Change-Id: I6967a106ce1286d633ddeeb041f582e65f9ea78c Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/28208 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net> Reviewed-by: Martin Roth <martinroth@google.com>
		
			
				
	
	
		
			963 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			963 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
xxHash - Fast Hash algorithm
 | 
						|
Copyright (C) 2012-2015, Yann Collet
 | 
						|
 | 
						|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
 | 
						|
 | 
						|
Redistribution and use in source and binary forms, with or without
 | 
						|
modification, are permitted provided that the following conditions are
 | 
						|
met:
 | 
						|
 | 
						|
* Redistributions of source code must retain the above copyright
 | 
						|
notice, this list of conditions and the following disclaimer.
 | 
						|
* Redistributions in binary form must reproduce the above
 | 
						|
copyright notice, this list of conditions and the following disclaimer
 | 
						|
in the documentation and/or other materials provided with the
 | 
						|
distribution.
 | 
						|
 | 
						|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 | 
						|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 | 
						|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 | 
						|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 | 
						|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 | 
						|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | 
						|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 | 
						|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 | 
						|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
						|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
You can contact the author at :
 | 
						|
- xxHash source repository : https://github.com/Cyan4973/xxHash
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
/**************************************
 | 
						|
*  Tuning parameters
 | 
						|
**************************************/
 | 
						|
/* XXH_FORCE_MEMORY_ACCESS
 | 
						|
 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
 | 
						|
 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
 | 
						|
 * The below switch allow to select different access method for improved performance.
 | 
						|
 * Method 0 (default) : use `memcpy()`. Safe and portable.
 | 
						|
 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
 | 
						|
 *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
 | 
						|
 * Method 2 : direct access. This method is portable but violate C standard.
 | 
						|
 *            It can generate buggy code on targets which generate assembly depending on alignment.
 | 
						|
 *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
 | 
						|
 * See http://stackoverflow.com/a/32095106/646947 for details.
 | 
						|
 * Prefer these methods in priority order (0 > 1 > 2)
 | 
						|
 */
 | 
						|
#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
 | 
						|
#  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
 | 
						|
#    define XXH_FORCE_MEMORY_ACCESS 2
 | 
						|
#  elif defined(__INTEL_COMPILER) || \
 | 
						|
  (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
 | 
						|
#    define XXH_FORCE_MEMORY_ACCESS 1
 | 
						|
#  endif
 | 
						|
#endif
 | 
						|
 | 
						|
/* XXH_ACCEPT_NULL_INPUT_POINTER :
 | 
						|
 * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
 | 
						|
 * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
 | 
						|
 * By default, this option is disabled. To enable it, uncomment below define :
 | 
						|
 */
 | 
						|
/* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
 | 
						|
 | 
						|
/* XXH_FORCE_NATIVE_FORMAT :
 | 
						|
 * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
 | 
						|
 * Results are therefore identical for little-endian and big-endian CPU.
 | 
						|
 * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
 | 
						|
 * Should endian-independance be of no importance for your application, you may set the #define below to 1,
 | 
						|
 * to improve speed for Big-endian CPU.
 | 
						|
 * This option has no impact on Little_Endian CPU.
 | 
						|
 */
 | 
						|
#define XXH_FORCE_NATIVE_FORMAT 0
 | 
						|
 | 
						|
/* XXH_USELESS_ALIGN_BRANCH :
 | 
						|
 * This is a minor performance trick, only useful with lots of very small keys.
 | 
						|
 * It means : don't make a test between aligned/unaligned, because performance will be the same.
 | 
						|
 * It saves one initial branch per hash.
