The CONFIG_CACHE_ROM support in the MTRR code allocates an MTRR specifically for setting up write-protect cachine of the ROM. It is assumed that CONFIG_ROM_SIZE is the size of the ROM and the whole area should be cached just under 4GiB. If enabled, the MTRR code will allocate but not enable rom caching. It is up to the callers of the MTRR code to explicitly enable (and disable afterwards) through the use of 2 new functions: - x86_mtrr_enable_rom_caching() - x86_mtrr_disable_rom_caching() Additionally, the CACHE_ROM option is exposed to the config menu so that it is not just selected by the chipset or board. The reasoning is that through a multitude of options CACHE_ROM may not be appropriate for enabling. Change-Id: I4483df850f442bdcef969ffeaf7608ed70b88085 Signed-off-by: Aaron Durbin <adurbin@chromium.org> Reviewed-on: http://review.coreboot.org/2918 Tested-by: build bot (Jenkins) Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
665 lines
18 KiB
C
665 lines
18 KiB
C
/*
|
|
* mtrr.c: setting MTRR to decent values for cache initialization on P6
|
|
*
|
|
* Derived from intel_set_mtrr in intel_subr.c and mtrr.c in linux kernel
|
|
*
|
|
* Copyright 2000 Silicon Integrated System Corporation
|
|
* Copyright 2013 Google Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*
|
|
*
|
|
* Reference: Intel Architecture Software Developer's Manual, Volume 3: System Programming
|
|
*/
|
|
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <console/console.h>
|
|
#include <device/device.h>
|
|
#include <cpu/x86/msr.h>
|
|
#include <cpu/x86/mtrr.h>
|
|
#include <cpu/x86/cache.h>
|
|
#include <cpu/x86/lapic.h>
|
|
#include <arch/cpu.h>
|
|
#include <arch/acpi.h>
|
|
#include <memrange.h>
|
|
#if CONFIG_X86_AMD_FIXED_MTRRS
|
|
#include <cpu/amd/mtrr.h>
|
|
#define MTRR_FIXED_WRBACK_BITS (MTRR_READ_MEM | MTRR_WRITE_MEM)
|
|
#else
|
|
#define MTRR_FIXED_WRBACK_BITS 0
|
|
#endif
|
|
|
|
/* 2 MTRRS are reserved for the operating system */
|
|
#define BIOS_MTRRS 6
|
|
#define OS_MTRRS 2
|
|
#define MTRRS (BIOS_MTRRS + OS_MTRRS)
|
|
|
|
static int total_mtrrs = MTRRS;
|
|
static int bios_mtrrs = BIOS_MTRRS;
|
|
|
|
static void detect_var_mtrrs(void)
|
|
{
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(MTRRcap_MSR);
|
|
|
|
total_mtrrs = msr.lo & 0xff;
|
|
bios_mtrrs = total_mtrrs - OS_MTRRS;
|
|
}
|
|
|
|
void enable_fixed_mtrr(void)
|
|
{
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(MTRRdefType_MSR);
|
|
msr.lo |= MTRRdefTypeEn | MTRRdefTypeFixEn;
|
|
wrmsr(MTRRdefType_MSR, msr);
|
|
}
|
|
|
|
static void enable_var_mtrr(unsigned char deftype)
|
|
{
|
|
msr_t msr;
|
|
|
|
msr = rdmsr(MTRRdefType_MSR);
|
|
msr.lo &= ~0xff;
|
|
msr.lo |= MTRRdefTypeEn | deftype;
|
|
wrmsr(MTRRdefType_MSR, msr);
|
|
}
|
|
|
|
/* fms: find most sigificant bit set, stolen from Linux Kernel Source. */
|
|
static inline unsigned int fms(unsigned int x)
|
|
{
|
|
int r;
|
|
|
|
__asm__("bsrl %1,%0\n\t"
|
|
"jnz 1f\n\t"
|
|
"movl $0,%0\n"
|
|
"1:" : "=r" (r) : "g" (x));
|
|
return r;
|
|
}
|
|
|
|
/* fls: find least sigificant bit set */
