.r);
 | |
| 	assert_non_null(r);
 | |
| 
 | |
| 	e = &r->entries[r->num_entries - 1];
 | |
| 
 | |
| 	assert_int_equal(max_entries(LG_ROOT_SIZE), r->max_entries);
 | |
| 	assert_int_equal(1, r->num_entries);
 | |
| 	assert_int_equal(0, r->flags);
 | |
| 	assert_int_equal(LG_ENTRY_ALIGN, r->entry_align);
 | |
| 	assert_int_equal(0, r->max_offset);
 | |
| 	assert_ptr_equal(e, &r->entries);
 | |
| 
 | |
| 	assert_int_equal(IMD_ENTRY_MAGIC, e->magic);
 | |
| 	assert_int_equal(0, e->start_offset);
 | |
| 	assert_int_equal(LG_ROOT_SIZE, e->size);
 | |
| 	assert_int_equal(CBMEM_ID_IMD_ROOT, e->id);
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_create_tiered_empty(void **state)
 | |
| {
 | |
| 	void *base;
 | |
| 	size_t sm_region_size, lg_region_wrong_size;
 | |
| 	struct imd imd = {0};
 | |
| 	struct imd_root *r;
 | |
| 	struct imd_entry *fst_lg_entry, *snd_lg_entry, *sm_entry;
 | |
| 
 | |
| 	/* Uninitialized imd handle */
 | |
| 	assert_int_equal(-1, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
 | |
| 						     LG_ROOT_SIZE, SM_ENTRY_ALIGN));
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	/* Too small root_size for small region */
 | |
| 	assert_int_equal(-1, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
 | |
| 						     sizeof(int32_t), 2 * sizeof(int32_t)));
 | |
| 
 | |
| 	/* Fail when large region doesn't have capacity for more than 1 entry */
 | |
| 	lg_region_wrong_size = sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
 | |
| 			       + sizeof(struct imd_entry);
 | |
| 	expect_assert_failure(imd_create_tiered_empty(
 | |
| 		&imd, lg_region_wrong_size, LG_ENTRY_ALIGN, SM_ROOT_SIZE, SM_ENTRY_ALIGN));
 | |
| 
 | |
| 	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
 | |
| 						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));
 | |
| 
 | |
| 	r = imd.lg.r;
 | |
| 
 | |
| 	/* One entry for root_region and one for small allocations */
 | |
| 	assert_int_equal(2, r->num_entries);
 | |
| 
 | |
| 	fst_lg_entry = &r->entries[0];
 | |
| 	assert_int_equal(IMD_ENTRY_MAGIC, fst_lg_entry->magic);
 | |
| 	assert_int_equal(0, fst_lg_entry->start_offset);
 | |
| 	assert_int_equal(LG_ROOT_SIZE, fst_lg_entry->size);
 | |
| 	assert_int_equal(CBMEM_ID_IMD_ROOT, fst_lg_entry->id);
 | |
| 
 | |
| 	/* Calculated like in imd_create_tiered_empty */
 | |
| 	sm_region_size = max_entries(SM_ROOT_SIZE) * SM_ENTRY_ALIGN;
 | |
| 	sm_region_size += SM_ROOT_SIZE;
 | |
| 	sm_region_size = ALIGN_UP(sm_region_size, LG_ENTRY_ALIGN);
 | |
| 
 | |
| 	snd_lg_entry = &r->entries[1];
 | |
| 	assert_int_equal(IMD_ENTRY_MAGIC, snd_lg_entry->magic);
 | |
| 	assert_int_equal(-sm_region_size, snd_lg_entry->start_offset);
 | |
| 	assert_int_equal(CBMEM_ID_IMD_SMALL, snd_lg_entry->id);
 | |
| 
 | |
| 	assert_int_equal(sm_region_size, snd_lg_entry->size);
 | |
| 
 | |
| 	r = imd.sm.r;
 | |
| 	assert_int_equal(1, r->num_entries);
 | |
| 
 | |
| 	sm_entry = &r->entries[0];
 | |
| 	assert_int_equal(IMD_ENTRY_MAGIC, sm_entry->magic);
 | |
| 	assert_int_equal(0, sm_entry->start_offset);
 | |
| 	assert_int_equal(SM_ROOT_SIZE, sm_entry->size);
 | |
| 	assert_int_equal(CBMEM_ID_IMD_ROOT, sm_entry->id);
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| /* Tests for imdr_recover. */
 | |
| static void test_imd_recover(void **state)
 | |