 | 
						|
 */
 | 
						|
#if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
 | 
						|
#  define XXH_USELESS_ALIGN_BRANCH 1
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/**************************************
 | 
						|
*  Compiler Specific Options
 | 
						|
***************************************/
 | 
						|
#ifdef _MSC_VER    /* Visual Studio */
 | 
						|
#  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
 | 
						|
#  define FORCE_INLINE static __forceinline
 | 
						|
#else
 | 
						|
#  if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
 | 
						|
#    ifdef __GNUC__
 | 
						|
#      define FORCE_INLINE static inline __attribute__((always_inline))
 | 
						|
#    else
 | 
						|
#      define FORCE_INLINE static inline
 | 
						|
#    endif
 | 
						|
#  else
 | 
						|
#    define FORCE_INLINE static
 | 
						|
#  endif /* __STDC_VERSION__ */
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/**************************************
 | 
						|
*  Includes & Memory related functions
 | 
						|
***************************************/
 | 
						|
#include "xxhash.h"
 | 
						|
/* Modify the local functions below should you wish to use some other memory routines */
 | 
						|
/* for malloc(), free() */
 | 
						|
#include <stdlib.h>
 | 
						|
static void* XXH_malloc(size_t s) { return malloc(s); }
 | 
						|
static void  XXH_free  (void* p)  { free(p); }
 | 
						|
/* for memcpy() */
 | 
						|
#include <string.h>
 | 
						|
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
 | 
						|
 | 
						|
 | 
						|
/**************************************
 | 
						|
*  Basic Types
 | 
						|
***************************************/
 | 
						|
#if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
 | 
						|
# include <stdint.h>
 | 
						|
  typedef uint8_t  BYTE;
 | 
						|
  typedef uint16_t U16;
 | 
						|
  typedef uint32_t U32;
 | 
						|
  typedef  int32_t S32;
 | 
						|
  typedef uint64_t U64;
 | 
						|
#else
 | 
						|
  typedef unsigned char      BYTE;
 | 
						|
  typedef unsigned short     U16;
 | 
						|
  typedef unsigned int       U32;
 | 
						|
  typedef   signed int       S32;
 | 
						|
  typedef unsigned long long U64;
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
 | 
						|
 | 
						|
/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
 | 
						|
static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
 | 
						|
static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
 | 
						|
 | 
						|
#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
 | 
						|
 | 
						|
/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
 | 
						|
/* currently only defined for gcc and icc */
 | 
						|
typedef union { U32 u32; U64 u64; } __packed unalign;
 | 
						|
 | 
						|
static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
 | 
						|
static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
/* portable and safe solution. Generally efficient.
 | 
						|
 * see : http://stackoverflow.com/a/32095106/646947
 | 
						|
 */
 | 
						|
 | 
						|
static U32 XXH_read32(const void* memPtr)
 | 
						|
{
 | 
						|
    U32 val;
 | 
						|
    memcpy(&val, memPtr, sizeof(val));
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static U64 XXH_read64(const void* memPtr)
 | 
						|
{
 | 
						|
    U64 val;
 | 
						|
    memcpy(&val, memPtr, sizeof(val));
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
#endif // XXH_FORCE_DIRECT_MEMORY_ACCESS
 | 
						|
 | 
						|
 | 
						|
/******************************************
 | 
						|
*  Compiler-specific Functions and Macros
 | 
						|
******************************************/
 | 
						|
#define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
 | 
						|
 | 
						|
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
 | 
						|
#if defined(_MSC_VER)
 | 
						|
#  define XXH_rotl32(x,r) _rotl(x,r)
 | 
						|
#  define XXH_rotl64(x,r) _rotl64(x,r)
 | 
						|
#else
 | 
						|
#  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
 | 
						|
#  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(_MSC_VER)     /* Visual Studio */
 | 
						|
#  define XXH_swap32 _byteswap_ulong
 | 
						|
#  define XXH_swap64 _byteswap_uint64
 | 
						|
#elif GCC_VERSION >= 403
 | 
						|
#  define XXH_swap32 __builtin_bswap32
 | 
						|
#  define XXH_swap64 __builtin_bswap64
 | 
						|
#else
 | 
						|
static U32 XXH_swap32 (U32 x)
 | 
						|
{
 | 
						|
    return  ((x << 24) & 0xff000000 ) |
 | 
						|
            ((x <<  8) & 0x00ff0000 ) |
 | 
						|
            ((x >>  8) & 0x0000ff00 ) |