|
|
static inline unsigned int fls(unsigned int x)
|
|
{
|
|
int r;
|
|
|
|
__asm__("bsfl %1,%0\n\t"
|
|
"jnz 1f\n\t"
|
|
"movl $32,%0\n"
|
|
"1:" : "=r" (r) : "g" (x));
|
|
return r;
|
|
}
|
|
|
|
#define MTRR_VERBOSE_LEVEL BIOS_NEVER
|
|
|
|
/* MTRRs are at a 4KiB granularity. Therefore all address calculations can
|
|
* be done with 32-bit numbers. This allows for the MTRR code to handle
|
|
* up to 2^44 bytes (16 TiB) of address space. */
|
|
#define RANGE_SHIFT 12
|
|
#define ADDR_SHIFT_TO_RANGE_SHIFT(x) \
|
|
(((x) > RANGE_SHIFT) ? ((x) - RANGE_SHIFT) : RANGE_SHIFT)
|
|
#define PHYS_TO_RANGE_ADDR(x) ((x) >> RANGE_SHIFT)
|
|
#define RANGE_TO_PHYS_ADDR(x) (((resource_t)(x)) << RANGE_SHIFT)
|
|
#define NUM_FIXED_MTRRS (NUM_FIXED_RANGES / RANGES_PER_FIXED_MTRR)
|
|
|
|
/* The minimum alignment while handling variable MTRR ranges is 64MiB. */
|
|
#define MTRR_MIN_ALIGN PHYS_TO_RANGE_ADDR(64 << 20)
|
|
/* Helpful constants. */
|
|
#define RANGE_1MB PHYS_TO_RANGE_ADDR(1 << 20)
|
|
#define RANGE_4GB (1 << (ADDR_SHIFT_TO_RANGE_SHIFT(32)))
|
|
|
|
static inline uint32_t range_entry_base_mtrr_addr(struct range_entry *r)
|
|
{
|
|
return PHYS_TO_RANGE_ADDR(range_entry_base(r));
|
|
}
|
|
|
|
static inline uint32_t range_entry_end_mtrr_addr(struct range_entry *r)
|
|
{
|
|
return PHYS_TO_RANGE_ADDR(range_entry_end(r));
|
|
}
|
|
|
|
static struct memranges *get_physical_address_space(void)
|
|
{
|
|
static struct memranges *addr_space;
|
|
static struct memranges addr_space_storage;
|
|
|
|
/* In order to handle some chipsets not being able to pre-determine
|
|
* uncacheable ranges, such as graphics memory, at resource inseration
|
|
* time remove unacheable regions from the cacheable ones. */
|
|
if (addr_space == NULL) {
|
|
struct range_entry *r;
|
|
unsigned long mask;
|
|
unsigned long match;
|
|
|
|
addr_space = &addr_space_storage;
|
|
|
|
mask = IORESOURCE_CACHEABLE;
|
|
/* Collect cacheable and uncacheable address ranges. The
|
|
* uncacheable regions take precedence over the cacheable
|
|
* regions. */
|
|
memranges_init(addr_space, mask, mask, MTRR_TYPE_WRBACK);
|
|
memranges_add_resources(addr_space, mask, 0,
|
|
MTRR_TYPE_UNCACHEABLE);
|
|
|
|
/* Handle any write combining resources. Only prefetchable
|
|
* resources with the IORESOURCE_WRCOMB flag are appropriate
|
|
* for this MTRR type. */
|
|
match = IORESOURCE_PREFETCH | IORESOURCE_WRCOMB;
|
|
mask |= match;
|
|
memranges_add_resources(addr_space, mask, match,
|
|
MTRR_TYPE_WRCOMB);
|
|
|
|
#if CONFIG_CACHE_ROM
|
|
/* Add a write-protect region covering the ROM size
|
|
* when CONFIG_CACHE_ROM is enabled. The ROM is assumed
|
|
* to be located at 4GiB - rom size. */
|
|
resource_t rom_base = RANGE_TO_PHYS_ADDR(
|
|
RANGE_4GB - PHYS_TO_RANGE_ADDR(CONFIG_ROM_SIZE));
|
|
memranges_insert(addr_space, rom_base, CONFIG_ROM_SIZE,
|
|
MTRR_TYPE_WRPROT);
|
|
#endif
|
|
|
|
/* The address space below 4GiB is special. It needs to be
|
|
* covered entirly by range entries so that MTRR calculations
|
|
* can be properly done for the full 32-bit address space.