| {
 | |
| 	int32_t offset_copy, max_offset_copy;
 | |
| 	uint32_t rp_magic_copy, num_entries_copy;
 | |
| 	uint32_t e_align_copy, e_magic_copy, e_id_copy;
 | |
| 	uint32_t size_copy, diff;
 | |
| 	void *base;
 | |
| 	struct imd imd = {0};
 | |
| 	struct imd_root_pointer *rp;
 | |
| 	struct imd_root *r;
 | |
| 	struct imd_entry *lg_root_entry, *sm_root_entry, *ptr;
 | |
| 	const struct imd_entry *lg_entry;
 | |
| 
 | |
| 	/* Fail when the limit for lg was not set. */
 | |
| 	imd.lg.limit = (uintptr_t)NULL;
 | |
| 	assert_int_equal(-1, imd_recover(&imd));
 | |
| 
 | |
| 	/* Set the limit for lg. */
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	/* Fail when the root pointer is not valid. */
 | |
| 	rp = (void *)imd.lg.limit - sizeof(struct imd_root_pointer);
 | |
| 	assert_non_null(rp);
 | |
| 	assert_int_equal(IMD_ROOT_PTR_MAGIC, rp->magic);
 | |
| 
 | |
| 	rp_magic_copy = rp->magic;
 | |
| 	rp->magic = 0;
 | |
| 	assert_int_equal(-1, imd_recover(&imd));
 | |
| 	rp->magic = rp_magic_copy;
 | |
| 
 | |
| 	/* Set the root pointer. */
 | |
| 	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
 | |
| 						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));
 | |
| 	assert_int_equal(2, ((struct imd_root *)imd.lg.r)->num_entries);
 | |
| 	assert_int_equal(1, ((struct imd_root *)imd.sm.r)->num_entries);
 | |
| 
 | |
| 	/* Fail if the number of entries exceeds the maximum number of entries. */
 | |
| 	r = imd.lg.r;
 | |
| 	num_entries_copy = r->num_entries;
 | |
| 	r->num_entries = r->max_entries + 1;
 | |
| 	assert_int_equal(-1, imd_recover(&imd));
 | |
| 	r->num_entries = num_entries_copy;
 | |
| 
 | |
| 	/* Fail if entry align is not a power of 2.  */
 | |
| 	e_align_copy = r->entry_align;
 | |
| 	r->entry_align++;
 | |
| 	assert_int_equal(-1, imd_recover(&imd));
 | |
| 	r->entry_align = e_align_copy;
 | |
| 
 | |
| 	/* Fail when an entry is not valid. */
 | |
| 	lg_root_entry = &r->entries[0];
 | |
| 	e_magic_copy = lg_root_entry->magic;
 | |
| 	lg_root_entry->magic = 0;
 | |
| 	assert_int_equal(-1, imd_recover(&imd));
 | |
| 	lg_root_entry->magic = e_magic_copy;
 | |
| 
 | |
| 	/* Add new entries: large and small. */
 | |
| 	lg_entry = imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
 | |
| 	assert_non_null(lg_entry);
 | |
| 	assert_int_equal(3, r->num_entries);
 | |
| 
 | |
| 	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
 | |
| 	assert_int_equal(2, ((struct imd_root *)imd.sm.r)->num_entries);
 | |
| 
 | |
| 	/* Fail when start_addr is lower than low_limit. */
 | |
| 	r = imd.lg.r;
 | |
| 	max_offset_copy = r->max_offset;
 | |
| 	r->max_offset = lg_entry->start_offset + sizeof(int32_t);
 | |
| 	assert_int_equal(-1, imd_recover(&imd));
 | |
| 	r->max_offset = max_offset_copy;
 | |
| 
 | |
| 	/* Fail when start_addr is at least imdr->limit. */
 | |
| 	offset_copy = lg_entry->start_offset;
 | |
| 	ptr = (struct imd_entry *)lg_entry;
 | |
| 	ptr->start_offset = (void *)imd.lg.limit - (void *)r;
 | |
| 	assert_int_equal(-1, imd_recover(&imd));
 | |
| 	ptr->start_offset = offset_copy;
 | |
| 
 | |
| 	/* Fail when (start_addr + e->size) is higher than imdr->limit. */
 | |
| 	size_copy = lg_entry->size;
 | |
| 	diff = (void *)imd.lg.limit - ((void *)r + lg_entry->start_offset);
 | |
| 	ptr->size = diff + 1;
 | |