 | 
						|
            ((x >> 24) & 0x000000ff );
 | 
						|
}
 | 
						|
static U64 XXH_swap64 (U64 x)
 | 
						|
{
 | 
						|
    return  ((x << 56) & 0xff00000000000000ULL) |
 | 
						|
            ((x << 40) & 0x00ff000000000000ULL) |
 | 
						|
            ((x << 24) & 0x0000ff0000000000ULL) |
 | 
						|
            ((x << 8)  & 0x000000ff00000000ULL) |
 | 
						|
            ((x >> 8)  & 0x00000000ff000000ULL) |
 | 
						|
            ((x >> 24) & 0x0000000000ff0000ULL) |
 | 
						|
            ((x >> 40) & 0x000000000000ff00ULL) |
 | 
						|
            ((x >> 56) & 0x00000000000000ffULL);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/***************************************
 | 
						|
*  Architecture Macros
 | 
						|
***************************************/
 | 
						|
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianness;
 | 
						|
 | 
						|
/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example one the compiler command line */
 | 
						|
#ifndef XXH_CPU_LITTLE_ENDIAN
 | 
						|
    static const int one = 1;
 | 
						|
#   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&one))
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*****************************
 | 
						|
*  Memory reads
 | 
						|
*****************************/
 | 
						|
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
 | 
						|
 | 
						|
FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianness endian, XXH_alignment align)
 | 
						|
{
 | 
						|
    if (align==XXH_unaligned)
 | 
						|
        return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
 | 
						|
    else
 | 
						|
        return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
 | 
						|
}
 | 
						|
 | 
						|
FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianness endian)
 | 
						|
{
 | 
						|
    return XXH_readLE32_align(ptr, endian, XXH_unaligned);
 | 
						|
}
 | 
						|
 | 
						|
FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianness endian, XXH_alignment align)
 | 
						|
{
 | 
						|
    if (align==XXH_unaligned)
 | 
						|
        return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
 | 
						|
    else
 | 
						|
        return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
 | 
						|
}
 | 
						|
 | 
						|
FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianness endian)
 | 
						|
{
 | 
						|
    return XXH_readLE64_align(ptr, endian, XXH_unaligned);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/***************************************
 | 
						|
*  Macros
 | 
						|
***************************************/
 | 
						|
#define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(!!(c)) }; }    /* use only *after* variable declarations */
 | 
						|
 | 
						|
 | 
						|
/***************************************
 | 
						|
*  Constants
 | 
						|
***************************************/
 | 
						|
#define PRIME32_1   2654435761U
 | 
						|
#define PRIME32_2   2246822519U
 | 
						|
#define PRIME32_3   3266489917U
 | 
						|
#define PRIME32_4    668265263U
 | 
						|
#define PRIME32_5    374761393U
 | 
						|
 | 
						|
#define PRIME64_1 11400714785074694791ULL
 | 
						|
#define PRIME64_2 14029467366897019727ULL
 | 
						|
#define PRIME64_3  1609587929392839161ULL
 | 
						|
#define PRIME64_4  9650029242287828579ULL
 | 
						|
#define PRIME64_5  2870177450012600261ULL
 | 
						|
 | 
						|
 | 
						|
/*****************************
 | 
						|
*  Simple Hash Functions
 | 
						|
*****************************/
 | 
						|
FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianness endian, XXH_alignment align)
 | 
						|
{
 | 
						|
    const BYTE* p = (const BYTE*)input;
 | 
						|
    const BYTE* bEnd = p + len;
 | 
						|
    U32 h32;
 | 
						|
#define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
 | 
						|
 | 
						|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | 
						|
    if (p==NULL)
 | 
						|
    {
 | 
						|
        len=0;
 | 
						|
        bEnd=p=(const BYTE*)(size_t)16;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    if (len>=16)
 | 
						|
    {
 | 
						|
        const BYTE* const limit = bEnd - 16;
 | 
						|
        U32 v1 = seed + PRIME32_1 + PRIME32_2;
 | 
						|
        U32 v2 = seed + PRIME32_2;
 | 
						|
        U32 v3 = seed + 0;
 | 
						|
        U32 v4 = seed - PRIME32_1;
 | 
						|
 | 
						|
        do
 | 
						|
        {
 | 
						|
            v1 += XXH_get32bits(p) * PRIME32_2;
 | 
						|
            v1 = XXH_rotl32(v1, 13);
 | 
						|
            v1 *= PRIME32_1;
 | 
						|
