We need to extend the functionality of the mrc_cache hash functions to work for both recovery and normal mrc_cache data. Updating the API of these functions to pass in an index to identify the hash indices for recovery and normal mode. BUG=b:150502246 BRANCH=None TEST=make sure memory training still works on nami Change-Id: I9c0bb25eafc731ca9c7a95113ab940f55997fc0f Signed-off-by: Shelley Chen <shchen@google.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/46432 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Furquan Shaikh <furquan@google.com>
467 lines
13 KiB
C
467 lines
13 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause */
|
|
|
|
/*
|
|
* Functions for querying, manipulating and locking rollback indices
|
|
* stored in the TPM NVRAM.
|
|
*/
|
|
|
|
#include <security/vboot/antirollback.h>
|
|
#include <security/vboot/tpm_common.h>
|
|
#include <security/tpm/tspi.h>
|
|
#include <security/tpm/tss.h>
|
|
#include <security/tpm/tss/tcg-1.2/tss_structures.h>
|
|
#include <vb2_api.h>
|
|
#include <console/console.h>
|
|
|
|
#define VBDEBUG(format, args...) \
|
|
printk(BIOS_INFO, "%s():%d: " format, __func__, __LINE__, ## args)
|
|
|
|
#define RETURN_ON_FAILURE(tpm_cmd) do { \
|
|
uint32_t result_; \
|
|
if ((result_ = (tpm_cmd)) != TPM_SUCCESS) { \
|
|
VBDEBUG("Antirollback: %08x returned by " #tpm_cmd \
|
|
"\n", (int)result_); \
|
|
return result_; \
|
|
} \
|
|
} while (0)
|
|
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length);
|
|
|
|
static uint32_t read_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_read(FIRMWARE_NV_INDEX,
|
|
ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_read_space_kernel(struct vb2_context *ctx)
|
|
{
|
|
if (!CONFIG(TPM2)) {
|
|
/*
|
|
* Before reading the kernel space, verify its permissions. If
|
|
* the kernel space has the wrong permission, we give up. This
|
|
* will need to be fixed by the recovery kernel. We will have
|
|
* to worry about this because at any time (even with PP turned
|
|
* off) the TPM owner can remove and redefine a PP-protected
|
|
* space (but not write to it).
|
|
*/
|
|
uint32_t perms;
|
|
|
|
RETURN_ON_FAILURE(tlcl_get_permissions(KERNEL_NV_INDEX,
|
|
&perms));
|
|
if (perms != TPM_NV_PER_PPWRITE) {
|
|
printk(BIOS_ERR,
|
|
"TPM: invalid secdata_kernel permissions\n");
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
}
|
|
|
|
uint8_t size = VB2_SECDATA_KERNEL_MIN_SIZE;
|
|
|
|
RETURN_ON_FAILURE(tlcl_read(KERNEL_NV_INDEX, ctx->secdata_kernel,
|
|
size));
|
|
|
|
if (vb2api_secdata_kernel_check(ctx, &size)
|
|
== VB2_ERROR_SECDATA_KERNEL_INCOMPLETE)
|
|
/* Re-read. vboot will run the check and handle errors. */
|
|
RETURN_ON_FAILURE(tlcl_read(KERNEL_NV_INDEX,
|
|
ctx->secdata_kernel, size));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
static uint32_t read_space_mrc_hash(uint32_t index, uint8_t *data)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_read(index, data,
|
|
HASH_NV_SIZE));
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* This is used to initialize the TPM space for recovery hash after defining
|
|
* it. Since there is no data available to calculate hash at the point where TPM
|
|
* space is defined, initialize it to all 0s.
|
|
*/
|
|
static const uint8_t mrc_hash_data[HASH_NV_SIZE] = { };
|
|
|
|
#if CONFIG(TPM2)
|
|
/*
|
|
* Different sets of NVRAM space attributes apply to the "ro" spaces,
|
|
* i.e. those which should not be possible to delete or modify once
|
|
* the RO exits, and the rest of the NVRAM spaces.
|
|
*/
|
|
static const TPMA_NV ro_space_attributes = {
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_WRITE_STCLEAR = 1,
|
|
.TPMA_NV_POLICY_DELETE = 1,
|
|
};
|
|
|
|
static const TPMA_NV rw_space_attributes = {
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
};
|
|
|
|
/*
|
|
* This policy digest was obtained using TPM2_PolicyPCR
|
|
* selecting only PCR_0 with a value of all zeros.