|
|
* Therefore, ensure holes are filled up to 4GiB as
|
|
* uncacheable */
|
|
memranges_fill_holes_up_to(addr_space,
|
|
RANGE_TO_PHYS_ADDR(RANGE_4GB),
|
|
MTRR_TYPE_UNCACHEABLE);
|
|
|
|
printk(BIOS_DEBUG, "MTRR: Physical address space:\n");
|
|
memranges_each_entry(r, addr_space)
|
|
printk(BIOS_DEBUG,
|
|
"0x%016llx - 0x%016llx size 0x%08llx type %ld\n",
|
|
range_entry_base(r), range_entry_end(r),
|
|
range_entry_size(r), range_entry_tag(r));
|
|
}
|
|
|
|
return addr_space;
|
|
}
|
|
|
|
/* Fixed MTRR descriptor. This structure defines the step size and begin
|
|
* and end (exclusive) address covered by a set of fixe MTRR MSRs.
|
|
* It also describes the offset in byte intervals to store the calculated MTRR
|
|
* type in an array. */
|
|
struct fixed_mtrr_desc {
|
|
uint32_t begin;
|
|
uint32_t end;
|
|
uint32_t step;
|
|
int range_index;
|
|
int msr_index_base;
|
|
};
|
|
|
|
/* Shared MTRR calculations. Can be reused by APs. */
|
|
static uint8_t fixed_mtrr_types[NUM_FIXED_RANGES];
|
|
|
|
/* Fixed MTRR descriptors. */
|
|
static const struct fixed_mtrr_desc fixed_mtrr_desc[] = {
|
|
{ PHYS_TO_RANGE_ADDR(0x000000), PHYS_TO_RANGE_ADDR(0x080000),
|
|
PHYS_TO_RANGE_ADDR(64 * 1024), 0, MTRRfix64K_00000_MSR },
|
|
{ PHYS_TO_RANGE_ADDR(0x080000), PHYS_TO_RANGE_ADDR(0x0C0000),
|
|
PHYS_TO_RANGE_ADDR(16 * 1024), 8, MTRRfix16K_80000_MSR },
|
|
{ PHYS_TO_RANGE_ADDR(0x0C0000), PHYS_TO_RANGE_ADDR(0x100000),
|
|
PHYS_TO_RANGE_ADDR(4 * 1024), 24, MTRRfix4K_C0000_MSR },
|
|
};
|
|
|
|
static void calc_fixed_mtrrs(void)
|
|
{
|
|
static int fixed_mtrr_types_initialized;
|
|
struct memranges *phys_addr_space;
|
|
struct range_entry *r;
|
|
const struct fixed_mtrr_desc *desc;
|
|
const struct fixed_mtrr_desc *last_desc;
|
|
uint32_t begin;
|
|
uint32_t end;
|
|
int type_index;
|
|
|
|
if (fixed_mtrr_types_initialized)
|
|
return;
|
|
|
|
phys_addr_space = get_physical_address_space();
|
|
|
|
/* Set all fixed ranges to uncacheable first. */
|
|
memset(&fixed_mtrr_types[0], MTRR_TYPE_UNCACHEABLE, NUM_FIXED_RANGES);
|
|
|
|
desc = &fixed_mtrr_desc[0];
|
|
last_desc = &fixed_mtrr_desc[ARRAY_SIZE(fixed_mtrr_desc) - 1];
|
|
type_index = desc->range_index;
|
|
|
|
memranges_each_entry(r, phys_addr_space) {
|
|
begin = range_entry_base_mtrr_addr(r);
|
|
end = range_entry_end_mtrr_addr(r);
|
|
|
|
if (begin >= last_desc->end)
|
|
break;
|
|
|
|
if (end > last_desc->end)
|
|
end = last_desc->end;
|
|
|
|
/* Get to the correct fixed mtrr descriptor. */
|
|
while (begin >= desc->end)
|
|
desc++;
|
|
|
|
type_index = desc->range_index;
|
|
type_index += (begin - desc->begin) / desc->step;
|
|
|
|
while (begin != end) {
|
|
unsigned char type;
|
|
|
|
type = range_entry_tag(r);
|
|
printk(MTRR_VERBOSE_LEVEL,
|
|
"MTRR addr 0x%x-0x%x set to %d type @ %d\n",
