Files
system76-coreboot/src/cpu/amd/model_10xxx/fidvid.c
Xavi Drudis Ferran adb23a51f5 Improving BKDG implementation of P-states,
CPU and northbridge frequency and voltage
handling for Fam 10 in SVI mode.

Bring F3xD4 (Clock/Power Control Register 0) more in line
with BKDG i more cases. It requires looking at the CPU package type
so I add a function for that (in the wrong place?) and some
new constants

Signed-off-by: Xavi Drudis Ferran <xdrudis@tinet.cat>
Acked-by: Marc Jones <marcj303@gmail.com>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@6395 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
2011-02-28 00:10:37 +00:00

871 lines
22 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2007 Advanced Micro Devices, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#if CONFIG_SET_FIDVID
#include <northbridge/amd/amdht/AsPsDefs.h>
static inline void print_debug_fv(const char *str, u32 val)
{
#if CONFIG_SET_FIDVID_DEBUG
printk(BIOS_DEBUG, "%s%x\n", str, val);
#endif
}
static inline void print_debug_fv_8(const char *str, u8 val)
{
#if CONFIG_SET_FIDVID_DEBUG
printk(BIOS_DEBUG, "%s%02x\n", str, val);
#endif
}
static inline void print_debug_fv_64(const char *str, u32 val, u32 val2)
{
#if CONFIG_SET_FIDVID_DEBUG
printk(BIOS_DEBUG, "%s%x%x\n", str, val, val2);
#endif
}
struct fidvid_st {
u32 common_fid;
};
static void enable_fid_change(u8 fid)
{
u32 dword;
u32 nodes;
device_t dev;
int i;
nodes = get_nodes();
for (i = 0; i < nodes; i++) {
dev = NODE_PCI(i, 3);
dword = pci_read_config32(dev, 0xd4);
dword &= ~0x1F;
dword |= (u32) fid & 0x1F;
dword |= 1 << 5; // enable
pci_write_config32(dev, 0xd4, dword);
printk(BIOS_DEBUG, "FID Change Node:%02x, F3xD4: %08x \n", i,
dword);
}
}
static void setVSRamp(device_t dev) {
/* BKDG r31116 2010-04-22 2.4.1.7 step b F3xD8[VSRampTime]
* If this field accepts 8 values between 10 and 500 us why
* does page 324 say "BIOS should set this field to 001b."
* (20 us) ?
* Shouldn't it depend on the voltage regulators, mainboard
* or something ?
*/
u32 dword;
dword = pci_read_config32(dev, 0xd8);
dword &= VSRAMP_MASK;
dword |= VSRAMP_VALUE;
pci_write_config32(dev, 0xd8, dword);
}
static void recalculateVsSlamTimeSettingOnCorePre(device_t dev)
{
u8 pviModeFlag;
u8 highVoltageVid, lowVoltageVid, bValue;
u16 minimumSlamTime;
u16 vSlamTimes[7] = { 1000, 2000, 3000, 4000, 6000, 10000, 20000 }; /* Reg settings scaled by 100 */
u32 dtemp;
msr_t msr;
/* This function calculates the VsSlamTime using the range of possible
* voltages instead of a hardcoded 200us.
* Note:This function is called from setFidVidRegs and setUserPs after
* programming a custom Pstate.
*/
/* Calculate Slam Time
* Vslam = 0.4us/mV * Vp0 - (lowest out of Vpmin or Valt)
* In our case, we will scale the values by 100 to avoid
* decimals.
*/
/* Determine if this is a PVI or SVI system */
dtemp = pci_read_config32(dev, 0xA0);
if (dtemp & PVI_MODE)
pviModeFlag = 1;
else
pviModeFlag = 0;
/* Get P0's voltage */
msr = rdmsr(0xC0010064);
highVoltageVid = (u8) ((msr.lo >> PS_CPU_VID_SHFT) & 0x7F);
/* If SVI, we only care about CPU VID.
* If PVI, determine the higher voltage b/t NB and CPU
*/
if (pviModeFlag) {
bValue = (u8) ((msr.lo >> PS_NB_VID_SHFT) & 0x7F);
if (highVoltageVid > bValue)
highVoltageVid = bValue;
}
/* Get Pmin's index */
msr = rdmsr(0xC0010061);
bValue = (u8) ((msr.lo >> PS_CUR_LIM_SHFT) & BIT_MASK_3);
/* Get Pmin's VID */
msr = rdmsr(0xC0010064 + bValue);
lowVoltageVid = (u8) ((msr.lo >> PS_CPU_VID_SHFT) & 0x7F);
/* If SVI, we only care about CPU VID.