|
|
*/
|
|
static const uint8_t pcr0_unchanged_policy[] = {
|
|
0x09, 0x93, 0x3C, 0xCE, 0xEB, 0xB4, 0x41, 0x11, 0x18, 0x81, 0x1D,
|
|
0xD4, 0x47, 0x78, 0x80, 0x08, 0x88, 0x86, 0x62, 0x2D, 0xD7, 0x79,
|
|
0x94, 0x46, 0x62, 0x26, 0x68, 0x8E, 0xEE, 0xE6, 0x6A, 0xA1};
|
|
|
|
/* Nothing special in the TPM2 path yet. */
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length)
|
|
{
|
|
return tlcl_write(index, data, length);
|
|
}
|
|
|
|
static uint32_t set_space(const char *name, uint32_t index, const void *data,
|
|
uint32_t length, const TPMA_NV nv_attributes,
|
|
const uint8_t *nv_policy, size_t nv_policy_size)
|
|
{
|
|
uint32_t rv;
|
|
|
|
rv = tlcl_define_space(index, length, nv_attributes, nv_policy,
|
|
nv_policy_size);
|
|
if (rv == TPM_E_NV_DEFINED) {
|
|
/*
|
|
* Continue with writing: it may be defined, but not written
|
|
* to. In that case a subsequent tlcl_read() would still return
|
|
* TPM_E_BADINDEX on TPM 2.0. The cases when some non-firmware
|
|
* space is defined while the firmware space is not there
|
|
* should be rare (interrupted initialization), so no big harm
|
|
* in writing once again even if it was written already.
|
|
*/
|
|
VBDEBUG("%s: %s space already exists\n", __func__, name);
|
|
rv = TPM_SUCCESS;
|
|
}
|
|
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return safe_write(index, data, length);
|
|
}
|
|
|
|
static uint32_t set_firmware_space(const void *firmware_blob)
|
|
{
|
|
return set_space("firmware", FIRMWARE_NV_INDEX, firmware_blob,
|
|
VB2_SECDATA_FIRMWARE_SIZE, ro_space_attributes,
|
|
pcr0_unchanged_policy, sizeof(pcr0_unchanged_policy));
|
|
}
|
|
|
|
static uint32_t set_kernel_space(const void *kernel_blob)
|
|
{
|
|
return set_space("kernel", KERNEL_NV_INDEX, kernel_blob,
|
|
VB2_SECDATA_KERNEL_SIZE, rw_space_attributes, NULL, 0);
|
|
}
|
|
|
|
static uint32_t set_mrc_hash_space(uint32_t index, const uint8_t *data)
|
|
{
|
|
return set_space("MRC Hash", index, data, HASH_NV_SIZE,
|
|
ro_space_attributes, pcr0_unchanged_policy,
|
|
sizeof(pcr0_unchanged_policy));
|
|
}
|
|
|
|
static uint32_t _factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
vb2api_secdata_kernel_create(ctx);
|
|
|
|
RETURN_ON_FAILURE(tlcl_force_clear());
|
|
|
|
/*
|
|
* Of all NVRAM spaces defined by this function the firmware space
|
|
* must be defined last, because its existence is considered an
|
|
* indication that TPM factory initialization was successfully
|
|
* completed.
|
|
*/
|
|
RETURN_ON_FAILURE(set_kernel_space(ctx->secdata_kernel));
|
|
|
|
if (CONFIG(VBOOT_HAS_REC_HASH_SPACE))
|
|
RETURN_ON_FAILURE(set_mrc_hash_space(MRC_REC_HASH_NV_INDEX, mrc_hash_data));
|
|
|
|
RETURN_ON_FAILURE(set_firmware_space(ctx->secdata_firmware));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_firmware(void)
|
|
{
|
|
return tlcl_lock_nv_write(FIRMWARE_NV_INDEX);
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_mrc_hash(uint32_t index)
|
|
{
|
|
return tlcl_lock_nv_write(index);
|
|
}
|
|
|
|
#else
|
|
|
|
/**
|
|
* Like tlcl_write(), but checks for write errors due to hitting the 64-write
|
|
* limit and clears the TPM when that happens. This can only happen when the
|
|
* TPM is unowned, so it is OK to clear it (and we really have no choice).
|
|
* This is not expected to happen frequently, but it could happen.
|
|
*/
|
|
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length)
|
|
{
|
|
uint32_t result = tlcl_write(index, data, length);
|
|
if (result == TPM_E_MAXNVWRITES) {
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
return tlcl_write(index, data, length);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Similarly to safe_write(), this ensures we don't fail a DefineSpace because
|
|
* we hit the TPM write limit. This is even less likely to happen than with
|
|
* writes because we only define spaces once at initialization, but we'd
|
|
* rather be paranoid about this.