            p+=4;
 | 
						|
            v2 += XXH_get32bits(p) * PRIME32_2;
 | 
						|
            v2 = XXH_rotl32(v2, 13);
 | 
						|
            v2 *= PRIME32_1;
 | 
						|
            p+=4;
 | 
						|
            v3 += XXH_get32bits(p) * PRIME32_2;
 | 
						|
            v3 = XXH_rotl32(v3, 13);
 | 
						|
            v3 *= PRIME32_1;
 | 
						|
            p+=4;
 | 
						|
            v4 += XXH_get32bits(p) * PRIME32_2;
 | 
						|
            v4 = XXH_rotl32(v4, 13);
 | 
						|
            v4 *= PRIME32_1;
 | 
						|
            p+=4;
 | 
						|
        }
 | 
						|
        while (p<=limit);
 | 
						|
 | 
						|
        h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        h32  = seed + PRIME32_5;
 | 
						|
    }
 | 
						|
 | 
						|
    h32 += (U32) len;
 | 
						|
 | 
						|
    while (p+4<=bEnd)
 | 
						|
    {
 | 
						|
        h32 += XXH_get32bits(p) * PRIME32_3;
 | 
						|
        h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
 | 
						|
        p+=4;
 | 
						|
    }
 | 
						|
 | 
						|
    while (p<bEnd)
 | 
						|
    {
 | 
						|
        h32 += (*p) * PRIME32_5;
 | 
						|
        h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
 | 
						|
    h32 ^= h32 >> 15;
 | 
						|
    h32 *= PRIME32_2;
 | 
						|
    h32 ^= h32 >> 13;
 | 
						|
    h32 *= PRIME32_3;
 | 
						|
    h32 ^= h32 >> 16;
 | 
						|
 | 
						|
    return h32;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
 | 
						|
{
 | 
						|
#if 0
 | 
						|
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
 | 
						|
    XXH32_state_t state;
 | 
						|
    XXH32_reset(&state, seed);
 | 
						|
    XXH32_update(&state, input, len);
 | 
						|
    return XXH32_digest(&state);
 | 
						|
#else
 | 
						|
    XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | 
						|
 | 
						|
#  if !defined(XXH_USELESS_ALIGN_BRANCH)
 | 
						|
    if ((((size_t)input) & 3) == 0)   /* Input is 4-bytes aligned, leverage the speed benefit */
 | 
						|
    {
 | 
						|
        if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | 
						|
            return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
 | 
						|
        else
 | 
						|
            return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
 | 
						|
    }
 | 
						|
#  endif
 | 
						|
 | 
						|
    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | 
						|
        return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
 | 
						|
    else
 | 
						|
        return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianness endian, XXH_alignment align)
 | 
						|
{
 | 
						|
    const BYTE* p = (const BYTE*)input;
 | 
						|
    const BYTE* bEnd = p + len;
 | 
						|
    U64 h64;
 | 
						|
#define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
 | 
						|
 | 
						|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | 
						|
    if (p==NULL)
 | 
						|
    {
 | 
						|
        len=0;
 | 
						|
        bEnd=p=(const BYTE*)(size_t)32;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
 | 
						|
    if (len>=32)
 | 
						|
    {
 | 
						|
        const BYTE* const limit = bEnd - 32;
 | 
						|
        U64 v1 = seed + PRIME64_1 + PRIME64_2;
 | 
						|
        U64 v2 = seed + PRIME64_2;
 | 
						|
        U64 v3 = seed + 0;
 | 
						|
        U64 v4 = seed - PRIME64_1;
 | 
						|
 | 
						|
        do
 | 
						|
        {
 | 
						|
            v1 += XXH_get64bits(p) * PRIME64_2;
 | 
						|
            p+=8;
 | 
						|
            v1 = XXH_rotl64(v1, 31);
 | 
						|
            v1 *= PRIME64_1;
 | 
						|
            v2 += XXH_get64bits(p) * PRIME64_2;
 | 
						|
            p+=8;
 | 
						|
            v2 = XXH_rotl64(v2, 31);
 | 
						|
            v2 *= PRIME64_1;
 | 
						|
            v3 += XXH_get64bits(p) * PRIME64_2;
 | 
						|
            p+=8;
 | 
						|
            v3 = XXH_rotl64(v3, 31);
 | 
						|
            v3 *= PRIME64_1;
 | 
						|
            v4 += XXH_get64bits(p) * PRIME64_2;
 | 
						|
            p+=8;
 | 
						|
            v4 = XXH_rotl64(v4, 31);
 | 
						|
            v4 *= PRIME64_1;
 | 
						|
        }
 | 
						|
        while (p<=limit);
 | 
						|
 | 
						|
        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
 | 
						|
 | 
						|
        v1 *= PRIME64_2;
 | 
						|
        v1 = XXH_rotl64(v1, 31);
 | 
						|
        v1 *= PRIME64_1;
 | 
						|
        h64 ^= v1;
 | 
						|
        h64 = h64 * PRIME64_1 + PRIME64_4;
 | 
						|
 | 
						|
        v2 *= PRIME64_2;
 | 
						|
        v2 = XXH_rotl64(v2, 31);
 | 
						|
        v2 *= PRIME64_1;
