Eric Biederman 8ca8d7665d - Initial checkin of the freebios2 tree
git-svn-id: svn://svn.coreboot.org/coreboot/trunk@784 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2003-04-22 19:02:15 +00:00

357 lines
10 KiB
C

/*
* intel_mtrr.c: setting MTRR to decent values for cache initialization on P6
*
* Derived from intel_set_mtrr in intel_subr.c and mtrr.c in linux kernel
*
* Copyright 2000 Silicon Integrated System Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*
* Reference: Intel Architecture Software Developer's Manual, Volume 3: System Programming
*
* $Id$
*/
#ifndef lint
static char rcsid[] = "$Id$";
#endif
#include <console/console.h>
#include <mem.h>
#include <cpu/p6/msr.h>
#include <cpu/p6/mtrr.h>
#include <cpu/k7/mtrr.h>
#define arraysize(x) (sizeof(x)/sizeof((x)[0]))
static unsigned int mtrr_msr[] = {
MTRRfix64K_00000_MSR, MTRRfix16K_80000_MSR, MTRRfix16K_A0000_MSR,
MTRRfix4K_C0000_MSR, MTRRfix4K_C8000_MSR, MTRRfix4K_D0000_MSR, MTRRfix4K_D8000_MSR,
MTRRfix4K_E0000_MSR, MTRRfix4K_E8000_MSR, MTRRfix4K_F0000_MSR, MTRRfix4K_F8000_MSR,
};
static void intel_enable_fixed_mtrr(void)
{
unsigned long low, high;
rdmsr(MTRRdefType_MSR, low, high);
low |= 0xc00;
wrmsr(MTRRdefType_MSR, low, high);
}
static void intel_enable_var_mtrr(void)
{
unsigned long low, high;
rdmsr(MTRRdefType_MSR, low, high);
low |= 0x800;
wrmsr(MTRRdefType_MSR, low, high);
}
static inline void disable_cache(void)
{
unsigned int tmp;
/* Disable cache */
/* Write back the cache and flush TLB */
asm volatile (
"movl %%cr0, %0\n\t"
"orl $0x40000000, %0\n\t"
"wbinvd\n\t"
"movl %0, %%cr0\n\t"
"wbinvd\n\t"
:"=r" (tmp)
::"memory");
}
static inline void enable_cache(void)
{
unsigned int tmp;
// turn cache back on.
asm volatile (
"movl %%cr0, %0\n\t"
"andl $0x9fffffff, %0\n\t"
"movl %0, %%cr0\n\t"
:"=r" (tmp)
::"memory");
}
/* setting variable mtrr, comes from linux kernel source */
static void intel_set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek, unsigned char type)
{
unsigned long base_high, base_low;
unsigned long mask_high, mask_low;
base_high = basek >> 22;
base_low = basek << 10;
if (sizek < 4*1024*1024) {
mask_high = 0x0F;
mask_low = ~((sizek << 10) -1);
}
else {
mask_high = 0x0F & (~((sizek >> 22) -1));
mask_low = 0;
}
if (reg >= 8)
return;
// it is recommended that we disable and enable cache when we
// do this.
disable_cache();
if (sizek == 0) {
/* The invalid bit is kept in the mask, so we simply clear the
relevant mask register to disable a range. */
wrmsr (MTRRphysMask_MSR (reg), 0, 0);
} else {
/* Bit 32-35 of MTRRphysMask should be set to 1 */
wrmsr (MTRRphysBase_MSR(reg), base_low | type, base_high);
wrmsr (MTRRphysMask_MSR(reg), mask_low | 0x800, mask_high);
}
enable_cache();
}
/* setting variable mtrr, comes from linux kernel source */
void set_var_mtrr(unsigned int reg, unsigned long base, unsigned long size, unsigned char type)
{
unsigned int tmp;
if (reg >= 8)
return;
// it is recommended that we disable and enable cache when we
// do this.