|
|
begin, begin + desc->step, type, type_index);
|
|
if (type == MTRR_TYPE_WRBACK)
|
|
type |= MTRR_FIXED_WRBACK_BITS;
|
|
fixed_mtrr_types[type_index] = type;
|
|
type_index++;
|
|
begin += desc->step;
|
|
if (begin == desc->end)
|
|
desc++;
|
|
}
|
|
}
|
|
fixed_mtrr_types_initialized = 1;
|
|
}
|
|
|
|
static void commit_fixed_mtrrs(void)
|
|
{
|
|
int i;
|
|
int j;
|
|
int msr_num;
|
|
int type_index;
|
|
/* 8 ranges per msr. */
|
|
msr_t fixed_msrs[NUM_FIXED_MTRRS];
|
|
unsigned long msr_index[NUM_FIXED_MTRRS];
|
|
|
|
memset(&fixed_msrs, 0, sizeof(fixed_msrs));
|
|
|
|
disable_cache();
|
|
|
|
msr_num = 0;
|
|
type_index = 0;
|
|
for (i = 0; i < ARRAY_SIZE(fixed_mtrr_desc); i++) {
|
|
const struct fixed_mtrr_desc *desc;
|
|
int num_ranges;
|
|
|
|
desc = &fixed_mtrr_desc[i];
|
|
num_ranges = (desc->end - desc->begin) / desc->step;
|
|
for (j = 0; j < num_ranges; j += RANGES_PER_FIXED_MTRR) {
|
|
msr_index[msr_num] = desc->msr_index_base +
|
|
(j / RANGES_PER_FIXED_MTRR);
|
|
fixed_msrs[msr_num].lo |=
|
|
fixed_mtrr_types[type_index++] << 0;
|
|
fixed_msrs[msr_num].lo |=
|
|
fixed_mtrr_types[type_index++] << 8;
|
|
fixed_msrs[msr_num].lo |=
|
|
fixed_mtrr_types[type_index++] << 16;
|
|
fixed_msrs[msr_num].lo |=
|
|
fixed_mtrr_types[type_index++] << 24;
|
|
fixed_msrs[msr_num].hi |=
|
|
fixed_mtrr_types[type_index++] << 0;
|
|
fixed_msrs[msr_num].hi |=
|
|
fixed_mtrr_types[type_index++] << 8;
|
|
fixed_msrs[msr_num].hi |=
|
|
fixed_mtrr_types[type_index++] << 16;
|
|
fixed_msrs[msr_num].hi |=
|
|
fixed_mtrr_types[type_index++] << 24;
|
|
msr_num++;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(fixed_msrs); i++) {
|
|
printk(BIOS_DEBUG, "MTRR: Fixed MSR 0x%lx 0x%08x%08x\n",
|
|
msr_index[i], fixed_msrs[i].hi, fixed_msrs[i].lo);
|
|
wrmsr(msr_index[i], fixed_msrs[i]);
|
|
}
|
|
|
|
enable_cache();
|
|
}
|
|
|
|
void x86_setup_fixed_mtrrs_no_enable(void)
|
|
{
|
|
calc_fixed_mtrrs();
|
|
commit_fixed_mtrrs();
|
|
}
|
|
|
|
void x86_setup_fixed_mtrrs(void)
|
|
{
|
|
x86_setup_fixed_mtrrs_no_enable();
|
|
|
|
printk(BIOS_SPEW, "call enable_fixed_mtrr()\n");
|
|
enable_fixed_mtrr();
|
|
}
|
|
|
|
/* Keep track of the MTRR that covers the ROM for caching purposes. */
|
|
#if CONFIG_CACHE_ROM
|
|
static long rom_cache_mtrr = -1;
|
|
|
|
void x86_mtrr_enable_rom_caching(void)
|
|
{
|
|
msr_t msr_val;
|
|
unsigned long index;
|
|
|
|
if (rom_cache_mtrr < 0)
|
|
return;
|
|
|
|
index = rom_cache_mtrr;
|
|
disable_cache();
|
|
msr_val = rdmsr(MTRRphysBase_MSR(index));
|
|
msr_val.lo &= ~0xff;
|
|
msr_val.lo |= MTRR_TYPE_WRPROT;
|
|
wrmsr(MTRRphysBase_MSR(index), msr_val);
|
|
enable_cache();
|
|
}
|
|
|
|
void x86_mtrr_disable_rom_caching(void)
|
|
{
|
|
msr_t msr_val;
|
|
unsigned long index;
|
|
|
|
if (rom_cache_mtrr < 0)