 | 
						|
        h64 ^= v2;
 | 
						|
        h64 = h64 * PRIME64_1 + PRIME64_4;
 | 
						|
 | 
						|
        v3 *= PRIME64_2;
 | 
						|
        v3 = XXH_rotl64(v3, 31);
 | 
						|
        v3 *= PRIME64_1;
 | 
						|
        h64 ^= v3;
 | 
						|
        h64 = h64 * PRIME64_1 + PRIME64_4;
 | 
						|
 | 
						|
        v4 *= PRIME64_2;
 | 
						|
        v4 = XXH_rotl64(v4, 31);
 | 
						|
        v4 *= PRIME64_1;
 | 
						|
        h64 ^= v4;
 | 
						|
        h64 = h64 * PRIME64_1 + PRIME64_4;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        h64  = seed + PRIME64_5;
 | 
						|
    }
 | 
						|
 | 
						|
    h64 += (U64) len;
 | 
						|
 | 
						|
    while (p+8<=bEnd)
 | 
						|
    {
 | 
						|
        U64 k1 = XXH_get64bits(p);
 | 
						|
        k1 *= PRIME64_2;
 | 
						|
        k1 = XXH_rotl64(k1,31);
 | 
						|
        k1 *= PRIME64_1;
 | 
						|
        h64 ^= k1;
 | 
						|
        h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
 | 
						|
        p+=8;
 | 
						|
    }
 | 
						|
 | 
						|
    if (p+4<=bEnd)
 | 
						|
    {
 | 
						|
        h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
 | 
						|
        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
 | 
						|
        p+=4;
 | 
						|
    }
 | 
						|
 | 
						|
    while (p<bEnd)
 | 
						|
    {
 | 
						|
        h64 ^= (*p) * PRIME64_5;
 | 
						|
        h64 = XXH_rotl64(h64, 11) * PRIME64_1;
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
 | 
						|
    h64 ^= h64 >> 33;
 | 
						|
    h64 *= PRIME64_2;
 | 
						|
    h64 ^= h64 >> 29;
 | 
						|
    h64 *= PRIME64_3;
 | 
						|
    h64 ^= h64 >> 32;
 | 
						|
 | 
						|
    return h64;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
 | 
						|
{
 | 
						|
#if 0
 | 
						|
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
 | 
						|
    XXH64_state_t state;
 | 
						|
    XXH64_reset(&state, seed);
 | 
						|
    XXH64_update(&state, input, len);
 | 
						|
    return XXH64_digest(&state);
 | 
						|
#else
 | 
						|
    XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | 
						|
 | 
						|
#  if !defined(XXH_USELESS_ALIGN_BRANCH)
 | 
						|
    if ((((size_t)input) & 7)==0)   /* Input is aligned, let's leverage the speed advantage */
 | 
						|
    {
 | 
						|
        if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | 
						|
            return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
 | 
						|
        else
 | 
						|
            return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
 | 
						|
    }
 | 
						|
#  endif
 | 
						|
 | 
						|
    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | 
						|
        return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
 | 
						|
    else
 | 
						|
        return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/****************************************************
 | 
						|
*  Advanced Hash Functions
 | 
						|
****************************************************/
 | 
						|
 | 
						|
/*** Allocation ***/
 | 
						|
typedef struct
 | 
						|
{
 | 
						|
    U64 total_len;
 | 
						|
    U32 seed;
 | 
						|
    U32 v1;
 | 
						|
    U32 v2;
 | 
						|
    U32 v3;
 | 
						|
    U32 v4;
 | 
						|
    U32 mem32[4];   /* defined as U32 for alignment */
 | 
						|
    U32 memsize;
 | 
						|
} XXH_istate32_t;
 | 
						|
 | 
						|
typedef struct
 | 
						|
{
 | 
						|
    U64 total_len;
 | 
						|
    U64 seed;
 | 
						|
    U64 v1;
 | 
						|
    U64 v2;
 | 
						|
    U64 v3;
 | 
						|
    U64 v4;
 | 
						|
    U64 mem64[4];   /* defined as U64 for alignment */
 | 
						|
    U32 memsize;
 | 
						|
} XXH_istate64_t;
 | 
						|
 | 
						|
 | 
						|
XXH32_state_t* XXH32_createState(void)
 | 
						|
{
 | 
						|
    XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t));   /* A compilation error here means XXH32_state_t is not large enough */
 | 
						|
    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
 | 
						|
}
 | 
						|
XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
 | 
						|
{
 | 
						|
    XXH_free(statePtr);
 | 
						|
    return XXH_OK;
 | 
						|
}
 | 
						|
 | 
						|
XXH64_state_t* XXH64_createState(void)
 | 
						|
{
 | 
						|
    XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t));   /* A compilation error here means XXH64_state_t is not large enough */
 | 
						|
    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
 | 
						|
}
 | 
						|
XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
 | 
						|
{
 | 
						|
    XXH_free(statePtr);