|
|
*/
|
|
static uint32_t safe_define_space(uint32_t index, uint32_t perm, uint32_t size)
|
|
{
|
|
uint32_t result = tlcl_define_space(index, perm, size);
|
|
if (result == TPM_E_MAXNVWRITES) {
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
return tlcl_define_space(index, perm, size);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
static uint32_t set_mrc_hash_space(uint32_t index, const uint8_t *data)
|
|
{
|
|
RETURN_ON_FAILURE(safe_define_space(index,
|
|
TPM_NV_PER_GLOBALLOCK |
|
|
TPM_NV_PER_PPWRITE,
|
|
HASH_NV_SIZE));
|
|
RETURN_ON_FAILURE(safe_write(index, data,
|
|
HASH_NV_SIZE));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
static uint32_t _factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
TPM_PERMANENT_FLAGS pflags;
|
|
uint32_t result;
|
|
|
|
vb2api_secdata_kernel_create_v0(ctx);
|
|
|
|
result = tlcl_get_permanent_flags(&pflags);
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
/*
|
|
* TPM may come from the factory without physical presence finalized.
|
|
* Fix if necessary.
|
|
*/
|
|
VBDEBUG("TPM: physicalPresenceLifetimeLock=%d\n",
|
|
pflags.physicalPresenceLifetimeLock);
|
|
if (!pflags.physicalPresenceLifetimeLock) {
|
|
VBDEBUG("TPM: Finalizing physical presence\n");
|
|
RETURN_ON_FAILURE(tlcl_finalize_physical_presence());
|
|
}
|
|
|
|
/*
|
|
* The TPM will not enforce the NV authorization restrictions until the
|
|
* execution of a TPM_NV_DefineSpace with the handle of
|
|
* TPM_NV_INDEX_LOCK. Here we create that space if it doesn't already
|
|
* exist. */
|
|
VBDEBUG("TPM: nvLocked=%d\n", pflags.nvLocked);
|
|
if (!pflags.nvLocked) {
|
|
VBDEBUG("TPM: Enabling NV locking\n");
|
|
RETURN_ON_FAILURE(tlcl_set_nv_locked());
|
|
}
|
|
|
|
/* Clear TPM owner, in case the TPM is already owned for some reason. */
|
|
VBDEBUG("TPM: Clearing owner\n");
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
|
|
/* Define and write secdata_kernel space. */
|
|
RETURN_ON_FAILURE(safe_define_space(KERNEL_NV_INDEX,
|
|
TPM_NV_PER_PPWRITE,
|
|
VB2_SECDATA_KERNEL_SIZE_V02));
|
|
RETURN_ON_FAILURE(safe_write(KERNEL_NV_INDEX,
|
|
ctx->secdata_kernel,
|
|
VB2_SECDATA_KERNEL_SIZE_V02));
|
|
|
|
/* Define and write secdata_firmware space. */
|
|
RETURN_ON_FAILURE(safe_define_space(FIRMWARE_NV_INDEX,
|
|
TPM_NV_PER_GLOBALLOCK |
|
|
TPM_NV_PER_PPWRITE,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
RETURN_ON_FAILURE(safe_write(FIRMWARE_NV_INDEX,
|
|
ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
|
|
/* Define and set rec hash space, if available. */
|
|
if (CONFIG(VBOOT_HAS_REC_HASH_SPACE))
|
|
RETURN_ON_FAILURE(set_mrc_hash_space(MRC_REC_HASH_NV_INDEX, mrc_hash_data));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_firmware(void)
|
|
{
|
|
return tlcl_set_global_lock();
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_mrc_hash(uint32_t index)
|
|
{
|
|
/*
|
|
* Nothing needs to be done here, since global lock is already set while
|
|
* locking firmware space.
|
|
*/
|
|
return TPM_SUCCESS;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Perform one-time initializations.
|
|
*
|
|
* Create the NVRAM spaces, and set their initial values as needed. Sets the
|
|
* nvLocked bit and ensures the physical presence command is enabled and
|
|
* locked.
|
|
*/
|
|
static uint32_t factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
uint32_t result;
|
|
|
|
/*
|
|
* Set initial values of secdata_firmware space.
|
|
* kernel space is created in _factory_initialize_tpm().
|
|
*/
|
|
vb2api_secdata_firmware_create(ctx);
|
|
|
|
VBDEBUG("TPM: factory initialization\n");
|
|
|
|
/*
|
|
* Do a full test. This only happens the first time the device is
|
|
* turned on in the factory, so performance is not an issue. This is
|
|
* almost certainly not necessary, but it gives us more confidence
|
|
* about some code paths below that are difficult to
|
|
* test---specifically the ones that set lifetime flags, and are only
|
|
* executed once per physical TPM.