* If PVI, determine the higher voltage b/t NB and CPU
*/
if (pviModeFlag) {
bValue = (u8) ((msr.lo >> PS_NB_VID_SHFT) & 0x7F);
if (lowVoltageVid > bValue)
lowVoltageVid = bValue;
}
/* Get AltVID */
dtemp = pci_read_config32(dev, 0xDC);
bValue = (u8) (dtemp & BIT_MASK_7);
/* Use the VID with the lowest voltage (higher VID) */
if (lowVoltageVid < bValue)
lowVoltageVid = bValue;
/* If Vids are 7Dh - 7Fh, force 7Ch to keep calculations linear */
if (lowVoltageVid > 0x7C) {
lowVoltageVid = 0x7C;
if (highVoltageVid > 0x7C)
highVoltageVid = 0x7C;
}
bValue = (u8) (lowVoltageVid - highVoltageVid);
/* Each Vid increment is 12.5 mV. The minimum slam time is:
* vidCodeDelta * 12.5mV * 0.4us/mV
* Scale by 100 to avoid decimals.
*/
minimumSlamTime = bValue * (125 * 4);
/* Now round up to nearest register setting.
* Note that if we don't find a value, we
* will fall through to a value of 7
*/
for (bValue = 0; bValue < 7; bValue++) {
if (minimumSlamTime <= vSlamTimes[bValue])
break;
}
/* Apply the value */
dtemp = pci_read_config32(dev, 0xD8);
dtemp &= VSSLAM_MASK;
dtemp |= bValue;
pci_write_config32(dev, 0xd8, dtemp);
}
static u32 nb_clk_did(int node, u32 cpuRev,u8 procPkg) {
u8 link0isGen3 = 0;
u8 offset;
if (AMD_CpuFindCapability(node, 0, &offset)) {
link0isGen3 = (AMD_checkLinkType(node, 0, offset) & HTPHY_LINKTYPE_HT3 );
}
/* FIXME: NB_CLKDID should be 101b for AMD_DA_C2 in package
S1g3 in link Gen3 mode, but I don't know how to tell
package S1g3 from S1g4 */
if ((cpuRev & AMD_DA_C2) && (procPkg & AMD_PKGTYPE_S1gX)
&& link0isGen3) {
return 5 ; /* divide clk by 128*/
} else {
return 4 ; /* divide clk by 16 */
}
}
static u32 power_up_down(int node, u8 procPkg) {
u32 dword=0;
/* from CPU rev guide #41322 rev 3.74 June 2010 Table 26 */
u8 singleLinkFlag = ((procPkg == AMD_PKGTYPE_AM3_2r2)
|| (procPkg == AMD_PKGTYPE_S1gX)
|| (procPkg == AMD_PKGTYPE_ASB2));
if (singleLinkFlag) {
/*
* PowerStepUp=01000b - 50nS
* PowerStepDown=01000b - 50ns
*/
dword |= PW_STP_UP50 | PW_STP_DN50;
} else {
u32 dispRefModeEn = (pci_read_config32(NODE_PCI(node,0),0x68) >> 24) & 1;
u32 isocEn = 0;
int j;
for(j=0 ; (j<4) && (!isocEn) ; j++ ) {
u8 offset;
if (AMD_CpuFindCapability(node, j, &offset)) {
isocEn = (pci_read_config32(NODE_PCI(node,0),offset+4) >>12) & 1;
}
}
if (dispRefModeEn || isocEn) {
dword |= PW_STP_UP50 | PW_STP_DN50 ;
} else {
/* get number of cores for PowerStepUp & PowerStepDown in server
1 core - 400nS - 0000b
2 cores - 200nS - 0010b
3 cores - 133nS -> 100nS - 0011b
4 cores - 100nS - 0011b
*/
switch (get_core_num_in_bsp(node)) {
case 0:
dword |= PW_STP_UP400 | PW_STP_DN400;
break;
case 1:
case 2:
dword |= PW_STP_UP200 | PW_STP_DN200;
break;
case 3:
dword |= PW_STP_UP100 | PW_STP_DN100;
break;
default:
dword |= PW_STP_UP100 | PW_STP_DN100;