 | 
						|
    return XXH_OK;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*** Hash feed ***/
 | 
						|
 | 
						|
XXH_errorcode XXH32_reset(XXH32_state_t* state_in, unsigned int seed)
 | 
						|
{
 | 
						|
    XXH_istate32_t* state = (XXH_istate32_t*) state_in;
 | 
						|
    state->seed = seed;
 | 
						|
    state->v1 = seed + PRIME32_1 + PRIME32_2;
 | 
						|
    state->v2 = seed + PRIME32_2;
 | 
						|
    state->v3 = seed + 0;
 | 
						|
    state->v4 = seed - PRIME32_1;
 | 
						|
    state->total_len = 0;
 | 
						|
    state->memsize = 0;
 | 
						|
    return XXH_OK;
 | 
						|
}
 | 
						|
 | 
						|
XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed)
 | 
						|
{
 | 
						|
    XXH_istate64_t* state = (XXH_istate64_t*) state_in;
 | 
						|
    state->seed = seed;
 | 
						|
    state->v1 = seed + PRIME64_1 + PRIME64_2;
 | 
						|
    state->v2 = seed + PRIME64_2;
 | 
						|
    state->v3 = seed + 0;
 | 
						|
    state->v4 = seed - PRIME64_1;
 | 
						|
    state->total_len = 0;
 | 
						|
    state->memsize = 0;
 | 
						|
    return XXH_OK;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianness endian)
 | 
						|
{
 | 
						|
    XXH_istate32_t* state = (XXH_istate32_t *) state_in;
 | 
						|
    const BYTE* p = (const BYTE*)input;
 | 
						|
    const BYTE* const bEnd = p + len;
 | 
						|
 | 
						|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | 
						|
    if (input==NULL) return XXH_ERROR;
 | 
						|
#endif
 | 
						|
 | 
						|
    state->total_len += len;
 | 
						|
 | 
						|
    if (state->memsize + len < 16)   /* fill in tmp buffer */
 | 
						|
    {
 | 
						|
        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
 | 
						|
        state->memsize += (U32)len;
 | 
						|
        return XXH_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    if (state->memsize)   /* some data left from previous update */
 | 
						|
    {
 | 
						|
        XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
 | 
						|
        {
 | 
						|
            const U32* p32 = state->mem32;
 | 
						|
            state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
 | 
						|
            state->v1 = XXH_rotl32(state->v1, 13);
 | 
						|
            state->v1 *= PRIME32_1;
 | 
						|
            p32++;
 | 
						|
            state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
 | 
						|
            state->v2 = XXH_rotl32(state->v2, 13);
 | 
						|
            state->v2 *= PRIME32_1;
 | 
						|
            p32++;
 | 
						|
            state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
 | 
						|
            state->v3 = XXH_rotl32(state->v3, 13);
 | 
						|
            state->v3 *= PRIME32_1;
 | 
						|
            p32++;
 | 
						|
            state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
 | 
						|
            state->v4 = XXH_rotl32(state->v4, 13);
 | 
						|
            state->v4 *= PRIME32_1;
 | 
						|
            p32++;
 | 
						|
        }
 | 
						|
        p += 16-state->memsize;
 | 
						|
        state->memsize = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (p <= bEnd-16)
 | 
						|
    {
 | 
						|
        const BYTE* const limit = bEnd - 16;
 | 
						|
        U32 v1 = state->v1;
 | 
						|
        U32 v2 = state->v2;
 | 
						|
        U32 v3 = state->v3;
 | 
						|
        U32 v4 = state->v4;
 | 
						|
 | 
						|
        do
 | 
						|
        {
 | 
						|
            v1 += XXH_readLE32(p, endian) * PRIME32_2;
 | 
						|
            v1 = XXH_rotl32(v1, 13);
 | 
						|
            v1 *= PRIME32_1;
 | 
						|
            p+=4;
 | 
						|
            v2 += XXH_readLE32(p, endian) * PRIME32_2;
 | 
						|
            v2 = XXH_rotl32(v2, 13);
 | 
						|
            v2 *= PRIME32_1;
 | 
						|
            p+=4;
 | 
						|
            v3 += XXH_readLE32(p, endian) * PRIME32_2;
 | 
						|
            v3 = XXH_rotl32(v3, 13);
 | 
						|
            v3 *= PRIME32_1;
 | 
						|
            p+=4;
 | 
						|
            v4 += XXH_readLE32(p, endian) * PRIME32_2;
 | 
						|
            v4 = XXH_rotl32(v4, 13);
 | 
						|
            v4 *= PRIME32_1;
 | 
						|
            p+=4;
 | 
						|
        }
 | 
						|
        while (p<=limit);
 | 
						|
 | 
						|
        state->v1 = v1;
 | 
						|
        state->v2 = v2;
 | 
						|
        state->v3 = v3;
 | 
						|
        state->v4 = v4;
 | 
						|
    }
 | 
						|
 | 
						|
    if (p < bEnd)
 | 
						|
    {
 | 
						|
        XXH_memcpy(state->mem32, p, bEnd-p);
 | 
						|
        state->memsize = (int)(bEnd-p);
 | 
						|
    }
 | 
