Files
system76-coreboot/src/vendorcode/google/chromeos/sar.c
Jeremy Compostella 71dda74fe8 drivers/wifi: Support Bluetooth Regulator Domain Settings
The 'Bluetooth Increased Power Mode - SAR Limitation' feature provides
ability to utilize increased device Transmit power capability for
Bluetooth applications in coordination with Wi-Fi adhering to product
SAR limit when Bluetooth and Wi-Fi run together.

This commit introduces a `bluetooth_companion' field to the generic
Wi-Fi drivers chip data. This field can be set in the board design
device tree to supply the bluetooth device for which the BRDS function
must be created.

This feature is required for Meteor Lake rex karis variant.

The implementation follows document 559910 Intel Connectivity
Platforms BIOS Guideline revision 8.3 specification.

BUG=b:348345301
BRANCH=firmware-rex-15709.B
TEST=BRDS method is added to the CNVW device and return the data
     supplied by the SAR binary blob

Change-Id: Iebe95815c944d045f4cf686abcd1874a8a45e209
Signed-off-by: Jeremy Compostella <jeremy.compostella@intel.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/83200
Reviewed-by: Eric Lai <ericllai@google.com>
Reviewed-by: Subrata Banik <subratabanik@google.com>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2024-07-03 17:01:17 +00:00