| 	assert_int_equal(-1, imd_recover(&imd));
 | |
| 	ptr->size = size_copy;
 | |
| 
 | |
| 	/* Succeed if small region is not present. */
 | |
| 	sm_root_entry = &r->entries[1];
 | |
| 	e_id_copy = sm_root_entry->id;
 | |
| 	sm_root_entry->id = 0;
 | |
| 	assert_int_equal(0, imd_recover(&imd));
 | |
| 	sm_root_entry->id = e_id_copy;
 | |
| 
 | |
| 	assert_int_equal(0, imd_recover(&imd));
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_limit_size(void **state)
 | |
| {
 | |
| 	void *base;
 | |
| 	struct imd imd = {0};
 | |
| 	size_t root_size, max_size;
 | |
| 
 | |
| 	max_size = align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
 | |
| 				 + 3 * sizeof(struct imd_entry));
 | |
| 
 | |
| 	assert_int_equal(-1, imd_limit_size(&imd, max_size));
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	root_size = align_up_pow2(sizeof(struct imd_root_pointer) + sizeof(struct imd_root)
 | |
| 				  + 2 * sizeof(struct imd_entry));
 | |
| 	imd.lg.r = (void *)imd.lg.limit - root_size;
 | |
| 
 | |
| 	imd_create_empty(&imd, root_size, LG_ENTRY_ALIGN);
 | |
| 	assert_int_equal(-1, imd_limit_size(&imd, root_size - 1));
 | |
| 	assert_int_equal(0, imd_limit_size(&imd, max_size));
 | |
| 
 | |
| 	/* Cannot create such a big entry */
 | |
| 	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, max_size - root_size + 1));
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_lockdown(void **state)
 | |
| {
 | |
| 	struct imd imd = {0};
 | |
| 	struct imd_root *r_lg, *r_sm;
 | |
| 
 | |
| 	assert_int_equal(-1, imd_lockdown(&imd));
 | |
| 
 | |
| 	imd.lg.r = malloc(sizeof(struct imd_root));
 | |
| 	if (imd.lg.r == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 
 | |
| 	r_lg = (struct imd_root *)(imd.lg.r);
 | |
| 
 | |
| 	assert_int_equal(0, imd_lockdown(&imd));
 | |
| 	assert_true(r_lg->flags & IMD_FLAG_LOCKED);
 | |
| 
 | |
| 	imd.sm.r = malloc(sizeof(struct imd_root));
 | |
| 	if (imd.sm.r == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 	r_sm = (struct imd_root *)(imd.sm.r);
 | |
| 
 | |
| 	assert_int_equal(0, imd_lockdown(&imd));
 | |
| 	assert_true(r_sm->flags & IMD_FLAG_LOCKED);
 | |
| 
 | |
| 	free(imd.lg.r);
 | |
| 	free(imd.sm.r);
 | |
| }
 | |
| 
 | |
| static void test_imd_region_used(void **state)
 | |
| {
 | |
| 	struct imd imd = {0};
 | |
| 	struct imd_entry *first_entry, *new_entry;
 | |
| 	struct imd_root *r;
 | |
| 	size_t size;
 | |
| 	void *imd_base;
 | |
| 	void *base;
 | |
| 
 | |
| 	assert_int_equal(-1, imd_region_used(&imd, &base, &size));
 | |
| 
 | |
| 	imd_base = malloc(LIMIT_ALIGN);
 | |
| 	if (imd_base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)imd_base));
 | |
| 
 | |
| 	assert_int_equal(-1, imd_region_used(&imd, &base, &size));
 | |
| 	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
 | |
| 	assert_int_equal(0, imd_region_used(&imd, &base, &size));
 | |
| 
 | |
| 	r = (struct imd_root *)imd.lg.r;
 | |
| 	first_entry = &r->entries[r->num_entries - 1];
 | |
| 
 | |
| 	assert_int_equal(r + first_entry->start_offset, (uintptr_t)base);
 | |
| 	assert_int_equal(first_entry->size, size);
 | |
| 
 | |
| 	assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
 | |
| 	assert_int_equal(2, r->num_entries);
 | |
| 
 | |
| 	assert_int_equal(0, imd_region_used(&imd, &base, &size));
 | |
| 
 | |