|
|
return;
|
|
|
|
index = rom_cache_mtrr;
|
|
disable_cache();
|
|
msr_val = rdmsr(MTRRphysBase_MSR(index));
|
|
msr_val.lo &= ~0xff;
|
|
wrmsr(MTRRphysBase_MSR(index), msr_val);
|
|
enable_cache();
|
|
}
|
|
#endif
|
|
|
|
struct var_mtrr_state {
|
|
struct memranges *addr_space;
|
|
int above4gb;
|
|
int address_bits;
|
|
int commit_mtrrs;
|
|
int mtrr_index;
|
|
int def_mtrr_type;
|
|
};
|
|
|
|
static void clear_var_mtrr(int index)
|
|
{
|
|
msr_t msr_val;
|
|
|
|
msr_val = rdmsr(MTRRphysMask_MSR(index));
|
|
msr_val.lo &= ~MTRRphysMaskValid;
|
|
wrmsr(MTRRphysMask_MSR(index), msr_val);
|
|
}
|
|
|
|
static void write_var_mtrr(struct var_mtrr_state *var_state,
|
|
uint32_t base, uint32_t size, int mtrr_type)
|
|
{
|
|
msr_t msr_val;
|
|
unsigned long msr_index;
|
|
resource_t rbase;
|
|
resource_t rsize;
|
|
resource_t mask;
|
|
|
|
/* Some variable MTRRs are attempted to be saved for the OS use.
|
|
* However, it's more important to try to map the full address space
|
|
* properly. */
|
|
if (var_state->mtrr_index >= bios_mtrrs)
|
|
printk(BIOS_WARNING, "Taking a reserved OS MTRR.\n");
|
|
if (var_state->mtrr_index >= total_mtrrs) {
|
|
printk(BIOS_ERR, "ERROR: Not enough MTTRs available!\n");
|
|
return;
|
|
}
|
|
|
|
rbase = base;
|
|
rsize = size;
|
|
|
|
rbase = RANGE_TO_PHYS_ADDR(rbase);
|
|
rsize = RANGE_TO_PHYS_ADDR(rsize);
|
|
rsize = -rsize;
|
|
|
|
mask = (1ULL << var_state->address_bits) - 1;
|
|
rsize = rsize & mask;
|
|
|
|
#if CONFIG_CACHE_ROM
|
|
/* CONFIG_CACHE_ROM allocates an MTRR specifically for allowing
|
|
* one to turn on caching for faster ROM access. However, it is
|
|
* left to the MTRR callers to enable it. */
|
|
if (mtrr_type == MTRR_TYPE_WRPROT) {
|
|
mtrr_type = MTRR_TYPE_UNCACHEABLE;
|
|
if (rom_cache_mtrr < 0)
|
|
rom_cache_mtrr = var_state->mtrr_index;
|
|
}
|
|
#endif
|
|
|
|
printk(BIOS_DEBUG, "MTRR: %d base 0x%016llx mask 0x%016llx type %d\n",
|
|
var_state->mtrr_index, rbase, rsize, mtrr_type);
|
|
|
|
msr_val.lo = rbase;
|
|
msr_val.lo |= mtrr_type;
|
|
|
|
msr_val.hi = rbase >> 32;
|
|
msr_index = MTRRphysBase_MSR(var_state->mtrr_index);
|
|
wrmsr(msr_index, msr_val);
|
|
|
|
msr_val.lo = rsize;
|
|
msr_val.lo |= MTRRphysMaskValid;
|
|
msr_val.hi = rsize >> 32;
|
|
msr_index = MTRRphysMask_MSR(var_state->mtrr_index);
|
|
wrmsr(msr_index, msr_val);
|
|
}
|
|
|
|
static void calc_var_mtrr_range(struct var_mtrr_state *var_state,
|
|
uint32_t base, uint32_t size, int mtrr_type)
|
|
{
|
|
while (size != 0) {
|
|
uint32_t addr_lsb;
|
|
uint32_t size_msb;
|
|
uint32_t mtrr_size;
|
|
|
|
addr_lsb = fls(base);
|
|
size_msb = fms(size);
|
|
|
|
/* All MTRR entries need to have their base aligned to the mask
|
|
* size. The maximum size is calculated by a function of the
|
|