break;
}
}
}
return dword;
}
static void config_clk_power_ctrl_reg0(int node, u32 cpuRev, u8 procPkg) {
device_t dev = NODE_PCI(node, 3);
/* Program fields in Clock Power/Control register0 (F3xD4) */
/* set F3xD4 Clock Power/Timing Control 0 Register
* NbClkDidApplyAll=1b
* NbClkDid=100b or 101b
* PowerStepUp= "platform dependent"
* PowerStepDown= "platform dependent"
* LinkPllLink=01b
* ClkRampHystCtl=HW default
* ClkRampHystSel=1111b
*/
u32 dword= pci_read_config32(dev, 0xd4);
dword &= CPTC0_MASK;
dword |= NB_CLKDID_ALL | LNK_PLL_LOCK | CLK_RAMP_HYST_SEL_VAL;
dword |= (nb_clk_did(node,cpuRev,procPkg) << NB_CLKDID_SHIFT);
dword |= power_up_down(node, procPkg);
pci_write_config32(dev, 0xd4, dword);
}
static void config_power_ctrl_misc_reg(device_t dev) {
/* check PVI/SVI */
u32 dword = pci_read_config32(dev, 0xA0);
if (dword & PVI_MODE) { /* PVI */
/* set slamVidMode to 0 for PVI */
dword &= VID_SLAM_OFF | PLLLOCK_OFF;
dword |= PLLLOCK_DFT_L;
pci_write_config32(dev, 0xA0, dword);
} else { /* SVI */
/* set slamVidMode to 1 for SVI */
dword &= PLLLOCK_OFF;
dword |= PLLLOCK_DFT_L | VID_SLAM_ON;
pci_write_config32(dev, 0xA0, dword);
u32 dtemp = dword;
/* Program F3xD8[PwrPlanes] according F3xA0[DulaVdd] */
dword = pci_read_config32(dev, 0xD8);
if (dtemp & DUAL_VDD_BIT)
dword |= PWR_PLN_ON;
else
dword &= PWR_PLN_OFF;
pci_write_config32(dev, 0xD8, dword);
}
}
static void config_nb_syn_ptr_adj(device_t dev) {
/* Note the following settings are additional from the ported
* function setFidVidRegs()
*/
u32 dword = pci_read_config32(dev, 0xDc);
dword |= 0x5 << 12; /* NbsynPtrAdj set to 0x5 per BKDG (needs reset) */
pci_write_config32(dev, 0xdc, dword);
}
static void config_acpi_pwr_state_ctrl_regs(device_t dev) {
/* Rev B settings - FIXME: support other revs. */
u32 dword = 0xA0E641E6;
pci_write_config32(dev, 0x84, dword);
dword = 0xE600A681;
pci_write_config32(dev, 0x80, dword);
}
static void prep_fid_change(void)
{
u32 dword;
u32 nodes;
device_t dev;
int i;
/* This needs to be run before any Pstate changes are requested */
nodes = get_nodes();
for (i = 0; i < nodes; i++) {
printk(BIOS_DEBUG, "Prep FID/VID Node:%02x \n", i);
dev = NODE_PCI(i, 3);
u32 cpuRev = mctGetLogicalCPUID(0xFF) ;
u8 procPkg = mctGetProcessorPackageType();
setVSRamp(dev);
/* BKDG r31116 2010-04-22 2.4.1.7 step b F3xD8[VSSlamTime] */
/* Figure out the value for VsSlamTime and program it */
recalculateVsSlamTimeSettingOnCorePre(dev);
config_clk_power_ctrl_reg0(i,cpuRev,procPkg);
config_power_ctrl_misc_reg(dev);
config_nb_syn_ptr_adj(dev);
config_acpi_pwr_state_ctrl_regs(dev);
dword = pci_read_config32(dev, 0x80);
printk(BIOS_DEBUG, " F3x80: %08x \n", dword);
dword = pci_read_config32(dev, 0x84);
printk(BIOS_DEBUG, " F3x84: %08x \n", dword);