|
|
*/
|
|
result = tlcl_self_test_full();
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
result = _factory_initialize_tpm(ctx);
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
/* _factory_initialize_tpm() writes initial secdata values to TPM
|
|
immediately, so let vboot know that it's up to date now. */
|
|
ctx->flags &= ~(VB2_CONTEXT_SECDATA_FIRMWARE_CHANGED |
|
|
VB2_CONTEXT_SECDATA_KERNEL_CHANGED);
|
|
|
|
VBDEBUG("TPM: factory initialization successful\n");
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_read_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
uint32_t rv;
|
|
|
|
/* Read the firmware space. */
|
|
rv = read_space_firmware(ctx);
|
|
if (rv == TPM_E_BADINDEX) {
|
|
/* This seems the first time we've run. Initialize the TPM. */
|
|
VBDEBUG("TPM: Not initialized yet.\n");
|
|
RETURN_ON_FAILURE(factory_initialize_tpm(ctx));
|
|
} else if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("TPM: Firmware space in a bad state; giving up.\n");
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_write_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
if (CONFIG(CR50_IMMEDIATELY_COMMIT_FW_SECDATA))
|
|
tlcl_cr50_enable_nvcommits();
|
|
return safe_write(FIRMWARE_NV_INDEX, ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE);
|
|
}
|
|
|
|
uint32_t antirollback_write_space_kernel(struct vb2_context *ctx)
|
|
{
|
|
/* Learn the expected size. */
|
|
uint8_t size = VB2_SECDATA_KERNEL_MIN_SIZE;
|
|
vb2api_secdata_kernel_check(ctx, &size);
|
|
|
|
/*
|
|
* Ensure that the TPM actually commits our changes to NVMEN in case
|
|
* there is a power loss or other unexpected event. The AP does not
|
|
* write to the TPM during normal boot flow; it only writes during
|
|
* recovery, software sync, or other special boot flows. When the AP
|
|
* wants to write, it is imporant to actually commit changes.
|
|
*/
|
|
if (CONFIG(CR50_IMMEDIATELY_COMMIT_FW_SECDATA))
|
|
tlcl_cr50_enable_nvcommits();
|
|
|
|
return safe_write(KERNEL_NV_INDEX, ctx->secdata_kernel, size);
|
|
}
|
|
|
|
uint32_t antirollback_read_space_mrc_hash(uint32_t index, uint8_t *data, uint32_t size)
|
|
{
|
|
if (size != HASH_NV_SIZE) {
|
|
VBDEBUG("TPM: Incorrect buffer size for hash idx 0x%x. "
|
|
"(Expected=0x%x Actual=0x%x).\n", index, HASH_NV_SIZE,
|
|
size);
|
|
return TPM_E_READ_FAILURE;
|
|
}
|
|
return read_space_mrc_hash(index, data);
|
|
}
|
|
|
|
uint32_t antirollback_write_space_mrc_hash(uint32_t index, const uint8_t *data, uint32_t size)
|
|
{
|
|
uint8_t spc_data[HASH_NV_SIZE];
|
|
uint32_t rv;
|
|
|
|
if (size != HASH_NV_SIZE) {
|
|
VBDEBUG("TPM: Incorrect buffer size for hash idx 0x%x. "
|
|
"(Expected=0x%x Actual=0x%x).\n", index, HASH_NV_SIZE,
|
|
size);
|
|
return TPM_E_WRITE_FAILURE;
|
|
}
|
|
|
|
rv = read_space_mrc_hash(index, spc_data);
|
|
if (rv == TPM_E_BADINDEX) {
|
|
/*
|
|
* If space is not defined already for hash, define
|
|
* new space.
|
|
*/
|
|
VBDEBUG("TPM: Initializing hash space.\n");
|
|
return set_mrc_hash_space(index, data);
|
|
}
|
|
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return safe_write(index, data, size);
|
|
}
|
|
|
|
vb2_error_t vb2ex_tpm_clear_owner(struct vb2_context *ctx)
|
|
{
|
|
uint32_t rv;
|
|
printk(BIOS_INFO, "Clearing TPM owner\n");
|
|
rv = tpm_clear_and_reenable();
|
|
if (rv)
|
|
return VB2_ERROR_EX_TPM_CLEAR_OWNER;
|
|
return VB2_SUCCESS;
|
|
}
|