The patch adds a possibility to cache the PCIe 5.0 HSPHY firmware in the SPI flash. New flashmap region is created for that purpose. The goal of caching is to reduce the dependency on CSME and the HECI IP LOAD command which may fail when the CSME is disabled, e.g. soft disabled by HECI command or HAP disabled. This change allows to keep PCIe 5.0 root ports functioning even if CSME/HECI is not functional. TEST=Boot Ubuntu 22.04 on MSI PRO Z690-A and notice PCIe 5.0 port is functional after loading the HSPHY from cache. Signed-off-by: Michał Żygowski <michal.zygowski@3mdeb.com> Change-Id: I5a37f5b06706ff30d92f60f1bf5dc900edbde96f Reviewed-on: https://review.coreboot.org/c/coreboot/+/68987 Reviewed-by: Krystian Hebel <krystian.hebel@3mdeb.com> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
448 lines
12 KiB
C
448 lines
12 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
#define __SIMPLE_DEVICE__
|
|
|
|
#include <stdlib.h>
|
|
#include <console/console.h>
|
|
#include <device/device.h>
|
|
#include <device/mmio.h>
|
|
#include <device/pci_def.h>
|
|
#include <device/pci_ops.h>
|
|
#include <fmap.h>
|
|
#include <intelblocks/cse.h>
|
|
#include <intelblocks/systemagent.h>
|
|
#include <intelblocks/vtd.h>
|
|
#include <security/vboot/misc.h>
|
|
#include <soc/hsphy.h>
|
|
#include <soc/iomap.h>
|
|
#include <soc/pci_devs.h>
|
|
#include <vb2_api.h>
|
|
#include <lib.h>
|
|
|
|
#define HASHALG_SHA1 0x00000001
|
|
#define HASHALG_SHA256 0x00000002
|
|
#define HASHALG_SHA384 0x00000003
|
|
#define HASHALG_SHA512 0x00000004
|
|
|
|
#define MAX_HASH_SIZE VB2_SHA512_DIGEST_SIZE
|
|
#define GET_IP_FIRMWARE_CMD 0x21
|
|
#define HSPHY_PAYLOAD_SIZE (32*KiB)
|
|
|
|
#define CPU_PID_PCIE_PHYX16_BROADCAST 0x55
|
|
|
|
struct hsphy_cache {
|
|
uint32_t hsphy_size;
|
|
uint8_t hash_algo;
|
|
uint8_t digest[MAX_HASH_SIZE];
|
|
uint8_t hsphy_fw[0];
|
|
} __packed;
|
|
|
|
struct ip_push_model {
|
|
uint16_t count;
|
|
uint16_t address;
|
|
uint32_t data[0];
|
|
} __packed;
|
|
|
|
static int heci_get_hsphy_payload(void *buf, uint32_t *buf_size, uint8_t *hash_buf,
|
|
uint8_t *hash_alg, uint32_t *status)
|
|
{
|
|
size_t reply_size;
|
|
|
|
struct heci_ip_load_request {
|
|
struct mkhi_hdr hdr;
|
|
uint32_t version;
|
|
uint32_t operation;
|
|
uint32_t dram_base_low;
|
|
uint32_t dram_base_high;
|
|
uint32_t memory_size;
|
|
uint32_t reserved;
|
|
} __packed msg = {
|
|
.hdr = {
|
|
.group_id = MKHI_GROUP_ID_BUP_COMMON,
|
|
.command = GET_IP_FIRMWARE_CMD,
|
|
},
|
|
.version = 1,
|
|
.operation = 1,
|
|
.dram_base_low = (uintptr_t)buf,
|
|
.dram_base_high = 0,
|
|
.memory_size = *buf_size,
|
|
.reserved = 0,
|
|
};
|
|
|
|
struct heci_ip_load_response {
|
|
struct mkhi_hdr hdr;
|
|
uint32_t payload_size;
|
|
uint32_t reserved[2];
|
|
uint32_t status;
|
|
uint8_t hash_type;
|
|
uint8_t hash[MAX_HASH_SIZE];
|
|
} __packed reply;
|
|
|
|
if (!buf || !buf_size || !hash_buf || !hash_alg) {