| 	new_entry = &r->entries[r->num_entries - 1];
 | |
| 
 | |
| 	assert_true((void *)r + new_entry->start_offset == base);
 | |
| 	assert_int_equal(first_entry->size + new_entry->size, size);
 | |
| 
 | |
| 	free(imd_base);
 | |
| }
 | |
| 
 | |
| static void test_imd_entry_add(void **state)
 | |
| {
 | |
| 	int i;
 | |
| 	struct imd imd = {0};
 | |
| 	size_t entry_size = 0;
 | |
| 	size_t used_size;
 | |
| 	ssize_t entry_offset;
 | |
| 	void *base;
 | |
| 	struct imd_root *r, *sm_r, *lg_r;
 | |
| 	struct imd_entry *first_entry, *new_entry;
 | |
| 	uint32_t num_entries_copy;
 | |
| 	int32_t max_offset_copy;
 | |
| 
 | |
| 	/* No small region case. */
 | |
| 	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
 | |
| 
 | |
| 	r = (struct imd_root *)imd.lg.r;
 | |
| 	first_entry = &r->entries[r->num_entries - 1];
 | |
| 
 | |
| 	/* Cannot add an entry when root is locked. */
 | |
| 	r->flags = IMD_FLAG_LOCKED;
 | |
| 	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
 | |
| 	r->flags = 0;
 | |
| 
 | |
| 	/* Fail when the maximum number of entries has been reached. */
 | |
| 	num_entries_copy = r->num_entries;
 | |
| 	r->num_entries = r->max_entries;
 | |
| 	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
 | |
| 	r->num_entries = num_entries_copy;
 | |
| 
 | |
| 	/* Fail when entry size is 0 */
 | |
| 	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, 0));
 | |
| 
 | |
| 	/* Fail when entry size (after alignment) overflows imd total size. */
 | |
| 	entry_size = 2049;
 | |
| 	max_offset_copy = r->max_offset;
 | |
| 	r->max_offset = -entry_size;
 | |
| 	assert_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
 | |
| 	r->max_offset = max_offset_copy;
 | |
| 
 | |
| 	/* Finally succeed. */
 | |
| 	entry_size = 2 * sizeof(int32_t);
 | |
| 	assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, entry_size));
 | |
| 	assert_int_equal(2, r->num_entries);
 | |
| 
 | |
| 	new_entry = &r->entries[r->num_entries - 1];
 | |
| 	assert_int_equal(sizeof(struct imd_entry), (void *)new_entry - (void *)first_entry);
 | |
| 
 | |
| 	assert_int_equal(IMD_ENTRY_MAGIC, new_entry->magic);
 | |
| 	assert_int_equal(LG_ENTRY_ID, new_entry->id);
 | |
| 	assert_int_equal(entry_size, new_entry->size);
 | |
| 
 | |
| 	used_size = ALIGN_UP(entry_size, r->entry_align);
 | |
| 	entry_offset = first_entry->start_offset - used_size;
 | |
| 	assert_int_equal(entry_offset, new_entry->start_offset);
 | |
| 
 | |
| 	/* Use small region case. */
 | |
| 	imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN, SM_ROOT_SIZE,
 | |
| 				SM_ENTRY_ALIGN);
 | |
| 
 | |
| 	lg_r = imd.lg.r;
 | |
| 	sm_r = imd.sm.r;
 | |
| 
 | |
| 	/* All five new entries should be added to small allocations */
 | |
| 	for (i = 0; i < 5; i++) {
 | |
| 		assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
 | |
| 		assert_int_equal(i + 2, sm_r->num_entries);
 | |
| 		assert_int_equal(2, lg_r->num_entries);
 | |
| 	}
 | |
| 
 | |
| 	/* But next should fall back on large region */
 | |
| 	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, SM_ENTRY_SIZE));
 | |
| 	assert_int_equal(6, sm_r->num_entries);
 | |
| 	assert_int_equal(3, lg_r->num_entries);
 | |
| 
 | |
| 	/*
 | |
| 	 * Small allocation is created when occupies less than 1/4 of available
 | |
| 	 * small region. Verify this.