* min base bit set and maximum size bit set. */
|
|
if (addr_lsb > size_msb)
|
|
mtrr_size = 1 << size_msb;
|
|
else
|
|
mtrr_size = 1 << addr_lsb;
|
|
|
|
if (var_state->commit_mtrrs)
|
|
write_var_mtrr(var_state, base, mtrr_size, mtrr_type);
|
|
|
|
size -= mtrr_size;
|
|
base += mtrr_size;
|
|
var_state->mtrr_index++;
|
|
}
|
|
}
|
|
|
|
static void setup_var_mtrrs_by_state(struct var_mtrr_state *var_state)
|
|
{
|
|
struct range_entry *r;
|
|
|
|
/*
|
|
* For each range that meets the non-default type process it in the
|
|
* following manner:
|
|
* +------------------+ c2 = end
|
|
* | 0 or more bytes |
|
|
* +------------------+ b2 = c1 = ALIGN_DOWN(end)
|
|
* | |
|
|
* +------------------+ b1 = a2 = ALIGN_UP(begin)
|
|
* | 0 or more bytes |
|
|
* +------------------+ a1 = begin
|
|
*
|
|
* Thus, there are 3 sub-ranges to configure variable MTRRs for.
|
|
*/
|
|
memranges_each_entry(r, var_state->addr_space) {
|
|
uint32_t a1, a2, b1, b2, c1, c2;
|
|
int mtrr_type = range_entry_tag(r);
|
|
|
|
/* Skip default type. */
|
|
if (var_state->def_mtrr_type == mtrr_type)
|
|
continue;
|
|
|
|
a1 = range_entry_base_mtrr_addr(r);
|
|
c2 = range_entry_end_mtrr_addr(r);
|
|
|
|
/* The end address is under 1MiB. The fixed MTRRs take
|
|
* precedence over the variable ones. Therefore this range
|
|
* can be ignored. */
|
|
if (c2 < RANGE_1MB)
|
|
continue;
|
|
|
|
/* Again, the fixed MTRRs take precedence so the beginning
|
|
* of the range can be set to 0 if it starts below 1MiB. */
|
|
if (a1 < RANGE_1MB)
|
|
a1 = 0;
|
|
|
|
/* If the range starts above 4GiB the processing is done. */
|
|
if (!var_state->above4gb && a1 >= RANGE_4GB)
|
|
break;
|
|
|
|
/* Clip the upper address to 4GiB if addresses above 4GiB
|
|
* are not being processed. */
|
|
if (!var_state->above4gb && c2 > RANGE_4GB)
|
|
c2 = RANGE_4GB;
|
|
|
|
/* Don't align up or down on the range if it is smaller
|
|
* than the minimum granularity. */
|
|
if ((c2 - a1) < MTRR_MIN_ALIGN) {
|
|
calc_var_mtrr_range(var_state, a1, c2 - a1, mtrr_type);
|
|
continue;
|
|
}
|
|
|
|
b1 = a2 = ALIGN_UP(a1, MTRR_MIN_ALIGN);
|
|
b2 = c1 = ALIGN_DOWN(c2, MTRR_MIN_ALIGN);
|
|
|
|
calc_var_mtrr_range(var_state, a1, a2 - a1, mtrr_type);
|
|
calc_var_mtrr_range(var_state, b1, b2 - b1, mtrr_type);
|
|
calc_var_mtrr_range(var_state, c1, c2 - c1, mtrr_type);
|
|
}
|
|
}
|
|
|
|
static int calc_var_mtrrs(struct memranges *addr_space,
|
|
int above4gb, int address_bits)
|
|
{
|
|
int wb_deftype_count;
|
|
int uc_deftype_count;
|
|
struct var_mtrr_state var_state;
|
|
|
|
/* The default MTRR cacheability type is determined by calculating
|
|
* the number of MTTRs required for each MTTR type as if it was the
|
|
* default. */
|
|
var_state.addr_space = addr_space;
|
|
var_state.above4gb = above4gb;
|
|