						|
 | 
						|
    return XXH_OK;
 | 
						|
}
 | 
						|
 | 
						|
XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
 | 
						|
{
 | 
						|
    XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | 
						|
 | 
						|
    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | 
						|
        return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
 | 
						|
    else
 | 
						|
        return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianness endian)
 | 
						|
{
 | 
						|
    const XXH_istate32_t* state = (const XXH_istate32_t*) state_in;
 | 
						|
    const BYTE * p = (const BYTE*)state->mem32;
 | 
						|
    const BYTE* bEnd = (const BYTE*)(state->mem32) + state->memsize;
 | 
						|
    U32 h32;
 | 
						|
 | 
						|
    if (state->total_len >= 16)
 | 
						|
    {
 | 
						|
        h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        h32  = state->seed + PRIME32_5;
 | 
						|
    }
 | 
						|
 | 
						|
    h32 += (U32) state->total_len;
 | 
						|
 | 
						|
    while (p+4<=bEnd)
 | 
						|
    {
 | 
						|
        h32 += XXH_readLE32(p, endian) * PRIME32_3;
 | 
						|
        h32  = XXH_rotl32(h32, 17) * PRIME32_4;
 | 
						|
        p+=4;
 | 
						|
    }
 | 
						|
 | 
						|
    while (p<bEnd)
 | 
						|
    {
 | 
						|
        h32 += (*p) * PRIME32_5;
 | 
						|
        h32 = XXH_rotl32(h32, 11) * PRIME32_1;
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
 | 
						|
    h32 ^= h32 >> 15;
 | 
						|
    h32 *= PRIME32_2;
 | 
						|
    h32 ^= h32 >> 13;
 | 
						|
    h32 *= PRIME32_3;
 | 
						|
    h32 ^= h32 >> 16;
 | 
						|
 | 
						|
    return h32;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned int XXH32_digest (const XXH32_state_t* state_in)
 | 
						|
{
 | 
						|
    XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | 
						|
 | 
						|
    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | 
						|
        return XXH32_digest_endian(state_in, XXH_littleEndian);
 | 
						|
    else
 | 
						|
        return XXH32_digest_endian(state_in, XXH_bigEndian);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianness endian)
 | 
						|
{
 | 
						|
    XXH_istate64_t * state = (XXH_istate64_t *) state_in;
 | 
						|
    const BYTE* p = (const BYTE*)input;
 | 
						|
    const BYTE* const bEnd = p + len;
 | 
						|
 | 
						|
#ifdef XXH_ACCEPT_NULL_INPUT_POINTER
 | 
						|
    if (input==NULL) return XXH_ERROR;
 | 
						|
#endif
 | 
						|
 | 
						|
    state->total_len += len;
 | 
						|
 | 
						|
    if (state->memsize + len < 32)   /* fill in tmp buffer */
 | 
						|
    {
 | 
						|
        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
 | 
						|
        state->memsize += (U32)len;
 | 
						|
        return XXH_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    if (state->memsize)   /* some data left from previous update */
 | 
						|
    {
 | 
						|
        XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
 | 
						|
        {
 | 
						|
            const U64* p64 = state->mem64;
 | 
						|
            state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
 | 
						|
            state->v1 = XXH_rotl64(state->v1, 31);
 | 
						|
            state->v1 *= PRIME64_1;
 | 
						|
            p64++;
 | 
						|
            state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
 | 
						|
            state->v2 = XXH_rotl64(state->v2, 31);
 | 
						|
            state->v2 *= PRIME64_1;
 | 
						|
            p64++;
 | 
						|
            state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
 | 
						|
            state->v3 = XXH_rotl64(state->v3, 31);
 | 
						|
            state->v3 *= PRIME64_1;
 | 
						|
            p64++;
 | 
						|
            state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
 | 
						|
            state->v4 = XXH_rotl64(state->v4, 31);
 | 
						|
            state->v4 *= PRIME64_1;
 | 
						|
            p64++;
 | 
						|
        }
 | 
						|
        p += 32-state->memsize;
 | 
						|
        state->memsize = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (p+32 <= bEnd)
 | 
						|
    {
 | 
						|
        const BYTE* const limit = bEnd - 32;
 | 
						|
        U64 v1 = state->v1;
 | 
						|
        U64 v2 = state->v2;
 | 
						|
        U64 v3 = state->v3;
 | 
						|
        U64 v4 = state->v4;
 | 
						|
 | 
						|
        do
 | 
						|
        {
 | 
						|
            v1 += XXH_readLE64(p, endian) * PRIME64_2;
 | 
						|
            v1 = XXH_rotl64(v1, 31);
 | 
						|
            v1 *= PRIME64_1;
 | 
						|
            p+=8;
 | 
						|