 | |
| 	 */
 | |
| 	imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN, SM_ROOT_SIZE,
 | |
| 				SM_ENTRY_ALIGN);
 | |
| 
 | |
| 	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 4 + 1));
 | |
| 	assert_int_equal(1, sm_r->num_entries);
 | |
| 	assert_int_equal(3, lg_r->num_entries);
 | |
| 
 | |
| 	/* Next two should go into small region */
 | |
| 	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 4));
 | |
| 	assert_int_equal(2, sm_r->num_entries);
 | |
| 	assert_int_equal(3, lg_r->num_entries);
 | |
| 
 | |
| 	/* (1/4 * 3/4) */
 | |
| 	assert_non_null(imd_entry_add(&imd, SM_ENTRY_ID, -sm_r->max_offset / 16 * 3));
 | |
| 	assert_int_equal(3, sm_r->num_entries);
 | |
| 	assert_int_equal(3, lg_r->num_entries);
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_entry_find(void **state)
 | |
| {
 | |
| 	struct imd imd = {0};
 | |
| 	void *base;
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
 | |
| 						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));
 | |
| 
 | |
| 	assert_non_null(imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
 | |
| 
 | |
| 	assert_non_null(imd_entry_find(&imd, LG_ENTRY_ID));
 | |
| 	assert_non_null(imd_entry_find(&imd, SMALL_REGION_ID));
 | |
| 
 | |
| 	/* Try invalid id, should fail */
 | |
| 	assert_null(imd_entry_find(&imd, INVALID_REGION_ID));
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_entry_find_or_add(void **state)
 | |
| {
 | |
| 	struct imd imd = {0};
 | |
| 	const struct imd_entry *entry;
 | |
| 	struct imd_root *r;
 | |
| 	void *base;
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	assert_null(imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
 | |
| 
 | |
| 	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
 | |
| 	entry = imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
 | |
| 	assert_non_null(entry);
 | |
| 
 | |
| 	r = (struct imd_root *)imd.lg.r;
 | |
| 
 | |
| 	assert_int_equal(entry->id, LG_ENTRY_ID);
 | |
| 	assert_int_equal(2, r->num_entries);
 | |
| 	assert_non_null(imd_entry_find_or_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE));
 | |
| 	assert_int_equal(2, r->num_entries);
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_entry_size(void **state)
 | |
| {
 | |
| 	struct imd_entry entry = {.size = LG_ENTRY_SIZE};
 | |
| 
 | |
| 	assert_int_equal(LG_ENTRY_SIZE, imd_entry_size(&entry));
 | |
| 
 | |
| 	entry.size = 0;
 | |
| 	assert_int_equal(0, imd_entry_size(&entry));
 | |
| }
 | |
| 
 | |
| static void test_imd_entry_at(void **state)
 | |
| {
 | |
| 	struct imd imd = {0};
 | |
| 	struct imd_root *r;
 | |
| 	struct imd_entry *e = NULL;
 | |
| 	const struct imd_entry *entry;
 | |
| 	void *base;
