The physical address size of the System-on-Chip (SoC) can be different from the CPU physical address size. These two different physical address sizes should be used for settings of their respective field. For instance, the physical address size related to the CPU should be used for MTRR programming while the physical address size of the SoC should be used for MMIO resource allocation. Typically, on Meteor Lake, the CPUs physical address size is 46 if TME is disabled and 42 if TME is enabled but Meteor Lake SoC physical address size is always 42. As a result, MTRRs should reflect the TME status while coreboot MMIO resource allocator should always use 42 bits. This commit introduces `SOC_PHYSICAL_ADDRESS_WIDTH' Kconfig to set the physical address size of the SoC for those SoCs. BUG=b:314886709 TEST=MTRR are aligned between coreboot and FSP Change-Id: Icb76242718581357e5c62c2465690cf489cb1375 Signed-off-by: Jeremy Compostella <jeremy.compostella@intel.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/79665 Reviewed-by: Paul Menzel <paulepanter@mailbox.org> Reviewed-by: Subrata Banik <subratabanik@google.com> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
237 lines
4.6 KiB
C
237 lines
4.6 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
#include <cpu/cpu.h>
|
|
#include <types.h>
|
|
|
|
#if ENV_X86_32
|
|
/* Standard macro to see if a specific flag is changeable */
|
|
static inline int flag_is_changeable_p(uint32_t flag)
|
|
{
|
|
uint32_t f1, f2;
|
|
|
|
asm(
|
|
"pushfl\n\t"
|
|
"pushfl\n\t"
|
|
"popl %0\n\t"
|
|
"movl %0,%1\n\t"
|
|
"xorl %2,%0\n\t"
|
|
"pushl %0\n\t"
|
|
"popfl\n\t"
|
|
"pushfl\n\t"
|
|
"popl %0\n\t"
|
|
"popfl\n\t"
|
|
: "=&r" (f1), "=&r" (f2)
|
|
: "ir" (flag));
|
|
return ((f1^f2) & flag) != 0;
|
|
}
|
|
|
|
/* Probe for the CPUID instruction */
|
|
int cpu_have_cpuid(void)
|
|
{
|
|
return flag_is_changeable_p(X86_EFLAGS_ID);
|
|
}
|
|
|
|
#else
|
|
|
|
int cpu_have_cpuid(void)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
unsigned int cpu_cpuid_extended_level(void)
|
|
{
|
|
return cpuid_eax(0x80000000);
|
|
}
|
|
|
|
unsigned int cpu_phys_address_size(void)
|
|
{
|
|
if (!(cpu_have_cpuid()))
|
|
return 32;
|
|
|
|
if (cpu_cpuid_extended_level() >= 0x80000008) {
|
|
int size = cpuid_eax(0x80000008) & 0xff;
|
|
size -= get_reserved_phys_addr_bits();
|
|
return size;
|
|
}
|
|
|
|
if (cpuid_edx(1) & (CPUID_FEATURE_PAE | CPUID_FEATURE_PSE36))
|
|
return 36;
|
|
return 32;
|
|
}
|
|
|
|
unsigned int soc_phys_address_size(void)
|
|
{
|
|
if (CONFIG_SOC_PHYSICAL_ADDRESS_WIDTH)
|
|
return CONFIG_SOC_PHYSICAL_ADDRESS_WIDTH;
|
|
|
|
return cpu_phys_address_size();
|
|
}
|
|
|
|
/*
|
|
* Get processor id using cpuid eax=1
|
|
* return value in EAX register
|
|
*/
|
|
uint32_t cpu_get_cpuid(void)
|
|
{
|
|
return cpuid_eax(1);
|
|
}
|
|
|
|
/*
|
|
* Get processor feature flag using cpuid eax=1
|
|
* return value in ECX register
|
|
*/
|
|
uint32_t cpu_get_feature_flags_ecx(void)
|
|
{
|
|
return cpuid_ecx(1);
|
|
}
|
|
|
|
/*
|
|
* Get processor feature flag using cpuid eax=1
|
|
* return value in EDX register
|
|
*/
|
|
uint32_t cpu_get_feature_flags_edx(void)
|
|
{
|
|
return cpuid_edx(1);
|
|
}
|
|
|
|
enum cpu_type cpu_check_deterministic_cache_cpuid_supported(void)
|
|
{
|
|
if (cpu_is_intel()) {
|
|
if (cpuid_get_max_func() < 4)
|
|
return CPUID_COMMAND_UNSUPPORTED;
|
|
return CPUID_TYPE_INTEL;
|
|
} else if (cpu_is_amd()) {
|
|
if (cpu_cpuid_extended_level() < 0x80000001)
|
|
return CPUID_COMMAND_UNSUPPORTED;
|
|
|
|
if (!(cpuid_ecx(0x80000001) & (1 << 22)))
|
|
return CPUID_COMMAND_UNSUPPORTED;
|
|
|
|
return CPUID_TYPE_AMD;
|
|
} else {
|
|
return CPUID_TYPE_INVALID;
|
|
}
|
|
}
|
|
|
|
static uint32_t cpu_get_cache_info_leaf(void)
|
|
{
|
|
uint32_t leaf = (cpu_check_deterministic_cache_cpuid_supported() == CPUID_TYPE_AMD) ?