dword = pci_read_config32(dev, 0xD4);
printk(BIOS_DEBUG, " F3xD4: %08x \n", dword);
dword = pci_read_config32(dev, 0xD8);
printk(BIOS_DEBUG, " F3xD8: %08x \n", dword);
dword = pci_read_config32(dev, 0xDC);
printk(BIOS_DEBUG, " F3xDC: %08x \n", dword);
}
}
static void UpdateSinglePlaneNbVid(void)
{
u32 nbVid, cpuVid;
u8 i;
msr_t msr;
/* copy higher voltage (lower VID) of NBVID & CPUVID to both */
for (i = 0; i < 5; i++) {
msr = rdmsr(PS_REG_BASE + i);
nbVid = (msr.lo & PS_CPU_VID_M_ON) >> PS_CPU_VID_SHFT;
cpuVid = (msr.lo & PS_NB_VID_M_ON) >> PS_NB_VID_SHFT;
if (nbVid != cpuVid) {
if (nbVid > cpuVid)
nbVid = cpuVid;
msr.lo = msr.lo & PS_BOTH_VID_OFF;
msr.lo = msr.lo | (u32) ((nbVid) << PS_NB_VID_SHFT);
msr.lo = msr.lo | (u32) ((nbVid) << PS_CPU_VID_SHFT);
wrmsr(PS_REG_BASE + i, msr);
}
}
}
static void fixPsNbVidBeforeWR(u32 newNbVid, u32 coreid)
{
msr_t msr;
u8 startup_pstate;
/* This function sets NbVid before the warm reset.
* Get StartupPstate from MSRC001_0071.
* Read Pstate register pionted by [StartupPstate].
* and copy its content to P0 and P1 registers.
* Copy newNbVid to P0[NbVid].
* transition to P1 on all cores,
* then transition to P0 on core 0.
* Wait for MSRC001_0063[CurPstate] = 000b on core 0.
*/
msr = rdmsr(0xc0010071);
startup_pstate = (msr.hi >> (32 - 32)) & 0x07;
/* Copy startup pstate to P1 and P0 MSRs. Set the maxvid for this node in P0.
* Then transition to P1 for corex and P0 for core0.
* These setting will be cleared by the warm reset
*/
msr = rdmsr(0xC0010064 + startup_pstate);
wrmsr(0xC0010065, msr);
wrmsr(0xC0010064, msr);
msr.lo &= ~0xFE000000; // clear nbvid
msr.lo |= newNbVid << 25;
wrmsr(0xC0010064, msr);
UpdateSinglePlaneNbVid();
// Transition to P1 for all APs and P0 for core0.
msr = rdmsr(0xC0010062);
msr.lo = (msr.lo & ~0x07) | 1;
wrmsr(0xC0010062, msr);
// Wait for P1 to set.
do {
msr = rdmsr(0xC0010063);
} while (msr.lo != 1);
if (coreid == 0) {
msr.lo = msr.lo & ~0x07;
wrmsr(0xC0010062, msr);
// Wait for P0 to set.
do {
msr = rdmsr(0xC0010063);
} while (msr.lo != 0);
}
}
static void coreDelay(void)
{
u32 saved;
u32 hi, lo, msr;
u32 cycles;
/* delay ~40us
This seems like a hack to me...
It would be nice to have a central delay function. */
cycles = 8000 << 3; /* x8 (number of 1.25ns ticks) */
msr = 0x10; /* TSC */
_RDMSR(msr, &lo, &hi);
saved = lo;
do {
_RDMSR(msr, &lo, &hi);
} while (lo - saved < cycles);
}
static void transitionVid(u32 targetVid, u8 dev, u8 isNb)
{
u32 currentVid, dtemp;
msr_t msr;
u8 vsTimecode;
u16 timeTable[8] = { 10, 20, 30, 40, 60, 100, 200, 500 };
int vsTime;
/* This function steps or slam the Nb VID to the target VID.
* It uses VSRampTime for [SlamVidMode]=0 ([PviMode]=1)
* or VSSlamTime for [SlamVidMode]=1 ([PviMode]=0)to time period.