|
|
printk(BIOS_ERR, "%s: Invalid parameters\n", __func__);
|
|
return -1;
|
|
}
|
|
|
|
reply_size = sizeof(reply);
|
|
memset(&reply, 0, reply_size);
|
|
|
|
printk(BIOS_DEBUG, "HECI: Sending Get IP firmware command\n");
|
|
|
|
if (heci_send_receive(&msg, sizeof(msg), &reply, &reply_size, HECI_MKHI_ADDR)) {
|
|
printk(BIOS_ERR, "HECI: Get IP firmware failed\n");
|
|
return -1;
|
|
}
|
|
|
|
if (reply.hdr.result) {
|
|
printk(BIOS_ERR, "HECI: Get IP firmware response invalid\n");
|
|
*status = reply.status;
|
|
printk(BIOS_DEBUG, "HECI response:\n");
|
|
hexdump(&reply, sizeof(reply));
|
|
return -1;
|
|
}
|
|
|
|
*buf_size = reply.payload_size;
|
|
*hash_alg = reply.hash_type;
|
|
*status = reply.status;
|
|
memcpy(hash_buf, reply.hash, MAX_HASH_SIZE);
|
|
|
|
printk(BIOS_DEBUG, "HECI: Get IP firmware success. Response:\n");
|
|
printk(BIOS_DEBUG, " Payload size = 0x%x\n", *buf_size);
|
|
printk(BIOS_DEBUG, " Hash type used for signing payload = 0x%x\n", *hash_alg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool verify_hsphy_hash(void *buf, uint32_t buf_size, uint8_t *hash_buf, uint8_t hash_alg)
|
|
{
|
|
struct vb2_hash hash;
|
|
|
|
switch (hash_alg) {
|
|
case HASHALG_SHA256:
|
|
hash.algo = VB2_HASH_SHA256;
|
|
break;
|
|
case HASHALG_SHA384:
|
|
hash.algo = VB2_HASH_SHA384;
|
|
break;
|
|
case HASHALG_SHA512:
|
|
hash.algo = VB2_HASH_SHA512;
|
|
break;
|
|
case HASHALG_SHA1:
|
|
default:
|
|
printk(BIOS_ERR, "Hash alg %d not supported, trying SHA384\n", hash_alg);
|
|
hash.algo = VB2_HASH_SHA384;
|
|
break;
|
|
}
|
|
|
|
memcpy(hash.raw, hash_buf, vb2_digest_size(hash.algo));
|
|
|
|
if (vb2_hash_verify(vboot_hwcrypto_allowed(), buf, buf_size, &hash) != VB2_SUCCESS)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static void upload_hsphy_to_cpu_pcie(void *buf, uint32_t buf_size)
|
|
{
|
|
uint16_t i = 0, j;
|
|
struct ip_push_model *push_model = (struct ip_push_model *)buf;
|
|
|
|
while (i < buf_size) {
|
|
i += sizeof(*push_model);
|
|
|
|
if ((push_model->address == 0) && (push_model->count == 0))
|
|
break; // End of file
|
|
|
|
for (j = 0; j < push_model->count; j++) {
|
|
REGBAR32(CPU_PID_PCIE_PHYX16_BROADCAST,
|
|
push_model->address) = push_model->data[j];
|
|
i += sizeof(uint32_t);
|
|
}
|
|
|
|
push_model = (struct ip_push_model *)(buf + i);
|
|
}
|
|
}
|
|
|
|
static bool hsphy_cache_valid(struct hsphy_cache *hsphy_fw_cache)
|
|
{
|
|
if (!hsphy_fw_cache) {
|
|
printk(BIOS_WARNING, "Failed to mmap HSPHY cache\n");
|
|
return false;
|
|
}
|
|
|
|
if (hsphy_fw_cache->hsphy_size == 0 ||
|
|
hsphy_fw_cache->hsphy_size > HSPHY_PAYLOAD_SIZE ||
|
|
hsphy_fw_cache->hash_algo <= HASHALG_SHA1 ||
|
|
hsphy_fw_cache->hash_algo > HASHALG_SHA512)
|
|
return false;
|
|
|
|
if (!verify_hsphy_hash(hsphy_fw_cache->hsphy_fw, hsphy_fw_cache->hsphy_size,
|
|
hsphy_fw_cache->digest, hsphy_fw_cache->hash_algo))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool load_hsphy_from_cache(void)