            v2 += XXH_readLE64(p, endian) * PRIME64_2;
 | 
						|
            v2 = XXH_rotl64(v2, 31);
 | 
						|
            v2 *= PRIME64_1;
 | 
						|
            p+=8;
 | 
						|
            v3 += XXH_readLE64(p, endian) * PRIME64_2;
 | 
						|
            v3 = XXH_rotl64(v3, 31);
 | 
						|
            v3 *= PRIME64_1;
 | 
						|
            p+=8;
 | 
						|
            v4 += XXH_readLE64(p, endian) * PRIME64_2;
 | 
						|
            v4 = XXH_rotl64(v4, 31);
 | 
						|
            v4 *= PRIME64_1;
 | 
						|
            p+=8;
 | 
						|
        }
 | 
						|
        while (p<=limit);
 | 
						|
 | 
						|
        state->v1 = v1;
 | 
						|
        state->v2 = v2;
 | 
						|
        state->v3 = v3;
 | 
						|
        state->v4 = v4;
 | 
						|
    }
 | 
						|
 | 
						|
    if (p < bEnd)
 | 
						|
    {
 | 
						|
        XXH_memcpy(state->mem64, p, bEnd-p);
 | 
						|
        state->memsize = (int)(bEnd-p);
 | 
						|
    }
 | 
						|
 | 
						|
    return XXH_OK;
 | 
						|
}
 | 
						|
 | 
						|
XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
 | 
						|
{
 | 
						|
    XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | 
						|
 | 
						|
    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | 
						|
        return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
 | 
						|
    else
 | 
						|
        return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianness endian)
 | 
						|
{
 | 
						|
    const XXH_istate64_t * state = (const XXH_istate64_t *) state_in;
 | 
						|
    const BYTE * p = (const BYTE*)state->mem64;
 | 
						|
    const BYTE* bEnd = (const BYTE*)state->mem64 + state->memsize;
 | 
						|
    U64 h64;
 | 
						|
 | 
						|
    if (state->total_len >= 32)
 | 
						|
    {
 | 
						|
        U64 v1 = state->v1;
 | 
						|
        U64 v2 = state->v2;
 | 
						|
        U64 v3 = state->v3;
 | 
						|
        U64 v4 = state->v4;
 | 
						|
 | 
						|
        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
 | 
						|
 | 
						|
        v1 *= PRIME64_2;
 | 
						|
        v1 = XXH_rotl64(v1, 31);
 | 
						|
        v1 *= PRIME64_1;
 | 
						|
        h64 ^= v1;
 | 
						|
        h64 = h64*PRIME64_1 + PRIME64_4;
 | 
						|
 | 
						|
        v2 *= PRIME64_2;
 | 
						|
        v2 = XXH_rotl64(v2, 31);
 | 
						|
        v2 *= PRIME64_1;
 | 
						|
        h64 ^= v2;
 | 
						|
        h64 = h64*PRIME64_1 + PRIME64_4;
 | 
						|
 | 
						|
        v3 *= PRIME64_2;
 | 
						|
        v3 = XXH_rotl64(v3, 31);
 | 
						|
        v3 *= PRIME64_1;
 | 
						|
        h64 ^= v3;
 | 
						|
        h64 = h64*PRIME64_1 + PRIME64_4;
 | 
						|
 | 
						|
        v4 *= PRIME64_2;
 | 
						|
        v4 = XXH_rotl64(v4, 31);
 | 
						|
        v4 *= PRIME64_1;
 | 
						|
        h64 ^= v4;
 | 
						|
        h64 = h64*PRIME64_1 + PRIME64_4;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        h64  = state->seed + PRIME64_5;
 | 
						|
    }
 | 
						|
 | 
						|
    h64 += (U64) state->total_len;
 | 
						|
 | 
						|
    while (p+8<=bEnd)
 | 
						|
    {
 | 
						|
        U64 k1 = XXH_readLE64(p, endian);
 | 
						|
        k1 *= PRIME64_2;
 | 
						|
        k1 = XXH_rotl64(k1,31);
 | 
						|
        k1 *= PRIME64_1;
 | 
						|
        h64 ^= k1;
 | 
						|
        h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
 | 
						|
        p+=8;
 | 
						|
    }
 | 
						|
 | 
						|
    if (p+4<=bEnd)
 | 
						|
    {
 | 
						|
        h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
 | 
						|
        h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
 | 
						|
        p+=4;
 | 
						|
    }
 | 
						|
 | 
						|
    while (p<bEnd)
 | 
						|
    {
 | 
						|
        h64 ^= (*p) * PRIME64_5;
 | 
						|
        h64 = XXH_rotl64(h64, 11) * PRIME64_1;
 | 
						|
        p++;
 | 
						|
    }
 | 
						|
 | 
						|
    h64 ^= h64 >> 33;
 | 
						|
    h64 *= PRIME64_2;
 | 
						|
    h64 ^= h64 >> 29;
 | 
						|
    h64 *= PRIME64_3;
 | 
						|
    h64 ^= h64 >> 32;
 | 
						|
 | 
						|
    return h64;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
unsigned long long XXH64_digest (const XXH64_state_t* state_in)
 | 
						|
{
 | 
						|
    XXH_endianness endian_detected = (XXH_endianness)XXH_CPU_LITTLE_ENDIAN;
 | 
						|
 | 
						|
    if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
 | 
						|
        return XXH64_digest_endian(state_in, XXH_littleEndian);
 | 
						|
    else
 | 
						|
        return XXH64_digest_endian(state_in, XXH_bigEndian);
 | 
						|
}
 | 
						|
 | 
						|
 |