*/
/* get the current VID */
msr = rdmsr(0xC0010071);
if (isNb)
currentVid = (msr.lo >> NB_VID_POS) & BIT_MASK_7;
else
currentVid = (msr.lo >> CPU_VID_POS) & BIT_MASK_7;
/* Read MSRC001_0070 COFVID Control Register */
msr = rdmsr(0xC0010070);
/* check PVI/SPI */
dtemp = pci_read_config32(dev, 0xA0);
if (dtemp & PVI_MODE) { /* PVI, step VID */
if (currentVid < targetVid) {
while (currentVid < targetVid) {
currentVid++;
if (isNb)
msr.lo = (msr.lo & NB_VID_MASK_OFF) | (currentVid << NB_VID_POS);
else
msr.lo = (msr.lo & CPU_VID_MASK_OFF) | (currentVid << CPU_VID_POS);
wrmsr(0xC0010070, msr);
/* read F3xD8[VSRampTime] */
dtemp = pci_read_config32(dev, 0xD8);
vsTimecode = (u8) ((dtemp >> VS_RAMP_T) & 0x7);
vsTime = (int)timeTable[vsTimecode];
do {
coreDelay();
vsTime -= 40;
} while (vsTime > 0);
}
} else if (currentVid > targetVid) {
while (currentVid > targetVid) {
currentVid--;
if (isNb)
msr.lo = (msr.lo & NB_VID_MASK_OFF) | (currentVid << NB_VID_POS);
else
msr.lo = (msr.lo & CPU_VID_MASK_OFF) | (currentVid << CPU_VID_POS);
wrmsr(0xC0010070, msr);
/* read F3xD8[VSRampTime] */
dtemp = pci_read_config32(dev, 0xD8);
vsTimecode = (u8) ((dtemp >> VS_RAMP_T) & 0x7);
vsTime = (int)timeTable[vsTimecode];
do {
coreDelay();
vsTime -= 40;
} while (vsTime > 0);
}
}
} else { /* SVI, slam VID */
if (isNb)
msr.lo = (msr.lo & NB_VID_MASK_OFF) | (targetVid << NB_VID_POS);
else
msr.lo = (msr.lo & CPU_VID_MASK_OFF) | (targetVid << CPU_VID_POS);
wrmsr(0xC0010070, msr);
/* read F3xD8[VSRampTime] */
dtemp = pci_read_config32(dev, 0xD8);
vsTimecode = (u8) ((dtemp >> VS_RAMP_T) & 0x7);
vsTime = (int)timeTable[vsTimecode];
do {
coreDelay();
vsTime -= 40;
} while (vsTime > 0);
}
}
static u32 needs_NB_COF_VID_update(void)
{
u8 nb_cof_vid_update;
u8 nodes;
u8 i;
/* If any node has nb_cof_vid_update set all nodes need an update. */
nodes = get_nodes();
nb_cof_vid_update = 0;
for (i = 0; i < nodes; i++) {
if (pci_read_config32(NODE_PCI(i, 3), 0x1FC) & 1) {
nb_cof_vid_update = 1;
break;
}
}
return nb_cof_vid_update;
}
static u32 init_fidvid_core(u32 nodeid, u32 coreid)
{
device_t dev;
u32 vid_max;
u32 fid_max=0;
u8 nb_cof_vid_update = needs_NB_COF_VID_update();
u8 pvimode;
u32 reg1fc;
/* Steps 1-6 of BIOS NB COF and VID Configuration
* for SVI and Single-Plane PVI Systems.
*/
dev = NODE_PCI(nodeid, 3);
pvimode = (pci_read_config32(dev, 0xA0) >> 8) & 1;
reg1fc = pci_read_config32(dev, 0x1FC);
if (nb_cof_vid_update) {
if (pvimode) {
vid_max = (reg1fc >> 7) & 0x7F;
fid_max = (reg1fc >> 2) & 0x1F;
/* write newNbVid to P-state Reg's NbVid always if NbVidUpdatedAll=1 */
fixPsNbVidBeforeWR(vid_max, coreid);
} else { /* SVI */
vid_max = ((reg1fc >> 7) & 0x7F) - ((reg1fc >> 17) & 0x1F);
fid_max = ((reg1fc >> 2) & 0x1F) + ((reg1fc >> 14) & 0x7);
transitionVid(vid_max, dev, IS_NB);
}
/* fid setup is handled by the BSP at the end. */
} else { /* ! nb_cof_vid_update */
/* Use max values */
if (pvimode)
UpdateSinglePlaneNbVid();
}
return ((nb_cof_vid_update << 16) | (fid_max << 8));
}
static void init_fidvid_ap(u32 bsp_apicid, u32 apicid, u32 nodeid, u32 coreid)
{
u32 send;
printk(BIOS_DEBUG, "FIDVID on AP: %02x\n", apicid);
send = init_fidvid_core(nodeid,coreid);
send |= (apicid << 24); // ap apicid
// Send signal to BSP about this AP max fid
// This also indicates this AP is ready for warm reset (if required).