disable_cache();
if (size == 0) {
/* The invalid bit is kept in the mask, so we simply clear the
relevant mask register to disable a range. */
wrmsr (MTRRphysMask_MSR (reg), 0, 0);
} else {
/* Bit 32-35 of MTRRphysMask should be set to 1 */
wrmsr (MTRRphysBase_MSR (reg), base | type, 0);
wrmsr (MTRRphysMask_MSR (reg), ~(size - 1) | 0x800, 0x0F);
}
// turn cache back on.
enable_cache();
}
/* fms: find most sigificant bit set, stolen from Linux Kernel Source. */
static inline unsigned int fms(unsigned int x)
{
int r;
__asm__("bsrl %1,%0\n\t"
"jnz 1f\n\t"
"movl $0,%0\n"
"1:" : "=r" (r) : "g" (x));
return r;
}
/* fms: find least sigificant bit set */
static inline unsigned int fls(unsigned int x)
{
int r;
__asm__("bsfl %1,%0\n\t"
"jnz 1f\n\t"
"movl $32,%0\n"
"1:" : "=r" (r) : "g" (x));
return r;
}
/* setting up variable and fixed mtrr
*
* From Intel Vol. III Section 9.12.4, the Range Size and Base Alignment has some kind of requirement:
* 1. The range size must be 2^N byte for N >= 12 (i.e 4KB minimum).
* 2. The base address must be 2^N aligned, where the N here is equal to the N in previous
* requirement. So a 8K range must be 8K aligned not 4K aligned.
*
* These requirement is meet by "decompositing" the ramsize into Sum(Cn * 2^n, n = [0..N], Cn = [0, 1]).
* For Cm = 1, there is a WB range of 2^m size at base address Sum(Cm * 2^m, m = [N..n]).
* A 124MB (128MB - 4MB SMA) example:
* ramsize = 124MB == 64MB (at 0MB) + 32MB (at 64MB) + 16MB (at 96MB ) + 8MB (at 112MB) + 4MB (120MB).
* But this wastes a lot of MTRR registers so we use another more "aggresive" way with Uncacheable Regions.
*
* In the Uncacheable Region scheme, we try to cover the whole ramsize by one WB region as possible,
* If (an only if) this can not be done we will try to decomposite the ramesize, the mathematical formula
* whould be ramsize = Sum(Cn * 2^n, n = [0..N], Cn = [-1, 0, 1]). For Cn = -1, a Uncachable Region is used.
* The same 124MB example:
* ramsize = 124MB == 128MB WB (at 0MB) + 4MB UC (at 124MB)
* or a 156MB (128MB + 32MB - 4MB SMA) example:
* ramsize = 156MB == 128MB WB (at 0MB) + 32MB WB (at 128MB) + 4MB UC (at 156MB)
*/
/* 2 MTRRS are reserved for the operating system */
#define BIOS_MTRRS 6
#define OS_MTRRS 2
#define MTRRS (BIOS_MTRRS + OS_MTRRS)
static void set_fixed_mtrrs(unsigned int first, unsigned int last, unsigned char type)
{
unsigned int i;
unsigned int fixed_msr = NUM_FIXED_RANGES >> 3;
unsigned long low, high;
low = high = 0; /* Shut up gcc */
for(i = first; i < last; i++) {
/* When I switch to a new msr read it in */
if (fixed_msr != i >> 3) {
/* But first write out the old msr */
if (fixed_msr < (NUM_FIXED_RANGES >> 3)) {
disable_cache();
wrmsr(mtrr_msr[fixed_msr], low, high);
enable_cache();
}
fixed_msr = i>>3;
rdmsr(mtrr_msr[fixed_msr], low, high);
}
if ((i & 7) < 4) {
low &= ~(0xff << ((i&3)*8));
low |= type << ((i&3)*8);
} else {
high &= ~(0xff << ((i&3)*8));
high |= type << ((i&3)*8);
}
}
/* Write out the final msr */
if (fixed_msr < (NUM_FIXED_RANGES >> 3)) {
disable_cache();
wrmsr(mtrr_msr[fixed_msr], low, high);
enable_cache();
}
}
static unsigned fixed_mtrr_index(unsigned long addrk)
{
unsigned index;