|
|
{
|
|
struct region_device rdev;
|
|
struct hsphy_cache *hsphy_fw_cache;
|
|
|
|
if (fmap_locate_area_as_rdev("HSPHY_FW", &rdev) < 0) {
|
|
printk(BIOS_ERR, "HSPHY: Cannot find HSPHY_FW region\n");
|
|
return false;
|
|
}
|
|
|
|
hsphy_fw_cache = (struct hsphy_cache *)rdev_mmap_full(&rdev);
|
|
|
|
if (!hsphy_cache_valid(hsphy_fw_cache)) {
|
|
printk(BIOS_ERR, "HSPHY: HSPHY cache invalid\n");
|
|
if (hsphy_fw_cache)
|
|
rdev_munmap(&rdev, hsphy_fw_cache);
|
|
return false;
|
|
}
|
|
|
|
printk(BIOS_INFO, "Loading HSPHY FW from cache\n");
|
|
upload_hsphy_to_cpu_pcie(hsphy_fw_cache->hsphy_fw, hsphy_fw_cache->hsphy_size);
|
|
|
|
rdev_munmap(&rdev, hsphy_fw_cache);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void cache_hsphy_fw_in_flash(void *buf, uint32_t buf_size, uint8_t *hash_buf,
|
|
uint8_t hash_alg)
|
|
{
|
|
struct region_device rdev;
|
|
struct hsphy_cache *hsphy_fw_cache;
|
|
size_t ret;
|
|
|
|
if (!buf || buf_size == 0 || buf_size > (HSPHY_PAYLOAD_SIZE - sizeof(*hsphy_fw_cache))
|
|
|| !hash_buf || hash_alg <= HASHALG_SHA1 || hash_alg > HASHALG_SHA512) {
|
|
printk(BIOS_ERR, "Invalid parameters, HSPHY will not be cached in flash.\n");
|
|
return;
|
|
}
|
|
|
|
/* Locate the area as RO rdev, otherwise mmap will fail */
|
|
if (fmap_locate_area_as_rdev("HSPHY_FW", &rdev) < 0) {
|
|
printk(BIOS_ERR, "HSPHY: Could not find HSPHY_FW region\n");
|
|
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
|
|
return;
|
|
}
|
|
|
|
hsphy_fw_cache = (struct hsphy_cache *)rdev_mmap_full(&rdev);
|
|
|
|
if (hsphy_cache_valid(hsphy_fw_cache)) {
|
|
/* If the cache is valid, check the buffer against the cache hash */
|
|
if (verify_hsphy_hash(buf, buf_size, hsphy_fw_cache->digest,
|
|
hsphy_fw_cache->hash_algo)) {
|
|
printk(BIOS_INFO, "HSPHY: cache does not need update\n");
|
|
rdev_munmap(&rdev, hsphy_fw_cache);
|
|
return;
|
|
} else {
|
|
printk(BIOS_INFO, "HSPHY: cache needs update\n");
|
|
}
|
|
} else {
|
|
printk(BIOS_INFO, "HSPHY: cache invalid, updating\n");
|
|
}
|
|
|
|
if (region_device_sz(&rdev) < (buf_size + sizeof(*hsphy_fw_cache))) {
|
|
printk(BIOS_ERR, "HSPHY: HSPHY_FW region too small: %zx < %zx\n",
|
|
region_device_sz(&rdev), buf_size + sizeof(*hsphy_fw_cache));
|
|
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
|
|
rdev_munmap(&rdev, hsphy_fw_cache);
|
|
return;
|
|
}
|
|
|
|
rdev_munmap(&rdev, hsphy_fw_cache);
|
|
hsphy_fw_cache = malloc(sizeof(*hsphy_fw_cache));
|
|
|
|
if (!hsphy_fw_cache) {
|
|
printk(BIOS_ERR, "HSPHY: Could not allocate memory for HSPHY cache buffer\n");
|
|
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
|
|
return;
|
|
}
|
|
|
|
hsphy_fw_cache->hsphy_size = buf_size;
|
|
hsphy_fw_cache->hash_algo = hash_alg;
|
|
|
|
switch (hash_alg) {
|
|
case HASHALG_SHA256:
|
|
hash_alg = VB2_HASH_SHA256;
|
|
break;
|
|
case HASHALG_SHA384:
|
|
hash_alg = VB2_HASH_SHA384;
|
|
break;
|
|