var_state.address_bits = address_bits;
|
|
var_state.commit_mtrrs = 0;
|
|
|
|
var_state.mtrr_index = 0;
|
|
var_state.def_mtrr_type = MTRR_TYPE_WRBACK;
|
|
setup_var_mtrrs_by_state(&var_state);
|
|
wb_deftype_count = var_state.mtrr_index;
|
|
|
|
var_state.mtrr_index = 0;
|
|
var_state.def_mtrr_type = MTRR_TYPE_UNCACHEABLE;
|
|
setup_var_mtrrs_by_state(&var_state);
|
|
uc_deftype_count = var_state.mtrr_index;
|
|
|
|
printk(BIOS_DEBUG, "MTRR: default type WB/UC MTRR counts: %d/%d.\n",
|
|
wb_deftype_count, uc_deftype_count);
|
|
|
|
if (wb_deftype_count < uc_deftype_count) {
|
|
printk(BIOS_DEBUG, "MTRR: WB selected as default type.\n");
|
|
return MTRR_TYPE_WRBACK;
|
|
}
|
|
printk(BIOS_DEBUG, "MTRR: UC selected as default type.\n");
|
|
return MTRR_TYPE_UNCACHEABLE;
|
|
}
|
|
|
|
static void commit_var_mtrrs(struct memranges *addr_space, int def_type,
|
|
int above4gb, int address_bits)
|
|
{
|
|
struct var_mtrr_state var_state;
|
|
int i;
|
|
|
|
var_state.addr_space = addr_space;
|
|
var_state.above4gb = above4gb;
|
|
var_state.address_bits = address_bits;
|
|
/* Write the MSRs. */
|
|
var_state.commit_mtrrs = 1;
|
|
var_state.mtrr_index = 0;
|
|
var_state.def_mtrr_type = def_type;
|
|
setup_var_mtrrs_by_state(&var_state);
|
|
|
|
/* Clear all remaining variable MTTRs. */
|
|
for (i = var_state.mtrr_index; i < total_mtrrs; i++)
|
|
clear_var_mtrr(i);
|
|
}
|
|
|
|
void x86_setup_var_mtrrs(unsigned int address_bits, unsigned int above4gb)
|
|
{
|
|
static int mtrr_default_type = -1;
|
|
struct memranges *addr_space;
|
|
|
|
addr_space = get_physical_address_space();
|
|
|
|
if (mtrr_default_type == -1) {
|
|
if (above4gb == 2)
|
|
detect_var_mtrrs();
|
|
mtrr_default_type =
|
|
calc_var_mtrrs(addr_space, !!above4gb, address_bits);
|
|
}
|
|
|
|
disable_cache();
|
|
commit_var_mtrrs(addr_space, mtrr_default_type, !!above4gb,
|
|
address_bits);
|
|
enable_var_mtrr(mtrr_default_type);
|
|
enable_cache();
|
|
}
|
|
|
|
void x86_setup_mtrrs(void)
|
|
{
|
|
int address_size;
|
|
x86_setup_fixed_mtrrs();
|
|
address_size = cpu_phys_address_size();
|
|
printk(BIOS_DEBUG, "CPU physical address size: %d bits\n", address_size);
|
|
x86_setup_var_mtrrs(address_size, 1);
|
|
}
|
|
|
|
int x86_mtrr_check(void)
|
|
{
|
|
/* Only Pentium Pro and later have MTRR */
|
|
msr_t msr;
|
|
printk(BIOS_DEBUG, "\nMTRR check\n");
|
|
|
|
msr = rdmsr(0x2ff);
|
|
msr.lo >>= 10;
|
|
|
|
printk(BIOS_DEBUG, "Fixed MTRRs : ");
|
|
if (msr.lo & 0x01)
|
|
printk(BIOS_DEBUG, "Enabled\n");
|
|
else
|
|
printk(BIOS_DEBUG, "Disabled\n");
|
|
|
|
printk(BIOS_DEBUG, "Variable MTRRs: ");
|
|
if (msr.lo & 0x02)
|
|
printk(BIOS_DEBUG, "Enabled\n");
|
|
else
|
|
printk(BIOS_DEBUG, "Disabled\n");
|
|
|
|
printk(BIOS_DEBUG, "\n");
|
|
|
|
post_code(0x93);
|
|
return ((int) msr.lo);
|
|
}
|