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	assert_int_equal(0, imd_create_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN));
 | |
| 
 | |
| 	/* Fail when entry is NULL */
 | |
| 	assert_null(imd_entry_at(&imd, e));
 | |
| 
 | |
| 	entry = imd_entry_add(&imd, LG_ENTRY_ID, LG_ENTRY_SIZE);
 | |
| 	assert_non_null(entry);
 | |
| 
 | |
| 	r = (struct imd_root *)imd.lg.r;
 | |
| 	assert_ptr_equal((void *)r + entry->start_offset, imd_entry_at(&imd, entry));
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_entry_id(void **state)
 | |
| {
 | |
| 	struct imd_entry entry = {.id = LG_ENTRY_ID};
 | |
| 
 | |
| 	assert_int_equal(LG_ENTRY_ID, imd_entry_id(&entry));
 | |
| }
 | |
| 
 | |
| static void test_imd_entry_remove(void **state)
 | |
| {
 | |
| 	void *base;
 | |
| 	struct imd imd = {0};
 | |
| 	struct imd_root *r;
 | |
| 	const struct imd_entry *fst_lg_entry, *snd_lg_entry, *fst_sm_entry;
 | |
| 	const struct imd_entry *e = NULL;
 | |
| 
 | |
| 	/* Uninitialized handle */
 | |
| 	assert_int_equal(-1, imd_entry_remove(&imd, e));
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
 | |
| 						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));
 | |
| 
 | |
| 	r = imd.lg.r;
 | |
| 	assert_int_equal(2, r->num_entries);
 | |
| 	fst_lg_entry = &r->entries[0];
 | |
| 	snd_lg_entry = &r->entries[1];
 | |
| 
 | |
| 	/* Only last entry can be removed */
 | |
| 	assert_int_equal(-1, imd_entry_remove(&imd, fst_lg_entry));
 | |
| 	r->flags = IMD_FLAG_LOCKED;
 | |
| 	assert_int_equal(-1, imd_entry_remove(&imd, snd_lg_entry));
 | |
| 	r->flags = 0;
 | |
| 
 | |
| 	r = imd.sm.r;
 | |
| 	assert_int_equal(1, r->num_entries);
 | |
| 	fst_sm_entry = &r->entries[0];
 | |
| 
 | |
| 	/* Fail trying to remove root entry */
 | |
| 	assert_int_equal(-1, imd_entry_remove(&imd, fst_sm_entry));
 | |
| 	assert_int_equal(1, r->num_entries);
 | |
| 
 | |
| 	r = imd.lg.r;
 | |
| 	assert_int_equal(0, imd_entry_remove(&imd, snd_lg_entry));
 | |
| 	assert_int_equal(1, r->num_entries);
 | |
| 
 | |
| 	/* Fail trying to remove root entry */
 | |
| 	assert_int_equal(-1, imd_entry_remove(&imd, fst_lg_entry));
 | |
| 	assert_int_equal(1, r->num_entries);
 | |
| 
 | |
| 	free(base);
 | |
| }
 | |
| 
 | |
| static void test_imd_cursor_init(void **state)
 | |
| {
 | |
| 	struct imd imd = {0};
 | |
| 	struct imd_cursor cursor;
 | |
| 
 | |
| 	assert_int_equal(-1, imd_cursor_init(NULL, NULL));
 | |
| 	assert_int_equal(-1, imd_cursor_init(NULL, &cursor));
 | |
| 	assert_int_equal(-1, imd_cursor_init(&imd, NULL));
 | |
| 	assert_int_equal(0, imd_cursor_init(&imd, &cursor));
 | |
| 
 | |
| 	assert_ptr_equal(cursor.imdr[0], &imd.lg);
 | |
| 	assert_ptr_equal(cursor.imdr[1], &imd.sm);
 | |
| }
 | |
| 
 | |
| static void test_imd_cursor_next(void **state)