case HASHALG_SHA512:
|
|
hash_alg = VB2_HASH_SHA512;
|
|
break;
|
|
}
|
|
|
|
memset(hsphy_fw_cache->digest, 0, sizeof(hsphy_fw_cache->digest));
|
|
memcpy(hsphy_fw_cache->digest, hash_buf, vb2_digest_size(hash_alg));
|
|
|
|
/* Now that we want to write to flash, locate the area as RW rdev */
|
|
if (fmap_locate_area_as_rdev_rw("HSPHY_FW", &rdev) < 0) {
|
|
printk(BIOS_ERR, "HSPHY: Could not find HSPHY_FW region\n");
|
|
printk(BIOS_ERR, "HSPHY will not be cached in flash\n");
|
|
free(hsphy_fw_cache);
|
|
return;
|
|
}
|
|
|
|
if (rdev_eraseat(&rdev, 0, region_device_sz(&rdev)) < 0) {
|
|
printk(BIOS_ERR, "Failed to erase HSPHY cache region\n");
|
|
free(hsphy_fw_cache);
|
|
return;
|
|
}
|
|
|
|
ret = rdev_writeat(&rdev, hsphy_fw_cache, 0, sizeof(*hsphy_fw_cache));
|
|
if (ret != sizeof(*hsphy_fw_cache)) {
|
|
printk(BIOS_ERR, "Failed to write HSPHY cache metadata\n");
|
|
free(hsphy_fw_cache);
|
|
return;
|
|
}
|
|
|
|
ret = rdev_writeat(&rdev, buf, sizeof(*hsphy_fw_cache), buf_size);
|
|
if (ret != buf_size) {
|
|
printk(BIOS_ERR, "Failed to write HSPHY FW to cache\n");
|
|
free(hsphy_fw_cache);
|
|
return;
|
|
}
|
|
|
|
printk(BIOS_INFO, "HSPHY cached to flash successfully\n");
|
|
|
|
free(hsphy_fw_cache);
|
|
}
|
|
|
|
static void *allocate_hsphy_buf(void)
|
|
{
|
|
void *hsphy_buf;
|
|
size_t dma_buf_size;
|
|
|
|
if (CONFIG(ENABLE_EARLY_DMA_PROTECTION)) {
|
|
hsphy_buf = vtd_get_dma_buffer(&dma_buf_size);
|
|
if (!hsphy_buf || dma_buf_size < HSPHY_PAYLOAD_SIZE) {
|
|
printk(BIOS_ERR, "DMA protection enabled but DMA buffer does not"
|
|
" exist or is too small\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Rather impossible scenario, but check alignment anyways */
|
|
if (!IS_ALIGNED((uintptr_t)hsphy_buf, 4 * KiB) &&
|
|
(HSPHY_PAYLOAD_SIZE + 4 * KiB) <= dma_buf_size)
|
|
hsphy_buf = (void *)ALIGN_UP((uintptr_t)hsphy_buf, 4 * KiB);
|
|
} else {
|
|
/* Align the buffer to page size, otherwise the HECI command will fail */
|
|
hsphy_buf = memalign(4 * KiB, HSPHY_PAYLOAD_SIZE);
|
|
|
|
if (!hsphy_buf) {
|
|
printk(BIOS_ERR, "Failed to allocate memory for HSPHY blob\n");
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
return hsphy_buf;
|
|
}
|
|
|
|
void load_and_init_hsphy(void)
|
|
{
|
|
void *hsphy_buf;
|
|
uint8_t hsphy_hash[MAX_HASH_SIZE] = { 0 };
|
|
uint8_t hash_type;
|
|
uint32_t buf_size = HSPHY_PAYLOAD_SIZE;
|
|
pci_devfn_t dev = PCH_DEV_CSE;
|
|
const uint16_t pci_cmd_bme_mem = PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
|
|
uint32_t status;
|
|
|
|
if (!is_devfn_enabled(SA_DEVFN_CPU_PCIE1_0) &&
|
|
!is_devfn_enabled(SA_DEVFN_CPU_PCIE1_1)) {
|
|
printk(BIOS_DEBUG, "All HSPHY ports disabled, skipping HSPHY loading\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Try to get HSPHY payload from CSME first, so we can always keep our
|
|
* HSPHY cache up to date. If we cannot allocate the buffer for it, the
|
|
* cache is our last resort.