335 lines
9.3 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <cbfs.h>
#include <console/console.h>
#include <drivers/vpd/vpd.h>
#include <fw_config.h>
#include <lib.h>
#include <sar.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <types.h>
#define LEGACY_BYTES_PER_GEO_OFFSET 6
#define LEGACY_BYTES_PER_SAR_LIMIT 10
#define LEGACY_NUM_SAR_LIMITS 4
#define LEGACY_SAR_BIN_SIZE 81
#define LEGACY_SAR_WGDS_BIN_SIZE 119
#define LEGACY_SAR_NUM_WGDS_GROUPS 3
static uint8_t *wifi_hextostr(const char *sar_str, size_t str_len, size_t *sar_bin_len,
bool legacy_hex_format)
{
uint8_t *sar_bin = NULL;
size_t bin_len;
if (!legacy_hex_format) {
sar_bin = malloc(str_len);
if (!sar_bin) {
printk(BIOS_ERR, "Failed to allocate space for SAR binary!\n");
return NULL;
}
memcpy(sar_bin, sar_str, str_len);
*sar_bin_len = str_len;
} else {
bin_len = ((str_len - 1) / 2);
sar_bin = malloc(bin_len);
if (!sar_bin) {
printk(BIOS_ERR, "Failed to allocate space for SAR binary!\n");
return NULL;
}
if (hexstrtobin(sar_str, (uint8_t *)sar_bin, bin_len) != bin_len) {
printk(BIOS_ERR, "sar_limits contains non-hex value!\n");
free(sar_bin);
return NULL;
}
*sar_bin_len = bin_len;
}
return sar_bin;
}
static int sar_table_size(const struct sar_profile *sar)
{
if (sar == NULL)
return 0;
return (sizeof(struct sar_profile) + ((1 + sar->dsar_set_count) * sar->chains_count *
sar->subbands_count));
}
static int wgds_table_size(const struct geo_profile *geo)
{
if (geo == NULL)
return 0;
return sizeof(struct geo_profile) + (geo->chains_count * geo->bands_count);
}
static int gain_table_size(const struct gain_profile *gain)
{
if (gain == NULL)
return 0;
return sizeof(struct gain_profile) + (gain->chains_count * gain->bands_count);
}
static int sar_avg_table_size(const struct avg_profile *sar_avg)
{
if (sar_avg == NULL)
return 0;
return sizeof(struct avg_profile);
}
static int dsm_table_size(const struct dsm_profile *dsm)
{
if (dsm == NULL)
return 0;
return sizeof(struct dsm_profile);
}
static int bsar_table_size(const struct bsar_profile *bsar)
{
if (bsar == NULL)
return 0;
return sizeof(struct bsar_profile);
}
static bool valid_legacy_length(size_t bin_len)
{
if (bin_len == LEGACY_SAR_WGDS_BIN_SIZE)
return true;
if (bin_len == LEGACY_SAR_BIN_SIZE && !CONFIG(GEO_SAR_ENABLE))
return true;
return false;
}
static int sar_header_size(void)
{
return (MAX_PROFILE_COUNT * sizeof(uint16_t)) + sizeof(struct sar_header);
}
static int fill_wifi_sar_limits(union wifi_sar_limits *sar_limits, const uint8_t *sar_bin,
size_t sar_bin_size)
{
struct sar_header *header;
size_t i = 0, expected_sar_bin_size;
size_t header_size = sar_header_size();
if (sar_bin_size < header_size) {
printk(BIOS_ERR, "Invalid SAR format!\n");
return -1;
}
header = (struct sar_header *)sar_bin;
if (header->version != SAR_FILE_REVISION) {
printk(BIOS_ERR, "Invalid SAR file version: %d!\n", header->version);
return -1;
}
for (i = 0; i < MAX_PROFILE_COUNT; i++) {
if (header->offsets[i] > sar_bin_size) {
printk(BIOS_ERR, "Offset is outside the file size!\n");
return -1;
}
if (header->offsets[i])
sar_limits->profile[i] = (void *) (sar_bin + header->offsets[i]);
}
expected_sar_bin_size = header_size;
expected_sar_bin_size += sar_table_size(sar_limits->sar);
expected_sar_bin_size += wgds_table_size(sar_limits->wgds);
expected_sar_bin_size += gain_table_size(sar_limits->ppag);
expected_sar_bin_size += sar_avg_table_size(sar_limits->wtas);
expected_sar_bin_size += dsm_table_size(sar_limits->dsm);
expected_sar_bin_size += bsar_table_size(sar_limits->bsar);
if (sar_bin_size != expected_sar_bin_size) {
printk(BIOS_ERR, "Invalid SAR size, expected: %zu, obtained: %zu\n",
expected_sar_bin_size, sar_bin_size);
return -1;
}
return 0;
}
static int fill_wifi_sar_limits_legacy(union wifi_sar_limits *sar_limits,
const uint8_t *sar_bin, size_t sar_bin_size)
{
uint8_t *new_sar_bin;
size_t size = sar_bin_size + sizeof(struct sar_profile);
if (CONFIG(GEO_SAR_ENABLE))
size += sizeof(struct geo_profile);
new_sar_bin = malloc(size);
if (!new_sar_bin) {
printk(BIOS_ERR, "Failed to allocate space for SAR binary!\n");
return -1;
}
sar_limits->sar = (struct sar_profile *) new_sar_bin;
sar_limits->sar->revision = 0;
sar_limits->sar->dsar_set_count = CONFIG_DSAR_SET_NUM;
sar_limits->sar->chains_count = SAR_REV0_CHAINS_COUNT;
sar_limits->sar->subbands_count = SAR_REV0_SUBBANDS_COUNT;
memcpy(&sar_limits->sar->sar_table, sar_bin,
LEGACY_BYTES_PER_SAR_LIMIT * LEGACY_NUM_SAR_LIMITS);