lapic_write(LAPIC_MSG_REG, send | F10_APSTATE_RESET);
}
static u32 calc_common_fid(u32 fid_packed, u32 fid_packed_new)
{
u32 fidmax;
u32 fidmax_new;
fidmax = (fid_packed >> 8) & 0xFF;
fidmax_new = (fid_packed_new >> 8) & 0xFF;
if (fidmax > fidmax_new) {
fidmax = fidmax_new;
}
fid_packed &= 0xFF << 16;
fid_packed |= (fidmax << 8);
fid_packed |= fid_packed_new & (0xFF << 16); // set nb_cof_vid_update
return fid_packed;
}
static void init_fidvid_bsp_stage1(u32 ap_apicid, void *gp)
{
u32 readback = 0;
u32 timeout = 1;
struct fidvid_st *fvp = gp;
int loop;
print_debug_fv("Wait for AP stage 1: ap_apicid = ", ap_apicid);
loop = 100000;
while (--loop > 0) {
if (lapic_remote_read(ap_apicid, LAPIC_MSG_REG, &readback) != 0)
continue;
if ((readback & 0x3f) == 1) {
timeout = 0;
break; /* target ap is in stage 1 */
}
}
if (timeout) {
printk(BIOS_DEBUG, "%s: timed out reading from ap %02x\n",
__func__, ap_apicid);
return;
}
print_debug_fv("\treadback = ", readback);
fvp->common_fid = calc_common_fid(fvp->common_fid, readback);
print_debug_fv("\tcommon_fid(packed) = ", fvp->common_fid);
}
static void updateSviPsNbVidAfterWR(u32 newNbVid)
{
msr_t msr;
u8 i;
/* This function copies newNbVid to NbVid bits in P-state Registers[4:0]
* for SVI mode.
*/
for (i = 0; i < 5; i++) {
msr = rdmsr(0xC0010064 + i);
if ((msr.hi >> 31) & 1) { /* PstateEn? */
msr.lo &= ~(0x7F << 25);
msr.lo |= (newNbVid & 0x7F) << 25;
wrmsr(0xC0010064 + i, msr);
}
}
}
static void fixPsNbVidAfterWR(u32 newNbVid, u8 NbVidUpdatedAll)
{
msr_t msr;
u8 i;
u8 StartupPstate;
/* This function copies newNbVid to NbVid bits in P-state
* Registers[4:0] if its NbDid bit=0 and PstateEn bit =1 in case of
* NbVidUpdatedAll =0 or copies copies newNbVid to NbVid bits in
* P-state Registers[4:0] if its and PstateEn bit =1 in case of
* NbVidUpdatedAll=1. Then transition to StartPstate.
*/
/* write newNbVid to P-state Reg's NbVid if its NbDid=0 */
for (i = 0; i < 5; i++) {
msr = rdmsr(0xC0010064 + i);
/* NbDid (bit 22 of P-state Reg) == 0 or NbVidUpdatedAll = 1 */
if ((((msr.lo >> 22) & 1) == 0) || NbVidUpdatedAll) {
msr.lo &= ~(0x7F << 25);
msr.lo |= (newNbVid & 0x7F) << 25;
wrmsr(0xC0010064 + i, msr);
}
}
UpdateSinglePlaneNbVid();
/* For each core in the system, transition all cores to StartupPstate */
msr = rdmsr(0xC0010071);
StartupPstate = msr.hi & 0x07;
msr = rdmsr(0xC0010062);
msr.lo = StartupPstate;
wrmsr(0xC0010062, msr);
/* Wait for StartupPstate to set. */
do {
msr = rdmsr(0xC0010063);
} while (msr.lo != StartupPstate);
}
static void set_p0(void)
{
msr_t msr;
// Transition P0 for calling core.
msr = rdmsr(0xC0010062);
msr.lo = (msr.lo & ~0x07);
wrmsr(0xC0010062, msr);
/* Wait for P0 to set. */
do {
msr = rdmsr(0xC0010063);
} while (msr.lo != 0);
}
static void finalPstateChange(void)
{
/* Enble P0 on all cores for best performance.