|
|
*/
|
|
hsphy_buf = allocate_hsphy_buf();
|
|
if (!hsphy_buf) {
|
|
printk(BIOS_ERR, "Could not allocate memory for HSPHY blob\n");
|
|
if (CONFIG(INCLUDE_HSPHY_IN_FMAP)) {
|
|
printk(BIOS_INFO, "Trying to load HSPHY FW from cache\n");
|
|
if (load_hsphy_from_cache()) {
|
|
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
|
|
return;
|
|
}
|
|
printk(BIOS_ERR, "Failed to load HSPHY FW from cache\n");
|
|
}
|
|
printk(BIOS_ERR, "Aborting HSPHY FW loading, PCIe Gen5 won't work.\n");
|
|
return;
|
|
}
|
|
|
|
memset(hsphy_buf, 0, HSPHY_PAYLOAD_SIZE);
|
|
|
|
/*
|
|
* If CSME is not present, try cached HSPHY FW. We still want to use
|
|
* CSME just in case CSME is updated along with HSPHY FW, so that we
|
|
* can update our cache if needed.
|
|
*/
|
|
if (!is_cse_enabled()) {
|
|
if (CONFIG(INCLUDE_HSPHY_IN_FMAP)) {
|
|
printk(BIOS_INFO, "Trying to load HSPHY FW from cache"
|
|
" because CSME is not enabled or not visible\n");
|
|
if (load_hsphy_from_cache()) {
|
|
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
|
|
return;
|
|
}
|
|
printk(BIOS_ERR, "Failed to load HSPHY FW from cache\n");
|
|
}
|
|
printk(BIOS_ERR, "%s: CSME not enabled or not visible, but required\n",
|
|
__func__);
|
|
printk(BIOS_ERR, "Aborting HSPHY FW loading, PCIe Gen5 won't work.\n");
|
|
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
|
|
free(hsphy_buf);
|
|
return;
|
|
}
|
|
|
|
/* Ensure BAR, BME and memory space are enabled */
|
|
if ((pci_read_config16(dev, PCI_COMMAND) & pci_cmd_bme_mem) != pci_cmd_bme_mem)
|
|
pci_or_config16(dev, PCI_COMMAND, pci_cmd_bme_mem);
|
|
|
|
|
|
if (pci_read_config32(dev, PCI_BASE_ADDRESS_0) == 0) {
|
|
pci_and_config16(dev, PCI_COMMAND, ~pci_cmd_bme_mem);
|
|
pci_write_config32(dev, PCI_BASE_ADDRESS_0, HECI1_BASE_ADDRESS);
|
|
pci_or_config16(dev, PCI_COMMAND, pci_cmd_bme_mem);
|
|
}
|
|
|
|
/* Try to get HSPHY payload from CSME and cache it if possible. */
|
|
if (!heci_get_hsphy_payload(hsphy_buf, &buf_size, hsphy_hash, &hash_type, &status)) {
|
|
if (verify_hsphy_hash(hsphy_buf, buf_size, hsphy_hash, hash_type)) {
|
|
upload_hsphy_to_cpu_pcie(hsphy_buf, buf_size);
|
|
if (CONFIG(INCLUDE_HSPHY_IN_FMAP))
|
|
cache_hsphy_fw_in_flash(hsphy_buf, buf_size, hsphy_hash,
|
|
hash_type);
|
|
|
|
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
|
|
free(hsphy_buf);
|
|
return;
|
|
} else {
|
|
printk(BIOS_ERR, "Failed to verify HSPHY FW hash.\n");
|
|
}
|
|
} else {
|
|
printk(BIOS_ERR, "Failed to get HSPHY FW over HECI.\n");
|
|
}
|
|
|
|
if (!CONFIG(ENABLE_EARLY_DMA_PROTECTION))
|
|
free(hsphy_buf);
|
|
|
|
/* We failed to get HSPHY payload from CSME, cache is our last chance. */
|
|
if (CONFIG(INCLUDE_HSPHY_IN_FMAP) && load_hsphy_from_cache()) {
|
|
printk(BIOS_INFO, "Successfully loaded HSPHY FW from cache\n");
|
|
return;
|
|
}
|
|
|
|
printk(BIOS_ERR, "Failed to load HSPHY FW, PCIe Gen5 won't work.\n");
|
|
}
|