Change-Id: I6faeb7c783052edc4217d2d301dbb905e1fc6a19 Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/c/coreboot/+/44605 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Michael Niewöhner <foss@mniewoehner.de>
		
			
				
	
	
		
			217 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *
 | |
|  * Copyright (C) 2008 Uwe Hermann <uwe@hermann-uwe.de>
 | |
|  * Copyright (C) 2017 Patrick Rudolph <siro@das-labor.org>
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions
 | |
|  * are met:
 | |
|  * 1. Redistributions of source code must retain the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer.
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright
 | |
|  *    notice, this list of conditions and the following disclaimer in the
 | |
|  *    documentation and/or other materials provided with the distribution.
 | |
|  * 3. The name of the author may not be used to endorse or promote products
 | |
|  *    derived from this software without specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 | |
|  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 | |
|  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | |
|  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 | |
|  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 | |
|  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 | |
|  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 | |
|  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 | |
|  * SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Datasheet:
 | |
|  *  - Name: MC146818: Real-time Clock Plus RAM (RTC)
 | |
|  *  - PDF: http://www.freescale.com/files/microcontrollers/doc/data_sheet/MC146818.pdf
 | |
|  *  - Order number: MC146818/D
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * See also:
 | |
|  * http://bochs.sourceforge.net/techspec/CMOS-reference.txt
 | |
|  * http://www.bioscentral.com/misc/cmosmap.htm
 | |
|  */
 | |
| #include <libpayload-config.h>
 | |
| #include <libpayload.h>
 | |
| 
 | |
| /**
 | |
|  * PCs can have either 64 (very old ones), 128, or 256 bytes of CMOS RAM.
 | |
|  *
 | |
|  * Usually you access the lower 128 CMOS bytes via I/O port 0x70/0x71.
 | |
|  * For more recent chipsets with 256 bytes, you have to access the upper
 | |
|  * 128 bytes (128-255) using two different registers, usually 0x72/0x73.
 | |
|  *
 | |
|  * On some chipsets this can be different, though. The VIA VT8237R for example
 | |
|  * only recognizes the ports 0x74/0x75 for accessing the high 128 CMOS bytes
 | |
|  * (as seems to be the case for multiple VIA chipsets).
 | |
|  *
 | |
|  * It's very chipset-specific if and how the upper 128 bytes are enabled at
 | |
|  * all, but this work should be done in coreboot anyway. Libpayload assumes
 | |
|  * that coreboot has properly enabled access to the upper 128 bytes and
 | |
|  * doesn't try to do this on its own.
 | |
|  */
 | |
| #define RTC_PORT_STANDARD      0x70
 | |
| #if CONFIG(LP_RTC_PORT_EXTENDED_VIA)
 | |
| #define RTC_PORT_EXTENDED      0x74
 | |
| #else
 | |
| #define RTC_PORT_EXTENDED      0x72
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Read a byte from the specified NVRAM address.
 | |
|  *
 | |
|  * @param addr The NVRAM address to read a byte from.
 | |
|  * @return The byte at the given NVRAM address.
 | |
|  */
 | |
| u8 nvram_read(u8 addr)
 | |
| {
 | |
| 	u16 rtc_port = addr < 128 ? RTC_PORT_STANDARD : RTC_PORT_EXTENDED;
 | |
| 
 | |
| 	outb(addr, rtc_port);
 | |
| 	return inb(rtc_port + 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Write a byte to the specified NVRAM address.
 | |
|  *
 | |
|  * @param val The byte to write to NVRAM.
 | |
|  * @param addr The NVRAM address to write to.
 | |
|  */
 | |
| void nvram_write(u8 val, u8 addr)
 | |
| {
 | |
| 	u16 rtc_port = addr < 128 ? RTC_PORT_STANDARD : RTC_PORT_EXTENDED;
 | |
| 
 | |
| 	outb(addr, rtc_port);
 | |
| 	outb(val, rtc_port + 1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Return 1 if the NVRAM is currently updating and a 0 otherwise
 | |