|
|
DETERMINISTIC_CACHE_PARAMETERS_CPUID_AMD :
|
|
DETERMINISTIC_CACHE_PARAMETERS_CPUID_IA;
|
|
|
|
return leaf;
|
|
}
|
|
|
|
size_t cpu_get_cache_ways_assoc_info(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return info->num_ways;
|
|
}
|
|
|
|
uint8_t cpu_get_cache_type(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return info->type;
|
|
}
|
|
|
|
uint8_t cpu_get_cache_level(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return info->level;
|
|
}
|
|
|
|
size_t cpu_get_cache_phy_partition_info(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return info->physical_partitions;
|
|
}
|
|
|
|
size_t cpu_get_cache_line_size(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return info->line_size;
|
|
}
|
|
|
|
size_t cpu_get_cache_sets(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return info->num_sets;
|
|
}
|
|
|
|
bool cpu_is_cache_full_assoc(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return false;
|
|
|
|
return info->fully_associative;
|
|
}
|
|
|
|
size_t cpu_get_max_cache_share(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return info->num_cores_shared;
|
|
}
|
|
|
|
size_t get_cache_size(const struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return 0;
|
|
|
|
return info->num_ways * info->physical_partitions * info->line_size * info->num_sets;
|
|
}
|
|
|
|
/*
|
|
* Returns the sub-states supported by the specified CPU
|
|
* C-state level.
|
|
*
|
|
* Level 0 corresponds to the lowest C-state (C0).
|
|
* Higher levels are processor specific.
|
|
*/
|
|
uint8_t cpu_get_c_substate_support(const int state)
|
|
{
|
|
if ((cpuid_get_max_func() < 5) ||
|
|
!(cpuid_ecx(5) & CPUID_FEATURE_MONITOR_MWAIT) || (state > 4))
|
|
return 0;
|
|
|
|
return (cpuid_edx(5) >> (state * 4)) & 0xf;
|
|
}
|
|
|
|
bool fill_cpu_cache_info(uint8_t level, struct cpu_cache_info *info)
|
|
{
|
|
if (!info)
|
|
return false;
|
|
|
|
uint32_t leaf = cpu_get_cache_info_leaf();
|
|
if (!leaf)
|
|
return false;
|
|
|
|
struct cpuid_result cache_info_res = cpuid_ext(leaf, level);
|
|
|
|
info->type = CPUID_CACHE_TYPE(cache_info_res);
|
|
info->level = CPUID_CACHE_LEVEL(cache_info_res);
|
|
info->num_ways = CPUID_CACHE_WAYS_OF_ASSOC(cache_info_res) + 1;
|
|
info->num_sets = CPUID_CACHE_NO_OF_SETS(cache_info_res) + 1;
|
|
info->line_size = CPUID_CACHE_COHER_LINE(cache_info_res) + 1;
|
|
info->physical_partitions = CPUID_CACHE_PHYS_LINE(cache_info_res) + 1;
|
|
info->num_cores_shared = CPUID_CACHE_SHARING_CACHE(cache_info_res) + 1;
|
|
info->fully_associative = CPUID_CACHE_FULL_ASSOC(cache_info_res);
|
|
info->size = get_cache_size(info);
|
|
|
|
return true;
|
|
}
|