* Linux can slow them down later if need be.
* It is safe since they will be in C1 halt
* most of the time anyway.
*/
set_p0();
}
static void init_fidvid_stage2(u32 apicid, u32 nodeid)
{
msr_t msr;
device_t dev;
u32 reg1fc;
u32 dtemp;
u32 nbvid;
u8 nb_cof_vid_update = needs_NB_COF_VID_update();
u8 NbVidUpdateAll;
u8 pvimode;
/* After warm reset finish the fid/vid setup for all cores. */
/* If any node has nb_cof_vid_update set all nodes need an update. */
dev = NODE_PCI(nodeid, 3);
pvimode = (pci_read_config32(dev, 0xA0) >> 8) & 1;
reg1fc = pci_read_config32(dev, 0x1FC);
nbvid = (reg1fc >> 7) & 0x7F;
NbVidUpdateAll = (reg1fc >> 1) & 1;
if (nb_cof_vid_update) {
if (pvimode) {
nbvid = (reg1fc >> 7) & 0x7F;
/* write newNbVid to P-state Reg's NbVid if its NbDid=0 */
fixPsNbVidAfterWR(nbvid, NbVidUpdateAll);
} else { /* SVI */
nbvid = ((reg1fc >> 7) & 0x7F) - ((reg1fc >> 17) & 0x1F);
updateSviPsNbVidAfterWR(nbvid);
}
} else { /* !nb_cof_vid_update */
if (pvimode)
UpdateSinglePlaneNbVid();
}
dtemp = pci_read_config32(dev, 0xA0);
dtemp &= PLLLOCK_OFF;
dtemp |= PLLLOCK_DFT_L;
pci_write_config32(dev, 0xA0, dtemp);
finalPstateChange();
/* Set TSC to tick at the P0 ndfid rate */
msr = rdmsr(HWCR);
msr.lo |= 1 << 24;
wrmsr(HWCR, msr);
}
#if CONFIG_SET_FIDVID_STORE_AP_APICID_AT_FIRST
struct ap_apicid_st {
u32 num;
// it could use 256 bytes for 64 node quad core system
u8 apicid[NODE_NUMS * 4];
};
static void store_ap_apicid(unsigned ap_apicid, void *gp)
{
struct ap_apicid_st *p = gp;
p->apicid[p->num++] = ap_apicid;
}
#endif
static int init_fidvid_bsp(u32 bsp_apicid, u32 nodes)
{
#if CONFIG_SET_FIDVID_STORE_AP_APICID_AT_FIRST
struct ap_apicid_st ap_apicidx;
u32 i;
#endif
struct fidvid_st fv;
printk(BIOS_DEBUG, "FIDVID on BSP, APIC_id: %02x\n", bsp_apicid);
/* Steps 1-6 of BIOS NB COF and VID Configuration
* for SVI and Single-Plane PVI Systems.
*/
fv.common_fid = init_fidvid_core(0,0);
print_debug_fv("BSP fid = ", fv.common_fid);
#if CONFIG_SET_FIDVID_STORE_AP_APICID_AT_FIRST && !CONFIG_SET_FIDVID_CORE0_ONLY
/* For all APs (We know the APIC ID of all APs even when the APIC ID
is lifted) remote read from AP LAPIC_MSG_REG about max fid.
Then calculate the common max fid that can be used for all
APs and BSP */
ap_apicidx.num = 0;
for_each_ap(bsp_apicid, CONFIG_SET_FIDVID_CORE_RANGE, store_ap_apicid, &ap_apicidx);
for (i = 0; i < ap_apicidx.num; i++) {
init_fidvid_bsp_stage1(ap_apicidx.apicid[i], &fv);
}
#else
for_each_ap(bsp_apicid, CONFIG_SET_FIDVID_CORE0_ONLY, init_fidvid_bsp_stage1, &fv);
#endif
print_debug_fv("common_fid = ", fv.common_fid);
if (fv.common_fid & (1 << 16)) { /* check nb_cof_vid_update */
// Enable the common fid and other settings.
enable_fid_change((fv.common_fid >> 8) & 0x1F);
// nbfid change need warm reset, so reset at first
return 1;
}
return 0; // No FID/VID changes. Don't reset
}
#endif