 | |
| {
 | |
| 	void *base;
 | |
| 	struct imd imd = {0};
 | |
| 	struct imd_cursor cursor;
 | |
| 	struct imd_root *r;
 | |
| 	const struct imd_entry *entry;
 | |
| 	struct imd_entry *fst_lg_entry, *snd_lg_entry, *fst_sm_entry;
 | |
| 	assert_int_equal(0, imd_cursor_init(&imd, &cursor));
 | |
| 
 | |
| 	cursor.current_imdr = 3;
 | |
| 	cursor.current_entry = 0;
 | |
| 	assert_null(imd_cursor_next(&cursor));
 | |
| 
 | |
| 	cursor.current_imdr = 0;
 | |
| 	assert_null(imd_cursor_next(&cursor));
 | |
| 
 | |
| 	base = malloc(LIMIT_ALIGN);
 | |
| 	if (base == NULL)
 | |
| 		fail_msg("Cannot allocate enough memory - fail test");
 | |
| 	imd_handle_init(&imd, (void *)(LIMIT_ALIGN + (uintptr_t)base));
 | |
| 
 | |
| 	assert_int_equal(0, imd_create_tiered_empty(&imd, LG_ROOT_SIZE, LG_ENTRY_ALIGN,
 | |
| 						    SM_ROOT_SIZE, SM_ENTRY_ALIGN));
 | |
| 
 | |
| 	r = imd.lg.r;
 | |
| 	entry = imd_cursor_next(&cursor);
 | |
| 	assert_non_null(entry);
 | |
| 
 | |
| 	fst_lg_entry = &r->entries[0];
 | |
| 	assert_int_equal(fst_lg_entry->id, entry->id);
 | |
| 	assert_ptr_equal(fst_lg_entry, entry);
 | |
| 
 | |
| 	entry = imd_cursor_next(&cursor);
 | |
| 	assert_non_null(entry);
 | |
| 
 | |
| 	snd_lg_entry = &r->entries[1];
 | |
| 	assert_int_equal(snd_lg_entry->id, entry->id);
 | |
| 	assert_ptr_equal(snd_lg_entry, entry);
 | |
| 
 | |
| 	entry = imd_cursor_next(&cursor);
 | |
| 	assert_non_null(entry);
 | |
| 
 | |
| 	r = imd.sm.r;
 | |
| 	fst_sm_entry = &r->entries[0];
 | |
| 	assert_int_equal(fst_sm_entry->id, entry->id);
 | |
| 	assert_ptr_equal(fst_sm_entry, entry);
 | |
| 
 | |
| 	entry = imd_cursor_next(&cursor);
 | |
| 	assert_null(entry);
 | |
| }
 | |
| 
 | |
| int main(void)
 | |
| {
 | |
| 	const struct CMUnitTest tests[] = {
 | |
| 		cmocka_unit_test(test_imd_handle_init),
 | |
| 		cmocka_unit_test(test_imd_handle_init_partial_recovery),
 | |
| 		cmocka_unit_test(test_imd_create_empty),
 | |
| 		cmocka_unit_test(test_imd_create_tiered_empty),
 | |
| 		cmocka_unit_test(test_imd_recover),
 | |
| 		cmocka_unit_test(test_imd_limit_size),
 | |
| 		cmocka_unit_test(test_imd_lockdown),
 | |
| 		cmocka_unit_test(test_imd_region_used),
 | |
| 		cmocka_unit_test(test_imd_entry_add),
 | |
| 		cmocka_unit_test(test_imd_entry_find),
 | |
| 		cmocka_unit_test(test_imd_entry_find_or_add),
 | |
| 		cmocka_unit_test(test_imd_entry_size),
 | |
| 		cmocka_unit_test(test_imd_entry_at),
 | |
| 		cmocka_unit_test(test_imd_entry_id),
 | |
| 		cmocka_unit_test(test_imd_entry_remove),
 | |
| 		cmocka_unit_test(test_imd_cursor_init),
 | |
| 		cmocka_unit_test(test_imd_cursor_next),
 | |
| 	};
 | |
| 
 | |
| 	return cb_run_group_tests(tests, NULL, NULL);
 | |
| }
 |