if (!CONFIG(GEO_SAR_ENABLE))
return 0;
sar_limits->wgds = (struct geo_profile *)(new_sar_bin +
sar_table_size(sar_limits->sar));
sar_limits->wgds->revision = 0;
sar_limits->wgds->chains_count = LEGACY_SAR_NUM_WGDS_GROUPS;
sar_limits->wgds->bands_count = LEGACY_BYTES_PER_GEO_OFFSET;
memcpy(&sar_limits->wgds->wgds_table,
sar_bin + LEGACY_BYTES_PER_SAR_LIMIT * LEGACY_NUM_SAR_LIMITS + REVISION_SIZE,
LEGACY_BYTES_PER_GEO_OFFSET * LEGACY_SAR_NUM_WGDS_GROUPS);
return 0;
}
/*
* Retrieve WiFi SAR limits data from CBFS and decode it
* Legacy WiFi SAR data is expected in the format: [<WRDD><EWRD>][WGDS]
*
* [<WRDD><EWRD>] = NUM_SAR_LIMITS * BYTES_PER_SAR_LIMIT bytes.
* [WGDS]=[WGDS_REVISION][WGDS_DATA]
*
* Current SAR configuration data is expected in the format:
* "$SAR" Marker
* Version
* Offset count
* Offsets
* [SAR_REVISION,DSAR_SET_COUNT,CHAINS_COUNT,SUBBANDS_COUNT <WRDD>[EWRD]]
* [WGDS_REVISION,CHAINS_COUNT,SUBBANDS_COUNT<WGDS_DATA>]
* [PPAG_REVISION,MODE,CHAINS_COUNT,SUBBANDS_COUNT<PPAG_DATA>]
* [WTAS_REVISION, WTAS_DATA]
* [DSM_RETURN_VALUES]
* [BSAR_REVISION,IPML,LB,BR,EDR2,EDR3,LE,LE2,LE_LR]
*
* The configuration data will always have the revision added in the file for each of the
* block, based on the revision number and validity, size of the specific block will be
* calculated.
*
* [WGDS_DATA] = [GROUP#0][GROUP#1][GROUP#2]
*
* [GROUP#<i>] =
* Supported by Revision 0, 1 and 2
* [2.4Ghz - Max Allowed][2.4Ghz - Chain A Offset][2.4Ghz - Chain B Offset]
* [5Ghz - Max Allowed][5Ghz - Chain A Offset][5Ghz - Chain B Offset]
* Supported by Revision 1 and 2
* [6Ghz - Max Allowed][6Ghz - Chain A Offset][6Ghz - Chain B Offset]
*
* [GROUP#0] is for FCC
* [GROUP#1] is for Europe/Japan
* [GROUP#2] is for ROW
*
* [PPAG_DATA] = [ANT_gain Table Chain A] [ANT_gain Table Chain A]
*
* [ANT_gain Table] =
* Supported by Revision 0, 1 and 2
* [Antenna gain used for 2400MHz frequency]
* [Antenna gain used for 5150-5350MHz frequency]
* [Antenna gain used for 5350-5470MHz frequency]
* [Antenna gain used for 5470-5725MHz frequency]
* [Antenna gain used for 5725-5945MHz frequency]
* Supported by Revision 1 and 2
* [Antenna gain used for 5945-6165MHz frequency]
* [Antenna gain used for 6165-6405MHz frequency]
* [Antenna gain used for 6405-6525MHz frequency]
* [Antenna gain used for 6525-6705MHz frequency]
* [Antenna gain used for 6705-6865MHz frequency]
* [Antenna gain used for 6865-7105MHz frequency]
*
* [WTAS_DATA] =
* [Enable/disable the TAS feature]
* [Number of blocked countries that are not approved by the OEM to support this feature]
* [deny_list_entry_<1-16>: ISO country code to block]
*/
int get_wifi_sar_limits(union wifi_sar_limits *sar_limits)
{
const char *filename;
size_t sar_bin_len, sar_str_len;
uint8_t *sar_bin;
char *sar_str;
int ret = -1;
bool legacy_hex_format = false;
filename = get_wifi_sar_cbfs_filename();
if (filename == NULL) {
printk(BIOS_ERR, "Filename missing for CBFS SAR file!\n");
return ret;
}
sar_str = cbfs_map(filename, &sar_str_len);
if (!sar_str) {
printk(BIOS_ERR, "Failed to get the %s file size!\n", filename);
return ret;
}
if (strncmp(sar_str, SAR_STR_PREFIX, SAR_STR_PREFIX_SIZE) == 0) {
legacy_hex_format = false;
} else if (valid_legacy_length(sar_str_len)) {
legacy_hex_format = true;
} else {
printk(BIOS_ERR, "Invalid SAR format!\n");
goto error;
}
sar_bin = wifi_hextostr(sar_str, sar_str_len, &sar_bin_len, legacy_hex_format);
if (sar_bin == NULL) {
printk(BIOS_ERR, "Failed to parse SAR file %s\n", filename);
goto error;
}
memset(sar_limits, 0, sizeof(*sar_limits));
if (legacy_hex_format) {
ret = fill_wifi_sar_limits_legacy(sar_limits, sar_bin, sar_bin_len);
free(sar_bin);
} else {
ret = fill_wifi_sar_limits(sar_limits, sar_bin, sar_bin_len);
if (ret < 0)
free(sar_bin);
}
error:
cbfs_unmap(sar_str);
return ret;
}
__weak
const char *get_wifi_sar_cbfs_filename(void)
{
return WIFI_SAR_CBFS_DEFAULT_FILENAME;
}
char *get_wifi_sar_fw_config_filename(const struct fw_config_field *field)
{
uint64_t sar_id = fw_config_get_field(field);
if (sar_id == UNDEFINED_FW_CONFIG) {
printk(BIOS_WARNING, "fw_config unprovisioned, set sar filename to NULL\n");
return NULL;
}
static char filename[20];
printk(BIOS_INFO, "Use wifi_sar_%lld.hex.\n", sar_id);
if (snprintf(filename, sizeof(filename), "wifi_sar_%lld.hex", sar_id) < 0) {
printk(BIOS_ERR, "Error occurred with snprintf, set sar filename to NULL\n");
return NULL;
}
return filename;
}