|  * @return A 1 if the NVRAM is updating and 0 otherwise
 | |
|  */
 | |
| 
 | |
| int nvram_updating(void)
 | |
| {
 | |
|        return (nvram_read(NVRAM_RTC_FREQ_SELECT) & NVRAM_RTC_UIP) ? 1 : 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Get the current time and date from the RTC
 | |
|  *
 | |
|  * @param time A pointer to a broken-down time structure
 | |
|  */
 | |
| void rtc_read_clock(struct tm *time)
 | |
| {
 | |
| 	u16 timeout = 10000;
 | |
| 	u8 statusB;
 | |
| 	u8 reg8;
 | |
| 
 | |
| 	memset(time, 0, sizeof(*time));
 | |
| 
 | |
| 	while (nvram_updating())
 | |
| 		if (!timeout--)
 | |
| 			return;
 | |
| 
 | |
| 	statusB = nvram_read(NVRAM_RTC_STATUSB);
 | |
| 
 | |
| 	if (!(statusB & NVRAM_RTC_FORMAT_BINARY)) {
 | |
| 		time->tm_mon = bcd2dec(nvram_read(NVRAM_RTC_MONTH)) - 1;
 | |
| 		time->tm_sec = bcd2dec(nvram_read(NVRAM_RTC_SECONDS));
 | |
| 		time->tm_min = bcd2dec(nvram_read(NVRAM_RTC_MINUTES));
 | |
| 		time->tm_mday = bcd2dec(nvram_read(NVRAM_RTC_DAY));
 | |
| 
 | |
| 		if (!(statusB & NVRAM_RTC_FORMAT_24HOUR)) {
 | |
| 			reg8 = nvram_read(NVRAM_RTC_HOURS);
 | |
| 			time->tm_hour = bcd2dec(reg8 & 0x7f);
 | |
| 			time->tm_hour += (reg8 & 0x80) ? 12 : 0;
 | |
| 			time->tm_hour %= 24;
 | |
| 		} else {
 | |
| 			time->tm_hour = bcd2dec(nvram_read(NVRAM_RTC_HOURS));
 | |
| 		}
 | |
| 		time->tm_year = bcd2dec(nvram_read(NVRAM_RTC_YEAR));
 | |
| 	} else {
 | |
| 		time->tm_mon = nvram_read(NVRAM_RTC_MONTH) - 1;
 | |
| 		time->tm_sec = nvram_read(NVRAM_RTC_SECONDS);
 | |
| 		time->tm_min = nvram_read(NVRAM_RTC_MINUTES);
 | |
| 		time->tm_mday = nvram_read(NVRAM_RTC_DAY);
 | |
| 		if (!(statusB & NVRAM_RTC_FORMAT_24HOUR)) {
 | |
| 			reg8 = nvram_read(NVRAM_RTC_HOURS);
 | |
| 			time->tm_hour = reg8 & 0x7f;
 | |
| 			time->tm_hour += (reg8 & 0x80) ? 12 : 0;
 | |
| 			time->tm_hour %= 24;
 | |
| 		} else {
 | |
| 			time->tm_hour = nvram_read(NVRAM_RTC_HOURS);
 | |
| 		}
 | |
| 		time->tm_year = nvram_read(NVRAM_RTC_YEAR);
 | |
| 	}
 | |
| 
 | |
| 	/* Instead of finding the century register,
 | |
| 	   we just make an assumption that if the year value is
 | |
| 	   less then 80, then it is 2000+
 | |
| 	*/
 | |
| 	if (time->tm_year < 80)
 | |
| 		time->tm_year += 100;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Write the current time and date to the RTC
 | |
|  *
 | |
|  * @param time A pointer to a broken-down time structure
 | |
|  */
 | |
| void rtc_write_clock(const struct tm *time)
 | |
| {
 | |
| 	u16 timeout = 10000;
 | |
| 	u8 statusB;
 | |
| 	u8 reg8, year;
 | |
| 
 | |
| 	while (nvram_updating())
 | |
| 		if (!timeout--)
 | |
| 			return;
 | |
| 
 | |
| 	statusB = nvram_read(NVRAM_RTC_STATUSB);
 | |
| 
 | |
| 	year = time->tm_year;
 | |
| 	if (year > 100)
 | |
| 		year -= 100;
 | |
| 
 | |
| 	if (!(statusB & NVRAM_RTC_FORMAT_BINARY)) {
 | |
| 		nvram_write(dec2bcd(time->tm_mon + 1), NVRAM_RTC_MONTH);
 | |
| 		nvram_write(dec2bcd(time->tm_sec), NVRAM_RTC_SECONDS);
 | |
| 		nvram_write(dec2bcd(time->tm_min), NVRAM_RTC_MINUTES);
 | |
| 		nvram_write(dec2bcd(time->tm_mday), NVRAM_RTC_DAY);
 | |
| 		if (!(statusB & NVRAM_RTC_FORMAT_24HOUR)) {
 | |
| 			if (time->tm_hour > 12)
 | |
| 				reg8 = dec2bcd(time->tm_hour - 12) | 0x80;
 | |
| 			else
 | |
| 				reg8 = dec2bcd(time->tm_hour);
 | |
| 		} else {
 | |
| 			reg8 = dec2bcd(time->tm_hour);
 | |
| 		}
 | |
| 		nvram_write(reg8, NVRAM_RTC_HOURS);
 | |
| 		nvram_write(dec2bcd(year), NVRAM_RTC_YEAR);
 | |
| 	} else {
 | |
| 		nvram_write(time->tm_mon + 1, NVRAM_RTC_MONTH);
 | |
| 		nvram_write(time->tm_sec, NVRAM_RTC_SECONDS);
 | |
| 		nvram_write(time->tm_min, NVRAM_RTC_MINUTES);
 | |
| 		nvram_write(time->tm_mday, NVRAM_RTC_DAY);
 | |
| 		if (!(statusB & NVRAM_RTC_FORMAT_24HOUR)) {
 | |
| 			if (time->tm_hour > 12)
 | |
| 				reg8 = (time->tm_hour - 12) | 0x80;
 | |
| 			else
 | |
| 				reg8 = time->tm_hour;
 | |
| 		} else {
 | |
| 			reg8 = time->tm_hour;
 | |
| 		}
 | |
| 		nvram_write(reg8, NVRAM_RTC_HOURS);
 | |
| 		nvram_write(year, NVRAM_RTC_YEAR);
 | |
| 	}
 | |
| }
 |