index = (addrk - 0) >> 6;
if (index >= 8) {
index = ((addrk - 8*64) >> 4) + 8;
}
if (index >= 24) {
index = ((addrk - (8*64 + 16*16)) >> 2) + 24;
}
if (index > NUM_FIXED_RANGES) {
index = NUM_FIXED_RANGES;
}
return index;
}
static unsigned int range_to_mtrr(unsigned int reg,
unsigned long range_startk, unsigned long range_sizek,
unsigned long next_range_startk)
{
if (!range_sizek || (reg >= BIOS_MTRRS)) {
return reg;
}
while(range_sizek) {
unsigned long max_align, align;
unsigned long sizek;
/* Compute the maximum size I can make a range */
max_align = fls(range_startk);
align = fms(range_sizek);
if (align > max_align) {
align = max_align;
}
sizek = 1 << align;
printk_debug("Setting variable MTRR %d, base: %4dMB, range: %4dMB, type WB\n",
reg, range_startk >>10, sizek >> 10);
intel_set_var_mtrr(reg++, range_startk, sizek, MTRR_TYPE_WRBACK);
range_startk += sizek;
range_sizek -= sizek;
if (reg >= BIOS_MTRRS)
break;
}
return reg;
}
void setup_mtrrs(struct mem_range *mem)
{
/* Try this the simple way of incrementally adding together
* mtrrs. If this doesn't work out we can get smart again
* and clear out the mtrrs.
*/
struct mem_range *memp;
unsigned long range_startk, range_sizek;
unsigned int reg;
printk_debug("\n");
/* Initialized the fixed_mtrrs to uncached */
printk_debug("Setting fixed MTRRs(%d-%d) type: UC\n",
0, NUM_FIXED_RANGES);
set_fixed_mtrrs(0, NUM_FIXED_RANGES, MTRR_TYPE_UNCACHABLE);
/* Now see which of the fixed mtrrs cover ram.
*/
for(memp = mem; memp->sizek; memp++) {
unsigned int start_mtrr;
unsigned int last_mtrr;
start_mtrr = fixed_mtrr_index(memp->basek);
last_mtrr = fixed_mtrr_index(memp->basek + memp->sizek);
if (start_mtrr >= NUM_FIXED_RANGES) {
break;
}
printk_debug("Setting fixed MTRRs(%d-%d) type: WB\n",
start_mtrr, last_mtrr);
set_fixed_mtrrs(start_mtrr, last_mtrr, MTRR_TYPE_WRBACK);
}
printk_debug("DONE fixed MTRRs\n");
/* Cache as many memory areas as possible */
/* FIXME is there an algorithm for computing the optimal set of mtrrs?
* In some cases it is definitely possible to do better.
*/
range_startk = 0;
range_sizek = 0;
reg = 0;
for (memp = mem; memp->sizek; memp++) {
/* See if I can merge with the last range
* Either I am below 1M and the fixed mtrrs handle it, or
* the ranges touch.
*/
if ((memp->basek <= 1024) || (range_startk + range_sizek == memp->basek)) {
unsigned long endk = memp->basek + memp->sizek;
range_sizek = endk - range_startk;
continue;
}
/* Write the range mtrrs */
if (range_sizek != 0) {
reg = range_to_mtrr(reg, range_startk, range_sizek, memp->basek);
range_startk = 0;
range_sizek = 0;
if (reg >= BIOS_MTRRS)
break;
}
/* Allocate an msr */
range_startk = memp->basek;
range_sizek = memp->sizek;
}
/* Write the last range */
reg = range_to_mtrr(reg, range_startk, range_sizek, 0);
printk_debug("DONE variable MTRRs\n");
printk_debug("Clear out the extra MTRR's\n");
/* Clear out the extra MTRR's */
while(reg < MTRRS) {
intel_set_var_mtrr(reg++, 0, 0, 0);
}
/* enable fixed MTRR */
printk_debug("call intel_enable_fixed_mtrr()\n");
intel_enable_fixed_mtrr();
printk_debug("call intel_enable_var_mtrr()\n");
intel_enable_var_mtrr();
printk_debug("Leave %s\n", __FUNCTION__);
}